




Handbook of

THEORETICAL and 
COMPUTATIONAL 
NANOTECHNOLOGY



Titles in Nanotechnology Book Series
Founding Editor

Dr. Hari Singh Nalwa
1. Encyclopedia iff Nanoscience and Nanotechnology, Ifl-Volume Set

Edited by Hari Singh Nalwa
2. Handbook of Theoretical and Computational Nanotechnology, 10-Volume Set

Edited by Michael Riei.fi and Wolfram Schommers
3. Bottom-up Nanofabrication: Supramolecules, Self-Assemblies, and Organized Films, fi-Volume Set

Edited by Katsuhiko Ariga arid Hari Singh Nalwa
4. Handbook of Semiconductor Nanostructures and Nanodevices, 5-Vohime Set

Edited by A, A. Balandin and K. 1... Wang
5. Handbook of Organic-Inorganic Hybrid Materials and Nanocompo.sites, 2-Volume Set

Edited by Hari Singh Nalwa
6. Handbook of Nanostructured Biomaterials and Their Applications in Nanobibtechtwlogy, 2-Volmme Sei

Edited by Hari Singh Nalwa
7. Handbook of Electrochemical Nanotechnology, 2-Volume Set

Edited by Yuehe i .in and Hari Singh Nalwa
H. Polymeric Nanostructures and Their Applications, 2-Voluine Set

Edited by Hari Singh Nalwa
9. Soft Nanomaterials, 2-Volume Set

Edited by Hari Singh Nalwa
II). Functional Nauvinaterials

Edited by Kurt E. Geckeler and Edward Rosenberg
11. Synthesis, Functionalization and Surface Treatment of Nanoparticles

Edited by 1. M. Baraton
12. Quantum Dots and Nanowires

Edited by S. Bandyopadhyay and Hari Singh Nalwa
13. Nanoclusters and Nanocrystals

Edited by Hari Singh Nalwa
14. Molecular Nanoelectronics

Edited by Mark A. Reed and T Lee
15. Magnetic Nanostructures

Edited by Hari Singh Nalwa
16. Nanoparticles for Pharmaceutical Applications

Edited by J. Dumb, Y. Tabata, M. N. V Ravi Kumar, and S. Farber
17. Cancer Nanotechnology

Edited by Hari Singh Nalwa and Thomas Webster
IS. Biochips Nanotechnology

Edited by Nongyue He and Hari Singh Nalwa
19 Nanotoxicology

Edited by Yuliang Zhao and Hart Singh Nalwa
2(1 Polymer Nanocomposites and Their Applications

Written by Suprakas Sinha Ray and Mosto Bousmina
21 Nanoscale Science and Engineering Education

Edited by Aldrin E. Sweeney and Sudipta Seal
22. Hard Nanomaterials

Edited by Hari Singh Nalwa

Additional Volumes in Preparation
Visit: www.aspbs.com

Riei.fi
http://www.aspbs.com


Handbook of
THEORETICAL and 
COMPUTATIONAL 
NANOTECHNOLOGY

Volume 7

Magnetic Nanostructures 
and Nano-optics

Edited by

Michael Rieth and Wolfram Schommers
Forschungszentrum Karlsruhe, Karlsruhe, Germany

AMERICAN SCIENTIFIC PUBLISHERS 
25650 North Lewis Way

Stevenson Ranch, California 91381-1439, USA

Phil r-n.i



AMERICAN SCIENTIFIC PUBLISHERS
25650 North Lewis Way, Stevenson Ranch, California 91381-1439, USA
Tel.: (661) 254-0807
Fax: (661) 254-1207
E-mail: orderly aspbs.com
WEB: www.aspbs.com

Handbook of Theoretical and Computational Nanotechnology 
edited by Michael Rieth and Wolfram Schommers.
The image on the cover of this handbook was provided by Professor Jeong Won Kang. Chung-Ang 
University, Seoul, Korea. See Jeong Won Kang. Won Young Choi, and Ho Jung Hwang. Journal 
of Computational and Theoretical Nanoscience, Vol. 1(2), pp. 199-203 (2004). Copyright © 2004. 
American Scientific Publishers.
This book is printed on acid-free paper. ®
Copyright © 2006 by American Scientific Publishers.
All Rights Reserved.
No part of this book may be reproduced, or transmitted in any form or by any means, electronic or 
mechanical, including photocopy, recording, or otherwise by any information storage and retrieval 
system, without permission in writing from the publisher.
Authorization to photocopy for personal or internal use of specific clients may be granted by American 
Scientific Publishers provided that required fee per chapter photocopied is paid directly to Copyright 
Clearance Center Inc.. 222 Rosewood Drive. Danvers. MA 01923. USA. The fee is subject to change 
without any notice. American Scientific Publishers consent does not extend to copying for general 
distribution, advertising, promotion, creating new collective works, resale or to other kinds of copying. 
Specific permission must be obtained from the publisher for such copying.
The information provided in this handbook is compiled from reliable sources but the contributing 
authors, editors, and lhe publisher cannot assume any responsibility whatsoever for the validity of all 
statements, illustrations, data, procedures, and other related materials contained herein or for the con
sequences of their use.

Library' of Congress Control Number: 2003111818

International Standard Book Number: 1-58883-042-X (Set)
International Standard Book Number: 1-58883-043-8 (Volume 1)
International Standard Book Number: 1-58883-044-6 (Volume 2)
International Standard Book Number: 1-58883-045-4 (Volume 3) 
International Standard Book Number: 1-58883-046-2 (Volume 4) 
International Standard Book Number: 1-58883-047-0 (Volume 5) 
International Standard Book Number: 1-58883-048-9 (Volume 6) 
International Standard Book Number: 1-58883-049-7 (Volume 7) 
International Standard Book Number: 1-58883-050-0 (Volume 8) 
International Standard Book Number: 1-58883-051-9 (Volume 9) 
International Standard Book Number: 1-58883-052-7 (Volume 10)
Dr. Michael Rieth
Forschungszcntrum Karlsruhe
Institute of Materials Research I
D-76021 Karlsruhe. GERMANY
Prof. Dr. Wolfram Schommers
Forschungszcntrum Karlsruhe
Institute for Scientific Computing
D-76021 Karlsruhe, GERMANY
PRINTED IN THE UNITED STATES OF AMERICA
III 9 8 7 6 5 4 3 2 1

aspbs.com
http://www.aspbs.com


Foreword
Nanoscience is fashionable. All administrations in the Western world have stressed their 
interest in nanoobjects and nanotechnologies. As usual, this type of large scientific movement 
has its pluses and minuses. Many scientists join the crowd without necessarily changing 
anything in their actual work. Most chemists, for instance, build new molecules that may be 
called nanoobjccts; but again, as usual, the movement docs generate significant new content.

Let us, for instance, follow the role of nanostructures in chemistry. On one side, nature 
has provided us with beautiful, robust objects such as fullerenes and carbon tubes, which 
have some admirable properties. The current challenge is to obtain them in large amounts 
and at a reasonable price. Here is the real problem.

A completely different sector is obtained from chemical nanomachines. for w hich a molec
ular unit of nanometric size moves with respect to another one through a change in redox 
potential or pH. Some of these machines have been built. At the moment. 1 feel rather skep
tical about them because they are extremely costly, extremely fragile (sensitive to poisons), 
and not easy to protect with a suitable coating—or by a local “antipoison" center. But, here 
again, there is a challenge.

Let us now' turn to biology. Here we find an immense group of working nanomachines, 
enzymes, ionic channels, sensor proteins, adhesion molecules, and so on. They are extremely 
impressive, hut of course they represent progressive construction by trial and error over 
more than a billion years. Should we try lo mimic these machines or. rather, use them 
for technological purposes, as they are, for instance, lo grow' plants or create proteins at an 
industrial level according to the techniques of molecular genetics? This is a major question.

A third, open side is quantum physics and the (remote) possibility of quantum computers. 
In my youth, I had hopes for digital storage via quantized flux quanta: The corresponding 
technology, based on Josephson functions, was patiently built by IBM. but they ultimately 
dropped out. This shows the hardship of nanotechnologies even when they are handled by 
a large. competent group. But the cause is not lost, and it may well be that our children use 
some unexpected form of quantum computers.

Thus, we are facing real challenges, not just the vague recommendations of some anony
mous boards. And. we need the tools. We need to know the behavior of materials al the 
nanolevel, the clever tricks of physical chemistry required to produce nanoparticles or nano
pores, the special properties of small cooperative systems (nanomagnets, nanosuperconduc
tors. nanoferroelectrics, etc.), the ability for assembling functional units, and so on.

The aim of the present handbook is to help us with the tools by suitable modclizations. It 
is written by leading experts, starting from general theoretical principles and progressing to 
detailed recipes.

In the second half of the 18th century, all the knowledge (fundamental and practical) of 
the Western world was condensed into an outstanding encyclopedia constructed energetically 
by Denis Diderot just after the industrial revolution started. Here, at a more modest level, we 
can hope for something similar. Soon after the first wave, including this handbook, a certain 
form of nanoindustry may be born.

The discussions started in this handbook will continue in a journal (Journal of Computa
tional and Theoretical Nanoscience) launched by the present editors. I wish them the best.

Professor Pierre-Gilles de Gennes
Nobel Prize Laureate. Physics 

College de France 
Paris. France





Preface
This is the first handbook that deals with theoretical and computational developments in 
nanotechnology, l he Ill-volume compendium is an unprecedented single reference source 
that provides ideal introduction and overview of the most recent advances and emerging new 
aspects of nanotechnology spanning from science and engineering lo neurogenetics. Many 
works in the field ol theoretical and computational nanotechnology have been published to 
date, hut no hook or handbook has focused on all aspects in this field that deal with nano
machines. electronics, devices, quantum computing, nanostructured materials, nanorobotics, 
medicine, biology, biotechnology, and more.

There is no doubt that nanoscience will be the dominant direction for technology in this 
new century, and this science will influence our lives to an extent impossible in years past: 
Specific manipulations of matter at its ultimate level will open completely new perspectives 
on all scientific and technological disciplines. To be able to produce optimal nanosys
tems with tailor-made properties, it is necessary to analyze and construct such systems in 
advance by adequate theoretical and computational methods. The handbook gives a com
plete overview of the essential methods, models, and basic pictures.

But. as is well known, there arc also threats connected with nanotechnology, specifically 
with respect to biological systems: Self-assembly can be an uncontrolled process, and lhe 
final state of a developing system is in general uncertain in such cases. To avoid undesir
able developments, the theoretical (computational) analysis of such processes is not only 
desirable but also absolutely necessary. Thus, the computational and theoretical methods of 
nanoscience arc essential for the prediction of new and custom nanosystems and can help 
keep nanoscience under control. There is basically no alternative. Therefore, one possible 
answer to the question. “Why a book on theoretical and computational nanotechnology?" is 
to (five nanotechnology a direction!

In lhe design of macroscopic and microscopic systems, engineering is essentially based on 
intuitive concepts, which arc tailored to observations in everyday life. Classical mechanics is 
also based on these macroscopic observations, and its notions have been chosen with respect 
to our intuitive demands lor visualizahility. However, when we approach the nanolevel, the 
tools used for the design of macroscopic and microscopic systems become more and more 
useless. At the nanolevel, quantum phenomena are dominant, and the main features in con
nection with quantum effects are not accessible lo our intuitive concepts, which are merely 
useful at the macroscopic level; the framework of quantum theory is in striking conflict 
with our intuitive demands for visualizability, and we are forced to use abstract physical 
laws expressed by mathematical equations. In other words, effects at lhe nanolevel arc 
(almost) not accessible to our usual engineering concepts. Therefore, here we rely on the 
abstract mathematical relations of theoretical physics. In nanotechnology functional systems, 
machines and the like cannot be adequately designed without the use of these abstract 
theoretical laws and the application of suitable computational methods. Therefore, in nano
technology, theoretical and computational methods arc centrally important: This makes the 
present handbook an indispensable compendium.

Nanometer-scale units arc by definition very small atomic structures and functional sys
tems; it is the smallest level at which functional matter can exist. We already learned to 
manipulate matter at this ultimate level: Atoms can be moved experimentally in a controlled 
manner from one position to another. This is astonishing because one nanometer only cor
responds to one millionth of a millimeter. For example, an electrical nanogenerator could 
be designed consisting of various parts that included a very' fast revolving rotator. One mil
lion of these generators could be arranged side by side on a length of two centimeters: it 
is remarkable that not only static nanostructures could in principle be produced and sig
nificantly manipulated but also artificial dynamical nanosystems. But. the downscaling of 
functional structures from the macroscopic to the nanometer scale is only one of lhe essential 
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points in connection with nanotechnology. In addition—and maybe much more important— 
nanosystems provide unique properties in comparison to those wc observe at the macro
scopic level. For example, a metal nanocluster shows a melting temperature that strongly 
deviates from that of a macroscopic piece of metal; its melting point is significantly lower. 
A decrease down to a fraction of only 20% is typical, depending, however, on the material 
and particle number.

A professional treatment of the various problems in nanoscience and nanotechnology 
makes the application and development of theoretical and computational methods in this 
field absolutely necessary. In other words, the discipline of theoretical and computational 
nanotechnology has to be considered as a key topic to be able to treat nanotechnology ade
quately and to reach optimal solutions for certain tasks. It is therefore desirable to get a 
timely overview about the specific topics presently relevant in this field. In this respect, the 
handbook gives a complete overview of the specific topics so far established in nanotechnol
ogy. Each chapter gives a certain overview of actual activities of the envisaged topic and in 
most cases an adequate description of the basics, so advanced students also can benefit from 
the handbook. It was our strategy to provide consistent and complete representations so the 
reader would be able to study each chapter without consulting other works. This of course 
leads to certain overlaps, which was also part of our strategy to enable an approach to the 
same topic from various points of view.

The handbook reflects the spectrum of questions and facts that arc and could be relevant 
in the field of nanotechnology. Not only formal developments and methods are outlined, 
but also descriptions of a broad variety of applications in particular are typical for the 
handbook. All relevant topics have been taken into account, from functional structures—like 
an electrical nanogenerator—or quantum computing to questions that deal directly with basic 
physics. Almost all fields related to theoretical and computational nanotechnology could be 
covered, including multiscale modeling, which is important for the transition from microscale 
to nanoscale and vice versa.

All theoretical and computational methods used in connection with the various topics in 
nanoscience are directly based on the same theoretical physical laws. At the nanolevel, all 
properties of our world emerge at the level of the basic theoretical laws. In traditional tech
nologies, engineers do not work at the ultimate level. They use more or less phenomenolog
ical descriptions that generally cannot be deduced from the basic physical theoretical laws. 
We have as many phenomenological descriptions as there arc technological disciplines, and 
each is tailor-made to a specific topic. An exchange of concepts is either not possible or 
rather difficult. In contrast, at the ultimate nanolevel the world is based on only one theory 
for all disciplines, and this is expressed by basic theoretical physics. This situation opens 
the possibility for interconnections between the various topics in nanotechnology to bring 
about new effects and chances for further applications. In other words, nanotechnology and 
nanoscience can be considered interdisciplinary. Clearly, the handbook reflects the interdis
ciplinary character of this new science and technology.

The Handbook of Theoretical and Computational Nanotechnology includes 138 chapters 
written by hundreds of the world's leading scientists. Topics cover mainly the following areas:

(i) Computational biology: DNA, enzymes, proteins, biomechanisms, neuiogenetic infor
mation processing, and nanomedicinc

(ii) Computational chemistry: quantum chemistry, molecular design, chemical reactions, 
drugs, and design

(iii) Computational methods and simulation techniques from ah initio to multiscalc 
modeling

(iv) Materials behavior at the nanolevcl, such as mechanics, defects, diffusion, and dynamics
(v) Nanoscale processes: membranes, pores, diffusion, growth, friction, wear, catalysis

(vi) Nanostructured materials: metals, composites, polymers, liquid crystals, photonic crys
tals, colloids, and nanotubes

(vii) Nanostructures: fullerenes, nanotubes, dusters, layers, quantum dots, thin films, sur
faces, and interfaces

(viii) Nanoengineering and nanodesign: nanomachines. nano-CAD. nanodcvices, and logic 
circuits



(ix) Nanoelcctronics: molecular electronics, nanodevices, electronic states, and nanowires 
(x> Nanomagnetism: magnetic properties of nanostructures and nanostructured materials

(xi) Nanooptics: optical response theory, quantum dots, luminescence, and photonic 
crystals

(xii) Quantum computers: theoretical aspects, devices, and computational methods for sim
ulating quantum computers and algorithms

I he handbook provides broad information on all basic and applied aspects of theoretical and 
computational nanotechnology by considering more than two decades of pioneering research. 
It is the only scientific work of its kind since the beginning of nanotechnology, bringing 
together core knowledge and the very latest advances. The handbook is written for audiences 
of various levels while providing the latest up-to-date information to active scientists and 
experts in the lield. This handbook is an indispensable source for research professionals and 
developers seeking the most up-to-date information on theoretical and computational nano
technology among a wide range of disciplines, from science and engineering to medicine.

This handbook was written by leading experts, and we are highly grateful to all contributing 
authors for their tremendous efforts in writing these outstanding state-of-the-art chapters 
that altogether form a unified whole. K. Eric Drexler (designer of nanomachines, founder of 
the Foresight Institute, coiner of the term nanotechnology) gives an excellent introductory 
chapter about possible trends of future nanotechnology. We especially express our sincere 
gratitude to Dr. Drexler for his instructive and basic representation.

We cordially extend our special thanks to Professor Pierre-Gilles de Gennes for his valu
able and insightful Foreword.

The editors are particularly thankful to Dr. Uari Singh Nalwa, President and CEO of 
American Scientific Publishers, for his continuous support of the project and the enthusiastic 
cooperation in connection with all questions concerning the development of the handbook. 
Furthermore, we are grateful to the entire team at Bythcway Publishing and especially to 
Kate Brown for copyediting.

Dr. Michael Rieth
Prof. Dr. Wolfram Schommers

Karlsruhe. Germany
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1. INTRODUCTION
Atom nanooptics is a part of a more general domain of nanooptics that includes both photon 
nanooptics and atom nanooptics. Figure I schematically illustrates these individual areas 
of nanooptics, which are intimately interrelated by the configurations of the light fields 
produced and used therein: light field in the focus of a light beam (light far field), standing 
light waves, laser near field, and evanescent laser field.

The term of atom optics is due to the natural analogy with light optics or the optics of 
photons. Light optics is based on two fundamental principles: (a) the wave properties of light 
and (b) the electromagnetic interaction between light field and matter or, in other words, 
between light and bound charged particles (electrons or ions) in a medium. Owing to this 
interaction, the light field can be reflected by the medium or diffracted by it, or else light 
can propagate through the medium with some velocity other than the velocity of light in a 
vacuum, and so on [1], Atom optics is considered in two books [2, 3].

According to the de Broglie idea, wavelike properties are associated with any particles of 
matter, and the de Broglie wavelength is defined by the fundamental relation (Fig. 2)

where h is Planck’s constant and p, Af, and v are the momentum, mass, and velocity of 
particle, respectively. The wave properties of massive particles were verified in experiments 
on the diffraction of electrons and used in the first light optics analog for particles—electron 
optics |4]. Electron optics is based on (a) the wave properties of electrons and (b) the 
electromagnetic interaction between moving electronic charge and electrical and magnetic 
fields of appropriate configuration [4], The most familiar application of electron optics is 
electron microscopy [5].

Another light optics analog is neutron optics based again on (a) the wave properties of 
ultra cold neutron and (b) the interaction between neutrons and atomic nuclei, which can be 
described by means of what is known as the optical potential (6]. As distinct from electron

NANOOPTICS

PHOTON NANOOPTICS ATOM NANOOPTICS

LOCALIZATION and 
ENHANCEMENT of 
OPTICAL FIELD in 
SPACE (a<Xopt)

LOCALIZATION of ATOMS 
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(NEAR-FIELD,
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PLASMONS...)
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ATOMS in the

Laser Fields 
Standing Wave 
Near Field 
Evanescent Wave

Figure 1. Nanooptics as combination of photon nanoopties and atom nanooptics. Common features of both trends: 
atoms in laser field of various configurations (standing wave, near-field. evanescent wave).
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Figure 2. Correspondence between Kelvin temperature and lhe thermal de Broglie wavelength of a typical atom.

optics we deal here with more massive particles (ultracold neutrons) whose wave properties 
manifest themselves at low temperatures [7]. The effect of gravitation and low intensity of 
ultracold neutron sources make experiment in neutron optics more complex than in electron 
optics. Nevertheless neutron interferometers |8] and microscopes |9-ll| have already been 
s u ccess I u I ly rea I ize d.

1 he next natural object are neutral atoms or molecules. The wave properties of atoms and 
molecules and various types of their interaction with matter and electromagnetic fields (from 
static to optical) make it possible to implement atom and molecular optics. It is precisely lhe 
great variety of methods for exerting effect on an atom (or molecule) possessing a static 
electrical ot magnetic moment, a quadiuplc moment, and optic resonance transitions (oi 
a high-frequency dipole moment) that form the basis for several possible ways to realize 
atomic (molecular) optics. Let us consider them briefly.

2. METHODS OF REALIZATION OF ATOM OPTICS
The known methods to implement atom optics (atomic-optical effects) can be classed in the 
following three categories:

(1) Methods based on the interaction between atoms and matter.
(2) Methods based on the interaction between atoms having a magnetic or electrical 

dipole moment and a static electrical magnetic field of a suitable configuration.
(3) Methods based on lhe resonance (or quasi resonance) interaction between atom and 

a laser Held.
l he first experiment on atom optics realized by method (1) and (2) were successfully con

ducted almost a century ago. The advent of tunable laser allowed the possibility to demon
strate atom optics based on the atom-light interaction. It is exactly this type of atom optics 
that the present review is devoted to. However, for the sake of generality of the physical pic
ture. it seems advisable to recall briefly the milestones in all approaches to atom (molecular) 
optics.

2.1. Interaction Between Atoms and Matter
In his classical monograph 112], Ramsey (Chapter 2, Section 5) considered the mirror reflec
tion and diffraction ot molecular beams on the surface ot a solid. According to Ramsey, tor 
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mirror reflection to occur, it is necessary that the following two conditions be satisfied:

1. The projection of lhe height of surface irregularities on the direction of molecular 
beam must be shorter than lhe de Broglie wavelength. Recall an example from light 
optics: smoked glass is a poor reflector in the case of perpendicular incidence and a 
good reflector in the case of grazing incidence. If 3 is the average height of surface 
irregularities and d is the grazing angle of incident beam, the above requirement may 
be expressed as (Fig. 3[a]).

<8 sin 4> < AUl (2)

2. The average residence time of the particle on the surface must be short. In this case, 
lhe stale of reflected particles will be the same as that of incident particles. The 
roughness of most thoroughly mechanically polished surfaces is of the order 10 cm, 
whereas the de Broglie wavelength of hydrogen al 300 K amounts to 10 x cm. There
fore. according lo Eqs. (1) and (2), the condition for the reflection has the form 
<f) < 10 ’rad.

Il was more than 50 years ago that they managed to observe a 5% reflection of hydrogen 
beam from polished bronze mirror at the grazing angle of <b — 10“'grad [ 13]. Cleaved crystal 
surfaces are much smoother. The thermal vibrations of the crystal lattice limits the roughness 
of the surface to about 10~8 cm. In that case a beam of He atoms should undergo reflection 
at grazing angles less than 20-30 grad. This was confirmed in the experiments [ 14] with He 
atoms and LiF crystal. (Fig. 3|b|). The temperature dependence of lhe grazing angle marking 
the onset of simple reflection of atoms bears w itness to the fact that thermal vibrations have 
an effect on the surface roughness of crystal.

Experiments on the simple reflection of atoms at the surface of condensed medium 
continue lo draw investigator’s attention. Recall the experiments on the reflection of 4He 
atoms grazing the surface of liquid 'He [15] and thermal Cs atoms grazing a polished glass 
surface [16].

The first experiment aimed at observing the diffraction of atoms by a cleaved crystal 
surface acting as a two-dimensional plane grating were conducted by Stern [17| and the 
results of detailed research into this phenomena were presented in Ref. 118|. The diffraction 
of atoms by a fabricated periodic structure (a slotted membrane) with a much more grating 
period was observed in the work reported in Ref. [19],

The effect of quantum-reflection of 4He and ’He beams at a liquid-helium-vacuum inter
face was successfully used to focus hydrogen atoms with a concave grating [20], and the 
authors of Ref. [21] were successful in conducting an experiment on focusing a beam He 
atoms by means of a zone plate.

figure 3. Reflection of atom in grazing incidence upon the surface of a solid: (a) requirement lor the surface 
roughness 6, the glancing angle of the incident beam <l>. and the de Broglie wavelength; (b) reflectivity of a beam 
of He atoms from the surface of LiF crystal at two different temperatures (1. 195 K; 2. 100 K) | )4|.



Atom Nano-optics 5

Atomic interferometry based on the microfabricaled structures was realized in two elegant 
experiments: The atomic Young's two slit interferometer 1221 and the atomic Michelson 
interferometer |23|

2.2. Interaction Between Atoms and Static Electric or Magnetic Fields
Some elements of the optics of atoms and molecules, based on the interaction between 
spatially nonunifornt sialic magnetic or electrical fields and the magnetic or electrical dipole 
moment of the particles, have long been known and used fairly successfully in experimental 
physics. An excellent review on the early experiments in this field was presented by Ramsey 
(1956) [12].

In the presence of a magnetic or electric field, the quantum stale of atom or molecule arc 
shifted, the shift depending on the initial quantum state of the particle and the field strength 
(the Zeeman and Stark effects). In the adiabatic approximation (the field varies in the lime 
and space not very rapidly, the particles move slower enough), the internal state ol particles 
follows the field-strength variation, or, in other words, the particles remains at one and the 
same quantum sublevel whose energy H depends on the field strength.

In the adiabatic approximation, lhe motion of the center of mass of a neutral particle with 
a mass M obeys the Schrodinger equation for the wave function t):

,h = + (3)

where W,(r) is the internal energy of the particle in the quantum state i at the point r that 
depends on the electrical field strength £(r) or the magnetic field strength H(r).

Magnetic Interaction In the simple case of a constant magnetic moment /i. the effective 
potential energy' IF of an atom or a molecule in an external magnetic field of strength //is 
given by

W = -gH = -Mett// (4)

where /td( is the projection of p, on the direction of H. Il follows from the relationship 
between force and potential energy that the force acting on the atom or molecule is

F = - VIT = -[ — IVH = Meff V/7 (5)

A particle in nonuniform magnetic field is acted on by the force directed along the field 
strength gradient.

l he authors of Refs. [24-27] proposed to use nonuniform magnetic field to focus molec
ular beams issuing at different angle from the source.

Figure 4 shows the configuration of the focusing magnetic field used by Fricburg and Paul 
[24, 25], The method was extended by Ref. [28] to atoms whose magnetic moments depend 
on lhe strength of the external magnetic field.

The focusing properties of a magnetic lens depends on the magnetic sublevel of atoms. 
That was successfully used by Ramsey and co-workers to create the hydrogen maser [29, 30], 
The hydrogen atoms in the slate F = I, M = 0 were focused in a small hole in the wall of 
the storage cell and accumulated there, while the atoms in me lower atoms state F = 0 are 
defocused.

Electrical Interaction. Since the energy of atom or molecule in an electrical field depends 
on the strength of the latter, it then can be presumed, by analogy with Eqs. (4) and (5). than 
the atom or molecule possesses an effective dipole moment given by
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A

< t»> B

Figure 4. (a) Ideal focusing magnetic sextupole field. Dashed, magnetic field lines: dotted, lines of equal magnetic 
potential. B = const, (b) Linear sextuple made of six straight current leads with alternating current direction [24],

The force acting on an atom or a molecule in a nonuniform electrical field is defined by the 
following expression similar to (5):

F = ZtL.1]VE = ^.J^|) (7)

where the direction of the field strength gradient is taken to be the z-axis.
Paul and co-workers [28] created focusing electrical fields for a beam of polar molecules. 

The electrical focusing of a beam of molecules in a certain (excited) quantum state was used 
by Townes in developing the NH3 maser [31,32], The hexapolar electrical field configuration 
(as in Fig. 4) possesses not only focusing properties but also selectivity with respect to the 
quantum state of the molecule, for the quantity p.cft depends on its quantum numbers/, A.', 
and M.

This latter property was successfully used in experiments on molecular dynamics with a 
beam of molecules in a specified quantum state, including the experiments on the orientation 
of molecules [33].

When speaking of the optics of atomic or molecular beams, we almost always mean 
their focusing, for it is exactly this effect that has found practical application. But one can 
also speak electrical or magnetic mirrors and gratings for slow-moving neutral atoms and 
molecules [34],

2.3. Interaction Between Atoms and Light Field
Atoms or molecules having no static, magnetic, or electrical dipole moment cannot change 
their mechanical trajectory in a static magnetic or electrical field. I lowever, new possibili
ties arc being opened up for particles based on the induction in them of a high-frequency 
(optical) electrical dipole moment in a quasi resonant or resonant laser light field. Before 
the advent of the laser, it was only possible to induce microwave transitions in atoms and 
molecules, which allowed one to alter efficiently their quantum state and thereby the char
acter of motion in external spatially nonuniform electric or magnetic field [12],

An atom in quasi resonant laser field acquires a high-frequency polarizability, and if the 
intensity of the laser field is spatially nonuniform, the atom is acted on by the gradient (dipole) 
force [35]. For example, the gradient force in a standing laser light wave may cause the 
channeling of atoms moving along lhe wave front [36]. The gradient force was successfully 
used by Ashkin and co-workers to focus an atomic beam [37].

In lhe optical region of the spectrum, the recoil effect resulting from atom light interaction 
is significant. This effect was predicted by Einstein [38] as far as back as 1909 and was 
experimentally corroborated by the slight deflection of a beam of sodium atoms scattering 
the resonant radiation of D line of Na [18],
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Figure 5. Trends of laser control of atomic motion based on various resonant effects of laser resonant interaction 
effects with atoms leading to cooling and trapping effects of atoms and atom optics, atom nanoopties. Bose-Einstein 
condensations, and atom laser.

An intense laser radiation tuned to lhe resonance with some allowed dipole transition in 
an atom can make it re-emit millions of photons, and as a consequence, radiation can exert 
a substantial effect on the atomic velocity and mechanical trajectory. Hansch and Schawlow 
|39] proposed to use the resonance force due to spontaneous re-emission of photons for cool
ing neutral atoms and Wineland and Dehnielt [40] to cool ions in an electromagnetic trap.

Since that lime a new line of inquiry has started developing in atomic physics, based on 
the effects of resonance interaction between laser light and atoms and the use of the well- 
known atom physics effects: the recoil effect, Doppler effect, Stark effect. Zeeman effect, 
and Raman effect. This has led to the development of very effective methods for the laser 
cooling ami trapping of atoms, which in turn led to the advent of atom optics, including 
atom nanooptics and the physics of ultracold atoms, including quantum degenerate gases 
(Bose-Einstein condensation. Fermi degenerate gases, atom lasers, etc.). This evolutionary 
sequence of ideas that led to the development of atom nanooptics is illustrated in Fig. 5.

The gradient and spontaneous forces arc at the root of a great many experiments on 
controlling the motion of atom and atomic optics by means of light, which was already 
considered in the reviews (41-50], special issue ol scientific journals [51-53], monographs 
[54. 55]. and textbook [56].

3. RADIATION FORCES FOR MANIPULATION OF ATOMS
Radiation force means the total force arising upon interaction between laser light and an 
atom. Depending on the spatial and temporal structure of a light field, its strength and 
wavelength, the radiation force may be a very complex function of the atom's position and 
velocity. But. since all the known studies on the application of the radiation forces have been 
carried out mainly using three types of light fields, namely, a plane-traveling light Held, a 
Gaussian laser beam, a standing light wave, or their combination, we will restrict ourselves 
to qualitative consideration of these types of fields only.

In this review, we will consider the motion of atoms under different types of radiation 
forces. Since the conception of force is a classical one, it is necessary to mention under what 
condition (he motion of atom can be considered classical [50. 54].

There are two such conditions. One of them directly follows from the fact that for classical 
atomic motion the quantum fluctuation in the atomic momentum must be negligibly small, 
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compared to the change in the average atomic momentum due to the force. The minimum 
atomic momentum variation in a laser field is equal to the photon momentum. The change 
in the average atomic momentum under action of the radiation force is to be considered 
significant, if it breaks of the resonant atomic interaction with the light field. The frequency 
range within which an atom absorbs the resonant radiation is determined by natural width 
of spectral line 2y. The resonance between atom and light is interrupted when the aver
age atomic momentum varies by the value 5p % My/k. If one requires that the value of 
this atomic momentum (5p is larger than the photon momentum, the first condition for a 
classical atomic motion will be

hk « —£ (8)
K

or
(9) 

where R = lrk2/2M is the recoil energy.
The second condition for classical motion follows from the fact that the process of 

absorption—spontaneous emission takes place in time interval of the order of rsp % y 
Because the classical description of atomic motion cannot allow for such small-scale momen
tum variations, it is necessary to restrict classical time scale to the condition:

8t » y 1 (10)

We could look at the problem of classical description of motion of atom from the point of 
view of an evolution of the atomic wave packet. The quantum description of the evolution 
of the atomic wave packet will be close to the classical one if the atom has a well-defined 
position and momentum. The momentum width Ap of wave packet related to the position 
width Ar by the Heisenberg inequality

Ap * Ar > h (11)

The force exerted by laser field on the atom varies over distances on the order of laser 
wavelength A or larger. The force could be considered classical if the position spread of 
wave packet is a smaller than the laser wavelength:

Ar « A (12)

The force also depends on the velocity of atom because of the Doppler shift. The appre
ciable change of the atomic response to the laser excitation through the Doppler shift will 
be at the velocity change:

Sv = % (13)

It is clear that velocity (momentum) spread Av of wave packet (for classical description 
of atomic motion) must be smaller than Sv:

Au«Sv=y (14)
k

or
< yM

<15)

Equations (I 2) and (15) impose upper bound on lhe momentum and space spread of wave 
packet, which can be in conflict with the Heidelberg inequality (11). From (11), (12) and 
(15) follows one condition for classical description of atomic motion:

Myhk «. —— (16)

which also coincides with Eqs. (8) and (9).
To date, the theory of atomic motion in laser fields has been developed quite well [50-52, 

54, 55 J.
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3.1. A Plane Traveling Wave: Light Pressure (Spontaneous) Force
Consider a plane wave directed along the z-axis and having its frequency tuned to resonance 
with the absorption frequency of an atom placed in it (sec Fig. 6):

E = eEn cos(Az — a)/)

The atom absorbs laser photons directed along the z-axis and rc-emils spontaneous photons 
symmetricalIv in all directions. As a result of these processes, a radiation force is determined 
by the product of the momentum of a photon and the rate of photon scattering:

/j P = hkQ (IS)

where Q - lyn> is the rate of photon resonant scattering by atom, and /i2 is a steady state 
population of exited state.

The atom is acted on in the direction of the wave by radiation force whose maximum 
magnitude is given by the product of photon momentum hk by the photon scattering rale Q 
(i.e.. = hky. where k = 2tt/A). If the atom is not in exact resonance with laser radiation
and has a velocity v projected onto the z-axis in the direction of a light wave, a steady state 
population of an excited state depends on the projected velocity and on the detuning ot the 
field frequency w from the absorption frequency <u(l of the atom:

(O-Av)-\ 
y- /

(19)

where G = ///,, / is the intensity of the wave. /, is the saturation intensity of lhe atomic 
transition, and If = m w,, is a detuning of field frequency from an absorption frequency.

From Eqs. (IS) and (19), follow the expression for the radiation force in a traveling wave, 
which is called a //g/ir pressure force |57|:

/Yr -hky
G

(i +G + (n-Av)7y-)
(2(1)

The force has a I orenlzian dependence on the velocity of atom (Fig. 6) and reaches its 
maximum value at exact resonance. The ultimate, value of Lhe force is limited by the satu
ration effect to FmM. The acceleration of an atom under the action of this force reaches a 
magnitude, of KF cm/s2, which is IO5 times greater than the acceleration of the earth gravity.

■ Bi

hk.
110)

Figure 6. (Irigin and properties of light pressure (spontaneous) force If: (A) absorption of directed (k. w). photon 
and isotropic remission ol spontaneous photon by atom with velocity v: (B) an ideal two-level diagram of resonant 
interaction ot light wave with frequency <u and lhe quantum transition frequency with the radiative damping 
rate 2y of the excited state: (C) resonant dependence of If as a function of frequency detuning U — u>— to,, — kv; 
(D) saturable dependence of F as a function ol saturation parameter Ci.
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Under optimum condition, dissipative light pressure force Eq. (20) allows the atoms to be 
cooled to the temperature of tthe so-called Doppler limit [58. 59]:

(21)

3.2. Traveling Gaussian Light Beam: Gradient (Dipole) Force
In the case of a Gaussian light! beam of spatially nonuniform distribution of amplitude and 
phase, the electrical field is

E = E0(r)cos(Ar - o>r). En(r) = E„exp( —— j (22)
V 2p- /

In such a field an atom is actied upon the radiation force FRAD, which can be expressed as 
the sum of the light pressure fcorce Ft P and what is known as the gradient force F(lii (Fig. 7):

Frad = FIP + FGR (23)

For a Gaussian laser beam, tine light pressure force is a direct generalization of the force 
(18).

Depending on the detuning of laser radiation frequency with respect to atomic transition 
frequency, the laser lield eitheir expels atoms out of the beam (fl > 0) or draws it toward the 
beam center (fl < 0). In terms of atomic and laser parameter the gradient force is expressed 
as Refs. [54. 60]:

(24)

where the laser beam radius p,u, p the distance between the atom and the laser beam axis,
The dependence of the magnitudes and signs of the spontaneous and gradient forces are 

of entirely different character (Figs. 6 and 8). Unlike the light pressure force, the value of 
gradient force is not limited ats the saturation parameter is increased. The maximum value 
of the force increases proportionally to G1^2. The velocity dependence of gradient force is 
determined by the curve of a dispersive form (Fig. 8).

The physical reason for the existence of the gradient force is an effect of a spatially 
nonuniform optical field on the atomic dipole moment that is induced by the laser field. 
From the standpoint of quantum mechanics, the gradient force results from the absorption 
and stimulated emission of photons by the atoms in a nonuniform laser field (Fig. 8[a]).

Both forces (light pressure force and gradient) are essential to the control of atomic 
motion. For example, the gradient force allows one to realize atom optics. The spontaneous 
force makes it possible to cool atom and ions.

Figure 7. Radiation pressure force acting on an atom in traveling Gaussian laser beam. The Gaussian laser beam 
exerts a gradient force on the dipole moment that intense light beam induces in atom. The resultant force of the 
laser lield is not simply in the propagation direction ol the laser beam.
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Figure 8. Origin and properties of gradient (dipole), force fv: (A) absorption and stimulated emission of directed 
photons <k(. u, I and (k . u>-): (B) the Gaussian beam with transversal profiles of intensity I(p): (C) resonant depen
dence ol Ar, as a function of frequency detuning 11; (D) dependence of as a function of atomic displacement ol 
atom /> from optical axis.

3.3. Plane Standing Wave: Two-Level Atom
This wave is formed from two plane waves traveling toward each other:

E - eE^cos(kz — cot) + eE^cosf — kz (ot) = e2Elt cos cot cos kz (25)

At low radiation intensity (G « 1) and for a two-level atom, the radiation force in the 
standing wave is determined by the sum of the forces Eq. (18) from each traveling waves.

However, at high saturation G, this no longer holds. The interaction between a two-level 
atom and the two counterpropagating waves at G > 1 gives rise to the new effects beyond 
the scope of the spontaneous light pressure and gradient forces.

In order that wc can consider classically the motion of the atom in such a wave, it is 
necessary that the following condition be fulfilled:

» hk (26)

where = Mvz. the component of atomic momentum along the standing wave. It can be 
clearly seen that only in this case, according to uncertainty principle and with the reasonable 
relation Ap, < pz. do wc uncertainty of coordinate Az < A.

We assume also the following condition on the atomic and laser parameters:

Av, <
A2

(y^'/2)

(27)

(28)

where G'o is the transition saturation parameter of one traveling wave. I he inequality 
Eqs. (27) and (28) reflects the absence of the Landau-Zener transition [61 ]. Also, we assume 
that the relation fint y '.

3.3.1. Light Pressure Force
In a single standing light wave, two resonances occur under weak saturation, one for each 
traveling waves: ±Avz = (2 = w - (Fig. 9). At co < w(1. the counterpropagating waves 
decelerate the atom, whereas, its co-propagating counterpart accelerates it. The combine 
effect of the two traveling waves acting independently is described by a curve of dispersive 
character (Fig. 9). At exact resonant (Av. = 0). the friction force is zero, and the slope of 
the curve at v — () gives the friction coefficient r) for atom, which governs its cooling rale.

For low velocity of atoms.
Av y
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Atom
•--------- ►
“u vz.

Figure9. Dependence ol light pressure force as a function of velocity projection e tor traveling wave (dotted line) 
and for standing wave (solid line); frequency detuning !i = o> — = y.

the sum of the two gives a damping linear in the atomic velocity:

17 = -4M2

^i.p =

G
(i + QVy2)2

(29)

(30)

where 17 is a damping (or friction) coefficient. In a weak standing wave at w < w(|) the 
traveling wave propagating counter to the moving atom cools it. But when saturation is 
strong, the stimulated re-emission of photons from one traveling wave into the other becomes 
predominant. At w < wlb this stimulated re-emission change the sign of friction coefficient 
so that in the neighborhood of kv = y; the cooling of the atom turns to its heating [62]. 
However, where the frequency, detuning of the laser field is positive (w > a>0), such re
emission of photons gives rise to a new cooling force that depends on stimulated emission 
and a light-induced shift of energy levels.

3.3.2. Gradient Force
A spatial modulation of the laser field intensity in the standing wave with a period A/2 
begins to show up with increasing radiation intensity, which leads to the appearance of the 
gradient force of potential nature:

fgr (31)

The associated potential has the form [63]

where

^GR ln(l +.s)

G
[1 + (!l/y)-]

(32)

(33)

is an off-resonance atomic transition saturation parameter, G = 4G0 cos2(A.v) is the atomic 
transition saturation parameter the standing light wave and Gn = </?t;/2fi2A2y2.
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In the limiting case of weak saturation and great frequency detuning.

(> « 11 + (J2/y>’ | (34)

the expression for the potential L'(a< reduces to the simple form of the ligit wave, and a 
negative detuning (1> < 0). they coincide with the loops of the wave:

where wK = dE(l/h is the Rabi frequency. It follows from expressions (32) and (35) that 
the period of the potential is equal lo half the optical wavelength. At positive frequency 
detuning (12 > (>). the potential wells coincide with the nodes of the light wave, and at a 
negative detuning (£2 < ()). they coincide with loops of the standing wave.

3.3.3. Stimulated (Retarded) Force
As noted in Section 3.3.1. the saturation parameter is increased, the force-versus-velocity 
curve starts developing the high-order resonances due to the nonlinear interaction between 
atoms and the both counterpropagaling waves. Stimulated transition in a standing light wave, 
which destroys the cooling effect in the case of strong saturation at a negative frequency 
detuning, can nevertheless be used to cool atoms, but at oppositive detuning this time [64- 
66|. That this is possible was demonstrated with success in [67|.

To gain an insight into this interesting effect, account should be taken ol two quantum- 
stimulated transitions in the standing light-wave field, which give rise to the spatially periodic 
atom-field interaction potential U(z) (or the gradient force F(:) — grad (7(c)) in quantum 
mechanical terms, a light induced shift of atomic energy level that also oscillates in space. 
Combined with the spontaneous transition of the atom moving in the standing light wave, 
Ihis gives rise to the friction force [64-68].

The quantum mechanical treatment of the interaction of a two-level atom with a standing 
light wave shows also that the total radiative force depends on the atomic velocity. In a 
zeroth order of approximation of this force (for small parameter |&vz/y| « I) the gradient 
force (32) appears, and in first order, the friction force [66. 68|:

[1 + (fl/y)--G(l + G/2)] 
[(I +(!l/y)- + G)!|

k(vk)tair(kz) (36)

which is called stimulated, or retarded force.
Let us give the explanation of appearance of this force in two physically equivalent lan

guages. The well-known light-induced shift of the energy levels of the two-level atom is given 
by |70-73]

tho = I - It* I -7- I
\4/

(37)

The levels are shifted one and the same distance but in opposite directions. With io < w0, 
the perturbation caused by light field increases the distance between the level, and vice versa 
with <t) > <ul(, it decreases the spacing between them (Fig. 10).

The stimulated cooling of the atoms in a standing light wave can occur on account of the 
following predominant sequence of stimulated and spontaneous processes. Since the rate 
of stimulated processes ITS| (stimulated two-quantum processes responsible for the light- 
induced shift of energy levels and stimulated absorption responsible for excitation of atom) 
is proportional to E2. in the standing light wave loops, there predominantly occurs the 
excitation of the atom upon absorption of the red shifted light (Fig. 10). If the condition

(38)

is satisfied, the excited atom may enter the region of standing wave where the field intensity 
is its minimum and the light-induced level shift are small and then spontaneously emit a 
shorter-wavelenglh photon. The spontaneous emission rate is independent ot the periodic
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Figure 10. (a) Distribution of standing wave intensity E: and the spontaneous and stimulated emission probabilities 
and lf'K1; (b) and (c) energy shift Stu* of the ground and excited states for positive (11 > (I) and negative 

(11 < 0) light-held frequency detuning. Vertical straight lines corresponds to induced absorption, vertical wavy lines 
correspond to spontaneous emission.

field-intensity variations. The energy difference between the absorbed and the spontaneously 
emitted photon is derived from kinetic energy of the atom. Such an absorption of photon 
in the standing tight wave loops and their spontaneous re-emission at the field minima may 
take place repeatedly, thus giving rise to a friction force Eq. (36) proportional to the atomic 
velocity.

A clear and consistent theoretical description of the cooling process in a standing light 
wave was made in [66] on the basic of the dressed-atom approach [73], providing a qualitative 
understanding of the main characteristic of the stimulated force (its mean value, fluctuations, 
velocity dependence, etc.) in high-intensive limit.

An important feature of stimulated force in a standing light wave (which is a consequence 
of the light-induced energy-level shift) that it cannot be saturated by increasing the light
field intensity [64-66, 74], This is naturally explained by the fact that the atomic cooling 
rate is proportional to the energy difference between the absorbed and re-emitted photons 
governed by the magnitude of light-induced shift Eq. (37) proportional to the field intensity.

3.4. An Arbitrary Monochromatic Wave: Multilevel Atom
When the monochromatic wave interacts with the multilevel atom, the number of new effects 
grows still greater. A general description of radiation forces with an arbitrary number of 
degenerate or nearly degenerate sublevel and an arbitrary' monochromatic radiation field 
were given in Ref. [75], It allows also for an arbitrary magnetic field that adds Zeeman 
precession to atomic evolution. The total radiative force on the atom may be generally sep
arated into four terms. Apart from the radiation pressure and the gradient force (which we 
have considered in Sections 3.3.1 and 3.3.2), there are two terms that are from the gradient 
of the polarization direction. One of these terms corresponds to fluorescent scattering of 
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absorbed photons. The other term arises from the redistribution ol photons between plane 
waves that compose the radiation field.

The experiments |76-8I| have demonstrated that cooling below lhe Doppler limit can 
occur loi the system having multistale structure in lhe field of driven transition. An essential 
ingredient for this damping force is a variation of the relative orientation of lhe atomic 
dipole with the respect to the light polarization during lhe transversal of a wavelength: Such 
situation arises when atom moves through a field with polarization gradient [78. 82] or when 
a magnetic field causes Zeeman precession of the atomic dipole [79].

Let us consider briefly lhe new possibilities that are opening up.

3.4.1. Polarization Gradient Force
The effect of periodic modulation of the light-induced shift of atomic energy level (see 
Tig. 10) is especially manifest in the case of the three-level atom, where it enables a new 
mechanism of deep (sub-Doppler) atomic cooling and trapping to come into play. An excel
lent description of the mechanism allowing the Doppler cooling limit to overcome has been 
presented in the brief review [47], These mechanisms also include, in addition to the effect 
of light-induced energy shifts, optical pumping and laser polarization gradients [52, 78],

The two counter-propagating laser beams with orthogonal linear polarization form a stand
ing light wave whose local polarization changes every eight’s of a wavelength from linear 
to circular type (Fig. 1 l[a]). Depending on lhe sign of the local circular polarization, there 
takes place, thanks to the optical pumping, the accumulation of atoms either at the sub
level g , . (for rr ) or at the sublevel g.,, (for <r+). Thus, the spatially periodic modulation 
of lhe circular polarization sign causes a spatially periodic variation of the population of 
the Zeeman sublevels of the ground state, l he shift of Zeeman sublevels also depends on 
the circular polarization sign: the rr’ wave shifts only the g+|,; sublevels, whereas its <r 
counterpart wave shifts only lhe g ,., ones. So. the light shift energies and population of 
two ground-state sublevels of the atom vary with the local polarization of the standing light 
wave, hence with the atom’s position, as shown in Fig. 11(c), where the sublevel population 
is proportional to the size of the full circles.

Let the atom move at a small angle to lhe light-wave front, so that its velocity projection is 

Figure 11. Explanation of atomic cooling based on the effects of polarization gradient, light-induced level shifts, 
and optical pumping effect for multilevel atom |47|.

(39)
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that is much smaller than required by condition Eq. (38). Consider for the case of definite
ness an atom starting to move from the point z = A/8 (Fig. 11). Such an atom will cover the 
distance: of A/4 in a time shorter than optical pumping lime rf„ and so it will climb from the 
potential! minimum to the maximum, while residing at one and the same sublevel as illus
trated iin Fig. I I. The probability that the optical pumping will cause the atom to move from 
one sublevel to the other here becomes higher. But the spontaneous decay time is much 
shorter than the optical pumping lime, 1/y and therefore the spontaneous transition 
of the aitom to the other sublevel lakes place while it travels lhe distance of Ac « |. As a 
result, t he atom absorbs long-wave photon and emit short-wave ones. The energx difference 
between these photons is equal to the level shift (37), and so it is proportional to the light
field intensity. Thus, the rate of atomic cooling by this mechanism is proportional to the laser 
intensity. Naturally, this process of absorption at (he top of potential hill and spontaneous 
descent in the valley takes place repeatedly, providing for the deep cooling of lhe atom to 
that of lhe order of recoil velocity vrcc. A detailed theoretical analysis of this atomic cooling 
mechan ism has been made in [78, 82].

Its substantial difference from the Doppler mechanism is that it operates effectively at 
atomic velocities too low for Doppler mechanism to be efficient and makes it possible to 
reach temperatures (velocities) much below the Doppler limit (Eq. [21 [), down to the recoil 
velocity and temperature [78|:

hk R
(40)

where ft is the recoil energy.

3.4.2. Magneto-Optical Forces
In the presence of a static magnetic field, the radiative forces acting on a multilevel atom 
in a laser field may acquire new properties [83, 80], Of particular interest for the creation 
of new types of atomic traps is a confining potential—like character of the radiation force. 
To produce a magneto-optical force pseudopotential character (83], a scheme based on 
the spontaneous force has been used. In this case, the spatial dependence of this force is 
determined by the Zeeman shift in lhe magnetic sublevel of the atom induced by spatially 
noni-iniform static magnetic field. One of the shortcomings of this scheme is that the maxi
mum of this magneto-optical force is restricted by the upper limit of spontaneous farce Hky, 
where 2y is the natural width of exited state.

It has been shown [84] that there is magneto-optical force based on the induced photon 
re-emission between two counterpropagating light waves having different direction of polar
ization vectors. It is essential that the value of this magneto-optical force may exceed hky.

4. LIGHT FIELD CONFIGURATIONS FOR NANOOPTICS
To implement atom optical elements using the gradient force requires spatially inhomoge
neous fields with inhomogeneities on the scale of less than the wavelength of light (i.e., on 
a submicron scale). The search for the ways to optimize the suitable field configu-alions is 
continuing.

First, already at the onset of investigations into the manipulation of atoms in a light field, 
they suggested channeling atoms over the wavefront surfaces of a standing light wave [36], as 
illustrated in Fig, 12. The intensity of inhomogeneities of the standing light wave field with 
a period of A/2 allow one to effect the guiding (one-dimensional | ID] trapping) of atoms. 
Such a motion of atoms contains elements of their reflection and focusing by light, it was 
precisely the latter fact that was used in the first experiments on atomic photolithography 
using standing light waves [85] (for details, see Section 7).

Next there was proposed an “atomic objective lens” with a spatial resolution rf a few 
angstrom units. Such a lens is essentially a focused laser field with its frequency veil away 
from the atomic-transition frequency. The atomic beam propagates along the lens ixis. The 
tight focusing of the laser radiation produces an efficient “thin” lens, and the choice of
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Figure 12. Idea ol channelftig (guiding, one-[>imensii>nal mipjnng) of neutral atoms in laser standing wave with 
elements of atomic opt it's: rellftciion and focusing [36].

the TEM(*n mode and the large frequency detuning make it possible to achieve a good 
approximation to an “ideal" objective lens (fnr details, see Section ft).

Another light-field configuration in the form of the so-called evanescent wave was pro
posed [86] lo serve as a light mirror for atoms (Fig. 13(a)). This thin (surface) wave is 
formed upon the total internal reflection of a laser beam at a dielectric-vacuum interface. 
Fhc thickness of this surface wave is of the order of ihe wavelength of light. The laser radia
tion intensity on Ihe surface of the dielectric equals the intensity of the initial laser wave inside 
the dielectric, but in the vacuum, it abruptly drips to zero within a few wavelengths from the 
surface. In such a surface wave, one has an enormous light-intensity gradient—the greatest 
gradient seen anywhere in optics. An atom placed in such a laser surface wave of frequency 
higher than the atomic transition frequency experiences a gradient force tending to expel it 
from the wave into the vacuum. If the atom approaches the surface wave from the vacuum 
side, it slows abruptly down to a zero normal velocity in the surface wave and then accelerates 
in the wave in the opposite direction away from the surface. Using a two-frequency evanes
cent wave, one can effect the ID-trapping of atoms [87], as illustrated in Fig. 13(b).

Evanescent waves can exist not only at a flat interface of (wo media but also in wave-guide 
structures. This effect can help effect the transportation (guiding) of atoms in a hollow fiber 
|<SH| (Fig. 13(c] and I3[d|). All these atom optical effects will be considered in more detail 
in Section ft.

Figure 13. Atom optics experiments with evanescent laser wave.

200?
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Figure [4. Atomic optics experiments in the near laser field.

One more light-field configuration with submicron inhomogeneities is associated with the 
“near field” effect arising when a light field “leaks” through an aperture «A in diameter. 
Such a field has a perceptible intensity at distances of the order of the diameter of the 
aperture from it and then dies out very rapidly. This effect formed the basis of what is known 
as “near-field optics” that, in contrast to “far-field” focusing optics is capable of a spatial 
resolution as high as 30-100 nm [89, 90]. The spatially inhomogeneous light near field is also 
of great interest to atom nanooptics [91], which is illustrated by Fig. 14. Light near fields 
can be used for the focusing of atoms (Fig. I4[a]), trapping of atoms (Fig. 14[c]) and for 
selective sorting of various atomic species (Maxwell demon) [92], as shown in Fig. 14[b}. 
Moreover, a near field issuing from an aperture into a fiber nanolip (Fig. 14[d]) can be 
used to manipulate single atoms. The guiding of atoms is considered in Section 5, and their 
focusing in near field, in Section 6.

5. GUIDING OF ATOMS
The guiding of atoms can to a large measure be effected in the same way as that of photons 
in an optical waveguide. But serving as waveguides for atoms are static electric, magnetic, 
and high-frequency electromagnetic fields and their combinations of various one- and two- 
dimensional configurations.

5.1. Guiding of Atoms with Electric Fields
Static electric fields were successfully used to focus polar molecules with an induced elec
tric dipole moment [ 12]. But is it possible to use static electric fields to guide atoms and 
molecules? Let us consider the physics of the spatial localization of neutral atoms. For one to 
hold a neutral particle in static equilibrium, one should satisfy the foliowing two conditions. 
First, the holding force should be identically equal lo zero at a certain point rf( in space:

F(ro)=0 (40)

Second, the force should bring the particle back to the point of equilibrium. rfl. Mathemat
ically, the secund condition means that the partial derivatives dFJi'y, and DFj'dz 
should be negative:

VF < 0 (41)
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To guide neutral particles in it specified direction (along lhe z-axis, tor example), the holding 
force Should meet not so stringent requirements: it is only two partial derivatives, namely. 
HFJi'ix and HFJHy, that should be negative.

lhe potential energy of a neutral particle in a static electric field is defined by lite 
expression

= -^a|E|: (42)

where a is the polarizability of the particle and £ is the strength of the external electric 
field. In a space free of charge, the Maxwell equation for the electric field is

VE = t) (43)

and the field can be expressed in terms of the scalar potential </> alone as

E=-Vd> (44)

Since the force acting on the particle is governed by the potential energy gradient V, the 
components of this force are given by

Using expression (45) for the force components, one may write lhe necessary' condition (41) 
in the form

<0 (46)

Inasmuch as the sum of the squared partial derivatives in expression (46) is a positive 
quantity, condition (46) is only satisfied for particles of negative polarizability.

For polar molecules, condition (41) can easily be satisfied by selecting their suitable rota
tional quantum states. Practically such molecules are guided by means of a four- or a six-pole 
electrostatic field. The strength of the field in the quadrupole configuration is defined by the 
expression

where is the voltage applied across the conductors. is the distance between the sur
face with the potential Utl and the center of the multipole, and r is the distance from the 
multipole axis. The strength of the field in this configuration increases as the distance from 
the multipole axis increases, and so a particle placed inside the multipole is pulled toward 
its axis.

The polarizability ol neutral atoms is positive, so that finite motion condition (41) is not 
satisfied. Nevertheless, atoms can be guided in quasi-static electric fields by way of their so- 
called dynamical focusing. There arc several dynamical focusing schemes. The best-known 
scheme is based on the use of alternating sections of two-wire lines (charge elements), 
wherein the planes of (he adjacent two-wire charge elements are tuned through 90’ relative 
to each other. A potential is applied across the wires and the atoms move along the axis 
between them. By virtue of condition (41), in the plane ot the wires the atoms arc acted upon 
by a force that lends to push them away from the axis of lhe wires, and in the perpendicular 
plane, by a force that lends to pull them to the axis. Near the axis, the force constants for 
lhe atoms arc defined by lhe expression

2£ o—4^, K.=0 (48)

where d is the distance between the wires and £() is the electric field strength at the z- 
axis. While moving through the successively alternating pairs of wires, an atom alternately 
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experiences the action of the pulling and the expulsive force in the XZ- and the EZ-plane. 
Fhc atomic tr ajectory in such a system is similar to the trajectory of a light beam passing 
through a sequence of positive and negative lenses with equal focal lengths. Such a scheme 
was used for ifocusing and guiding a beam of ultracold neon atoms [93]. The atomic beam 
passed through a set of three electrostatic lenses. Each lens consisted of two parallel cylinders 
that functioned as a concave lens along one axis and as a convex lens along the other axis.

An alternat ive approach to lhe dynamical guiding of atoms is the use of a quadrupole of 
two pairs of w ires with a time-variable voltage applied across them, the phase shift between 
the pairs of wires being equal to 90° [94].

One more approach to the dynamical guiding of atoms is based on their interaction with 
the electric fie ld of a charged wire. The atomic interaction potential has the following form:

K = -2a^ (49)
f-

where q is the wire charge per unit length. The interaction potential of Eq. (49) is attractive 
and has the form l/r’. No stable localization of atoms is possible in such a potential: the 
classical trajectory of an atom moving around the wire comes to an end either on the sur
face of lhe wire or at infinity [95-101]. The motion of an atom around a charged wire can 
he stabilized hy using a charge oscillating in time [102]. A stable motion of an atom about 
a charged wire can be attained by producing a repulsive potential along (he wire surface, 
l olman and co-workers [103] suggested using as such a repulsive potential the dipole poten
tial of an evanescent wave with the field frequency detuned toward the blue side relative to 
the atomic transition frequency. This can be realized by replacing lhe charged wire with an 
optical waveguide coated with a thin layer of a conductive material.

5,2. Magnetic Waveguides
All static magnetic waveguides arc based on the localization of atoms by inhomogeneous sta
tionary magnetic fields. The potential of interaction between an atom and a static magnetic 
field B has the form

Kw - (5°)

where ft — gi >s the magnetic moment of lhe atom, is the Lande factor of the atomic 
hyperfine state F, p.ff is the Bohr magneton, and ni,, is the magnetic quantum number. In 
the inhomogeneous magnetic field B — B(r), an atom with a constant magnetic moment of 
p, is acted upon by the magnetic dipole force

F - V(/*B) = (51)

where g, is the projection of the magnetic moment onto the direction of lhe field. When the 
adiabatic approximation condition is satisfied, that is, when the Larmor precession frequency 
wr = °f the magnetic moment is higher than the variation rate of the magnetic 
field direction, the interaction potential is proportional to the magnetic field magnitude 
|B|. Depending on lhe orientation of the magnetic moment relative to the magnetic field 
direction, the interaction potential can be either positive or negative. If the magnetic moment 
is directed with lhe magnetic field, the interaction potential < 0 and the atom is pulled 
into the strong-field region. The correspondent quantum state of the atom has come to be 
known as the strong-field seeking state. The potential energy minimum corresponds to the 
magnetic field maximum. The strong-field seeking state is the lowermost energy state of the 
atom-field system.

If the direction of the magnetic moment of the atom is opposite to that of the magnetic 
field, the interaction energy k\} > I). In that case, the quantum state of the atom is called 
the weak-ficld seeking state, and the atom is expelled from the strong-field region. The 
weak-ficld seeking stale is not die lowermost energy state of the atom-field system. Since the 
Maxwell equations allow no static field maximum in free space, force Eq. (51) can only be 
used Io guide atoms about the minimum of a static magnetic field | 104], The atoms in that 
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case reside in .1 weak-ficld seeking stale that is not the lowermost energy state of lhe atom- 
licld system. The hchavinr of an atom in a magnetic waveguide depends substantially on the 
magnitude of the magnetic field minimum /?„„„. Magnetic waveguides wherein = (I have 
a simple geometrical shape and contain relatively simple, highly symmetrical magnetic fields. 
In such traps, however, a material negative role is played by the nonadiahaiie Majorana 
transitions in the zero-field region that change the mutual orientation of the atomic magnetic 
moment and the magnetic Held and thus cause the atoms to leave the waveguide. This 
escape mechanism usually limits the channeling time of the atoms to a few seconds. Magnetic 
waveguides wherein /?nm, / (I are free from this disadvantage, but their geometrical shape 
is complex and thev contain fairly intricate asymmetric fields. As an example, the solid lines 
in Fig. 15 show the lower magnetic sublevels of the 2’Na atom, in which lhe atom can be 
trapped at the minimum of a static magnetic Held,

At the usual value of the atomic magnetic moment, approximately equal to the Bohr 
magneton (jiz and a moderate magnetic field strength (B — 100 G) al the edges of a 
magnetic waveguide, lhe latter can hold atoms with a temperature of the order pi 10 mK.

5.2.1. One-Dimensional Magnetic Waveguides
5.2.1.1. Single Current-Carrying Wire A most simple waveguide configuration for guid
ing and trapping atoms is a single current-carrying wire. It was first suggested by Vladimirskii 
[95] lor the localization of slow neutrons. The development of the laser techniques for cool
ing atoms (see lhe review papers by Metcalf and van der Straten [50] and Balykin ct al. 
[105]) has made it possible to lower the kinetic energy of atoms to such values as allow their 
binding io current-carrying wires [95-97, 98—HH. l06|. The potential of interaction between 
an atom and the magnetic field of a current-carrying wire has the form

r„ = (52)

where / is the curreni through tile wire, r is the distance between lhe atom and lhe center 
of the wire, /xu is the permeability of vacuum, and e,/( is the azimuthal unit vector. When the 
atomic magnetic moment n is parallel lo the direction of the magnetic field B, the atom is 
pulled into the region of (he field maximum (i.e., toward the wire surface). To hold the atom 
outside of the wire, it is necessary that an additional expulsive potential be present. The 
attractive potential depends on the coordinate r as l/r. Il is well known that the centrifugal 
potential barrier fzz can compensate for all the regular potentials that diverge less rapidly

Figure IS. Hyperfine-structure magnetic sublevels for - Na as a function of the magnetic field strength. All — 1772 
MHz is the ground-state hyperfine splitting. Solid lines correspond to the lower magnetic sublevels of the 'Na 
atom al which it can be held al the minimum of a static magnetic field. 
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than \/r~ when r -> 0 and can thus provide for a stable circular motion of the atom about 
lhe wire.

The atom + wire quantum system can be seen as a two-dimensional hydrogen atom. The 
wire resembles the “nucleus” and the atom plays the part of the “electron." The quantum 
mechanical properties of the atom + wire system were investigated in detail: its bound-state 
spectra were found and the lifetimes of its excited states determined [107-113].

The Keplerian guiding of atoms was for the first time realized with a beam of thermal Na 
atoms propagating along a meter-long current-carrying wire [97]. The guiding and trapping 
of atoms about a current-carrying wire were experimentally studied in detail using cold Li 
atoms [98-101]. The atoms were first cooled and localized in a magneto-optical trap (MOT) 
located at a distance of 1 mm from the wire 50 gm in diameter. A cloud of cold atoms was 
then liberated from the trap and reached the wire and al the same lime a current of around 
1 A was passed through it to produce an attractive potential for the atoms. The atoms caught 
performed circular motions about the wire while traveling along it in accordance with their 
initial velocities. Figure 16 schematically illustrates the localization and channeling of Li 
atoms along a current-carrying wire realized by Dcnschlag and co-workers.

A slight modification of the above scheme by the addition of a constant magnetic field Bc 
in a direction normal to the wire makes it possible to implement another scheme of guiding 
atoms along a current-carrying wire. Lhe additional constant field cancels out the magnetic 
field of the wire along a line passing parallel to it at a distance of r = (/z((/27r)(//Bc). A 
potential energy minimum is poduced along this line lor the atoms in the weak-field seeking 
state.
5.2.1.2. Two-Wire Guides The magnetic field produced by two wires carrying equal cur
rents / of the same direction has zero strength along the central line between the wires:

(53)

As follows from expression (50) for potential energy, the transverse guiding potential 
increases linearly with the applied current, and the given guide configuration can hold atoms 
along the central line. The distance between the wires, the current through them, and the 
axial velocity of atoms determine the minimum radius of curvature of the guide capable of 
holding atoms therein [100-101, I 13[. With such a two-wire line, it proved possible to realize 
storage rings for cold atoms [114] (Fig. 17). The two-wirc line is attractive from the stand
point of development of atomic waveguides on surfaces by lithographic techn iques [103]. To 
avoid direct contact between the atoms and the surface, a constant magnetic field parallel 
to the plane of the wires is added to displace the potential minimum away from the surface.

Figure 16. Guiding of atoms with a current-carrying wire. Krg/it. the current-carrying wire producing a magnetic 
field: left. schematic illustration ol the classical trajectories of an atom about a current-carrying wire.
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Figure 17. Guiding and trapping of neutral atoms with a two-wire configuration: (a) schematic diagrams of a 
waveguide and a storage ring for atoms; (bj cross section of the overtopping region between the waveguide and 
lhe storage ring: (c) experimental evidence of the successive revolutions of atoms in a storage ring. Courtesy of 
M Chapman.

;d i

Even with moderate currents and constant magnetic field one can localize and transport 
atoms at a distance ol a few micrometers from the surface 1103, 115].

5.2.1.3. Four-Wire Guides The magnetic field produced by four wires equally spaced 
about a cylinder of radius R and alternately carrying the currents + / and -/ can be approx
imated well enough by the following simple quadrupole formula:

B(r) = (54)

where = l^i/ttR. Such a configuration (with six wires) was first used by Friedburg and 
Paul [24] for focusing thermal atomic beams. It was experimentally demonstrated [116] that 
this configuration could successfully be used to transport cold atoms. A cloud of cooled Rb 
atoms was coupled via a magnetic funnel into a miniature waveguide formed by four wires 
embedded in a silica fiber. The atomic cloud of 100 gm diameter could travel for a few 
centimeters inside of the waveguide.

This type of guide is being considered as a prototype of a single-mode waveguide for de 
Broglie waves. If the atoms of interest move in the magnetic waveguide field slowly enough 
(the adiabatic approximation). the effective aloni-tield interaction potential has lhe form

where l'u is a constant characterizing the atom-field interaction force and R is the waveguide 
radius. In a cylindrical waveguide, the ccnler-of-mass motion of the atoms is described by 
the wave function '!'(/-, ip. z) of the system. By virtue of lhe symmetry of potential Eq. (55), 
this motion can be resolved into its axial, azimuthal, and radial components [117] as follows:

’P(r,<p.z) = Y(r)e'k: (56)

l he momentum of the atom along the waveguide, hk, can assume any value, while its 
angular momentum he about lhe z-axis of the waveguide is quantized. The radial wave 
function satisfies the radial equation derived from the Schrodinger equation: 

ft2

2m 2m>- 4- l7(r) - E Y(r) = 0 (57)

where m is the mass of lhe atom and E is the energy of ils transverse motion. Upon sub
stitution of i — r/t]. E = E/e, the above equation assumes the following dimensionless 
form:

+rF -(e- + r"+l-r2E)Y =0 (58) 
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where 7/ is the characteristic length comparable with the width of the ground-state wave 
function 

fi2
K(j 2mR7

and 8 is the characteristic energy commensurable with the ground-state energy

(„ h/t»+h
14 (60)

To achieve a single-mode propagation regime for the atoms inside the waveguide, their 
thermal energy kHT should be of the same order of magnitude as the characteristic energy 
c for the quantum modes, defined by expression (60).

A single-mode atom waveguide can be achieved when the thermal energy of atoms kBT 
is of the order of the characteristic energy for the quantum modes £ Eq. (60). Considering 
relations (55) and (60), we have the following requirement for the current to be carried by 
the single-mode waveguide:

/ = (61)

One can readily sec from relation (61) that given realistic values of the current hrough the 
waveguide, its single-mode regime can only be attained if its radius is extremey small. To 
illustrate, even for a waveguide with a radius as small as a mere 10 gm the requ red current 
is of the order of 0.1 A [117].

5.2.2. Two-Dimensional Waveguides
5.2.2.1. Zeeman Effect Surface Trap (ZEST) One of the plane waveguide schemes using 
a magnetic field is based on a modification of a magnetic mirror [I IS]. A magnetic mirror 
can be formed by an exponentially decaying magnetic field produced by a grid ol permanent 
magnets with a periodically varying magnetization direction [34]. A magnetostatic mirror of 
this type was already used earlier to reflect cold neutrons [95].

Figure 18 presents a schematic diagram of a magnetostatic mirror for cold atoms. The 
magnetic field of the mirror is produced by a grid of magnets having their length along the 
.r-axis much greater than the grid period a and a variable magnetization of M(y Z) = iMy. 
Away from the surface of the magnets, z A- u/2tt, the magnetic field may be represented in 
the form

B(y, z) = Boe~ki cos2Zty + • • • j (62)

where B(, = k = 2ir/«. When the atom resides al the hyperfine structure magnetic
sublevel mt. with the total momentum F. the atom-field interaction energy is

U(y, z) = z) (63) 

Figure 18. I he Schematic diagram of magnetostatic mirror for cold atoms.
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where i>'( is Ihe g-factor and is the Bohr magneton. For an atom in a "positive'’ magnetic 
state, where rri$gt > (I. the energy of the atom decreases as it moves farther away from the 
surface of the magnets. This means (hat when the kinetic energy of atoms is lower than the 
barrici height, potential Eq. (63) reflects the particles incident thereon.

For Jow atoms whose magnetic moment adiabatically follows the varying magnetic held, 
the quality of the magnetic mirror based on potential Eq. (63) is mainly governed by the ratio 
between ihe first two terms in relation (62). The second lerm in this relation that depends 
on the y-coordinate causes distortion of the atomic wave front, hence the diffuse scattering 
of the reflected atomic wave. At the same time, this term decay much faster than the first 
term it relation (62). In this connection, its contribution is essential for atoms penetrating 
deep into the magnetic field and is less important for slow, cold atoms.

The practical realization of the magnetostatic mirror can be exemplified by a device assem
bled of rare-earth ncodymium-iron-boron permanent dipole magnets 1.04 mm wide, 2(1 mm 
long, end 12 mm thick. A set of IS such magnets produced a field of form Eq. (62) with 
a strength of Bh = 4200 Gs and a characteristic decay length of a/lv = 0.33 mm [119], 
This magnetic minor was used to reflect cold cesium atoms residing al the magnetic sub
level / = 4, m = 4 of the ground state 6;.S', With atoms at a temperature of 20 gK. the 
experimentally measured reflectivity of the mirror proved close to 100%.

Another closely similar approach to the development of a magnetic mirror lor cold atoms 
is to use a periodically magnetized ferromagnetic surface that reflects atoms owing to its 
magneto potential The experimental testing of this approach demonstrated that the ferro- 
magnc'ic mirror could also reflect practically 100% of the incident atoms [120].

I'hc successful implementation of the above two types of magnetic mirrors made it possi
ble to .lesign gravitational-magnetic traps, resonant cavities, and waveguides for cold atoms 
1121, 122]/

Figure 19 presents a schematic diagram of a plane waveguide relying for its operation on 
a magnetic mirror |I18|. The inset shows the Zeeman shift of the ground-state hypertine 
levels .is a function of the magnetic field strength, hence the distance from the surface of the 
magnetic mirror. As can be seen, the atom in the state /' has its minimal potential energy 
at a certain distance from the surface; that is, the atoms in this state can be localized over 
the su'facc, Hinds and co-workers [1IH] proposed a scheme for loading atoms into such a 
plane waveguide: atoms in the state / move toward the mirror in its repulsive potential that 
slows them down. At the maximum point of the mirror potential, which corresponds lo the 
mininum point of the potential energy of the atom at the sublevel laser radiation moves 
the atom via the intermediate level / to (he level / at which it finds itself localized. With 
rcaliste magnetic mirror parameters (surface magnetization B, = 2 kGs, period ti = 1 gm),

Figure 19. Scheme ot loading of atoms a two-dimensional magnetic waveguide.
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atoms can be localized over a plane at a distance of 162 nm from the mirror surface. In 
that case, the width of the center-of-mass wave function of the atom amounts to some 
8 nm.

5,2.2.2. Combined Electric-Magnetic Waveguides The polarizability of neutral atoms 
is always positive, and so they are pulled into the strong electric field region. This circum
stance can be used to develop a plane electric-magnetic waveguide,

A simple realization of this idea is to apply onto a surface an array of parallel wires 
alternately charged to a potential of ±</>. In that case, the energy of an atom in the electric 
field over such a surface is

b'F =(64)

where KL — 2n/a, a being the period of the array, and Y is the distance between the atom 
and Ihe surface. For particles of negative polarizability (for example, polar molecules in a 
suitable rotational quantum state), such a periodic structure on surface is a plane mirror (an 
analog of a magnetic mirror). But atoms (particles of positive polarizability) arc attracted 
to such a surface. A combined electric-magnetic waveguide consists of a magnetic mirror 
with an array of charged wires on its surface. Cold atoms are magnetically repelled from 
Ihe surface of the mirror and are then strongly attracted to it by its electric field. Such a 
two-dimensional localization of atoms can be realized if the range \/Kyl of their magnetic 
repulsion is shorter than the range 1 /A?^. of their electric attraction. Electrostatic forces can 
be used to design both two- and one-dimensional waveguides.

Imagine a magnetic mirror with a thin wire carrying a charge of A per unit length on its 
surface. The field over the wire is A/(2rrs((p), where p is the distance from the wire. And 
the total potential over the surface will be [123]

6/=--4^ (65)

Figure 20 show's the behavior of potential Eq. (65) directly above the wire for the R.b atom as 
a function of the distance from the surface. The magnetic mirror has a surface field strength 
of 1.1. kGs and a period of 10 £tm, the charge of the wire being equal to 1 nC ■ nr1. The 
profiles in Fig. 20b show the guiding tube formed along the wire at a distance of 9 gm from 
the surface.

Miniaturizing the current- and charge-carrying structures used to confine cold atoms offers 
prospects for a finer control over atomic ensembles [124, 125]. Following the successful 
trapping and guiding of thermal atoms by means of miniature self-supported wires [98-101. 
116, 126, 127] and substrate-supported microfabricated wire arrays, the recent experiments 
[128-130] demonstrated wire traps and waveguides with Bose-Einstein condensation.

Figure 20. Potential of combined electric-magnetic waveguide.
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5.3. Atom Guiding with Laser Light
I’he advent of lasers not only stimulated the development of an optical fiber but also gave 

a creative impulse lor a guiding of free atoms. Probably the first proposed scheme lo guide 
atoms was the scheme of guiding of atoms in a standing wave [36]. Later several groups 
realized this scheme of atom guiding, which is presently known as the channeling of atoms 
in a standing wave |131-133]. The Gaussian laser beam was the first laser field configuration 
that attracted a great deal of attention lor focusing and guiding of atoms. In 1478 Bjorkholm 
et al. [37] demonstrated the focusing of an atomic beam that was propagating coaxially 
with the Gaussian laser beam. Actually, this pioneering in atom optics experiment could be 
considered to a great extent as the first guiding experiments with laser light.

In 1992. Ol'shanii et al. 188] proposed combining two experimental techniques: the guiding 
ot the radiation itself in a hollow fiber and the guiding of the atomic beam in an optical 
liber. Savage et al. [134], Markstciner et al. [135], Burke et al. [136] developed the extended 
theory of the motion of atoms in optical fibers. The (list successful experiment of the guid
ing of atoms in a hollow fiber was demonstrated by a Colorado group [137|. I’he more 
promising concept of atom guiding is based on the use of an evanescent wave atom mirror 
[86], Since the time of the first demonstration of the atom reflection [138], the atom mirror 
was extensively studied (see the review papers by Dowling and Gea-Banacloche (139] and 
Balykin [14(1]). The same Colorado group [141] and the Japanese-Korean group [142-145] 
have successfully demonstrated the guidance of atoms by using optical near fields. Guidance 
ol atoms by optical near fields is complicated by two processes: the diffusive scattering of 
laser light on the dielectric surface 1151 ] and the attractive van der Waals force between the 
dielectric wall and the guided atom [146|. Guidance of atoms with a propagating "dark spot 
laser beam’' is free from these limitations [147. 148] at the same time a spatial “rigidity" of 
the laser beam limits applicability of such kinds of atom waveguide.

5.3.1. Atom Waveguide with Propagating Laser Fields
In this section wc consider the different configurations of propagating laser fields for the 
guiding of atoms.

5.3.1.1. Gaussian Laser Beam The Gaussian laser beam can create the transverse con
finement ol atoms and does not restrict the motion of atoms along its axis, l he Gaussian 
laser beam has the following z-dependent beam radius (z along the laser beam)

(66)

where is the minimum spot size of the laser beam, and zt( = (7ru;(]/A) is the Rayleigh 
range. If wc consider the Gaussian laser beam as an atom waveguide, (hen the Rayleigh 
range determines the effective length of such a waveguide. For a single-mode atom guiding 
the internal radius of a waveguide has to be in diameter about several laser light wavelengths. 
At the minimum spot size of a laser beam wlt = 2A, the Rayleigh range is a very short and 
equals only zl( % 4ttA. It means that the Gaussian laser beam can be considered only as a 
multimode atom waveguide.

Another limitation of the Gaussian laser beam as an atom waveguide is due to the fact that 
the maximum field intensity is on lhe beam axis. In the guiding of atoms by the Gaussian laser 
beam, they are localized predominantly in the region of high intensity where the impulse 
diffusion is lhe most severe.

In 1978 Bjorkholm el al. [37| demonstrated the focusing of an atomic beam that was 
propagating coaxially with the Gaussian laser beam. In their experiment, the light from a 
single-frequency laser was superimposed upon a beam of sodium atoms. For the used in the 
experiment negative detuning, when the laser frequency is smaller than atomic absorption 
frequency, the force on the atoms is directed toward higher intensity, and the atoms are 
attracted into the center of lhe laser beam. The atoms did not experience periodic focusing 
and defocusing (which, actually, means a guiding i only because of an optical pumping of 
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sodium atoms: 'l he duration of resonant interaction of atoms with a single-frequency mode 
laser was less than the time of flight atoms through the superimposed laser beam.

The severe limitation imposed by the impulse diffusion was overcomes with a development 
of a powerful Nd : YAG. Such laser has made it possible to guide atoms with a large laser 
detuning when the impulse diffusion is strongly suppressed. In the experiment Priisot et al. 
|149| it was reported on realization of a Nd : YAG laser atomic guide for cold rubidium 
atoms. The laser frequency is so far from atomic rubidium resonance (I. H H)7y) that 
emission rate is very small, the guide has no losses, and the atoms can be guided a long a 
large distance (~3() cm). A similar guide was used in a cold atom fountain [150].

Another limitation of (he atom guiding based on the Gaussian laser beam (and all other 
schemes with the propagating laser beams) comes from a physical impossibility of“bending" 
the Gausskm beam, which closes many potential applications of such an atom waveguide. 
All these limitations of the Gaussian laser beam as an atom waveguide push the numerous 
research groups to explore other laser-field configurations.

5.3,1.2. Atom Waveguide with Propagating Light Wave Inside of Hollow Fiber Laser 
light itself can be easily and efficiently guided by the different types of optical fibers. A 
confinement of laser light inside a hollow liber immediately solves two problems of atom 
guiding by the Gaussian laser beam: (I) the laser light can propagate without transverse 
spreading over a long distance; (2) inside an optical fiber lhe laser field can be "bent” almost 
without limitation. The first scheme for guiding of atoms with laser light inside a hollow fiber 
is proposed by Ol’shanii et al. [88] (Fig. 21). In their scheme, the light propagating along 
a hollow optical fiber is the lowest order propagating mode EHu. The transverse electrical 
field profiles of the mode EH M is a zero-order Bessel function:

(67) 

and the intensity transverse profile is

Up) = (<’«)

with a maximum intensity along the fiber axis. The mode EH u can be excited in the fiber 
by a laser beam that propagates along the axis of the fiber [137]. With a red-detuned laser 
frequency, atoms are attracted to the high - intensity-’ region along the fiber axis, as in the case 
of the Gaussian laser beam. This means that the scheme still has the same impulse diffusion 
problems as in lhe case of the Gaussian laser beam: atoms are localized predominantly in 
the region of high-laser intensity, where the impulse diffusion leads to their heating and, 
finally, to sticking of atoms to the inner fiber wall. The impulse diffusion limits atom guiding 
time and effective guiding length of this type of atom waveguide [88]. The atom guiding 
time is just equal lo the time it takes for atom to enlarge its transverse kinetic energy to the 
value of the maximum potential depth Kin.ix of the guiding laser field

; ma> z6™ 

Figure 21. Scheme of an atom waveguide based on the optical mode EUpropagating in the Jiclectric waveguide 
(left) and the optical potential for atoms (right) |XX|
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where I) is the diffusion coefficient. For the large laser detuning (<S y) the diffusion 
cueflicienl can expressed as (Ol'shanii et al. 1993)

where s = 2iif,.(p)/(y- + 4A2) is the saturation parameter of the atomic transition. For 
guiding of thermal atoms with an average velocity (y.) ^5- l(>4 cin/s the corresponding atom 
guiding lime, according io Eq. (69), is T = 10 2-10 1 s. The corresponding guiding length is 
L - (v.')T = 5 ■ (llF-103) cm. For the guidance of ultracold atoms the heating mechanism 
limits the guiding length to a fraction of a centimeter and in turn it limits the applicability 
of such a type of waveguide.

Another serious drawback of the hollow fiber atom waveguide is that these modes decay 
exponentially themselves as they propagate along the fiber. The propagation constant of the 
modes — f3’ + i(3" has an imaginary part f3 which in an approximation of multimode liber 
/<; . » I has the form (137 j

13' oc rr’ (71)

Because the attenuation length decreases as the cube of the hole radius u. even, for a 
restively large (40 gm) fiber diameter (used in the Renn et al. (1995) experiment) the 
corresponding propagation attenuation length is only 1 //3" 9.2 cm. The attenuation of a
pripagating fiber mode limits the useful length of a fiber for atom guiding. For the curved 
tiler the imaginary part of the propagation constant has an additional term that depends 
or the radius of curvature of the liber and in turn it makes the guiding potential of an 
as mmetric elliptical shape.

In the J ILA experiment | 137. 141] to generate an atom guiding laser mode EH the laser 
betin was launched into the hollow region of a glass capillary. The laser light is coupled into 
va'ious modes and propagates along (he fiber by grazing-incidence reflection from the glass 
will. In the experiment, the capillary fiber has an outer diameter of 144 gm and hollow core 
diameter of 40 gm. The propagation attenuation length, for a chosen diameter fiber and al 
th: wavelength of rubidium transition 780 nm, is only 6.2 cm. The attenuation length limits 
the guiding distance and the fiber length used was from 3 to 15 cm. The coupling efficiency 
into the lowest order EH n mode was around 50% and ii was achieved when the laser beam 
wiist at the entrance of the fiber is approximately the size of Ze//,, mode, and the axes of the 
later beam and the fiber coincide. The EHN mode diameter is substantially smaller than the 
ditmeler of the core. It means that (he guided atoms are localized in a transverse direction 
to a size considerably smaller than the internal diameter of the fiber and, as consequence, 
lhe elTccl of van der Waals interaction and quantum funneling can be ignored in (his type 
of atom waveguide.

n the experiment, the liber connects two vacuum chamber: the first one, the source 
clumber, contains rubidium vapor with a partial pressure of torr. Atoms with small 
irmsversc velocities and appropriate trajectories pass into the fiber and arc guided through 
th: fiber into a second detection chamber. Al lhe exit of lhe fiber, the atoms arc ionized 
ard the ions detected with a channeltron electron multiplier. The main experimental data 
jr described satisfactorily by the model based on lhe dipole potential: atoms were guided 
wlen the laser frequency was red detuned to the atom transition and the effective potential 
ss tn attractive one. For a blue detuning of the laser frequency there was no guiding: lhe 
efective potential is a repulsive one.

Figure 22 shows the intensity dependence for an atom flux for a red detuning of the 
Hater of A - -8 GHz from atom resonance. At low intensity, the flux increases linearly with 
la:er intensity, as expected for guiding atoms in the dipole potential. However, at high-laser 
nensity the guided llux is decreased as a result of the action of the dissipative force and 

th- impulse diffusion.
<enn et al. [137] showed that atoms may be guided also in curved fiber. In a curved 

filer atom, guiding is complicated by several additional effects: (I) bending of a fiber alters
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Figure 22. Atom guiding with propagating light wave in a hollow liber. Figure shows the intensity dependence for 
an atom flux for a red-laser detuning of A = -8 GHz from resonance 1141],

the optical field distribution from the lowcst-order grazing incidence EH lt mode into high- 
order modes; (2) there is an additional centrifugal force acting on atoms and pushing atoms 
into the wall; (3) for atom guiding in the bent fiber it is necessary to introduce larger laser 
intensity, and as a result, the optical pumping to other hyperfine sublevels starts to play a 
significant role. In the Renn et al. [137] experiment the atom guiding was detected at the 
minimum bend radius R ~ 5 cm.

5.3.1.3. Dark Spot Laser Beams A simple circumvention of the serious diffusion prob
lem in the atom guiding can he the use of a dark spot laser beam (DSLB): a laser beam 
with a minimum intensity in the beam center. The best-known example for this type of laser 
beam is a TEM^ beam (known also as a donut mode). A copropagating TEM('hl beam was 
first considered as an atom focusing lens (85, 152, 153]. To realize a focusing and a guiding 
with a donut mode, the positive laser detuning has to be used, so the dipole force is directed 
toward the hollow' center of the laser beam. In this type of atom lens and waveguides, atoms 
move predominantly through a relatively low-intensity region, w'here the rate of spontaneous 
emission is a minimum [93, 14(1],

Nowadays a rich variety of methods exist to create the DSLB, such as the transverse mode 
selection methfid [ 154]. geometrical optical method [ 155], optical holographic methods [156], 
computer-generated hologram method [147, L57], the method of Gaussian mode conversion 
[158], and the method based on the use of hollow optical fibers.

Wc shall only mention some of them that found an application in atom optics and, par
ticular, in atom guiding. In atom-guiding application of the DSLB, there are three most 
important parameters of the beam: (I) the smallest achievable dark-spot size; (2) the degree 
of diffraction efficiency of the first bright ring, and (3) the divergence of the beam. The 
current stage of DSLB research can be found in the review paper [159],

Mode conversion method. The simplest method of generating a DSLB is to place inside 
a laser resonator a small absorbing dot close to the optical axis of the resonator. Then 
the transverse intensity distribution of the laser output recalls the distribution close to the 
TEM’i: mode. Unfortunately, the quality of the laser beam is rather pure.

If, instead of the absorbing dot. a thin wire is placed inside the resonator, then the laser 
can be forced to generate high-quality Hermite-Gaussian modes. These modes have nodal 
lines at the position of the wires. The next step is a conversion of the Hermite-Gaussian 
mode to a DSLB. Ktippcrs et al. [147] used the mode conversion method to focus and 
guide metaslabie Ne atoms. First, they generated a TEM0] laser mode by inserting a 20-/um- 
diameter wire into the ring dye laser. Then, by using a mode converter consisting of two 
cylindrical lens, the TEM,, mode was transformed into a donut mode without a significant 
loss of power.

Computer-generated hologram method. A hologram is, in essence, an interference pattern 
arising from a coherent reference wave and a second wave (usually scattering from the 
object). Commonly, the interference pattern is recorded by a photographic emulsion (and 
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very often it is called a hologram). During a reconstruction step, the reference held illumi
nates the hologram and the hologram regenerates the original light field, hi the rare cases 
when a mathematical form of the second wave is known (in our particular case it is the 
i'l .M, , mode), it is possible to udcu/aie the i rile rl ere nee pattern (the hologram) and to omit 
the recoding process.

rhe interference pattern of a hologram contains the sinusoidal variations in the field 
intensity. In a standard technique of a photographic recording of a hologram, the sinusoidal 
variation in the field will lead to sinusoidal variation in optical density on the photo plate. By 
using a computer graphic technique, it is possible to print out the calculated hologram pattern. 
However, in practice, it is much easier to print a binary hologram with a “square wave” 
transmission function, which incorporates the sinusoidal variation in the field intensity. The 
next step is a photo reduction of the binary hologram onto a photographic film. The result is 
lhe amplitude hologram, which always has rather low efficiency. To obtain a hologram with 
a high efficiency, the amplitude hologram has to be transformed into the phase hologram.

Heckenberg et al. [160] demonstrated a computer-generated hologram method to create 
the TEM'ji mode. The Gaussian mode TEM^ is used as a reference field. The reconstructed 
light beam is not strictly TEM‘, mode donut mode but in the far field the spatial-intensity- 
dependence equivalent to the donut mode. By using such a DSLB. He et al. (1995) demon
strated the trapping of refractive and absorptive microscopic-size panicles in the dark central 
spot of lhe focused light beam. Kuppcns et al. 1147] have made the extensive studies of 
two methods of generating a dark spot-size light beam: (1) the conversion method and (2) 
the computcr-generated-hologram method, l he quality of the donut mode obtained in the 
computer-generated hologram method was higher than the quality of the mode generated 
by the conversion method.

Microcollimation technique. Yin et al. [148] proposed and demonstrated a relatively simple 
and very efficient method to generate a dark hollow laser beam with a radial intensity 
distribution similar to one of a donut mode laser beam. Their method is based on the use of 
the modes of a hollow optical fiber outside of the fiber. It is well known that the lower-order 
modes of a hollow fiber are so-called linear polarized LPM, hl’u* LP->\ modes. All these 
modes are already the dark spot modes but inside the liber. The experiment of Yin et al. 
[148] demonstrated that it is possible to extract and preserve these modes outside of the 
fiber. The beam divergence at the near field was equal to 6.5 * IO-5 rad, whereas at the far 
field it was 4.(1* W-4 rad. The main limitations on the output parameters of the dark spot 
beam come from the divergence on the core of the liber.

Guiding of atoms with the donut mode configurations overcomes lhe diffusion problem, 
however, it suffers still from inevitable divergence of a free-propagating laser beam and its 
“rigidity" in a vacuum.

5.3.1.4. Atom Guiding with a Dark Sport Laser Beam The Bonn group [ 147] success
fully demonstrated the guiding and focusing of metastable neon atoms with DSLB. The 
DSLB was created by two methods. In the first method, the iowest-order Hermite-Gaussian 
TEMllt mode was derived front a ring-dye laser by inserting a 20-gm-diameter wire into 
the laser cavity. A mode converter, consisting of two cylindrical lens, transforms the TEMim 
mode into a DSLB that contains about 1-W laser power. The DSLB intensity profile has 
a slightly asymmetrical ring-shape form. An ultracold beam of metastablc neon atoms was 
injected coaxially into the DSLB. The radius of the donut mode laser beam al the injection 
plane was 4()U gm: at the distance of 20 cm after the injection plane, the donut mode waist 
was 100 gnt. The slow atomic beam was prepared by Zeeman slowing of a thermal beam 
with a further compression and deflection by a two-dimensional magneto-optical molasses 
[ 161. 162], The atomic beam prepared in this way had a sub-Doppler transverse temperature 
and its longitudinal velocity was 25 m/s with a 3 m/s velocity spread.

The spatial distribution of the guided atoms was detected at the waist of the donut mode. 
Without lhe guide the width of the atomic spatial distribution of the atomic beam was a 
”50 pm. The guided laser beam decreased lhe spatial size of lhe neon beam to the value of 
17 pm. The peak intensity of guided atoms was increased by two orders of magnitude. The 
total flux of guided atoms contains ft)% of the initial value.
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5.3.2. Atom Waveguide with Evanescent Laser Fields
'[’he use of a hollow optical fiber (HOF) with an evanescent wave on its inner surface for a 
guiding of atoms was first considered by Savage. Marksteincr. and Zoller [163], Atoni can 
propagate inside a hollow fiber provided that an evanescent surface field keeps atoms away 
from the inner wall. (Fig. 23). It was shown the feasibility of HOF as new element of atom 
optics. Later it was developed the theory of quantum motion of atoms in a hollow fiber and 
analyzed in detail the different mechanics losses in HOF [135, 136, 142, 164].
S.3.2.1. Evanescent Wave as an Atom Mirror Evanescent field above a surface can be 
used as a mirror to reflect atoms. The first scheme for atom mirror with an evanescent wave 
was suggested by Cook and Hill (86|. In their scheme, a plane traveling light wave is totally 
reflected internally at the surface of a dielectric in a vacuum: a thin evanescent light wave is 
generated on the surface. It is this surface wave that can be served as an atomic mirror for 
atoms running into it.

.Simple evanescent wave. Suppose we have a laser light incident on a smooth interface of a 
dielectric in a vacuum and its electrical field has a form

E, = (72)

The transmitted field through the interface is

Er = E(J,/,MF-k'r| (73)

For incident angles greater than so-called critical angle Ht.(sin W( = n. n is a refractive index 
of the dielectric), there is a total internal reflection of the incident wave.

Using Shell’s law we can write for the perpendicular k, and parallel A(1 components of 
wave vector of lhe transmitted wave:

/sin2W \l/2 kfv = +<( —- 11 = 1$ (74)

sin W, (75)

Then the electrical field of the transmitted field has the form

E„„ = E, ~ Ei},epvel{M = l - qx) (76)

q — k, sin 6),/'i (77)

and it is called the surface or evanescent wave. Its amplitude decays at a distance

(3 1 = sin2 0(. — I) l,"/c er 3/2rr (78)

where A is lhe wavelength of lhe incident wave, and c is the speed of light in vacuum. 
The evanescent wave propagates parallel to the dielectric vacuum interface with the wave

Figure 23. Atom waveguide based on hollow dielectric waveguide having two cylindrical dielectric sheaths differng 
in refractive index (left) and the optical potential (right).
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vctor of' the evanescent wave </ - A. sin H. .Of. I he amplitude of the evanescent wave al lhe 
uclcdric interface is greater than the electrical held in the incident laser held /•)„, (outside 
d‘ the dielectric) and the relationship between them is given by the following equation 
| (>5. 166]:

4/r cos*’ (-),
(/j- — l)[(/t2 -f- 1) sin’ (-) + I]'"

(79)

vhere m = t), 1 for TE or TM polarizations, respectively.
Surface plasmon-enhanced evanescent noce. Surface plasmons arc electromagnetic charge

tensity waves propagating along a metal-dielectric interface. A metal-dielectric interface is 
jrepared usually by evaporating a thin metal layer on the surface of a prism. For a surface 
pasmon. the wave vector component k, along the interface is

vhere e( = e\ + iffl is the relative permittivity of the metal of the surface layer. Surface 
jlasnions can he excited by the attenuated total reflection methods. In this method, a laser 
leant, polarized parallel to the plane of incidence, undergoes total internal reflection on the 
iiterface with the metal layer. If the wave vector klt of the evanescent wave propagating 
dong the interface matches the wave vector A, of the plasmon wave (Eq. [80]), then there 
i a resonant coupling into the plasmon wave.

An attractive feature of a plasmon wave in atom optics is the large-field enhancement of 
tie initial laser beam intensity. The field enhancement factor jj. defined as lhe ratio between 
tie maximum intensity of the evanescent wave with and without plasmon excitation, is

(81)

A quartz prism (n = — 1-45) with a silver layer (s] = —30) and at optimum angle of
ircident ,l|3l = 44,6") has the maximum enhancement factor between 15 and 100 [168],

There arc a number of limitations in the use of the plasmon wave as an atom mirror. First, 
tic field enhancement is limited hy the surface imperfections such as metal surface corru
ptions. Second, the resonance condition of plasmon excitation depends on the thickness of 
lie metal layer, which results in a thickness-dependence resonance of plasmon excitation, 

his could cause a strong fluctuation of the field intensity. Third, if the film layer on the 
prism surface is rather rough (larger than 5 nm), plasmon waves are strongly scattered. This 
s.attcriiig leads to accumulation of electromagnetic field density, which is locally higher than 
tiat of an extended surface plasmon wave on a smooth surface.

The surface plasmon technique has the advantage in its simplicity over other techniques 
tf the enhancement of the evanescent wave [166, 167, 169],

Enhancement with dielectric waveguide. Another approach to enhancing an evanescent field 
1 to use a multilayer dielectric structure on the prism surface |166, 170], The dielectric 
sructure consists of a layer with a refractive index /p, which is separated from the prism 
sirface by a small gap of low refractive index n2. The layer with a refractive index /r, plays 
; role of a thin-film waveguide. The incident laser light is totally reflected at the dielectric 
interface and the laser light in lhe prism and a mode in lhe waveguide are coupled through 
tie evanescent field in the gap. When a mode of the waveguide is excited, even a moderate 
i icidcnl laser power gives a large light intensity in the waveguide.

l he theoretically predicted enhancement factor is about several thousands [171. 172]. The 
realized enhancement of the evanescent wave was about J700 [173].

Reflection o f atoms hy evanescent wave. If lhe evanescent wave is created by a total internal 
reflection of the Gaussian laser beam at a dielectric vacuum interface, then the electrical 
held in the vacuum above the surface lakes the form

A'(.v, y, z) = E„cxp ~[3z (82)
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where w, and to, are the beam waists along the surface and x and z are the coordinates 
parallel and perpendicular to the surface. The corresponding Rabi frequency

fit,') — f'i|( exp -fiz (83)

For a two-level atom, the radiative force has two components: a normal to the dielectric 
surface and a component parallel to the surface. I’he normal component is associated with 
a gradient of the field amplitude perpe ndicular to the surface [86, 167. 174, 175] and it is 
equal to

(84)

where ll/( is the Rabi frequency, St = VA? + !1^, and A = m — <a(J - kvv. Tlie parallel 
component of the radiative force consists of the dipole force associated with a gradient of 
the field amplitude along the surface and the spontaneous light-pressure force

---- — er+— ev I + (8b) fl \W[ UJ- /

Consideration of the geometry of the atomic initial and final velocity vectors shows that 
the law of atom reflection of atoms from the evanescent wave [86] is

tan — tan - 2/? (86)

where <pr and <p, are the angles of reflection and incidence and R is the ratio of the parallel 
to the normal radiation force R — FJF±.

When the parameter R is negligibly small. Eq. (86) reduces to the equation of the specular 
reflection law: <pr = tpr [176]. Et occurs when the spontaneous force and the parallel com
ponent of the dipole force (Eq. [85]) arc considerably smaller then the normal component 
of the dipole force (Eq. [84]). Because lhe spontaneous force is negligible for a large laser 
intensity (4i„ 5> y), and for a large laser detuning (A A> y), it is evident that a specular 
reflection of atoms can be expected onlly for a large laser detuning and a large diameter of 
laser beam.

Reflections of atoms by the evanescent waves were reported in many papers [138. 166, 
167, 177],

Figure 24 shows the atomic intensity distribution produced by the reflection of a 
metastable argon beam from a simple evanescent wave [ 167], The peak at <p, = 0 mrad cor
responds to the initial atomic beam. The peaks to the right correspond to the atoms that 
were reflected by the evanescent wave. The position of the reflected peaks is equal to the 
position expected for specular reflection that indicated by the dashed line, in lhe experi
ment, the near specular reflection was expected because the Rabi frequency was much larger 
than lhe spontaneous decay rate and the laser beam waist on the surface was much larger 
the evanescent wave decay length. The broadening of the reflected atomic beam was caused 
mainly by the defocusing effect and by fluctuation in the dipole force.

Electromagnetic field in optical hollow fiber. We consider a simple cylindrical-core hollow 
dielectric waveguide as shown in Fig. 25. The refractive index of the cylindrical core and 
cladding are denoted by rq and «2. The inner diameter and the thickness of the waveguide 
are 2p and Ap, respectively.

The mode picture of a hollow fiber depends on lhe geometrical parameters of the waveg
uide. Decreasing the radius of the hole and lhe thickness of the core leads to disappearance 
of high-order modes and under certain conditions all modes except the fundamental mode 
HE i [ are cut off. Figure 26 shows the map of mode structure regime of a dielectric waveguide 
in the p — Ap plane where p is the radius and Ap is the thickness of the core. The refractive 
index of the core and the cladding arc chosen as nt = 1.5 and m — 1.497, respectively. In 
the case of large radius of the hole the fiber can be considered as a planar dielectric waveg
uide. Al a small thickness of the cladding, it is still possible to excite only a fundamental 
mode. For a larger hollow region and a cladding thickness, there is only a multimode regime. 
When the radius of the hole is on the order of the optica) wavelength, lhe hollow fiber is a
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Figure 24. l he atomic intensity distribution produced by the reflection of nielasiable argon atomic beam from a 
single evanescent wave. The peak at if, — 0 corresponds to the position of the initial atomic beam. The peaks to lhe 
right correspond to lhe atoms that were reflected by the evanescent wave. The position of the reflected peaks was 
equal to the position expected for specular reflection that indicated by the dashed line. Reprinted with permission 
from |l(>7|. W. Seifert cl al.. Phys. Rev .4 49, 3814 (1994). C- 19*)4. American Physical Society.

single-mode fiber. The electrical field strength in the single-mode fiber has the form [135]

E(r. 0. z) = £(r)u(r, «)e',/k U"1 + c.c. («7)

where F.(r) is the electrical held strength and u(r, 0) is a complex unit vector. The electrical 
licld Eq. (87), is the field of HEU mode with azimuth mode number h = I. The dependence 
of the electrical strength on radius for this mode is shown tn Figure 27. From the expres
sion (87), it follows that the electrical field has angular dependence however for a circular 
polarized light field the time average field is circularly symmetric on the slow time scale of 
the atomic motion.

The most interesting case for lhe guiding of atoms in a hollow fiber corresponds to lhe 
fundamental mode excitation in the fiber: the single-mode liber guarantees that the electrical 
field inside the liber has no zero value anywhere on the wall. In the multimode case the

Ap

Figure 25. Diagnmi of a cylindrical-core hollow fiber. The refractive index of the cylindrical core and cladding arc 
denoted by nt and n:. The inner diamelci and the thickness of the liber arc 2p and Ap. respectively.
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Ap / X

Figure 26. The map of mode structure regime of dielectric waveguide in the p Ap plane, where /i is the radius 
of the hollow region and Ap is the thickness of the cote. In the case of huge radius ol the hole, the fiber can he 
considered as a planar dielectric waveguide. At a small thickness of the cladding, it is still possible to excite only 
fundamental mode that, in this case, corresponds to the 7 and 7 /V/H| modes of a slab waveguide, l or a larger 
hollow region and a cladding thickness, there is only multimode regime. When the radius of the hole is on the 
order of the optical wavelength, the hollow' fiber is a single mode fiber. [ 135],

electromagnetic field inside the fiber is a superposition of ail allowed eigen modes. The 
amplitude and the phase of the resulting field depend strongly on the way the fiber is coupled 
lo the external laser source.

5.3.2.2. Cylindrical Hollow Fiber as Atom Waveguide Consider the motion of atoms 
in the hollow cylindrical fiber with the following assumptions. A laser light is coupled lo the 
fiber and the fundamental mode HLU is excited. The evanescent field of the HEn mode 
in the hollow region produces the repulsive potential over the surface on the inner wall. 
Near the surface atoms are attracted to the dielectric by the long range van dcr Waals force. 
The resulting potential remains repulsive in a few wavelength distances from the surface 
and becomes attractive close to the surface. The van dcr Waals force lowers the effective 
potential barrier seen by the atoms. Spontaneous emission is one of the loss mechanisms 
in the atom guiding. Spontaneous emission during the guiding of atoms leads io a recoil 
heating of atoms and the fluctuation of the dipole force of the optical potential. Other loss 
mechanisms is the tunneling of atoms to the surface and the nonadiabatic transitions.

We are interested in the atom wave model structure and ihe atom energy eigenvalues. 
The stationary Schrodinger equation for an atom in the waveguide is

<p(r) = £<p(r) (88) - —A+ k(r) 
2/n

Figure 27. Electrical-field amplitude for the lowest-order H£l( mode in Ihe annular core of a hollow liber. The 
hollow' radius and the core thickness equal 2,889 A 1135].
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where l^(r) is the combined evanescent wave—van der Wauls potential in the waveguide. 
Because the potential I (r) is axially symmetric and depends only on ihc distance r of the 
atom from the surface, the evlindrieal coordinates (p, d, z) are best adapted to the problem. 
Then the Eaphtcian in cylindrical coordinates [165] is

d2 I S 1 d~
A ~ 7—1 "b tz V 1 7 TZ77 T —7 (89)dp- d dp p dO- dz-

and lhe wavefunction *p(r) is a function of the variables (p, H. z), The separation of variables 
leads to the Schrodinger equation in the form [181]

h~ / d~ I (I /’ , 2m \To + 7. T, ~ 7c ~ ~ U(P- (“>.z) = Eip(p.f).z) (90)
2m \ dp- p dp p- n- /

with lhe wavefunction as

?(p. W, z) K(p)exp[±/7fl] exp(+A,.,z) (91)

where k,llt — 27r/A,jfl, and AtJS is the atom de Broglie wavelength. The solution of the 
Schrodinger equation (88) with the combined potential f'fr) is a rather complicated prob
lem. The comprehensive theory of atom guiding with only the evanescent wave optical 
potential can be found in [135, 163, 182],

However, main features of the atom guiding can be earned by considering a more simple 
case of an infinite step potential on the wall of the waveguide

(92)

For the lowest-order atom wave modes Ihc transverse de Broglie wavelength is much 
larger than the penetration length of the evanescent wave and the simplified step potential 
model tits the guiding process adequately. Such a model leads to considerable simplification 
of the picture of the guiding of atoms.

From Eqs. (90) and (91) with the potential F(p) in the form of Eq. (92), the wave function 
lakes ihc form 11811

^,,(p. A. -) = const J, ( (93)\ a /

where I Ihc number of azimuth mode and p is lhe number of radial mode in the atom wave
function. The boundary condition on the wall of the fiber gives the quantization conditions 
on the transverse motion

= jltl (94)

which can be rewritten for total atom energy as

where p is the r/th root of the Bessel function (Eq. [93]). The transverse quantization 
condition of Eq. (95) couples the longitudinal velocity of the atoms vt — hkt /m with lhe 
transverse velocity vf = htj^/ni. For the basic atom wave mode g>IM. the transverse velocity 
atom in Ihc fiber is of lhe order 

and considerably smaller than recoil velocity v,. For lhe hollow fiber parameters of 1135| the 
transverse atom velocity of the basic mode equals ujj % 0.12ur. Such small-atom velocity can 
be reached, lor instance, by realizing atoms from a magneto-optical trap and by a following 
spatial selection of atoms with small transverse velocities. l he scheme of laser cooling of 
atoms to subrecoil temperatures [183] can also he used for a loading of the basic mode of 
atom waveguides.
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5.3.Z.3.  Losses in Atom Waveguide I here arc mainly three loss mechanisms for atoms 
guided in the hollow fiber [135, 136, 140, 164]: (1) spontaneous emission. (2) tunneling of 
atoms to the dielectric surface, and (3) nonadiabatic transitions between states corresponding 
to the attractive and repulsive potential of the surface wave. Each of these processes limits 
the lifetime of atoms in the basic mode and, finally, the length of the atom waveguide.

Spontaneous emission. An atom in a waveguide moves in two different regions: in the 
surface light wave and in the light free space near the center of the waveguide. When an 
atom moves in the guiding field, it may rc-emit a spontaneous photon. For a single-mode 
atom waveguide the transverse velocity of the guided atom is smaller than its recoil velocity. 
That means that a single spontaneous emission event transfers the atom from the basic 
modes to the higher-order modes and (he atom lifetime in the fundamental mode will be 
determined by the photon re-emission rate.

Tunneling to dielectric surface. When the transverse kinetic energy of an atom in the waveg
uide is close to the potential barrier of the combined evanescent wave plus the van der 
Waals potential, the atom may undergo tunneling over the resulting potential. In that case, 
the atom reaches the dielectric surface and it is either scattered in a diffuse manner (with a 
considerable gain of its transverse kinetic energy) or absorbed on the surface. In both cases, 
the atom is lost from the waveguide.

Nonadiabatic transitions. An atom in a waveguide moves in two different regions: in the 
surface light wave and in the light-free space near the center of the waveguide. In the case 
of a single-mode atom waveguide with a small hollow region such a picture is oversim
plified. A more appropriate physical picture will be that the atom moves in the adiabatic 
confining state, which converges to (he atom ground state at the limit of a zero guiding 
electrical field [188]. The adiabatic confined state has admixtures of the excited internal 
state and there is nonzero probability for emission of a spontaneous photon for the atom 
in this state. This loss mechanism is due to the transition from the confined state to the 
nonconfined states. The nonadiabatic transitions appear if the atom cannot adiabatically fol
low' the local changes of the confining field intensity. For the typically used parameters of 
atom waveguides, the nonadiabatic transition loss rate is negligible in comparison with the 
spontaneous emission loss rate [55. 135, 184].

5.3.2.4. Horn Shape Hollow Fiber The scheme of exposing the fiber’s input hole to an 
atom vapor is probably the most simple scheme of a loading of atom waveguides, In this 
scheme, the input fiber face is in one vapor cell (which is considered as a source of atoms), 
and the flux of atoms is directed into another empty cell (where the atoms can be detected). 
One of the main parameters of such a scheme is the total flux of atoms through the fiber [141, 
145, 163], Suppose that in the first cell we have the Maxwell velocity distribution of atoms. 
In the case of a single-mode guiding regime, the fiber selects from the Maxwell distribution 
the atoms with velocities that fulfilled the transverse quantization conditions (Eq. [95]). In 
a multimode regime of atom guiding, the fiber is coupled to the atoms' having transverse 
velocity less than the maximum reflected by the surface wave velocity

The total flux of atoms Q coupled to the fiber equals to the number of atoms striking the 
entrance surface of the fiber per second and having the transverse velocity less then

r* rMnuui /-‘'max Sltr.lfQ—Xl dv. dvx <lvrn(v)^ " (v) (97)
•'» ‘ •'-‘'max •'-•'max V 7r

where (w) is the average velocity jf atoms in the source cell and 5 is the area of the entrance 
surface of the fiber. For the room temperature atom cell. Eq. (97) gives £>, — Id ; ’ n1( Etoms/s 
1140]. Actually the flux will be even less if we take into account the transverse quantization 
condition (Eq. [95]). It is clear that for a single-mode fiber the considered scheme of the 
loading of atoms from a vapor cell is not practical.

If we consider a MOT as the initial source for a loading of a single-mode fiber, then 
the longitudinal velocity of atoim is considerably smaller than in the previous case, hut the 
maximum achievable atom densiy is also smaller than in a vapor cell and. once more, the 
flux is discouragingly small.
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To overcome the loading problem of lhe atom waveguide. Balykin et al. 11851 proposed 
using a special type of atom waveguide: a horn-shape hollow fiber. Their waveguide has 
a shape of a horn with a large entrance diameter (sec Fig. 28). The entrance diameter is 
about 1 mm to lit the typical size of a magneto-optical trip. Al the end of the horn liber, its 
diameter is decreased to the diameter of a single-mode itom waveguide. As in the case of a 
cylindrical hollow fiber, the internal wall of the horn filer is supposed to be covered by an 
evanescent light wave. A magneto-optical trap is considtrcd an external source to load the 
horn fiber.

A simple geometrical consideration of a motion of in atom from a MOT source into 
lhe horn fiber shows that after several specular reflections from the inner fiber wall the 
atom will be directed out of the fiber. To overcome thi: particular loading problem, it was 
proposed, lo use at lhe initial loading—guiding stage the dissipative reflection of atoms 
from the evanescent wave [186. 187]. I’he role of dissipative reflection is not only to load 
atoms into the horn fiber, '['he dissipative reflection als< implements (a) the cooling of the 
transverse velocities of atoms in lhe fiber (and also the kngitudinal and the azimuth velocity 
components through coupling all degrees of freedom): 0) the accumulation of atoms in the 
narrow end of the fiber: and (c) a population of the base mode of the final cylindrical part 
of the fiber.

l he presence of a mechanism by which an atom in the waveguide loses some of its kinetic 
energy in inelastic reflections from the evanescent light vave causes the equilibrium position 
of the atom to move gradually downward. Assume that aiimx arc being continuously injected 
from a magneto-optical trap into the waveguide cavity aid their velocity distribution corre
sponds to a Maxwell one with a temperature of T = that can easily be attained in 
the trap. The entrance inside the diameter of the waveguide corresponds to the character
istic size of the cloud of atoms in the trap and amounts to 500 gm. The average transverse 
atomic velocity in the ensemble at the exit from the waveguide amounts to some 10 cm/s, 
while the mean absolute velocity' is around 20 cm/s. However, at the expected high densities 
of atoms in such a waveguide, there will take place the equalization of their kinetic energy 
distributions among all their degrees of freedom because of collisions and a long channeling 
lime. Il was shown [185] that, while the atoms channel n the waveguide over a distance of 
/. = I cm. their space phase density is increased by five irders of magnitude.

The achievement of extremely cold and dense samples of weekly interacting bosons gives 
an opportunity lo use the horn liber for investigating the guantum statistics phenomena and 
wave propagation of matter. Figure 29 presents the relitive population G = N„/N of the 
minimum-energy mode of the horn-shape waveguide as < function of the number of particles 
in the magneto-optical trap. /VMOT. where jV() is the number of atoms in the fundamental 
waveguide mode. One can see that a sharp increase n the proportion of atoms in the

Figure 28. Ilorntiher: atoms ate injected continuous!) from a magnet..-optical trap into a hollow waveguide with 
an evanescent light wave formed on its inside surface. The atoms channel over the waveguide while undergoing 
reflections from the evanescent wave 1186. 187],
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p (cm 3)

Figure 29. Relative population of the fundamental mode of a cylindrical waveguide with a diameter of </ = 4 gm, 
in which the hornfiber terminates, as a function of Ihe number of atoms confined in a magneto-optical trap, of 
which 10% are being injected every second into lite hornitber. Reprinted with permission from [1851, Subbotin 
et al.. Laser Physics 7, 358 (1997), © 1997, Maik Nuuka.'Jnierpcriodica Publishing.

fundamental waveguide mode occurs, and the relative population of the fundamental mode 
amounts to a few percent.
5.3.2.5. Planar Waveguides A two-dimensional atom waveguide permits us lo prepare 
an atomic sample as two-dimensional gas whose behavior at small temperature and sufficient 
atom density could be quite different from three-dimensional atomic ensembles [189-191], 
Several schemes were proposed for a two-dimensional waveguide. In one of them ]87, 175], 
the waveguide is formed with two different evanescent waves at one dielectric interface. 
The evanescent waves arc different in a sense of frequency detuning with respect to atomic 
transition and the depth of penetration in the vacuum. One evanescent wave is obtained from 
the total internal reflection of a red-detuned laser beam at a very small angle of incidence 
only slightly greater than the critical value. The decay length may in this case be as great as 
a few wavelengths of light. The second evanescent wave is produced by a blue-detuned laser 
beam incident upon the interface at a much larger angle of incidence. The decay length for 
such a wave may be only of the order of one-tenth of the laser wavelength. If the atom is 
placed close enough lo the interface, the first wave will tend to push the atom away from 
the surface, while the second one will tend to pull it toward the interface. If the condition 
A » y is satisfied, the guiding potential may be represented in the form [63]

(98)

where A( and A, are the frequency detuning of the two evanescent waves and G| and 
G2 are their local saturation parameters, The resulting potential is a Morse potential. The 
corresponding potential for the laser parameters G, = Gt = 4 • 107. A, = 5 ■ 105y. A2 = 
— ICf'y, and the angle of incidence (-)[ = 47c, and <-)2 = 45.7C (n — 1.4) has the potential 
minimum at a distance of xmjn = A from the dielectric surface and the depth of the well is 
SU = 7hy. i he width of the well at the A//2 level is of the same order of magnitude as 
the wavelength of light.

I'he guiding time of atoms is determined mainly by their heating as a result of impulse 
diffusion: ihe atoms spend a lot of time in the high-intensity red-detuned laser light. For the 
previously chosen laser parameters and for sodium atoms, the guiding lifetime is of about 
ls|87]. '

In an other scheme [192], a quasi-two-dimensional gas of atoms was created with the (anti-) 
nodes of a far-off resonant standing light wave in front of the surface providing a confining 
potential for the atomic motion normal to the surface. A cloud of cold atoms that approaches 
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lhe surface is compressed by deceleration in an evanescent field and loaded predominantly 
into one single-potential well close to the surface by optical pumping. The spatial density 
achieved is more than Kill limes higher than the density ol lhe approaching atoms.

In the paper Barnett el al. 11b4| suggested a two-color waveguide based on the evanescent 
wave fields above a single-mode, submicron optical “channel” waveguide. The waveguide 
provides tight confinement in neo dimensions and allows atoms propagation in the third. 
Their proposal is lo use the differing vertical evanescent decay lengths of the two f&lar- 
tuitions carried in the single-mode optical guide. The physical origin of the decay length 
difference is the fact that the TM mode is closer to optical cutoff than lhe TE mode at the 
same frequency.

5.3.2.6, Experiments with Evanescent Wave in Hollow Fiber Experiment^ demon
stration ol atom guiding with an evanescent wave were performed in (I) a hollow fiber with 
relatively large hollow' diameter '*20 pm |137] and 100 jum and (2) in a micron-sized hollow 
fiber [ 143- [45], In all experiments. Rb or C's was used as a guided atom. Atom guidance with 
a liber of large diameter shows a number of limitations of the principal character. During 
launching light in a core of the fiber, there is inevitable excitation of the grazing-incidence 
modes in the hollow region besides the main guiding mode in the core and some fraction 
of the laser light scatters in lhe fiber and couples to grazing incidence modes, in particular, 
A7/]t mode. The propagation attenuation length of a grazing mode depends on the inner 
diameter as tt' and for the case of a relatively large liber diameter the grazing modes accom
pany the evanescent mode. However, because they are now blucdetuned. they push atoms 
to the wall through the weaker evanescent wave.

Renn el al. [137] found that an effective guiding is possible when the light intensity of 
evanescent wave exceeds lhe intensity of the basic grazing-incidence mode by a factor of 
It). To achieve this ratio, the scattering of the laser light on lhe liber wall must be less than 
tl.()5G. It is rather difficult to fulfill in a real experiment this lower-level scattering condition.

Another limitation of large-sized liber comes from inevitable multimode excitation in the 
glass-core region of the fiber. The interference between these modes give rise to an optical 
speckle pattern on the inner glass wall and. as a result, lhe modulation of the intensity of 
the evanescent wave. In the “dark” region on the wall of lhe fiber atoms are attracted by 
van der Waals force and may be lost from guided atomic flux.

To circumvent the problem of a large-sized fiber, Renn et al. [137] used an additional 
red-detuned laser beam. The second laser coupled mainly into the lowest-order grazing 
incidence EH u mode that has the maximum intensity on the fiber axis, and the potential 
of this mode attracts atoms to an axial region of the fiber. The attractive potential of the 
additional mode compensates lhe repulsive potential of the scattering modes at the initial 
stage of atom guiding until lhe atoms will not come lo the region of a pure evanescent wave 
potential.

In Renn et al. [137] experiment is used a 6-cm-long fiber with a 20-^m-corc diameter. 
To create the evanescent field, a laser beam of 500-mW power was focused into the annual 
region of the fiber facet. It was coupled mainly to the evanescent field, but other modes 
were also excited. The additional laserbeam was focused into the hollow region of the fiber, 
where it was mainly coupled to the EH t( grazing-incidence mode. It was sufficient 10-mW of 
the second laser power to escort atoms at the initial launching stage of their guiding through 
the fiber until the evanescent potential begins to dominate. When only the red-detuned 
“escort'’ laser was used, the guided flux through the fiber was around 2(J() s 1 that is by a 
factor 5(1(1 less than the initially launched flux. Addition of the evanescent field in the liber 
enhances the flux by a factor of 3 at lhe optimal detuning of both lasers. The measurements 
of guided atom flux as a function of evanescent wave detuning show the dispersive character 
as expected from the conservative component of dipole force and the flux was increased to 
its maximum value al the positive detuning ot ~2 GHz, which corresponds to lhe maximum 
of the dipole potential of the evanescent wave.

The character of evanescent wave atom guiding is qualitatively different than for grazing 
incidence mode case. In grazing-incidence guiding, the atoms are concentrated near lhe axis 
of the liber mid the influence of the vim der Waals force is not significant. In evanescent 
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wave mode guiding, the van der Waals force phvs an essential role, especially when lhe 
evanescent wave intensity is relatively low. Renn cl al. [137] observed the threshold intensity 
behavior for guiding atoms: for the evanescent wave intensity below 6 M W/in2, there was 
no optical guiding of atoms; above this threshold, the ejected flux of guided atoms increases 
linear with laser intensity. At the threshold intensity, the dipole force from evanescent wave 
exceeds the van der Waals force.

The detail treatment of the influence of the van der Waals force and the cavity QED effect 
on the atom guiding was done by the Japanese-Korean group [144, 145] with a micron-size 
diameter fiber. A great advantage of the use of a micron-size diameter fiber for atom guiding 
is due to the intrinsic ability of that kind of fiber to support only a desirable guiding mode 
and strongly suppress all another parasitic modes. An additional attractive feature of a small 
fiber is that even a small coupled laser power can produce a sufficiently high-potential barrier 
for atom guiding. Ito et al. [143] demonstrated the guiding of Rb atoms by a cylindrical- 
core hollow liber with 7- and 2-/tm-hollow diameter. They manage to reach a high-coupling 
efficiency: about 40% of laser power was coupled into the core of the fiber. The measured 
light pattern at the exit facet of the 3-cm-long fiber shown that an effectively dark-spot mode 
could be excited. In the experiment [143], a well-collimated atomic beam was used as the 
atom source for the fiber. A straight section of an optical fiber was aligned with respect to 
the atomic beam. The atoms that did not enter the fiber were blocked by a fiber holder. The 
collimated atomic beam and its alignment with respect to the fiber provided a transverse 
velocity of atoms up to 0.3 m/s. With the used laser power (several hundred multiwatts) the 
maximum transverse atom velocity that can be reflected is around 2-4 m/s. Therefore, most 
atoms impinging on the entrance facet of the fiber are expected to be guided. The hollow 
fiber of 7 gm diameter was coupled with a laser beam of 130 mW power. Figure 30 shows 
the transmitted 85Rb flux in the sublevel /■' = 3 as a function of the frequency detuning 
of the guide laser. In lhe red-detuned region, lhe atomic flux is decreased even below the 
background level (the curve b), which testifies to the action of the attractive dipole force 
with the result of absorption of atoms on the fiber wall. The maximum transmitted flux 
was 3 * 104 s 1 and a comparison with the background transmitted flux gives a rather high 
enhancement factor of 20.

The same group also demonstrated a first application of atom guidance; it performed an 
online isotope separation for two stable K5Rb and h7Rb isotopes. The quantum state-selective 
character of the atom-mirror reflection was demonstrated before in a reflection of sodium 
atoms [193]. That the atomic reflection is quantum-stale and isotope selective follows from 
the character of the relationship between dipole force and a laser detuning with respect to 
atomic transition. When the detuning is positive, the gradient force repels the atom from 
the fiber surface and thus the atom guiding is effected. With a negative detuning, the force

Figure 30. Atom guiding with an evanescent wave in hollow optical liber. Figure show's the transmitted K5Rh flux 
in the sublevel /■' = 3 as a function of the frequency detuning ot the guide laser [143],
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attracts the atoms to the surface where the atoms are absorbed and lost from the guided 
flux. Ito et al. 1143] select a specific isotope by adjusting the guide-laser frequency. Figure 31 
shows a demonstration of two isotopes s'Rb and s Rb separation by the 7-gm-hollow fiber. 
In the experiment, the atomic transmission flux was recorded as a function of the guided 
laser frequency. Hie upper trace of Fig. 31 corresponds to a large blue detuning for both 
Rh isotopes, and the transmission flux contains both isotopes. When the laser frequency was 
blue detuned for s7Rb atoms but red detuned for x5Rb atoms, the transmitted flux of the 
'^Rb isotopes is strongly suppressed (the lower trace on Fig. 31).

5.3.3. Guiding with Evanescent Wave in Solid Glass Fiber
As we have seen in previous section, inside the fiber the evanescent wave decays exponentially 
away from the wall, producing a repulsive potential that guides atoms along the center axis. 
Alternatively, a red-detuned light in the hollow center of the liber can also be used to guide 
atoms. Here we consider a method for trapping and guiding neutral atoms around a thin 
optical fiber with evanescent wave outside of the fiber (Fig. 32). This scheme is based on 
lhe use of a subwavelength diameter silica fiber with a red-detuned light launched into it. 
The light wave decays away from the fiber wall and produces an attractive potential for 
neutral atoms. The atom trapping and guiding occur in the outside of the fiber. To sustain 
a stable trapping and guiding, the atoms have to be kept away from the fiber wall. This 
can be achieved by the centrifugal potential barrier, l he centrifugal potential barrier can 
compensate all the potentials that diverge less rapidly than l/r2. This can be achieved only 
when the fiber diameter is sulwavc length 1194, 195]. Nowadays, thin fibers can be produced 
with diameters down to 50 nm.

Consider an atom moving around an optical fiber (sec Fig. 32). The potential f of the 
atom is cylindrically symmetric, that is, lz depends only on lhe radial distance r from the 
atom to the fiber axis z. Because of this symmetry, the component L. of the angular momen
tum of lhe atom is conserved. In the eigenstate problem, we have L = hni. where ni is 
an integer called the rotational quantum number. The centrifugal potential of the atom is 
repulsive and is given by

= - i/4>
2Mr2

The radial motion of the atom can be treated as lhe one-dimensional motion of a particle 
in the effective potential I/. = + V. There are stable bound states for the atom if F'. has

figure 31. Separation ot two isotopes ’'Rb and Rb through a guiding ot atoms by hollow fiber, (a) lhe laser 
frequency is blue detuned for both isotopes, (bl lhe laser frequency is blue detuned for s Rb and red detuned for 
*'Rb atoms 1143|,
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Figure 32. Schematic of atom trapping and guiding around a thin optical fiber with evanescent wave outside of the 
fiber.

a local minimum at a distance r = r,„ outside the fiber. This may happen only if ihe poten* 
tial K is attractive, opposite to the centrifugal potential P'7. To produce such a potential Pz, 
it is necessary to send an optical field through the fiber. This field generates an evanescent 
wave around the fiber, whose steep variation in the transverse plane leads to a gradient force 
on the atom. If the atom is initially in the ground state and the detuning of the tield from 
the dominant atomic line is large compared with the Rabi frequency and the line width y 
then, the optical potential of the gradient force is given by V = We assume that the 
fiber is sufficiently thin; that it has a vanishing core; and that it can support only a single, 
fundamental mode HEn. The fiber mode characteristics are then determined by the fiber 
radius rz, the light wavelength A. the fiber refractive index and the refractive index n0 of 
the surrounding environment. In the linear-polarization approximation, the spatial depen
dence of the amplitude of the field outside the fiber is described by the modified Bessel 
function Ktl(qr). Here, the parameter q = 1/A is the inverse of the characteristic decay 
length A of the evanescent-wave field and is determined by the fiber eigenvalue equation 
[194, 195]. Then, the optical potential outside the fiber can be written as V — —GK^(qr), 
where G = K^(qu) is the coupling constant for the interaction between the evanes
cent wave and the atom. Here, 11^ is the Rabi frequency of the field at the fiber surface. 
It should be noted here that the field distribution E(r) corresponding to the fundamental 
mode //£,, of the fiber has three nonzero components Er, Ef, and which have azimuthal 
variation and therefore are not cylindrically symmetric. A simple general way to produce 
a cylindrically symmetric optical potential is to use a circularly polarized light. The time 
average of the potential of such a field is cylindrically symmetric on the slow time scale of 
the atomic center-of-mass motion. Consequently, in the case where the polarizability tensor 
of the atom is isotropic in the fiber cross-section plane, the optical potential is cylindrically 
symmetric. The effective potential for the radial motion of the atom in the optical potential 
lz can be written in the form [194, 195]

- (</' ) (100)

where R = (hk)2/2tn is the recoil energy and g = G/R is the normalized coupling parameter. 
Here, m is the mass of the atom and k is the wave number of the field. It was shown [194. 
195) that the gradient force of a red-detuned evanescent-wave field in the fundamental mode 
of a silica fiber can balance the centrifugal force when the fiber diameter is about two times 
smaller than the wavelength of the light and the component of the angular momentum of the 
atoms along the fiber axis is in an appropriate range. As an example, the system should be 
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realizable lor Cesium atoms at a temperature of less than 0.29 mK using a silica liber with a 
radius of 0.2 /am and a 1.3-/xm-wavelength light with a power of about 27 mW.

Hie existence of a deep local minimum of the potential l/h„ leads to the existence of 
bound states of lhe atom. In Fig. 33, the wave functions u„ are plotted for the first live 
energy levels of the radial motion of a cesium atom in the potential fzU)l. Since the potential 
is deep, the lower levels practically do not depend on the van der Waals potential. They are 
mainly determined by the effective optical potential However, the upper levels, which 
are not shown in the figure, are sensitive to the van der Waals potential and also to lhe 
boundary' condition at the fiber surface. Tunneling from such highly excited levels into the 
narrow potential well between the repulsive hardcore potential and the attractive van der 
Waals potential may occur.

5.3.4. Atom Guiding with a Standing Light Wave
In this section, we consider a standing wave of laser light as an atom-guiding configuration. 
Intensity variation within a standing wave creates a series of parallel dipole-force potential 
wells, spaced by half of the wavelength. A single potential well of a standing wave is an 
almost ideal atom waveguide. Indeed, for blue detuning of laser frequency with respect to 
lhe atomic transition, the potential minimum lies along the standing wave node. It means 
that during their guiding the atoms experience a minimum of impulse diffusion. The shape 
of the potential well is perfectly defined by a mirror setup (used to form the standing wave) 
and lhe laser-light phase. Both parameters can he controlled in the guiding experiments 
with very high precision. A spatial imperfection of the mirror and a spatial variation of the 
laser beam profile have an insignificant influence on the shape of the individual well. The 
bottom of the individual well can lie along a straight line (with a flat mirror setup) or along a 
curved line (with a curved mirror setup). The shape of the potential well can be even a more 
complicated form with a use of computer-generated optical elements. There are no spatial 
spreading and variations of the potential well formed by a standing wave. A transverse size 
of the potential well is suited to a single-mode regime of atom guiding.

There is one drawback of a standing wave as an atom waveguide: it is almost impossible 
to localize all laser power in one or several individual potential wells. As a consequence, the 
standing wave atom waveguide needs either a high-laser power or its length is rather limited.

5.3.4.1. Atom Potential in a Standing Wave An appropriate description ol atom motion 
in far frequency detuned from the atomic resonance standing wave is a “dressed” state 
approach |78]_ Let us consider a two-level atom with a ground state |g) and an excited 
state |e) in a laser standing wave E(z) = 2E(lcos Azcosw, /, where Eu is the maximum field 
strength of one traveling wave component, and A is the wave vector that is along the z-axis. 
The uncoupled states of “atom -I- photons of laser field" can be written as |g,/r + I) and 
|e, n). The first state corresponds to the atom in the initial state |g) in the presence of it + I 
photons and the second stale corresponds to atom in the excited state |e) and the presence 
of n photons. These states are bunched in a manifold separated by energy EA. When the 
coupling is taken into account, the two unperturbed states transformed into perturbed states 
(I. it) and |2, n T I). Bunches of these states arc called "dressed” states. Each dressed state 
is a linear superposition of the unperturbed state |g, n F I) and |e. n) [78]

|1, «><?'* 4cos0|e, n) + e 4sinfl|g, n + 1) (101)

|2, n)e'A/4cos0|e. «) + e lh'4 cos0|g, n + 1) (102)

The eigen energies of the atom in the dressed states are

E, = ha)(n + I) - ^ + (i()3)

E, =/iw(/i + 1) - (104)

where £2(z) is off-resonance Rabi frequency, cos 2(4 = —A/D. sin 20 = Q^sinAz/f). !1 s 
U(z) = |H)f(z) + A-]1’, and flw(z) = QHsinAz. The last terms in Eqs. (103) and (104)
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are related to an interaction of the atom with the laser held and can be interpreted as a 
potential energy of the atom in the laser Held. The potential energy function L\(z) and 
tA(z), corresponding to the states |1.//) and |2, n), respectively, can be derived from the 
total energy E, and E, (Eqs. |103| and [104]) 1196]:

F, = IftSiir kz + A2)1'2 - |A|] (105)

r = - (fl^sin2 A'z + A2)1-] (106)

The depth of the potential wells is Kmas = (h/2) * (QHI - |A|), where !1,„ = [fl^ + A2]1'2. If 
we lake into account the coupling of the dressed states with a vacuum field, then through 
spontaneous emission both states |1. n) and |2, n 4- 1) can decay to lhe state |1. w — I) and
|2, n); that is, the atom changes its energy from £’( to E,. Spontaneous emission transfers the 
“atom + laser field system” from one dressed state to another one. When spontaneous emis
sion rate is sufficiently high that the atom does not move a significant fraction of a wavelength 
between spontaneous events, the atom can be described as moving in a “mean" potential

K = rlP1 + rp; (107)

where p, and p2 are the relative populations of the dressed states. This expression for the 
potential energy can be written in the more familiar form

V = AA ln( I + ,y) (108)

where s is a saturation parameter. From Eq. (108) it is clear that the “mean" potential is 
less than the potentials of the atom in certain dressed states.
5.3 A.2. Guiding Time in a Single Potential Well The dressed-state picture is quite 
appropriate for an estimation of the atom-guiding time in a single-potential well of a stand
ing wave. For a blue-detuned standing wave, atoms being in the state |I,m) move near 
the nodes if their maximum transverse energy is less than the potential depth |/nU|S- The 
transverse atomic motion is periodic with interruption caused by spontaneous emission. For 
sufficiently large detuning, the rate of spontaneous emission is very small compared with the 
atomic oscillation frequency. When spontaneous emission occurs, the atom from state 
can go to state |2, n - 1), where the atom is not localized. The rate of spontaneous transition 
from state |l, n) to state |2, n — 1) averaged over an oscillation period equals [78, 196].

r, = 2y(cos4 (-)) (109)

For sufficiently large detuning (A s> flK) cos0 % (flK)/A and the mean lifetime of the 
guided atom is

T-I = r2 (110)

where (I2rt) is the Rabi frequency average over an oscillation period. From Eq. (110), we 
can conclude that the guiding time can be easily made sufficiently long by increasing the 
detuning. However, at the same time, the potential depth is also decreased.

It is rather interesting to estimate the guiding time for a single-mode guiding regime 
since it requires the minimum potential well depth. For the quantum mechanical ground 
state with spatial spot size z0 = A/2tt, the transverse energy spot is about the recoil energy 
R = (hk)~/2m. Then, at the potential depth comparable with recoil energy l/m.VK ~ R. the 
guiding time becomes

where m, = R/h is the recoil frequency. At the rather low Rabi frequency = 10s 
the guiding time can be of the order of 1 s. For deeper localization of atoms near the
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node of the standing wave (to avoid atom tunneling between the neighboring potential 
wells), it is necessary to increase the Rabi frequency with an appropriate increasing of the 
detuning.
5.3.4.3. Experiments with a Standing Wave Three different methods were used to 
investigate the guiding of atoms in a standing wave. When an atomic beam crosses a stand
ing wave and the atoms have a low enough transverse kinetic energy, they are guided into 
the channels where they move along the channel and oscillate in the transverse direction. 
Prentiss and Ezekiel [131] detected an increase of atomic concentration in lhe vicinity of 
nodes of the wave by measuring the fluorescence line shape of a beam of sodium atoms 
that crossed a plane standing wave at a right angle. I'he detected asymmetry in the fluores
cence line shape was attributed to the action on the atoms of the gradient force that caused 
the concentration of atoms near the nodes of the standing wave. Salomon et al. [132] used 
absorption of the additional weakly resonant wave to measure the atomic density distribu
tion in a standing wave. The atoms inside the standing wave were chosen as probes of their 
position. Because of spatial vary ing of the laser field, the light shift depends on the position 
of atoms in the standing wave: atoms at a node have no light shift; elsewhere the absorption 
line is shifted. I’he calculation showed that the absorption spectrum of uniformly distributed 
atoms in a standing wave is quite different from the spectrum of atoms with a periodic spa
tial distribution of atoms near the nodes. The density of atoms was found to increase near 
lhe nodes or loops of the standing wave, depending on whether the light-frequency detuning 
was positive or negative with respect to the atomic transition frequency. The experiment 
has been performed with a Cs atomic beam. From the experimental absorption spectra have 
been deduced to correspond with the spatial distributions of atoms that have shown the 
concentration of atoms near the nodes of the standing wave (Fig. 33).

A clear demonstration of guiding of atoms was obtained using a curved standing wave 
formed by a spherical laser wavefront (Fig. 34) [133, 197|. The atomic beam transverses 
the spherical standing wave at a point far from the beam waist. In the polar system of 
coordinates related to the spherical wave, the effective potential has the form

!'(:) = l^ws-kz + fr (112)

where the first term is the atomic potential in the laser field, the second one is an inertial 
potential, / is the centrifugal force, r is the wavefront radius at the point of atom-wave 
interaction. I’he inertial field gives rise to the force averaged over the standing wave period. 
This force accelerates the nonlocalized atoms and hence causes their spatial separation from 
the localized atoms. This makes it possible, first, to measure the atomic localization effect 
itself by observing the spatial separation of the atoms and second, to isolate cold (localized) 
atoms from nonlocalized ones.

A very successful experiments with a standing wave as microlenses will be discussed in 
Section 6. Each potential well of a standing wave can produce focusing of atoms in the near 
field (i.e., within the standing wave) [198-202].

Figure 33. Aloni trapping around a thin optical fiber Figure shows lhe hound Mato //, for the firM five levels of 
the radial motion ol cesium atom in the total effective potential I ‘.H |I33, 197|.
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Figure 34. File potential energy of the localized (I) and nonlocalized (2> atoms in a standing spherical light wave, 
which reflects their trajectories in the laser held [133. |V7|.

6. FOCUSING OF ATOMS BY OPTICAL FIELDS
6.1. Basic Atomic Lens Idea
As in any other type of optics, the principal clement of atomic optics and nanooptics is a 
lens. As a first approximation, the motion of atoms in the field of a gradient force or a light 
pressure force can be treated in the classical approximation, that is. as the problem on the 
motion of a massive particle in a force field (Fig. 35).

For a beam of particles issuing from point I to be focused, it must get collected, after 
traversing the focusing region, at point 2. To this end. the beam must deflect through the 
angle

Asp = Pi (113)

from its original direction: p is the radial coordinate in Eq. (113).

F = -Bp

Figure 35. Geometry ot main idra of atom focusing.
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The leflection through the angle A<p is due lo the change of the transverse velocity of the 
parlick:

Ar - i, A</t (I 14)

Howevir. the change of the transverse velocity is due to the effect of the transverse force 
F acthg on the particle while it traverses the focusing region:

Equating expressions (114) and (115), one can find the well-known expression for the force 
capable of focusing an atomic beam:

I I \/- = / -)P = $P <llb)

This focc must be proportional to the distance from the beam axis to the point of passage 
of the fixen atom, and the respective potential (if any) must be quadratic in this distance 
(i.e., it must be a harmonic oscillator potential).

How.'ver. the quadratic potential can be derived from the condition that atoms entering 
the optical field at different points must spend the same time to reach the focal point. It is 
only wien the atomic motion takes place in a harmonic potential that lhe oscillation period 
is independent of the amplitude (i.e., the distance from the axis of the system lo the point 
of entr of the given atom into the focusing region).

Thu.1, to create a lens tor atomic beams, it is necessary to produce such optical fields 
as give rise, al least in a single direction, to a force proportional to the distance from the 
focusin; axis. And it such dependence holds for one direction only, one can speak of a 
cylindrcal lens. But if such dependence proves valid for any direction, one then can speak 
of an o dinary lens.

In th’ next section, we will consider optical field configurations that can, in principle, form 
lhe bass for the development of atomic lenses. Before moving on to the discussion of such 
conliguations. we would like to mention briefly one more aspect of atomic lenses. Because 
the furies acting on atoms ate generally weak, atomic lenses arc often produced in practice 
by fieks that extend over some distance in the axial direction (i.e., along the 2-axis). In this 
situating lenses are thick more often than not. and in many instances, multiple crossovers 
can occur within an atomic lens. In such a situation, the concept of focal length is less useful. 
The atmis are essentially “channeled” by the focusing field, and the lens acts more as a 
conccnrator than as a true lens, in the sense that a small spot can be produced, but no 
image :an ever be formed at the focus. However, if the purpose of a lens is to produce a 
very snail spot of atoms, this is not necessarily a disadvantage, and in many cases, it can 
even b: an advantage. If the atoms are channeled through a lens, one is not relying here 
on focising at a particular focal point but rather on the average effect of many oscillations 
within he lens. Thus the effects of the velocity spread in the atomic beam are drastically 
reducei. and the tolerance for the focal spot location is greatly increased. The final spot 
size is. of course, not as small as can be achieved with true focusing, but nevertheless this 
techniiue can be used to compress atomic beams into nanometer-size spots.

6.2. General Equations

For on' to be able to implement a precision control over an atomic beam and to focus it 
into naiometer-sizc regions, one should know' how to calculate exactly its dynamics in light 
fields offering greatly in geometry and at different values of the parameters, too.

The lynamics of an atomic beam in the field of an electromagnetic wave is an extremely 
involve! matter, and to adequately calculate it one should simultaneously take account of the 
dynam.s of the internal degrees of freedom of the atom, lhe dynamics of its translational 
degree of freedom, and radiation processes. The general approaches to the solution of this 
problen can be found in the literature [54, 55].
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However, faraway from resonance the rate of spontaneous decays becomes low so that 
the atomic momentum and dipole force fluctuations can in the first approximation be disre
garded. As a result, lhe effect of the dipole force becomes predominant, and the quantum
mechanical dynamics of the atomic beam can be described by a Schrodinger equation, 
wherein the role of the potential is played by the potential of the optical gradient force:

+ r(r)l M'( r) = E'P(r) = ^T(r)
2ni 2m (H7)

Here 'P(r) is the atomic beam wavefunction, k is the wave vector of the incident atom at 
infinity, and E(r) is the potential of the optical gradient force (see Section 3). By solving 
Schrodinger equation (117) by some method or other, we get a spatial description of the 
atomic beam and in its focal region as well. One then can find the necessary corrections 
to this description associated with the transition of the atom to its excited state and the 
spontaneous decays of the latter.

To obtain qualitative (and even quantitative) results, there is frequently no need for one 
to solve Schrodinger equation (117). If all the characteristic dimensions of the focusing field 
are great in comparison with the de Broglie wavelength of the atom, then to estimate the 
width d of the focal spot at half-maximum intensity, use can be made of the usual expression

().61AdlJ
(118)a

where a is one-half of the angle at which the aperture is viewed from the focal point.
To trace the trajectories of atoms in a lens and find the focus position, the starting point 

is with the basic equations of motion derived from the classical mechanics [201]. In a cylin
drically symmetric potential, these reduce to

d2p + 1 dV{p,z) =()
dt- m dp
d2z 1 W(p,z) _
dt2 m dz

(H9)

(120)

where p is the radial coordinate, z is the axial coordinate, m is the mass of lhe atom, 
and t'(p.z) is the potential of the optical force. Wc note that Eqs. (119) and (120) are 
also applicable in a one-dimensional focusing geometry, such as the one found in a one
dimensional laser-standing wave, with the substitution of the coordinate x for p. Thus, all 
the following discussion also applies to this geometry.

One approach to analyzing an atom optical lens is simply to integrate numerically Eqs. 
(119) and (120). This approach certainly gives useful information [199]. but for a motion 
that is generally axial, it often proves useful to eliminate time from these equations and 
write them down as a single equation for p as a function of z. This is done by using the law 
of conservation of energy to reduce Eqs. (119) and (120) to 

where p' = dp/dz and Eo is energy of incoming atom.
To simplify Eq. (121). it is very useful to make the paraxial approximation. This approx

imation considers the trajectories that arc not affected too greatly by the potential, that is. 
those that arc near the axis, and is made by taking the limit // « 1 and H(p, z)/£u 1. In
the paraxial limit, Eq. (121) reduces to

I <>E(p.z)
2£„ <

(122)

Equation (122) is ven' simple and can often be solved analytically or at least with minimal 
numerical assistance. This allows one to derive the first-order lens properties, such as the
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focal lengths anc the principal plane locations, if Ihe lens is thick. Such an analysis is invalu
able in determining the basic behavior of the lens in terms of the external parameters, such 
as the laser intensity and frequency detuning [85, 201],

Once the paraxial approximation is made, it is then possible to determine the spot-size lim
itations imposed by the lens aberrations. These aberrations originate from the higher-order 
terms in the expansion of Eq. (121) and also from any spread that may be present in the 
velocities of the atoms entering the lens (chromatic aberration). The effects of aberrations 
can be analyzed by taking the next-order terms in the expansion of Eq. (121), as done in 
the conventional aberration theory [85]. Alternatively, it might prove more straightforward 
to solve numerically Eq. (121). This can be done bv introducing the slope of the trajectory, 
a = p — Hp/Hz, as an independent variable and separating the equation into two first-order 
equations:

Equations (123) and (124) can readily be solved by conventional numerical integration tech
niques. Without going any further into the details of aberrations, we note only that in those 
types of atomic lenses that have been analyzed so far the spherical aberration (which results 
from the higher-order terms in the expansion of the potential about the axis) tends to be 
relatively minor. Thus, in the absence of other aberrations, a diffraction-limited spot size 
can often be achieved. I lowevcr, the chromatic aberration arising from the velocity spread 
of the incident atoms tends to be rather significant. One way to see this is to solve the 
paraxial equation of motion for a particular lens and derive the velocity dependence of the 
local length. For an immersion lens, the focal length is proportional to the velocity, and for 
a thin lens, it is proportional to ir [201]. Since atomic beams tend to have relatively broad 
velocity spreads, this velocity dependence can lead to large chromatic aberration effects. 
For this reason, research has been carried out on the possibility of an achromatic lens for 
atoms |2O3|.

I he correctness of these simplified approaches Eqs. (117) and (119), (120) based on the 
dipole force potential was analyzed in |204, 2051 as applied to the focusing of an atomic 
beam by a one-dimensional standing light wave. The dynamics of a two-level atom was in 
that case described by the time-dependent Schrodinger equation:

7
th — T( v. /) = fll -hAS + hll(x,J).S\2/h

T(.v,/). 'l'(.v,z) (125)

where i/^,(.v. /) and i//.(x. I) denote the wave functions of the center of mass, corresponding, 
respectively, to the lower state |g) and the upper state |e) of the atom along the x-axis, is 
the atomic momentum in the transverse direction, in is the atomic mass. A = w — is the 
detuning between the laser frequency and the atomic transition frequency w0, and 5„(a = 
a . y. z) are the spin-1/2 operators for the internal atomic states. The atom-laser coupling was 
expressed in terms of the local Rabi frequency defined by Q(x, i) — cosAx, where
d is the dipole moment of the atom relevant to the transition |g) o |e), e is the polarization 
vector, and E(/) is the electric field at the position of the moving atom. If the atom evolves 
adiabatically in the lower state. Eq. (125) reduces to the scalar Schrodinger equation (117).

The numerical solution of Eq. (125) was found by the Monte-Carlo method with

'I'(x. I + <5z) = exp (126)

where

// = - A AS + /i!2(x. t)S - ih—S S
2in ' 2

where y is the spontaneous decay rate and St = S, ± t.S\.

(127)
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Spontaneous emission interrupts the evolution ami causes a quantum jump to occur. The 
probability for such a jump to occur in lhe interval (i, t f <v) is

p((t) = y5/p,.(r) (128)

where p,.(/) is the population of the upper state.
Numerical modeling by this scheme has shown that the final spot size width comes mostly 

from the diffraction aberration. Spontaneous emission broadens the linewidth further.
In Ref. [206] it was estimated the effect of deviations from the conservative gradient 

potential on the process of focusing of an atomic beam with a standing light wave in a 
different way. They investigated the classical dynamics of an atom, but with due consideration 
given for the action ol the velocity-dependent optical force [62]. Numerical modeling results 
showed that the velocity-dependent term has a negligibly small effect on lhe focusing process 
but could be quite noticeable in the case of channeling of atoms (i.e., in the case of their 
repeated reflection from lhe walls of lhe atomic waveguide).

Thus, the numerical solutions showed the conservative adiabatic approach to the anal
ysis of the dynamics of atoms in focusing fields (Schrodinger equation [117] and classical 
Newton’s equations [119], [120]) to be highly accurate. This circumstance makes it possible 
to study in detail only the process of focusing by the gradient force, with the unaccounted 
factors (aberrations) being subsequently evaluated on the basis of the solutions found.

6.3. Focusing by a Running Light Wave
6.3.1. Focusing by a Gaussian Beam (Coaxial Laser Lens)
The focusing of an atomic beam by means of the gradient force was demonstrated first at 
Bell Labs [37. 207]. In their scheme, the atomic lens was produced by a CW dye laser beam 
200 gm in diameter superimposed upon a beam of sodium atoms (Fig. 36). The laser power 
was 50 mW. and the frequency detuning ii = —2GHz. The atomic beam propagated along 
and inside lhe narrow' near-Gaussian laser beam. The laser frequency was tuned below the 
atomic transition frequency, so that the gradient force was directed toward the laser beam 
axis. The radial potential is determined by the saturation parameter

5(P, 5) z" r zL
t^(zj (129)

where y is the laser linewidth, A is the laser frequency detuning, w(z) is the waist of the 
atomic beam, and /0 and /, are the incident and the saturation intensities, respectively.

Figure 36. Coaxial laser lens (37],
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In the above experiment, the atomic beam was focused into a spot 28 gm in diameter 
(Fig. 37). The minimum achievable spot diameter in the experiment was determined by the 
atomic momentum fluctuations due to spontaneous emission.

It is worth noting that every atom in this experiment scattered but a small number of the 
optical-pump photons, so that the duration of the resonant atom-field interaction was shorter 
than the time of Hight of the atoms through the laser beam. If the atoms interacted with the 
field all the time, their transverse motion would be alternating focusing and defocusing.

6.3.2. Focusing by the “Doughnut'1 Laser Mode
The main limitation on the spot size for atoms focused by a co-propagating Gaussian laser 
beam is imposed by the diffusion of lhe atomic trajectories caused by spontaneous emission. 
More preferable for focusing purposes are light beams with a low-intensity region (i.e.. 
dark regions). With the laser frequency detuning relative to the atomic transition frequency 
being positive, atoms arc expelled from regions of high-field intensity (i.e.. light regions) into 
minimum-intensity regions (dark regions). The atoms in that case move for most ol the lime 
in the dark region where lhe effects of spontaneous decays are negligible.

l he best-known light-field configuration of this type is the TEM(j| or doughnut mode [85. 
153. 2()8-2l()|. The intensity distribution in this configuration is defined by lhe expression

Near the axis of the system, distribution Eq. (130) assumes the parabolic form:

/(p,z)=4/1(=^ (140)

l-igure 38 presents intensity distributions Eqs. (130) and (140) and Fig. 39 schematically 
illustrates the focusing of atoms by the TEM(j] laser radiation mode.

As noted earlier, the TFM^ optical field mode is very attractive because the motion 
of atoms along its axis occurs in a low-intensity region, which allows one to speak of the 
smallness of aberrations due to the fluctuations of the dipole force. The focusing of thermal

figure 37. Spatial protile ot sodium atomic beam focused by gradient force 12l)7|.



54 Atom Nano-optics

Figure 38. Distribution of intensity for TEM,',, mode. (a) (b.18). (b) (6.19).

atomic beams with the aid of this mode was considered in [85. 153. 209]. In Ref. |85] the 
solutions of the classical equations for the paraxial rays in lhe field of the gradient force were 
found and the spherical, chromatic, diffusion, and diffraction aberrations were estimated 
on their basis. It follows from these estimates that the main contribution to the focal spot 
width is, as a rule, from the diffraction aberrations; the contribution from the dipole force 
fluctuations sometimes being also substantial.

l he process of focusing of an atomic beam by means of a path integral with a conservative 
gradient force potential was analyzed numerically in Ref. [153|. By and large, the results 
obtained in Refs. [85, 153] agree well enough. However, as is lhe case with any approaches 
based on numerical schemes, the approaches used by these authors are not quite suitable for 
the purposes of operative evaluation of the focusing process. What is more, these approaches 
are poorly suited for the description of the ultracold atomic beams ("atomic laser”) that

Figure 39. Focusing by 1 ’EM,’,, mode (Scheme).
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have recently found widespread application (sec. e.g., Refs. (21 I, 212]). for the de Broglie 
wavelength of atoms can in that case be comparable with both the laser wavelength and lhe 
size of lhe focusing region.

A theoretical analysis ot the focusing process, applicable to the case of ultracold atoms 
as well. was suggested in Refs. [210, 213] who found an analytical solution of the parabolic 
equation [214] describing the focusing of paraxial beams:

/fc — ~ </'(P- -) = in <’Z (141)

where A = (42/<tv2) + [<>z/Ay-) is the Laplacian over the transverse coordinates and p - 
v .v2 + v2. Of course, the assumption of lhe smallness of the de Broglie wavelength in com
parison with the longitudinal gradients, necessary' for Eq. (141) to hold true, limits lhe 
domain of applicability of the solutions of Eq. (141). However, even in the case of Bose- 
Einstein condensate ("atomic laser") |211, 212], lhe de Broglie wavelength for Rb atoms 
moving with a velocity of 10 cm/s amounts to 0.1 gm, which allows one to speak of the 
applicability of Eq. {141) in this case. However, parabolic equation (141) has a wider appli
cability region than lhe geometrical optics method, especially where the potential depends 
on the longitudinal atomic coordinate [215].

Thus, in realistic situations, the dynamics of an atomic beam can adequately be described 
by Eq. (141). Moreover, to obtain exact analytical results, one should confine oneself to 
paraxial atomic beams for which lhe relationship between the gradient force potential and 
the transverse atomic coordinates is of quadratic character:

|/(P--> = 5-7^ <l42>
2 m(z)

which is the first term of expansion of potential E(p, z) in terms of the transverse coordinate 
p. where C is a constant proportional to the intensity of the laser field and w(z) is the beam 
waist.

As demonstrated in |21(). 213], parabolic equation (141) with potential Eq. (142) can be 
solved analytically for a variety of beam-width functions w(-). Moreover, when an atomic 
beam is focused by the TEMf(l laser mode, the Green function, G(p?, z; pt, zt), of parabolic 
equation (141) can he expressed by analytical formulae |2I(), 213], One can use it as a basis 
lor finding lhe solutions of a great variety of problems. For example, if the wave function 
<pu(p) is specified at z = z,. one then can use the formula

t//(p,,z)= </2pi C>’(p>z; p|.Z|)</?„(p|) (143)

to find the atomic probability density distribution at any point in space. In that case, by virtue 
ol the Gaussian dependence of the Green function on the transverse atomic coordinates, 
the integral in expression (143) can be analytically calculated for a wide class of beams.

Specifically, of practical interest is the choice of <p0(p) in the Gaussian axially symmetric 
form

<p0(p) = exp( —) (144)
X <r(; /

where ir~ describes the initial width of the atomic beam
Substituting expression (144) into (143) and integrating, one can obtain the following 

expression for the wave function of the atomic beam at any point in space:

i//(p:. t.) =
z.4 sin o, sin as 

sin /1(a? - rt| )(p, /Er2 + //) )

.42 sin o'] sin" a;
Pi Lsin’ .4(a, - a,)(pi/Ert; + f/),) (145)

Z>i = sinHOj )| A cot (.4(0; - aj) + col a,] 

— sin (o;)[ — .4 cot( ,4(a, — er,)) 4- cot as]
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where plt2 = p,.2/w(,. - <r2/u^. Tt 2 = z, 2/zH = cot a, A - yj I + Cp\p2/2. p} = A<lrtJ/A.
p2 = -y/nu^/(2Zi), and C = ~ y.

This expression becomes substantially simplified on lhe axis of the system (p, = 0):

i//(p; = 0.
iA sin a, sin

(PiMti + ' s'ir «|(.d cot J(a? — a,) + cot a,)) sin -4(a: — at)
(146)

Note that, generally speaking, the wave function within the framework of parabolic app rox- 
imation Eq. (145) (in contrast to geometrical optics) has no singularities outside of the 
sources and allows one to describe the atomic intensity distribution near the focal point..

In the case of thermal beam, the maxima = 0, 7;)|- determine the positions of the
focal points — zRrt — cwcbta( . The de Broglie wavelength is small, or to be more exact, 
44 _ Wpi | as a result, the position of the focal points can be found from the equation

D, — sin’ (a |)[ /I cot( 4(«, — a()) + cot a, ] = 0 (147)

w'hose solution has the form

/ 1 / cot a, \
z = z^cot a| -l—- arc cot I —-—- I — 77/t\ <4 \ A /

(148)

where z, = zwcota(, and a = I at I < A < 2. n = I, 2 at 1 < A < 3, and so on. Thus, 
depending on the magnitude of the focusing potential, there may be several foci in the 
system.

The minimum width of the atomic beam at lhe focal point, it; — <r2(al ) can easily be 
found from expression (145) by means of expression (147):

_ 1? + 7« u+o;
i — /*dR •> ”» *» - 1r-rrj zy + zRA-

(149)

In the case of source located at zt = —<x>(«| = tt). the positions of the focal points and 
the beam widths at them are defined by the expressions

77/1
=-z„cot-

= AdB

(150)

(151)

Naturally the focal point positions defined by expressions (148) and (150) coincide with 
those in the geometrical optics approximation [85. 153. 216].

The analysis of aberrations in the case where geometrical optics is applicable [85, 153] 
showed spherical aberrations and aberrations due to spontaneous decays to be small com
pared with the diffraction focal spot width (Eq. [151]).

Using expression (145), one can easily find the atomic beam intensity at any point in 
space. To illustrate. Fig. 40 presents the spatial intensity distribution of a relatively fast beam 
(whose parameters correspond to those in [15.3]) in the neighborhood of the focal spot. It is 
clearly evident from this figure that it is quite possible to focus atoms into a nanometer-size 
region.

Figure 41 shows the atomic beam width tr as a function of the longitudinal distance z at 
the same beam parameters as in Fig. 40. One can sec from this figure that the position of the 
focus and the minimum beam width found in [153] within the framework of their numerical 
approach agree well enough with the exact solution results. It should be stressed that the 
solid curve in Fig. 41 is described by the following simple analytical formula following from 
expression (145):

A~ sin rt|Sin*o'. 
siir /!(«, - «, )(py/m,j + D2)

(152)
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Figure 411. lliree-dimensional intensity distribution ol a beam of Na atoms in the focal region (A — (1.59 pm. 
v. = lit MHz. /. =- lit mW cm . /, — l(>'/2~ W cm . m„ = I pin. <r„ = ().07ir... r = 500 ms, y/y - 40,000).

Formulas (148) through (151) enable one to find easily the main characteristics of lenses, 
no matter what lhe parameters of sufficiently fast atomic beams.

In the region of strong focusing and great diffraction effects on the atomic beam, that is. 
tn the case of low velocities of the incident atoms, the approaches used in Refs. [85. 153) 
do not work, whereas analytical result Eq. (145) still remain to be applicable. To illustrate. 
Figs. 42 and 43 show the three-dimensional probability density distribution in the case of 
focusing of a cold atomic beam (with parameters close to those in Ref. [211]) and the 
corresponding beam trajectories, respectively. One can see from Fig. 42 that the intensity 
distribution is generally similar to that in the case of fast atoms (Fig. 40). A specific feature 
of this case is that the de Broglie wavelength of the incident atoms becomes comparable with 
the laser radiation wavelength, l he question arises in this connection as to the minimum 
possible focal spot size. It is seen from Fig. 42 that the focal spot diameter at the l/e? level 
(2<ri 0.1 gm) is approximately equal to the de Broglie wavelength (AJW ~ 0.08 gm).

Note that the case in point above has been the description ot lhe focusing ol an atomic 
beam by the TEMIU laser mode. However, the analytical approach [210] described can also 
be used for lhe operative description of any other cases of focusing of paraxial beams.

Figure41. Width it of a beam of Na atoms us a function of the longitudinal distance ; (Eq. (152]). flic atomic 
fleam ’atumelers arc the same as in Fig. 7. Stars correspond to results of Ref. 11531.
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Figure 42. Spatial distribution of the probability density d'' for cold Na atoms (A — (1.59 /J.m. y/2u = 10 MHz, 
I — 1(1 ntW/cm’. /„ = ISO W cnr. ti>„ — 0.3 gin. <r„ - 0.6 wH. e. - 20 cm s, A/y - 20,0(10)

including those of focusing by photon dots and photon holes [217| considered elsewhere in 
the text.

The influence of the small effects due to the spontaneous emission processes can be 
evaluated on the basis of the above solution by using the approaches expounded, for example, 
in Refs. [85, 153].

6.3.3. Other Light Field Configurations
6.3.3.1. Conical Lens for Atoms In Ref. [218] it was suggested to use a conical lens 
(Fig. 44) to produce a focusing field for atoms. Near the axis of the system, the focusing 
electric field is described by the expression

E. (p. </?) = —•/TrikiiE c\p(iku + i<f>)Jt(kp) (153)

that is. it is a Besselian beam. Here E is the incoming field amplitude, k is the wave vector, 
it is the beam radius, and (p, y?) are the transversal cylindrical coordinates. Like the TEM^

Figure-43. Beam trajectories and potential isolincs ot the TLM,„ laser wave al the same atomic beam parameters 
as m Fig 42
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I'igurv 44. Schemaiic diagram ol a conical lens. Light propagating along a cylindrical shell reflects Irom a conical 
mirrot and forms a lens that focuses an atomic beam onto one spot |2 |X|.

laser mode. such a beam has a minimum al the axis, and in the ease of positive laser 
Irequency detuning, it can be used as a lens for atoms.

Il was assumed in the conical-lens foeusing theory suggested by the above authors that it 
was only the atomic motion in the (a. y)-plane that was quantized. Il is convenient lo carry 
out calculations in an atomic rest frame moving with a velocity of u along the z-axis. In this 
frame, the atoms are subject to a potential pulse, centered at / = (I, given by

F(p. /) = 4^- V:(Ap)w( — j
\ 4/zA ' \ T /

(154)

where <->(/) is Heaviside step function. ~ ~ h/u is the potential pulse duration, cl is the 
dipole moment operator matrix clement, and A is large positive detuning, l he atomic wave 
function i//(r . /) obeys the Schrodinger equation:

ih. i//(rL, t) = \H„ + Hp. i)]o'(r,. r) <//
(155)

where H„ is the Hamiltonian of free motion in the (.v, y)-plane. i = z/u and r = (p, if).
Il is assumed that the atomic matter wave is uniform over lhe optical potential and that 

its initial wave function is i//(r,. — r/2) = I. Following lhe atom-field interaction, lhe wave 
I unci ion becomes

= exp(-/.4(p)) (156)

where .1 = /IJf(Ap) and A = 7rka7( |</£./2/z|2/A). We will refer to the quantities A and A 
as the pulse field areas. In the case of linearly polarized wave, the field area is proportional 
to the light intensity. Using the two-dimensional propagator for the particles’ free motion, 
one finds that the atomic wave function evolves as 

,4Jr’(Ap ) (157)

where the time origin has been shifted by r/2 (i.e.. / is now reckoned from lhe end of the 
potential pulse).

Expression (157) was used to calculate lhe atomic density |»//( r. / )|’. 1 et us consider the 
tune evolution of the atomic density al the atom lens axis (p = ()). When the field area is
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large ( I » I), the main contribution to the integral Eq. (157) conies from small values o>f 
/». where

One finds that |<//(0, r)|* (wz</ — .4 ') 2. This expression contains a singularity at /, =
(.4oj|.) '. which determines the position of the focal plane. I he focal distance in the labc- 
ralory frame. I = tn., is approximately given by

/= (277.4 )'Lr (159)

where 1.1 - 2A‘/A,//( is the so-called Talbot distance and A(WJ is the atomic de Broglie 
wavelength.

I his result has a simple interpretation. The central minimum (p (I) of the conical lenis 
potential Eq. (154) focuses atoms at a distance of / given by Eq. (159). Other minima focus 
atoms at distances ; > / and do not significantly modify the primary locus Eq. (159) for 
/' <K /-1 This is in contrast to a standing-wave lield. where each minimum of the potential 
focuses atoms in the same focal plane. Moreover, the central potential of the conical lens as 
around irkti times as high as the potential of the standing-wave field near its minimum, and 
its second derivative is it a/2k times as great.

I his ray picture ol focusing by a harmonic potential is helpful, but detailed calculations 
must be carried out using the wave approach (Eq. (157|). The focal distance is still defined 
as /' = uit. but now /, is the instant of lime when the atomic density al the axis, |iA(0, l)|2. 
reaches its maximum.

I he spatial atomic distribution in the focal plane is illustrated in I ig. 45 for a pulse area 
of .4 = 30. It can be seen from this figure that, given these beam parameters, the beam can 
be focused into a spot around 10 nm in radius. It is extremely important that to achieve 
the same focal spot radius in focusing by a standing light wave it is required that the field 
intensity should be higher by two orders of magnitude!
6.3.3.2. Laguerre-Gaussian and Besselian Light Beams In Ref. |2I9] the optical 
potentials of the more complex Laguerre-Gaussian and Besselian light beams were exam
ined. They demonstrated that Laguerre-Gaussian beams of high-azimuthal index were advan
tageous for focusing atoms, while high-order Besselian beams offered significant advantages 
for transporting them over long distances.

6.4. Focusing by a Standing Light Wave
6.4.1. Single Standing Light Wave
6.4.1.1. Large-Period Standing-Wave Lens The problem associated with the great 
thickness of the coaxial laser lens (severe aberrations) was overcome by a group of

Hgure 45. \lomic spatial distribution at the focal plane ol conical lens lor Cr alonik beam obtained with the use 
of I i|. (157) [2is| Parameter', arc l iken clow to those in experiments |?4(> 224] A 425 * nm. A2rr = 35(1 Mhz. 
u N.I • |(l‘ cm c. /* = NO pW « - I cm. field area I — KI 
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investigators at Constan/ University |22O|. In this work, the atom lens was based on a large- 
period (45 pm) standing light wave produced by bouncing a laser beam, tuned just below 
the 2'S, -* 2'P, transition at 10X3 nm, off a glass surface at a small angle (Fig. 46). One 
period ot such standing wave was used as a cylindrical lens lor atoms A 25-pm-diamelet. 
beam of metastablc He’ atoms crossed the standing wave at right angles at its antinode. The 
thickness ol the atomic lens was X0 pm. so that the atom-field interaction lime = 40 ns 
was much shorter than lhe natural lifetime of the excited slate 23P, of the metastablc He’ 
atoms (r = 100 r.s). This lens focused the atomic beam into a spot 4 pm across. The major 
contribution to this spot size was considered to be of diffraction origin, because of the long 
focal length (28 cm) and the small lens aperture (25 pm). Chromatic aberrations were held 
lo a minimum because lhe atomic beam in this case was produced in a supersonic expan
sion. An additional interesting feature of this lens is that it was formed under conditions 
of relatively high intensity and small laser frequency detuning. Spontaneous emission would 
usually be a major effect under such conditions, but in this case, the transit time through the 
lens was too short for any significant effect lo occur. This lens was also used to image the 
atomic source, lhe image being produced by passing the atoms through a microfabricated 
transmission grating with a period of 8 pm.

6.4.1.2. Standing-Wave Lens Array lhe held of in ordinary standing light wave 
(Fig. 47(a|) can sene as an example of an array of cylindrical lenses for an atomic beam. 
The principle of this approach is to make use of each node of a near-resonant, blue-detuned 
standing laser-light wave as an individual lens, so that the entire standing wave acts as a 
large lens array. Near lhe center of the standing-wave nodes, the intensity increases quadrat- 
ically as a function of the distance from the node center I his intensity variation gives rise 
to a quadratically varying potential (as long as the proportion of the excited-state atoms 
remains small), and hence the force on the atom is linear. As the intensity gradient inside 
the nodes is high (the intensity goes from zero lo a maximum over a quarter of the optical 
wavelength), with a standing-wave lens it is relatively easy to attain quite short focal lengths 
(on the order of a few tens of micrometers), hence small focal spot sizes, down to lhe 
nanometer-scale ones.

This idea was first developed in Ref. [I98| where an optical standing wave was used as 
an array ol cylindrical lenses (each period of the standing wave served as a lens) to focus a 
perpendicular beam ol sodium atoms. The atomic beam was focused onto a grating with a 
period of A/2 on a substrate.

The next experimental work was aimed at applying the principle of laser focusing to the 
deposition of chromium atoms on a surface |2()()|. Figure 47(a) is a schematic illustration of 
this experiment. A collimated, uniform beam of chromium atoms is directed onto a silicon 
surface. Standing wave positioned immediately above silica substrate acts as a cylindrical lens 
for the atoms. Fhc atoms are thus focused into a scries of lines spaced half a wavelength

t igure 4<i. I atge perioc standing wave lens A below-resonance laser beam reflects al grazing incidence from a 
suibstra c. creating a standing wave with a 45-pm-wide antinode. Atoms, apertnred hi a 25-/im slit aligned with lhe 
peak o- the antinode. Iccl a dipole force toward tire highest intensity, resulting in focusing |22O|.
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(a) (b)

Figure 47. (a) Schematic representation focusing ol chromium in standing wave, (h) Image of Cr lines on Si sub
strate. Lincs are 50 nm wide, spread 212 mn |200|.

apart. One-dimensional optical molasses is produced in the atomic beam before it crosses 
the standing wave. In the molasses region, the atoms are cooled transversely to a temper
ature of 76 g K and made to have an angular divergence of 0.3 mrad. This small angular 
divergence permitted a sharp focusing of the atoms. The chromium atoms were deposited 
on a silicon substrate and observed with either a scanning electron microscope or an atomic 
force microscope. Figure 47(b) shows the image of Cr lines. The widths of the lines are about 
50 nm. Authors of Ref. (2211 managed to attain a much smaller line width (20 nm. contrast 
10 : I) in their experiment on focusing a beam of sodium atoms onto a silicon substrate.

The detailed theoretical standing-wave focusing analysis carried out in Ref. |201] demon
strated that the principal factor responsible for the impairment of the quality of focusing 
was the angular divergence of the incident atomic beam and that atoms could be focused 
into nanometer-size strips, some 3 nm wide, provided that the angular divergence was small 
enough. Similar results (line width around 6.5 nm) were obtained in modeling in [222].

6.4.2. Combinations of Standing Light Waves
I he superposition ol several standing light waves of the same frequency gives rise to a more 
complex distribution of the optical-field intensity maxima and minima. Where the number of 
the laser beams used is relatively small, the field pattern and its symmetries remain simple 
and easy to recognize. For instance, an orthogonal arrangement of two counterrunning pairs 
of laser beams creates a square array of dots [223] (Fig. 48), and a 120-degree configura
tion of three laser beams produces a honeycomb-type structure of sixfold symmetry (224]

Figure 48. Square array of dots obtained by focusing ol atoms |223|
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{I ig. 49). Bv using a still greater number ol laser beams, one ean achieve an even more 
complex field intensity distribution, which will in turn lead to the focusing of the atomic 
beam into a specified set of dots with a micron-high resolution |225]. In Ref. [226] is ana
lyzed the possibility ol using arrays ol microlenses to produce optical lields for focusing and 
confining atoms.

In recent years, many experimental works have been conducted on the focusing of atomic 
beams by means of various standing light-wave modifications. These works were aimed at 
improving resolution and finding the conditions necessary for the focusing of various atoms 
1221. 228. 229],

6.4.2.1. Superposition of Several Standing Light Waves Differing in Frequency l he 
possibility of focusing atoms into narrow strips a few nanometers wide [201, 221, 222] makes 
it possible to pose the question about the formation of a denser, compared with the optical 
wavelength, pattern of strips of focused atoms. In Kef. [230] it was theoretically demonstrated 
that the use of three standing light waves differing in frequency detuning relative to the 
atomic transition frequency could allow' an atomic beam to be focused into a set of strips 
spaced A/(2n) apart, where A is the optical radiation wavelength and n is an integer.

6.4.22. Use of the Talbot Effect To focus atoms into nanometer-size regions regularly 
spaced at distances less than the wavelength of light, use can also be made of the Talbot 
effect [231 J. This effect was discovered in 1836 and suggests that light passing through a 
coarse diffraction grating with a spacing greater than the wavelength of light has a very 
complex structure containing periodic structures with periods less than the spacing of the 
grating.

The first experiments on the study of the Talbot effect, as applied to atom optics, showed 
it to he possible to produce, with a microfabricated grating, periodic atomic structures with 
a spacing equal to that of the grating [232, 233] and even smaller than the length of the 
standing light wave [234],

In Ref. |235| the possibility of using only optical fields to make use of the Talbot effect 
in atom optics was analyzed. They suggested using only two standing light waves to focus 
metastable atoms into strips spaced at intervals much shorter than the length of the standing 
optical wave. One standing wave focuses the atoms into narrow strips spaced A/2 apart. In 
the focusing plane, the atoms pass through the nodes of another standing light wave tuned 
to resonate with the atomic transition in the metastable atom. The atoms remain in their 
metastable state only if they pass through the nodes of the latter standing wave, which thus 
serves as an amplitude grating with a low' aperturc-lo-spacing ratio. The result of the Talbot 
effect is that the atoms, after passing through the second standing wave, gather in narrow 
strips spaced at intervals of A/n at a distance of /.,/n (where L, is the Talbot distance) 
from the wave (Fig. 50).

2a/3 = 283.7 nm

I igurt 49. I loncycoinb-type structures obtained by focusing ol atom> |224|.
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To focus atoms into arbitrary nanometer-size structures, it is apparently necessary, after 
all, lo use light beams with however great wave vectors, which is impossible to achieve with 
the aid of optical fields in free-space regions. Nevertheless, the necessary field configurations 
can be produced in the vicinity of material objects of subwavelength size (i.e., by means of 
near fields).

6.5. Focusing by Laser Near Fields
6.5.1. Near Field of a Nanotip
Optical fields with nanometer-size localization regions can be produced by means of material 
bodies whose size is smaller than lhe optical wavelength. A most simple configuration of 
such a nanofield is the field formed near a pointed tip diffracting a plane wave (Fig. 51). 
This field is localized in lhe vicinity of the tip and has an amplitude much in excess of 
that of the incident field. The enhancement originates from the electrostatic lightning-rod 
effect due to the geometric singularity of sharply pointed structures. Such fields are being 
widely used in scanning microscopy of nanometer-high resolution [91, 89, 236]. Specifically 
it was suggested using optical fields of this kind to produce nanopincers for individual atoms 
1237].

In the case of negative field frequency detuning, a beam of atoms passing through the 
nanometer-size region of high-field intensity will be pulled into it so that the focusing of 
the atoms may result. The focusing element, although small on the spatial scale, suffers 
from a shortcoming due to the spontaneous decays of the atoms passing through the region 
occupied by the incident radiation and the region of high-field strength in the vicinity of the 
tip. Moreover, the focal structure may prove to be complicated because of the diffraction of 
lhe atoms by the tip.

6.5.2. Near Field of a Nanohole
Another optical near field configuration capable of focusing atomic beams originates on the 
diffraction of light by a round nanoholc [238-242]. Figure 52 shows the intensity distribution 
of the optical field produced on the diffraction of a circularly polarized plane standing light 
wave by a small hole. It can be seen from this figure that in the region before the hole an 
intensity maximum is formed at the antinode of the wave, which will act. in the case of 
negative optical field frequency detuning, as an atomic nanolens with a radial size of the 
same order of magnitude as that of the hole (Fig. 52). This configuration is again disadvan
tageous in that the atoms will propagate, before or after being focused, in the field of the
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Figure* 51. Neat Held ol .1 gold lip in water illuminated by two different inonoihroniali. waves .it A Sin nm 
Direction and polarization of the incident wave are indicated by the A and / vectors I he ligures show contours 
ol / (factor of 2 between successive lines) I'hc scaling is given by the numbers in the ligures (multiples ol the 
exciting field). No enhancement al the up in (a); enhancement ol about 30011 in (b) Ihe livid in (b) is almost 
rotationally symmetric in the vicinity ol the lip |237|

standing light wave, where spontaneous decay ptoccsscs. undesirable in many cases from ihe 
standpoint of atom optics purposes, will take place.

The near field in the vicinity of a hole features a true three-dimensional maximum (sec 
Fig. 53) that in the case of negative optical field frequency detuning will focus atomic beams. 
A remarkable feature of this near Held is (hat ils potential can be described with a fairly high 
accuracy by a quadratic law. which hears w itness to the smallness of spherical aberrations and 
a high quality of focusing. I he detailed analysis of the focusing of an atomic beam by such a 
near field was performed in Reis. [241. 242| within the framework of the classical dynamics

F igure 52. Distribution ot the intensity ot a circul. il\ polarized u;ive normally incident <n the nanoaperture and 
Ionising scheme.
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Figure 53. Spatial distribution ol the intensity ol a circularly polarized wave normally incident on the nanoaperture 
with radius K

and in Ref. 1239] within the framework of a stationary Schrodinger equation. Figure 54 shows 
the intensity distribution of a monochromatic beam of He atoms in the focal region. One 
can see from this figure that this distribution qualitatively resembles the Pearcy distribution 
|243|. I hc focusing quality can as usual be estimated by the radial width of the peak at 
half-maximum intensity, it is also seen from the figure that the radial width Sr,,, ~ 0.0075# 
(around 2.585 nm at the parameter values used by Ref. [239|). With the solutions of the 
Schrodinger equations for monochromatic noncoherent beams known, it is not very difficult 
to take account of the effect of the nonmonochromaticity of the beam on the quality of 
focusing. If the atomic velocity distribution function has the form /(>’)• the beam intensity 
in the focal spot region will be described by Ihe superposition of the intensities of atoms 
moving with different velocities, that is. by the expression

/’(r. z)= f r, z)\' (160)

Figure 54. three-dimensional distribution ol the intensity ol .1 monochromatic beam ol He atom in the vicinity ol 
the focal spot. Atomic and laser beams propagate in opposite directions (ku -■ 2. (> - <> 10'. 2A,y = 2s/2 • 104. 
n = UM 1 m c).
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l<> sludy chromatic aberrations, the atomic velocity distribution function was approximated 
by the expression

I (i') - (O.256( r - i'H + An) 4 O.5<8( t> i>.,) + ().25/>(r - v, <Si'))<5(i\ Jr^r,) (161)

where characterizes the degree of monochromaticity of the beam in lhe axial direc
tion (the beam is taken to be monochromatic in the radial direction). The characteristic 
case considered was 26v/v = 0.05. The compulation results [23*4] are presented in Fig. 55. 
Comparison between this figure and Fig. 54 shows that though chromatic aberrations sub
stantially smooth out the diffraction picture lhe focal spot radius al half-maximum intensity 
remains practically unchanged: 5r, , = O.O75a (2.5X5 nm).

Thus it was found that an atomic beam could be focused, with reasonable parameter 
values, into a spot around 3 nm in radius at lhe half maximum intensity level. The main 
contribution to the local spot size has been found to come from spherical aberrations and 
diffraction effects, the chromatic aberrations of the atomic beam with a 5C velocity dis
tribution broadening having a lesser effect. Note that the above estimates were made for 
completely collimated beams. The angular divergence of actual beams can somewhat impair 
the quality of focusing.

6.5.3. Nanolocalized Fields in Waveguides (Photon Dots 
and Photon Holes)

l he focusing schemes using the near fields produced by pointed tips and nanometer-size 
holes suffer from the disadvantage associated with lhe passage of the atoms being focused 
through high-intensity field regions, which gives rise to spontaneous decay processes and 
impairs the quality of focusing. A scheme providing for the production of a spatially local
ized optical nunofiehi free from this disadvantage [217] is presented in Fig. 56(a). Two flat 
conductive screens spaced al a distance of lhe order of or less than the wavelength of light. 
</ A. form a plane two-dimensional waveguide for the laser radiation introduced into it 
from one side. It is well known [244] that for a waveguide consisting of two parallel ideally

I inure 55. Three dimensional distribution of the intensity of a nonnioiiochroinatic beam of lie atom in lhe vicinity 
t>f lhe focal spot. Atomic and laser beams propagate in opposite directions (26r i' — 0.115. ku -2. (i h III". 
2A y - 2v’2 10*. r = 100 ins).
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tiyurv 56. Gvomcln ol a photon hole (a) aiiJ a photon Jul |b)

conductive plates, there exist solutions of Maxwell's equations that permit the propagation of 
radiation through the waveguide, no matter how small its thickness </. he it even substantially 
smaller than the radiation wavelength. These solutions inside the waveguide correspond to 
a plane wave with its electric-field strength vector normal to the plates. Actually, this system 
is a two-wire line and provides for ihe two-dimensional nanometer-region localization of 
light |244|.

Now let two small coaxial holes of radius u « A be made in the conductive screens 
(Fig. 56|a|). If the diameters of the holes are substantially smaller than the wavelength of 
the laser radiation introduced between the screens, the radiation will practically fail to issue 
from the holes but will be strongly modified near each of them while passing along the 
waveguide. In the vicinity of the holes, there actually takes place a reduction of the field 
strength in a region with a characteristic spatial size of the order of the hole diameter, 
that is. substantially smaller (han the radiation wavelength A. The volume of this region is 
I’ ~ trd « A’. Il is natural to call such a field modification a “photon hole.”

To find the electric field distribution in (he vicinity of the holes in the waveguide walls 
is a complex electrodynamics problem. In the particular case of nanoholc (a « A) under 
consideration, the problem reduces to a quasi static one. The general solution of this prob
lem reduces to the solution of an integral equation |245|. If the thickness d of the waveguide 
is much greater than the hole diameter, d a, the mutual influence of the holes can be 
disregarded so that the problem is reduced to the superposition of the fields due to diffrac
tion by a single hole. The problem on the modification of a uniform field by a conductive 
plate with a round hole has an analytical solution. As a result, the expression for the potential 
sf describing the electric field near the hole. E = — V<p, assumes the form [217]

z x / d\ (
<p(p, y) = < Ip. y - j I + I P- >' + 2 )

<T(P, *) = ± — |z|(——r + fltanp(p, ;)) (162)
2 7r Xg(p.z) /

where p- = a 4- r.
Figure 57 shows the energy density distribution of the electric field near the holes. One 

can sec from this figure that in the vicinity of the holes there actually forms a “photon hole" 
or. to be more exact, a "photon saddle” with a characteristic size determined by the size of 
the hole and the thickness of the waveguide.

Let us now consider one more method Lo localize fields in nanometer-size regions 
(Fig. 5(»|b|). Localization by this method is a generalization ol the field localization near a 
nanohole [23S-242]. but is free from the shortcoming due to the presence of the standing 
light wave field. To this end. consider once more two ideallv conductive plates with holes bul
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I'igun 57. Spatial distribution ol intensity ot electromagnetic field near photon hole al w,</ — I.

now spaced at a distance of </ = A/2. Physically, the solution of Maxwell's equations in this 
case corresponds to a standing wave between the plates, whose wave vector is normal to the 
plate» (directed along the v-axis). This is part of lhe standing wave formed upon reflection 
of a plane wave normally incident on one of the plates. By virtue of the condition d — A/2, 
the ether plate finds itself in a node of this standing wave, anil so it has no effect on the 
latlci.

If he holes arc small in comparison with the wavelength, their effects are independent 
of each olher. so that one can use. as a first approximation, the solution of the problem on 
diffraction by a single hole |238-242|. Figure 58 presents lhe field-intensity distribution near

I iguri 5X. Si.itial distribution ot intensity ot electromagnetic tield near photon dot at a </ 0.5
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the holes in a plane waveguide and inside it in the case where the thickness ol the waveguide 
is equal to half the wavelength and the radius of the holes is </ = A/4. As can be seen from 
the figure, the field decreases rather rapidly outside of the waveguide in the direction normal 
to the waveguide plane and has a maximum in the center of the waveguide (i.e., there is 
formed a "photon dot”). The characteristic volume of such a “photon dot” is I' ~ |a2 <K 
A'. The sharp field-intensity peaks near the hole edges result from the assumption of the 
infinite conductivity of the waveguide walls. In waveguides with a finite wall conductivity, 
the amplitude of the peaks will he not so prominent. It is very' important lo note that the 
magnitude of the maximum (reckoned from that in the case where the holes are absent) at 
a = y = 0 is twice that in the case of a single hole. This circumstance is due to the structural 
interference of the optical fields scattered by the holes and makes it possible to use weaker 
fields as compared to those in the case of a single hole.

Let us now consider the possibility of using nanolocalized fields to focus atomic beams by 
the gradient force proportional to the intensity of the electric field. In the case of positive 
detuning of the laser radiation frequency relative to the atomic transition frequency, atoms 
are expelled into the weaker field regions, whereas in that of negative frequency detuning, 
they are pulled into the stronger field regions.

In the case of “photon hole," the region of the weaker fields is surrounded by the strong 
field inside the waveguide, and in the case of positive frequency detuning, the atoms flying 
through the holes in the waveguide walls will be attracted toward the axis of the system (i.e.. 
their focusing will take place). As already noted, it is very important that the motion of the 
beams being focused occurs mainly in the region of weak fields, and so the probability of 
spontaneous decays causing the defocusing of the beams is. in that case, extremely low.

A “photon dot" in the case of negative frequency detuning pulls in the atoms, and there 
again occurs their focusing. In the case of "photon dot.” atoms moves through a field region 
with an increased intensity, and so the probability of spontaneous decays here is higher than 
in the case of “photon hole.” However, the time of flight of the atoms through nanometer
size regions is short, so that the effect of spontaneous decays on their focusing can again be 
neglected.

Note that thanks lo the nanometer-scale size of “photon holes” and "photon dots,” it is 
possible to produce their arrays of arbitrary geometry. Such arrays can find application in 
various schemes of nanofabrication with the aid of atomic beams.

7. CURRENT STATUS AND PROSPECTS OF
ATOMIC NANOFABRICATION

Previous sections arc largely devoted to the theoretical fundamentals of atom nanooptics 
that form a practically invariable basis for further development. The experimental imple
mentation of atomic nanofabrication on the basis of atom optics is still at the initial stage of 
experimental demonstrations. But even now one can single out the main lines of successful 
experimentation and some prospects. And it is this matter that the concluding section of the 
present chapter is devoted to.

7.1. Deposition of Atoms for Physical Modification of Surface
The simplest version of atomic nanofabrication is the passing of a collimated atomic beam 
through a nonmaterial mask in the form of a standing light wave in the geometry shown 
in Fig. 47(a), that is. the channeling of atoms along the nodes or antinodes of the standing 
light wave [36]. The first experiment on the use of this effect was conducted with a beam of 
Na atoms incident upon a glass substrate [ 198J. The experiment was performed in a vacuum 
because of the chemical activity of sodium in the air.

The next important achievement was the experiment [2(H)] performed with Cr atoms, 
wherein a standing light wave helped obtain surface structures (stripes) less than l(IO nm in 
width (28 nm in the best experiments) spaced A/2 = 213 nm apart.

This method was then extended to other elements. Al in particular [228. 247. 248]. Yb 
[229]. Table I lists the best results obtained for various atoms by the direct deposition through
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Table I. Best Icaluic values obtained lor various atoms used in direct deposition (from Meschede and Meteall 
|24M|(

Atom .Substrate
Period 
(nm)

Width 
(nm)

1 Icight 
(nm) ( onlrasl Ret.

Nil Si 295 2(1 1.5 -- 0.9 limp et al. | I9K|; Nalarajan et al. |262|
Cl Si 213 29 47 • ().« McCllcland et al. [200|: Anderson et al. |2(>3]
Al Si 155 70 T > 15 McGowan et al. |248|; Rehsc et al. 1228]

'Contrast height (height -pedestal).

a standing laser wave “mask," with the parameters of the stripe grating (Fig. 59) being 
indicated. The data were borrowed from latest review of the atomic nanofabrication by Ref. 
[249]. This technique is quite applicable to other atoms (Fe, Ga, Ag, In. Au. etc.) as well. 
We would like to emphasize that in the direct deposition method the atomic beam produces 
a physical change in lhe surface topography of the substrate without modifying it chemically.

7.2. Deposition of Metastable Atoms for
Chemical Modification of Surface

Another trend in the atomic nanofabrication is based on the use of a beam of atoms excited 
to a long-lived metastable state. Such atoms (usually noble gas atoms) have a surplus elec
tronic energy that may cause a chemical modification of a suitable substrate (an organic 
resist layer). This method resembles the ordinary photolithography technique because it uses 
the etching ol the chemically modified sites. The substrates used are suitable, sell-assembled 
monolayers. The first successful experiment along these lines was conducted with a beam 
ol metastable argon atoms [250]. The release of around 12 eV of energy into a molecular 
layer of a hydrocarbon produced a durable carbonaceous material excellently amenable to 
wet or dry etching. In this experiment, nanopatterns with an edge resolution better than 
100 nm were produced on gold films. Note that both in this and in the next experiment 
|251|. As distinct from the experiments with unexcited atoms, the standing light wave in 
this method docs not change the trajectories of the atoms, but affects the de-excitation of 
the metastable atoms via the high lying quantum stales. With the intensity ol the dcacti 
vating standing light wave being high enough, only those atoms remain in their metastable 
state, which fly along the nodes of the wave, where its intensity is very low. As a result, 
incident upon the self-assembled monolayer are narrow strips of metastable Kr' atoms that 
cause the appropriate chemical modifications. Experiments of this kind made possible the 
implementation of nanolithography at the Heisenberg limit (less than 100 nm) [251],

Later on similar experiments were performed with beams of metastable neon atoms [227] 
and metastable helium atoms ,252-254]. The edge resolution attained in these experiments 
amounted to 50-40 nm.

Deposit

Heigh)

Pedestal

Contrast - Height/! Height+Pedestd)

figure 59. Chaiacte-izaiion of deposited atomic stripes obtained by direct atomic-beam deposition through a stand
ing laser light wave.
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To earn' out atomic nanofabrication with mctastablc triplet atoms, use is made of various 
resist surface combinations. More detailed information on the experiments by the atomic 
anc direct deposition nanofabrication techniques can be found in the comprehensive review 
by Mcschede and Metcalf |249|.

We would like to stress that to use standing light waves effectively as a “nonmaterial 
mask." use should be made of well-collimated atomic beams The first experiments on the 
collimation of atomic beams by way of their transverse laser cooling had already been 
performed |255] before the first experiments on the atomic nanofabrication were staged. 
And the elements of these pioneering works have now become indispensable.

7.3. Complex Atomic Nanofabrication Patterns
The majority of experiments on the atom-optical nanolabrication were conducted with stand
ing light waves producing grating patterns with a period of A/2 (i.e.. on the scale of a few 
hundred nanometers). Using crossing standing light waves can help obtain two-dimensional 
periodic structures (arrays) |223|. and three standing light waves intersecting at an angle of 
120" (a hexagonal optical lattice) make it possible to produce periodic honeycomb struc
tures [224],

The structure periodicity associated with the half-wavelength A/2 of laser light can be 
changed. By using a standing light wave produced by two counterrunning waves linearly 
polarized at right angles to each other (lin 1 lin). Gupta and co-workers [256] obtained 
Cr dots with a period of A/X. And a two-dimensional "light mask” helped Brezger anil 
co-workers [257] to produce two-dimensional chromium patterns with a period of A/3.

Combinations of several standing light waves intersecting at various angles and differing 
in polarization have considerable potential for atomic nanofabrication.

7.4. Atomic-Beam Holography for Nanofabrication
Optical holography that allows an optical wavefront to be reproduced by passing an optical 
beam through a hologram is well known. A hologram can be produced by photographically 
recording two interfering optical beams (a reference beam and a beam reflected from the 
object of interest). The optical holography principle has been known to be extended to 
electron holography [258]. The progress in (he production of Iascr-yoo|ed atomic beams 
made it possible to obtain a holographic image by means of Ne atoms and a computer
generated binary' hologram |259. 260). A laser-cooled (50 p.K) beam of metastable Ne’ 
atoms was passed through a hologram produced on a 100-nm-thick silicon nitride membrane. 
The hologram comprised numerous holes (typically 200 nm across) in the membrane, their 
positions precisely specified by the computer, so that (he diffracted Ne atoms generated the 
reconstructed pattern. Figure 60 presents the result of reconstructing the pattern of “atom

Figure lit I. Reconstructed pattern ol ’atom Ne <!>" (?) I he reconstructed saltern of Ne atoms is detected by using a 
microchannel plate (Ml P) detector Phe position ot each at< in detected iy the MCP is recorded and accumulated 
by a computer. The length of is about 4 nm [26 1|.
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N< i/r." In this experiment, use was made of Nc atoms and a microehannel plate (MCP) 
dcector.

n principle, mans atoms cun be used for atomic-beam holography purposes. It is possible 
to deposit these atoms directly on a substrate to produce a desired pattern w ith a theoretical 
reiolution ol about 2(10 nm under typical conditions. Atomic-beam holography has consid
erable potential for the production of patterns with a nanometer-scale resolution (i.e., for 
a tm ic nanofabrica t io n).

7.5. Prospects
W‘ are now at the initial stage of development of atom-optical nanofabrication techniques. 
Mtny interesting proposals have been put forward, but the main experiments have been 
conducted with standing laser light waves ("light masks”). In the preceding sections, we 
hir e described the prospects for the guiding of atoms, their near-held focusing, and so on. 
Oi the basis of these proposals, one can expect the development of an "atomic writing 
peicil” for atomic nanofabrication purposes. It is quite possible that nanostructures will in 
th: future be formed in this way, atom by atom. There is a certain potential in using pulsed 
at mic beams in step w ith pulsed laser Helds [264], l he rapid development of the technology 
ol femtosecond laser pulses recurring with frequencies of a few hundreds of megahertz 
(i.t.. multiple-frequency coherent laser Helds) should also play a certain part in new atomic 
naiofabrication techniques. Il might be expected that atom optical nanofabrication will reach 
niiturity in lhe next decade.
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1. INTRODUCTION
Fiver since their inception |l|. carbon nanotubes (CNTs) have attracted a tremendous 
amount of intense experimental and theoretical interest. Synthesis of large quantities of 
(’NTs |2| has been achieved through carbon-arc vaporization in a gas atmosphere or 
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transition-metal catalytic reaction; the latter method has been used to synthesize siingle- 
walled nanotubcs (SWNTs) [3. 4], Both open-ended and capped (’NTs have been observed! 
by high-resolution transmission electron microscope (TEM) [I. 5] and scanning tunnieling; 
microscopy |6| techniques. Because of their superb electronic and mechanical properties., 
many potential applications have been proposed for CNTs, such as single-electron transis
tors [7], lunneling-magnetoresistancc devices |8|, CNT diodes |9], intramolecular junctions 
110], molecular bearings [II. 12|. springs [13], hooks [14|. and gigahertz oscillators |I5—19], 
Several theoretical studies revealed that CNTs would be cither metallic or semiconducting, 
depending on their underlying structures [2(1-23].

I he simplest among all CNTs. an SWN I. is an individual graphene sheet wrapped in the 
shape of a seamless cylinder, which can be characterized by its chiral vector tin. n) [22., 24|. 
As a simple, elongated constituent ol the fullerene family. SWNTs are especially attractive 
to many applications thanks to their remarkable physical, chemical, and mechanical proper
ties. In particular, their dimensions and electronic behaviors make them the ideal building 
blocks for molecular electronics, and recently, a self-assembled carbon nanotube field-effectt 
transistor (FET) has been built at room temperature, using a scheme based on recognition 
between molecular building blocks |25|. Photoconductivity on infrared laser illumination has 
also been measured lor individual CNTs that act as channels for an ambipolar FET [26].

It is difficult to exaggerate the importance of optical properties of SWNTs, which arc vita I 
to the development ol SWN I photonic applications such as nanoscale integrated electro
luminescent devices [27]. to a variety of interdisciplinary applications. Optical absorption 
and fluorescence spectroscopy measurements provide evidence for individually dispersed 
carbon nanotubcs, and therefore, optical properties of SWNTs have become an important 
tool for structure-based nanotube characterization in the exciting, emerging field of DNA- 
assisted manipulation of the carbon nanotubcs [28], Identification of spectroscopic features 
and correlations with nanotube structures also aids attempts to purify, separate, and sort 
SWNTs. and understanding their electronic structure helps their development as optical 
devices, sensors, and molecular electronics components.

Carbon nanotubcs are quasi-one-dimensional crystals whose optical properties are depen
dent on chiralities and diameters, as well as orientations. Early measurements were often 
performed on multiwallcd nanotubcs or bundles of them and SWNTs [29. 30]. For instance, 
the bulk electronic properties of SWN I bundles have been studied by the high-rcsolution 
electron energy loss spectroscopy (EELS) in transmission [29], Low-energy nondispersive 
features were attributed to the energy separations of DOS singularities in the nanotubcs. The 
peak appearing in the optical conductivity at 1.8 eV was argued to originate from metallic 
nanotubcs in the bundles. Optical absorption spectroscopy on SWNT-containing soot shows 
peaks between 0.6 and 3 eV that are interpreted as interband transitions between the van 
Hove singularities [31], The absorption spectra of bundles of SWNTs of similar sizes have 
been measured, for example, on 4 A SWNTs made by pyrolysis of tripropylamine molecules 
in the channels of porous zeolite AIP()4-5 (AF1) single crystals [32, 33|. It is possible for only 
three chiralities to achieve diameters near 4 A. When the light electric field is polarized par
allel to the AF1 crystal channel orientation, three low-frequency bands have been observed 
in the measured absorption spectra of bundles of carbon nanotubcs, among which the two 
lowest bands were assigned to the semiconducting tubes and the third to the conducting 
nanotubcs. When the electric field is perpendicular to the AFI crystal channel orientation, 
the nanotube is nearly transparent in the measured energy region 0.5—4.1 eV.

Suspension of individual SWNTs and removal of remaining bundles from solution have 
recently been achieved by encasing individual nanotubes in cylindrical micelles [34]. Spec- 
trofluorimetric measurements on semiconducting SWNTs isolated in aqueous surfactant sus
pensions [35] delivered, for the first time, spectral information on nanotube chiralities in 
addition lo that on diameters. Exploiting the band-gap fluorescence of these SWNTs as well 
as advances in solution-phase dispersion and processing of nanotubcs led to a definitive 
(/?. in} assignment to semiconducting features. Because metallic nanotubes do not fluoresce, 
assignment of the metallic species in a similar manner required the help of Raman spec
troscopy. which was performed tor laser excitations between 565 and 627 nm and also 
between 458 and 514.5 nm [36]. An (n. in} index has been provided to features in both optical 
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absorption ami Raman spectra for these metallic SWNTs. lit the absence of a perturbative 
environment of tubes and surfaces. SWN Is in aqueous micellar suspensions show much bet
ter resolved optical absorption spectra, and Ihe one-dimensional semiconducting band gap 
was also found to lluorcscc strongly in the 8O()-I6I)O nm range lhal is important to fiberoptic 
communications and bioimaging. Aggregation of nanotubes into bundles quenches fluores
cence through interactions with metallic tubes and broadens the absorption spectra. In addi
tion. polydispcrsity and poor solubility of SWNT bundles in both aqueous and nonaqueous 
solutions impose considerable challenges to various application-mandated separation and 
assembly attempts to use SWNTs as an individual imcromolculai species. DNA-assisted 
dispersion and separation of carbon nanotubes have recently been reported (37] as an alter
native to aqueous micellar suspension of SWNTs. Bundled SWNTs are effectively dispersed 
in water by their sonication in the presence of single-stranded DNA (ssDNA). Molecular 
modeling suggests that ssDNA can bind to carbon nanotubes through 77-stacking. resulting 
in helical wrapp ng to the surface with a binding free energy of ssDNA to carbon nano
tube* that rivals that between two nanotubes. Furthermore, wrapping of CNTs by ssDNA 
was found to be sequence dependent |28|. l hal DNA-coated SWNTs can be separated into 
fractions with different electronic structures by ion-exchange chromatography links one of 
the central molecules in biology to a technologically very important nanomaterial and opens 
the door lo CNT-based applications in biotechnology. In this process, optical spectroscopy 
of SWNTs is indispensable to the characterization of nanotubc geometrical, electronic, and 
various other properties.

Previously, it was known that ionic doping creates new metallic bands in semiconduct
ing SWNTs. Only recently, it was shown that covalent chemistry can covert the metallic 
SWNTs lo semiconductors, which may lead to efficient nanotubc separation (38. 39]. Dia
zonium agents were shown to functionalize SWNTs suspended in aqueous solution with 
high selectivity and to display an autocatalytic effect that functionalizes the entire tube. 
In particular, metallic species are selected to react lo ihe near exclusion of semiconduct
ing SWNTs undci contiollcd conditions |39J. Discovery'of the selective functionalization of 
metallic nanotubes was made via the ultraviolet-visible-near-infrared absorption spectra and 
Raman spectroscopy. Absorption features allow for the monitoring of valence electrons in 
each distinct nantotube in transitions to conduction bands. A first theoretical study on the 
effect of functionalization on the SWNT optical spectra will be presented here. In addition, 
absorption spectra for double-walled carbon nanotubes (DWNTs) and CN I junctions are 
also discussed.

Part of the attractiveness of the CNTs has been their rich electronic properties, which 
may be altered via physical or chemical modifications to the CNTs. Significant progress 
has been made in filling the nanotubes with a range of materials. A large enhancement in 
conductivity is reported after doping with potassium anc bromine separately |4()|. Recently, 
potassium iodide has been successfully inserted into single-walled carbon nanotubes [41. 42|. 
We present here a first-principles DFT calculation of the electronic and optical properties 
of a potassium iodide intercalated (It). 10) nanolube.

This review' is organized as follows. In Section 2. we introduce band structures of the 
SWNTs via the zone-folding approach from those of a graphene sheet. We discuss in detail 
the transition dipole moment of the SWNTs in the entire Brillouin zone when the exter
nal light field is aligned with the nanotubc axis, which is followed by discussions on the 
absorption spectra as dictated intuitively by the transition dipole field lines and band struc
ture contours in the framework of the simplified tight-binding model. In Section 3, optical 
properties of a scries of finite size SWNTs including those with the smallest diameter (4 A) 
ire studied systematically. Their absorption spectra arc calculated with the semiempirieal 

locahzed-density-matrix (I.DM) method based the time-dependent Hartree-Fock (TDHF) 
ipproximation. The finite optical gaps are predicted for the infinite long SWNTs. Strong 
misotropy of the dynamic polarizabilities is found for 4-A SWNTs. The compositions of 
•he dipole-induced excitations are examined by projecting the corresponding density matri
ces onto the Hartree-Fock molecular orbital representation. Natures of optical excitations 
ire investigated by examining the corresponding reduced single-electron density matrices. In 

Section 4. the application of the first-principles density-function theory (DFT) calculations lo 
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SWNTs is discussed, and the focus is on the electronic and optical properties ol a potassium 
iodide intercalated (1(1. 10) SWNT. In Section 5. low-energy absorption features calculated 
from lhe tight-binding model anil the I DM method are compared with those It >m the DFT 
approach. Good agreements arc obtained. A briel summary is given in Section 6.

2. TIGHT-BINDING MODEL
2.1. SWNTs As Quantum Confinements of Graphite
Conceptually. SWNTs are simply rolled-up graphene sheets. The diversity in the electronic 
structure of SWNTs arises from the quantization of the electronic wave vector of the one
dimensional systems classified by their chiralities. As shown in Fig. I. the chiral vector CA in 
units of hexagonal elements connecting two points on the plane defines a SWNT chirality. 
in. m} [22. 24|

Ch = na, + ma2 (I)

with a, and a, being the real space unit vectors of the hexagonal graphite lattice. The integers 
n and in are such that 0 < |/?i| < n. An armchair nanotube (3. 3) and a zigzag nanotube (6.0) 
arc shown in Fig. I as two examples. Because SWNTs are folded from graphene sheets, it 
is not surprising that their physical properties arc closely related to those of the graphite, 
as shall be demonstrated in this review of their optical properties |22|. l he chiral vector C\ 
is along the circumferential direction of the nanotube and. therefore, is orthogonal to lhe 
nanotube axis. The reciprocal lattice vectors k, and k, are delined as follows

k| =/V 1 (-/.h( 4-/|b.). k. — A '(mb! -/th.) (2)

where b, and b. are the unit vectors of lhe reciprocal lattice. f| = dK'(2m + n) and 
/, = dw'(2n + m). with the greatest common divisor of 2n + in and 2in + n. Spatially, 
k. is along the tubule axis, anil k, is in the circumferential direction. The translational vector 
T is a unit vector for the one-dimensional carbon nanotube. It is parallel to the nanotubc 
axis and can be expressed as

T = r,a, + r.a. (3)

In the tight-binding model in which only it electrons arc considered, the electronic struc
ture of a carbon nanotubc can be derived directly from that of a graphene sheet via the 
so-called zone folding of the two-dimensional energy dispersion relation of the graphite. 
Intuitively, the band spectra of a carbon nanotubc are the intersects of the graphene sheet's 
conduction and valence energy surfaces and a set of parallel planes perpendicular to the 
Brillouin zone. The hexagon in Fig. 2a is the first Brillouin zone of the graphene sheet, and 
the parallel dashed lines, which arc along the tubule axis T. are the intersects between the

Figure I. Schematic plot ol a two-dimensional graphene sheet showing the lattice vectors a and a., and the child 
vector C, — ziu t inn . An armchair nanotubc (3.3) and a zigzag nanotubc ((>. it) are indicated as two example
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Figure 2. (u> Ihe first Hrilloum zone of graphene I he parallel lines (along the tubule axis Tl are the intersects 
between the Brillouin zone and Ihe parallel planes that arc perpendicular to ihe Brillouin zone. I hey represent the 
allowed stales for a (5, S) SW N I. (b) The contour plot of the conduction band ol ihe graphene sheet. The circle 
it the center of the first Brillouin zone is the T point, and the sis surrounding circles arc the A points at which 
the conduction anil valence hands join, (c) The transition dipole field lines ol graphene in the lirst Brillouin zone. 

I lie ot ictilalions ol ihc lines represent the directions ol the transition dipoles al that particular k. and the lengths ot 
the lines represent the sizes ol the transition dipoles. I hc transition dipole vanishes asymptotically on approaching 
the Brillouu zone center I hc size ot transition dipole reaches its maxima on lines connecting neighboring A points 
A circular pittcin is lound around A points (d) The contour plot ol the oscillator sirenglh <1, Ihc <1 maxima 
ire located it M points (light areal, and its minima al the I point (dark ana). Reprinted with permission from 
|43|, Y. Zhao cl til.. Chem. /'hw /.en 3X7. 149 (2004). <o 2004. Elsevier II. V.

Brillouin zone and the set of parallel planes. The parallel lines shown in Fig. 2a are the 
allowed states for a (5.5) SWNT. At A points, the conduction (Ec) and valence (Ej hands 
join, and the energy difference Ev — Ev vanishes; at I' point Et - Ev reaches its maxima, and 
M points ire the saddle points al which the energy difference is rather Hat nearby. If one of 
ihc intersects or parallel lines such as those in Fig. 2a goes through a K point in the Brillouin 
zone, the tube is metallic (/J - in = 3A), Otherwise, it is a semiconductor (n in = 3A- ± I). 
The absorption spectra of SWNTs can be similarly obtained from the optical properties of 
a graphene sheet via a set of graphic tools, which will be demonstrated in this review.

Neglecting the overlap integral between the adjacent carbon atoms, the conduction band 
lor a graphene sheet is commonly approximated by 

Ejk) = l';,;,_J 3 + 4 cos —cos 4- 2 cos fc, (4)

where I', is ihe transfer integral between adjacent lattice points, also called the nearest- 
neighbor ppir interaction. A plot of Ejk) is given in Fig. 2a. Ihc Hamiltonian field of 
Ejk) is shown in Fig. 2b. The conduction band describes the 77 -cnergy antibonding band 
nnd the covalence band, which is the mirror image of the conduction with respect to the 

iclic.il
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Fermi energy, the 77-energy bonding band. The two bands are degenerate at A points the 
Fermi energy crosses. The conduction bands of the SWNTs folded from lhe planar graphitic 
sheet can be obtained from

= EjAkJkJ *+/zk|) (5)

where /z = 1.........A', and — tt/|T| < k < ~/|T|. The vertical parallel lines in Fig. 2a. or the
intersects, are along the k: directions. Therefore, the intersects arc also called k. cuts.

Kataura el al. plotted energy differences between lhe /th van Hove singularities in the 
conduction and valence bands (both numbered from the Fermi energy) £„(</,) as a function 
of the nanotubc diameter </, lor all chiralities, and showed that the energy differences 
have a Finite width for a given 1/ |3I|. This width in /•(//,) increases with the increasing 
energy deviation of /•.,,(r/,) from the Fermi energy. It was later attributed lo lhe trigonal 
warping effect of the energy hands |44. 451. which is referred lo the deviation of the equal
energy contours near the K points in the Brillouin zone away from K-centered circular 
patterns and toward a triangular shape, with lhe three neighboring M points as its corners 
(cl. Fig. 2b).

2.2. Transition Dipole Moment
In 1998 White and Minimire |46| solved a puzzle posed by Drcssclhaus [211 on the density 
ol states (DOS) being independent of translational unit cell sizes and chiral angles of semi
conducting carbon nanotubes |47|. White and Minimire’s discovery has since been employed 
to interpret various optical measurements. Two lowest peaks in the absorption spectra of 
SWNT bundles were assigned to the semiconducting SWNTs, and the third was attributed 
to the metallic tubes. The energies of the three peaks arc approximately ~-'|l//,;._|, j!|F'_„w|, 
and where </ is the C-C bond length. However, such interpretations of absorption
spectra of SWNTs in bundles or aqueous micellar suspensions, although likely correct, have 
not been adequately scrutinized. In addition to the DOS. the absorption lineshape also has a 
nontrivial dependence on the transition dipole moments between pairs of valence and con
duction bands. A finite transition dipole projection along the direction of an external field 
ensures the appearance of an absorption peak, which links two van Hove singularities in 
the DOS. whereas a zero or negligible transition dipole moment gives no absorption peaks 
even if the corresponding DOS diverges. Calculated transition dipole moments in the entire 
Brillouin zone, however, have remained elusive in the literature. Here wc start with the 
tight-binding model and determine the transition dipole field lines of a graphene sheet. The 
general absorption spectral features of SWNTs shall become obvious from those field lines 
and plots of lhe conduction (valence) band contours shown in the previous section.

Aside from the van Hove singularities of optically connected valence/conduction bands, 
the transition dipole moment is the single most important quantity for the prediction of the 
optical absorption lineshapes. Depending on the orientation of the external laser field, the 
transition dipole moment of the SWNTs can assume quite different characteristics thanks to 
the selection rules. Optical responses of carbon nanotubes are highly anisotropic |48.49], and 
the anisotropy of carbon nanotubes has been investigated experimentally by Walt de Heer and 
his colleagues [50], The dielectric function f was found being much larger when the electric 
field is aligned along the tube axis than when it is aligned perpendicular lo the tube axis. 
This can be attributed to the fact that transition dipole along the tubule axis T is larger than 
its component perpendicular to the tubes Wc consider here first the scenario in which the 
external field is parallel lo the tubule axis (E || T). and thus the transition occurs exclusively 
between the orbitals of the same momenta k |51. 52]. The scenario in which external field is 
perpendicular lo the tubule axis (E ± T) involves transitions between orbitals with momenta 
differing by ±k,. This case will be briefly visited at the closing of lhe section.

If lhe external field points along the tubule axis, the transition occurs only vertically 
between slates of the same momenta k. Following, we derive and plot the size and orienta
tion of the vertical transition dipole moment in lhe entire Brillouin zone. Implications about 
the absorption spectra will be then discussed. For E T, lhe tubule-axis projection of the 



theoretical Investigation of Optical Properties ol Single-Walled Carbon Nanotubes 85

tiansition dipole can be calculated from

(I E = <</< (k)l('E ri<A,ik|> (f’l

where the transition happens between the valence-band wave function |</>„(k)) and the 
conduction-band wave function |</>, (k)). Therefore. it is of interest to us to visualize the 
vector field of the dipole

cl = <</>( (k)|<*r|</», (k)} (7)

z\ brie! derivation of the transition dipole d is as follows. The tight-binding wave function 
for the conduction (valence) band \<l>, (k)) ( </>,(k))) can be written as

|<fc(k» =-c|A> + |B> (8)

|<A,(k>> = c|A) + |B; (9)

where |.l (|B)) is the Bloch function for the A (B) sublatticc so that

(r|.-l) = ^2 c'k K'<//,(r - R ,) (III)
Rt

(r|/T =£e,k ""(/>,,( r - Rw) (11)

and the coefficient c has the form 

l he fact that )< = I ensures the orthogonality ol the two wave functions, (k)> and 
|</>, (k)). The transition dipole between the two wave fuentions. (</>, |er|</i, ), is composed of 
four terms:

(</->, |<-r|<A,.) = -(/l|er /1) + (li\er\B') - + c(tf|er|/l) (13)

Among the four terms on the right-hand side of Eq. (13). only the cross terms survive, and 
after substituting in the Bloch functions, one obtains

(d>, |<-r|d>„) = —5kHi:(a\r\b) + ——Vk/y2l (b|r|a) (14)
‘Vpp*

where r= |r|. (he off-diagonal Hamiltonian matrix element

3
H^- = O5)

> 1

with R, (i = 1.2.3) connecting three nearest-neighbor B-latticc points to an A-latticc point, 
and |n) and |&) being two neighboring wave functions of the A and B sublatliccs. respectively

(r|«) = </r ,(r — R ,) (16)

(r|6) = r//„(r - R , - R,). /= 1.2,3 (17)

To arrive at Eq. (14). one has taken advantage of the symmetry of the i> orbitals

</>|r|u) = |R„.,| R „,</>|r|r/> (18)

where lhe A sublattice point 11 is taken as the origin without loss of generality, and R , labels 
the vector pointing from point n to point b.
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l he sizes and orientations of <1 as a function of the wave vector k are shown in Fig. 2c. 
The transition dipoles form circular patterns around A' points and are prominent along 
lines connecting neighboring K points. The oscillator strength, therefore. is mainly concen
trated in the vicinities of the Brillouin zone boundaries; that is. in areas between neighboring 
K points. One main feature of the <1 orientations is that the transition dipole points tangen
tially around the K points, forming pseudo-vortices centered at the K points (cf. Fig. 2c). 
This is significant because the transition dipole consequently has sizable projections along 
the tubule axis direction around the K points regardless of any nanotubc chirality.

Close to lhe Brillouin zone centers, the size of the transition dipole vanishes asymptoti
cally. This can be understood as follows: At the Brillouin zone center (k — (>). the transition 
dipole size has to vanish because of symmetry considerations (i.e.. to avoid choosing an ori
entation at the I point). Around the zone center, the transition dipole size has the following 
property

<ll( A, = (I. A,
A;

> 0) = —-- + O|A 
9s/3

d|(A. =t(). A = 0) = ^ + O|AJ4 (19)
9>/3

Therefore, the oscillator strength roughly scales with |k|4 around the zone center. Along 
M-I-/W lines, the transition dipoles arc found parallel to the M-\ -M lines, whereas along 
K-l'-K lines, transition dipoles arc perpendicular to the A I'-A lines.

In the literature, the optical absorption spectra arc often calculated from a matrix clement 
containing the momentum operator I’ [52-54|

<A.(k)|P E|<A.<k)> (20)

This matrix element is proportional to the transition dipole moment we have calculated, as 
shown by

ihr — [r. H] (21)

where II is the nanotube Hamiltonian.
If lhe external electric field points perpendicular to the tubule axis, the selection rule 

dictates that the transition dipole lake the form [52, 53. 55)

d E = (</>, (k)|cE r|</>,,(k ± k,)>

Similarly, the vector field of the transverse transition dipole d

d' = <</z. (k)|cr|0l,(k ± k,)>

(22)

(23)

now assumes the importance of the vertical transition dipole d field in the previous 
discussions.

2.3. The Absorption Intensities
The quasi-one-dimensionality of SWNTs gives rise to sharp van Hove peaks in the density 
of electronic states. Optical properties of SWNTs are thus dominated by transitions between 
corresponding van Hove singularities on opposite sides of the Fermi level. Contributions to 
the absorption lineshape from excitations polarized along lhe tubule axis at the momentum 
k arc determined by two factors; namely, the transition dipole d projected along the tubule 
axis T d. and the nanotubc DOS lor the corresponding conduction (valence) band at k. 
which is precisely (T Vk£j 1 |(T Vk£j ]. In other words, the absorption intensity is 
proportional to (T d)?(T Vk£u.) (T Vk£J '. Therefore, except where the k. cuts are 
perpendicular to the transition dipole d field lines, or where the transition dipole d vanishes, 
the shape of the absorption spectra is determined mostly by the density of states of the 
nanotubc bands |53). For external excitation fields along the tubule axis, as is the case under 
discussion here, vertical transitions in lhe k space arc expected, and one needs to find out 
how the DOS contours lines of the graphite conduction (or covalence) band relate to the 
tubule axis. The contour lines of the conduction band /. is depicted in Fig. 2b. When the
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tubule axis is tangential to a contour line ol £\ at a given k. (T Vk£v) ' diverges, and a van 
I love singularity appears in lhe DOS. Because £L and are mirror images of each other 
under lhe approximation that neglects the overlap integral between adjacent carbon atoms. 
(T Vk£v) 1 also diverges at that particular k. II the transition dipole between lhe valence and 
conduction orbitals has a nonzero projection along T al that k. a corresponding peak arises 
in the absorption spectrum. Ol particular interest are those K and M points in the Brillouin 
zone. An intersect through the K points does not cause a van I love singularity, but adjacent 
intersects do. as noted by White and Mintmire. For metallic SWNTs. two intersects with a 
spacing j- from the A point have van Hove singularities. Because the energy contours arc 
nearly circular around the A point (cf. Fig. 2b), A — £\ at both van Hove singularities can 
be approximated by For semiconducting tubes, no intersect goes through A' points.
I'he closest intersect to a A' point is ~ from the A’ point, and the next closest is 
from the A’ point: £, - £v at the two van Hove singularities arc ~ |I'WJ7| and yl^^l. 
respectively. Similarly, any intersects at the M points or their vicinities may lead to van Hove 
singularities. Because the M points arc saddle points at which £k - £% are relatively flat, 
transition energies linking these van Hove singularities are approximately 2 I |.

Neither the oscillator strength nor the DOS alone determines the optical absorption line
shapes of the SWNTs. One is therefore led lo study the combined effect of the two compet
ing factors. Figure 3 plots the product of the E (k) DOS and the oscillator strength, which 
combines the effects of the transition dipole and DOS on the absorption spectra

|d|:|Vk£;(k)|2 = |<<5, (k)|i-r|«/>r (k)>|2|Vk£,(k)|2 (24)

The vanishing oscillator strength annihilates lhe DOS singularity at the Brillouin zone 
center, l he contour plot that corresponds to the accompanying three-dimensional plot of 
|d|-|vk£jk)|? in Fig. 3 therefore resembles Fig. 2d.

For (5.5) nanotubes, for example, the external laser field along the nanotubc axis is 
parallel to the energy intersects or lhe parallel lines in Fig. 2a. Except when an intersect 
(see Fig. 2a) is orthogonal to the d field line at momentum k. lhe transition dipole will have 
a nonzero component along the external field. Because the d lield lines near the A points 
are. to the lowest order, circular in pattern, any intersects in its vicinity are guaranteed not 
lo be perpendicular lo the <1 field lines, ll follows that any liansitions linking lhe van I love 
singularities near lhe A’ points are allowed. Therefore, armed with plots of lhe conduction 
(valence) hand contours and the transition dipole field lines of the graphene (i.e.. Fig. 2b and 
2c). we have proven that the lowest-energy peaks in both metallic and semiconducting tubes 
depend only on the diameter; for tubes of approximately the same diameters, the two lowcst- 
energy peaks from the semiconducting lubes are about 1/3 and 2/3 in energy, respectively, 
when compared with the lowest-encrgy peaks from the metallic tubes. The d field lines near 
an M point are approximately parallel to each other. If an intersect is perpendicular to the 
d lield lines near one M point, as a result of the existence of six equivalent M points in

Figure 3. Combined effect ot the transition dipole and the SWNT DOS (a) three dimensional plot of 
d Vk£ <k)r >n the lirillouin zone, and (bj its corresponding contour.
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lhe first Brillouin zone, the same set ot intersects parallel lo the tubule axis will not be 
perpendicular to lhe field lines near the other five M pouts. We thus expect lo observe lhe 
absorption peaks attributed to transitions at the M points or in their vicinities, with transition 
energies at about 2 |P'/)/,r|. This is helped by the fact that the graphene's oscillator strength, 
which is proportional to |d|-. is mainly concentrated near the Brillouin zone boundaries, and 
especially around the M points, as mentioned earlier from Fig. 2d. Close to the Brillouin 
zone center, contributions to lhe absorption lineshapes are weak at best, as the size of the 
transition dipole vanishes asymptotically at k — (J.

Similar to lhe orientation plot of transition dipoles in Fig. 2c, the Hamiltonian held of 
the conduction band also forms vortices around the A points. The area near the M and 
A points is amplified in Fig. 4a. The Hamiltonian fields along the K-M-K line points 
almost perpendiculat to he K-M-K lines. Therefore, the areas close to the M-K lines 
arc potential candidates for generating absorption peaks as lhe intersects, or the k? cuts, 
are quite likely tangential to the contour lines along M K lines. This shall become clearer 
later. Another stunning feature of the conduction-band Hamiltonian field is that along the 
M-M lines, the Hamiltonian field points straight toward, or away from, the M points. As a 
consequence for zigzag (n.O) tubes, for which all k; cuts are parallel to the M-M lines, 
the k cuts that are close to the M-M lines will contain a finite momentum bracket within 
which the contour lines are parallel to the tubule axis, and lhe SWNT DOS diverges. This 
has implications for the absorption lineshapes calculated by lhe tight-binding model. For 
zizag SWNTs, the tight-binding spectra will therefore have large intensities al the energies 
corresponding to the vicinities of the M-M lines. The spectral contributions from various k 
cuts for the (9,0) are tabled in Fig. 4b. labeled by p. The p = 4 and p = 5 cuts are close to 
the M-M lines and arc responsible for high-intensity contributions to the absorption spectra 
over a wide energy range.

For armchair SWNTs. the allowed states, or lhe k, energy cuts, are analogous to the 
vertical lines in Fig. 2a. which are specifically the k, cuts for the (5.5) tube. To obtain 
a precise line along which DOS ot any armchair SW N I diverges in the vicinities of the 
A -M-K line, one needs only to solve

e, • Vk£t.(k) = 0 (25)

0.5 1 15 2 2 5 3

figure 4. (a) The area near the \l and K points is amplified tor the Hamiltonian lield ol the SWNT conduction 
hand: (b) the spccli.il contributions from various k cuts for the (9.11) arc tabled Cut' arc labelled by /i The /i - h 
cut goes through the K point, and therefore, it is noi listed.

spccli.il
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which leads to
s/3A', A,

cos------+ 2 cos — - 0 (261

l he trajectory determined by Eq. (26). as shown by the curvy line in Eig. 5. is very close 
to the straight line connecting M and K points. For zigzag SWNTs. in contrast, the k cuts 
are perpendicular to lhe A-.W-A line, which implies that the SWNT DOS diverges on the 
A - \f-k line, and all tight-binding absorption peaks lot zigzag SWNTs can be attributed lo 
the points on the K-M-K line. For nanotubes of any other chiralities, the cot responding 
tight-binding low energy absorption peaks can be attributed lo lhe liny area in the Brillouin 
zone that is bordered by (he M-K line and the curvy line given by Eq. (26). as shown by 
the shaded area in Fig. 5.

Recently. Gruneis et al. pointed out an intensity node in optical absorption spectra of a 
graphene sheet as a function of the electron wave vector k and the light polarization around 
the K points in the two-dimensional Brillouin zone |53|. Ihis is in full agreement with the 
transition-dipole plot. Fig. 2c. For example, in lhe vicinities ot the K points, lor a vertical 
light polarization in Fig. 2c. that is. E || kv, there will be zero absorption intensity at wave 
vectors k. which are on the vertical lines going through the K points. Similarly, for E | k, in 
Fig. 2c. zero absorption intensity at wave vectors k, which are on the horizontal lines going 
through the K points. The two nodes on the two sides of the K points, however, are not 
equivalent, which is also clearly demonstrated in Fig. 2c (ef. Fig. 2 of Ref. |S3|).

Optical spectroscopy has been used to reveal detailed composition of bulk SWNT samples 
providing distributions in both tube diameter and chiral angle. For semiconducting SWNTs. 
those measurements used small deviations of absorption peaks’ dependence on diameter 
from a linear relation, which can be accounted lor qualitatively by the tight-binding model 
here I or instance. Bachilo et al. observed that lhe energy ratios between the second and first 
van I love singularities, often referred to as (/■<> and Eu label the second and first
van Hove singularities, respectively), deviate from a central value in the opposite directions 
for semiconducting nanotubes with (n — in) mod 3 = I and those with (n — in) mod 3 = 2 
|35|. This can be explained by the fact that for wave vectors sufficiently apart from the 
K points, the energy slope along the K-F lines is much steeper than that along the K-M 
lines (cl. Fig. 2b and Fig. 6).

More features in Fig. 2 of Ref. [35] can be explained intuitively by lhe graphical tools 
developed here. In Fig. 6. allowed states for a zigzag semiconducting SWN T can be repre
sented by solid horizontal lines that are perpendicular lo the dotted vertical A'-F line. As 
the energy slope difference on the two sides of the K point is lhe largest along the verti
cal K F line among all lines going through the K point (cf. Fig. 6). zigzag SWNTs exhibit 
highest deviations of the energy ratios front the value two. Furthermore, for zigzag 
SWNTs. lhe energy ratio £,2/Etl for the case of (n in) mod 3 = 2 [(« in} mod 3 = I) 
is below (above) the value two. as clearly demonstrated in Fig. 6a (Fig. 6b). On the other 
hand, for metallic armchair nanotubes. for which the trigonal warping effect is absent due to

Figures, the vicinities of lhe 1/ A. 1/ line in the Brillouin zone
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l igurc 6. Horizontal solid parallel lines are the allowed states in the Brillouin zone tor (a) a zigzag nanotubc with 
(/» n:) mod — 2. and (h) a zigzag n.inolube with t/i m) mod 3 - 1 Dashed parallel lines divide the distance 
between the solid lines into three equal parts. One ol the two dashed lines goes through Ihe A point. The tilled 
solid line in (a) connecting the M and A points represents a part of allowed states lor armchair nanotubes. Dotted 
lines connect the A ami I points Reprinted with permission Irom |43|. Y. Zhao cl al.. < hem I’hvs. Lett 3X7. I4l> 
(’(MI4). 2004. hlsevier Ii. V.

symmetry, the allowed slates arc represented by lines that arc parallel to the tilted solid line 
connecting M and K points in Fig. 6a (equivalent lo the dashed parallel lines in Fig. 2a). 
For non-armchair metallic SWNTs. the trigonal warping effect brings about a splitting in 
the first absorption peak in the tight-binding model, as was elaborated by Saito et al. |44| 
Phonon spectra have recently been used to verify the existence of singularity splitting in the 
joint density of electronic states in non-armchair metallic SWNTs [56. 57).

Among semiconducting nanotubes, the one with n — m = I has allowed states that are on 
lines with the smallest deviation angle from the lilted M-K line in Fig. 6a. and consequently 
E^/En for n - m = I arc closest to two. The set of parallel lines representing allowed 
nanotube states is not unique. Because of the sixfold symmetry of the Brillouin zone, the 
angle 0 between the solid horizontal lines in Fig. 6a and parallel lines representing allowed 
states for any SWNT can be narrowly confined to be within 77/6. This implies that the 
energies of allowed slates for all SWNTs behave in a similar way as those of the zigzag 
nanotubes. Differing energy slopes of allowed states on the two sides of the K point cause 
E>:/Ett to deviate from two. the direction of which depends on whether (n — m) mod 3 
equals I or 2. As the angle 0 approaches rr/6 ( for n — m = 1. for example), |E,2/^ii ~ -I 
minimizes. This also explains why deviation of E22/En from the value two increases with 
n — in (and with — it/6|) as was observed in Ref. [35],

A rigorous proof has been given here to these interpretations of the experimental results 
|29. 31. 33. 58] on the low-energy peaks in the absorption spectra of SWNTs. In contrast to 
those low-frequency features, common absorption peaks attributed to the M points and their 
vicinities remain to be observed experimentally for SWNTs of various sizes and chiralities. 
Orbital hybridization and electronic correlations arc also more likely to affect higher energy 
excitations, which makes their experimental confirmations less certain.

3. LOCALIZED-DENSITY-MATRIX METHOD
The prediction of While and Mintmire [46] about the low-lying absorption peaks of SWNTs. 
and that from the tight-binding model as discussed in length in the previous section, consider 
only explicitly the tt electrons. Rehybridization of <r and tt orbitals and electronic correla
tions are known to affect the band structure. DOS. and transition dipoles of SWNTs and 
may thus lead to substantial changes of optical absorption spectra. Therefore, more realis
tic calculations beyond the tight-binding model are needed to examine the implications of 
White and Mintmirc’s discovery for optical absorption. In this section we calculate SWNT 
optical absorption spectra by including explicitly the electron-electron correlations and the 
a — orbital rehybridization in the framework of the I.DM method based on the TDHF 
approximation [48].
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In the l.DM approach, electronic correlations are taken into account within the framework 
of I DIIF approximation or random phase approximation (RPA) [59|. Wc have lhe following 
equation lor the linear response of the densilx matrix deviation <Sp from its ground state 
value p""

('*^ + = [/»"". 5p(/)] + [MO), p""] - E(/) ■ [P. p"’1] (27)

The following approximations are employed to achieve the linear-scaling calculation for the 
excited state properties |6(l. 61. 49]:

W = <» >f ^>7,

where rllt, is the distance between two atoms a and b, and /0 and /, are two cut-off lengths, 
l he DOS operator can be defined as

r'r = V |m>(m|5(E - /•.„,) (28)

where |/n) is the state m. and EMI is its energy. The DOS of a system is then given by |62]

^<5(E - /„,) = Tr<r(/.) = -Im £ lim ———---- — (29)
77 ’» ” 1 ~'9

If the |>») is a Hartrce-Fock molecular orbital. Eq. (29) gives lhe one-electron DOS,
l he l.DM method has been developed to evaluate the ground- and excited-state prop

erties of very large systems [48, 49. 6(1. 61. 63-67]. which is facilitated by the truncation of 
the reduced single-electron density matrices. As a result, the compulation time of the l.DM 
method can be scaled linearly with the system size, l he l.DM method has been used to deter
mine the absorption spectra of a few open-ended zigzag SWNTs |49|. The PPI’ Hamiltonian, 
which considers only the tt electrons, is adopted first in the computation. The fast multi
pole method (I MM) method is employed to test linear scaling properties of the calculations 
[49]. SWNTs are often regarded as one-dimensional nanostructures because their lengths 
are far greater than their diameters. To illustrate that the LDM method is applicable to 
three-dimensional systems, we consider lhe nanotubes with diameters comparable to their 
lengths. The diameters range from 20.37 to 81.48 A. and the lengths from 15.63 to 66.78 A. 
l he number of carbon atoms corresponds to 416. 1664. 3328, 4576. and 6656. The C PU 
time for propagating the TDHF equation of motion for the single-electron reduced density 
matrix between a time interval of [—0.5 fs. —0.3 fs] is recorded, l he time step is 0.01 fs. 
The critical lengths and /, are set to be 15 A. The results arc shown in Fig. 7a. Hie CPU 
time scales linearly with the system size A. The maximum number of atoms in the smallest 
box is kept al 26. The corresponding absorption spectrum of a SWNT with 1200 carbon 
atoms is shown in Fig. 7b. l he critical cutoff lengths /,,=28 A and /, =43 A are used. The 
calculated absorption spectrum, which differs significantly from those of one-dimensional 
SWNTs, resembles those of graphite [68| if the nanotube radius is large enough.

The curvature of the tube leads to some sp' hybridization of n and <t orbitals. Orbital 
hybridization, which increases with decreasing tube diameters, may alter significantly the 
zero-order band structure of the SWNTs. Thus, a more realistic model that includes 
all valence orbitals is needed to describe accurately the electronic structures of the 
SWNTs, especially those of the capped ones. Scmicmpii rival methods such as CNDO/S [69|, 
INDO [7()|. M.NDO [711. and AMI |72| consider explicitly all valence electrons including 
<r electrons in SWNTs. The TDM method using the CNDO/S Hamiltonian was employed for 
spectral calculations of poly(p-phenylencvynelene) aggregates [67], Stewart reparametrized 
MNDO to an MNDO-PM3 (MNDO parametric method 3) or a PM3 [73] Hamiltonian, 
which substantially reduces errors in calculations of the heats of formation as compared 
with the MNDO and AMI Hamiltonians. The PM3 Hamiltonian has been employed to
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figure 7. (a) CPI ' lime lor the excited-state calculation of three dimensional CNTs with a large radius. The time 
interval is | —0.5 Is. <1.5 Is] with the time step <1.01 Is The critical length /„ and I are 15 A. Twenty-six latoms 
.ire included in the smallest box. th) Xbsorptioii spectrum ol the zig/ag |M1. 0) nanotube C|3IIH120. y = 0 4 eV. 
Reprinted with permission from |4‘>|. W. Z. Li.mg et al ../. 4m. (him Sm. 104. 2445 (201X1). © 2(XX>. Amierican 
Chemical Societv

calculate the absorption spectra ol organic compounds (74-7<>|. For the remainder otf the 
section, the I.DM-PM3 method will be used for calculations of SWNT optical absorption 
spectra.

A series of SWNTs have been investigated systematically for their optical properties by 
the I.DM method |49, 65, 66|. Two types of dipole-induced excitations have been identified; 
namely, the end modes (low energy. (u < 1.0 eV) and tube modes (high energy, <u > 1.0 eV), 
l he low-energy excitations are electron-hole pairs confined within the two ends of SW NTs, 
and the higher energy excitations arc located mainly along the tube |65]. Those SWNTs 
whose optical properties have been calculated are mainly armchair and zigzag SWNTs., and 
their diameters are much greater than 4 A. It was found that the absorption spectira of 
large-diameter carbon nanotubes are determined mainly by their diameters, with a 'weak 
dependence on their chiralities.

As early as in 1992. Sawada and Hamada 177] predicted the existence of extremely thin 
tubules; for instance. 4-A SWNTs. They calculated the cohesive energies of the SWNTs (using 
lhe Tcrsoff's empirical potential for carbon |78| and showed that SWNTs of all dianueters. 
large and small, are energetically more favorable than the graphite sheets of the same width. 
They thus suggested that lhe 4-A SWNTs may exist. Recently, both 4-A SWNTs and nnulti- 
walled CNTs containing 4-A SWNTs have been synthesized by the mass-selected carbom on 
beam deposition (MS1BD) method |79, 80] and the pyrolysis of tripropylamine molecutles in 
channels of porous zeolite AlPO4-5 (AFI) single crystals |32|, respectively. The 4-A SWNTs 
have three possible structures: the chiral (4.2) SWNT. lhe zigzag (5.0) SWNT, amd he 
armchair (.3,3) SWNT. Their diameters are 4.2. 3.9, and 4.1 A, respectively. It has been 
argued that lhe 4-A CNTs may be either (3,3) or (5.0) because they fit well with the half 
fullerene C2ll cap [79], The corresponding electronic structures and optical properties hive 
been measured experimentally [81], Three major absorption peaks at 1.35, 2.15, and 3.1l0eV 
are identified in the absorption spectra when the electric field is parallel to the tubes. 'When 
the external field is perpendicular to the tube axis, the CNTs are almost transparent, with a 
very weak absorption peak at an energy slightly lower than 1.35 eV [XI].

We first outline the implementation of the 1 DM method at the PM3 level denoted tasthc 
I DM-PM3 method. Next, in Section 3.2 we investigate electronic structures and optical pi >p- 
crtics of SWNTs of various chiralities, caps, and lengths. The nature of dipole-induccdl exci
tations is examined hy projecting the corresponding reduced single-electron density maitrces 
onto the Hartree Fock molecular orbital (HFMO) representation. In Section 3.3, we report 
calculations of optical absorption spectra of the (4. 2). (3. 3). and (5. 0) SWNTs with diiane- 
ters around 4 A |65|. l he anisotropy of absorption spectra is investigated by caiculatintgthc 
dynamic polarizabilities for various light polarizations. In Section 3.4. we study the effiec of 
functionalization on metallic SWNTS with the help of the I.DM-PM3 method.
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3.1. The PM3 Hamiltonian
he PM3 Hamiltonian in the presence of an external field E is described as follows.

// = //, + //cc + WCM

uh mu

LJ V l/WH.II
** cc -y I u/» an^ hS Uin

““ <ih mntj

/<,, = —E(() P

(30)

where cu,„ (<>„) is the creation (annihilation) operator for an electron at a localized atomic 
orbital />/ (a) on atom </ (/>). One-electron integral //'7,n may be expressed as

".ib (31)

where '.') is the in (n) th atomic orbital on atom n (b) and (7(r) is the one-electron 
potential. I he Hamiltonian HCk is the two-electron part of the Hamiltonian that represents 
the effective electron-electron Coulomb interaction. The PM3 model uses the neglect of dif
ferential overlap for atomic orbitals on different atoms; that is. all the two-electron integrals 
are set to zero except that when the orbitals ni and n belong to the same atom a and i and 
j belong to atom b. The term is expressed as

= u.7(i)A'A(2)ir(/-1.>ix'"(i)^/.<2))

Ihe Hamiltonian AC, is the interaction between the valence electrons and an external elec- 
tiic field E(/). and P is the molecular dipole moment operator. As a consequence, the Fock 
matrix It may be written as

= //,;r + 28,lh £ i<”..... P<"( - £ £ i<;;;'
< iy€< /€/»

Similarly, the induced Fock matrix may be expressed as

= ^EEC''W - EEKT"'^
< (/‘fl* b tl l*.b

(33)

(34)

3.2. Absorption Spectra of Carbon Nanotubes
l<> les: the validity of the PM3 model for determining optical spectroscopy, wc calculate the 
absorption spectrum of a (’„„ molecule. Ihe result is demonstrated in Fig. X. I he geometry 
optimization for Cw, is carried out at the Hartree-Fock level, using the PM3 Hamiltonian. 
The calculated energies of the first three main absorption peaks in Cw) arc 3.X. 4.6. and 
5.7 eV which compare well lo the corresponding experimental values of 3.7. 4.6. and 5.7 eV 
for C,. in the //-hexane solution |X2). I he calculations arc performed using our LDM pro
gram with inclusion of all reduced single-electron density matrix elements (i.c.. a full TDHI 
cidcuktion).

A scries ol ( NTs with different chiralities and ends are investigated, and their absorption 
spectr. arc determined. I he external field is polarized along the lube axis in all calcula
tions. Most (’NTs’ geometries arc optimized at the Hartree-Fock level except those specified 
otherwise in the text. In our calculations, open-ended (’NTs are terminated with hydrogen 
atoms or other functional groups. Capped CNTs arc closed with fullerene-like cages that 
contain onlx hexagonal and pentagonal faces. For instance, a molecule is bisected at its 
equator. and the two resulting half spheres may be attached to a open-ended (5. 5) armchair 
tube o' (9.0) zigzag tube depending on the way that the C„l( molecule is cut. Six pentagons 
are ne.ded to form a cap lor (5.11) tube, and six pentagons together with one hexagon for
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Figurc8. Calculated absorption spectra of Cu, with dephasing parameter y = 0.1 eV and the (9,0) CNTs 
with y = 0.2 eV. (a), (b). (c). and (d) arc the absorption spectra for C7:(H),(OH)M, C7;(H)9(OH)M(COOH), 
C7;(H)„(OH).JNH)(C„H,). and by full TDHF. respectively. All the geometries arc optimized on the HF
level with the PM3 Hamiltonian. Reprinted with permission from |65). W. Z. Liang et al . J. Am. Chem. Soc. 122. 
11129 (2000). © 2000. American Chemical Society.

(6. ()) tube, as a total of 12 pentagons arc needed lo form a closed polygon, which is required 
by the Euler's theorem and sp: hybridization.

The influence of two ends on the optical properties of CNTs is examined. The calcu
lated absorption spectra are shown in Eig. 8 for (9.(1) CNTs of same length but different 
ends. Figure 8a. Sb. 8c. and 8d shows the spectra of C72Hy(OH)9 (one end with —OH and 
another end with hydrogens). C7s(OH)(lHl> (COOH) (one —OH is replaced by —COOH), 
C72(OII)sH,,(NH)C(,H,, (one —OH is replaced by (NH)CJL). and C^^H., (one end with 
caps, another end with hydrogens), respectively. Similar line shapes are observed for > 
2.(1 eV in all spectra, l he peaks centered at about 2.7. 4.(1. 5.0, 6.9, and 8.0 eV are observed in 
all systems and are attributed to the excitations along the tubes. They are not much influenced 
by lhe different terminating functional groups. Differences appear for w < 2.0 eV, which 
should correspond to the excitations at two tube ends. The highest occupied molecular orbits 
(HOMOs) and lowest occupied molecular orbits (LUMOs) of CNTs have large components 
al the ends. This is further verified by lhe density matrices of low-energy excitations.
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fhe physical properties of infinite ( NTs are determined by their chiralities and radii 
|22. s3-86|. For finite size tubes, we find that the tube length also plays a vital role in the 
electronic structure, Figures 9 and 10 arc the calculated absorption spectra ol differenl-si/c 
('».(»' and (5. 5) CNTs Figure 9 shows absorption spectra of capped (9,11) CNTs. As the 
number ol carbon atoms increases from 78 to 222 (Fig. 9a-d), the peaks at <» < 6.0 eV red
shift. although these near 8.0 eV change little. As a consequence of the red-shift, the line 
shapes differ for <u < 6.0 eV until a saturation is reached. The absorption spectra of open- 
endeJ (9.0) tubes differ drastically from those of capped (9.0) CNTs. especially when the 
tube lengths are short. Low-energy peaks (a> < 2.0 eV) for CjiHofOH),, (Fig. 8a) disappear 
in lhe absorption spectrum of C72.WI (Fig. 9c). The absorption spectrum of the open-ended 
(9. 0 tube changes drastically with increasing size. The first two peaks of C7.H.,(OH)„ dis
appear when the number of carbon atoms increases to 162. whereas the third peak shifts 
below 2.0 eV. Investigation of corresponding density matrices reveals that the first peak 
tor C- HM(OHL corresponds to the electron-hole pairs located at two ends. The two ends 
play an important role in the optical response ol short, open-ended zigzag tubes, and their
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F igure 4. Absorption spectra ot capped (0. I)) tubes calculated by full TDHF and I.DM method (a). <b>. and (c) 
arc tli<. results calculated by full TDHF with y = 0.2 eV. and (d) is the result of I.DM with y - 0.3 eV. All the 
geometries arc optimized. Reprinted with permission from |(»5|. W 7 I iang et al.. J tin, ('hem Soc. 122. 11120 
(2<mo) 1 2IKKI. American C hemical Society.
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l‘igure 10. Absorption spectra of apcn-cnili’d and capped (5 5) armchar tubes calculated by full TDHF and LDM 
method, (a), (b). (c). and (d) are the absorption spectra ol the capped (5.5) lube (c) Absorption spectra of open- 
ended (5.5) tubes, l he solid line is tor C„, H„. j - and the dashed line is lor / = 24. (a), (b). (c). and (e) 
(solid line) are calculated with y = 11.2 eV. whereas y = 0.3 eV is employed in <d) and (c) (dashed line). All the 
geometries arc optimized Reprinted with permission from |65|. W. Z. Liang cl al.. J. tin Chun W. 122. 11129 
(2000). ■ 2000, American Chemical Society

influence diminishes as the size increases. Absorption spectra of several SWNTs with differ
ent end groups have been measured, and little variance of the spectra has been observed [S7|. 
This is consistent with our finding that the end groups of long SWNTs have little effect on 
their absorption spectra, l he absorption spectra ol (5,5) CN I s (see Fig. HI) arc similar to 
those of capped (9.11) CNTs. I'his is because that both lubes have similar radii |3.5 A lor 
(9,0) and 3.4 A for (5, 5)|. The light-binding calculations have predicted the same elec
tronic and optical behavior for (5. 5) and (9. 0) tubes [21]. l he optical absorption spectra of 
capped and open-ended (5,5) look similar, l or instance, a mere small red-shift is observed
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lot the open-ended (5. 5) lube C,N,H?I1 (solid line in Fig. 10c). as compared to capped 
tube (Fig. 10c) ot the same cylindrical length.

Computed optical absorption spectra of two SWNTs. (9. <l) ((\M) and (5.5) (('.„,). arc 
shown in Fig. II. Both SWNTs arc capped by a bisected (’,„, molecule at their equators. 
(icometries arc optimized by l’M.\ and the LDM-I’M? method is employed lor the absorp
tion spectra calculation. Solid lines are for (9.0) and dashed lines are for (5. 5). In Fig. I la. 
the external field E is along the lube axis, whereas E _L T in Fig. 11b. The diameters of

*■ c *“

(9.0) and (5.5) arc 6.9 and 7.1 A. respectively. In other words. (9.0) and (5.5) are of the 
similar diameters. Clearly. their absorption spectra are quite similar as well. This supports 
out conclusion that the chirality of a larger-diametcr SWN'I has little effect on its optical 
absorption spectrum [65],

The energy of the first major peak (or optical gap) of capped (9, ()) and (5. 5) CN Is versus 
I/A is plotted in Fig. 12. w here A’ is the number of carbon atoms, l he two dashed lines are 
the linear tits and are almost identical. The optical gaps approach to = 1.23 eV as the 
sizes of both tubes approach infinity. Because the radii of two ( NTs arc similar, the resulting 
optical gaps for two infinite long tubes have the same values up the second decimal digits. 
H may be generalized that the optical gaps for infinite long tubes are finite and their values 
depend mainly on the tube radii. The optical absorption spectra of finite-size capped (9.(1) 
and (5.5) ('NTs have been calculated by the light-binding model with only 77 orbitals of 
carbon atoms considered. The light-binding optical gaps for a (9. 0) lube with .V = 420 anil 
a (5.5) tube with A = 250 arc 1.2 and 1.25 eV. respectively |88. <S9|. These arc comparable 
to our extrapolated optical gaps for infinitly long ( NTs. The optical signal al ~l.2 eV has 
been observed in the optical conductivity and absorption measurement of SWNTs (29, 90). 
In addition, a gap of 1.2 eV has been found in the calculated DOS spectrum for (9.(1) by 
lhe tight-binding method (2I|.

Absorption spectra of capped (5.11) tubes with AT = 15(1 and 250 and of capped (6.0) 
tubes with N = 156 and 252 are shown in Fig. 13. l he absorption spectra of (5.0) with 
N = I5(i and (6.0) with N = 156 arc calculated by the full TDHF method with a dephasing 
coefficient y ~ 0.2 eV. The absorption spectra of two other tubes are calculated by the I .DM 
method with y = (1.3 eV and a cutoff distance /t( = /| = 29 A. As expected, the red-shifts 
iccur when the system sizes increase. The optical gap of infinite (5.0) tube approaches

1.0 eV. as shown in the inset of Fig. 13(a). A much weak peak appears at w ■— 1.4 eV for

0 2 4 6 8 10
<0 (eV)

I mure II. ( alculated absorption spectia of capped (’*.(•) < (solid line) .md (5.5) ( ., (dashed line) SWNTs 
I he cv.'ii al held I is (a) along lube axis and (b) I I lhe absoiption spectra in lb) are magnified tout times 
I he dephasing parameter y — 11.3 c\. Reprinted with permission from |66|. W Z t.i.mgei al../ bn ( hem Xo< 
1.23. 'ISM). 2<xi| > ■ 21X11. Anierictui Chemical Society.
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capped (9.(1) and (5.5) tubes, (a) (9.II) tube, (h) (5.5) lube. Reprintedfigure 12. Optical gap via I A tot
with permission from |65|. W / Liang et al . J -hn. Chetn. Sih 122. 11129 (21100) 1 20tMI. American Chemical

Figure 13. Absorption spectra ol capped (5. ill and (6. II) tubes, (al l he absorption spectra ol (5. 0) C,., (the solid 
line) and ( (dashed line) calculated by lull I'DIII and I DM with dephasing y - (1.2 and y - 11.3 eV respectively. 
I'he inset shows the optical gap versus I A lor (he (5. 0) tube (b) The absorption spectra ot the capped (6, III lube. 
The solid line lor C ... is calculated by full TDIIF vv th y = I).2 eV. lhe dashed line lor is calculated by l.DM 
will- dephasing y - (1.3 eV. All the geometries arc optimized. Reprinted with permission from |<>5 . W 7. Liang 
el al.. J. .-Irn. C/kvn .$<»<. 122. 11129 (2(K)ll). >. 2000. American Chemical Soviets
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lie (6.0) tube. This is because the optimized geometry lor the (6.0) lube has point 
roup symmetry which is different from the ( point group ot the (9.0) tube. Tubes like 
9.0) and (5.5) have the first major absorption peak located at a larger transition energy, 
nd (5.0) tubes of the same length possess relatively sin;.II optical gaps. I his indicates that 
eometry plays a fundamental role in determining the optical behavior ot CN I s.

A broad group of peaks located at 6.0 ~ 7.0 eV is observed in the absorption spectra 
•I capped (5.0). (6.0). (9.0). and (5.5) tubes. These peaks shift little as the tube lengths 
icrease and aie identified mainly as 77 — 77* transitions by the low-energy EELS experi- 
nents 129] and calculations |91|. The relative oscillator strength decreases with the reducing 
ubc radius. This is caused by larger 77 — tr hybridization in smaller-radius tubes. The larger 
tie curvature, the more the ~ and tr hybridization.

figure 14 shows the optical absorption spectra of an open-ended armchair tube (C1„„H.,„). 
>ith J = 4 and tn = (>. X, and 10. The ideal structures, which are rolled up from a single 
.raphite sheet with all bond lengths set to 1.421 A arc adopted here. The absorption spectra 
ed-shift as the tube radius increases, except that the first peak blue-shifts slightly, l he blue
hilt may come from the competition between the size effect and the 77 orbital overlapping. 
Vhen the external electric field is applied perpendicular to lhe tube axis, red-shifts of lowest 
leaks are observed when the radii of tubes increase. This is consistent with the expectation 
hat the lowest peak red-shifts as the radius increases (sec Eig. 15. in which the optical gaps 
ersus l/r is plotted with r being the radius of the tube). A linear relationship between the 
ap and l/r is observed, and a gap of 0.7 eV is determined as r ♦ □o. It was also found 
hat the absorption threshold is significantly higher for the external field polarized along

o 2 4 6 £ 10
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Inure 14. Absorption spectra of (m.m) armchair lube with in = 0. S. It) and dephasing y = 0.2 eV. lhe ideal 
stricture is employed, (a) (b, b) ( H.,. (b) (S.X) t',,. H; . (C) The absorption spectra ol (It). 10) ( J„. ||„,. with 
i - s. Reprinted with permission from |65|. W Z. Liang et al.. J Im (hem S<>< 122. 1112*1 (2000). ■ 2000. 
Anerican < hemical Societv.
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Figure 15. l he optical gap via I r when the external held is applied perpendicular to the tul>e axis Reprinted with 
permission from |65). VS / Liang et al.. J l»u ( 7»r/n. St<c 122. 1112V (2mH>) e 2000. .American Chemical Society.

the tube axis than perpendicular to the tube axis. The absorption spectra of (6.6). (8.8). 
and (II). 10) arc very different from (hat of (5.5) (solid line in Fig. 10c). This is because 
different bond lengths are used here. Thus, it is determined that the nature of excitations is 
sensitive lo the bond lengths. The density matrices in molecular orbital (MO) representation 
reveal that the first peak in armchair tubes come mainly from the HOMO —» LUMO 4- 1 
and HOMO — I —» LUMO transitions, l he HOMO — LUMO transition is forbidden. The 
other peaks red-shift with the increasing tube radius. The relative oscillator strength of these 
peaks that center at relatively high energies (from 4.3 to 8.2 eV) increase with the increasing 
radius. These peaks correspond to n - tt' and small-fraction tt — <r* transitions.

Wc proceed to discuss the single-electron density matrices of the dipole-induced excita
tions. To understand the nature of the electronic excitations, the induced density matrices 
<5/>'l,(<t>) of CrH(J(OH)9 are examined at 0.61. 2.67. ami 5.01 eV: Ct.hd at 2.77. 6.72, and 
8.14 eV: and CM,H:(, at 2.89. 4.79. ami 8.04 eV. C7.l l,((OH )„ and C7,4(lh arc open-ended and 
capped (9.0) lubes, respectively, and CM,I l?l,an open-ended (5.5) tube. The results are 
shown in the Figs. 16. 17, and 18. lhe atomic orbital (AO) representation is employed. The 
atomic indices are assigned increasingly from one end of the tube to the other, and the 
orbital indices are arranged in the order of 2s. 2p,,2p4, and 2p:. The absolute values of 
density matrix elements are shown in the contour plots. Logarithmic scale is employed. The 
scales employed for ground- and excited-state density matrices are shown in Fig. 16e and 
Fig. 161. respectively. From the contour plots in Figs. 16a, 17a, and 18a. it is observed that 
lhe ground-state density matrices of the three systems are almost diagonal. However, the 
electron coherence between the two ends is stronger in the opened-end (9,0) tube than in 
the capped (9.0) and (5.5) CNTs. The strong electron coherence between the two open 
ends of (9.0) has a significant influence on the optical properties. The excited-state density 
matrices arc obtained by the Fourier transformation

<5p(w) =(<//<•'"" 6p(/) (35)

In the actual TDHF calculation, dephasing y is added to calculate the time evolution of 
5p(r). The term Sp(w) contains not only the effect of the mode at to but also the effect 
ol other modes. When y is much less than the energy differences ol different excitations, 
the mixing of excitations in 6p(w) (w 12,.) is negligible. Therefore. Im[5p(12,,)] is a very 
good approximation of the reduced-density matrix for the excitation at 11, . l he density 
matrices shown lake the form (lm|<5p(io)| +- Im^p' (w)])/(/v 2). where <Sp' (w) is the trans
pose of fip( w). Three excited-state density matrices of an open-ended (9. (I) tube are shown 
in Fig. I6b-d. lhe first excitation at w = (1.61 eV in C H.,(OH)„ includes mostly the n 
electron-hole pairs from the two ends. This peak disappears in the absorption spectra of 
capped (9.0) tubes, l he contribution from the electron-hole pairs among the tt orbitals
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I i)*iirr 16. Density matrices nl ground states and various excited slates for an open ended (9.11) ('• II.(OH). tube 
nt \( > representation by full 11 >1 It- with y — 0.1 eV. Matrix elements are shown on a gray logarithmic scale |a) The 
ground slate: (b) «r - lt.iH eV; (e) <u = 2.67 eV: (d) w = 5.01 eV; (c) scale of all the ground-state density matrices; 
(II scale of all the excited state density matrices. Reprinted with permission from |65|, W. Z. I.iang cl al.. J Im. 
('hem Sue 122. II129 (200(1). ■< 2000. American Chemical Society.

located in the middle of tube increases for the excitation at iu = 2.67 eV. The excita
tion at 5.(11 eV in C7;H„(OH)y contains tt as well as ir orbital contributions. In general, 
a contribution lhal conics from the electron-hole pairs in the middle increases rapidly as 
energy increases. As expected, the oscillator strengths of these excitations increase and their 
energies red-shift with increasing sizes |4l>].

Figure 17b—cl depict the excited-state density matrices of capped (9.0) tube (\>t60 at 
energies 2.77, 6.72. and 8. 14 eV. whereas Fig. 18b—d show the excited-state density matrices of 
an open-ended (5. 5) tube at energies 2.89, 4.79, and 8.04 eV. respectively. The contributions 
from two ends are much weaker than those in C ^H.jOf 1that is. the electron coherence
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Figure 17. Density matrices of ground states and various excited states for capped (0,0) tube Cli2 in AO repre
sentation by full TDllT with y II I eV. (a) The ground state; (b) <u — 2.77 eV; (e) u> = 6.72 eV; (d) w = 8.14 eV. 
Reprinted with permission from [65]. W. Z. Liang el al.. J Am. Chem. Stu. 122. 11129 (2000). © 2000. American 
Chemical Societv.

Figure 18. Density matrices of ground states and various excited states for open-ended (5,5) tube in AO 
representation by- full TDHF with y — II. I eV. (al Ihc ground state; (b) <u = 2.89 eV; (c) m — 4.79 eV; (d)

= 8 114 eV. Reprinted with permission from [65|. W Z Liang et al.. / Am. ( hem Srx. 122. 11129 (2000). C 2000. 
American Chemical Societv 
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between two ends is weak. I he main contributions are from the middle of the tubes. This is 
the reason why the absorption spectra arc rather similar for (5.5) and capped (0,0) tubes, 
l he peaks centered al the low-energy of 2.77 eV in Fig. 17b attd at 2.89 and 4.79 eV in 
Tig. 18b and 18c result mostly from ~ electron hole pairs. f'hc first peak tn both systems 
comes mostly from HOMO -» LUMO + I and HOMO - I — LUMO transitions. Transitions 
HOMO — LUMO + 2 and HOMO - 2 — LUMO also contribute significantly to the first 
peak (w = 2.77 eV) of the capped (9,(1) tube. Other transitions between lhe HOMO - nt 
anil l.UMO-t- it also effect the first peak of the (9,(1) and (5.5) tubes. The white squares 
of lhe ‘chess board" pattern in Fig. 17b correspond to the electron coherence between two 
orbitals that belong to two atoms located, respectively, al lhe nth ring and n ± /th rings, 
where / is a positive odd number. The antidiagonal part is nearly zero in Figs. 17b and 
ISh. I he white square in the antidiagonal part corresponds to the elements between lhe two 
orbitals that belong to the two atoms located, respectively, al two mirror rings, which are 
symmetric with respect to a center plane equally dividing the nanotube. Their values are 
almost zero except lor the pairs of tt orbitals, which belong to two mirror symmetric atoms. 
The <r electrons have larger contribution in lhe high- energy range; for instance, the peaks at 
6.72 and 8.14 eV (Fig. 17c and 17d) in capped (9. 0) tube and the peak at 8.04 eV (Fig. 18d) 
in lhe 15.5) tube. These peaks originate from the main 77 tt' transition as well as the 
partial 77 — cr‘ transition, which is revealed by lhe corresponding density matrices in MO 
representation. These excitations have been observed by low-energy EELS experiment [92]. 
The electron coherence among 77-77“ has larger spatial extents than that among tt — ir‘. 
ir — 77’. and it <r’ (see Fig. 17c. 17d). Examining the excited-state density matrices of 
these three systems reveals that 77 orbitals are mainly responsible for electron excitations, 
with 10 < 8.0 eV while <r electrons are responsible for higher-energy electron excitations. 
The patterns of the reduced-density matrix contour plots reflect the structure features of 
CNTs. For instance, the stripes in Figs. 16a. I6d. 17a. 17c. 17d, 18a. 18c. and 18d are the 
manifestation of the underlying ring structure of CNTs. The “chessboard" pattern in Fig. 17b 
reflects large electron coherence within the same ring or between adjacent rings (the dark 
squares), and diminishing electron coherence between adjacent or next-nearest rings.

The STM may probe directly one electron orbital density or DOS. Figure 19 shows the 
DOS of several CNTs; (\H,IL(I. C;|(,H2(I. and C^H^. The chiralities of above three CNTs 
arc (ft. 4), (7.3), and (5. 5). respectively. The ideal structures are employed. Their radii are 
3.415, 3.482. and 3.393 A. and the lengths are 35.3. 34.91, and 38.14 A, respectively. The 
Fermi energy level is between the HOMO and LUMO and is set to zero. According to the 
tight-binding model, a CNT with a chirality (nt, n) is a conductor when nt — n mod 3 = <>. 
A CNT with other chiralities is a semiconductor. Our calculation shows that the HOMO- 
I UMO gap for a (5. 5) is 2.8 eV. whereas (7. 3) and (ft. 4) have much smaller gaps, although 
three radii and lengths are of the similar values. The DOS spectra are determined by their 
chiralities of CNTs. Further, we find that the HOMO-LUMO energy difference decreases

r (eV)

Figure 19. DOS of III molccul.tr orbitals of (5.5) (\,(1ll.„. (7.3) C„ II-,,. and (6.4) (. b\ the l’M3 Hamil
tonian. The Fermi level is set to e — <1.0 eV. lhe energy resolution >) — 0.05 eV is employed Reprinted with 
permission from |65|. W. Z. I.iang et al.../ Im (hern. Soe 122 11129 <2000) '7 2060 American t'hemica! 
Society.

molccul.tr
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overall as the nanotube length increases and lhe energy gap in lhe DOS spectrum may be 
different from the HOMO-LUMO energy difference. This energy gap and DOS spectrum 
saturate when the length is long enough. Our calculated HOMO-LUMO energy gap of (5.5)) 
tubes is larger than that of the tight-binding calculation for CNTs of the same length because 
the HOMO-LUMO energy gaps predicted by tight-binding calculation saturate more rapidly 
than those by ah initio HF or semietnpirical methods [93]. It is worthy pointing out than 
lhe DOS of (5.5) calculated by the tight-binding model has a similar appearance to ouir 
result, and a gap of 2.0 eV exists. Our calculated DOS is not symmetric with respect to the 
Fermi level, which is consistent with the experiment |94| but differs from the tight-binding 
results [95-97]. The difference stems from 77 <r hybridization |98|.

The absorption spectra of a series of CNTs with different sizes, chiralities, ends, and bond 
lengths are calculated by the I.DM method with lhe PM3 Hamiltonian, lhe dipole-induced 
excitations may be categorized into end modes (low energy) and tube modes (high energy). 
These modes have been characterized by examining their reduced single-electron density 
matrices. It has been found that their optical properties are very much affected by the tube 
length, radius, end group, and chirality, as well as lhe bond length, l he density matrices of 
various excitations exhibit interesting features that relate to the structural features of CNTs, 
The main results are summarized as follows.

The low-energy' dipole-induced excitations appearing in the absorption spectra in Fig. 8 
arc the end modes; that is. lhe electron-hole pairs that reside mostly at lhe two ends of 
tube. These excitations come mainly from tt tt' transitions. The corresponding absorption 
peaks have been observed only for short, open-ended, zigzag CNTs in our calculation. The 
excitation energy and oscillator strength depend sensitively on the tube length, end groups 
and chiralities. As the length increases, the low-energy (w < 1.0 eV) absorption peaks red
shift, and their oscillator strengths decrease. When the end groups are altered, the profile of 
low-energy-absorption spectra changes drastically for short CNTs. Their sensitivities to the 
end groups may be used to design new SWNT-based materials. It is interesting to note that 
the capped zigzag CNTs and armchair tubes do not have such low-energy absorption peaks. 
Wc emphasize that lhe absorption spectra of long SWNTs are affected little by the caps or 
end groups. This has been confirmed experimentally [87].

For to > 2.(1 eV in Fig. 8, the dipole-induced excitations are regarded as the tube modes; 
that is, the electron-hole pairs residing in the middle of the tube. The energies and oscillator 
strengths of these tube modes may depend on the tube lengths, radii, and bond-length 
alternations. However, they are not sensitive to the chirality' and end groups. It is emphasized 
that the absorption spectra for capped (9.0), capped (5,5). and open-ended (5.5) tubes of 
the same length are strikingly similar.

The tube modes may be divided further into two groups of excitations: 2.0 < w < 6.0 and 
w > 6.(1 eV. For lhe excitations whose energies w arc between 2.0 and 6.0 eV. the electron
hole pairs arise from 77—77* transitions. These excitations arc sensitive to the tube length. 
As the tube length increases, the corresponding absorption peaks red-shift (see Figs. 8-13). 
The absorption spectrum saturates when the tube length reaches a few nanometers. The 
calculated optical gaps are consistent to lhe energy gaps measured by STM experiment (29|. 
When lhe radii increase, most absorption peaks in the range (2.0 < w < 6.0 eV) red-shift 
except the first absorption peaks of armchair CNTs (see Fig. 14), which blue-shift slightly 
when the external field is polarized along the tube. This may be explained by the competing 
effects of the hopping matrix elements of 77 electrons and the tube radii.

For the dipole-induced excitations with <» > 6.0 eV. their energies and oscillator strengths 
arc not sensitive to the length, chiralities, and ends, but their oscillator strengths are sensitive 
to the tube radii and bond-length alternation. I he broad peaks at 6.0 ~ 7.(1 and 8.0 ~ 9.0 eV 
are mostly from the 77 — 77' transitions, but a small fraction of 77 ir'. a — tt'. and rr — tr* 
transitions also contribute to these peaks.

For the open-ended tubes containing a few hundreds of atoms, it is observed that the 
HOMO-LUMO gap for armchair CNTs is quite large ['-2.0 eV for (5.5>|. This confirms 
results from earlierub initio Hartree—Fock and semiempirical calculations [93], It was pos
tulated that this larger HOMO-LUMO gap is a result of the finite size effect. As the tube 
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length increases to infinity, lhe gap may vanish. Out calculation shows evidence tor such a 
p< >st illation.

I inally. the optical gaps of CNTs arc finite and approach nonzero values as lhe tube 
lengths become infinity, ll is illustrated that the optical gaps depend linearly on 1/A'. 
I he inverse dependence of the optical gap on diameter has been investigated in armchair 
tube (in. in). It is found that the optical gaps depend inversely on the diameter of the tubes.

In summary, the dipole-induced excitations may be categorized into the end modes and 
lube modes. The end modes arc sensitive to the tube length, chirality, and radius in addition 
to the bond length. When lhe tube length becomes long enough or the ends are closed with 
carbon cages, the corresponding low-energy absorption peaks disappear. The tube modes 
are of higher energies and are less sensitive to the tube length and chirality. I’he dipole- 
induced transitions below 8.0 eV are composed mainly of tt — tt' transitions. Furthermore, 
it has been found that the optical gap scales linearly with l/.V and is finite when the number 
if carbon atoms A’ approaches infinity. Although the precise values of excitation energies 
md oscillator strengths may depend on detailed structures of CNTs, the above qualita
tive conclusion on the composition and categorization of (’NTs' optical excitations remains 
valid.

3.3. Polarization-Dependent Optical Absorption Spectra of 4-A 
Single-Walled Carbon Nanotubes

l he narrowest possible nanolube has a diameter of 4 A. the size at which a SWNT remains 
energetically stable. Some of the smallest CNTs are first found capped inside an 18-shell 
nanotubc [79], Lately. 4-A SW'NTs h avc been fabricated inside inert All zeolite channels 
[32. 33]. Chen et al. have examined the optical properties of 4-A SW N Is using the l.DM 
method [65].

I’he two ends of the SWNTs are terminated with hydrogen atoms in the calculations. The 
deal structures are employed; that is. the SWNTs ate constiucted by rolling graphite seg
ments along the lube axis with the C-C bond length set lo 1.42 A. except that the structures 
of (4.2) SWNTs are optimized by the l’M3 calculations In a neutral (5.0) CNT electrons 
cannot till lhe closed-shell structure. The unpaired electrons result in a net dipole moment 
that prevents the converge of the self-consistent field (SCF) calculation (99] Four extra elec
trons are added lo the (5.0) CNT. on which the sell-cor sistent computation converges and 
a set of MOs arc obtained, ll is expected that lhe extra four electrons have little effect on 
the optical response when the number of carbon atom reaches 200 or more. Figures 20. 21. 
and 22 show calculated absorption spectra of (4. 2). (3. 3). and (5. 0) SWNTs. Each unit cell 
of lhe (4. 2). (3. 3). and (5. 0) CNTs has 56. 12. and 20 carbon atoms, respectively. All solid 
lines are the absorption spectra corresponding to E | T. and the dashed lines correspond to 
E 1 T. The calculated absorption spectra of (4. 2). (5,0), and (3.3) CNTs are quite differ
ent despite the fact that their diameters arc almost the same. This differs from our previous 
results from larger-diamctcr CNTs, which showed that the absorption spectra are insensi
tive lo the chiralities ot CNTs when the tube lengths are long enough. In lhe case in which 
E || T. lhe optical spectra of the three SWNTs depend very much on lhe tube lengths. As the 
number of carbon atoms increases, lhe absorption spectra of the open-ended chiral (4. 2) 
lubes change drastically, especially when the tube lengths are relatively short. lhe overall 
spectra red-shift and the relative amplitude in (he low-energy range (w < 1.0 eV) reduce as 
the number of carbon atom V increases. W hen lhe (4. 2) SW'NTs have 2011 or more carbon 
atoms, these peaks disappear when compared to the others (see Fig. 20). The open-ended 
(3. 3) and (5.(1) SWNTs have a different response to the external field as compared to the 
(4. 2) SWNTs. In the low-energy range (o» < I eV), no peaks are found even for very short 
lubes (see Figs. 21 and 22). I’he two ends play an important role in the optical response 
lot some short lubes; for instance, lhe (4.2) CNTs. Their influence recedes as the length 
increases. The optical behaviors of the long tubes arc affected little by the tvyo ends, which 
is consistent with experimental observations (87. 90|.

Iwo absorption peaks arc found al 1.60 and 2.9 eV for (4.2) C.,-11,,. anil three peaks 
arc found at 1.16, 1.66. anil 2.60 eV for (5. (I) CV„H|(). l he (3. 3) SWNT has one distinctive
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Figure 2(1. Calculated absorption spectra ol (4.2) SWNTs with dephasing parameter y =0.2 eV (a-c) and 
y =0.3 eV (d) l he external field E is along tube axis except the dashed line in part (c) which is the result for 
E 1 T. Tlte dashed lines are magnified 10 limes. Reprinted with permission from |66|. W. Z Liang et al, J. ,4m. 
Chem. Six. 123. WO (2001). © 2001. American Chemical Society.

strong absorption peak in the low-energy range for N > 200. It red-shifts when the tube 
length increases and saturates at (1.61 eV as .V —> oo (see Fig. 23b). Similar red-shifts of 
absorption spectra are found for (4, 2) and (5. (1) SWNTs. These red-shifts are caused by the 
collective character of the excitation in terms of lhe single electron-hole excitation picture 
[59]. Because 77 electrons delocalize more than <r electrons, lhe red-shifts are prominent 
for w <4 eV because the corresponding excitations are mainly 77-77’ transition. Note that 
the spectral profiles do not vary much after N reaches 200 or more. Therefore.

and CwHh) are used to simulate, respectively, the infinite long (4.2). (3,3), and 
(5.0) SWNTs. Given the fact that the absorption spectra arc very different for (4. 2), (3.3), 
and (5.0). il is concluded that for small-diameter SWNTs. the optical response depends on 
the chirality of the tube, in addition to lhe diameter and the tube length. Therefore, the 
observed absorption spectra may be used to determine the structures of 4-A SWNTs.

To investigate the anisotropy characters of (3.3). (5.0). and (4.2) SWNTs, their absorp
tion spectra arc calculated by aligning the external held E perpendicular to the tube axis 
(E _L T). l he resulting absorption spectra arc shown as dashed lines in Figs. 20c. 21a. 21b. 
22a. and 22c. Strong anisotropy is observed for all three SWN Is. The absorption intensities
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•igurc 21. ( .ilculaied absorption spectra of (5.3) SWNTs with dephasing parameter y — (>.2 eV la. b) and
11.3 eV (c). I he solids arc the results lor E || T and the dashed lines lor E . T. The dashed lines arc magnified 

II limes. Reprinted with permission Ironi |(»h|. W. Z Liang cl al.. 7 Im. them Sue. 123. 9830 (21101) • 21101. 
American Chemical Soeicts

tic much weaker for E 1 T as compared to for E || T. The anisotropy increases as the 
ube length increases. This is consistent with the experimental observation |S 11 that the 4-A 
SWN I s are opaque for E || T but almost transparent for E J_ T. The lowest-absorplion peak 
ed-shifts when the light polarization varies from the parallel direction of the tube to the 
.perpendicular direction |8I|. Our calculations show the same phenomenon for (4.2) and 
5.(1) but not for (3.3). For (4.2) and (5.0) CMmiHh(. their respective optical gaps
;rc 1.33 and 0.7(1 eV for E 1 1'. and 1.CS4 anti I 16 eV for E || T. For (3. 3) (.'NTs. the optical 
tap is larger for E 1 'I' than for E j| T.

l he optical gaps of lhe open-ended tubes (4, 2). (3. 3), and (5. 0) versus I/V for E || T are 
.dotted in Fig. 23a. 23b. and 23c. respectively. The dashed lines are the linear fits. Clearly the 
taps depend linearly on I/jV. The optical gaps of (4.2). (3.3), and (5.0) are respectively 
.5. 0.61. and 0 90 eV as the tubes become infinitely long. In Ref. [65], similar findings have 

been reported; that is. it was found that lhe long (6.0). (0.0), (5.5). (8.8). and (10. 10) 
SWNTs have finite optical gaps.

l he concept of the pyramidalization angle is developed to extend the definition of the 
7 orbital to a nonplanar molecule [!00|. To examine the effect of rehybridization of the 
r and tt elections on the optical gap. the pyramidalization angle [IO()| of those carbon 
ranottibes has been calculated using the 77 orbital axis vector I (POAVI) analysis [100. 1011. 
he " orbital axis makes equal tingles with all three <r bonds at the conjugated carbon 

:tom in question. The angle between tt orbital axis vector and the <r bond is 90 degrees for
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figure 22. Calculaled absorption spectra ot zigzag (5.0) SWNTs with dcphasing paramclei y 0.0X eV (a) and 
y = 0.2 eV (b and c). lhe solids arc the results for I- || T and the dashed lines for E 1 T. The dashed lines ate 
magnified 10 times Reprinted with permission from |M>|. W 7 tiling cl al.. / -tin Chem. Six 123, 9X3(1 (2001) 
© 2001. American Chemical Society.

planar molecules. The pyramidalization angle is then defined as the deviation of this angle 
from 90 degrees. The larger is. the larger the rehybridization of the tr and tt electrons 
1100]. For (3, 3) and (5, 0), 8r = 9.9 and 10.0 degrees are obtained, respectively. For (4, 2) 
C^22oH|2, ff/.s are 9.6 ~ 9.7 degrees, depending on the atoms. Because the 6r values have no 
clear correlation with the optical gaps, it is conjectured that the differences in the optical 
spectra of (4. 2). (3. 3). and (5.0) are caused mainly by the relative positions of the carbon 
atoms.

Armchair and zigzag SWNTs are highly symmetric. Depending on the way we terminate 
the open C’NTs, (3.3) and (5.0) CNTs may have £)V| or /)w and D5A or D5)/ symme
try. respectively [99]. When the lengths of the (3,3) and (5.0) SWNTs are large enough 
(>25 A), the difference in optical response caused by different symmetries can be neglected 
[93. 99], Chosen here to be examined are (3,3) SWNTs with /?•„/ symmetry and (5,0) 
with Dih. For the dipole-allowed optical transition, the matrix element (d’Jr • E|<l\) is 
nonzero, and |<l’,) (|4>,)) is the initial (final) electronic state. I'he variable DXlt has six 
irreducible representations: .4U. 4<k,. zl11(. .4,,,. and and has eight irreducible
representations: .4,. .4',. E\. E,. 4'j. .4,'. E\. and £" [ 102]. For the electric field E || T, 
the following transitions are allowed between the pairs of the molecular orbitals: for (3.3) 
SWNTs. /1K. ~ zt,„. zb, -- and £„ « £g; and for (5.0) SWNTs. E\ — E\. E: ~ Et, 
and z4'| «-* For the electric field E ± T. the allowed transitions are. for (3.3), zl,,. »-» E,t, 
A2„ <-+ Eu, /lh( £,,. <4,„ —► E... and /•.„ £v; and for (5, 0). A\ — E\, A\ ♦+ E\, zl', «-» E'v
A\ <-> EE .4,' «— Et. .4',' — E". zfj — E\. and A\ -- EE For the open-ended (3.3) SWNTs, 
lhe molecular orbitals with .41l.. .4,^.. .4h(. and zE„ symmetry are found to be energetically
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Hgirc23. The optical gap versus I X tor open-ended (4.2). (3.3). and (5.11) SWNTs lor I. T. where X is 
the number of carbon atoms. The dashed lines are linear Ills Io the calculated results The optical gaps are I 50. 
Ho and ii'Hi e\ for infinite (4. 2). (3.3). and (5.0) SXXNTs. respectively. Reprinted with permission from [66|. 
W./. Liang cl al.. Z Im Chem Stu 123. 98311 ( 2001). « 2001. American Chemical Society.

disc lo llic HOMO and LUMO. The molecular orbitals with E„ and E* symmetry are quite 
diEcrent in energy from HOMO and LUMO. The excitation at 1.57 eV of (3.3) C’i’oH,. 
lot E || 'I' consists mainly of the transitions . l1K, -• /L„ and - .4,„. whereas, the first 
excitation lor E £ T consists mainly of -4,v «-» /1hl —» .421, —» F.u. and ,12„ —■ Eg
iransitions. This explains the fact that the optical gap for E ± T is larger than for E || T for 
(H) SWNTs.

\ftcr obtaining the induced density matrices <S/» of the transitions corresponding lo the 
absorption peaks al 1.57 and 4.58 eV of (3. 3) C^iHiy, 1.53 and 3.14 eV of (5.0) CI2IIH||(, 
and (1.61 and 2.49 eV of (4.2) C\2HI2. the matrices are projected onto the HEMO rep
resentation 1103]. In other words, the dipole-induced excitations are decomposed into the 
iransitions between the pairs of molecular orbitals. The results are shown in Tables 1-3. 
I he molecular orbital transitions whose absolute amplitudes are larger than 0.1 are listed. 
Because |<xpj = |5p(,|. only 8ptl (i < j) are shown, where i and j stand for a pair of 
molecular orbitals. For (3.3) the excitation at 1.57 eV is a ~ transition and
consists mainly of the HOMO to LUMO + I and HOMO — 1 to LUMO iransitions. with 
their respective amplitudes of 0.44 and 0.36 (see Table I). Other contributions, such as the 
HOMO - 2 lo LUMO 4- 3 and HOMO - 3 to LUMO 4-2. are much smaller. I he excita
tion al 4.58 eV is also a 77 - 77' transition. Its main contributions arc from the pairs of the 
molecular orbitals with and EK symmetry (sec Table I). The transition from HOMO to 
I L MO is forbidden for (3.3) CNTs, as they have zlr, and .4^, symmetry, respectively. For 
(5.(1) C.j.H ni. the excitations at 1.53 and 3.14 eV are from 77 - 77* transitions. The molec
ular orbitals involved in the transitions have E\', E\, and E" symmetry (see Table 2). 
The .4" — zlj transition has made a small contribution to the excitation at 3.14 eV. The 
IIOMO to LUMO transition is forbidden for (5. (I) as well. For (4. 2) (\JI,.. the excitation 
at 0.61 eV is a 77 — 77‘ transition, and its main contributions are from the HOMO to LUMO. 
HOMO I lo LUMO 4 I. and HOMO 2 lo LUMO + 4 iransitions. I he excitation at 
2.49 eV is also a 77 to 77 transitions, with the HOMO - 1 to LUMO 4- I transition as the 
main contributor (see Table 3).

The absorption spectra of the 4-A SWNTs reported in Ref. |32] were measured 
recently [81], The polarization of the light was tuned to examine the anisotropy of the optical 
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Table I. I he compositions ol the photo-induced transitions 
at 1.57 and 4.58 eV ol (3.3) ( ,,H,

4.58 eV

1.57 eV

HOMO - K.4,,,1 • LUMO ( 0(. l . ,l 0.36
HOMO o< I . ) • I.UMO + l( .4,..) 0 44
1 IOMO 31 I v I • LUMO - 2( 1 ) 0.15
1 IOMO 2( 1 I • LUMO + 31 4, I -0.19

rhe first column lists ihe transitions between pairs ol molecular 
orbitals anil the second column lists the corresponding comp<'sitloll 
coeffic’ents ol the specific transitions between the rrolccillar orbital 
pairs. Reprinted with pcimission from |(>6|. W. Z. Li.aig. cl al.../ Im 
Chem. .Six 123, ‘1830 (2(101) J. 2IKH. American Chemical Society

HOMO 18(E) - LUMO • 9(E ) II. II
HOMO - HUE..) - LUMO 4 9(E ) 0.16
HOMO - 91 / „ ) ■ 1 UMO• 9( E\ ) Il 12
HOMO - 17(E) - LI MO ■I KKE. I 0.11
HOMO - JOtEJ • 1.1 M() I K>(E.) 0.14
1 IOMO - 9( £..) • 1UMO 1 HHE(I 0.16
HOMO- ll(EJ • LI MO - HIE..) 0.23
HOMO - I2(E ) • 1 1 'MO - 12(E) 0.23
HOMO - 13(7 ) • LUMO - I3(E.) -0.13
1 IOMO I4(E ) • LUMO - 14(E) 0.13
HOMO 15(7 I • LUMO + I5(E ) -O.I3
HOMO !<>(/ ) - LU.MO + I6I/.J 0.13

Table 2. The compositions ol the photo-induced transitions at
1.53 and 3.14 eV of (5.11) ( ,,.H

1.53 eV

HOMO IO(E,) — LUMO + <»(/-,) 0.12
homo-ike;> — lumo + i(e;i 11.12
HOMO-4( EH- I.UMO + 3(E.) 0.19
IIOMO - ()(£.) - LUMO + 3( E;’) -0.28
HOMO 5(E7.) - LUMO f-4(E") 11.19
HOMO - l(Ei) — LUMO I- 4(E7) <1.28
HOMO —6(E7) - LUMO I 8(E;) 11.10
HOMO - 3(E?) • LUMO + 8(E2) <1.13
HOMO - 2(E; ) - LUMO + 8(Ej) -0.20
HOMO 7(El) - LUMO + 9( Ei) 0.10
HOMO - 3(£;) -> LUMO + 9( EU -0.20
HOMO - 2( £/) — LUMO + 9(EJ) -0.13
1 IOMO - 1 (E;) — LUMO + 13( E2) 0.11
1 IOMO - 0(£’) • LUMO + 13(E7) 0.11
HOMO l(E'i) - LUMO + I4(E7) -0.11
HOMO 0( I '.) -* LUMO + 14( £'.1 0.11

3.14 eV

HOMO - KI(E’) - LUMO + 0(E',) -0.25
homo-ii(e;) -lumo+1(e;) -0.25
HOMO —24(4 ) - LUMO+ 21.4,1 -0.11
I IOMO - 41 El) • LUMO + 3(E2) 0 19
1 IOMO - 0( E. I • LI MO a. 3( E:) 0 12
HOMO 5( E l — LUMO + 4( E; I 0.19
HOMO l(E > — LUMO r 4(E.) 0.12
HOMO 14(E)) — LUMO 4- 6(E, I 0.10
HOMO 15(E,1 — I I MO - 7(E7) 0.10
HOMO 61EO--I UMO+8(E .) 0.11
I IOMO — 7( E ) — I UMO f 8( E.) 0.11

ITii lirsi column lists the transitions between pairs ol molecular 
orbitals, and the second column lists the corresponding inmpisilion 
coclliccnts nl the specific liansitions between the molecular orbital 
pairs. Reprinted with permission from |M<|. " A Liang, et al. 7 Im 
I hem Six 123.'is.sti I2IHIII 2<*ll. American Chemical Siiciely
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table 3. The compositions of the photo-induced transitions 
al 0.61 and 2.49 eV ol (4.2) C, II,.

1 t.l eV

HOMO o • l.OMO + 1) 0.72
HOMO- 1 - l.OMO+1 0.34
HOMO - 2 - l.OMO+ 4 0.25
HOMO 4 — LOMO - 6 0.12

2.49 eV

HOMO 0 — l.OMO + 0 -0.15
HOMO 1 — l.OMO + 1 11.53
HOMO 3 — l.OMO+ 2 0.19
HOMO 5 - l.OMO 4-3 0.18
HOMO 2 — l.OMO 4-4 0.19
HOMO - 4 • l.OMO+ 6 0.15
HOMO- 2 • l.OMO + 6 0.14

The first column lists the transitions between pairs of molecular 
orbitals and the second solumn lists the corresponding composition 
Coefficients of lhe specific transitions between the molecular orbital 
pans. Reprinted with permission Irom |t<<>|. W Z Liang, el al../. fnr 
< hem Sm l?3. ostu (2UIII. ■ 2001 American Chemical Socicls

response. Several important observations were obtained. First, for E || T. three absorption 
peaks were identified al 1.35. 2.15. and 3.1(1 eV. Second, As E deviates from lhe tube’s 
parallel direction to its normal direction, the absorption intensity weakens significantly, and 
moreover, the spectra red-shift. Third, lhe 4-A SWNTs are transparent for EXT. lhe 
absorp ion spectrum of the (3. 3) SWNT has only one major peak below 4.0 eV. When the 
electric field is parallel to the tube, there are three distinctive absorption peaks below 4 eV 
for (5.(1) SWNTs and two peaks below 4.0 eV for (4, 2). Both of these numbers are consis
tent with the expci imental measurement. Because the parameters in the PM3 Hamiltonian 
were not optimized for lhe TDIIF method, which is employed in the l.DM calculation, 
the calculated absorption spectra red-shift with respect to the experimental spectra. Never
theless. lhe calculated and measured absorption spectra agree qualitatively. It is clear that 
lhe (3,3) SWNT alone can not account for the measured absorption spectrum, and it may 
explain only the first peak at 1.37 eV in the measured spectrum. The calculated absorp
tion spectra of (4.2) and (5.0) are consistent with the measured spectra. Because it is 
energetically unfavorable to lit half caps on (4,2) SWNTs [32|, only the //-terminated 
(4,2) SWNTs may exist. I'he sharp peak al 1.37 eV in lhe measured absorption spectrum 
agrees very well with the first peak in the absorption spectrum of (4.2). This seems to 
indicate that (4.2) SWNT is the most likely candidate. However, the porous AFI crystals 
were thermally treated at 5(MF-8(M>' C curing the synthesis |32|. and it is not clear that // 
atoms nsidc the pores survive the thermal treatment. This may be resolved by examining 
the energetics of //-terminated (4, 2) or the binding energies of the terminal // atoms, and 
additional calculations are required. If the 4-A SWNTs synthesized in the porous AFI crys
tals are of a single chirality, they should be either the //-terminated (4. 2) or (5. ()) SWNTs. 
Of course, a mixture of three SWNTs (4. 2). (3.3). and (5. (!) cannot be ruled out.

l he chirality has a strong influence on lhe absorption spectra of 4-A SWNTs. This differs 
from previous findings |65] of larger-diameter SWNTs. where the chirality has a much abated 
effect on the absorption spectra. Because of their sensitive dependence on lhe chirality, the 
absorption spectra arc used to determine the structure of 4-A SWNT. The optical responses 
of lhe 4-A SWNTs are highly anisotropic. This is because the transition dipole moments 
parallel to the tube arc much larger than the moments perpendicular to the tube, lhe 
anisotropy is clearly demonstrated in Figs. 20. 21. and 22. The optica! responses of the 
4-A SWNTs are highly anisotropic. This is because the transition dipole moments parallel 
to the lube are much larger than the moments perpendicular to the tube. The anisotropy 
is clearly demonstrated in Figs. 20. 21, and 22. Similar to the findings from the larger- 
diameter SWNTs. the optical gaps of the infinite (3.3). (4.2). and (5.(1) SWNTs arc all 
finite, being 0.6. 1.5, and 0.9 eV. respectively. This is despite the fact that lhe LD/X calculation 
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predicts that all three 4-A SWNTs arc metallic |98|. I he existence of the finite optical gap 
is consistent with the measured absorption spectra |8I|.

3.4. Effect of Functionalization on Optical Spectra of Metallic
Single-Walled Carbon Nanotubes

Modern synthetic chemistry and biological processes primarily take place in the solution 
phase. However, SWNTs typically exist in forms of raw ropes or bundles about 10-25 nm in 
diameter and a few micrometers in length. Because SWNT bundles arc entangled together 
in the solid state to form a highly dense, complex network structure, it is difficult to develop 
a dissolution process for the SWNTs. It is possible to wet the SWNT raw soot in refluxing 
nitric acid, whereby the end caps of the tubes are oxidized to carboxylic acid and other 
weakly acidic functionalities [I(M-Itl7|. In certain instances, covalent chemistry on the side 
walls of the SWN Is is a viable route to soluble materials | 1(18]. In fact, the ability to carry' out 
controlled covalent chemistry on the side walls of the SWNTs is a very important step, and 
the achievement of systematic and predictable side-wall chemistry is likely to be a precursor 
to many of the applications that arc currently envisioned for CNTs.

Il was previously known that ionic doping with electron acceptors introduces holes into 
the valence band that can lead to the removal of the interband transitions in semicon
ducting SWNTs [90]. Recently, it was shown that covalent chemistry can covert the metal
lic SWNTs to semiconductors, which may lead to efficient nanotube separation [38. 39]. 
Kamaras et al. showed that reactions with dichloroearbcne rapidly opens a gap near the 
Fermi level of the metallic ('NTs. Strano ct al. demonstrated that diazonium agents allow 
functionalization of SWNTs suspended in aqueous solution with high selectivity and display 
an autocatalytic effect that functionalizes the entire tube. In particular, metallic species are 
selected to react lo the near exclusion of semiconducting SWNTs under controlled condi
tions [39], I hc optical absorption spectrum is used to monitor the valence-to-conduction 
electronic transitions.

Here the LDM-PM3 method is employed to study the effect of functionalization on optical 
absorption spectra of metallic SWNTs. The hydrogenated armchair SWNT (5,5) (C14t)H?n 
and C|WH;„—C(,H4CI) are selected for absorption spectra calculations. When one functional 
group is attached to the tube side wall, a double bond is broken, and the functionalized 
SWNT can receive electrons from neighboring nanotubes or can react with fluoride and 
diazonium salts. In our model, one (—C6H4CI) is attached lo the (5.5) SWNT, and one 
hydrogen atom is put in to neutralize the free radical. The amount of functionality addi
tion is 7.1 mol per 1000 mol carbon when one (—ChH4Cl) functionality is attached to the
(5.5) SWNT. An arene-functionalized (5.5) SWNT is shown in Fig. 24a with —C^H^CI 
attached to one side of the tube and a hydrogen atom to the other side. Optical absorp
tion spectra are calculated for (5.5) SWNTs with and without functionalities. In Fig. 24, 
the effect of functionalization is illustrated by comparing the spectrum of the stand-alone

(a)

Figure 24. (a) The structure of the functionalized (5.5) SWNT: C, „H..,-(\II4CI- II. fh) Absorption spectra of 
the (5.5) metallic SWN I and the functionalized (5. 5) SWNT.



Iheorclical Investigation ol Optical Properties ol Single-Walled Carbon Nanotube 113

W ---------(8.8)«st(3.3)

(a) ---------(6.8)43(3.3)
--------  (3.3)

(8.8)

w (eV)

l-'igtire 25. Absorption spectrum of a (3. 3)(«(8. K) DWNT (solid) is shown together with those of a (3. 3) SWN1 
(dashed) and a (X.X) SW XI (dotted) The external field is (a) perpendicular or (b) parallel to the nanolube axis. 
Both lubes in the LWM are 15.4 A.

(5.5) SWNT with that of the arene-functionalized (5.5) SWNT. The low-energy metallic 
absorption peaks of lhe (5,5) SWNT (below 5 eV) arc greatly reduced in intensities on 
functionalization, in full agreement with measurements [39|. The effect of functionalization 
on the high-energy features near X eV. however, is much less pronounced.

l he effect of functionalization on optical absorption spectra of semiconducting SWNTs 
has also been examined in this study. Similar changes of calculated absorption spectra on

<-) (eV)

figure 26. Absorption spectrum ot a (3.3) (X.X) l)W XI (solid) is shown with (hose ol a (3,3) SW X I (dashed) 
and a (S Js) SW X I (dotted) l he DW N 1 is composed of nanotubes of unequal lengths, t he inner lube ol the 
DWNT is 15.4 A. and the outer tube is 2(1.4 A. The external field is (a) perpendicular or (b) parallel to the 
nanotubc axis.
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Figure 27. Absorption spectrum for a coaxial CNI junction between a (5.5) SWN1 and a (lit. If) SWNT The 
external light field is along the ranotubc axis lhe lowest absorption peak is attributed to the (IO. (I) part of the 
junction via a density-matrix analysis. whereas the second ( 2.4 eV) and lourih ( 4.3 eV) peaks have contributions 
from both the (5 5) and (10. 0) components of the junction

0 2 4 6 8 10
to (eV)

functionalization are found, lite fact that experimentally semiconducting peaks are not 
altered on functionalization in lhe work of Strano et al. [3*>| confirms the high selectivity of 
functionalization in the presence of diazonium agents.

3.5. Absorption Spectra of Multiwalled Nanotubes and
Carbon Nanotube Junctions

Multiwalled nanotubes (MWNTs) are representative of a unique class of self-organized solids 
with structural hierarchy. Compared with SWNTs, modifications in the electronic proper
ties are introduced by the internanotube interactions in MWNTs [109-111]. For instance, 
those interactions are known to cause a small band repulsion and a pseudogap near Eh 
for metallic CNTs [112. I13|. Thin DWN I's have been synthesized by fusion of fullerenes 
encapsulated in SWNTs 41. 1)4] via electron beam irradiation on the carbon peapods, 
which induces coalescence of fullerenes. Optical absorption spectra of DWN Ts will be stud
ied here and compared with those of individual SWNTs that compose the corresponding 
DWN Ts. Also of great interest arc optical properties of the nanotubc junctions [115] and 
CNTs with structural defects, which will be examined here with the help of the I.DM-PM3 
algorithm.

We start out by examining the optical absorption spectra of DWNTs, calculated by the 
semiempirical LDM-PM3 method. In Fig. 25, lhe absorption spectrum of a (3.3)@(8,8) 
DWNT is shown together with those of a (3,3) SWNT and an (X, 8) SWNT of the same 
lengths as the DWNT Both nanotubes in the DWNT are 15.4 A. In the upper panel. Fig. 25a, 
the lineshapes are obtained after applying an external field perpendicular to the nanotubc

Figure 28. Absorption spectrum lor a (NT junction between a ((>. 6) SWNT and a (10.0) SWNT The (6.6) and 
(to. 0) segments arc oriented to form an angle of about tr/n. The external light field is along the direction of the 
(6. (■>) SWN 1 Absorption spectra of a (6. 6) SWN I and a (10. il) SWN I arc also shown for comparison.
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Figure 29. Absorption spectrum for a (6. <1) SWN'I is compared with those of two ((>. (I) SWNTs with detects.

axis. The contribution from lhe inner (3.3) tube seems to be small, and the spectra of lhe 
DWNT resemble that of lhe outer (8. 8) for E ± T. In the lower panel. Pig. 25b. the external 
field is parallel to the nanotube axis (E || T). and the contribution from the inner (3. 3) 
lube is much more significant, l he first absorption peak of the DWNT has a slightly higher 
energy than both isolated (X. X) and (3. 3) SWNTs. High-energy peaks of the SWNT located 
between 4 and 5.5 eV arc a combination of peaks from the isolated SWNTs.

In comparison, absorption spectra of (3.3) and (8.8) DWNT tubes of unequal lengths 
are shown in Fig. 26. l he inner tube of the DWNT is 15.4 A, and the outer tube is 2(1.4 A. 
For E ± T. the absorption spectrum of the DWNT in Fig. 26a. although differing from that 
in Fig. 25a. remains sufficiently close to that of an isolated (8.8) SWNT with a length of 
20.4 A. l he contribution from the inner tube for E 1 T is minimal. For E || T. the absorption 
lineshape of the DWNT is practically a linear combination of those of isolated (3.3) and 
(8,8) SWNTs with similar lengths, as shown in Fig. 26b. Compared with the spectrum in 
Fig. 25b. the major peak positions in Fig. 26b are located at similar energies, and the change 
in nanotube lengths merely alters the relative strengths of the peaks.

Shown in Fig. 27 is the optical absorption spectrum of a coaxial CN 1 junction between a
(5.5) SWN I and a (10.0) SWNT l he external light field is along their common axis. The 
lowest absorption peak is attributed to (he (10,0) part of lhe junction with the help of a 
density-matrix analysis, whereas the second (~2.4 eV) and the forth (~4.3 eV) peaks receive 
contributions front both the (5, 5) and (1(1. 0) components of the junction, l he weakest low- 
energy excitation; that is. the third peak at about 3.2 eV, seems mostly caused by the (10. (!) 
segment

A CNT junction can also be constructed in a noncoaxial form, as demonstrated in Fig. 28. 
I he (6. 6) and (10. 0) segments of the junction are oriented to form an angle of about 77/6 
between them, l he external field is along the direction of the (6. 6) SWN T. Two prominent 
absorption features at about 2.4 eV and 4.3 eV arc found in addition to a structure near 8 eV. 
Overall, the absorption spectrum of the noncoaxial junction is approximately an average 
over those of the (6, 6) and (10, 0) segments, as shown in Fig. 28.

l ast, we examine the effect of wall delects on the optical properties of SWNTs. A combi
nation ol two pairs ol the so-called “5 + 7 member rings (one pentagon and one heptagon) is 
the simplest point defect that keeps the carbon nanotube in a straight line with C:, symmetry. 
In Fig. 29, we modeled two different types of point defects by introducing two pairs of “5 + 7 
member-rings" on a (6,(1) SWNT. (In fact, the noncoaxial CNT junction in Fig. 28 is also 
constructed using two pairs of “5 4- 7 member rings. ’) For example, if one C-C bond at the 
central part of the SWNT is rotated by tf/2 to arrive at two pairs of “5 + 7 member-rings.” 
the type of point defects formed this way is called Defect A. and the original 66 carbon 
hexagons arc now replaced by 62 hexagons and two pairs of "5 + 7 member-rings.” The 
absorption spectrum for a perfect (6. (I) SWNT is compared with those of two (6. (I) SWNTs 
with wall defects in Fig. 29, It is found that such localized wall defects have no significant 
effect on the absorption spectra of the SWNTs.
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ST-PRINCIPLES DENSITY-FUNCTION
:ORY CALCULATIONS
nciples calculations have been carried out on SWNTs 1116. 117). including those with 
lies! diameter (4 A) |I18|. Moreover, the detailed plane-wave <//> initio pseudopo- 
ical density approximation (I.DA) calculations |98| predicted that all small-diameter 
e conductors regardless their chiralities. Recently, nb initio calculations have been 
ed on the anisotropic dielectric response of small-diameter SWNTs in the framework 
dependent density-functional theory' (DFT) [119] with results in good agreement 
•criment.
tased configurations and electronic structures were optimized for finite open (4.4) 
s) SWNTs [ 12()|. and results show that charge distributions and bond lengths angles 
ends and those on tube side walls differ significantly. As DI I studies have revealed, 
ization ol ir and n orbitals and interactions among tt orbitals caused by the 
c of the tube lead to significant modifications of the electronic band structures |98|. 
is plausible that orbital rchybridization and electronic interactions that arc taken 
ounl in the DFT approach may cause quantitative or even qualitative alternations 
implilied tight-binding absorption spectra To supplement our semiempirical LDM 
wc have therefore employed a first-principles DFT approach 1121. 122] to calculate 

cal response of isolated SWNTs with periodic boundary conditions. Calculations arc 
cd with the WIEN97 software package |I23| based on the full potential linearized 
ted plane waves (LAI’W) method. In the LAPW method, the unit cell is divided 
» types of regions: the atomic spheres centered at nuclear sites and the interstitial 
•etween the nonoverlapping spheres. Within the atomic spheres, the wave function is 
d in terms of atomic wave functions, and in the interstitial region the wave function 
ided in terms of plane waves. Optical properties of SWNTs are obtained by com- 
he joint density of slates (JDOS) and transition dipole matrix elements. Results arc 
cd with those from the tight-binding model and the I.DM method in the next section, 
s been shown 1114, 124, 125] that carbon nanotubes can encapsulate fullerenes. 
1124). this so-called carbon peapod is found to be a metal with multicarrics distributed 
»ng the nanotube and on the chain. These examples show that through chemical 
the electronic properties of nanotubes can be modified. As mentioned earlier, potas- 
Jidc has been successfully inserted into a (10. 10) SWNT [41. 42], Lattice distortions 
erved that are attributed to the difference in K:l coordination from the bulk crystal 
interactions between the KI crystal and the tubule wall. Here we employ the first- 
es DFT approach to calculate the electronic structure of the KI intercalated (10. 10) 
nanotube. The resulting KI/SWNT composite is a highly anisotropic one-dimensional 
e whose electronic and optical properties are expected to be considerably modified 
tpcct to those of the bulk halide and the encapsulating nanotube.
ie calculation we adopt the experimental structure of KI(«(10, 10) reported in 
11. l he structure is depicted in Fig. 30. The muffin-tin radii arc set to 1.30. 2.61, and
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table 4. Char Table 4. C harges distribution of Kim (10. 10). i lo. lot SWNT. and KI 

( Tiaiges

Region Region Kl o (10. ID) t 10. 10) KI

l
KJ, 
lntcrstiti.il

C,_„ 401.73 43O.4K
KJ, 2X1.53 — 2X2.53
Interstitial 324.74 2X3.52 5,47
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Figure 31. Calculated hand structure 
front the Fermi level energy.

3.50 atomic units for carbon, potassium, and iodine, respectively. The lattice parair 
Kl(ri (10, 10) in our calculation are a = IS A. b = IS A. and c = 7.384 A. Linear c 
K and I arc put into each nanotube, and each unit cell contains K4l4Ci:tl. Across the 
capillaries. K and I are spaced at intervals of 4.0 A. whereas along the SWNT ca| 
the spacing is 3.69 A to maintain the periodicity. The center-to-center distance I 
the nanotubes in the neighboring cells is set to IS A. which was found to be large 
to prevent intertubulc interactions. To achieve sei I-consistency for the electronic s 
calculations, we use one k point in the irreducible part of the Brillouin zone, and th 
lalion is considered to be achieved when the energy variation for lhe k point betw 
consecutive iterations does not exceed 10 ' Ry.

Table 4 shows the charges in lhe atomic spheres and interstitial regions of Kl(<» 
nanotube. (II). 1(1) nanotube, and linear chain KI. In the calculation of a linear cl 
we use the same unit cell as the Kl(«(l(). 10). with the carbon atoms removed. E; 
cell contains four potassium and iodine atoms. The results show that there is a sul 
amount of charge transfer from the carbon atomic spheres into the interstitial re 
lhe KI intercalation. On the average there are 0.3 electrons per carbon atom trai 
from the atomic sphere region lo the interstitial region, although there arc only abt 
electrons per K and I transferred to the interstitial region. Hence, we expect some sit 
change in the electronic structure of the (10. 10) SWNT on intercalation.

Electronic energy bands for (10. 10) and Kl(rr(l(). 10) CNTs are given in Fig. . 
31b. respectively. The cell used in the calculation for (10. 10) contains 120 carbon 
which is three times as many as those of the (10, 10) unit cell. This is chosen ti 
with the unit cell of K1(«(IO, III), so that a direct comparison of the electronic sti 
between (III. 10) and Kl(<i(l(l. Ill) is mote cleat (see Fig. 31). Both the (10. 10) SW 
Klfo ( 10. 10) SWNT show the metallic character. It is found that I s 5p orbitals contr 
lhe Hat energy bands near — I eV in Fig. 31b. and the conduction hands between I a 
in Fig. 31b contain large contributions from K's 4s orbitals. We plot the DOS in

Figure 31. ( alculatcd hand structures ol <a) (10. 10) carbon nanotiihe and (hi Kl(« ( 10. 10) Energies are 
Irom the l ermi level energy.

lntcrstiti.il
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Figure 32. Density of states for (a) (10. 1(1) carbon narotube and (b) Klf"(l(t. 10). The Fermi level is at OeV.

lhe huge peak al -15 eV in Fig. 32b belongs to K's 3p orbitals, and the peak at —1 eV 
corresponds mainly to the I’s 5p orbitals. Among other contributions, lhe broad band of 
peaks between I and 5 eV contains those from K's 4s orbital. The insets in Fig. 32a and 32b 
show the DOS around the Fermi level.

Figure 33a and 33b show the electron density contour plots for (II). 10) and KI(o (If), 10) 
C'NTs. respectively. Figure 33c and 33d show the positive and negative differences between 
the two. respectively, and positive means the decrease of electron density on the KI 
intercalation, whereas the negative means the increase of density. Clearly there is electron 
transfer from K's 4s to I’s 5p orbitals. Figure 33c shows the decrease of electron density in 
the carbon atomic sphere regions of KI(«(10, 10) CNTs with respect to those of (10, 10). 
whereas Fig. 33d shows the increase of electron density in lhe interstitial region. This shows 
clearly that electrons move from the atomic sphere region of carbon atoms to the interstitial 
region of the tube. Thus, the electrons on the tube become more delocalized on intercalation 
ol potassium iodide.

Figure 34 shows the calculated absorption spectra of KI(u(lll. 10). (10. 10). and Kl. l he 
absorption spectrum of the Kl(« (10. 10) tube is not a simple summation of those of the 
(10. 10) tube and Kl. It is observed that the peak al about 1.8 eV broadens considerably on 
intercalation. This is consistent with our calculation result that the DOS changes near lhe 
Fermi level on the Kl intercalation, as indicated by the insets of Fig. 32.
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Figure 33. ( ontour plots of Ihe electron density of |;i) (Ilf, I Of carbon nanotubc and (b) KI«r( 10, 10). Ihe contour 
plots of a more posi ivelv charged area and one more negatively charged than a simple sum of two charge densities 
ot the nanotubc and KI are shown in (c) and (d) respectively.

Figure 34. Absorption spectrum of Kl(«( 10. 10). (10. 10) nanotubc. and KI.

The electronic structure of potassium iodide intercalated carbon nanotubes has been 
investigated. On intercalation, the electrons in the SWNT become much more delocalized, 
indicating strong interactions between KI and the nanotube wall. The interactions alter the 
electronic structures and the DOS near the Fermi level. The calculated band structures and 
DOSs reflect these changes. The intercalations thus have the potential to drastically change 
the physical properties of CNTs.

5. COMPARISON OF THE TIGHT-BINDING, 
LOCALIZED-DENSITY-MATRIX AND 
DENSITY-FUNCTION THEORY APPROACHES

Re-hybridization of ir and tf orbitals and electronic correlations are known to affect the band 
structure. DOS. anil transition dipole, and thus lead to substantial changes of the absorption 
spectrum. I he light-binding model presented in Section 2 grossly simplifies the electronic 
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dynamics in lhe nanotubes. For example, curvature effects are known to introduce small 
energy gaps in "metallic" zigzag SWN Is that depend inversely on the square of lhe tube 
radius (126-128]. Whether the low-energy absorption features as predicted by lhe tight- 
binding model survive rehybridization and correlation effects remains to he seen. To compare 
with the light-binding low-energy absorption peaks, in this section we explicitly include the 
electron correlations and the a-it orbital rehybridization by using the LDM-PM3 method. 
It is followed by employing the first-principles DFT [123]. It is shown that those low- 
energy spectral features, as illustrated by the light-binding theory-, persist in the presence of 
electron-electron Coulomb interactions |I21)| and rr-77 orbital rehybridization, and arc thus 
universal.

The optical responses of carbon nanotubes are highly anisotropic, as has been demon
strated by the tight-binding ami l.DM calculations in lhe previous sections |48| Because 
of their unique geometric structure, the transition dipoles along the tubule axis T greatly 
exceeds their components perpendicular to T For the purpose here of comparing various 
theoretical predictions of the SWN I optical absorption lineshapes, we again consider only 
the scenario in which the external field is parallel to the tubule axis (E || T), and thus 
the transition occurs exclusively between the orbitals of the same momenta k [51]. Three 
SWN Is, the (6.4). (8.0), and (5.5) nanotubes. have similar diameters, which are 6.83. 
6.26. and 6.78 A, respectively. According to the light-binding theory. (8,0) and (6.4) are 
semiconductors, whereas (5.5) is a metal. In Fig. 35a, we plot the tight-binding absorption 
spectra of (6. 4). (8. ()), and (5. 5) nanotubes. The first two peaks at 0.42|l'/,/,n.| ((l.48|k'lf)n|) 
and (l.80|F';,((ff| ((l.83|l'/7 !.|) belong to lhe semiconducting (6.4) |(8. ())] nanotube, and the 
third peak at I. l8|f’n,F| belongs to the metallic (5.5) nanotube. All three tubes have large 
absorption peaks near 2|f ' | that arc not shown in Fig. 35a.

rhe first two peaks of the (6.4) nanotube are 0.36 and 0.68 of the lowest peak of the 
(5,5) nanotube in energy, which are close to 1/3 and 2/3, respectively. The slight deviation 
stems from a minor departure of the E( E\ contour from the circular feature near the K 
points, the so-called trigonal warping effect [44|; and deviation of Et — from its linear

figure 35. Calculated absorption spectra from (a) the tight-binding model, (b) DFT calculations implemented by 
the WJFM7 code. and (c) the l.DM algorithm arc shown for carbon nanotubes of three chiralities; (8.0) (solid 
lines). (5.5) (dashed lines), and (6.4) (dotted lines); (6.4) and (8.0) are semiconducting, and (5.5) is metallic. 
The symbol A labels the energy of the (5. 5) SU NT's first absorption peak: (a) A = I IS I (b) A = 2.76 eV, and 
(cj A 2.34 eV. A dephasing constant ol (1.16 eV is used to generate the l.DM spectra. Reprinted will) permission 
from (-43). V Zhao et al.. < hem Phys Lett 387. 149 (2004) -< 21104. Elsevier B. V. 
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fchavioi as k moves away from the A point. I hc (8.0) nanotube has a smaller diameter 
s> that its absorption spectrum is blue-shifted compared to that of (6.4), and its first ami 
second peaks arc 0.41 and 0.70 ol (he lowest peak of (5.5). respectively.

I sing the lull-potential I.AI’W method implemented in the W1EN97 code 1123). wc have 
carried out ihc spectral calculations tor two SWNTs: (5.5) and (8.0). Exchange and corre- 
htion arc included via the local spin-density approximation (LSDA) within the DPT, using 
tic Pcrdcw-Waiig parameterization [I3()|. Optical absorption spectra tire calculated via the 
stm-of-states approach, taking into account pairwise interband transitions |I23|. The residi
ng absorption spectra are shown in Fig. 35b. The lowest peak of the (5. 5) nanotubc centers 
; -2.7ft eV. and the lowest two peaks of (8.0) are 1.12 eV and 1.95 eV. which arc 0.41 
aid 0.71 ol the lirst peak of (5.5) (2.7ft eV), respectively. Ihc DFT results of the (5.5) 
aid (8. 0) tubes therefore closely resemble those from the tight-binding model. Wc conclude 
tial the tight-binding spectral features survive the inclusion of <r-7r orbital rchybridization. 
a> shown here by the first-principles DEI' calculations.

The LDM method [48|. which is size consistent and based on the random phase approxi
mation. considers full single-electron excitation configurations and partial multiple-electron 
excitation configurations. Because all valence electrons arc treated explicitly, the LDM cal
culation accounts for the tr- ~ orbital rchybridization as well. Absorption spectra of (5,5) 
aid (9.0) SWNTs calculated by the LDM method were found to be similar, which led 
to our earlier hypothesis that the SWNT absorption lincshapcs are mainly determined by 
tieir diameters |49|. I hc calculated LDM absorption spectra of the (8.0). (5.5). and (6.4) 
SWNTs (( ||.(1, Cuu II,„ and C|4. H^„ respectively) are shown in Fig. 35c. Ihe lengths
o the (8.(1). (5.5). and (6.4) SWNTs are approximately the same, at 14.92. 14.74. and 
|i.64 A. respectively. I hc PM3 Hamiltonian is employed in the LDM calculations. The first 
absorption peak of the (5.5) tube is at 2.34 eV. Ihe lowest two absorption peaks for the 
(b.4) tube arc al 0.84 and 1.72 eV. which arc 0.36 and 0.74 of 2.34 eV. respectively, and 
tor the (8,0) tube, they arc 0.82 and 1.49 eV. which are 0.35 and 0.64 of 2.34 eV. respec
tively. 'Hie LDM results arc in approximate agreement with those from the light-binding 
model. Discrepancies between the LDM and tight-binding results for the (8.0) SWNT may 
be attributed to its small size.

As mentioned earlier, most recent spectrolluorimctric measurements on SWNTs isolated 
ir aqueous surfactant suspensions [35. 131 I33| show that for semiconducting nanolubes 
tie tight-binding model can also account for qualitatively small deviations of absorption 
peaks' dependence on diameter from linear relations, which bear signatures of nanotube 
chiral angles. Although a consensus on the strength on the electron-hole interaction has yet 
to emerge 1134]. that the central value of the energy ratios E:2/F.n is found to be slightly 
smaller than 2 [35, 34, 135| is attributed to many-electron correlation effects [35, 136, 137]. 
First and second van Hove transition wavelengths have been observed directly for 33 
semiconducting SWNTs in a surfactant-suspended bulk sample, with each of these species 
assigned a (n. in) index [35. 131-133], and spectral transitions of six additional SWNT species 
have been reported in a study of SWNTs of slightly larger diameters [138|. From identified 
nanotubes ranging from (1.62 to 1.41 nm in diameter and from 3 to 28 degrees in chiral 
angle, measured transition frequencies have been used to anchor empirical fitting functions 
that allow extrapolation beyond the measured set [35, 135J. Such extrapolated spectral fre
quencies have been recently used to constrain theories on SWNT excitonic effects 1137].

6. SUMMARY
A large literature of theoretical calculations exists on the electronic structures and optical 
properties of SWNTs [20-23. 88. 89, 116, 117. 139, 140], Tight-binding [2O-23| and DFT cal
culations 1116. 1171 conclude that an (in. n) SWNT is conductor if in — n mod 3 = (I and is a 
semiconductor if in — n mod 3 0 [2O-23|. Lin ct al. studied the absorption spectra of bun
dles of SWNTs via a tight-binding model, which stressed the spectral differences caused by 
different chiral angles [511. Margulis anil Gaiduk also proposed a single-electron theory’ for 
the absorption spectra of a bundle of diameter-distributed SWNTs that gave good agreement 
with measurements with regard to both the position and spectral shape of the fundamental 
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absorption edge 11411. Hagen and Hertel discussed how tight-binding band-structure cal
culations with a chirality- and diameter-dependent nearest-neighbor-hopping integral may 
be used lo relate well-resolved features in the absorption spectra of individual SWNTs to 
electronic excitations in specific tube types 1142). Our earlier LDM study [49] on the 4-A 
SWNTs shows that the absorption spectra of the (4. 2). (3. 3). and (5, (I) SWNTs are distinct, 
although their diameters are virtually the same (4.2. 4.1, and 3.9 A. respectively). When 
the CNT diameter </, is comparable to C-C bond length a. adjacent tt orbitals overlap, 
l he extent of the orbital overlaps depends on the orientation along which the tube is rolled 
up. and this leads to the spectral lineshapes that arc sensitive to the chiral angles. With 
support from both lhe DFT and LDM calculations, it can be concluded that to the lowest 
order in a/d,. the simple tight-binding model provides an accurate description of low-energy 
optical processes in SWNTs |43|. l he diameters of the (5.5), (6,4), and (8.(1) SWNTs are 
modestly large compared to the C-C bond length. Greater SWNT diameters are expected to 
bring the DFT and I DM calculations into closer agreement with lhe tight-binding results. In 
addition lo its success in describing the nanotubes’ band structures, the tight-binding model 
provides a remarkably accurate overall account of the low-energy absorption lineshapes. 
Optical properties of a series of finite-size SWNTs. including those with the smallest diam
eter (4 A). DWNTs. CNT junctions, and SWNTs with localized defects have been studied 
systematically. Their absorption spectra are calculated with the LDM method. 'I'he Pariser- 
Parr-Pople (PPP) and MNDO parametric method 3 (PM3) semiempirical Hamiltonians 
arc employed. The finite optical gaps are predicted for the infinite long SWNTs. Strong 
anisotropy of the dynamic polarizabilities is found for 4-A SWNTs [143]. Calculated results 
on 4-A SWNTs arc in good agreement with the recent experimental findings. Furthermore, 
the compositions of the dipole-induced excitations are examined by projecting the corre
sponding density matrices onto the I lartree-Fock molecular orbital representation. Via the 
DFT approach electronic and optical properties of a potassium iodide intercalated (10, 10) 
nanotubc are also calculated.

To summarize, a multiapproached picture is presented for optical absorption spectra of 
single-walled carbon nanotubes (SWNTs). and theories on SWNT optical properties of incre
mental sophistication have been reviewed. On the basis of the simplified treatment of the 
tight-binding model, a visual, intuitive connection is given between optical absorption line
shapes and the underlying carbon nanotubc structures. Within (he tight-binding model, the 
absorption spectra of SWNTs can be linked directly to plots of energy contours and transi
tion dipoles of a graphene sheet. Calculations based on two distinctively different methods, 
lhe LDM and DEI approaches, result in common low-energy absorption spectral features 
for SWNTs with diameters much larger than the C-C bond length. These spectral fea
tures survive (r-ir orbital rehybridization and electronic correlations and are further sup
ported by measured absorption spectra and EELS of SWNT bundles. Among many useful 
results presented here is the vertical transition dipole d between the valence-band wave 
function |d>, (k)> and the corresponding conduction-band wave function |<A (k)) defined as 
d s {<{> (k )|er|d>, (k)) (cf. Fig. 2c).

Emerging fields of nanotechnology hold the promise of overcoming limitations of exist
ing technologies on nanoscale manipulation. In particular, these new developments provide 
approaches for the creation of chemical-biological hybrid nanocomposites that can have a 
variety of applications such as being introduced into cells, and they can subsequently be 
used to initiate intracellular processes or biochemical reactions. Such nanocomposites may 
advance medical biotechnology as much as introduce new possibilities in chemistry and mate
rial sciences. SWNTs and their derivatives are among the simplest nanocomposites that are 
currently undergoing intense experimental and theoretical investigations. Various manufac
turing methods produce SWNTs in form of bundles or ropes intertwined with the van der 
Waals interactions, and identification of spectroscopic signatures and correlation with nano
tubc structures helps purify and segregate SWNTs. Optical properties of SWNTS therefore 
become indispensable to structure-based nanotubc characterization and separation.

Recently discovered near-infrared band-gap phololumincsccnce of dispersed, micelle- 
isolated semiconducting SWNTs allow optical-spectra-based characterization of SWNT struc
tures. Optical measurements of individual SWNTs in aqueous surfactant suspensions provide 
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information that is sensitive to both SWNT chiralities and diameters [35, I3I-I33|. l ime- 
resolved carrier dynamics in SWN Is have been investigated by means ol two-color pump
probe techniques 1144,. Using various pimp-probe wavelengths and intensities, femtosecond 
dynamics ol photocxcilations in liltns containing semiconducting and metallic SWN Is have 
also been studied to probe confined excitons and charge carriers |145|. More stringent tests 
on theoretical models of SWNT optical properties will soon be available from Raman, 
luminescence, and ultralast spectroscopic measurements that are being carried out for iso
lated SWNTs as well as for SWN I bundles.
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1. INTRODUCTION
1.1. Nanoworld
The little word nano has been rapidly insinuating itscll into our consciousness because of 
its big potential |l|. In the media, nano has captured headlines on television news channels 
and almost every online technical and scientific journal. Physicists, chemists, biologists, engi
neers. computer scientists, physicians, and other researchers arc intimately involved in nano 
development and are able lo control and study materials in the nanoworld, leading to great 
achievements in nano research 111. For example, the Nobel Prize has been awarded several 
times for nano research, the Feynman Prize was created lo recognize lhe accomplishments 
of nanoscientisls. and Science magazine named a nano development as Breakthrough of the 
Year in 2001. Innovations in nano-related fields have already sparked a Hurry of commercial 
inventions, for example, faster-burning rocket fuel additives, nano skin creams and suntan 
lotions, and nano-enhanced tennis balls |l|. Then, what is the nano? I'he nano means one 
billionth. One nanometer (abbreviated as I nm) is It) '' of a meter. To get a sense of the 
nano scale, a human hair measures 50.000 nm wide, and IO hydrogen atoms in a line make 
up about I nm.

What arc nanoscience and nanorechnolot^'l Nanoscience is the study of the fundamental 
principles of molecules and structures with at least one dimension roughly between I and 
l()() nm 11], These structures arc (he so-called nanostructures. As for nanotechnology it talks 
about the technological applications of these nanostructures into useful nanoscale devices [ 1 ]. 
In recent years, nanoscience and nanotechnology have become one of the most important 
and exciting fields in physics, chemistry, biology, medicine, material science, and engineer
ing, promising us many breakthroughs and showing us new technological directions for a 
wide range of applications. All these are mainly based on two fundamental facts: (I) parti
cles in the nanoworld are smaller than the characteristic lengths associated with particular 
phenomena, and (2) these nanoparticles will lead to new behaviors that strongly depend on 
their sizes.

Actually, functional nanodevices and nanostructures have been on Earth since the begin
ning of life itself and arc of great interest to many researchers who try to understand the 
unusual behaviors of particles or matters displayed in the nanoworld. For example, the 
strong shells of abalone represent a natural demonstration that a structure fabricated from 
nanoparticles can be much stronger [2|. Roman glassmakers in the fourth century A.D. fab
ricated glasses containing nanosized metals |2|. The Lycurgus cup. which depicts the death 
ot King Lycurgus and resides in the British Museum in London, is made from a kind of glass 
that contains gold and silver nanoparticles |2|. As a light source is placed inside the cup. 
the color of the Lycurgus cup varies from a deep red to green. In 1857. Michael Faraday 
attempted lo understand how metal particles affect the color of church windows |2|. In 1908. 
Gustav Mie was the first to explain why the color of lhe glasses depends on the metal size [2|. 
Photography depends on production of silver nanoparticles that are sensitive to light |2].

In the 1980s interest in nanoscience anil nanotechnology increased because of the 
rapid development of appropriate fabrication techniques for nanostructures (see details in
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Rcl. |2]). So far. the electronic structure, conductivity, reactivity, melting temperature, and 
magnetic and mechanical properties of particles or matters have been observed lo change 
greatly its these particles or matters become smaller than critical sizes. And these size
dependent properties have led to tailorablc or engineered techniques that expose lo us a 
wide and diverse range of technological areas, for example, making stronger and lighter 
materials, increasing the storage capacity of magnetic tapes, providing faster sensors and 
switches for computers, and shortening the delivery lime of nanostructured pharmaceuti
cals to the body’s circulators' systems. Obviously, these extensive studies in nanoscience and 
nanotechnology have led to a range of commercial applications in electronics, photonics, 
spintronics, sensors, military uses, medicine, solar cells, fuel cells, and so on [3], As men
tioned. the research area of nanoscience and nanotechnology is interdisciplinary, covering a 
wide variety of subjects in physics, chemistry, biology, medicine, material science, and engi
neering. C ertainly, the best and most exciting days in nanoscience and nanotechnology are 
still ahead. This chapter is concerned with only the nonlinear optical (NLO) properties of 
carbon nanostructures.

1.2. Carbon Nanostructures
Carbon was known in ancient times, and its name came from the Latin carbo, "coal.’ Il is 
the key element not only of terrestrial life but also of minerals (carbonates) and fossil fuels 
(oil. gas, and coal), as well as a minor but essential component of our atmosphere.

1.2.1. Nature of Carbon Bonds
Because carbon bonding plays an important role in building organic molecules of Ide and 
carbon nanostructures, here we briefly introduce the nature of the carbon bond. Il is known 
that carbon atom contains six electrons distributed over the lowest energy levels of the carbon 
atom. The lowest energy level is Is. occupied by two electrons with oppositely paired electron 
spins. Both Is electrons do not participate in the chemical bonding. The next four electrons 
arc in the 2s. 2p,. 2p,. and 2p. orbitals. The 2s and the three 2p orbitals are hybridized to 
form three kinds of chemical bonds of carbon with other atoms, namely, sp" hybridization: 
(I) diagonal sp1 with the resulting bond angle of 1X0". (2) trigonal sp-’ with the bond angle 
ol 120°, and (■<) tetrahedral sp’ with the bond angle of IO9°2<S'. It is the diverse nature of 
the carbon bond that allows carbon to form many interesting nanostructures, particularly 
carbon nanotubes. Sec examples shown in Fig. 1.

1.2.2. Graphite and Diamond
Elemental carbon is found in nature as its allotropes graphite and diamond, which are of 
vastly differing abundance and thus also of differing value. Graphite is known as one stable 
and abundant solid form of pure carbon |4. 5). As shown in Fig. lb. this form has three strong 

I'igure I. Examples of sp ’ hvbriili/alion <« = 1.2. t): la) acetylene with a diagonal so1, (hi graphitic with i trigonal 
sp . and (c) diamond with a tetrahedral sp'.
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sp trigonal bonds, with an equal distance ol (1.142 nm and weak tt bonds perpendicular 
to successive sheets with an interplane distance of 0.34 nm |6|. Diamond is the hardest of 
all natural materials and slightly less stable and less abundant crystallographic form of pure 
carbon [4], As shown in Fig. Ic. each carbon atom in diamond is covalently bonded to four 
neighbors via sp' hybridization al the apexes of a regular tetrahedron.

1.2.3. Cubane and Carbon Dodecahedron
Before 1964. it was generally believed that there exist only three kinds of carbon bond angles, 
as mentioned previously. In that year. Phil Eaton of the University of Chicago synthesized 
a square carbon molecule. CSHS. named cubane |2|. as shown in Fig. 2a. Twenty years 
later. L. Paquette of the Ohio State University synthesized a C;,.H„ molecule that has a 
dodecahedron shape [2] as shown in Fig. 2b, Both hydrocarbon molecules have carbon bond 
angles ranging from l()8c to I l(l", different from the standard hybridization values mentioned 
before. This implies the formation of new carbon nanostructures, w hich may require different 
bonding angles.

1.2.4. Spherically Shaped Carbon Nanostructures
This kind of carbon nanostructure includes fullerenes, carbon blacks, carbon nanoparticles, 
carbon onions, and porous carbons [4|.
1.2.4.1. Fullerenes Laser evaporation of a carbon substrate such as graphite can be used 
to make carbon clusters with the apparatus shown in Fig. 3. The neutral cluster beam is 
photoionized hy a UV laser and analyzed by a mass spectrometer. In 1984, Rohlfing. Cox, 
and Kaldor [7| reported a typical mass spectrum of carbon clusters. For the carbon number 
N less than 30. there are clusters for every N. These small clusters have linear structures 
if N is odd and closed nonplanar monocyclic geometries if N is even. The carbon struc
tures with A = 3, 11, 15, 19, and 23 have the sp hybridization and the standard bond angle 
(180°) and aic more prominent and more stable [8|. However, the closed structures have 
angles between (he carbon bonds, which are different from lhe standard hybridization pro
cess previously mentioned. More details can be found in Ref. [8], For the carbon number 
N > 40. there are carbon clusters foi even N. Especially, there is a very large mass peak 
al 60. In 1985, to explain and understand this peak, Kroto el al. |9| proposed a CN) struc
ture (see Fig. 4a), which Osawa [10] theoretically predicted to be chemically stable in 1972. 
This structure has 20 hexagonal and 12 pentagonal faces and 60 vertices (each vertice is 
at the intersection of two hexagonal and one pentagonal faces). This was also a somewhat 
fortuitous result of research on the nature of matter in outer space that involved studies of 
light transmission through interstellar dust, lhe small particles of matter that fill the regions 
of outer space between stars and galaxies. This discovery brought us a new form of pure 
carbon, named fullerenes |l 1-16] (sec Fig. 4 for detailed structures of several fullerenes that 
are discussed in this chapter), which are made of an even number of three-coordinated

Figure 2. Carbon structures: (a) a cubane (C JI.1: (b) carbon dodecahedron siruclure (’.,,11.., (Ft atoms not shown).
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Figure 3. Apparatus lo make carbon nanoparticles by laser-induced evaporation of carbon atoms Iroin the surlace 
of a graphite Helium is used to cool the hot jet ot carbon and torn, carbon clusters, which are skimmed to a mass 
spectrometer.

sp- carbon atoms that arrange themselves into 12 pentagonal faces and any number (>l) 
of hexagonal laces. This kind of carbon nanostructure can crystallize in a variety of three- 
dimensional structures [17. 18], The macroscopic synthesis of a soot 117|. which contains C(ll) 
sand other fullerenes in large compounds, and the straightforward purification techniques 
of the soot, which make the pure fullerene materials available, have led lo extensive stud
ies on the structural, mechanical, electronic, magnetic, and optical properties of fullerenes 
119-29], Meanwhile, fullerenes can be doped in several different ways—for example, endohe- 
dral. cxohcdral. and substitutional doping—because of their unique electronic properties [22] 
(see Fig. 5>. These doped fullerenes can be semiconducting, metallic, or even supercon
ducting |22|. Fullerenes are entirely insoluable in water. However, suitable functionalization 
makes the fullerenes soluable. and studies on water-soluable fullerene derivatives led to the 
discovery of the interaction organolullcrenes with DNA. proteins, and living cells. See details 
reviewed by Nakamura and Isobc [30|.

1.2.4.2. Carbon Blacks Classical carbon blacks, which arc finely divided carbon particles, 
are produced by hydrocarbon dehydrogenation [311. They are widely used in industry as a 
filler to modify the mechanical, electrical, and optical properties of the materials in which 
they are dispersed |31|. l he microcrystallinc structures of several types of carbon blacks in 
sizes of 1(1(1 nm and higher were established in as-synthesized or heat-treated (up to 3<MMI“C) 
samples. The as synthesized carbon blacks arc composed of small graphite like layers, where 
the dimensions of the layers are described by two characteristic lengths. (the crystalline 
size in the plane of the graphene layers) and L, (the size along the c-axis perpendicular to 
lhe planes), and a concentric organization of the graphite layers in each individual particle.

Figure 4. Sonic fullerene structures discussed in this chapter (a) C'.„ < l„): <h) (!) .,.); (c) ( „ (II). (d)< (Id);
(c) ( , (C 11. < I > < . (< 2); (gi < . It) I. ih) ( -. (I).. I); (i) ( . (I) ;2); Ip I . , (C I. lk> I ., (D I. ill (
(IX,); (m) ( , (I) ); In) Cu (IX); (o) (I) >. (pi C . (l> ); (ip ( (I) ); and (r) <’ (F> ) the specifn
symmetry ol each carbon structure is given.
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figures. Three doping methods ol permanently altering the charge distribution and electronic structures of the 
parent fullerenes: (a) the inclusion ot atoms or ions inside the fullerene cage, (b) the substitution of one or more 
of the carbon atoms with dopants, and (el the introduction of dopant species surrounding the fullerene.

Subsequent heat treatment of as-synthesized carbon blacks produced polygonized particles 
with an empty core and a well-graphitized carbon shell centered around ihe growth starting 
point [31 ].
1.2.4.3. Carbon Nanoparticles I he carbon nanoparticles arc often found along the syn
thesis of carbon nanotubes (as described later). They are hollow nanoparticles or filled 
nanocapsules. The filled nanocapsules are synthesized as the carbon electrode or carbon 
target is fabricated from a mixture of carbon with a small amount of an appropriate transi
tion metal or rare earth metal |4|. The carbon-coaled, for example. YC2 nanoparticle (30 to 
7(1 nm in diameter) [32] consists of a few nanometers of disordered carbon or of polygonized 
graphene shells.

1.2.4.4. Carbon Onions Upon intense electron beam irradiation of carbon nanoparti
cles. hollow concentric carbon spheres (spherical multishells) can be formed with faceted 
shapes |33]. An innermost sphere with an inner diameter of 0.71 nm corresponds to C,4I. 
This kind of structure can be synthesized up to 10 nm. The inner spheres contain no dan
gling bonds and are stable under further electron bombardment |4|. Carbon onions can 
serve as nanoscopic pressure cells for diamond formation when they are heated to 700cC 
and irradiated with electrons |4|.
1.2.4.5. Porous Carbons Porous carbons can be macropores (larger than 100 nm in diam
eter). mesopores (2 to 100 nm in diameter), or micropore (less than 2 nm in diameter) [34], 
They have very high surface areas and pores of nanometer size, similar to those of fullerenes, 
and may be in the form of cages or tunnels. Although the surfaces of the carbon nanoporcs 
contain a high density of dangling bonds and surface states, the surfaces of fullerenes have 
no dangling bonds [4],

1.2.5. Rod-Shaped Carbon Nanostructures
The study of rod-shaped carbon nanostructures was greatly stimulated by the discovery of 
the existence of carbon tubules or nanotubes [35] and the subsequent report of the synthesis 
of large quantities of carbon nanotubes [22. 36-56]. Generally speaking, single-walled carbon 
nanotubes (SWNT) can be made if only one graphene sheet is rolled, and multiwalled carbon 
nanotubes (MWNT) can be obtained if a few stacked graphitic shells arc built from perfectly 
concentric cylinders or a single graphene sheet is rolled as a scroll. Theoretically, there are 
three major classifications of C’w,-based tubules or nanotubes [22. 57-61]: armchair carbon 
nanotube (see Fig. 6a), zigzag carbon nanotube (see Fig. 6b). and chiral carbon nanotubes 
(see Fig. 6c), depending on whether they are related to a fivefold, threefold, or twofold 
axis relative lo the CM, molecule. First wc consider the tube formed along a fivefold axis, 
which is the easiest to visualize and can be represented by the formula Cw|(/xH|, where i 
is a positive integer. We can think of this tubule as follows: by culling a Cw, molecule into 
two parts along its equatorial line and then inserting one row of live armchair hexagons, 
one obtains C7(). More generally, adding / rows of armchair hexagons, one then obtains a 
Gul),.|ti molecule (armchair tubule [22. 57-61|). Figure 6a shows an example of an armchair 
nanotube. Closely related to the armchair tube based on a fivefold axis is C(1I))(X|S. w'hich is 
based on a threefold axis. In detail, it is formed as follows: by cutting CM( into two parts

Nonline.it
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ia> Armchair nanotube ' b> Zigzag nanotube

ic> Chiral nanolubc

1'igiiH' 6. A schematic model tor a single-wall carbon nanotube with the nanoiiibc axis normal to (a) the direction 
<! n <i (an armchair nanotube). (b) the direction </> II (a zigzag nanotube), and (c) a general direction tl ■ <!> 
n <> (a chiral nanotubc). A chiral vector l'„ nib + mi is defined on lhe honeycomb lattice ol carbon atoms by lhe 
nail vectors a anil b and lhe chiral angle </> with respect lo lhe zigzag axis a (</> = (I).

along the zigzag edges and inserting i rows of nine zigzag hexagons, one gels a CUI1(,|S 
molecule (zigzag lubulc [22. 57-61]). Figure 6b shows an example ot a zigzag tubule. These 
tubules are of scientific interest as carbon fibers, which arc today commercially important 
for their extraordinary' high modulus and strength. In addition to the armchair and zigzag 
tubules, a large number of chiral carbon nanolubes, as shown in Fig. 6c. can be formed with a 
screw axis along the axis of the tubule and with a variety of "hemisphericaT'-like caps. These 
general carbon nanotubes can be specified mathematically in terms of the tubule diameter 
(I and chiral angle </> (see Fig. 6). where a chiral vector (rolling vector) TZ| [22]

T/t = na F (1)

is shown. The vector T„ connects two crystallographically equivalent sites on a two- 
dimensional graphene structure. The construction in Fig. 6 shows the chiral angle </> of the 
lubulc with respect to lhe zigzag direction a (</> = (I) and two units, a and b. of the hexagonal 
honeycomb lattice. An ensemble of possible chiral vectors can be specified by T/( in terms of 
pairs of integers (zn. ii) [22. 57-61]. Each pair of integers (/n. n) defines a different way of 
rolling the graphene sheet to form a carbon nanotube. In detail, the cylinder connecting the 
two hemispherical caps of Fig. 6 is formed by superimposing the two ends of the vector T/r 
I he cylinder joint shown in Fig. 6 is made by joining the vertical and parallel lines. The chiral 
tubule thus generated has no distortion of bond angles other than distortions caused by the 
cylindrical curvature of the tubule. Differences in chiral angle <!> and in the tubule diameter 
d, give rise to differences in the properties of the various carbon nanotubes. In the (/n. zi) 
notation for specifying the chiral vector the vectors (//.(I) denote zigzag tubules, the 
vectors (nt.ni) denote armchair tubules, and all other vectors (n./n) correspond to chiral 
tubules [22. 57-611. Since both right- and left-handed chirality is possible for chiral tubules, 
it is expected that chiral tubules are optically active to either right or left circularly polarized 
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light propagating along the tubule axis. In terms of the integers (n. in). lhe tubule diameter 
d, is given by [22]

= T>/„ = +«=>„_ (2)
where tit-, is the nearest-neighbor c-c distance (= 1.421 A in graphite [22]), Th is the length 
of the chiral vector T,,. and the chiral angle <f> is given by [22]

For example, the armchair tubule specified by (5,5) in Fig. 6a has d, — 6.88 A and <t> — zr/6. 
the zigzag tubule specified by (9.0) in Fig. 6b has a theoretical tubule diameter of </, = 
7.15 A and </» = (). and the chiral tubule specified by (10.5) in Fig. 6c has d, = 10.36 A 
and <1> = 0.7137. all derived from hemispherical caps lor the CMI molecule and assuming an 
average = 1.44 A appropriate for CN). 1 et q be the largest common divisor in tn and n. 
Then, the atom number N per unit cell is equal to |57—611

,V - + (4)
</

if (in — n) is not a multiple of 3 c/ or 157-61]

N = 4(»r 4->nn-b >r) (5)
3?

if (in — n) is a multiple of 3r/. Similar lo fullerenes, carbon nanolubes can be doped inside, 
on, and outside the surface.

Since 1991, carbon nanotubes have been extensively studied, both theoretically and experi
mentally, because of their unique geometric structures and remarkable mechanical, chemical, 
electronic, magnetic, and transport properties. The small diameter (at scale of nanometers) 
and the long length (al lhe older of microns) lead to such large aspect ratios that the car
bon nanotubes act as ideal one-dimensional systems. Their rope crystallites offer host lattice 
for intercalation and storage. All these characteristics make carbon nanotubes the focus of 
extensive studies in nanoscale science and technology, with potential applications in various 
materials and devices. The possibility of filling the hollow cores of carbon nanotubes with 
selected metals opens up exciting possibilities with regard to lhe physics of low-dimensional 
transport, magnetism, and superconductivity |4], The possibility of connecting carbon nano- 
tubes of different diameters and chirality has generated considerable interest because these 
nanotube junctions can serve as potential building blocks for nanoscale electronic devices [4], 
Nanostructured template channels have been used to grow individual Y-junction carbon 
nanotube heterostructures (62]. In summary, carbon nanotubes and their derivatives have 
been recognized as a fascinating material about to trigger a revolution in nanodevices, optical 
computing, optical communication, carbon chemistry, and new functional structural mate
rials. Readers can find more details about the synthesis, physical and chemical properties, 
and technological applications of carbon nanotubes in recent books [22, 63-70] and review 
articles [71-77],

1.2.6. Other Carbon Nanostructures
Other carbon nanostructures include (I) carbon nanoparallelepipeds |78], produced from 
arc evaporation of carbon with alkaline earth metals and containing 5 to 20 layers of mul
tiwalled graphitic carbon and 20 lo 100 nm edge length; (2) rings of single-walled carbon 
nanolubes |79| or multiwalled carbon nanotubes [80]; (3) graphitic nanocones such as disks 
(no pentagons), five types of cones (one lo five pentagons), and open tubes (six pentagons) 
produced by pyrolyzing a continuous How of heavy oil inside an industrial-grade carbon 
arc plasma generator |8I|: (4) carbon nanohorns [82]; (5) carbon beaded cone microstruc
tures [83]; and (6) carbon microtrees |84|.
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1.3. Outline
Recently. Bianchctti et al. |85] presented and reviewed the most complete set of calcula
tions m dale ol the ground-state electronic properties and ol the linear optical response 
ol linear carbon nanostructures C\ using uh initio methods based on local density and on 
lime-dependent local density approximations. In this chapter, we focus on reviewing recent 
studies on the second-order optical nonlinearities (characterized by the lirst-order hyperpo
larizability (i) and the third-order optical nonlinearities (characterized by the second-order 
hyperpolarizahility y) of carbon nanostructures. mainly spherically and rod-shaped struc
tures (note: until now. there is no study on the nonlinear optical (NLO) properties of carbon 
onions, carbon nanoparticles, carbon nanoparallelepipeds, s of single-walled carbon nano
tubes. graphitic nanocones. carbon nanohorns, carbon-beaded cone microstructures, and 
carbon microtrees), in Sections 3 and 4, respectively. For further understanding of the con
tents presented in Sections 3 and 4. we introduce in Section 2 the nonlinear optical processes 
and several theoretical tools related to our discussions.

On the other hand, a lot of laser sources—for example, dye lasers and Raman lasers— 
arc widely used in many areas of science and technology. Naturally, a potential hazard lor 
human eyes and other optical sensors arises because of the laser power. Hence, protecting 
all sensors and human eyes against the hazard is a very important task that has stimulated 
many research groups to search for good optical limiters. This kind of device is designed 
to keep the power, irradiance, energy, or fluence transmitted by an optical system below 
some specified maximum value, regardless of the magnitude of the input. Also, it must do 
this while maintaining high transmittance at low input powers. In general, there are two 
obvious ways. One achieves optical limiting by active control. In this way. a sensor is used 
Io monitor input light levels, activating through some processor a modulator or shutter that 
in turn limits the transmitted light. The iris and blink response of our human eyes are good 
examples. However, the response speed in this way is limited to about 0.1 seconds, and thus 
any intense pulse of lasers shorter than 0.1 second would get through our defense systems 
of eyes and damage our retinas before lhe eyes arc able to make a response. Another way 
to realize optical limiting uses narrow-line spectral litters. In this way, as long as the laser 
wavelength is known—for example, our laboratory laser safety goggles—the limiting works 
very well. However, it would not be effective against a tunable laser. To our delight, we can 
develop passive systems that use NLO materials. These NLO materials function as combined 
sensors, processor and modulator. Obviously, this would lead to potential optical limiters 
with high speed, simplicity, compactness, ami low cost. Many materials exhibit these types 
of effects that produce optical limiting, but these effects arc usually too small for practical 
optical limiting applications. Hence, research to date on optical limiting has mainly focused 
on the search for new or modified materials with stronger nonlinearities and on how to 
optimally use the best NLO materials available. Extensive studies have shown that carbon 
nanostructures would be good candidates for optical limiters. Therefore. Section 5 reviews 
recent developments in optical limiting studies of carbon nanostructures.

2. NONLINEAR OPTICAL INTERACTIONS AND
THEORETICAL TOOLS

2.1. Nonlinear Optical Interactions
In the decades since the invention of the laser and lhe first observations of NLO phenomena 
by Franken et al. |86], interest in this topic has continuously increased, and the field of non
linear optics was born. It was recognized that many NLO effects—for example, frequency 
doubling and tripling—stimulated Raman scattering, and sum- and difference-frequency mix
ingcan have useful practical applications in information and telecommunication technologies 
|87-l()l|. such as all-optical switching, modulating and computing devices, optical bistable 
devices, and optical limiters. To introduce the concept of optical nonlinearity, one can express 
the field-induced dipole moment per unit volume, that is. the polarization Ptt). in a power 
scries cl the strength of the applied optical field F(/) [95]. Assuming that this optical field 
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vector can be represented as the discrete sum ol a number of frequency components as the 
compact form |95|

F(r) = E F(w„.)<- (6)

one can write the polarization P(t) as a function of /\(<u„). that is, the Fourier components 
of F(z). in the Gaussian system of units

p(')=EE E 'TWk (7)
rn = 1 w

with

7’(,,W.)= E (8)
i— i. t :

= E E A;,*'<‘^ ~ (% + w.J/Jw,,,)/7. («»„) (9)
..A t, v, : into)

i''"(•»„) = E E a,
i. A I \. z

■ I (10)

where the indices ijkl refer to the Cartesian components of the applied optical field, the 
notation (mo) or (mop) indicates that the sum o»„, + <i>„ or wm -f- <t»„ + is to be held 
fixed in performing lhe summation over m. o, and p. I'he coefficients y”>, and ^1’) are 
known as the linear optical and second- and third-order nonlinear optical susceptibilities of 
the material system.

Microscopically, the polarization of a material such ns a molecular crystal is attributed 
to the molecular polarization. The molecular polarizabilities are defined as the expansion 
coefficients of the molecular polarization in terms of the power series of the external field. 
Two types of definition are used in general: one type defined in terms of a Taylor expan
sion of the molecular polarization induced by lhe external field, and another type defined in 
terms of a perturbation expansion. Wc adopt the later definition because the susceptibilities 
are defined similarly. That is. for atoms or molecules they refer to lhe linear polarizability 
n (= ,\'"/p). the first-order hyperpolarizability (3 (= and the second-order hyper
polarizability y (= x'y'/p). respectively, where p is the number density of molecules in a 
material. Assuming that the molecule-field coupling system is initially prepared in the gth 
state (for example, ground state), we can derive «. 0. and y by using a perturbation the
ory [95]. The linear optical polarizability afw,,) of molecule at optical frequency <u;, can 
be 124]

where Umn is the transition-dipole matrix element between the nth and mth states and a>m„ 
is the corresponding transition frequency. The first and second terms in this equation can be 
interpreted as the resonant and antiresonant contributions to the linear optical polarizability. 
I3(a>a) of molecule at optical frequency w„ = + <u, is given by [24]

w,,) = A ;<">E
mn - W,. - <•>,/) (w,„x -

//' U'

+ %.+ %) (12)

where <-> denotes the intrinsic permutation operator (this operator tells us to average the 
expression that follows it over both permutations of frequencies w and or of the applied
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lield. The Cartesian indices / and A should be permuted simultaneously). The second-order 
hypcrpolarizability y(w„) of molecule al w,t = m, -I- can be [24|

W,.(U
- ", - "7 -

I!1 /M II1 li1'

("\v + ", + ", + "„)(",„g - ",,)

L/i L" I'1' Uk
(d>*x + wr)(u>*M + It), + (Vtl + ll), + to/( + Cl),,)

Available studies [87-9(1. 1(J2| have shown that the second-order NLO interaction can 
occur only in noncentrosymmetric crystals that do not display inversion symmetry', whereas 
the third-order NLO interactions can occur for both centrosymmetric and noncentrosym
metric media. Assuming that the two input waves are al to,, and cd,,,. wc can have from 
Eq. (9) second-harmonic generation (SHG), sum-frequency generation (SFG2), difference
frequency generation (DEG), and optical rectification (OR.), respectively. See the examples 
in Table 1 If the nonlinear crystal used in a DFG process is placed inside an optical reso- 
nantor. the frequency ot the output signal or idler field can build up to large values, resulting 
in the device of optical parametric oscillator (OPO). which is used primarily at infrared 
wavelengths, where other sources of tunable radiation arc not readily available. Because 
the nonlinear polarization can efficiently produce an output signal only if a certain phase
matching condition is satisfied, and this condition cannot be satisfied for more than one 
frequency component of the nonlinear polarization, no more than one of these frequency 
components shown in Eq. (12) will be presented with any appreciable intensity in the radia
tion generated by the nonlinear optical interaction. Operationally, one often chooses which 
frequency component will be radiated by properly selecting the polarization of the input 
radiation and orientation of the nonlinear crystal.

Based on Eq. (10), wc can get many third-order Nl.O processes, for example, third- 
harmonic generation (THG) if w,„ = = w;, = w. Other third-order polarizations can be
reached by varying the three frequencies as shown in Table 1. (For more details, refer to 
standard textbooks about nonlinear optics, such as Refs. [87-101].) Here we briefly describe

Table I. The second- and third-order nonlinear processes and the corresponding frequency terms arising from the 
nonlinear polarization.

Nonlinear Optical Process Polarization /’""(«>„) Input Example

Second harmonic generation (SHG)
Sum frequency generation (SFG2) 
Difference-frequency generation (DFG3)
Optical rectification (OR)

= 2w„)
P‘ ''(<»„ = 10 „ -1- «>„,) 

•'(«,„ = w„ - w,„)
/■'-'(<«„ =0)

to,, tO,„

ltJ. >
co., — ~ <o,()

Third harmonic generation (THG) /J‘’'(<«„ =3w,.) to. = CO, = (O„,
Sum frequency generation (SFG3) /”"(«„ = 2<U. -r wm) tOf, = to (O.„
Frequency mixing (FM) /’"'(<»„ = »„ + -1- <«.„) (Of, to , 5= co,,,
Parametric amplification (PA) /J1'l(w„ = 2<o - (U,„) co. = co to,,,
Coherent stokes Raman scattering (GSRS) 1“ '(<«., = <O„ + a»„ - ) U>„ cu„ w,„
Coherent anti-stokes Raman seatiering (CARS) P‘''(u>„ - 111 ~ U>,, +- <»„/) CO., co,, to,,,
Bound-electronic optical effect (BEOKF.).

Raman induced Kerr effect (RIKE). molecular 
orientational Kerr effect (MOKE), two-photon 
absorption (TPA). AC Stark effect (ACSE). 
stimulating Raman scattering (SRS). 
stimulating Rayleigh-Wing scattering (SRWS)

C'l(w„ = w,„) to. =. co = 0 # it>,„
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the process of degenerate four-wave mixing (DFWM). In the DFWM experiment, a polariza
tion is induced in the sample by the interaction between three light waves and the electrons 
in lhe nonlinear medium characterized by a third-order nonlinear optical susceptibility y<3’ 
through Eq. (10), but two wave beams are incident at the same region on the sample and 
have equal and opposite wave vectors and the same frequency m. The two wave beams 
from, for example, an lle-Ne laser, set up an interference grating, which interacts with the 
third light beam coming from the back side of a transparent sample. Then, the fourth beam, 
resulting from this interaction with wave vector equal and opposite to that of the third beam, 
is delected. So. if the frequency of the third wave is w, the fourth wave will be generated with 
lhe same frequency u>. but its complex amplitude everywhere will be the complex conjugate 
of the third wave.

In nonlinear optics, there are several dillcrenl systems of units [95| that are commonly 
used in lhe community. In this chapter, we use the Gaussian system of units, in the Gaussian 
system, both the field E and polarization I* have the same units statvolt/cm. I hus, (Ytl' 
is dimensionless, and the dimensions of y?l and y*’1 are given by cm/statvolt (= esu = 
3.3354 x It) ' m/V) cm/statvolt' (= esu — 1.1125 x 10 ' nr/V). respectively. The units of 

and y'31 arc not usually stated explicitly in the Gaussian system of units, but instead 
quote values simply in electrostatic units (esu). For different systems of units, reader may 
refer to Appendix A of Boyd's book |95|. In addition, there are different conventions tor 
defining hyperpolarizabilities, for example. Taylor series, perturbation scries, electric field- 
induced SHG (EFISHG). phenomenological: sec Ref. 1103] for details.

Theoretical guidance is highly desirable prior to the synthesis of new NLO materials. 
Thus, to study theoretically the NLO properties of carbon nanostructures, it is necessary 
to calculate and understand lhe electronic structures of carbon clusters and nanostructures. 
There are diverse theoretical tools with varied degrees of sophistication for doing elec
tronic structure calculations. Some of these tools are complicated and lime-consuming—for 
example, very accurate ab iuirio calculations (but only on atoms or very' small molecules)— 
and some do not even require a calculator, for example, semiempirical methods, which 
intrinsically account for electron correlation and are of interest in the NLO study ol large 
molecules, although their accuracy has not been carefully tested. All in all. from the com
putational point of view, the trade-off between the cost of calculations and the accuracy ol 
the computed data has been the most important consideration in making a final decision 
to choose one ideal theoretical tool to perform the computation task. For this, this sec
tion reviews several key tools for performing electronic structure and (hypcr)polarizability 
calculations.

2.2. Born-Oppenheimer Approximation
The physical systems, such as atoms, molecules, and nanostructures, consist not only of 
electrons but also of nuclei, and each of these particles moves in the field generated by the 
others. The total Hamiltonian of such a system of n electrons and A' nuclei can be written 
as follows [ 1041

where the index i and / refer to the electrons and tr and /3 to lhe nuclei, in is the electron 
mass, and A/„ is the mass of nuclei a. This Hamiltonian consists of five terms: the first two 
terms represent the kinetic energy operators for the electrons and nuclei; the third term 
is the potential-energy (Coulomb repulsion) operator for electron-electron interactions; the 
fourth term shows the Coulomb attraction between electrons and nuclei; the last term is the 
potential-energy (Coulomb repulsion) for nucleus-nucleus interactions. Also, r, and Ru are 
lhe positions of the (th electrons and the trth nuclei, respectively, and Z, is the charge of
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the trill nuclei. I his Hamiltonian looks quite complicated. If the number of electrons and 
nuclei is not extremely small, it is impossible lo solve the stationary Schrodinger equation 
lot this Hamiltonian directly on even the largest and fastest computer available (ll)5|. A first 
approximation is to consider the nuclei as being fixed and lo solve the Schrodinger equation 
tor the electronic system in the field of the static nuclei. This approach is called the Born- 
Oppenheimer approximation 11(14) and is justified by the nuclei being much heavier than the 
electrons so that they move at much slower speeds. The Born-Oppenheimer Hamiltonian 
lor the electrons reads 1104]

(15)

The total energy is the sum of the energy E, of the electrons and the energy resulting from 
the following Schrodinger equation satisfied by the nuclei [104]:

H = V —^ + _L_ X' V - » .
8ir<o

(lb)

In a further approximation, the motion of the nuclei is neglected, and only the electro
static energy of the nuclei should be added to the energy of the electrons to arrive at the 
total energy. Thus, it remains to solve for the electron structure. The Born-Oppenheimer 
approximation factorizes the total wavefunction into the electronic and nuclear components 
and works extremely well in most examples, except lor the systems (hat have degenerate 
or almost degenerate electronic energy' levels. In the former ease, a Jahn-Teller distortion 
ensues, breaking molecular symmetry so that the degeneracy is lifted. In the latter case, 
symmetry lowering is observed. In the following, we briefly review different approaches to 
the many-electron problem.

2.3. Ab Initio Methods and Basis Sets
lb initio methods try to obtain information by solving the Schrodinger equation without fit

ting parameters (o experimental data, while experimental data guide the selection of ub initio 
methods rather than directly entering Ihe computational procedures. From the viewpoint ol 
a theoretician, fullerenes have been challenging molecules in ah iniiio calculations because 
ol their sizes 121. I()6|. Recent advances in ah iniiio electronic structure methods and parallel 
computing have brought a substantial improvement in the capabilities of supercomputers 
to predict and study the properties of large molecules. Ihe coupled cluster method (l()5| 
has been used to predict phenomena in C\( [ IO7j. Other uh initio methods, which are less 
demanding in terms of computation cost than the coupled cluster method, have been used for 
much larger fullerenes and carbon nanotubes, for example. CHI (IOS. I()M| with self-consistent 
field and Moller-Plesset second-order theory (MP2). (\4ll |IIO| and carbon nanotubes |lll| 
with density functional theory (DFT). and C’54l( with the Ilartrec-Fock (HF) method |1I2|. 
Il is known that the major expense in HF and DFT calculations arises from solving the 
electronic quantum Coulomb problem. I he effective Hamiltonian diagonalization, which 
is a procedure that scales as N' (N is the number of basis functions), represents only a 
minor portion of the computational time in calculations of molecular clusters containing up 
to several hundred atoms (II3|. DFT requires an additional three-dimensional numerical 
quadrature to obtain the exchange and correlation energies (114], For clarity, we review both 
HF and DIT methods here.

On the other hand, many different approximations |1(I5] exist for solving Schrodinger 
equations. One of the approximations inherent in all <z/> initio methods is the introduction of a 
basis set [105]. If the basis set is complete, expanding an unknown function—for example, 
a molecule orbital (MO)—in a sei of known functions is not an approximation. However, 
a complete basis set means that an infinite number of functions must be used, which is 
impossible in actual calculations. One may think of an unknown MO as a function in an 
infinite coordinate system spanned by a complete basis set |IO5]. If a finite basis set is 
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used, only the parts of the MO along those coordinate axes that correspond to the selected 
basis can be represented. The smaller the basis set. the poorer the representation. Also the 
type of basis functions used in calculations influence lhe accuracy. The better a single basis 
function is able to reproduce the unknown function, the fewer basis functions are necessary 
for achieving a given level of accuracy. Because the computational effort of ah initio methods 
scales formally as at least A'4 |IO5|. it is of importance to make the basis set as small 
as possible without compromising the accuracy. Hence, for convenience, we also briefly 
introduce several basis sets in this section.

2.3.1. Hartree-Fock Method
The Hartree-Pock method can be viewed as a variational method, where the wave functions 
of the many-electron system have lhe form of an antisymmetried product of one-electron 
wave functions. This restriction leads to an effective Schrodinger equation for the individual 
one-electron wave functions (also called orbitals) with a potential determined by the orbitals 
occupied by the other electrons. This coupling between lhe orbitals via the potentials causes 
lhe resulting equations to become nonlinear in the orbitals, and the solution must be found 
iteratively in a self-consistency procedure. The Hartree-hock procedure is close in spirit to 
the mean-ticld approach in statistical mechanics.

l he electron Hamiltonian //, can be written as

l v
H. =^11,(1-') + - > /i?(r,.rz) (17)

i=t z

which contains the one-electron operator (one-electron core Hamiltonian) and lhe two- 
electron operator (electron repulsion integral) h.

(IX)

(19)

l he total electronic energy £, is given by

1 E (20)
4 = 1 Z4./=l

where 

(21)

l he eigenvalues appear accordingly as individual orbital energies whose sum gives one 
large contribution to the total electronic energy but that has to be modified by a double
counting term because of electron-electron interactions. All the individual orbitals are 
orthonormal; that is. (</>,!</>,) = Then, lhe total energy E, is given by

IK - Ral

In actual Hartrce-F’ock calculations, the wavefunctions <!> are expressed in terms of K basis 
functions <t’, (r = 1.2......A):
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where A ± \ lhe optimization leads to a set ol nonlinear equations:

Atr
(24)

where /t“ ' = (</>, the overlap integrals Sfl ) are collectively known as the
one-electron integral, and />, , = V , ,CM , are the elements of the density matrix.

In the Hartrce-Fock (HF) method, correlations between the electrons arc neglected to 
some extent. In particular, the Coulomb repulsion between the electrons is represented in 
an averaged way. However, the effective interaction, which is caused by the fact that the 
electrons arc fermions (obeying Pauli s principle) and want to keep apart if they have the 
same spin, is accurately included in the HF approach.

Sometimes, for example in the case of hydrogen dissociation, lhe HF approximation yields 
unsatisfactory results. This is. of course, due to Coulomb correlations not taken into account 
in the HF formalism. Actually, there exists a systematic way [l()5| to improve on HF bv 
constructing a many-electron slate as a linear combination of Slater determinants, which are 
constructed front the ground state by excitation: the first being the HF ground state, the 
second one being the first excited state, and so on. The resulting energy will be lower than the 
I IF ground state energy. This is a time-consuming procedure so that only a limited number 
of determinants can be taken into account for systems containing many electrons. This is the 
configuration interaction (CI) method [105]. For most systems, full Cl is impossible because 
of the large number of Slater determinants needed, but it is sometimes possible to obtain an 
estimate for lhe full CI result by extrapolating results tor larger and larger number of Slater 
determinants. Several other methods [105]—for example, the Moller-PIcsscl perturbation 
method—improve on the approximations made in the HF method. These methods have also 
been implemented into many computational programs, for example. Gaussian 98, NWchem. 
Ochem. and GAMF.SS.

2.3.2. Density Functional Theory
Today’s density functional theory' (DFT). based on a strategy of modeling electron cor
relation via a general functional of the electron density, starts with the two theorems of 
Hohenberg and Kohn [115] for searching the electronic ground stale of an isolated system 
of .V interacting electrons in an external potential: the first theorem establishes that the 
external potential is a functional of the charge density, and the second one establishes the 
energy variational principle for the density. These two theorems show that lhe problem of 
solving the many-body Schrodinger equation for the ground state can he exactly recast into 
the variational problem of minimizing lhe Hohenberg-Kohn functional with respect to lhe 
ground-slate electron density. Compared with conventional quantum-chemistry methods, the 
DEI’ approach is particularly appealing because it does not rely on a complete knowledge 
of the -electron wave functions but only on the ground-state electron density. Of course, 
although the DFT theory is exact, the energy functional is unknown and has to be approx
imated in practical implementations. The available approximations for kinetic energy and 
exchange-correlation density-based functionals give moderate quantitative agreement with 
experimental data. A much improved strategy has been presented by Kohn and Sham |l I6| 
in terms of a set of self-consistent Kohn-Sham equations, and the total electronic energy is 
given by

E111U1 = £k + Ev + + £xc (25)

1 he first three terms are exactly the same as those of Hartree-Fock. namely, the kinetic 
energy Ek. the energy Ev of the electrostatic attraction between the nuclear and electron 
and the repulsion between pairs of nuclei, and the electrostatic energy £Cv of the electron in 
the field generated by the total electron density. The last term contains the many-body 
effects, lumped together in an exchange-correlational potential, including the remaining part 
of electron-electron interactions. Hohenberg and Kohn 1115] demonstrated that Eu is deter
mined entirely by the electron density. In practice. Eu is usually approximated as an integral 
involving only the spin densities and possibly their gradients. Usually. is separated into 
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two parts: a pure exchange Ex and a correlational part Ex. corresponding to same-spin and 
mixed-spin interactions. I'hc functionals defining the exchange and correlation parts of 
arc termed as exchange functionals and correlation functionals. There arc two distinct func
tional types. One is the local functionals that depend on only the electron density. Another 
one is gradient-corrected functionals that depend on both the electron density and its gra
dient. The related methods are usually termed as LDA (local density approximation) and 
GGA (generalized gradient approximation) The local exchange functional is virtually always 
defined as | 105)

£i'oa = -|(^) <26>

Ikckc formulated the following gradient-corrected exchange functional based on the LDA 
exchange functional 1117) 

where v — P 4 ' Ap . :>nd y is a parameter chosen to lit Ihe known exchange energies of 
the inert gas atoms and Ikckc defines its value as 0.0042 Hartrees. Similarly, there are local 
and gradient-corrected correlation functionals, for example, Perdcw and Wang's formulation 
of the local part of their 1991 correlation functional [ 1I8|, and Vosko. Wilk, and Nusair’s 
local correlation functional |1I9|. Pure DEI methods arc defined by pairing an exchange 
functional with a correlation functional. Lor example, the well-known BL.YP functional pails 
Becke's gradient-corrected exchange functional |117) with the gradient-corrected correlation 
functional of Lee. Yang, and Parr | I2(l|.

Ikckc has formulated functionals that include a mixture of Hartree-Fock and DEL 
exchange, along with DEL correlation, conceptually defining EXl as

= Gtr^,F + CI>n.E^ (28)

where the Cs are constants. It is termed a hybrid method. In this chapter, wc consider B3LYP 
case 11211. that is. a Bccke-style three-parameter functional

E®’lVP = AE**" + (I - >4)£{”•■ + /?AExBccke*w + E(VWNJ + C(E^P - E^) (29)

In this hybrid functional, Hartree-Fock (exact) and Slater local exchanges 1122] are included. 
In addition. Becke's gradient correction to LDA exchange is included, scaled by the param
eter B. Similarly, the VWN3 local correlation functional is used, and it may be optionally 
corrected via the parameter C. In the B3LYP functional, the parameter's values are those 
specified by Ikckc. which he determined by fitting to the atomization energies, ionization 
potentials, proton affinities, and first-row atomic energies in the G', molecule set 1121). Dif
ferent functionals can be constructed in the same way by varying the component functionals.

Many programs (for example. Gaussian 98. NWchem. Qchcm. ABINIT, Crystal 98. and 
PWSCF) have implemented various pure DFT models given by combining the names for 
the exchange, correlation, and hybrid functionals, for example. HFB. PW9I. VWN5. B3LYP. 
B3P86. B3P86. Bll.YP. BP86. BLYP. BPW9I. and PW9ILYP.

In both DF T and I IF theory, the electrons move in a background composed of the Hartree 
and external potentials. In addition to this, the exchange term in Hartree-Fock accounts for 
the fact that electrons with parallel spin avoid each other as a result ot the exclusion prin
ciple (exchange hole), whereas the opposite spin pairs do not feel this interaction. In DEL 
the exchange correlation potential includes not only exchange effects but also correlation 
effects due to the Coulomb repulsion between the electrons (dynamic correlation effects). 
In Hartree-Fock theory, the exchange interaction is treated exactly, but dynamic correlations 
arc neglected. In principle. DEL is exact, but we do not know the exact form of the exchange 
correlation potential: that is. both exchange and dynamic correlation effects arc in practice 
treated approximately.
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2.3.3. Time-Dependent Density Functional Theory
for the calculation of the ground-state properties of many interacting electron systems. Dll 
!• a popular and efficient method. C urrently, there is a great deal of interest in extend- 
ttg DF f to study excited-state properties of molecules, dusters, and nanostructures. There 
ixist several extensions of the basic formalism. One such extension uses the lime-dependent 
ftrmalism that provides a promising way to calculate the frequency-dependent response 
finctions. for example, polarizability. The excitation energies are characterized as the poles 
tl the frequency-dependent response functions. In detail, lhe time-dependent Kohn-Sham 
equation can be obtained, assuming the existence of a potential I 'cfl(r. t] for an independent 
[article system, whose orbitals '|'(r. i) leads io the same charge density p(r. I) as for lhe 
iiteracting system:

r 1 , .1 , d'l'(r.r)-rV + Kn(r-') 'l'(r,/) = /—4-----  (30)
- ('I

he potential has the following form

Kfi(r./) = !'(/) + ^,(r./) (31)

vhcre 1(0 is an applied field turned on slowly in the distant past and the self-consistent 
feld (SCI) l Mj(r. /) is defined as

I xl(r. I) - f r-' * dr + l\t(r. I)
■' r - r |

(32)

vherc the exchange-correlation potential I u.(r./) is given as the functional derivative of the 
exchange-correlation action . lxc, represented by

I\l/’|(r- D = fy>(r./) «Sp,(r) 1 JpiIM

J ere lhe unknown functional ,-lH. of p over both space and time is approximated by Exc (the 
ctchange-corrclation functional of time-independent (I’D) Kohn-Sham theory introduced 
pexiously), which is a function p, al fixed lime t. This local approximation in lime is iisu 
aly referred to as the adiabatic approximation. Many applications of TD-DFT have been 
reported (see Ref. (123—134] and several reviews [135-140]). I'hc linear optical response 
1D-DFT is a well-developed amd matured technique that currently has become a method of 
cioicc for computing excited states of a particle. Application lor the TD-DFT for calculating 
unilinear optical responses is also reported 1141-144|.

The state-of-the-art TD-DFT calculations scale formally as O(A('), where N is the num- 
b.T of atoms involved. This makes TD-DFT a relatively expensive numerical method that 
cmnot be employed Io calculate the properties of very large systems. It is thus desirable 
tt have linear-scaling TD-DFT whose computational time scales as (7(.V). Yam. Yokojima. 
aid C hen 1145] have recently developed a linear-scaling lirst-principles TD-DFT method to 
e aluale the linear optical response of large molecular systems. Instead of a many body wave 
fmetion, the equation of motion is solved for the reduced single-electron density matrix in 
tfe time domain. The locality of the reduced single-electron density matrix is used to ensure 
tlal computational time scales linearly with system size. The two-electron Coulomb integrals 
ae evaluated with the fast multipole method, and the calculation of exchange-correlation 
qradratures uses the locality of an exchange-correlation functional and the integral pre
screening technique.

The tight-binding approach to TD-DFT (TD-DFT-TB) developed by Niehaus et al. [146] 
fellows the TD-DFT route of Casida [135. 136] and uses a y-approxi mation. In this approxi
mation. the coupling matrix used in TD-DFT is treated by decomposing the transition density 
between different orbitals into atom-centered contributions. Because no integral evaluations 
n.cd to he done, this scheme is numerically as efficient as the semiemnirical tight-binding 
methods, On the other hand, a minimal basis set is used in the TD-DFT-TB. Thus, the opti- 
c;l properties lor large systems, such as nanosystems, biological systems, and polymers with 
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hundreds ol atoms, can be investigated easily. Especially lor the calculations of the lowest 
excitation energies such as the optical gaps, one can obtain results al a highly reduced! cost 
because lhe size of the coupling matrix is drastically reduced 1146-150], Application o>f the 
TD-DFFTB to studying the NLO responses of large systems would be very interesting and 
is expected in the near future.

2.3.4. Time-Dependent Hartree Fock
Before TD-DFT was developed, a common method that most people used was the TD-HF 
method 1151, 152]. which is also known as the random phase approximation. This method 
can be derived along the same lines as TD-DFT. Sec the details in Refs. 1151, 152]. TD-HF 
leads to an approximate treatment of electronic excitation energies with no electron corre
lation effects. However, electron correlation must be included in any predictive theory for 
an accurate treatment of excited states of molecules, clusters, and nanostructures.

2.3.5. Basis Sets
In the ah initio calculation of the electronic structure of a realistic system, one usually 
expands the single-electron orbital in a set of predefined basis functions known as 
a basis set. that is,

= (34)

which approximates the total electronic wavefunctions within the system. Here we do not 
discuss how these basis functions are chosen. There are two types of basis functions com
monly used in electronic structure calculations: Slater type orbital (STO) [153] and Gaussian 
type orbital (CiT'C). also known as Gaussians) [154]. STOs have the functional form

IX^.B./.wi> = Ny/.w(d,<fr)r-'<’^ (35>

where N is a normalization constant and ,,, is the usual spherical harmonic functions. The 
STOs are primarily used for atomic and diatomic systems where high accuracy is required 
and in semiempirical methods where all three- and four-center integrals are neglected. Prim
itive GTOs (PGTOs) can be written as

s (36)

in term of polar coordinates or

(37) 

in term of Cartesian coordinates, where the sum of /,, and /. determines the type of 
orbital. Both STOs and GTOs can be chosen to form a complete basis. However, the basis 
functions of choices in uh initio calculations have been GTOs because simple analytic for
mulas exist for evaluating the two-electron integrals that appear in the Coulomb problem 
1154, 155]. Because the inner (core) electrons require a relatively large number of functions 
for representing the wavefunction cusp near lhe nucleus and are largely independent of the 
environment, contracted GTOs (CGTOs) arc especially useful for orbitals describing those 
electrons. The CGTOs arc formed by combining a full set of PGTOs. that is.

a.)c<.m = E»,i»rCT0> (J*)
I

Contracting a basis set always increases the energy because it is a restriction of the number 
of variational parameters. In the following, we briefly present lhe classification of basis sets 
and introduce the Pople-style basis sets [156 I6()|.
2.3.5.1. Minimum Basis Set The smallest number of functions is a minimum basis set. 
Only enough functions arc used to contain all the electrons of lhe neutral atoms(s). For 
example, three s-functions (Is. 2s, 3s) and tw'o sets of p-functions (2p and 3p) are used.
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2.3.5 2. Double Zeta (DZ) Basis I he improvement in the basis set is a doubling ot all 
basis functions, which allows for a much better description of the fact that the electron 
disir union is different in different directions, lhe term zc/u stems from the exponent <. ot 
S rObasis functions. For example, six s-tunclions (Is. Is. 2s. 2s. 3s. 3s ) and lour p-functions 
(2p. 2p. 3p. 3p ) arc used.

2.3.5 3. Split Valence Basis ,\ variation of the DZ type basis only doubles the number 
of the core orbitals.

2.3.5 4. Triple Zeta (TZ) Basis This basis contains three times as many functions as lhe 
mininum basis, namely, nine s-functions and six sets ol p-functions for the second row 
clemmts.

2.3.5 5. Double Zeta Plus Polarization (DZP) Basis Adding a single set of polarization 
functons (p-functions on hydrogens and d-functions on heavy atoms) to the DZ basis forms 
a DZP type basis.

2.3.5 6. Pople-Style Basis Sets lhe STO-//G basis set is STOs consisting of n PGTOs 
and n a minimum type basis where lhe exponents of lhe PGTO are determined by titling 
to th. STO. STO-3G is a widely used minimum basis, l he k — iilniG basis sets arc ot the 
split alcncc type, where A indicates how many PGTOs are used for representing the inner 
(corei orbitals, and iihn indicates how many functions the valence orbitals are split into and 
how nay PGTOs arc used for each function. Polarization functions arc placed after (I by 
using a star on only heavy atoms or double stars ** on both heavy atoms and hydrogens. 
Diffuse functions are denoted by -I- (on only heavy atoms) or ++ (on both heavy atoms and 
hydngens) before G. For example. 3-2 G means that lhe core orbitals are a contraction 
of 3 i*GTOs. the inner part of lhe valence orbitals is a contraction of 2 PGTOs. and the 
outer part of the valence orbitals is represented by I PGTO 1157). In addition. 6-3IG is also 
a sph.-valence basis, where the core orbitals are a contraction of 6 PGTOs, lhe inner part 
of VOs is a contraction of 3 PGTOs, and the outer part of the VOs is represented by I 
PGTO | I5S|: 6-311G is a triple split valence basis, where the core orbitals are a contraction 
of 6 3GTOs and lhe VOs split into three functions, represented by 3. I. and I PGTOs. 
respectively 1I59|; 6-31G* or 6-3IG(d) is i split valence basis with a single d-typc polarization 
lunclon on heavy atom; 6 31 tG ot 6-31 t-G(d) is a split valence basis with one set ol 
diffuse sp-funclions on heavy atoms only and a single d-typc polarization function on heavy 
atonv 1I6()|.

2.4. Empirical Methods
2.4.7. Huckel Theory
In this theory, only the tt electrons of conjugated unsaturated hydrocarbons are taken into 
account The 77-clcctron orbital energies are obtained by diagonalizing a Huckel matrix 
II 1105]

H = /3A + rd (39)

when zl, = I if the /th and /th carbon atoms are linked through a bond and otherwise 
z|, , = 0; a and [3 are negative and called the Coulomb and resonance integrals, respectively. 
This method is quick but crude, and explicit diagonalization of A is often possible because 
the adjacency matrix lends itself easily to mathematical analysis.

2.4.2. PPP Approximation
This method is based on two assumptions [161-I63|. The first is it-tt separability, which 
allow- one to construct a ~-electron Hamiltonian, which is then expressed in the basis of /> 
orbitals, l he second assumption is lhe zero differential overlap (ZDO) approximation: that 
is. - (• for r p. applied to the electron repulsion integrals. The PPP method is usually 
used in conjunction with lhe configuration interaction formalism that involves excited dclcr- 
minarts to calculate the tt —» tt' singlet and triplet excitation energies for planar conjugated 
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hydrocarbons and heterocyclic compounds. The PPP method using curvature-corrected reso
nance integrals was also applied successfully to three-dimensional carbon systems, including 
fullerenes.

2.4.3. Hubbard Approximation
This approximation [104] is made by setting all electron repulsion integrals to zero in the 
PPP method. In other words, only the one-center repulsion integrals are kept and are all 
equated to a parameter U. which is often called the on-site electron repulsion. All resonance 
integrals arc set equal to a single parameter IT. which is usually called the hopping integral. 
Sometimes, the first-neighbor two-electron integrals are retained and set to V, which is called 
the nearest-neighbor repusion. The three parameters (', II . and I do not refer specifically 
to the p orbitals hut are cmpiiical parameters that describe interactions between sites in 
solids. Each site, which can be a single atom, an ion. or an entire molecule, is presumed to 
contribute one election to the system under consideration. The advantages of using Hubbard 
approximation result from the fact that it can be diagonalized in many cases.

2.4.4. Tight-Binding Approximation
A straightforward generalization ol the Hiickel theory to all valence electrons is provided 
by the extended lluckel theory [I65|. In this method, an effective Hamiltonian matrix is 
established within the basis of all valence orbitals of a given molecule. Il is an example of 
the all-valcnce-electron semiempirieal method. In this formalism, the orbital energies and 
coefficients arc obtained by solving the following equations

E/'V = e,E.SM l.C,, (40)
I' r

where h* ‘ arc usually approximated by |166|

/i'1 ' = (41)

where \ < K < 3. and are respective ionization potentials. For very large systems 
with little or no symmetry', even this method is also too expensive. In the light-binding 
(IB) Hamiltonian approximation [167], the extended Hiickel matrix elements between basis 
functions residing on atoms that arc not directly bonded are set to zero. The TB approach 
offers substantial savings in computational effort and is able to produce surprisingly accurate 
results, provided the remaining matrix elements are properly parameterized. A set of TB 
Hamiltonian parameters for carbon has been established by Xu ct al. [168] and used with 
encouraging results in a variety of calculations on fullerenes.

2.4.5. CNDO/S Methods
Application of the ZDO approximation to all valence orbitals results in a variety of semiem
pirieal methods. The most drastic variant of the ZDO approximation is the complete neglect 
of differential overlap (C’NDO). In this formalism, the ZDO approximation is applied to all 
electron repulsion integrals, including those corresponding to pairs of orbitals residing on 
the same nucleus. The ONDO for spectroscopy (CNDO/S) method is an all-valence analog 
of the PPP formalism. In this approach, resonance integrals are calculated within the con
text of local coordinate systems. However, overlaps between the locally defined tt orbitals 
are multiplied by 0.5A with k = 0.585 instead of 0.5. CNDO/S calculations are usually car
ried out in conjunction with a (limited) Cl scheme involving singly excited determinants. 
Unfortunately, the original CNDO/S method leads to vanishing transition moments and 
singlet-triplet energy splittings for the <r — 7T‘ ami n -* 7T’ excitations. Although the former 
deficiency can be easily remedied, the latter one cannot be eliminated without giving up the 
CNDO approximation.
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2.4.6. INDO Method
In the inlet mediate neglect of differential overlap (INDO) approximation [l(>5|. the ZDO 
approximation is not applied lo one-center electron repulsion integrals. INDO/S can yield 
nonvanishing singlet-triplet energy' splittings for all excited states and has been successfully 
applied to describe fullerenes.

2.4.7. MN DO, AM1, and PM3 Methods
l he neglect of diatomic differential overlap (NDDO) 1105) constitutes one of the least severe 
ZDO-like approximations. In this formalism, only the electron repulsion integrals involving 
pairs of orbitals centered at two different nuclei are neglected. The heavily parameterized 
variant of NDDO. known as modified neglect of differential overlap (MNDO) 1105). has 
been a mainstay of empirical quantum chemistry. The crucial innovation of MNDO lies in 
the treatment two-center electron repulsion integrals, which arc efficiently computed with 
the help ot a parameterized multipole interaction model, l he resonance integrals, the matrix 
elements, and the core-core repulsion energy are all calculated from parametric expressions, 
lhe parameters are obtained by titling the standard enthalpies of formations, geometries, 
tirst ionization potentials, and dipole moments for a molecule.

However. MNDO parameterization is far from optimal. Attempts to palliate such a weak
ness of MNDO led to a new parameterization called Austin Model I (AMI) |IO5|. In this 
method, the semiempirical formulas for lhe effective l ock matrix elements arc the same as 
in MNDO. but the expressions for the core-core repulsions are more elaborate, giving rise 
to a substantially increased number of adjustable parameters.

lhe MNDO parametric method 3 (MNDO-PM3. or simply PM3) )l05| stems from a 
massive reparaincterization. PM3 parameters for II. C, N, O. F. Al. Si. P. S, Cl. Br. and I 
atoms have been evaluated.

2.5. Molecular Mechanics
Although these empirical methods, for example, PPP, are able to predict bond lengths in 
conjugated hydtocarbons with reasonable accuracy, lull geometry optimizations (hat include 
bond and dihedral angles arc possible only when the <r-electron interactions are taken into 
consideration, l he simplest approach to augmentation of the total energy with these inter
actions is provided in the formalism of molecular mechanics [105], where molecules are 
treated as collections of atoms connected by flexible bonds. In the quantum consistent force 
field (QCFF/PI) method [169], the total energy is expressed as the sum of the tt-electron 
energy calculated within the PPP approximation and the rr-clcctron contribution including 
the sp‘-hybridized carbon atoms and other atoms, the sp’-hybridized carbons, and the mixed 
sp -sp-’ interactions.

2.6. Computational Techniques for (Hyper)polarizability
There arc several theoretical techniques for studying (he low-lying excited states and optical 
properties of carbon nanostructures. We summarize them here.

2.6.1. Sum-Over-States Approach
lhe sum-over-states (SOS) approach is based on the result of the self-consistent field solu
tion of the I lartrce-Fock Hamiltonian in the absence of an external field. Perturbation theory 
is then used to derive the (hyper)polarizabilities of atoms or molecules. In this approach, 
there is a lack of self-consistency between the eigenfunctions of the I lartree-Fock operator 
and the orbitals defining that operator when an electric field is applied. Details about SOS 
can be found in the original paper 1170], where derivations of the hvperpolarizabilities R 
and y and modeling of the SHG. THG, and other NLO processes were presented.
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2.6.2. Finite Field Technique
Kurtz. Stewart, and Dieter [1711 implemented a procedure for lhe calculation of molecular 
polarizabilities by using finite fields (FF). In this approach, an estimate ol the uncertainty of 
a given calculation can be achieved by comparing the results obtained from using both the 
polarization and the energy versus the static field strength, that is. using the energy expansion 
and dipole expansion to calculate the response of the charge density to the field. Axial equa
tions for FF calculations based on energy were originally derived by Bartlett and Purvis [ 172] 
and nonaxial equations by Kurtz, Stewart, and Dieter [171], Similar equations for FF cal
culations based on polarization arc given by Williams [173]. In this approach, the Hartree- 
Fock. self-consistent-field solution of the Hamiltonian is determined for various strengths of 
the external electric field l he results can be improved by treating in perturbation theory' 
the difference between the exact Hamiltonian and lhe corresponding Hamiltonian in the 
so-called Moller-Plesset perturbation theory [ 105|. Usually, the Moller-PIcssel correction in 
lhe second-order (MP2) is used. Details about FF calculations refer to Kci. [171-173],

2.6.3. SECI and SDCI
In the semiempirical CNDO/S approximation, several theoretical groups are able to obtain 
all the eigensolutions of the complete singly excited configuration interaction (SFCI) 1174] 
and those of truncated singly and doubly excited configuration interaction (SDC I > 1175]. 
These solutions are used to calculate the molecular (hypci Jpolarizabilities with the sum- 
over-statc method.

2.6.4. Spherical Shell Approximation
In this approximation [176], there is a free electron gas with N noninteracting elec
trons of mass m confined to a three-dimensional spherical shell of radius r. The 
(hyper)polarizabilities are calculated by using perturbation theory for a static electric field 
of strength F, and these results are valid for optical frequencies well below any resonance. 
Because there is no radial dependence, the loxvest-order eigenfunctions arc the spherical har
monics Yh„ with energies of k„ = h l(l + 1 )/(2/nr j. Then, lhe total energy can be expanded 
in a power series in the electric field and one gets the (hyper)polarizability.

2.6.5. TD-DFT and TD-HF
Ab initio and semiempirical methods have been extensively employed for NLO study. How
ever. more efficient methods arc needed for a quantitative theory of large systems. These 
methods should take account of electronic correlations, frequency dispersion, and an appro
priate choice of the basis functions. For this, TD-HF and TD-DFT have been one of the 
time-dependent approaches to study NLO [144], Compared with the TD-HF, the TD-DFT 
is not an approximation to the many-electron wavefunction. Rather, the level of an approx
imation is limited by our knowledge of the density functional.

In principle, an exact solution for excited states of many-electron system is possible within 
the nonadiabatic TD-DFT approach, and the TD-DFT gives a simple description with rea
sonable accuracy because of the inclusion of the electronic correlation effects in lhe excita
tion of molecules and condensed matters. Although TD-DFT and TD-HF approaches use 
a time-dependent many-body wavefunction in a form of a single Slater determinant, the 
meaning of this many-body wavefunction is very different in both approaches. Although the 
single Slater determinant in the TD-HF constitutes an approximation to lhe wavefunctions 
of a driven system, that in the TD-DFT is rather an auxiliary object that represents a system 
of fictitious Kohn-Sham noninteracting particles that arc. however, able to reproduce lhe 
exact values of the electron density of the driven system at all times. As reviewed previously, 
the linear response TD-DFT is a well-developed and matured technique.

Meanwhile, an application of the TD-DFT for calculating nonlinear responses is a subject 
of great interest. The first application of the TD-DFT to NLO response was made bx Sen- 
alore and Subbaswamy [177]. who calculated the hyperpolarizability of rare gas atoms. The 
NLO susceptibilities of bulk semiconductors were calculated next [178. 179], Recently, xan 
Gisbergcn. Snijders, and Baerends [ISO] extensively studied the dynamic hyperpolarizability 
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ol molecules and showed that the ID-DET is a promising tool to investigate NLO proper
ties ot molecules. Nevertheless, a systematic study ol the nonlinear response in the TD-DFT 
method was not done until die recent work of Tretiak and Chernyak 1144|. I his work calcu
lated the response ol the density matrix to an external held in the adiabatic I D-DFT by map
ping the equation of motion for the driven single-electron density matrix into the dynamics 
ol coupled harmonic oscillators and then derived the resulting nonlinear response functions 
and the dosed expressions for nonlinear frequency-dependent (hyper)polarizabilitics.

2.6.6. Valence Effective Hamiltonian (VEH)
I hc VEH method was originally developed for molecules by Nicolas and Durand [ 1811 and 
largely exploited for polymers by Andre et al. 1IX2| and Bredas and colleagues |I83-I85|. 
Ii is based on ihc use of an effective Lock Hamiltonian which combines a kinetic term 
and a summation over atomic potential I', [1X1. 1X4. 1X5]:

Feff =-A/2 + £j; (42)

= E (43)
i. "i. 1.1

where the summation over / and in define the angular dependence of IThe coefficients 
ate independent of in in the case of spherical symmetry. Usually, one Is and 2p Gaussian 
( artesian functions are used. The atomic potentials I are optimized in model molecules 
(for carbon atoms, the model molecules include ethane, butadiene, and acetylene) in order 
to minimize the difference between F.„ and the Fock Hamiltonian bnill from Hartree-Fock 
<//< initio double-^ calculations. In this way. the VEH method is completely nonempirical. 
Only valence electrons are explicitly considered and one-electron integrals need lo be eval
uated. which allows one to carry out calculations on large-size molecules.

2.6.7. Atomic Dipole Interaction Model
An alternate approach to estimate (he (hvpcr)polarizahility of a molecule is based on rep
resenting the molecule as a set of interacting point polarizabilities |I86-I88|. Ihe atomic 
induced dipole moment of a system consisting of N interacting point polarizabilities can be 
written as

= “<>.//( f7”' + E /* M/t. * ) (44)

where F;'] is the external electric field at atom a. and Ip term is the electric field of the 
induced dipole moment at site /■) calculated at atom o. The ijk subscripts denote the Carte
sian coordinates, and the Einstein summation convention is used for repeated indices. If the 
atoms arc spherically symmetric (that is, a = where tr„ is the isotropic atomic 
polarizabilities, a atom-type parameter), accurate parameters can he obtained if they arc 
parameterized from a training set of molecular polarizabilities, for example, obtained from 
quantum chemical calculations instead of experimental data |I89|. I his is the advantage of 
this approach since experimental data are taken from various sources, inconsistent quality 
ot the experimental data may have effects on the parameterization, and experimental polar
izabilities are often taken from refractive indices that include local field factors as well as 
solvent and temperature effects. I he resulting molecular polarizability a and molecular sec
ond hyperpolarizability y can be expressed in terms of two-atom and four-atom relay tensors, 
respectively. The detailed theoretical backgrounds can be found in Ref. |I9()|. It should be 
mentioned that the dipole interaction model has been extended by atomic monopole polariz
abilities 119|. |92|. I hc monopole terms have been show n to be of significance 1193|. Surely , 
it would be of interest to extend the atomic interaction model for hypcrpolarizabilitics with 
this kind of terms.
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3. SECOND-ORDER OPTICAL NONLINEARITIES OF
CARBON NANOSTRUCTURES

Second-order NLO measurements include techniques such as the Maker Fringe method. 
EFISHG, hyper-Rayleigh scattering, and the second-order NI.O processes mentioned before. 
Detailed descriptions of lhe Maker Fringe method and hyper-Rayleigh scattering can be 
found in Refs. [87-101]. I'he EFISHG technique involves mixing three optical fields and one 
static field of parallel polarizations; details can be found in Ref. [194], In the following, we 
review recent works on the second-order NLO properties of carbon nanostructures. Some 
results of fullerenes and derivatives arc summarized in Tables 2 and 3.

3.1. Spherically Shaped Carbon Nanostructures

3.1.1. Experimental Measurement
From symmetry consideration, both Crt( and C7|, molecules possess inversion symmetry. 
I’hus. within a dipolar approximation, no SHG activity should be detected for single CN, or 
Ctii molecule. However, for their solutions or films. SHG signals were observed by several 
groups 1195-I99],

Hoshi et al. [ I95| were the first to investigate the second-order NI.O response of film 
deposited on a silica substrate by impinging an unfocused polarized NdtYAG laser ( 1064 nm) 
on the film and measuring the dependence of the SHG intensities on the polarization of light 
and on the angle of incidence in the transmission geometry. No detectable SHG was emitted 
from the blank substrate. The presence of substrate is the only cause of the asymmetry. 
Later on. Kajzar et al. |198] also observed the incidence angle dependence of SHG intensity 
from a sublimed Cll0 thin film: the maximum of the SHG signal is at W = 55°. Koopmans 
et al. [197] performed more systematic studies on SHG from thin CW( films by combining 
frequency-, rotational-, angular-, and film-thickness-dependent measurement and gave the 
first SHG spectrum of pure C60 films or surfaces. They found C6(( films to show a high 
SHG efficiency and a strong and sharp resonance at ?.h<u = 3.60 eV. which is close to an 
allowed optical transition. Meanwhile. Wang et al. |I96] also found that the square root 
of SHG intensity of CM) film increases linearly with lhe film thickness and varies with the 
change of temperature (reaching a maximum at 415 K). showing a hulk second-order optical 
nonlinearity. All these experiments demonstrated that the SHG signal from sublimed thin 
films comes from the bulk and is not only an interface effect [200], The large second-order 
NLO response of C(lll films is due to small amounts of impurities (such as CW( isomers, other 
fullerenes or oxides that have noncentral symmetry), or electric quadrupole or magnetic 
dipole contributions that are allowed in centrosymmetric materials.

Kuhnke, Epple, and Kern |199| presented a wide SHG spectrum of CNI films: three pro
nounced resonances at 1.18 eV (1046 nm). 1.82 eV (678 nm), and 2.02 eV (0.611 nm) and 
a weak one at 1.35 eV (914 nm). I'he resonance peak observed at 1.82 eV by Kuhnke, 
I'pple, and Kern |I99| confirms the position and width of the resonance first observed by 
Koopmans et al. ]I97|. Kuhnke. Epple. and Kern [199] found a significant SHG signal at 
1.165 eV (1059 nm). the energy of the study at fixed wavelength by Wilk et al. [201]. Later 
on. Janner [202] observed the resonance at 2.02 eV in an SHG spectrum. More recently.

latite 2. Second-order optical nonlinearities ol C„ and derivatives measured by different experimental techniques 
(adapted from the work of Xie et al. |25|).

Fullerenes /3 (III esu) V'-'' (III " esu) Method State ol Material Ref.

c„ (l.l 1 0.13 ATR Film |2O3|
( ... DEA 7 -r- ■» 1 FISIIC Solution 12181

H»N ) 3.6 ± 1.3 I8±K SHG 1.13 lilm 122-t]
Carts iraneC,, hvbrid (la) 35 SHG Solution 1222]
Carborane C„, hybrid (lb) 48 SHG Solution |222|
Carborane. C„, hybrid (Ic) i|M SHG Solution |222|
Cl 1* K 3 SHG I B lilm |23O. 231]
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latite 3. Fhc first liyperpolaii/abilily ifi. in III esu) and Jip«>le (/<. in III esu) calculated lor amino-ethylene 
(Nil Huhslilutcd (' lullcrcnc flic doped fullerene has < symmetiy V is the total Ml number. < has three 
unique sites (V I.2.3) Ii and /<'” denote the octopohu and dipole parts contributed lo the Ii lensoi Ihe 

axis is collinear lo that ol the undoped I which has /■>.., winmelrv. The value fi , corresponds to Ihe sum over 
components in ihe z direction (adapted from Ret [25. 248|)

X Unique Sue ft, P .. P p.) Wot P\'. P
T I 13 _ 7 7^ 95 T? 17 36 -)8 57

fl -7 0,2 13 2(1
3 A IS 47 67 -b V 12 7 40

4 "V 285 T V 280 28 6X6 172 171 IhS
N 112 576 _ 1 >2 32 304 -2<>4 —33 31

using the experimental technique of clcctro-optically modulated attenuated total reflection 
(AI R) spectroscopy. Wang et al. |2()3] measured the second-order NLO response of of 
Languinir-Blodgett (LB) films of Cwl by electro-optical (Pockcis) characterization for the 
first time. Their observed electro-optical response was the Pockels effect, and the second- 
order NLO susceptibility ,yi;i °l <-«) film was determined to be 1.3 x 1(1 *' esu. in agreement 
with lhal of Wang cl al. 1196]. Note that although /J is zero for isolated CMI. CM) film may 
exhibit nonzero value if it does not display centrosymmetry. Based on the work of Rashing 
cl al. |2I)4], the corresponding molecular hyperpolarizability of the C,,u molecule is about 
1.1 x II) esu [2l)3|. Such a large electro-optical response of I shows that it is a promising 
NLO material, regardless of the molecular inversion symmetry.

The C'(4| film can be crystallized in an Ice structure at room temperature |205. 2()(»| and is 
therefore centrosymmetric. As mentioned before, within the electric-dipole approximation, 
the film would not show SHG signal, so that only the surface contribution could be 
detected. Nevertheless, the experiment of Wang and colleagues 1196] showed that the surface 
contribution to SHG should be very small. As discussed previously, ihe origin of the SHG 
signal front a C,.o film can be only an electric quadrupole, a magnetic dipole contribution, or 
from an impurity. Work by Koopmans et al. |2(I7| has convincingly shown that a fullerene's 
SHG al 1.8 eV comes from a magnetic-dipole interaction. I lowever. a study bv Munn. Shuai. 
and Bredas |208] showed that although the SHG signal at 1.8 eV is dominated by the 
magnetic dipole response, this is not the case at other frequencies. Liu et al. ]2()9] have 
observed a change of the SHG signal of Cw) film with the structural phase transition of C(lll at 
245 K. Because the impurity cannot display the properties of their experimental results 
implied that the SHG in the fee and sc phases was not induced simply by the impurity in the 
CW| material (or. say. the SHG response of impurity in CNI films cannot explain the change 
in SHG at 245 K). Thus, the SHG signal from C(1H films cannot be attributed solely to the 
impurity.

Kuhnkc. Epple. and Kern [199] were the first to measure the SHG response of higher 
fullerene They observed a weak resonance peak al 1.2ft eV (979 nm) and a steep signal 
al 1.85 eV (667 mn) showing a broad resonance feature without resolved structure. In an 
Ne matrix et al. [210] assigned the lowest singlet (5,) and triplet (TJ excitons for isolated 
molecules to 1.93 eV and 1.56 eV, respectively. If a shift of about 0.1 eV between matrix 
isolated C-„ and the solid exists, the lowest singlet exciton may correspond very well to the 
onset of the SHG intensity of C7I, film. If so. the proximity of the next higher singlet exciton 
(.S>) and higher cxcitonic states may resu.t in the broad resonance structure above 1.85 eV. 
However, the resonance peak at 1.26 eV is too low in energy to be assigned to the triplet 
exciton.

3.1.2. Theoretical Calculations
Theoretically. Qin. You. and Su [2111 studied the dispersion relation of the quadrupole 
response lor a single C,n molecule. They used a tight-binding approximation (see the Su- 
Schrieffcr-I lecger (SSH) and extended SSH models reviewed in Section 4) to compute the 
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single-particle stales for 7r-electron systems of Cw, molecule. The Hamiltonian lakes the 
form

n = - > k-«(/,., -/i)I(<7.To +<’•<•) + y- ~M2
i.j

+ i + <45)
/ ** i

where c,\ (<•„) are electron creation (annihilation) operators at site i of the carbon atom with 
spin s: (/.} means summation over the nearest-neighboring carbon atoms. The hopping 
integral is expanded to lhe linear term proportional to the length deviation from 1, . 
is the distance between atoms i and /. and « describes the strength ol intersite electron
phonon coupling. The remaining terms describe elastic potential energies: K, is lhe stiffness 
constant of the bond-stretching spring; /, is the length at which all springs are relaxed; K2 
and K. are the stiffness constants of bond-bending springs: W, 5 is the angle between two 
adjacent bonds of the pentagons: fl, h t and fl, „ , are the angles between one bond of a 
pentagon and one adjacent bond of a hexagon: ell), dO, r and ilf), „ ? are angle deviations. 
In this model, the mutual interaction between the tt electrons is accounted for only in the 
mean-held sense. And in the basis of alomiclikc orbitals for ~ electrons, all matrix elements 
are neglected except the nearest neighbors. Based on this model, they found two resonant 
peaks located at 1.09 eV and 1.86 eV. respectively. The peak al 1.09 eV is only about 0.1 eV 
lower than the lowest peak observed by Kuhnke, Epple, and Kern [I99|. whereas the one 
at 1.86 eV is in good agreement with experiment [199], Although their calculated peak is 
of asymmetric shape, no separate feature appears around the energy 2 eV. Hence, their 
calculation showed that the peak observed at 2.02 eV by Kuhnke, Epple, and Kern [199] 
is not caused by the electric quadrupole transition. The sharp minimum [211[ between the 
two peaks seems to be caused by a change of amplitude sign. In the SHG spectrum of 
Kuhnke, Epple. and Kern [ 199]. a similarly sharp minimum at 1.57 eV was observed. Hence, 
their theoretical calculation is in overall agreement with the experiment. Finally, it should 
be mentioned that no SHG peak is detected at the spin-forbidden excitation of the lowest 
triplet exciton at 1.55 eV (0.796 nm) [2I2|. The theoretical study of Qin. You. and Su (211] 
also demonstrated that the second-order quadrupole nonlinear contribution is large enough 
to explain the experimental results obtained by Wang and colleagues. (I96|.

Shuai and Bredas (213] developed the valence effective Hamiltonian (VEH) method to 
calculate the magnetic dipole (Ml)) and electric quadrupole (EQ) contributions to the 
hyperpolarizability (i of molecular systems. For both CNt and C7(l, they found that the MD 
contribution leads to a [1 value that is several limes larger than that of the EQ contribution. 
Taking into account the local field correction factor for C(10 in solid state, they calculated jv(2) 
susceptibility values that are in excellent agreement with experiments [213]. The calculation 
of Shuai and Bredas [213] indicated that the SHG spectra tor C7I, come from the contri
bution of the electric quadrupole, having a sharp peak at 1.2 eV and a broad resonance 
structure between 2.0 and 2.4 eV. which is in good agreement with the SHG spectrum of 
Kuhnke. Epple. and Kern [199].

Because C71l has a lower symmetry than CWI. the low-energy part of the absorption spec
trum of the C7() solid may be rich of dipole-allowed transitions. However, only two features 
were observed in the SHG spectrum of film: that is. a lot of dipole allowed transitions 
arc absent. Anyhow, this and the agreement with theoretical calculation suggest that dipole- 
forbidden transitions in C7n may be observed most easily. Indeed. Kajzar and colleagues 
1198. 2I4| predicted a dipole-forbidden transition at 2.49 eV

3.2. Functionalized Carbon Nanostructures
3.2.1. Experimental Measurements
Charge-transfer is demonstrated to be the most effective mechanism to enhance the second- 
order optical nonlinearity of the organic molecule |2I5. 2I6|. Because fullerenes are excellent 
electron acceptors [217], forming charge-transfer complexes with appropriate donors would 
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break the ccntrosvmmeln of ot C-( ami thus induce significant second-order optical 
nonlinearity.

Wang ami Cheng [21X] measured the second-order NLO property of charge-transfer 
complexes formed with X.A-dietlnlaniline (DEA), which is a well-known electron donor, 
to form charge-transfer complexes with various aromatic acceptor molecules |219], b\ using 
EF1S1 If i technique (220. 2211. Indeed, lhe formation of charge-transfer complexes with DEA 
breaks the centrosymmetry in CMI and induces its second-order optical nonlinearity |2IX|. 
The value of in the dipolar direction for C«,/DEA is (6,7 ± 2) x 10 csu.

Lamrani et al. [222] found experimentally that a combination of seemingly attractive 
carboranes and fullerene through an ethynyl rr-system produced high 13 values. The (3 values 
found were 34.6 x 10 ?l. 4X.3 x 10 and 118.9 x 10 29 esu for the three caroorane-fullerene 
hybrids investigated.

The monofunclionized derivative Cm)-(CjHmN,) has no centrosymmetry |223|. Gan et al. 
|224| have measured its SHG spectrum. The second-order nonlinear optical susceptibility 
j-'-’1 and molecular hyperpolarizability [3 ol C(in-(C .HSN,) arc determined lobe (1.8 ±0.8) x 
10 csu ami (3.6 ± 1.2) x 10 - ' csu. respectively |224|

Kajzar ct al. |225] performed SHG measurements on C(lll-based composites and multi
layered charge-transfer structures with electron donors, 5, 10. 15. 2O-tetraphcny-2l/V. 23//- 
porphine (TPP). and 5. 6. II. 12-lelraplivnylnaphthaccne (rubrene) (TPN). In thin films 
that contain C,,o molecules only is observed the SIIG signal, and a significant enhancement 
in SHG signals is observed in the multilayered structures, l he enhancement is due to a 
ground-state permanent electron transfer from the electron-donating molecules to CM, 12251.

The charge separation in substituted Cw) leading to enhancement of the second-order 
nonlinear optical susceptibility was also demonstrated theoretically |226.227]. Further charge 
transfer can take place during lhe excitation process from the ground state to lhe excited 
stale |227|. Phis kind of strong intramolecular charge transfer causes large second-order 
nonlinear optical susceptibility in the substituted fullerene. Among (',tl/DE A. CWI/AN.
and C\.,A' (.¥ = B. N). C(lll has the smallest (3 value and C5UA‘ has the largest one |226. 227|. 
As discussed later, enhanced f3 value is also obtained for Si-substituted CMI. This means 
that substitute doping is a good means to achieving a large second-order nonlinear optical 
susceptibility of pure Cw(.

The crown ether modified ( M, will be typical supramolecules that combine lhe unique 
properties of Cu, and crown ethers. Surely, the solubility and amphiphathy of CMI can be 
improved because of the good hydrophilic properties of the crown ether moiety. This makes 
crowned Cwl a kind of competitive compound to form structurally ordered fullerene thin 
films, and it may find practical applications as active surface layers in microsensors or opto
electronic devices. Several kinds of crowned fullerene derivatives were synthesized [22X], 
based on which Langmuir and Langmuir-Blodgett (LB) films |229] were made. Recently. 
Guo and colleagues (230. 2311 investigated macroscopic SHG of an LB film of a novel 
crowned |60] fulleropyrrolidinc (CEP). They observed a strong SHG signal whose intensity 
depends linearly on on the number of film layers, implying that the LB films of CEP arc a 
promising material for SHG. The second-order molecular susceptibility and hyperpo
larizability (3 were determined lo be 3.2 x It) K esu and 8.3 x 10 esu. respectively. The 
mechanism is still the intramolecular electron transfer.

The second-order nonlinearity of CW) endohedral doped with Li. Li(y CNI, has been inves
tigated both theoretical and experimentally by Campbell ct al. (232]. They found, theoret
ically. that displacement of the Li off tic idealized molecular center can induce a large 
first hyperpolarizability. An enhanced nonlinear response was also found experimentally by 
considering the SHG from thin films containing ~30rz Li(p CIH). From lhe results, it was 
suggested that y'2' of Li(<» C„h would be one or two orders of magnitude larger than the 
magnetically induced \'2' of pristine CWI.

Very recently. Euks cl al. (233] observed that fullerene molecules such as CW) can be 
modified by substituting fullerene with Si atoms to enhance the second-order photoinduced 
nonlinear optical properties, l he experimental results are |233|: =0.21,0.87 pm/V for
(’«.,Si and C..Si.. respectively: \' — 0 66.11.67 pm V for C5„Si and C,,Si.. respectively, l he 
substitution by two Si atoms docs favor the larger second-order susceptibility in comparison 
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with (hat for only one-atom substitution |233|. 1 his indicates that the photoinduced second- 
ordci NLO susceptibilities for C\sSi . are more isotropic than that lor Csl)Si.

I.in et al. |234] successfully incorporated CNI/( molecules into inorganic optical glasses 
with high melting temperatures. Fullerene doping leads to changes in glass properties [234]. 
Considering that optical glass without fullerene doping has centrosymmetry supporting no 
second-order optical nonlinearities. Zeng et al. [235| have recently shown that fullerene 
dopants can form ordered structures in the vitreous glass matrix. The fullerene doping broke 
the centrosymmetry of glass, leading to macroscopic second-order optical nonlinearities. An 
enhancement for the SHG of nearly two orders of magnitude was observed near the self
assembled islands [235).

3.2.2. Theoretical Calculations
Based on the intermediate neglect of differential overlap/configuration interaction plus sum
over-state approach (INDO/CI-SOS) method |236-238), Li. Feng, and Sun [239) calculated 
the second-order nonlinear optical susceptibilities [3,.k and I3„ of Cw,/aniline (AN) (a the
oretical model of the experimentally studied CH(/DEA (218|). The calculated value of )3p 
at 1910 nm is 3.217 x II) esu, which is in good agreement with experiment [218]. Later 
on. using this theory. Liu et al. [24(1] found that ,X'-mcthyl-2-(2 -thiophene )-pyrrolo[3,4JCwl 
X -mcthyl-pyrrolo|3.4|Cpl. and its derivatives exhibit good second-order optical nonlineari
ties. Both theoretically demonstrated the polarization effects, induced by the charge-transfer 
interaction, on the large number of hypcrpolarizablc r electrons, which have a significant 
contribution to the higher value of [S,, obtained by Wang and Cheng ,218]. Recently, Fu et al. 
[2411 found, using INDO/CI-SOS. that spiroannelatcd quinone-type methanofullercncs show 
enhanced second-order nonlinearity, compared with C'I(I/AN.

Rustagi. Ramaniah. and Nair |242| studied the first- and second-order hyperpolarizability 
of fullerene substitutionally doped with one B or one N atom by using a tight-binding method 
and found large enhancement of the nonlinearities in the doped fullerenes. Also, hetero- 
fullcrenes substitutionally doped with silicon atoms [243] are ol great interest from many 
aspects. One is the possibility of increasing second-order optical susceptibility. Recently, 
Fuks cl al. [233] have shown, both theoretically anti experimentally, that fullerene molecules 
such as CHI can be modified by substituting fullerene with Si atoms to enhance the second- 
order photoinduced nonlinear optical properties. The experimental results arc [233|: =
0.21,0.87 pm/V for CwSi and C5HSi2, respectively; = 0.66,0.67 pm/V for C59Si and 
C5!iSi2, respectively. The substitution by two Si atoms does favor the larger second-order 
susceptibility in comparison with that for only one-atom substitution [233]. This indicates 
that the photoinduced second-order NLO susceptibilities for C<XSL arc more isotropic than 
that for C5<)Si.

It is known that high values of the first hyperpolarizability 13 tensor components for a 
given molecule imply optical nonlinearities as the molecule responds to applied optical fields. 
The so-called donor-acceptor model shows one approach to search the structure-property 
relationships of (3 and design our needed NLO materials. Based on this model, electronic 
excitation would result in charge migration from the donor to the acceptor group, showing a 
large dipole moment along the direction bounding the two groups. Indeed, many of donor
acceptor systems exhibit high values of )3. This has also been demonstrated theoretically 
for B.N-substitutcd CWI by Jensen et al. |244] and for push-pull derivatives of CW) by Fanti, 
Orlandi. and Zerbetto |245|. where also a relation between the conjugation path length and 
IS was found.

I he lirst hyperpolarizabiliiy is made up of its dipolai and octopolar contributions. It is 
possible to cancel the dipolar part by symmetry and enhance the octopolar part of the 
13 tensor 1246. 247], This gives us another approach to designing NLO materials by explor
ing octopolar architectures of a number of possible molecules |247). Such an octopolar- 
enhanced approach has two advantages [246]: preventing the molecules from losing their 
optical properties in bulk by dipole cancellation on antisymmetric crystallization and raising 
the possibility for the system to have more than one optical axis. Recently. Barbosa and 
Nascimcnto [248] proposed a new approach, incorporating an octopolar-enhanced approach 
into the donor-acceptor model, for designing molecules with large hyperpolarizabilities. 



Nonlincai Optical Properties ot ( arbon Num structure

In their approach, a central acceptor unit with a high value of electron affinity is used and 
bounded lo several donor groups, maximizing either Ihe dipolar or the octopolar components 
ol the /3 tensor.

Recently. Cu, fullerene |249. 25(1] has been synthesized. This molecule with and 
symmetries [see Fig. 4(q) and Fig. 4(r>] exhibits rich structural and electronic proper

ties [251-261]. Ihe crystal l)„h structure has a very high electron affinity (>3 eV) and many 
symmetry elements [248], By adding two equivalent donor amino-ethylene (ME) groups to 
one ol the three unique symmetric positions of the central acceptor group C\, fullerene. 
Barbosa and Nascimento [248] explored the second-order NLO properties of such system. 
The nuclear frameworks of the new system w ith C:h point group cannot present second-order 
NLO properties. The framework with C\, symmetry, as listed in Fable 3. may exhibit high val
ues of the component, more than 1(1 limes larger than those for the p-nitroaniline [262]. 
Because of the symmetry, most of the components of ihc /3 tensor vanish. Their results 
showed that a symmetric positioning of a great number of donor groups is more important lo 
enhance the octopolar component of [3 than an augmentation of chain length, which signif
icantly influences only the dipolar component. According to their proposed approach, some 
of the designed molecules can be good candidates lor building second-order Nl.O materials.

4. THIRD-ORDER OPTICAL NONLINEARITIES OF
CARBON NANOSTRUCTURES

There arc several popular NLO measurement techniques to obtain the third-order opti
cal susceptibility y1’’ of a material: DFWM. THG. F.FISIIG. Z-scan. optical Kerr effect, 
optically heterodyned OKE (OHD-OKE). and coherent anti-Stokcs Raman spectroscopy 
(CARS) vibrational lineshape analysis. In Section 1.3, wc introduced the THG and DFWM 
techniques. Actually, the 111G process occurs in every medium, and consequently the har
monic intensity is a result of the superposition of harmonic fields generated in the separate 
media. And the DFWM is a powerful tool for measuring y*” of a material. From the strength 
of the signal, one can determine the magnitude of y1 I lowever. the time-dependent behav
ior of the DFWM signal is related to the development and persistence of the grating and 
therefore provides information on the tihrafasi physics of ihc material The Z scan lech 
nique [263] measures the real and imaginary parts of y1’1 al the same time and is based on 
the variation of transmitted radiation intensity by alteration of the geometrical parameters 
of the interaction region. Explicitly, Z-scan is achieved by gradually moving a sample along 
the Z-axis of propagation of a focused Gaussian beam through its focal plane and measur
ing the transmission of the sample for each Z position. The recording of the transmission 
as a function of the Z coordinate provides accurate information about the nonlinear effect 
present as the sample experiences different electric field strengths at different positions. For 
an ordinary OKE technique, the detected signal is proportional lo (he quadrature of y1’1, 
anil one can acquire only the modulus of y1’1. which should be related lo the excitation light 
because the imaginary component of y-(!| is determined by the absorption of the sample at 
the wavelength of the excitation light. In most cases, the real component ofy1" is. in fact, 
more concerned because it is a more important parameter for the application in photonic 
devices. OHD-OKE determines the magnitudes and signs of y(’’, and Ihis method greatly 
improves the signal-to-noise ratio of experimental data. In the C ARS technique, one tils the 
dispersive lineshape caused by interference between the unknown nonlinearity and a Raman 
resonance of a standard like benzene. This CARS procedure is well accepted and has been 
shown to provide accurate values for y. Details about CARS techniques can be found in 
Ref. [2641.

Photonic applications (for example, data processing, eye and sensor protection, and 
all-optical switching) need molecules with large third-order optical nonlinearities |92 94. 
96-101 ]. I lowever. the y”' or y magnitudes of most materials are usually smaller than those 
needed for photonic devices. Hence, searching for potential third-order NLO materials with 
a large Nl () response has been an interesting and important issue in physics, chemistry, and 
material science. Quantum dots and conjugated 77-clectron organic systems (for example. 
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polydiacetylenes, polyacctylcnes. and polythiophcncs) have been shown to have large third- 
order optical nonlinearities [92-94. 98. 100. 265 276|. However, because of the overtones 
ot high-energy (' II and O 11 vibrations, those organic materials show strong absorption 
in the near-infrared region. Obviously, this would limit the application of organic mate
rials in the infrared region, for example, telecommunications, l he advent of the technol
ogy for production of bulk quantities of spherically and rod-shaped carbon nanostructures 
|9-I5. 22] provides us w ith another class of completely conjugated materials having quantum
dot nature, as well as a large number of delocalized 77 electrons. Because these carbon 
nanostructures are uniquely composed of carbon atoms, there is no C—H or O—H bond 
present in these structures. This implies that no absorption would be observed in the infrared 
region. On the other hand, the HOMO-LUMO energy gaps in these carbon nanostructures 
are narrower [277] than those in conjugated polymers (the HOMO-LUMO energy gaps in 
conjugated polymers are broadened because of the confirmations, polymer chain length dis
tributions. and vibronic couplings to electronic levels). Thus, carbon nanostructures exhibit 
narrower resonances. These novel features naturally make carbon nanostructures appealing 
NLO materials for photonic applications and stimulate the investigation of the third-order 
optical nonlinearities of carbon nanostructures. In lhe follow ing, we review the experimental 
and theoretical studies on the third-order optical nonlinearities of carbon nanostructures, 
l he results are summarized in Tables 4 through I I.

4.1. Spherically Shaped Carbon Nanostructures
4.1.1. Experimental Measurements
The third-order optical nonlinearity of CNI was first measured by Blau et al. [278], using 
DFWM technique. Their measured third-order optical susceptibility has an error by more 
than three orders of magnitude than the accurate value determined later [279, 280]. Never
theless. their experiment did attract extensive studies of the third-order optical nonlineari
ties of Cw in the world. Table 4 collects some of reported optical susceptibilities jf^tx and 
hyperpolarizability y of C,10 at a few selected wavelengths measured by DFWM, THG, and 
electric-field-induced second-harmonic generation (EFISHG). l he differences and errors of 
the measured results were quite indicative of lhe later developments for obtaining the value 
yl” or y of CN| [195. 218, 279-301). I hc third-order NLO responses arc very sensitive to a lol 
of experimental factors, for example, the incident laser power, pulse duration, the measure
ment techniques adopted, and the state of materials (sample preparation methods). Thus, 
it is not easy to directly compare these experimental results obtained from different groups 
by using different techniques. But. in general, there is a reasonable agreement between the 
values measured by THG and EFISHG. From Table 4. two interesting features are observed 
from the wavelength (A)-dispersed JV*’1 spectrum for CN(: (1) a strong resonancement in x(,) 
with two peaks at 1064 nm and 1210 nm and (2) a sharp decrease of at a shorter wave
length. As reviewed in the theoretical part of this section, a three-level model proposed by 
Kajzar et al. [198] explained that the resonances observed at 1.064 and 1.210 gm are three- 
photon and two-photon processes, respectively. In spite of the obvious discrepancy for the 
j’-” or y value of Cr<) in different experimental groups, the most recent experiments have 
demonstrated that the third-order optical nonlinearity of CMI has a small value [302, 303]: 
the lower limit of y is 3.7 x 10 b esu measured by nondegenerate four-wave mixing [302], 
whereas the upper limit of y is 9.0 x 10 esu determined by the femtosecond OKE [303|.

Compared with CMI. higher fullerenes have attracted less attention on their third-order 
optical nonlinearities because large amounts of higher fullerenes are not available. This is 
also why lhe synthesis and isolation of higher fullerenes is still an active research field. 
Some experimental results [218. 289-291. 295. 297. 300. 304. 305] and theoretical cal
culations [293. 294. 296. 306-327] have shown that higher fullerenes possess larger third- 
order optical nonlinearity than lhe most easily purified higher fullerene. C7||, was 
experimentally proven to have a y magnitude of 1.6 to 3 times larger than that of CM1 
[218, 289-291. 295. 297, 30()|. Tables 4 and 6 list lhe third-order nonlinear optical suscep
tibilities y*1* of C7I) and higher fullerenes studied by different experimental or theoretical 
techniques. In the following, wc briefly review recent experimental studies on lhe third-order
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fable 4. 1 Im J-ordci optical nonlinearities ol sphericallx shaped carbon nanostructures measured In dilferciil
expcriircnt.il techniques. . 
data .ire adapted from Na 
et al I

1 and r arc the wavelength and pulse duration ol the laser source respectively Some 
Iwa |90| Xie |24|. \k cl al |2^|. Ka|/ar el al ||98|, Ruslagi cl d |328] and Belousov

Carbon Wavelength v'1' y
Structure (gm) 7 (10 esu) (Hl 14 esu) Method Stale of Material Ref

C„„ 11.532 70 ps 0.1 22011 ± 600 DFWM Solution |3(»5|
0.356 50 ps 15 TUG Him film |287|
11.4115 50 ps 21 TUG linn lilm [287]
(1.494 50 ps 27 IHG I'hin lilm |287|
0.497 0.5 ps 0.7 ± 0.2 130 ±30 z-scan. DFWM Solution |382|
11,588 50 ps -ST THG Thin film |287|
II >U 1.2 ps 380 DFWM Thin film |2911
(1.6112 400 fs 100 ± 20 DFWM Solution |286|

50 ps 11 IHG Thin film |287|
0.620 60 |s 220 OKF. Solution |286|
II 633 100 ps 200 DFWM Thin film |295|
0.640 120 fs 1600 OKI: Solution |378|
0.647 150 ts 1600 OKI Solution |3(KI|

165 fs -0.3 OHD-OKE Film |387]
0.675 1.2 ps 82 DFWM Thin him |291]
0.6X6 50 ps 9 TUG I'hin lilm |287]
0.796 50 ps 4.5 THG I’hin tdm |287)
(1.81(1 120 Is <1 OKF Solution l™l
0.816 13 ns 13 THG Thin film (198]
0.825 13 ns 7 IHG Thin film |I98|
II.X.U 13 ns 111 IHG Thin film |I9N|
0X4? 13 ns 7 111G Hiin lilm (198]
0.850 10 ns 15 THG I'hin lilm |28l. 282)
0.852 13 ns 19 TlIG i'hin lilm [198]
0X61 13 ns 15 THG Thin film |I9X|
11.87(1 IS ns 15 IHG Thin him ||98|
0.882 13 ns 13 IHG Thin him ||98|
0.891 13 ns 18 THG I'hin lilm ||98|
1)90(1 13 ns 15 Tl IG I'hin him ]I98|
11909 H ns 21 IHG Thill him |I98|
1.022 13 ns 71 THG Hiin film |198]
1 030 13 ns 73 IHG I'hin film [198]
1.039 13 ns 73 IHG Thin film ]19X|
1.056 13 ns 74 IHG Thin film |19X|
1.064 35 ps T DI WM Thin film |285|

50 ps 60000 DFWM Solution |278|
3 DFWM Solid |284|
1 1600 DFWM Solution |284|

50 ps 14 THG Thin film |287|
2181 IHG Thin film |I95|

10 ns 82 THG I'hin film |281. 2821
13 ns 82 THG I'hin film ]I98|
io ns 7*> 47 IHG Solution |289|
35 ps 7 3 DFWM Thin film |2‘J7|

1.074 13 ns 87 IHG I'hin film ||98|
1.083 13 ns 76 IHG Thin film |198)
1.092 I 3 ns 74 II IG Thin film ||98|
1.138 13 ns 63 IHG Thin film 1198]
1.158 13 ns 67 IHG Thin film |I98]
1.165 13 ns 78 IHG Thin film 1 iw|
1.177 13 ns 51 IHG Thin film 119SJ
1.236 13 ns 53 THG Hiin film 1 iw|
1.245 13 ns 5! Tl IG I'hin film ||98|
1.254 13 ns s FUG 1 hin lilm |I98|
1.263 13 ns 54 IHG Thin lilm ]I98|
1 269 13 ns S’* IHG Thin film 1™]
1.278 13 ns -S ' IHG Thin lilm (198|

continued

expcriircnt.il
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Table 4. Continued.

Carbon 
Structure

Wavelength 
(Mm>

i ii1
t (lit esu) (10 M esu) Method Stab of Material Ref.

1.287 13 ns 57 TUG Thir film |198|
J.291 13 ns Nl THG 1 hn film |I98]
1.296 13 ns TUG 1 hit film (1981
1.305 13 ns 56 THG 1 hii film [198]
1.323 13 ns 61 THG Thir film [198]
1.330 50 ps 30 THG Thir film 1287]

10 ns 61 THG Thir film [281. 282]
1.332 13 ns S r IIIG Thir film [!98|
1.344 13 ns fill IHG I’hn film |198|
1.35b 13 ns Ml IHG Thii film |I98]
1.368 13 ns 58 IHG Thii film |198|
1.381 13 ns 57 IHG Thu film |I98|
1413 13 ns 57 IHG Thii film [198|
1.437 13 ns TUG I'hii film 1198]
1.456 13 ns 56 IHG llm film |I98|
1.500 Hl ns 30 13 ± 8 THG Sohtion (289|
1.815 50 ps 4 IHG Thii film |287|
1.907 13 ns 32 IHG 1 hii film [198]

13 ns 32 IHG Thii film (283)
13 ns THG Thii film [38O|

2< 1 DIG Thii film |196|
1.910 16 7.5 ± 2 1 1 ISHG Sohtion |2I8|

50 ps y THG Thii film |287|
III ns 32 IHG I'hn film |2K|. 282|
10 ns 20 IHG Thii film |283|

2.000 10 ns 37 16 ± 8 IHG Sohtion 1289]
2.373 50 ps 4 IHG Thii film 1287]
2.380 50 ps 4 THG I'hn film 1287]

7KI 0.532 70 ps 0.4 13000 t 4IMM> DFWM Sohtion |305|
(1.597 12 ps 2100 DI WM Thii film [2911
0 633 100 ps 300 DFWM Thn film 1295]
0.647 150 fs 4700 OKE Sohtion |300)
0.675 1.2 ps hi DFWM Thn film |29l|
0.799 13 ns 8 THG Thn film [198|
0.810 120 Is 5 OKF Sohtion [383]
0.816 13 ns 11 THG Thn film [198|
0.825 13 ns 13 THG Thn film [198|
0.834 13 ns 6 THG Thn film |198|
0.843 13 ns 6 THG Thn film [198]
0.852 13 ns 7 THG Thn film [198]
0.861 13 ns 10 THG Thn film |198|
0.870 13 ns 6 IHG Thn film |198|
0.882 13 ns 7 THG Thn film [I98|
0.891 13 ns 12 THG Thn film [198]
0.900 13 ns 11 THG Thn film |198|
1.013 13 ns 3(1 THG Thn film |198|
1.022 13 ns 29 THG Thn film [198]
1.039 13 ns 29 THG Thn film [198]
1.047 13 ns 29 THG Thn film |198|
1.056 13 ns 26 IHG Thn film [198]
1.064 35 ps 12 DFWM Tim film [297|

10 ns 6 I2ooo DFWM Soution [29()|
Hl ns 1400 570 IHG Soution [289]
13 ns 26 IHG Ilin film |2I4|

1.074 13 ns 26 IHG I’hn film [198|
1.129 13 ns 36 THG Ilin film 1198]
1.131 13 ns THG Thn film [198]
1.138 13 ns 26 THG Thn film [198]
1.148 13 ns 34 THG 11m film |I98|
1.158 13 ns 39 IHG Ilin film [198]

coniinuecd
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lahv 4 Conlinued

( «ir*on Wmelcnglh V’1 y
Slo. lure (/on l 7 (10 esu) (III C'U) Method Slate Material Rcl

1.167 13 ns 43 riKi Thin film |19«]
1 177 13 ns 37 rue Thin film ||9X|
1.1X7 13 ns 30 niG Thin film ||98|
1.216 13 ns 47 1 IK. 1 Inn film (I9X)
1.226 13 ns 44 THG Thin film ||9X|
1.247 13 ns 43 TUG 1 hin film ||98|
1.267 13 ns 19 THG Thin film |I9X|
I.27X 13 ns 29 THG Thin film ||9S|
1.2X9 13 ns 51 THG Thin film ||98|
1.3(10 13 ns 67 THG Thin film (198)
1322 13 ns 69 THG Thin him ||9X|
1.333 13 ns 71 THG Thm film |19S|
1.344 13 ns THG Thin film |19S1
1.368 13 ns S3 IHG Thin film p9S|
1.378 13 ns b6 THG Thin film II9XJ
1.390 13 ns 77 IHG Iltin film |I98|
1.4(11 13 ns 90 IHG 1 hin film fl98|
1 413 13 ns 76 IHG Thin film ||9X|
1 420 10 Ils 'XI IHG Him film |2I4|
1.425 13 ns 72 THG Thin film [19X|
1 437 13 ns 78 THG Thin film 1198)
1 449 13 ns S3 THG Him him ||9X|
1.500 Id ns 54 220 IHG Solution R89]
1 907 13 ns 24 110 £ to IHG Thin film ||9X|
l.9|() 44 13 L 3 1 1ISIIG Solution |2I8|

10 ns 24 IHG Thin film |2I4|
2.000 10 ns 91 38 THG Solution |2S9]

C,. d.532 70 ps 0.3 ±0.1 8000 ±3000 1)1 WM Solution 13951
c\ 11.532 70 ps 0.6 ±0.1 15000 ± 3000 DFWM Solution |3O5|

11.532 70 ps 0 4 Hl. 1 12IMMI t 3IHMI 10 WM Solution 13051
(>.(>47 150 Is 52011 OKF Solution |30l>|
(1.532 70 ps 0.5 ± 0.2 13(11X1 ± 5011(1 DFWM Solution |3O5|
(1.532 70 ps 0.7 ± 0.2 18000 ± NXMl DFWM Solution |3O4. 305|

In, 11.532 /() ps 0.6 ± 11.2 I90IXI ± 600(1 DFWM Solution |3O5|
C„. (1.532 70 ps (1.7 ± 0.2 21000 ± 600(1 DFWM Solution |3O5|

optical nonlinearities of higher fullerenes. Other reviews on the nonlinear optical properties 
of fullerene (mainly C',.M and C70 molecules) arc also available in the recent literatures by 
Nalwa [99|, Xie [24]. Kajzar et al. |I98|. Rustagi, Nair, and Ramaniah |328|. and Belousov 
et al. [329].

Neher et al. [289| measured the optical susceptibilities X* of in the infrared region 
(1.(164, 1.500. and 2.000 gm) by using the THG technique in a toluene solution. Compared 
with CM(, C7u exhibits enhanced third-order optical nonlinearity. In particular, a strong effect 
with y exceeding 5 x 10 esu was observed in the three-photon resonant regime, and a 
negative real hyperpolarizability in C-(, was found in the nonresonant measurements. Later 
on. Kajzar et al. [198. 214] reported a broad THG spectrum for C7(). l he overall THG spec
trum shows a broad resonance enhancement in with a maximum value of y1'* = (0.9 ± 
0.1) x It) 111 esu located al 1.420 gm and a dramatic decrease at short wavelengths [ 198, 214], 
Yang et al. [290) were the first to measure the third-order NLO susceptibility of C7|I in a 
toluene solution by using lhe DWFM technique with 10 ns laser pulses at 1.064 nm. The 
third-order nonlinear optical susceptibility y1'1 is determined to be 5.6 x 10 *- esu for a 
C'7li toluene solution at a concentration of 0.476 g/1. Later on, Flom et al. ]29l|; Lindle 
et al. (297|. and Rosker cl al. [295] performed time-resolved DFWM measurement on the 
third-order optical nonlinearities of C-() film by using a picosecond laser pulse. The C-(l was 
found to exhibit a two-photon resonantly enhanced third-order optical response [297]. The 
dynamics ol C7|( shows wavelength and fluence dependence [291]. To our interest, at high 
laser intensities, their experiment showed a fifth-order component to the NLO signal due to
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Table 5. Second-order hypcrpolurizabililies y of • calculated by different theoretical techniques .adapted front 
Xie et al. |25|).

Technique Wavelength (/a nt) Process y (10 u esu) Ret.

INDO SIX 1 SOS X’ Static 11 |350i]
INDO SIM l-SOS 1.064 DFWN 49 1350'1
INDO SIX l-SOS 1.064 1 FISH 149 |350l]
INDO SIM l-SOS It 164 THG 71 [350) |
INDO SIX l-SOS 1.910 DFWN 37 |350)J
INDO SIX l-SOS l.‘>|0 El ISH 79 1350'1
INDO SIX l-SOS 1.910 THG 15 I’-Si.i]
INDO SC! SC)S 1.064 DFWM SI I29-]
INDO SIX I SOS I 1164 DFWM 44 M
INDO SIX 1 SOS <1.532 DFWM 19 |292|
INDO SIM l-SOS 1 9|l) 1 FISH 41 |29J|
( NDO S SOS X Sialic 5 |3W]
( NDO S-SC »S X Static 33 |34al|
( NDOS-SOS 1 QIWI THG 36 [3+4]
CNDO/S-SOS 1.830 mci 36 |344|
( NDO S-SC )S 1.320 IIIG 30 |344)
< NDOS-St )S 1.064 niG 44 |344|
( NDO S St )S x Static 8 |34‘»|
CNDO/S-SOS 1,900 HIC. I) |34‘l|
CNDO/S-SOS 1.830 THG 9 |34<->]
CNDC)S SOS 1 320 HIC. 10 |34‘9)
CNDO/S-SOS 1.064 THG 11 |34'9|
MNDO IF X Static 0.3 |34S|
MN DO SOS x Static 0.5 |34W<|
NDDO,PM 3-1 I 'K- Static 0.3 [34^|
NDDO PM3-SC)S l%i Static 0.5 |34;X|
NDDO AMI FF OC Static 0.3 134:6]
NDDO AM l-SOS X Static 0.4 |34:5|
MNDO PM3-FF X Static 0.4 |294|
AMI-11 X Static 2 [347]
AM 1 -Fl X Static 1 13212, 3461
AM l/Valence-FF X- Static 0.2 |31 l|
INDO-TDHF v Static 0.3 |2H.6|
INDO-TDHF 1.370 OKI <1.3 I28-6]
INDO-TDHF 1.370 EFISH 0.3 |28.o|
INDO-TDHF 1.370 DFWM 0.3 128-6)
Hiickcl X Static 25 134 3]
Spherical shell x Static -3 |30.6|
VEH-SOS □c Static [312. 3I3|
Tight-binding X Static 176 133.6]
Tight-binding X Static 0.1 [342|
Tight-binding X Static 31 |242|
SSH-SOS X Static 6 |30'7|
SSH-SOS X Static n 1324]
PPP-FF X Static 0.3 (343]
PPP SOS ■X' Static l [3+3)
PPPMP2-F X Static 0.4 [343]
PPP-TDHF X Static 1 [33-7|
PPP-TDIII X Static 0.2 [338]
PPP-TDHF I wo EFISH 0.3 |338|
PPP-TDIII 1.879 IT IG 0.4 [339]
PPP-TDIII 1.320 EFISH 0.4 [3“'8[
PPP-TDIII 1.320 THG 0.7 1339]
PPP-TDIII 1.060 EFISH 0.5 [338]
PPP-TDHF 1.060 THG 3 |339]
C oupled HF X Static 0.08 [3+1]
III -SOMO X Static 7 |; 5[
HI -RPA x Static 11,6 |3"l|
111 RPA X Static II.h |2‘/6|
III STO-3G-I-I X Static III |333]

c- mimucd
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latis- 5. ( xHinncil

led niquc VVavelenelh t/zm) Proc-css y(10 M esu) Rd,

111 -'Kill V Static ll. 1 |3.v|
1 D. X Static 0,6 |34O|
Ill RI’A \ Static (1.3 1-1451
I DA-I 1 X Sialic <1.2 [3141
IDA 1 1 X Sialic 0.4 1-1-151
1 DA 1 DDFT X Static 0.4 |H"I
1 DA IDDI I X Static ().7 R441
1 DA-IDDIl X Static 0.6 I3-U1
I D/VTDDH ll.S.Ui OKI 0.7 |1.H1
1 DA-TDDFT 1.064 DFW M 0.8 [3311
1 DA-TDDFT 1.910 FFISII 0,7 1-3'11
1 DA-TDDFT 2.3SO IHG (1.7 [33J|
HI YP TDDFT X Static 0.8 13311
Bl VP 1 DDFT 0.830 OKE [I.M l-i.i 11
HIYP-I DDFT 1.064 DI W XI It) 1-1311
BIYP IDDFT 1.910 1 1 ISII 11.8 PHI
BI.YP-i DDFT 2.380 DIG 0,9 1-1311
1 ID- IDDFT X Static 0,5 |33l |
1.1194. I DDFT 0.830 OKI 0.6 1331|
LIW4-TDDII I.IWU DFWM 0.6 (33l|
LIW4-TI >D1-T 1.910 EFISH 11.5 [331]
1 H94-TDDF 1 2.3811 TUG 0.5 I-13II
1 H94-TDDFT X Sialic 0.3 |33O|
1 H94-TDDFT 0.830 OKE o.4 |39l|
1 H‘M. IDDFT 1 910 1 1ISII 0.4 |33O|

a two-photon excited-slate transient grating [297]. As well as IIIG and DIWM measure
ments. Wang and Cheng |2I8| determined the optical susceptibility a'"' °l ( i> by using lhe 
EF1SHG technique with a 1.91(1 gm radiation. It concluded that the optical nonlinearities 
ol C7(l are comparable to those of linearly conjugated organics with due consideration to the 
molecular size [2I8|. This is consistent with THE and 1)1 \VM incasmcinciils. Similai to ( N). 
C ,, spectrum exhibits several interesting features: (I) a sharp decrease of y' at a shorter 
wavelength; (2) a strong resonance enhancement in y(i| al 1.410 jxm; (3) a shoulder around 
1.1)64 gm. I'he observed resonance at 1410 nm is caused by a three-photon resonance with 
a one-photon allowed transition lying at 470 nm. while the shoulder at 1064 nm is due a 
two-photon resonance [ I OX. 214].

Unlike C(1(l and C7II, less work has been done on the NLO ol higher fullerenes. Sun 
et al. 1300] were the first lo measure the third-order optical nonlinearity of high fullerenes 
Cs4 by using the lime-resolved OKE technique with 150 fs laser pulse at 0.647 gm. A large 
instantaneous NLO response was observed for (\4. In aimparison with C'w, and the 
y value of C's4 is enhanced a little. Such a small accretion of the optical Kerr response 
of CM is due lo the sample impurity. The experiment of Huang cl al. [304] indicated that 
a purity of Cs4 is higher than 85%, but lhe impurities include C7s, Cs;. and C,M. Later 
on. the third-order optical nonlinearities of C<M) (>97G purity) al 0.532 gm were measured 
by Huang et al. |3()4], using the DFWM technique. Their measurement determined the 
second-order hypcrpolarizability y of to be (1.8 ± 0.6) x 10 esu (the y value of C(4I 
was (2.2 ±0.6) x 10 ’’ esu in the same condition). Compared with CM„ the y value of C.^, 
was enhanced h\ about one order of magnitude. This is expected because there are more 
highly delocalized 77-conjugated electrons over the spherical-like surface in C,M| that in C,41. 
Furthermore, the systematical work of Huang et al. [305] on other higher fullerenes (for 
example. C7h. C\. Cx4, C^,. C.M, and (’,„.) performed by using DFWM with 70 ps laser pulses 
al 0.532 gm under optimized experimental conditions, found an eightfold increase in the y 
values from CM( lo C,N, (sec Table 4). This is consistent with the (rend predicted by theory 
discussed below [314-321].
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1'ahlc 6. Static second-order hypcrpolarizabilitics y ol higher fullerenes calculated by different theoretical tec h
niques- Some data arc adapted from Xie 1241. \i et al. 125].

Molecule Technique y (1(1 ’’ cmi) Ref.

MMX) PM3-FF n.7 I-'M|
NDDO I’M V Fl (1.6 1'481
NDDO PM3-SOS 5 [348]
NDDO AMI I t 11.5 l-'48|
NDDO AMI SOS 5 [3481
INDO SIX 1 SOS 27 [35()|
IMX) SIX 1 -S()S 51) |293|
CNDO/S-SOS 9 |3I4|
AM 1 valcnccTF (1.5 [-’HI
AM III 12 |322. 346]
Spherical '■hell -4 |306|
VI.11 SOS |3I2.323|
SSI 1 -SOS ft |307[
SSH-SOS 11 13241
III KPA (IX |2*J6|
HI SOMO |3I5|

c.„ CNDO/S-SOS 12 |3I4|
HI SOMO 4 (315|

(.(/>,) HI SOMO 4 |3I5|
SSI 1 SOS 7 |324|
AMl-FF 1 1322. 34(,|
AM 1 valcncc-FF 3 |327|

(■ JC (DI HI SOMO 4 |3I5|
SSH-SOS 2(1 [324|
AMl-FF ? |322. 346|
AMI/valcncc-FF 4 |327|

<-x|C.„(2)| HF-SOMO 4 |3I5|
SSH-SOS s |324|
AMl-FF [322. 3461
AM I/valcncc-FF 3 [327|

1 ^36 U ) | SSH-SOS 5 [324|
AMl-FF T [322. 3461
AMI valcncc-FF 5 [327]

c „ SSH-SOS 21 [324]
AMl-FF 2 [322. 3461
AMf/valence-FF 3 [327]

CM(DJ CNDO/S-SOS 18 1314]
AMI valcncc-FF 0.6 |3H I
AMl-FF T [322. 3461
HF-SOMO 4 |3I5|
HF-RPA O.K [296]

CJD-J CNDO/S-SOS IK [314]
AMI valcncc-FF 0.6 [3111
AMl-FF |322. 3461
HF-SOMO 5 1315]

( III) HF-SOMO 9 [315]

4.1.2. Theoretical Calculations
In Tables 5 and 6. we summarize the second hyperpolarizabilities y of several spherically 
shaped carbon nanostructures, predicted by different theoretical methods The theoretical 
results have a large spread. However, it one considers the ah initio methods, such as HF and 
DFT. the calculated results arc more consistent. The low value ol y for C(lll is confirmed by 
tih initio calculations |244. 296, 330. 331 ], although the experimental results tend in general to 
be larger than the theoretical results. On he other hand, because of the presence of medium 
effects, a direct comparison between experiments and theoretical predictions is difficult. That 
is. the experimental results refer to the condensed phase whereas the theoretical results 
usually arc for lhe gas phase. By considering the intermolecular interaction and local-field 
corrections on the NLO properties ol (l.uo el al. |332] found a good agreement with
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table 7. 1 he .iterated second t>rdci hy|Krpolarizahtlity ( y |y , - y I y • 2<y, -y..
the ateraged pyramidalization angle W„ = \ n. n is the total number ol c.uhon atoms lot the i 
tule isomers ol higher fullerenes (adapted from Reis |25. 326|)

+ y,_ || 5) and 
Milaicd-pcntagon

1 ullcrenc Symmetry y (III u esu) ri,.

< '->■ L 1 21 0.1810
/) 0.55 0.1822

C-. D.jll 0.82 0.1784
C ?.(l> 0.68 11.1791
< ,12) 11.56 ti.isih)

n.55 0.1803
(1.5? 0.1810

cc. 2.05 0.176b
c<( 1.22 0.1772
£>, 0.59 0.1781

0.57 0.1788

table X. The third-order optical nonlinearities ol functionalized crrhon nanostructures. MTMDA - mono- 
tiimcthykncdiaminc ( Si — <|M I -(C 11 > Si(()C HJvk- C . Fel = < .JI e|MI CNh|(NO.) C.,Fe2 - 
( |l c((\ll) CM \). |(N().). C. Rul _ C.JRu (Ml CN)JC1„ C„„ Ru2 = C.JRu ((Nil).CNCN).|( I„. CMI.y- 
CD - C„„.■y-cvclodextrin.

Material Method
A

(gm)
Material

• of State
I1'1

(III esu) (10 ’* esu) Ret.

c,„ CARS Solution 24 ± III 13511
c,;, CARS Solution 40 ± 10 [382)
c*.. CARS Solution 76 15 |352|
i ci OHD-OKE 0.647 165 Is Film -11.5 [387|
< ... I’d- OIID-OKF 0,1.47 165 fs Film (1.8 |387|
<",4lSm. OIID-OKF 0.647 165 I s Film 2,h |.187|
!-•("< U1 DFWM 0.497 0.5 ps S< ilution 0.07 h 0.02 -1800 ± 450 |382|

1 l’N:Cmultilayer TUG 1 907 13 ns Film 7 |38O|
TI‘N:(composite THG 1.907 13 ns Film 5 |38O|
ri’l’:( . multilayer IH(. 1 907 13 ns Film 8 |3X0]
||‘P( , composite DIG I <107 H ns Film 12 |38O|
I’oly-G,, DIG 1.907 13 ns Film 48 |38O|
<-.:<> DIG 1 lXI7 13 ns Solution 4(1 |38O|
(poly-.iininonitril.' OKI 0.810 120 Is Solution 32 |3O3|
(',,„( N11. CN)< OKI 0.830 120 Is Solution 0.06 100 |390|
C,J(NII).CNCN| OKI 0.830 120 Is Solution 350 |390|
<>Fel OKI (1.830 120 Is Solution 0.03 72 |3911
( ,j|/l c2 OKF 0.830 120 fs Solution 250 13911
< . Rul OKI 0.830 120 fs Solution 24(H) | 39| |
C . Ru2 OKI 0.830 120 Is Solution 65) H) |39||
C..„'St OKI 0.820 200 fs Sol II. 1 |4O2|
C Si OKI 0.820 20ii fs Gel II J |4O2|
C,.,.y-CD (1 day) /.-scan (1.532 10 ns Solution 13000 |384|
< I y-C I? (3 days) /.-scan 0.532 10 ns Solution 7861 MIO |384|

d (7 days) /.-scan 0.532 10 ns Solution 5O7(H)O |384|
CiiPc-C.ji okf: 0.830 120 Is Solution 54(H) [385|
cw,-ttf-« DFWM 0.532 ps Solution 3 [3921
CU1TTF-/J DFWM 0.532 ps Solution 5 |392|
C.,-(/*.S). (900 Da) OKI 0.8(h) UN) Solution 24(H) 1W]
(■„,-(/’.S ). (17800 Da) OKF 0.8(h) 1(N) Solution 880 |189|
C . (/’.S). (481 hl Da) OKI 0.8(h) |(M> Solution MM) |389|
C...-PTIIFMA OKI 0.640 Is Solution 8901) |378|
M 1 MDA-C •,,, DFWM 0.532 15 ns Solution 53.9 2480 |38l |
C^.l/’r/r/icm/), , /.-scan Solution 10" |386|
(’ ,,-poly-aininonitrile OKI 0.810 I2o Is Solution 160 |383|
r-jNH.CN). OKI 0.810 1211 Is Solution 410 |388|
( „|(MI) CNCN| OKI: 0.810 120 Is Solution 5X0 |388|
Dv'"C. DI WM 0.532 70 ps Solution 30IHH)± 50(H) 1379)
I : «< C_ DI WM 1.064 -870
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Table 9. SSH-SOS theoretical static y (in the unit ol lit esu) tensor components lor C';|l. (C„„ . w, atul 
( ., (uncapped zigzag tubule). TD-DIT U3LVP /3-2ICI results foi tinitc and open (4.4) and (5.5) carbon nanotubes 
ate listed (adapted from Reis. |25. 370]).

T Cw t .4 - • . C„. (4.4J (5.5)

4.8 5. 13.3 14.8 141.3 0.059 0.099
U 4.8 5. 13.3 14.8 141.3 0.059 0,098
7 N 7 6.3 ''12.11 278.3 2566.8 0.856 0.658
7... 1.3 l.ft 4.6 5.1) 44 7

2,7 3.1 19,4 6 2 132.3
y.. 2.7 3.1 19.4 6.2 132.3
y 5.6 6.4 85.0 68 6 697.6 0.307 0.494

Table It). The static y value and average conliibution I ot 17 chiral carbon nanotubes and seven well-characterized 
polyenic polynK rs. where s s\v \ T , and M s\\M denote semiconducting and metallic SWNT. respectively. 
,/. and </< arc the diameter and chiral angle ol carbon nanotubes: \ i' the total number ol carbon atoms in a given 
material: T is lhe average contribution of a carbon atom to the third-order optical nonlinearity of the material: $ is 
the ratio between the I values of a material and < .. (some data arc adapted from Xie 1241 Xie el al. |25|).

Materials X «/,(A) ■/.(degree) y(10 “ esu) l(10 w esu) f

c 60 7.0 — 561.2 0.09 1.(1
S-SWNT,,., 364 7.5 27 63.56 0.175 1,9
S-SWNT,., ,, 364 7.5 X 52.00 0 143 1.5
S-SWNI 388 7.7 15 54.01 0.139 1.5
S-SWNT . ., 412 8.0 in 57.20 0.139 1,5
S-SWN1, - . 43(1 8.2 60.17 0.138 1.5
S SWNT(1,, 448 8.3 19 61.77 0.138 1.5
S-SWNT...... 496 8.7 9 67.05 0.135 1.4
s-swnt„.,„ 508 8.8 28 68.50 0.135 1.4
S-SWN1 532 9.0 18 69 16 (I 130 1.4
S-SWNT..... 55<> 9.2 13 68.81 0.124 1.3
S-SWNT..... 592 9.5 25 68.16 0.115 1.2
S-SWNT,,, 604 9.7 21 67.64 0 112 1,2
M-SWNT,- 372 7.6 2! 230.00 0.618 6.6
M-SWNT(II,„ 444 8.3 5 250.4(1 0.564 6.0
M-SWNTp 468 8.5 14 221.88 0.474 5.1
M-SWNT|lt „ 516 8.9 2? 181.60 0.352 .1.8
M-SWNT,,,, 624 9.8 16 148.83 0.239 2.6
Polyenic polymer 230 — — 35 0.15 1.6
Polyenic polymer 340 — —- 54 0.16 1,7
Polyenic polymer 450 — — 78 0 17 1.8
Polyenic poly mer 620 — 155 0.25 2.7
Polyenic polymer 830 — -— 267 0.32 3.4
Polyenic polymer 1460 — — 629 0.43 4.6
Polyenic polymer 2320 •— — 854 0.37 4.0

Table 11. Third-order optical nonlinearities of MWN Is and SWNTs. A and r are the wavelength and pulse duration 
of laser source: I is the averaged second-order hyperpolarizability y contributed by one carbon atom in carbon 
nanotubes; PPCE denotes lhe mixing of polypyrrol and m-ercsol with clhanol; DMI = dimelhyIformamide (adapted 
from Xie et al. |15|).

Material Method A (gm) T State i1’ (10 l; esu) 1(10 M esu) Ref.

MWNT DFW M 1.064 30 ps PP( 1 solution 0.07 0.06 (355. 356|
1)1 WM 0.532 30 ps I’PtT solution 0.06 — (355. 3561
1)1 WM 1.064 8 ns PP( T solution 12 — |355. 3561
DFWM 1.064 8 ns I’Pt 1 solution — |355. 356]

SWNT OKI- 0.82 120 Is DMI solution 0.4 77 [357. 358]
DFWM 0.532 1 hick film 9 ± 5 (372|
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experiments if care was taken Io select experimental results without significant resonant 
contributions. Also, the vibrational contributions to the NLO properties of soiated Cw( have 
been studied ami shown to be significant for certain processes [333]. In Section 4.3. wc 
shall see that a strong enhancement on third-order optical nonlinearity—for example, an 
increase from several decades to 100 times on the y value—was even observed as CW) was 
chemically modified to form a charge-transfer complex [218, 303] or was chemically reduced 
to anions [351. 352].

A three-level model was proposed by Kajzar et al. [198] to explain the TUG spectrum of 
C(lli and Ct,,. Shuai and Bredas [312. 323] used the VEH approach to investigate the elec
tron c structures of C(ll, and C7II and applied the SOS method to study the dynamical NLO 
spectrum of CM, and C-.,. Their calculations are fully consistent with the EFISHG [218]. 
THG [218], anil DFWM [280, 285| measurements, but about three to four orders of mag
nitude lower than the data reported by Blau et al. [278] and Yang et al. [290], The lowest 
two-photon anil three-photon resonances in C\, were observed at almost the same frequen
cies for CW) because of the symmetry' (312, 323],

The second hyperpolarizabilities y of higher fullerenes were found by extensive the
oretical studies to scale with the mass of the all-carbon molecule [306. 310. 314-3211. 
lhe free-electron gas model proposed by Knize |306] showed that the y value of 
higher fullerene increases as the cube of the number of carbon atoms. Using the SOS- 
INDO/CI approach [314] or sum-over-molecular-orbitals (SOMO) approach, Fanti and col
leagues [314. 3I5| found that the second-order hypcrpolarizabilitics of fullerenes are a 
nonlinear function of the number of carbon atoms. Later on. the extended Su-Schricffer- 
I Icegcr model proposed by Xie and Rao [3I6| and Xie [3I7| indicated that the static y 
values of armchair and zigzag tubular fullerenes of small size scale with about three powers 
of lhe number of carbon atoms. Using the SOS method. Harigaya [318—3211 predicted that 
lhe off-resonant third-order NLO susceptibilities of higher fullerenes is nearly proportional 
to the fourth power of the carbon number when the on-site Coulomb repulsion is 2/ or 4/. 
/ being the nearest-neighbor hopping integral. The work of both Xie and Rao [316| and 
Xie 317| ami Harigaya [318—3211 demonstrated the important roles of Coulomb interac
tions in higher fullerenes. Luo |3IO| pointed out that if Cwl is excluded, a perfect power 
law dependence of the y value on the number N of carbon atoms can be observed |3I<)|: 
y — I I ■' 10 for lhe data of Fanti el al. [315]: y - 3.2 x 1(1 ’A'""’ lor the data ol 
Jonsson et al. [296]. Luo’s work [310] reflected the important issue that CM) has the most 
exceptional electron localization among all fullerenes. In comparison with the experiment 
of Huang et al. |305], the theoretical predicted increase trend is somewhat lower than the 
measured one. This implies the existence of other important factors (for example, geometri
cal structure, 77-77 overlap discussed later, and resonance enhancement) contributed to the 
increased y values for higher fullerenes.

Higher (.V > 70) and lower (/V < 60) fullerenes have many isomers with specific symme
tries (see Fowler and Manlopoulos’s zbt Atlas of Fullerenes |2t)[). It has been an interesting 
issue to discuss the effects of symmetries and atom arrangements on the NLO of fullerenes. 
As shown in Fig. 4( e-i), Cw h as five topologically distinct structures: two with C2„ symmetry, 
two with D-h symmetry, and one with D, symmetry. Using the SOS method. Wan. Dong, 
and Xing [324] demonstrated numerically the big effects of symmetry and atom arrange
ment on the y values of five isomers of C\s. From a geometric point of view. Moore and 
colleagues [311, 322] analyzed the static y values ol CM(, C7||. five isomers of C7S, and two 
isomers of Cx4 in terms of the geometry symmetry (characterized by the molecular group 
order), aromaticity (characterized by the selection of six-member rings determined from 
the analysis of bond lengths), and molecular size (characterized by maximum interatomic 
distance and surface areas) by using the FF theoretical technique, a semiempirieal Hamil
tonian. and molecular structures obtained from DEL calculations. The y value is affected 
hy a combination of the number of aromatic rings, length, and group order, in decreasing 
importance.

I he RPA method has been shown to give excellent agreement for optical band gaps and 
NLO properties of larger, conjugated molecules [3, 92 93. 99 |()()[ Correlation effects 
are therefore expected to be small lor these conjugated molecules. Based on this method. 



166 Nonlinear Optical Properties of Carbon Nanostructures

Jonsson et al. 1296] calculated lhe static y values of C(1U. C70 and CK4. which arc determined 
to be are 0.55. 0.75. 0.82 x 10 w esu. respectively. Their results are of near I larlree-Fock 
limit quality.

An important factor governing the optical nonlinearity is the extended delocalized 
77-clectron cloud along lhe effective conjugation length or sphere of lhe 7T-conjugated sys
tem. Recently. Lin. Sheu, and Lee [326] have demonstrated the crucial role of tt-tt overlap 
in determining the second-order hyperpolarizability y in the 77-conjugated framework, for 
example, by taking the semiempirical Austin model 1 (AMI) quantum chemical calculations 
on various isomers of higher fullerenes. For different isomers of the same mass of fullerene, 
different curvatures are exhibited and indicate that the 77-77 overlap is different among the 
isomeric fullerenes, fable 7 summarizes the orientationally averaged second-order hyperpo
larizability y and the averaged pyramidalization angle H,.. which describes the deviation from 
the planar sp-’ carbon and is defined as - 77/2 ( = 77/2 for planar sp- carbons and
(I.6O877 for tetrahedral sp* centers). For isometric fullerenes of the same mass, they found an 
excellent correlation between y and tf;,r y decreases with the increase of W;1. Hence, a minor 
change of average 77-77 overlaps m fullerenes has a large effect on the average second-order 
hyperpolarizability.

In summary. Table 6 collects the static y values of some fullerenes calculated by different 
theoretical techniques. A direct comparison between these theoretical results shows signifi
cant differences. All of the SOS approaches give a second hyperpolarizability, which is about 
an order of magnitude larger than that predicted by the ab initio calculations. This discrep
ancy arises from the truncation of the expansion in excited states in the explicit summation 
of contributions to y in SOS calculations [296]. which appears to neglect important nega
tive contributions to the second hyperpolarizabilily. The SOS methods predict larger ratios 
between the second hyperpolarizabilities for higher fullerenes than do both FF and ab initio 
calculations. The danger of this truncation of the sum over excited states is most clearly illus
trated by this fact that y remains almost constant for the first 180 excited states included 
and then increased [296], In contrast, the y values obtained in the FF methods [294. 311] 
are of the same order of magnitude. The described problems are absent in the analytical 
RPA approach [296], On the other hand, all these theoretical studies do not consider the 
screening effect induced by electron-electron interaction (in TD-DFT, this is to some extent 
taken into account). Actually, the screening effect should be considered because the polar
ization of the electron cloud can modify the charge density and therefore the self-consistent 
potential seen by each electron. Detailed analysis of the screen effect is expected.

4.2. Rod-Shaped Carbon Nanostructures
4.2.1. Theoretical Calculations
Compared with the extensive NLO studies of spherically shaped carbon nanostructures, less 
work [307-309. 316. 317. 353-366] has been done on the third-order optical nonlinearities 
(TOON) of rod-shaped carbon nanostructures. Xie [309] and Xie and Jiang [307. 308] were 
the first to study theoretically the TOON of SWNT by using a tight-binding method. In the 
following, we review this method.

The Coulomb interaction effect plays an important role in a physical understanding of the 
electronic structures and properties of carbon nanostructures [24], By including the Coulomb 
interaction. Xie and Jiang [307-309] have extended the SSH model to describe carbon nano
structures such as higher fullerenes and carbon nanotubes. I'he total Hamiltonian can be 
written as follows [307-309];

H = EEHi - XT ,c,. - + + T E + «■■ E d tC. ■ < iC. 1
(0* * (r? *

+ r» E E c. .c. s,. < r<.<
1/ 5.5

where the sum (//’) is taken over the nearest neighbors for the c—c bond; /„ represent the 
hopping integrals for the c c bond; is the electron-phonon coupling constants related to 
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the c c bond: kn is the spring constants corresponding to the c c bond; y, is the change of 
the bond length between the /th and /th atoms; the operator c, , (< ’ J annihilates (creates) 
a ~ electron at the /th atom with spin \ (< = f. j): //„ is the usual on-site Coulomb repulsion 
strength; and is the Coulomb interaction between the nearest and next-nearest atoms. 
Using the I lartree-Fock approximation, Xie and Jiang [307-309] transformed that equation 
into

= E - “<•>■<,)(< + /»•< •)+ 4' E-'7 + "oE(Ep..'c,' - P, P, .
•• .* * i ' »

+ ”" E E(E p- «c. s,. x - p.. E p- - T-i-.c-. > + Tn..) <47>

where p , = {<■ is the electron density and r,, 4 = (c,‘ ,r,J is the bond order param
eter, Ihis equation is solved by the adiabatic approximation lor phonons. The Schrodinger 
equation for the tt electron is

— E^ 1 al>.' v

1 1

4------------------------------------------ 4- ------------------------------------------- (>2)
(eUI + ")(% - 2w)(«u - w) + ")(«<« + 2w)(«,a + M

I he other terms arc given in detail as follows |3I2]:

y,(-3w: w. w. (l>) = 2 £ E •’Mw) (53)
>1 f. MclftHHt if-lKK

where .S’;(w) is similar to .S\(w) with the substitution of by e,,. and by f,,;

y,( 3w;w. w, w) - 2 V E <-S4)
a. mwwcc r.pjHX

Up
«<lP.. v + '•’(> Zi ,(>) (4S))^A »(./) +

where is the A. th eigenvalue. I hc self-consistent equation for the lattice is

y„ = -ZoA;,,1 ylZ; ,(/)ZA ,(/) - fl '£Z, ,(/«)/< ,(/) 
m/>

(49)

where the prime denotes the sum over all occupied states, the second term originates from 
the constraint condition V /( y/; = (I. and II is the number of 7r bonds. Then, the electron 
eigenstates zA ,(/). eigenenergics eA. and bond variables y,( can be obtained by performing 
the self-consistent iteration.

I hc third-order nonlinear optical polarizability y can be expressed as follows: Within 
the independent electron approximation and the SOS approach discussed by Orr and Ward 
[ 170. 367]. the second-order hyperpolarizability y for the TIIG process can be rewritten (see 
Fig. 2 of Kef. |323J, taking into account six diagrams in total) |323, 36X, 369) as:

y( 3w: w. <o. w) = y? + y( 4- y, + yj + y- + ys (50)

where y, is given in detail next |3I2|:

y;(-3w; w. «j. w) = 2 £ £ (51)
It’ llllOCC (, t, A 9<K.X

Hereafter, </, /•. and v denote unoccupied molecular levels, and /, /, and A denote occupied 
ones. I he ,S\(w) function is defined as (312]

„ , I I,S,(<i>) — ------- ———-------———-----------+  ------------------- —--------------
(€,„ - 3w)(eu, - 2w)(«/A - w) (*.„ + «/)(€,„ + 2w)(€„4 - w)
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where S|(w) is analogous to .S'.(«») with the substitution of eilf hy and eut by e,,: 

y4(-3w: w. «.«>) =-2 E E /z,ji„/z„,/ir,S4(w) (55)
ii. i' unsKC i. /tocc

where .S4(w) is analogous to S,(w) with the substitution of euA by e •

y7(-3w: w. w. «>) =-2 >7 E w) (56)
<i. '• untKc t. /eoci*

where S7(ia) is analogous to S,(w) with the substitution of f„ by <a, 4- 6r;, and eo. by e ,

ys(-3w. w. <».<«) = -2 > ; y; (S~)
<t. r*-Ult«K'C f, /rtKN

where 5\(w) is analogous to .S’,(w) with the substitution of ea, by cul + and e,)A Iby e,(. 
The double excitation channels y + y, can be cast into a single term alter simple algebra 
by noting e„, + er. = ei(, + e„ [312]:

y- + y> - - E E m u, unoev i. i^ncv

(eu, - - w)(6( - M + w)(ea/ + 3to)

(fu> + <tJ)(ef/ + w)(e„ — <o) (e,„ + w)(e,y — w)(e,, — w)
In these formulae, et, is lhe one-electron energy, e;,„ (= — e„) is the transition energy,
and g„,„ is the transition matrix element between one-electron states

= E (59)p
In the numerical calculations, a lifetime broadening factor 17 (= 1.6 x 10 * eV) is included. 
Because the ratios between different components of y are not known, a spatial average of 
y is given by

Based upon the electronic structure obtained in the extended Su-Schrieffer-Hceger 
(ESSH) model, Xie [24] calculated (he second-order hyperpolarizabilities of armchair and 
zigzag nanotubes. In the actual calculation, the z axis in the armchair tubule is taken along 
the direction from the bottom pentagon to the top one, and the z axis in zigzag tube is 
taken along the direction from the bottom hexagon to the top one. If the length of every 
bond is given, the coordinates of every atom will be obtained. However, the y magnitude 
is not sensitive to small changes of atomic coordinates. So. for simplicity, the same bond 
length (= 1.4225 A. which is the average bond length of C-,, given by the experiment for all 
rod-shaped carbon nanostructures) is assumed. The coulomb interaction is assumed to be 
u„ = 2v0 = /. which is not strong, and thus the effective hopping integral is the same as that 
in the free-electron case. Because three parameters, /0, a„. and in the ESSH model do 
not sensitively depend on the shape and size of the nanostructure. Xie [24| took /l( = 2.5 eV. 
tin = 6.31 cV/A. and k,t =49.7 eV/A;. which are the same as those in C(,o and C70.

The theoretical static y magnitude of several armchair and zigzag tubular structures and 
Ch„ are listed in Table 12. For CMI, the difference between c and .v (or y) components 
of y is very small because C(lt, is almost a sphere. But this difference is pronounced for 
large tubular structures, which contain a large number of carbon atoms. Compared with 
C,,„. SWNT has a larger TOON, which would have potential applications as an ultrafast
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table 12. I he ratio </ _ y........ y1 ol several doped annehair nanotubcs ( ( ,...\ and doped zigzag nanotubcs
< \ I A' = li. N». where y"’1... is the calculated static y value ot the doped nanotube and yp‘...  is the static
y value ol ihe corresponding pure nanoiiihr anil given b\ an empirical lortnula lor armchair and zigzag nanotubcs 
(adapted from Xie cl al. [24. 469]l.

(\.,A Armchair Nanotube Zigzag Nanotube

A k - (1 4 — 1 k = 2 A = 9 A - IS A = 1 A =2 A'= 5 A = 10

S 30.5 30.7 32.4 36. X 41.2 31.! 33.2 36.lt 40.4u 4.3 4.9 7.6 X.5 4.7 5.1 6.9 “.7

optical switch. Then, empirical relations for the static second-order hypcrpolarizabilities y 
of both armchair and zigzag nanotubcs are established [316. 317. 353]: y = (I + 0.3/i)2 wy< 
for the zigzag tube and y = (I 4- 0.167/;) ’’'y, for the armchair tube, where y( is the 
static y value ol C6I(. I he average contribution T of one carbon atom to the third-order 
optical nonlinearity of each chiral carbon nanotube. as listed in Table 10, is examined by Xie 
and Rao [354|. The chiral effect on the TOON is clearly shown. This work demonstrated 
that the metallic tube favors larger y values. In particular, the smaller the diameter of a 
chiral carbon nanotube, the larger the average contribution T. Compared with that of a well- 
characterized polyenic polymer listed in Table 10. chiral carbon nanotubes can compete with 
the conducting polymer, achieving a large y value that is needed for photonic applications.

In the synthesis of carbon nanotubcs, their caps may be destroyed partially or completely. 
Such effects will greatly influence the geometric and electronic structures of carbon nano
tubcs. Surely, the change of these structures will have a large effect on the NLO properties 
of carbon nanotubcs. As an example, Xie [24] studied the static y magnitude of uncapped 
zigzag tubular structure C)M. The results are shown in Table 12. The static y magnitude 
is about 10 times larger than that of capped zigzag tubular structure Cwl+5x|K. Compared 
with the symmetry effect, the cap effect is more obvious. The reason is addressed as fol
lows: I he NLO response for the C,,n system is mainly produced by delocalized it electrons 
as in conjugated polymer chains. However, the three-dimensional character of CW) causes 
severe limitations on its NLO property and thus makes its y magnitude become about two 
orders of magnitude smaller than (hose of linear polymers containing a similar number of 
carbon atoms. For a capped tubular structure, a tt electron on a site can transfer to the site’s 
three neighbors. If both caps are cut. a ~ electron on the site at the edge of a cylinder can 
transfer only to the site’s two neighbors. Obviously, this kind of edge effect will reduce the 
effective space dimension of rr electrons and thus enhance the static y magnitude of tubular 
fullerenes.

In principle, uh initio quantum chemical calculations would be a valuable tool to compute 
the second hyperpolarizability of carbon nanostructures, but currently they are too computer
demanding to be used systematically to study the NLO of these structures. Recently, Wu et al. 
[37(1] optimized finite open SWNT (4.4) and (5.5) carbon nanotubcs by using B3LYP/3-21G. 
Combined with TD-DFT with B3LYP hybrid functional and SOS approach, they studied 
the dynamical third-order optical polarizabilities in the TUG, EFISHG, and DFWM optical 
processes. The static y values for (4.4) and (5,5) SWNTs are listed in Table 12. The average y 
values predicted by TD-DFT are about two orders of magnitude smaller than those predicted 
by the tight-binding methods. They found that the largest third-order polarizability is in the 
direction of the polarized and basic light along the tube axis. This is in agreement with the 
prediction of the tight-binding method.

The scaling law of y predicted by the tight-binding method is based on small carbon 
nanotubes, but the saturation limit was not examined. Recently, based on the atomic dipole 
interaction model introduced in Section 2, Jensen, Astrand. and Mikkelsen [371] calcu
lated the second hyperpolarizabilily of carbon nanotubes on a length up to 75 nm. This 
work demonstrated that an atomic representation of mesoscale systems—for example, car
bon nanotubes—can be used to obtain a cubic response property up to a size of the system 
where the property scales linearly with increasing size This model was demonstrated to be 
useful lor designing nonlinear molecular materials, where local modifications may give large
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macroscopic contributions. Jensen, Astrand, and Mikkelsen |37l | found that carbon nano- 
tubes are comparable with conjugated polymers with respect to the magnitude of the second 
hyperpolarizability y. This conclusion is consistent with that predicted by the tight-binding 
approach.

4.2.2. Experimental Measurement
The extensive theoretical studies showed that higher fullerenes and carbon nanotubes can 
compete with polymers for third-order optical applications and stimulated many experimen
tal groups to measure nonlinear optical properties of higher fullerenes and (doped) carbon 
nanotubes. As reviewed in this section, the experimental results are in accord with theoretical 
predictions.

Liu ct al. [355] and Xie et al. [356| were the first to experimentally investigate the third- 
order optical nonlinearities of carbon nanotubes by using the picosecond and nanosecond 
Nd.YAG laser and the technique of backward DFWM. Their results are listed in Table 1 I. 
They found enhancement of the TOON in the carbon nanotubes, in agreement with the 
theoretical predictions of Xie and colleagues [307-309, 316, 317, 353, 354], The two-photon 
and one-photon processes, as demonstrated in the theoretical work of Xie and colleagues, 
contribute to the TOON. The fast response process of the carbon nanotubes on the picosec
ond scale is an instantaneous electronic process because of the large polarizability arising 
mainly from the tt —»• 77” virtual transition, whereas the slew process on the picosecond scale 
is associated with an excited-state population. On the nanosecond scale, similar results are 
obtained.

However, Liu and colleagues [355] did not obtain a real solution for carbon nano
tubes. Thus, a large absorption was observed in the infrared region. On the other hand, 
their DFWM technique had limited ability to distinguish the NLO contribution from the 
7r-conjugated electrons. Recently, Shi and colleagues [357, 358] performed NLO measure
ments on real SWNT solutions by using the femtosecond optical Kerr technique with a 
TitSapphire laser operating at 820 nm. Their results are listed in Table 11. 1 he magnitude of 
F for each carbon atom in the SWNT is about 7.7 x 10 ” esu, which is about three orders of 
magnitude larger than the carbon nanotube value reported by Liu and colleagues [3551. To 
improve NLO performance of SWNTs, it would be of interest to test the optical nonlinearity 
of SWNTs of various lengths.

The measurement of Liu and colleagues [355] was made on carbon nanotube solution. 
Recently, Both et al. |372| studied the third-order NLO response of thick film of SWNTs, 
produced without catalyst and deposited onto quartz substrate, by performing DFWM mea
surement. The second-order hyperpolarizability y was estimated to be as large as 1.6 x 
10 29 esu, and the average contribution of each carbon atom in the carbon nanotube is 
F = (9 ± 5) x 10'34 esu. about one order of magnitude larger than our theoretical calcula
tions. This experiment indicates that further investigations are required to understand the 
inadequacy of current theories in modeling results of experiments performed at different 
wavelengths.

Recently, using ultrashort pulse generated by a CrForsterite laser, al a wavelength of 
1.250 gm, Stanciu et al. [373] studied TUG generation from solid samples of carbon nano
tubes. The results show an unusual nonperturbative behavior of the THG yield, for relatively 
low-input laser fields, of about 101" W/cm2. This strong nonlinearity of the laser interaction 
with carbon nanotubes is also confirmed in a full quantum-mechanical theory, developed as 
an improvement of the semiclassical models, for harmonic generation from a SWNT excited 
by intense linearly polarized radiation. Physically, this fact shows that the interaction of car
bon nanotubes with an intense laser pulse cannot be described by a perturbation approach, 
even for relatively low laser intensities.

As reviewed previously, theoretical and experimental studies demonstrated that carbon 
nanotubes could have a very strong third-order optical nonlinearity and thus would have 
great potential in photonic applications, especially as an ultrafast optical switch, which is a 
crucial component for future high-bit-rare time-division-multiplcxing optical communication 
systems or tree-space optical-digital computing systems. So tar. many types of ultralast al- 
optical switches have been studied and demonstrated, using optical nonlinearities in optical 
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libers and semiconductor materials. Because ol the limits imposed by the properties ol 
materials used lor all-optical switches, it is very hard lo achieve subpicosecond all-optical 
switches al (he optical communication wavelength of 155(1 nm |374. 375]. Recently, using 
standard lime-resolved pump-probe photomodulation technique with a 150-fs liber laser at 
the wavelength 155(1 nm. Chen cl al. |359| experimentally demonstrated that SWNTs have 
an exciton decay time of less than 1 ps and exhibit a high third-order optical nonlinearity. 
I hey also observed similar experimenta’ results from MWNTs or a SWNT/polyvinyl alcohol 
composite. Their experiment suggested that SWNT/polymidc composites have the potential 
to become an ultrafast waveguide switch and to develop high-quality subpicosecond all- 
optical switches. Later. Ilan ct al. [376] measured the Nl.O of well-separated SWNTs grown 
into the voids of an ordered array of silica spheres and obtained lhe nonlinear decay time 
of a 0.8-/xm probe at 32(1 fs as the same was pumped with (>.4-/xin light. This experiment 
demonstrated again the strong and fast NLO effects of carbon nanotubes, making these 
nanostructures good candidates for all-optical switches.

4.3. Functionalized Carbon Nanostructures

4.3.1. Experimental Measurements
Spherically shaped carbon nanostructures such as Cw(. C70. and Cs: are well-known electron 
acceptors, and thus they easily form charge transfer complexes or. say. fullerene deriva
tives. with other organic groups or meta s, for example, complex formed by and polymer 
matrix, or trapping metal to (\:. Over the past l() years, third-order optical nonlinearities of 
fullerene derivatives have been studied by different research groups and different experimen
tal techniques, for example, coherent anti-Stokes Raman spectroscopy (CARS) analysis tech
nique. optical Kerr effect (OKE). THG. DFWM. Z-scan. and optically heterodyned OKE 
(OIID-OKE). These studies demonstrated that fullerene derivatives, because of the charge 
transfer, do exhibit enhanced third-order optical nonlinearities at nanosecond or picosecond 
scales [303. 351. 352. 377-392]. The third-order optical nonlinearities of some representa
tive fullerene derivatives arc summarized in Table 8. It is seen that the chemical-modified 
fullerenes all exhibit enhancement on their third-order optical nonlinearities compared with 
small host fullerene molecules The enhancement is greatly influenced by the measuring 
wavelength and pulse duration. The negative or positive y1'1 or y can be understood as 
follows: There are two terms in the SOS representation of the nonlinearity y(/i/ [393|. the 
first one representing four-wave mixing pathways that involve two-photon transitions to or 
between excited electronic states, and lhe second one describing pathways that involve transi
tions that return to lhe ground state. The final value of or y depends on the interference 
between the two terms, if lhe first term dominates, or y will be positive; they will be 
negative if the second term dominates.

Lasco.a anil Wright (351. 352| determined lhe second-order molecular hyperpolarizability 
y for the charged species. Cri0. C,;(. and . by using CARS vibrational lineshape analysis. 
I hcir measured y values for those charged molecules arc larger than those of the neutral 

C'„(, and arc comparable to values of highly conjugated organic polymers, for example, poly- 
diacelylenc. Heflin et al. |377|: Gu et al. |379|; Campbell et al. [382]; Mavritsky et al. [394]; 
Qian et al. |387|: and Huang cl al. [385] have reported j3'1 measurement of metal-containing 
endohedral or exohedral fullerenes, for example. Er-(«CR; |377| by DFWM al 1064 nm. 
DyCs, by DEWM at 532 nm. LiCw, by z-scan DFWM at 497 nm. (Ph,P)?PtCNI [394] by timc- 
rcsolved z-scan technique at 527.5 nm. Ch(lM. (M = Pd. Pt. Sm) by OHD-OKE at 647 nm. and 
CuPc-C,,, bv OKE at 83(1 nm. all obtaining enhanced third-order optical nonlinearity com
pared with that of pristine fullerene. Recently. Wang et al. (3911 have investigated the third- 
order optical nonlinearities of iron (III) and ruthenium (III) derivatives of orga nofullerene 
with ultrafast optical Kerr gale technique at 830 nm. indicating that the electron-deficient 
metal ion iron (III) blocked charge transfer from the organic group to C„„ and reduced the 
optical nonlinearity, while a ruthenium (111) compound, because of the chlorobridge built 
bv the remaining uncoordinate orbits of ruthenium ions, showed strongly enhanced opti 
cal nonlinearity. These measured results suggested that the increased charge on lhe cage. 



172 Nonlinear Optical Properties of C arbon Nanostructures

and not asymmetric charge distribution due to metal-cage interactions, is the primary rea
son for increased nonlinearity, encouraging implications for the use of charge-transfer and 
endohedral or c.xohcdral fullerene complexes in future photonic devices.

The serial work of Gong's group [303, 3X3. 3XX. 390] showed the following order of 
the nonresonant y value for CM)- or C70-dct ivatived molecules: < CWI(NHZCN)S <
CMI|(NIL)T’NCN|. and C,o < C70(NI l.C'N). < C-M[(NH.)T'NCN|5. This trend indicates 
that the enhancement of the third-order optical nonlinearity is proportional to the increase 
ol charge-transfer strength. This is a very important rule for us to design and synthesize new 
molecules for third-order optical nonlinear applications.

The fabrication of stable and efficient NLO molecules is an interesting challenge because 
of a large class of possible applications of these molecules, Controlled-! ransfer multilay
ered structures do offer an alternative solution, well argued by the controlled fabrication 
and expected enhancement stability. The work of Kajzar et al. |3X0|: Gong el al. [378]; and 
Koudoumas et al. [3X9] confit med this point by measuring the nonlinear optical properties ol 
C„i|-based composites and multilayered charge-transfer structures with 5,10,20-tctraphenyl- 
21W.23 H-porphine (TPE) and 5.6.11.12-lctrttphenylnaphthacene (rubrene) (TPN), poly 
tetrahydrofurfuryl methacrylate (I’THFMA), polystyrene /i-arm star polymers (/’.S'),, (n = 
3.6) with molecular weights of 900. 17X00. ami 4X00 Da.

Konstantaki et al. |384| examined the third-order NLO response ol the water-soluble 
inclusion complex CN)/y-cyclodc.xtrin by using z-scan technique at 532 nm. Because aging 
of this complex solution results in the formation of aggregates, enhanced y values were 
obtained (see Table 8).

A main direction for searching organic materials that have enhanced third-order optical 
nonlinearities have focused on adding 7T*conjugated bonds, for example, -C C- C=C -. 
This leads to decreased transparency because of narrowing of HOMO-LUMO gaps. Very 
recently. Fuks-Janczarek et al. [392] reported DFWM measurements on the third-order NLO 
responses of novel dyads of CMI Tl’F with saturated (—C—C—C) chemical bonds at 532 nm 
in picosecond time. The main importance of their work lies in their obtained results that the 
increase of lhe third-order optical nonlinearity is not connected with the increasing number 
of conjugated bonds (which increase the UV-Vis-lransparcncy) but is due to the increasing 
number of saturated (— C C— C—) bonds without a decrease of lhe effective HOMO- 
LUMO gap. Those C60-derivative compounds have large optical limiting coefficients, which 
imply interesting applications in optical limiting systems.

Organic materials have two advantages: being optimized at the molecular engineering level 
for a specific application (for example, photorefractivity [395], holographic memory [396], 
electro-optic modulation |397|) and combining chemical functionality with their optical prop
erties. Apart from showing NLO properties with the inherent electron-transfer properties 
between donor and acceptor groups, one of these groups can have redox or proton-transfer 
capability |398|. This was exploited to demonstrate the reversible switching of the first-order 
hypcrpolarizability of a donor-acceptor molecule [399], Very recently. Asselberghs et al. 
[400] investigated lhe proton-accepting capability of the dimethylamino electron donor group 
on substituted 5.6-opcn azafulleroids [401]. obtained through ring-opening aryl azide with 
Cw in toluene, to demonstrate reversible switching based on proton transfer. Their open 
azafullcroid exhibits a clear charge-transfer absorption band around 710 nm. and the first- 
order hyperpolarizability was determined by using nanosecond hyper-Rayleigh scattering 
at 1064 nm in chloroform to be 1.4 x 10 s esu. which is slightly resonantly enhanced 
because of the closeness ol the charge-transfer absorption band to the second-harmonic 
wavelength. The side product, 6.6-closcd aziridinofullcrcne. lacked the homoconjugation 
with the electron-accepting fullerene moiety and led to a lower hyperpolarizability. Their 
detailed studies demonstrated that the second-order NLO response was dramatically reduced 
upon prolonation and completely restored after deprotonation. From the point of view of 
developing molecular photonic devices whose properties can be switched by modifying one 
of the component parts, the ability to switch the NLO response of a molecule on and off 
reversibly by a simple controllable perturbation would add significant value lo the utility of 
NLO molecules.
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Because CMI is not easy to mix homogeneously with organic-inorganic material, less work 
on the optical nonlinearity ofC(,„ doped in a solid matrix is reported. Very recently. Yu et al. 
| K)2| used sol-gel technique and synthesized the solid compounds ol' C,,, attached by 
three NH. (( II )s—Si(O( IL). groups. The nonresonant third-order optical susceptibili
ties measured by OKE gate technique at 820 nm arc 1.4 x 10 esu and 1.6 x HI ’’ esu for 
C„n|NIL—((’ll.), — Si(OC\Hs)i|; sol and gel. respectively. This off-resonant NLO response 
is also mainly derived from the electron transfer process. Their results suggest a potential 
application of CW) derivatives of solid state in ultrafast optical devices.

4.3.2. Theoretical Calculations
I heoretical investigations of the third-order optical nonlinearities of doped carbon nano
structures. lor example, fullerene derivatives, have so far been done only for the substitute 
doped fullerenes |242, 244. 403-4(19], Rustagi. Ramaniah, and Nair |242] were the first to 
consider the second hyperpolarizability of C(,u substitutional doped with one B or one N 
atom. They used a tight-binding mchod for calculating the second hyperpolarizability and 
found a large enhancement in the doped fullerenes, especially for C\.,N. Later. Dong. Jiang. 
Xing, and coworkers used the Su-Schrieffer-I leeger (SSH) model for calculating the sec
ond hyperpolarizability of CWI. (n = 1. 2) where .X — B or N |4(I3. 404] and also found 
enhanced nonlinearities compared with CM), especially for the doubly substituted fullerenes. 
However, for the monosubstituted fullerenes, they showed that by including Coulomb inter
actions in the SSI I model they found a much smaller second hypcrpolarizabilty [405]. Xie 
found that using an SSI I model with the Coulomb interactions included enhanced third-order 
nonlinearity of C „ monosubstituted with either B or N [406]. See the methods reviewed in 
later section.

Recently, the static second hyperpolarizability of the double substitute-doped fullerenes 
C^NN. C5!SBB. and C5fiBN has been investigated by Jensen ct al. |244| using TD-DIT. 
I hey found only small changes in the second hyperpolarizability for C5KNN and C58BB. but 
an enhanced second hyperpolarizability was found for the donor-accepted doped fullerene 
C<»BN. Also, using I D-DFT. Xie and colleagues |4()7. 4(18] investigated the second hyperpo- 
larizability of the heterofullcrene C4KN|2 and C^Bp and found an enhanced second hypcr- 
polarizabilitv. especially lor C^B],. for which the average second hyperpolarizabilily was 
ISO'? larger than that of Cw(.

Cheng et al. |4(I9| studied the frequency-dependent second-order hyperpolarizability ol 
the C\.,Si and C^SL heterofullerenes using the INDO/CI-SOS method. Using the results 
for the second-order hyperpolarizability of C5MSi and C'ssSL, they estimated the third-order 
susceptibility for the DFWM optical process for Si-doped films to be about HI esu at the 
liist excited stale and 1(1 1 esu at the ground state.

Recently, doped carbon nanostructures have stimulated great interest from researchers in 
physics and chemistry to investigate their structural, electronic, optical, and other properties. 
Besides the alkali metal doping, there is another type of doping, substitute doping (SD), 
which is substituting one or more carbon atoms of fullerenes and carbon nanotubes by 
other atoms, lor example, boron and nitrogen atoms have been successfully used to replace 
carbon atoms of fullerenes and carbon nanotubes. Available studies have shown that the 
lattice and electronic structures of fullerenes change with substituted doping; the band gaps 
between the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular 
orbitals (LUMO) and the electronic polarization of the substituted fullerenes vary greatly 
with different SD; the distribution of it electrons on the surface of fullerene is changed 
due to the SD effect: the original delocalized ~ electrons in pure fullerene become more 
localized around the substituted atoms. Obviously, these factors also have a large effect on 
the NLO properties of carbon tubules as well as fullerenes. Therefore, it would be interesting 
and useful to investigate theoretically the SD effect on the NLO properties of carbon nano
structures from the viewpoint of practical application. In this section, we review the model we 
developed for study ing the third-order optical nonlinearity of doped carbon nanostructures.

The ESSH model has been used to describe pure carbon nanostructures. But it should 
be modified to include the effect of the dopant ions in order to describe the substituted
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carbon nanostructures. This model refers to doped ESSI I (DESSH) model. In detail, the 
total Hamiltonian tor the single substituted tubules can be written as |24|

// = WX + //'v_. (61>

— EE'_/>>- ,<•,, -r /;.<•.)
•tn • * <v)

+ «<>E‘-'.|''> . + »»EE^.cMfI»fi.. (62)i s..<

//?1 = EE<-'| rtt'„)(< .<■ , + li.r.) + -^E %
li » ~ O1
+ "t E2<2 tc.-G .o.i + V| EEc./’-.d,1 ,c <

I <ij) S.lt

where A denotes the substituted atom, and the sum (//) is taken over the nearest neigh
bors lor both the c c and A'—c bonds: t„ (or f(). a,, (or O|). and Ah (or A,) represent the 
hopping integrals, the electron-phonon coupling constants, and the spring constants corre
sponding to the c c (or A —c) bonds, respectively: //„ or a, is the usual on-site Coulomb 
repulsion strength, and t»H or v, is the Coulomb interaction between the nearest and next- 
nearest atoms. Because there is only one substituted impurity atom (namely. A') in tubules, 
//Vplttys u pcrturbational role, and as an approximation, the original empirical parame
ters (/t), a0, A,,. m„, vH) in A/.—’. arc assumed not to change because of the substitute doping 
(taken to be the same in this numerical calculation as those in the pure cases studied in the 
previous section), u, as u„. and v, = v„.

As before, we use the Hartree-Fock approximation to transform the previous equations 
into [24]

// = ; (64)

ll'-l = EE*-'<<-)«,<•,.» +*»•<••) + y E.y + "«E(Ep( ’CEc., - p, -p,.^
(ifl » - (if) i ' > '

= EE(-'i - )(<<<■/,. + h-c-) + y Ey;, + "i e(Ep-.Z..<c., -p, •p..i)

+ ui E E (E p>. >c., - p,. . E Pi. - Ta. <c. S/.s + T-..) (6f>)
(if) > ' v c /

where p, , = (c,1 ,<■,,) is the electron density, and r„ , = <c,' ,<y,) is the bond order param
eter. This equation is also solved by the standard adiabatic approximation method, which 
leads to the Schrodinger equation for the it electron

"iP».>+11

^4, = E<-'«>- “X” iv,...JA ,0) +

+ E<-b - - ' (■<. J2i ((y) -• (67)

where y,' and y,' denote the v for < c and .V—c bonds, respectively: et is the eigenvalue 
ot the A th eigenstate: 2. , is the electronic wave function. The total energy of the system is 
a functional of the set of v,,:

(68)
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where lhe lirst sum runs over only lhe occupied stales. Minimizing lhe total energy /. over 
v); and using lhe constraint condition

E'-r + E (W)

wc arc able to obtain the self-consistent equation for yu

y'"’ = -2a,^,i:|zt.dz)ZA.d/)-ll 1 £ .("«)4t.,(/)I (70)
A. J >

rr‘,” = -2«,A, l£|zA.l(/)ZA.,(/)-ll 1 £ZAJzn)ZA.J/)l (71)
k. <1 {ml '

where the first sunt also runs over only the occupied states, and II is the number of tf bonds. 
These coupled equations can be solved iteratively, and final result should be independent ol 
choosing lhe different initial values of the set y„.

The choice of the three parameters (/,. cr(. A() for the X c bonds is, of course, impor
tant [24], The best way to do it is to determine them by comparison between theoreti
cal calculations and experimental measurements. But to the best of our knowledge, there 
has not been an experimental measurement on lhe nonlinear optical properties of doped 
carbon tubules. Recently, by using a molecular orbital method with Harris functional and 
spin-restricted approximations |4IO], where lhe total electron density of the system can be 
approximated In a superposition of electron densities of the isolated atoms with a lirst-order 
energy correction of the density error and quadratic errors in the electron Coulomb repul
sion and exchange-correlation energies arc partially canceled, Kurila el al. |411 ] optimized 
lhe structures of anil CS9B and at the same time investigated their electronic proper
ties. They found that the optimized structures and binding energies for CS1)N and C'5MB were 
almost the same as those for C,,u, and the energy levels near the Fermi level were remarkably 
changed by doping. Using the DESSH model shown previously, Xie [24] also investigated 
the structural ami electronic properties of the same substituted doped fullerenes by care
fully adjusting the values ol the three parameters and A,). Il was found dial our 
numerical calculations can accurately reproduce the results obtained by Kurila cl al. 14111 if 
rt = 1.17 eV. of, = 6.04 eV/A. and A| = 51.1 eV/A' for C^B. = 1.05 eV. a, = 6.13 eV/A. 
and A | — 49.6 cV/A for C5yN. The total energies of the molecules and lhe excess elec
tron densities at and around the positions of substitute impurity atoms are also calculated. 
Both C59N and CS1)B have nearly the same total energy, which means that they arc equally 
stable. The excess electron density of the boron atom is —0.5128 but that of the nitrogen 
atom is 0.2745. which implies that electron deficiency is produced al lhe doped boron atom 
site and that the boron atom gives up its electronic charge to its neighbors and exists as a 
donor. It is obvious that electronic charge accumulates on lhe doped nitrogen site and the 
nitrogen atom exists as an acceptor. The signs of excess electron density' for the boron and 
nitrogen atoms are different, which makes C5tJN and C5MB have opposite electronic polar
ization. The distributions D(y0) of the bond variables in C5MN and C\.,B exhibit a two-peak 
structure, which indicates the presence of the dimerization. The narrow peaks in the nega
tive y,, region correspond to the distortion part around the impurity ions. The area of the 
extended portion for C^B is greater than that of C\yN. which means that the doped boron 
atom will produce stronger distortions around it than that in the nitrogen atom. Finally, the 
site-occupying probabilities of the HOMO stales for €\„B and CT,N show that there arc 
two large peaks at the position of the impurity atom. The peak in (\,,N is higher than that 
in C5„B. This reflects that the localization effect coming from the nitrogen impurity atom 
is stronger than that from the boron atom. These conclusions arc also well consistent with 
the experimental observations [412. 4I3|. Therefore, in numerical calculations, we adopt the 
same values ol all the parameters for (\,,B and (\yN. Of course, after more experimental 
observations are made for doped carbon nanolube*. if will be possible to determine more 
accurately all the parameter values in our DESSH model.
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Based on this model. Xie |24| has proposed a substitutional doping approach to achieve 
the large third-order optical nonlinearities of carbon nanotubcs. which significantly enhances 
the y value of nanotubcs by about one order of magnitude with respect Io Uhl( (see Table 9). 
Because of the distortion of 77 electron distribution in the substituted tubes, especially 
around the dopant atoms, the difference between the z and a (or y) components of y for 
doped carbon nanotubcs is much more pronounced than that for the parent “pure carbon 
nanotubcs.' I'hc study of the dynamical NLO responses of pure carbon nanotubes indicates 
that the relatively large NLO responses for carbon nanotubes are mainly caused by the delo
calized 77 electronics, as in the conjugated polymer chains. The three-dimensional character 
of the nanolube leads to severe limitations on their nonlinear optical properties and makes 
their y values smaller than those of linear polymers containing the same number of carbon 
atoms. However, as shown by Xie |24|. the substituted dopants, such as B and N atoms, 
could attract or repel electrons and thus introduce a local perturbation on the 77 electron 
distribution around the dopants, leading to the so-called inductive effect. On the other hand, 
the dopant ions would result in a stronger localization of the original delocalized 77 electrons 
around them and therefore may reduce the effective space dimensions of nanotubes, namely, 
reduction effect. Both inductive and reduction effects would make the NLO properties of 
doped carbon nanotubcs superior to pure carbon nanotube.

Finally, the localization effect of the N dopant is stronger than that of the B. implying 
the stronger enhancement in N-doped carbon nanotubes. Thus, if would be interesting Io 
study the third-order optical nonlinearities of carbon nanotubcs with heavily N-substitutional 
doping in future experiments.

5. PASSIVE OPTICAL LIMITING OF CARBON NANOSTRUCTURES
The most important application of optical limiters is the protection of our human eyes, sen
sitive optical sensors, and components from laser damage [414—419]. Also, there arc many 
other potential applications for optical limiters, such as laser power regulation, stabilization, 
restoration of signal levels in optical data transmission, and logic systems [414—116. 41X, 419], 
As mentioned in Section 1. to achieve the optical limiter devices, passive systems have been 
considered an ideal approach, although these systems place a severe requirement on the 
nonlinear medium that should have a large optical nonlinearity. To build an ideal passive 
optical limiter, an optical sensor needs a high linear transmittance 7]]}™" at a low input light 
fluence Bj, ( (also named limiting threshold for the limiter) for the transmission of images, 
and the optical limiter should be able to clamp the transmitted energy below a maximum 
value (Ton. (or, say, a saturated value) of the output light fluence (OLF) for higher inputs, 
up to the maximum input energy at which Ihe optical limiter undergoes irreversible 
laser damage and a minimum transmittance Tnllll of the limiter is reached [414], Usually, the 
performance of a optical limiting system is desirable if a large linear transmittance 7'^"”' 
is combined with a low minimum transmittance Tlll)n. In Fig. 7. we show the response of

Figure 7. I'hc relation between transmitted energy, transmittance, and input energy of .in ideal optical limiter. See 
text lot the definitions of quantities.
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an ideal optical limiter. A good optical limiter should also be stable under ambient and 
photoirradiation conditions and efficient from a tew picoseconds up to longer pulse dura
tion from nanoseconds and millisecond on a broad range ol wavelengths (visible arid neat 
infrared). Ihus. the transmitted pulse energy never exceeds the damage threshold lor the 
optical sensor. Next, wc briefly review the basic principles ol passive optical limiting.

Passive optical limiters rely on effective NLO processes [414. 415, 4IS, 419] to dissipate 
the incident light as a function of its intensity and to allow only a reduced transmission 
to the target area being protected. There are many schemes proposed for passive optical 
limiting, lhe common theme to all schemes is that the NI.O materials are put in or near a 
local plane in the optical device. Here we mention five main schemes that form the basis 
for lhe vast majority of practical limiting devices: (1) coherent NI C) absorption (reverse 
saturable absorption (RSA). two-, three- or multi-photon absorption |-20|). (2) nonlinear 
retraction (electronic effects [95| or thermal lensing |4211). (3) nonlinear scattering (sol
vent bubble formation and/or particle sublimation [422-424] or mismatched indices [425]), 
(4) photorefraction, anil (5) optically induced phase transitions. Next, we briefy review how 
Ni.O property leads to limiting in each scheme.

5.1.1. Coherent NLO Absorption
In this scheme, the absorption increases with increasing incident pulse fluence or irradiance. 
In the two-photon absorption (TI’A), the effective absorption coefficient ircft can be written 
as follows [417|:

ael( = a ] pl I-+ PI b o', iP, , (72)

where (i is the TI’A coefficient, ir. and rr ( are (lie ground and excited state absorption cross 
section, respectively, with the corresponding population density /».. and ptl, and / is the 
strength of the incident irradiance. If <r , > rr,_ the absorption will increase with increasing 
p,, and hence with increasing incident fluence. This is usually called excited state absorption 
(I.SA) or reverse-saturable absorption (RSA). For rr,.t < <r... lhe absorption decreases with 
increasing llncncc and referred to saturable absorption. An optical limitci is requited to work 
under high levels of excitation with a large ratio of tTi-Jir* but small linear absorption. 
However, <r cannot be too small because p,., must become large enough to produce a 
strong limiting effect and a maximum /„„„/= cxp| -(a,., - <r. )p/.| is achieved when all 
molecules arc promoted to the first excited state, where p is the total molecular density and 
/. is the material thickness |4I6], Among the NLO absorption. RSA is a primary mechanism 
for the nonlinear absorption optical limiting and is demonstrated to he one of the best 
processes to use for optical limiting because it reduces the total pulse energy rather than 
simply reducing the fluence or irradiance.

It is generally accepted that the RSA of a material system, for example. can be 
described by a five-level model [426-43l|. It the absorption cross section for the singlet 
ground state is larger than that for the singlet excited state, the NLO material is mote 
transparent and becomes a saturable absorber. However, when the absorption cross sec
tions of the singlet or (he triplet excited slates are larger than that of the ground state 
and the lifetime of the excited state is long enough, the total absorption of lhe NI.O mate
rial increases and the material is then the RSA process mentioned previously. For longer 
laser pulses, significant intersystem crossing (ISC) to a triplet state occurs for some kinds 
of materials (for example, an important feature of CN, is the fast and efficient ISC from 
the first singlet excited state to the first triplet excited state). In these cases, the excited 
state absorption appears from the lowest triplet to higher excited triplet states providing an 
increasing contribution to the total absorption of lhe system. Il should be pointed out that 
the transition from the ground state to the first singlet electron state is forbidden because 
ol the same parity but becomes partially allowed because of vibronic interactions responsi
ble for the weak absorption band in the visible region extending from 450 nm to 650 nm. 
In this RSA mechanism, significant parameters are the excited slate lifetimes and the ISC 



17X Nonlinear Optical Properties ot Carbon Nanostructures

time, compared with the duration of the laser pulse, plus the values of the absorption cross 
sections. Typical reverse saturable absorbers are molecules with weak ground stale absorp
tions at the concerned wavelengths, such as metallophthalocyanines (418. 432. 433]. mixed 
metal complexes (434—437]. and fullerenes (414). In a more general RSA mechanism, the 
strongly absorbing electronic excited states can be populated by other incoherent processes, 
for example, internal conversion and energy transfer.

5.1.2. Nonlinear Refraction
Kramers-Kronig relations show that all materials showing nonlinear absorption must accom
pany nonlinear refraction |438|

'Cn (73)

where nu is the normal refractive index ot material, n- is the instantaneous index change 
proportional to lhe incident irradiance, and is the index change because of the popula
tion of excited states; n is related to lhe TPA coefficient |438]; //,, and <ri( are related 
in a similar manner |417|. As mentioned before, nonlinear absorption devices need a large 
amount ol energy, and thus thermal damage problems may occur. However, this problem 
does not exist on the nonlinear refraction mechanism for optical limiting. A potential prob
lem is that inadvertent refocusing of the eye could reduce lhe defocusing effect of the optical 
limiter |4I7|.

5.1.3. Nonlinear Scattering
Scattering can strongly decrease a transmitted light beam As we switch on a laser on a 
material, a new scatter center may be created, and the refractive index difference between 
existing scatter centers and their surroundings may change correspondingly. Thus, nonlinear 
scattering is an important and unintentional mechanism in lhe operation ol optical limiters.

5.1.4. Photorefraction
As a material is exposed to a light, its refractive index would change because of a complex 
process involving photoexcitation of charge carriers and diffusion of those carriers that leads 
to a space charge field |4l7], which in turn causes an index change via the electro-optic effect. 
In this mechanism, the limiting is coherence- and intensity-dependent. The requirement for 
charge diffusion leads to slow turn-on time. Thus, this type of optical limiter is suitable only 
for pulses of millisecond or longer duration |417],

5.1.5. Optically Induced Phase Change
This limiting scheme is characterized hy showing a reversible, thermally induced 
semiconductor-metal phase transition as a material is illuminated by using a strong laser 
radiation |417], To date, a lot ot materials have been found to exhibit this kind of phase 
transition, for example, vanadium oxides, being transparent to the infrared radiation in their 
semiconducting state bat highly reflective in their metallic state. Hence, in the infrared 
region, the optical limiters may be transparent for low powers, w hereas weak optical absorp
tion and subsequent heating may induce the strongly reflecting metallic phase at high powers 
blocking the transmitted light [417| To get an effective limiter, the material should be stable 
in its transparent state, have a small latent heat related with lhe phase transition, and need 
a small temperature (about 100 K) to induce the phase transition |417|.

In lhe following, we review extensive studies ol the optical limiting properties ot carbon 
nanostructures. Most of these results for these nanostructures are attributed to lhe RSA 
processes, whereas nonlinear scattering plays an important role in the optical limiting per
formances of carbon nanotubes. Some important results lor those structures and others are 
summarized in Table 13.
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table 13. < Iptical limiting performance of fullerenes, lullcrcnc derivatives. single walled carbon nanotubes (NW N I ). 
inultiw ailed carbon naiiotubcs (MWN'Ts). carbon black suspension (CBS) and some other materials II ||( 
denotes the II.F threshold. H,„, is till saturation threshold: • and 3 are the duration and wavelength ol 
the lasci light: /J,'"; is the percentage ot linear transmitting sample: Ihe ICNEO-C^/PC ratio for PCCI. 
PCC2. PCC3, PCCC4. pl ( 5 and PCC6 arc 1.1)2. 1.06. 1.01. 1.06. 3,05. 5.03 wt'i; A,„ (in 10 1 M) is (he 
solution concentration: DMI = dimethylformamide; I BM(60)CO = nrr-buly methano l',,, carboxylate C',,-ll 
r; -I ,)Mc>(CO).(o-phcn)(DBM): PMMA poK(mcthyl methacrylate): PPI I poly(propionylethylencimine): 
PPEI-EI = poly(propionylcthylcneimine-<<>-cthyleniminc). PVDF = pohisiinlulcnctluoridc): OC - octudccvlaminc 
(adapted from Xie et al. |25|).

e< mlinuevt

Material ( 6 ,„) Solvent T (psCC) A (/tm) ills’ II
' mas (kJ;m )

•• < II1

(kJ /nr) Ret

Ml Toluene 8 ns 0.532 f>3 1.1 0.65 |439]
lohicm 8 ns 0.532 70 1,6 (1.71 |439|
loluenc 8 ns 0.532 SO 5.1 2.4 |439|
lolucnc 5 ns 0.532 ns 1.2 0.58 |443|
loluenc 5 ns (1.532 711 1.8 l.l |443|
lolucnc 5 ns (1.532 7(1 1.8 1 |456|
lolucnc 4(1 ps 0.532 7ft 1.2 |442|
loluenc 15 ns ti.532 ss 7.8 |466|
loluenc 8 III ns 0.532 6ft ft 1 1.2 |44l|
loluenc 8 ns 0.532 81 1.5 2.8 |489|
CCL 8 III Its 0.532 SO II) 4.6 |44l|
CCI4 8 HI ns 0.532 65 3 A |44l|
CCI. 8-10 ns 0.532 50 1 0.5 1441]
loluenc 8-ltl ns 0.308 7‘S 3 _■» |44l|
lolucnc 8 ns 0.532 65 1 (1.899 |48l]
DMI III Ils 0.532 75 1 1.2 |490|

CM. (0.33) lolucnc 5 ns 0.532 70 0.1 |443|
CMI (1.64) Toluene 5 ns 0.532 7(1 0.1 1.2 1443]
CM, (8.19) Toluene 5 ns 0.532 7(1 0.1 I |443|
C„, (0.5) Toluene 45 ps 0.532 — 1.5 I |478|
( Ml < I lolucnc 45 ps 0.532 — 0.5 0.5 [478]
(\, lolucnc 8 ns 0.532 70 I 3.5 |439|

Toluene III ns 0.532 70 ■» 2.7 |44O|
C,a./C». mixture Toluene 1(> ns 0.532 14 4.1 0.4 |444|

loluenc III ns 0.532 24 4.5 0.7 |444|
lolucnc III ns 0.532 44 6.2 3.2 14441
Toluene Hl ns 0.532 69 12.2 6.9 |444|
Argun-degased III Ils 0.532 44 l.l 1.2 |444|
Not argon-degased Hl ns 0.532 44 4.8 3.1 |444|

C\/CM mixture loluenc III ns 1.064 45 7 2(1 |44l|
c„-n 1.2-Dichlon ibenzenc III ns 0.532 30 1.8 0.25 |440|

1.2-Dichlon (benzene Hl ns 0.532 50 0.94 LI 1440]
1.2-Dichloroben/ene III ns (1.532 70 0.37 1 ft |44O|

( iil’c-C (0.5) Toluene 45 ps 0.532 — 1.5 (1.7 |47»l
( uPc-l . (2.5) lolucnc 45 ps 0.532 — n.l 0.2 |478|
orc,, 1 lexanc 8 ns 0.532 65 I 1.099 [481 |
DTC,„-Ag 1 lexanc 8 ns 0.532 65 I 0.716 [4811
IIDTC,., 1 lexanc 8 ns 0.5.32 70 3 4.4 |485|
nmcl(1-Ag 1 lexanc 8 ns 0.532 70 0.8 2.2 [4851
CJIPY Chloroform 8 ns 0.532 51 7 1.3 [4N9|
C„,TPY Chloroform 8 ns 0.532 51 1.3 |489|
C.JJPYAu Chloroform X ns 0.532 81 5 6.1 |489|
< JPY-Au Chloroform X ns 0.532 81 2.1 |489|
( BPY-Au Chloroform 411 ps 0.532 75 1(5 1.2 |4S9|
( JPN-Au Chloroform 4tl ps 0.532 7> U.S lt.8 |489|
C..(CN). DMI III ns 0.532 NN 1 1.2 |490|

DMI 4(1 ps 0.532 NN 0.7 0.5 [490]
DMI 23 ps 0.532 NN 0.7 0.5 [490]

(,,,-PC Chloroform 8 ns 0.532 33 3 3 |49||
Pl Cl Chloroform x ns 11.532 70 3 5 s [49 l [
Pl C2 Chloroform 8 ns 0.532 70 3 3 |49)[
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Table 13. Continued.

Material (K„ I Solvent r(psec) A (/rin) f lllw l(* in.H
T„.

(kJ /m ’)
»ott 

(kJ/nf) Ret

PCC3 Chloroform S ns (1.532 70 3 4.2 |49l|
PC C4 < hlorolot tn X ns (1.532 7(1 3 2.7 |491|
PCC5 ( hloroform X n> 0.532 7ll 3 4 |49l|
PCC6 Chloroform x ns 0.532 7(1 1 3.8 |49||
TBM|60|( '() (0.123) ’toluene 5 ns 0532 70 0.9 3.1 |443|
TBM|60|( () (0.240) Toluene 5 ns 0.532 7(1 0.9 3 |443|
TBM|60|( () (0.616) toluene 5 ns 0.532 711 0.9 1.8 1443]
TBM|60|CO (1.23) Toluene 5 ns 11 532 70 0.9 1.7 |44l|
TBM|6l)|( () (5.92) Toluene 5 ns 11.532 7| 0.9 1.4 |443|
TB.M|60|( O (0 10) loluene 5 ns 0.532 7ll 0 9 l 1 l+»3|
TBM[60]( O (6.4) toluene 5 ns 0.532 6*1 (1.9 1 |44 3|
TBM|60)( () (10,4) Toluene 5 ns 0 532 (1 9 0.7 |443|
TBM|60|CO (12.3) loluene 5 ns 0.532 71) 0.9 1 |443|
TBM[00|CO (5.92) lol PMMA 5 ns <1.532 71 0.9 1.7 |443|
TBM|0(I|CO (10.4) lol PMMA 5 ns 0.532 0.9 0.9 |443|
rBM|o(l|C() (0 123) ( IK 1 PPI 1 5 ns 0.532 (19 (),9 1.6 [443]
SWN 1 suspension Water 5 ns 0.532 70 1 1.1 |45(,|

Walct 15 ns 0 532 >s 12 1 I |466|
Water 15 ns 0.532 42 1 1 7.6 |466|
1 thanol 15 ns 11.532 42 4 4.5 |46t,|
1 Ihylenc glycol 15 ns 0.532 42 II ts |466|

Short SWX 1 suspension W.itcl 5 ns 0.532 7(1 1 8 1.6 |456|
Short SWM PPI 1 El (hlorolot tn 5 ns 0.532 7(1 11 3.5 |456|
Shori-MWNT suspension Waler 5 ns 0 532 7(1 1,6 1,4 |456|
Short-MWNT-PPF.I-El ( hloroform 5 ns 0.532 7(1 1 6 2,(i [456]
Short MWNT-OC ('hloroform 5 ns lt.532 70 1.6 2.9 |456|
MWN 1 (large aspect ratio) PVDF DMI 6-8 ns 0.532 511 3.5 |457|
MWN 1 (small aspect ratio) PVDF DMI 6-X ns 0.532 50 ■J 4 1 |457|
CBS PVDI DMT 6-8 ns 0.532 50 2 3.3 |457|

Water 5 ns 0.532 70 1 L2 |456|
DT-Ag 1 Icxane 8 ns 11.532 65 1 2.8 |48)|
DT-Ag 1 Icxane 8 ns 0.532 70 1 3.3 |485|
CuPc (0.5) Toluene 45 ps 0.5.32 — 1 0.75 |478|
CuPc (2.5) loluene 45 ps 0.532 — 0.6 0.22 |478|
ur.-co,(((»,„|P(Cul)t|.. Methylene chloride 8 ns (1.532 7(1 4 3.9 1439]
HFcCo,(CO|,, Methylene chloride 8 ns 0.532 7(1 4 5.5 |439|
HFsCo,(CO„,j(PPhl); Methylene chloride X ns 0.532 7() 8 7.1 1439]
indanthrone Dilute KOH X ns (1.532 70 1.8 1.6 |439|
chloroaluminium phthalocyanine .Methanol X ns 0.532 70 1.8 1.1 |43UJ
|N(C.it.),] (FcCodCO),.) Methylene chloride 8 ns 0.532 70 3.8 5,5 1439]
WSjC’uJdpy),, DMI- 40 ps 0.532 64 1.5 0.59 |442|

5.2. Spherically Shaped Carbon Nanostructures
Tutt and Kost [439] were the lirst lo observe the optical limiting performance in C(M) solution. 
As listed in Table 13, CWI exhibits optical limiting behavior with a saturation threshold lower 
than those reported for C7(l and other materials currently in use. RSA is the dominant 
mechanism: there exist allowed broad-band transitions from the first excited singlet and 
triplet to the higher excited stales, and this results in absorption in the visible and near- 
infrared range that is much stronger than the absorption from the ground slate, leading to 
RSA. Because the higher ground-state absorption cross section for C'-„ leads to a smaller 
ratio of excited-state to ground-state cross sections, a higher threshold for optical limiting 
in C-,, is observed [439. 44(l|. In comparison with the -toluene system, a reduction of the 
saturated threshold by a factor ot 3 to 5 is obtained b\ Belousov and colleagues |4411 in a 
CNI-(’('I4 system (see Table 13). Results similar to those of the ( | system are obtained 
in a C,-decalin solution |441 ]. Solutions ol C(10 in methylene chloride give results similar to 
those of the CW)-toluene system |439J. Ven recently. Song ct al. |442] have shown that the 
picosecond optical limiting threshold of was higher than that of (he nanosecond one. 
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Further experiments |443| show that the optical limiting performance of CWI in a room- 
tcmpcralure solution toward nanosecond laser pulses at 532 nm strongly depends on the 
fullerene solution concentrations (see lablc 13). which give a significant optical limiting 
contribution. I he optical limiting performance of the more concentrated Cw, solution is 
generally stronger than that of dilute ones. For example, the CM, solution in toluene of 
X.2 x 10 4 M concentration displays strong optical limiting, whereas in toluene of 1.6 x 
10 ’ M gives a higher saturated value. In summary. RSA for excitation of solution with 
ps duration laser pulses is due to absorption from the first singlet excited state because the 
population in the first triplet excited state is negligible, whereas for excitation with laser 
pulses having a duration of a few nanoseconds, lhe dominant contribution to RSA comes 
from absorption from the first triplet excited state. RSA is stronger for nanosecond laser 
pulses than for ps laser pulses for wavelengths between 621) nm anils X ft I nm.

Sun et al. |444| found that the saturated threshold values of the mixture CM,solution 
(sec Table 13) arc higher than that of Cl(tl solution but lower than that of C7„ solution, 
which is actually caused by the lower triplet state quantum yield and stronger absorption in 
the visible wavelength for C'7(, than C,,n. Because the triplet state of Cbl [445] with lifetime 
330 ±25 ns and C7tl |446| with lifetime 730 ± 5(1 ns can be quenched hy O;. the existence 
ol 'Oi in the solution will influence the RSA process and the optical limiting behavior. Sun 
and colleagues |444| found that no argon-degased solution of the mixture CW|/C7|I has a 
higher II F threshold and a higher saturated threshold than the argon-degased solution (see 
Table 13).

Optica' limiting performance was also observed in a mixture of higher fullerenes C7(, and 
Cs4 at A = 1(164 nm for t = 10 ns |4411. Their saturated threshold value is. however, higher 
than that of Cwl-toluene in the visible region. Again, this is determined by the low quantum 
yield into the triplet state for the higher fullerenes.

All nonradiative relaxation processes lead to heating of the solvent. Justus and col
leagues |425. 447] pointed out that RSA increases absorption and enhances thermal defo
cusing. which shows additional contribution lo lhe observed optical limiting performances 
in C’M, solution. Negative thermal lensing in CMt is clearly reflected in lhe z-scan studies of 
Mishra et al. [448]. The thermal origin of negative lensing was also established on the optical 
limiting for different solvents [448]. C(MI in carbon disulfide, which has the largest thermal 
figure of merit, exhibits stronger optical limiting behavior |44X|. A different kind of solvent 
dependence was also observed by Sun aid Riggs [4!*•)]: the optical limbing response of Cwl 
solutions in electron-donating solvents (for example, diethylamine and dimethylamine) was 
much weaker than that in toluene solution. This can be understood: (I) upon photoexcitation 
ol CM1. the dominant photogencrated transient species are C(JI anion and diethylamine or 
dimethylamine cation; (2) because absorption from the C(>11 anion is weaker than that from 
the triplet C,4I. the optical limiting performance is degraded. Il should he mentioned, how
ever, that thermal refraction contributes to the optical limiting behavior of ns laser pulses 
but not of ps laser pulses |449|.

The work of Mishra et al. [450. 4511 showed the significant contribution of nonlinear scat
tering to the observed optical limiting performance in C(J1 solution. In their limiter geometry, 
the transmission could decrease at higher fluences only due to RSA or abberations which 
come from the nonlinear lens. Their observed reduction in the transmission at higher flu
ences was larger than that expected from a theoretical analysis including RSA and nonlinear 
refraction, where the difference is from the nonlinear scattering.

In addition, the work of Riggs and Sun |4I9, 443) showed us that RSA in CMI also has 
some contributions from singlet and triplet excimer-like states formed due to bi molecular 
processes involving Cw, molecules in the triplet state.

5.3. Carbon Blacks and Rod-Shaped Carbon Nanostructures
The optical limiting properties of carbon blacks |452-45X], MWNTs |456], and SWNTs 
[458-466] carbon nanotubes have been recently studied Some of the results arc listed in 
Table 13.
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5.3.1. Carbon Blacks
Optical limiting of carbon black suspensions (CBS) and carbon black deposited on glass 
was studied [452, 45b. 457], The carbon blacks were shown to exhibit very strong broad
band (for example. 0.532. 1.064 gm laser wavelength) optical limiting properties for nano
second pulses. By observing scattered light intensity as a function of input irradiance, it was 
clearly shown that the incident light becomes very strongly scattered as the incident energy 
increases. Measurements of the angular distribution of scattered light show a Mie scatter
ing pattern typical of scattering particles larger than the original carbon black particles. It 
was concluded that the dominant nonlinearity that leads to (he optical limiting observed in 
carbon black materials was the thermally induced scattering and absorption by microplas
ma'. formed after thermionic emission from the laser-heated carbon particles. Details about 
the optical limiting of carbon blacks can be also found in the review article by Tutt and 
Boggess [414].

5.3.2. Rod-Shaped Carbon Nanostructures
Compared with CWI and carbon black suspension (CBS), carbon nanotubes are also good 
candidates for optical limiting applications. Sun ct al. |453] and Chen et al. [454] were 
the first to measure the energy-dependent transmission of MWNTs suspended in distilled 
water [453] and ethanol [454]. or MWN Is embedded in PMMA films [453] in the visible and 
infrared spectral regions (example. 532 nm. 700 nm. and 1064 nm) with 7 ns laser pulses. 
For MWNTs in ethanol, the limiting threshold r). defined as the value of the input fluence 
at which the transmittance falls to half of the linear transmittance, is about 1.0 J/cnr at 
532 nm (lower than those of CN( and CBS) and 6 J/cnr at 1064 nm (lower than that of 
CBS; optical limiting phenomena totally vanish lor CWI toluene solution). For MWNTs in 
water, r) = 1.0. 5.5. 13 J/cm2 at 532 nm. 700 nm. and 1064 nm. respectively. For MWNT in 
PMMA. 17 % 3.1.4.1.8.0 J/cnr at 532 nm. 700 nm. and 1064 nm. respectively. For MWNT 
and carbon particles in PMMA. the r/ values at 532 nm. 700 nm, and 1064 nm are almost 
the same as those for MWNT in PMMA. Clearly. MWNTs, unlike CbU, which has no limiting 
response at 1064 nm. arc a broadband limiter up to 1064 nm. Because carbon nanotubes with 
a lower work function, lower electron binding energy, and stronger plasma excitation have 
no ground-state absorption at 532 nm and 1064 nm, the broadband limiting response should 
result from another mechanism. Recently, the energy-dependent transmission of MWNT 
suspension measured with picosecond and nanosecond laser pulses has shown a strong opti
cal limiting action on the nanosecond time scales but does not display any limiting behavior 
in the picosecond regime even with an input fluence as high as 3 J/cnr [455], which is differ
ent from that of CN, but similar to that of CBS. The picosecond time-resolved pump-probe 
experiment of Sun et al. [455] indicated that it took about 0.5 ns for the nonlinear trans
mission to appear for both MWNT and CBS. Especially, the smaller the external diameters 
of MWNT, the faster and larger arc the changes of the transmission. The nonlinear scatter
ing experiments of Sun et al. [455] with nanosecond laser pulses at 532 nm confirmed that 
nonlinear scattering exists in MWNT suspension because the observed limiting behavior of 
MWNT is similar Io that in CBS. Thus, the optical limiting action in the MWNT suspension 
comes from a mechanism similar to that in CBS.

Vivien and colleagues [458-463, 465| were the first to report the NLO transmittance of 
SWNT in a water suspension [458-460. 463. 4651 or in chloroform [458, 460-463. 465] for 
pulse durations ranging from 3 to 100 ns and for wavelengths from 430 nm to 1064 nm. 
Their results are summarized in Table 14. For SWNT in waler [459, 460, 463. 465], r; = 
3.8 x 10 6 J/cm (a bit higher than that of CBS) for 7 ns Nd:YAG laser pulse al 532 nm. and 
2.6 x 10 ' J/cnr (lower than that of CBS) for 7 ns Nd:YAG laser pulse at 1064 nm. Obvi
ously. the detailed studies of Vivien and colleagues |459—465] demonstrated that SWNTs 
arc also efficient limiters over a broad wavelength range. Also, their results clearly 'how 
the wavelength effect |463| (attributed to the larger absorption cross sections of the suspen
sions at shorter wavelengths and to (he larger scattering cross sections of the laser-induced 
scattering centers |460]): the shorter the wavelength, the lower the limiting threshold rj and 
the better the limiting efficiency. I'heir experimental measurements show the pulse-duration
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Tahir 14. Optical limiting threshold >/ ol SWNT suspended in chloroform or in waler using different laser source 
with different wavelength A and pulse duration r (adapted from Vivien et al. [458—163. 465| anti Xie et al. |25|).

Solvent Laser Source Tins) A t/rni) r/(kj ’nr)

Water Nd:YAG 0.532 3.8 x 10
Nd:YAG 7 1.064 2.6 x 10 *
Ti sapphire ’S 0.7 1(1
Ti (sapphire 15 0.8 3
Ti (sapphire 3(1 0.9 1 1
OPO 3 (1.46 9
OPO 0.58 .3(1
OPO 3 0.68 7(1

Chloroform Nd:YAG 5 1.064
Nd:YAG S 0.532
Nd:YAG n 0.532 1 (
Titsapphire mu 0.67 7
Tksapphirc 2? 0.7 1.8
Ti:sapphirc 12 0.73 HI
Ti:sapphire 15 0.8 1
Ti (sapphire 3(1 0.9 3
Ti.sapphire 80 1 0.2
OPO 3 0.46 10
OPO 3 0.58 30
OPO 3 0.68 61.1
OPO JI 0.694 6(1

effects reflecting two different mechanisms (vapor-bubble growth and sublimation of car
bon nanotubes) that contributed to the optical limiting performance: for example, only the 
sublimation effect at 1064 nm for 5 ns Nd:YAG laser pulse; both mechanisms at 1000 nm 
for 80 ns Tusapphirc laser pulse. The limiting performances observed with 5 ns Nd:YA(i 
laser pulse at 532 nm are considerably better than those obtained with 2 ns Nd:YAG laser 
pulse at 532 nm. Such strong pulse-duration dependence of the limiting performance can 
be explained by the fact that the maximum size of the scattering centers in the nanosecond 
regime is reached only after the end of the incident pulses |458|. That is also why opti 
cal limiting is not observed at all in the picosecond range but appears in the nanosecond 
and longer pulses. Moreover, lhe solvent effects (462. 463] demonstrated that MWNT in 
chloroform exhibit better limiting performance than MWNT in water because of two main 
reasons [463]: (I) because the absorption cross sections of the particles are slightly larger 
in chloroform than in water, chloroform exhibits lower thermal conductivity and diffusivity; 
(2) with longer pulses from Ti-sapphire laser, chloroform has a very low heat of vaporiza
tion, surface tension, and viscosity, which lead to faster solvent-bubble growth. Nonlinear 
scattering and nonlinear refraction are the dominant mechanisms [461],

Meanwhile, Mishra et al. [466] carried out a detailed study on the optical limiting behav
ior of SWN’l’ suspensions in different host liquids, for example, ethanol, water, and ethylene 
glycol. Their results, listed in Table 13, demonstrated that optical limiting behavior in SWNT 
suspension appears mainly because of absorption-induced scattering in the suspension [466], 
Especially, the extent of nonlinear scattering for good limiting performance in carbon nano
lubes strongly depends on the host liquid. For example, optical limiting in the ethanol sus
pension was the strongest among the three suspensions: water, ethylene glycol, and ethanol 
(sec Table 13).

Recently. Riggs et al. [456] and Jin et al. [457] have investigated the size-dependent 
optical limiting behaviors of SWNTs and MWNTs. Their results are listed in Table 13. 
These experimental measurements show that carbon nanotubes of large aspect ratio (or. say. 
long nanolube) possess stronger optica! limiting properties. Apparently the carbon nanotubes 
exhibit a significantly weaker optical limiting response in homogeneous solutions than in sus
pensions. reflecting that the optical limiting properties of the suspended versus solubilized 
carbon nanotubes represent dominating contributions by a nonlinear scattering mechanism 
versus a nonlinear absorption mechanism |456|.
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The preliminary experimental results of Riggs et al, [456] pointed out that lhe optical 
limiting results of carbon nanotube suspensions of the same linear transmittance, similar to 
those of CBS. arc independent of nanotube concentrations, whereas the solubilized carbon 
nanotubes, similar to fullerenes in solution discussed previously, show significant solution
concentration-dependent optical limiting behaviors.

5.3.3. Carbon Nanostructure Composite Material
The use of carbon nanostructures in a practical application of optical limiting would require 
some form of matrix to disperse the nanostructures and allow the fabrication of films, coat
ings. or suspensions of the matrix and carbon nanostructure composite material. On lhe other 
hand, the previously reviewed carbon nanotubes were suspended in liquids because of their 
poor solubility in most solvents. Those suspensions are unstable at high concentrations. So, 
it is necessary to get stable solutions of carbon nanotubes. Recently, O'Flaherty et al. [407] 
and Jin and colleagues [468] studied the optical limiting performance of several polymer- 
coated and polymer-grafted MWNTs (which form stable solutions in DMF) using 532 nm 
7 ns Nd:YAG laser pulses. The poly(ethylene uxide)/MWNT, poly(4-vinylpyridine)/MWNT, 
poly(2-vinylpyridine)/MWNT, and poly(4-vinyl-phenol)/MWNT all exhibited optical limiting 
behaviors similar to that of MWNT suspension in DMF: the r] values for all samples are 
about I J/cnr. Considering that there is no optical limiting effect in all polymer-DMF solu
tions. the observed optical limiting behaviors of polymer/MWNT composites are obviously 
due to the components of MWNTs. Hence, the polymer does not change the NLO properties 
of MWNTs, and a large variety of polymers can be used as the matrix of carbon nanotubes 
for the limiting applications. Because carbon nanotubes are broadband optical limiters, the 
polymer/MWNT composites are also broadband limiters. The important thing is that their 
polymer/MWNT solutions are very' stable toward air and laser radiation [468|.

5.3.4. Doped Carbon Nanotubes
An instructive approach—that is. tailoring the local electronic properties of carbon 
nanotubes—has been proposed as a good approach to understand mechanisms involved in 
the limiting behavior of suspensions. As discussed in Ref. [469], the substituting doping of 
carbon nanotubes is responsible for stimulating a number of structural and electronic prop
erties and thus the third-order optical nonlinearities of carbon nanotubes. Recently, Xu and 
colleagues [470, 471| measured the optical limiting properties of B- and/or N-dopcd car
bon nanotubes. By varying the incident energy and measuring the transmitted energy, they 
observed enhanced optical limiting behaviors of B- or N-doped carbon nanotubes. In com
parison with the nonlinear transmittance versus incident fluence of pure and B- or N-doped 
carbon nanotubes al 532 nm and 1064 nm. doped carbon nanotubes have better optical lim
iting properties (lower threshold values) than pure carbon nanotubes. Their results on lhe 
pure and B-doped carbon nanotube under identical input fluence (0.5 J/cm-) indicate that 
the transmittance drops by about 60% and 33%' for B-dopcd and pure carbon nanotubes, 
respectively. The optical nonlinearity within the B-doped sample is stronger than that in the 
undoped one. Although Fc catalyst particles were also found in N-doped carbon nanotubes, 
they were shown to make no contribution to optical limiting behavior [470. 471]. A study by 
Jin et al. [472] found that the optical limiting behavior of carbon nanotubes in PVDF/DMF 
solution is size dependent. The nanotubes of large aspect ratio possess stronger limiting 
properties. However, the limiting is obtained by nanotube bundles, not by individual nano
tubes. Using electron microscopy, Xu and colleagues [470, 471] found that for each type of 
doped carbon nanotube, the nanotube bundles exceed 1(1(1 gm. which is significantly longer 
than the wavelength of incident light. In spite of these studies, a full mechanism for the 
enhanced optical limiting performance of B- or N-doped carbon nanotubes is still unclear.

5.4. Functionalized Carbon Nanostructures
A category of metal-fullerene complexes [473-477] was synthesized in the laboratory'. Their 
charge-transfer nature qualifies these complexes as a promising group of excited-state 
absorption optical limiting materials, such as enhanced optical limiting performance of
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a molybdenum complex of fullerene (17 )Mo(CO );(o-phcn)( DBM) (DBM = dibutyl
maleate; o-phen = l.l(l-phcnanlhroline) |476|. Recently, Liu et al. |44()| also observed 
enhanced optical limiting performance of a novel molybdenum complex of fullerene (77- 
C n)Vlo(( O);(o-phen)(DBM) relative tt' fullerene C7|) with nanosecond laser pulses. I’his is 
attributed to the increment on the triplet-state absorption because of intramolecular charge 
transfer.

Copper (II) phthalocyanines (CuPc) and C,,h have been used to construct practical opti
cal limiters because of their good optical limiting properties. As far as the solubilities and 
aggregations of these optical limiting molecules are concerned, combining phthalocyanine 
and fullerene in one compound through the Diels-Alder reaction has many advantages, for 
example, combining the optical limiting properties of both molecules, improving the solu
bility and stability, and avoiding the phase separation problems exciting in the mixture of 
various materials. Recently. Zhu el al. |478| demonstrated that a higher concentration solu
tion CuPc-CNI shows similar optical limiting behavior to CuPc. while in a lower concentration 
solution the CuPc-C(10 shows similar optical limiting behavior to C(1H at low input fluence 
(<0.2 J/cnr) and to that of CuPc at higher input fluence (>0.2 J/cnr). In this kind of com
bined molecule, there arc two separated conjugation systems, both of which independently 
contribute to the RSA.

The liillerene-metal nanocomposites remain a relatively unexplored area [479, 480], 
Recently. Sun et al. |481] have prepared a novel [60] fullerene-Ag nanocomposite 
(I)TC (1U-Ag) by the in-silu reduction of silver ions encapsulated in a new monofunctional
ized melhano-|60]fullercnc derivative (DTCM)) with reverse tnicellelikc structure. As listed in 
Table 13. their experimental measurements demonstrated that the optical limiting behavior 
ol D I ( (JI-Ag is belter than that ot both C(1(l and D ICI1(I. even better than the results obtained 
with novel materials such as silver-dendrimer nanocomposite [482|. the AF-380 dye |483|, 
and single-walled carbon nanotubc suspensions |484|. Similar results |485| have recently 
been obtained for a new C(J) hexamalonic derivative nanocomposite (HDTC(MI-Ag). which is 
a better optical power limiter than the parent IIDTC,Hl and DT-Ag. Recently, gold nanopar
ticles have attracted considerable attention because of their potential applications as optical 
devices and nanoelectronic devices, given their higher surface-lo-volunie ratios and small 
size effects [486, 487]. However, less work has been done for optical nonlinearities of these 
nanostructural materials, especially for those with zero-valent metal nanoparticlcs [488|. 
Very recently. Fang el al. |489| synthesized two novel CH,-derived nanoparticles contain
ing bipyridyl (BPY) and tripyridyl (TPY) groups. The optical limiting responses of CW)BPY, 
C„(ITPY. CI1OBPY-Au. and C„0TPY-Au nanoparticles in chloroform were measured by using 
a NdrYAG laser at both picosecond and nanosecond scales and 532 nm. Their measured 
results arc listed in Table 13. lhe difference between the optical limiting properties of both 
C(10BPY and CW(TPY is little. However, the optical limiting performance of CWITPY-Au at 
both picosecond and nanosecond scales was much better than that of C,kllBPY-Au. Their 
further Z-scan measurements indicate that nonlinear absorption (for example, excited-state 
and the surface plasmon absorptions) and nonlinear scattering contribute a lol to the optical 
limiting performance of C miTPY-Aii. whereas there is no nonlinear scattering for C„„BPY- 
Au. All these arc caused by the excited-state interaction between the C(kll and silver or gold 
nanoparticles, showing the strong nonlinear refraction (or, say. self-focusing effect), as well 
as the interband transition due to the surface plasmon resonance.

Suo et al. [49()| explored the influence on the optical limiting performance of CN, by attach
ing two strong pulling electron groups (—CN), namely, dicyanodihydrolullerene CWI(CN)?. 
This molecule has an optical limiting performance for nanosecond laser similar to that of 
pristine CWI. Although this molecule has an extinction coefficient of the excited triplet state 
larger than that of C(1<), its low' quantum yield leads to a lower triplet-state population and 
thus optical limiting behavior similar to that of CWI. As mentioned before, there are generally 
two kinds ol mechanisms for optical limiting performance because of nonlinear absorption: 
dual photon absorption and RSA. Compared with lhe pristine Clkl). the picosecond optical 
limiting performance of C,,,,(CN)? is power independent but assigned to the RSA of the 
excited singlet state [490],
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I'hc incorporation ol fullerene moieties into polymer systems such as polycarbonate 
(PC) is a hot recent topic because of lhe interesting optical and electronic properties that 
the combined materials exhibit. lhe work of I.i and colleagues [491. 492] indicated that 
increasing the electron-accepting ability of fullerene derivatives leads to stronger intramolec
ular action between TCNt()-C„n moiety and PC unit, and thus TCNEO-C(MI-PCs (for 
example. PCCI. PCC3; see Table 13 for different TCNEO-CMrPC feed ratio; TCNEO = 
tetracyanomct hanoxymethano) show much better optical limiting properties than C(4)-PCs. 
It should be pointed out that the optical limiting characteristics of TCNEO-CW(-PC can be 
described by the Golovlev. Garrett, and Chen model |493|.

Fullerene compounds are very hydrophobic. Therefore, most of the related physical and 
chemical studies about their structure, properties, and reactions have been performed in 
nonpolar solvents, such as toluene or benzene. However, if the fullerenes arc embedded in 
a suitable water-soluble molecule, water solubility can be achieved. y-Cyclodextrin has been 
proven to be a rather suitable candidate for producing a water-sol liable complex that has 
a stoichiometry of one C„o for two y-cyclodcxtrins |494|. Using 532-nm, ll)-ns laser pulses, 
Konstantaki et al. |495| observed significant optical limiting action from a C^/y-cyclodextrin 
complex, the effect being slightly lower than that of the pristine Cwr However, aging of the 
C’()ll/y-cyclodextrin-water solution leads to the formation of aggregates that can enhance the 
optical limiting action by a factor of almost 2 [495],

Il has been shown that appropriate fullerene functionalization increases the solubility in 
polar solvent and allows the preparation of solid materials via a sol-gel method |30, 496, 
497]. Recently. Signorini et al. [497] compared lhe optical limiting behavior of a pirrolydi- 
nofullerenc derivative (FIJI.I’) solution with a FULP-doped sol-gel sample. Compared with 
lhe green spectral region (532 nm) for both Cwl and FLIP in solution, enhanced optical 
limiting efficiency is demonstrated in the red spectral region (690 nm). that is. showing bet
ter optical limiting performances than pristine fullerene. The inclusion in the sol-gel matrix 
does not influence the optical limiting performances of the fullerene derivative. The RSA is 
still the predominant mechanism for the observed optical limiting behavior.

Several groups have shown that the optical limiting performance of fullerenes in solid 
matrix—for example, in a poly(methyl methacrylate) (PMMA) matrix—is rather different 
from that in solution [498-500], The dramatic difference should be contributed to mecha
nisms other than the RSA because the ground-state and triplet-triplet transient absorption 
spectra of CWI in PMMA polymer film are similar to those in room-temperature toluene 
solution ]5(K)|. Riggs and Sun (443) systematically investigated the optical limiting properties 
of zert-bytyl methano-C(1U carboxylate (TBM[60|CO) in room-temperature toluene solutions 
of different concentrations, in PMMA polymer films, and in highly viscous solvent-polymer 
blends. Similar to CW), optical limiting performance of TBM[60]CO strongly depends on the 
fullerene solution concentrations due to bimolecular excited-state processes of the fullerenes. 
Recently, Riggs and Sun (5011 studied a series of mono- and multiple functionalized fullerene 
derivatives [502] at different solution concentrations, giving a generalized understanding 
of the concentration-dependent optical limiting in fullerene solutions. The medium vis
cosity is shown to contribute to effects on lhe optical limiting contribution that are also 
associated with excited triplet-state bimolecular processes (in particular self quenching and 
triplet-triplet annihilation), resulting in weaker optical limiting performance in highly vis
cous solvent-polymer blends |443|. For example, for the highly viscous solution (the presence 
of large quantities of PMMA polymer in toluene) of TMB[60]CO at 71% linear transmit
tance, the fluence saturation threshold value is about 0.17 J/cnr. which is about 20% higher 
than that for TMB|60]CO in room-temperature toulenc solution of the same linear trans
mittance [443|. For another example, at 69% linear transmittance, the fluence saturation 
threshold value for TBM|60]CO in a highly viscous blend of poly(propionylethyleneimine) 
(PPFI) polymer chloroform solution is significantly higher than in room-temperature chlo
roform solution [443], Optical limiting properties of TBM|60]CO are found to be essentially 
independent of film thickness. Lacking meaningful molecular diffusion in polymer films 
may be lhe reason for the poor optical limiting behavior of 'IBM |6()]C'C) in both thin and 
thick PMMA films than in room-temperature solution. Based on the modified RSA midel 
including both unimolecalar and bimolecular excited-stale processes. Riggs and Sun [4431 
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indicated that the fullerene solution concentration affects the efficiency of the bimolccu- 
lar excited-state processes, whereas the medium viscosity influences the himolecular rate 
constants through changes in the molecular diffusivity

6. COHERENT CONTROL THEORY OF NONLINEAR OPTICS
A key experiment lo demonstrate wave behavior is the well-known Young’s double-slit exper
iment addressed in high school physics. It provides us a basis for Ihe rapidly developing lield 
ol physical science, coherent control of quantum dynamics of atoms and molecules [503-506]. 
The essence ol coherent control lies in the interference principle of waves. As two or more 
competing pathways arrive at the same final state, quantum interference would happen. The 
frequency and intensity properties of lasers have long been used to probe and even alter 
properties of matter. However, the most characteristic property of laser light—namely, its 
well-defined phase—is rarely regarded as a control parameter. Manykin and Alfanas'ev [507] 
were the lirst to consider the interference of quantum mechanical transition amplitudes for 
two pathways coupling the same initial and final state of an atom, showing us a possibility of 
employing laser phase. In particular, simultaneous single- and three-photon absorptions were 
suggested io control state populations and hence the transmission of the medium |507], This 
is analogous to the interference of two beams in a Young’s double-slit experiment except 
that now one has an effective “matter interferometer." in that it is electrons that arc being 
controlled.

Recently, the coherent control approach has been successfully demonstrated, both theoret
ically and experimentally, in unimolecular breakdown reactions [508-510]. reactive scatter
ing [51 I], electron distribution excited in a metal [512], the energy and angular distribution 
of autoionized electrons [513. 514], photocurrent generation in bulk semiconductors [515]. 
spontaneous emission near a photonic band edge [516]. light absorption ;.nd terahertz radi
ation in semiconductor nanostructures [517. 518|. optical phonon emission rates and optical 
gain from electronic inlcrsubband transitions in semiconductors (519, 520], optical dynam
ics in semiconductor microcavities [521], the polarization of an optical field [522]. the total 
ionization yield in a two-color ionization process [523|. and others |524-529|. Among the 
coherent control scenarios, a successful one is to employ two laser fields to induce a (ran 
sition in an atom, a molecule, or a solid, and coherent control is achieved by varying the 
■ external parameters" (such as the relative phase and amplitude of the two fields, which can 
be adjusted experimentally) so that the induced transition amplitudes interfere constructively 
or destructively.

In this section, we review a coherent control approach we proposed [24. 530| to study the 
molecular linear polarizability a. first hypcrpolarizability /T and second hyperpolarizability 
y at a desired frequency. In our coherent control scenario, an initial slate, which comprises 
a superposition of two eigenstates of the radiation-free molecular Hamiltonian, is prepared, 
and both states are excited lo the same final state by using two cw laser fields. As an example, 
we demonstrated that the y magnitude of a nitrogen molecule at a desired frequency can be 
coherently controlled, either constructively enhanced or strongly decreased, by varying the 
relative amplitude and phases between two laser fields and those in the initially prepared 
superposition state. This approach opens a door lo achieving large y magnitude of molecules 
at a desired frequency, which is required for photonic applications. Based on this control 
approach, we are able lo get a large y value of carbon nanostructures at a desired frequency.

We denote /7n. e„. and l<V„(r» as the radiation-free molecular Hamiltonian, its discrete or 
continuous set of energy eigenvalues, and corresponding eigenfunctions, respectively. They 
satisfy the lime-independent Schrodinger equation

(74)

where = hit>„ and to,, is the angular frequency. Here it is assumed that these solutions 
are chosen in such a manner that they constitute a complete, orthonormal set satisfying the 
condition r)|<l*„( r)) =
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In the presence of the radiation lield, the time evolution of the molecule-field coupling 
system is governed by the Hamiltonian

/?(r) =//„ + P(/) (75)

where the interaction Hamiltonian. which describes the interaction of the molecule 
with the radiation lield. is given in the dipole approximation by K(r, /) = —1/ • F(/), where 
1'1 = —er(r) is lhe electric dipole moment operator, —e is the charge of the electron, and 
F(f) represents the radiation lield. Assuming that all of the properties of the molecule-field 
coupling system can be described by the wave function |'F(r. /)). we have

in 1 * ■ " = //(/)|9'(r,/)) (76)

In general, th prior time-dependent Schrodinger equation cannot be solved exactly. So, it 
is often adequate to solve this equation through the use of perturbation theory. Exactly, 
to solve the time-dependent Schrodinger equation systematically in terms of a perturbation 
expansion, we replace the Hamiltonian II(I) by

/?(/) = + A J'(/) (77)

where A is a continuously vary ing parameter ranging from zero to unity that characterizes the 
strength of lhe interaction, and the value A = I corresponds to the actual physical situation. 
Moreover, we seek a solution to the time-dependent Schrodinger’s equation in the form of 
a power scries in A:

|4'(r. /)) = |'P"”(r. 0) + A|'l'"’(r. f)) + A2|'I',2*(r. 0) + • • • + Av|'F,v’(r. I)) (78)

Thereby, introducing it into lhe time-dependent Schrodinger equation and requiring that 
all terms that are proportional to A' satisfy the equality separately, we obtain the set of
equations

|\p"”(r, r)> = /?u|M'""(r. t)) (79)
p/

/7z-|^, V|(r. r)) = Z7„|'l',A>(r,/)> + P(r, f)|'P'v"1,(r. /)) N = 1,2,3,... (80)
tit

These equations are solved by making use of the fact that the energy eigenfunctions for the 
free molecule constitute a complete set of basis functions in terms of which any function can 
be expanded. Hence, the full time-dependent wavefunction |'F< v'(r. /)) can be expanded in 
the term of lhe eigenfunction |'l»„(r)) of the radiation-free molecular Hamiltonian

|'F,A'(r. /)) = £ Cj v'(/)e ^|<b,(r)> (81)
1

where Cp1 gives the probability amplitude that, to lhe A'th order in the perturbation, the 
molecule is in the energy eigenstate |4>/(r)) at time t. Furthermore, we find that the proba
bility amplitudes are given by

C,',?I(/) = (^)*T / "(/')<•'"■■'^/ (82)
I ’

where ez)/7» is lhe transition frequency between eigenstates <f>,H(r)) and |‘l»((r))
of lllt. and we have introduced the matrix elements of the perturbing Hamiltonian, which 
are defined by I „,/(/ ) = ) I (r )|‘l’Jr) . lhe form of C'?'(f) given here demonstrates
the usefulness of the perturbation techniques. Once the probability amplitudes of order 
(A' — I) arc determined, the amplitude of the next higher order (A') can he obtained by 
straightforward lime integration.
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I hen. the development ol our coherent control theory ol nonlinear optics is based on 
the following control scenario. I he molecule-field coupling system is initially prepared in 
a superposition of two eigenstates. |4’,(r)) and |<t»h(r)). of lhe radiation-free molecular 
Hamiltonian //(l [531-5411

|'P(r. i = ())> = Ca|<t>,(r)) + C,J‘t>,.(r)) (S3)

where |C’„|’4- |C,,|: = 1 and the relative phase between both states is defined by </> — arg(^). 
Both slates are excited to the same final state (denoted by lhe energy e) by using two cw 
laser fields, which arc in the form [504, 541]

E(/) = E(w, )c“""'' + E(w2 (84)

where ftoq = e — e( and ftaq = e - e?,. The relative amplitude and phase of both cw laser 
fields are defined by £ = Ij^jl and (A = arg(|^). respectively.

Then, based on the perturbation theory and the quantum theory of molecular polarizability 
and hypcrpolarizability (95J, we got the probability amplitudes 124. 530):

</”(/) - C/8/,, + C,8//(

' P„.*E(W/,)]t.... "■
*- b" 7 , -------------- ---------- —------------------

/1=l - oq,

1 = c rr- yyy

,2. 2, m„, . E(w„)][(./,,„, . ECw,,)]^'""--^-^'-
+ ( /,ft * > ) > ------- --------------- 1----------------------------------------------------------

p-lq I ill (^ll> ~ to I1 toq)((l)nlf, to I,)

h ’yy yr1 C/"*E(t<J')|11/»»-• E(y>lK'.. *E(<a,,)]f....
ri <7“i 7“i < toJt, - w/( - w,f- w,)(W„„ - Wz, - <O(/)(co„lu -Wr)

L £ ' |L';„.E((i>,)||(/„„,.E(<u,z)||f/„,;,• Ef^)]^
7 .7 I mu < 0)lb - top ~ toq -«>,)( a>nl, -U)P~ U)tl ) ( <O,nA - Wz, )

(85)

(86)

(87)

(88)

where f7„ — ((I>,(r)|//|<b;(r)) is the transition-dipole matrix clement between |<b,(r)) and 
l‘l>,(r)> of//,,.

hirst, using above results, we got the linear dipole moment pth(l) of molecule [24. 530]:

pttr^j _ 1 yj k I2f iHy, | iy,■ • ywi 1 
i I totu - (iq to.. ■ to

, ,z- p/ Win • E(W|)]l/w |ft/w • E(tU| )][/„,
+ 111,1 I + --------- -——----------

\ (U/p — W| W/z, + W|

[L’„, » E(w2)]L'M
‘»p. - ^1

+ (y, • Eyjjy/
— (£)[

m„. e(W,>il/,<z

top. - to2

iy,.E(o».)](.

(L.y. Edo- )]t4,
W/.t + t(>2

I L‘bl * E( <l>; )|L';;,
WZZ) 4- W,

|r,„. . E(O>,)]Z';„ \l _ 
y„ + ^2 /I
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W/„ -

\Uhl • E(w.)]tf/u
w;,, ~ a):

4- ("( (-1 • 111
rl f' I ♦\ to,„ + w, <°/6 -

[L',7, • E(to,)|l7u, (89)

where I is summed over all the dipole allowed transitions. Of course, if we wanted to describe 
the dephasing processes, which are not accompanied by the transfer of population, it would 
be appropriate to pursue this work with the density matrix formalism [95], In the previous 
equation, the last sum term is a "satellite term,' which does not affect the observable dipole 
moment al the desired angular frequency w,. or io:. Separating the average value of the 
induced dipole moment into its desired angular frequency (to, anil to.) components |95, 541] 
and based on the quantum theory of molecular polanzabilily introduced before, finally wc 
got the linear polarizability it(to) of molecules at the desired angular frequencies w, and w„ 
respectively |24, 530]:

o„(wi) = h
Wl. . Wl. \ , .. ( , W,. \

----------- 4—— - 1 + *w> I------------+ —r— I 
<«•/„ ~ <O| c>iu + "»v - WI w/i. + wi '

/ /'/' I” U' V I v <>/*•». |
\ to),, 4 to, to,„ - to, /

«„ (w.) = /i | K„„ ( Ua'Ula +
I I \ «/u -

u'M \ / uM . W,
—— I + */.sl------------- f ~—7----- J(ohl + u>, / \ <t)lh — to: u)lh 4 to, /

u;M , uM \1
- w. w;u + / J

where the five parameters in these equations are defined as follows [24, 530]:

(90)

(91)

kum = K’m|2 (92)

x,.>. = 1 ~ (93)

(y4)

'* (95)

= (f> (96)

For convenience, these equations can be rewritten in a succinct form [24, 530]

a(to,) = + kX^i) 4- *„/,«'/,( to,) (97)

o(to,) = K„„a,)i,(<u,) + KW1a^(to,) + K/,„aL(w2) (98)

Similarly, we are able to get the second- and third-order nonlinear optical polarizabilities of 
molecules at their desired angular frequencies in succinct forms. In detail, the second-order 
optical polarizability /> of molecules at the desired frequency to, = 2w|,2w.,to1 -f- w; are 
given by [24. 530]

/3(to, = 2toJ = K^Jto.) -|- ka^\(w,) + K,^(to,) (99)

/S(to, = 2to.) = Kul((8^(to,) 4- Kw^,(to.) 4- k,,u/3/',u(w,) ( 00)
3(to, = to! 4- to.) = K^^JtoJ + K/./.^ftir,) + K-^/i^.fto,) + K^/Jj'.Jto,) (101)

and the third-order nonlinear optical polarizabilities y of molecule at the desired angular 
frequencies w, = 3<U|.3to->. 2to( 4- to., to, 4- 2<o. are given by [24, 530]

y(to, = 3to,) = K.,„y(,'jw,) 4- Khhy^(M.) 4 K^y^fto,) ( 02)

y(to, = 3toj = Ki(<y,?Jto.) 4- %'/.(<».) + «h.,y^(w,l ( 03)
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y(w, = 2w, l w.) = K,wyJwJ f Kw,y,X(w.) + K^y'^iioj + Khily',(<•>,) t KM)

y(w> = W| + 2wJ = K,(1,y,',(<•>,) + K/fhy,?h(<«»,) + K.a.y'jw.) + K;„,y',.(w<) (105)

In these succinct equations. rr'. /P. and y,' represent the normal polarizability with all 
kinds ot transition processes both starting and ending tn the state ‘I’,(r)>: a', 13',. and y' are 
the new types of interference terms with all kinds of transition processes starting at the state 
d’,(r)) and ending al the state |‘I’;(r)) (details about these terms arc given in Appendix A). 

The structure of these equations is of the type we expect in the coherent control theory: 
each has one k„„(...) term associated with lhe excitation of the |<t*,(r)} state, and one 
k. (...) term associated with the excitation of the <l>,.(r)} state, and one Kllh term or and 
one .. ) term corresponding to the interference between the two excitation routes. The 
interference term, which can be either constructive or destructive, is in general different for 
each case. What makes these equations so important in practice is that the interference term 
has coefficients whose magnitude and sign depend on experimentally controllable parame
ters. I hus. by varying the magnitude and the relative phase <!> of the coefficients C„ and Ch, 
the relative phase <// and the amplitude ratio £ of two cw laser liclds. we arc able to alter 
directly the interference term and hence control the a. (3. and y of molecules at a desired 
frequency. The desired superposition state could be carried out by a number of different 
schemes |503-506, 531-539], for example, lhe scheme involving a two-photon absorption 
from a pump laser. Of course, because of collisions, spontaneous emission, or other dephas
ing effects [524—529], the loss of the coherence between and |<b,,(r)) would cause
the reduction in magnitude or the disappearance of the interference term.

For simplicity, we have applied this approach to the nitrogen molecule |542] and. as an 
example, report the results of the coherent control over the second-order hyperpolarizabil
ity y at the desired frequency 3hj, and 3w,. We considered the nonresonant case and thus 
do not include the population decay rate in the numerical calculation. Because of quantum 
interference, we demonstrated that the nonresonant y magnitude of molecule at a desired 
frequency can be coherently controlled, either constructively enhanced or strongly decreased, 
by varying the relative amplitude and phase between two laser fields and those in the ini
tially prepared superposition slate [24. 53(>|. This approach has opened a door to gelling 
a large y magnitude of molecules at a desired frequency, which is required for photonic 
applications [24. 53(l|. Surely, based on this theory, we arc also able lo gel a huge y value 
of carbon nanostructures at a desired frequency.

7. SUMMARY, REMARKS, AND OUTLOOKS
In summitry, wc have introduced carbon nanostructures, nonlinear optical interactions, and 
theoretical tools for electronic structure and (hyper)polarizability calculations. Theoretical 
ami experimental studies on the second- and third-order optical nonlinearities of carbon 
nanostructures are reviewed. In this chapter, we have also presented in detail the ESSH 
model where the Coulomb interaction has been included to describe the carbon nano
structures. including higher fullerenes and fullerene-related nanotubes, and lo investigate lhe 
dynamical and static third-order optical nonlinearities of armchair, zigzag, and chiral carbon 
nanotubes. The cap. symmetry, size, and chiral effects are discussed, and two scaling laws 
of the static second-order hyperpolarizability of armchair and zigzag carbon nanotubes are 
empirically arrived at. respectively. By including the effect of the dopant ions into the ESSH 
model, a further ESSH model is developed to study the doping effect on the third-order opti
cal nonlinearities of carbon nanostructures. Finally, we have reviewed the coherent control 
theory of nonlinear optics we developed to study molecular hyperpolarizability. Our numer
ical experiment has demonstrated that the second-order hyperpolarizability of molecule at a 
desired frequency can he coherently controlled, either greatly enhanced or heavily decreased, 
which opens a door to achieving the large nonlinear optical response of a molecule needed 
for photonic application.

As discussed before. CM1 can act as electron donors or acceptors. This feature, plus the 
intrinsic SIIG activity, has led researchers to explore the possibility of fabrication of charge
transfer complexes with creation of a permanent dipole moment at ground state and an 
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enhanced quadratic NLO response with a good temporal stability. Indeed, lhe fabrication 
of stable and efficient noncentrosymmetric molecules for quadratic NLO is an interesting 
challenge because of the large class of possible applications of these materials in tunable 
light sources, frequency converters, electro-optic modulation, ultrashort electric pulse gen
eration. and so on. Because of the problems and especially the costs that were encountered 
with fabrication of noncentrosymmetric structures, artificial structures such as poled poly
mers have attracted increased interest. Controlled charge-transfer multilayered structures 
may offer an alternative solution, well argued by the controlled fabrication and expected 
enhanced stability. In this aspect, further studies on such structures are expected in the near 
future.

In previous theoretical studies, most works focused on carbon nanotubes of small size. 
To study typical carbon nanotubes. which are generically seen in experiment |for example. 
(10.1(1) carbon nanotube|, it would be very interesting and significant to develop the the
oretical models because of the computational complexity that arises from the big size of 
carbon nanotubes. On the other hand, the large NLO response in carbon nanostructures is 
mainly produced by delocalized tt electrons, as in conjugated polymer chains. However, the 
three-dimensional character of spherically shaped carbon nanostructures may cause severe 
limitations on their NLO properties and thus make their y magnitude become smaller than 
those of linear polymers containing a similar number of carbon atoms. Thus. it is possible 
that large NLO responses would be observed as carbon nanotubes arc paralleled in a plane. 
This is interesting and can be expected to be done in the near future.

Bond-length alternation has been a good structural parameter to describe the electrical 
properties of molecules. When the electron-lattice interaction is introduced in fullerenes and 
carbon nanotubes, bond-length alternation is expected. So, what are the calculated hyperpo
larizability values? is it essential to take account of the electron-lattice interaction to obtain 
a large second-order hypcrpolarizability y? On the other hand, the bond-length alterna
tion should depend on odd or even numbers of carbon rings to be added to the spherically 
shaped carbon nanostructures. Then, what is the effect of an odd or even number of rings 
on the second-order hypcrpolarizability y of fullerenes and carbon nanotubes? This is an 
interesting question because the y magnitude of carbon nanotubes may be considered as the 
limit.

In the case ol graphite, the valence orbital is a ir(2p.) orbital, and there is no interaction 
between the tt and <r(2s and 2p, ,) orbitals because of their different symmetries. In the 
case of a tubule, the curvature of the tubule gives rise to some mixing of a and - bands; that 
is, the bottom of antibonding tr* bands exits in the energy band of antibonding n bands. The 
study of the electronic structure of carbon nanotubes and the mixing effect of <r and tf bands 
has shown that this effect is small at the Fermi energy within the light-binding approximation 
for cr and it bands. Based on this, we have neglected the mixing of cr and rr orbitals and 
have not considered the transition from 77 to cr’ in previous theoretical models. Surely, it 
would be interesting to further study the effect on the second-order hypcrpolarizability y of 
carbon nanotubes because of the transition from tt to cr*.

Also, it would be interesting to explore structure property relationships for optical nonlin
earities of carbon nanotubes from two complementary angles: (1) to explore the possibility 
of obtaining structural information from nonlinear optical experiments and (2) to assess the 
potential of fullerenes, fullerites, and their derivatives for the practical nonlinear optical 
devices. Recently, it has been shown that screening the optical fields due to electron-electron 
interaction may reduce the optical susceptibilities of these molecules by a large factor. Exper
imental work is expected Io clarify this issue.

In this chapter, lhe coherent control theory to study the molecular hypcrpolarizability at a 
desired frequency is presented. Of course, it is possible for us to get larger y values of carbon 
nanostructures at the desired frequency based on this theory; How is the superposition 
state established? How can we control and enhance their second-order hypcrpolarizability 
by changing the magnitude or relative phase of the coefficient ol the superposition state and 
those of two incident coherent lasers? As well as these questions, a number of other factors 
should be considered in the coherent control theory; for example, degrading processes due 
to Doppler broadening and collisions, as well as the decoherence due to collisions.
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l he advantage ol the type of chromophore proposed by zXsselberghs cl al. |4()tt| is lhal lhe 
switchability can be addressed in two different ways: proton transfer and redox switchabili- 
tics. As wc know, electro-optical (EO) modulation is the main application for second-order 
NLO materials. In L.O modulators, an applied electric held changes the refractive index ol 
the NLO material through the EO coefficient. Based on the work of Asselbcrghs cl al. |4(MI], 
embedding the chromophore with lhe first-order hyperpolarizability, which can be switched 
by proton transfer in a matrix with such a photoaddrcssablc proton donor, can make an 
EO modulator that can be controlled by light, that is, an "on" stale without light and an 
"oft" state with light. On the other hand, the combination of a second-order NLO chro
mophore with a photoaddrcssablc proton donor would constitute a composite third-order 
optical material because the second-order NLO polarizability of a molecule would be influ
enced by light. I'his may allow lor all-optical data manipulation, and lhe composite materials 
may provide a new driving force in the field of third-order NLO materials.

As shown before, lhe smaller the 77-77 overlap in lhe three-dimensional conjugated spheres 
(for example, the isomeric fullerenes), lhe higher the barrier for lhe 77-conjugated electron 
flow and thus the lowering of the second hyperpolarizability. Such concepts can be extended 
to explain lhe y values of one-dimensional and two-dimensional 77-conjugated systems, for 
example. mm.s-1.3-butadienc. /nmv-L3.5-hexatriene. styrene, biphenyl, and 2,2-hithiophene.

As discussed previously, lhe enhancement of the third-order optical nonlinearity of car
bon nanostructures is proportional to the increase of charge-transfer strength. This is a very 
important rule for us to design and synthesize new molecules for third-order optical non
linear applications. This is also the essence of the donor acceptor NLO model. Recently, 
Xie et al. |543] showed that C,hU „,N„, and Ch0 „B„ heterofullcrenes are good donors and 
acceptors, respectively |543]. Then, new NLO nanostructures could be designed by linking 
them with a spacer made of one or several units of conjugated molecules, such as a polyene 
or an aromatic chain. In such NLO nanostructures, charge would migrate from to
C(1II.„B„ upon electronic excitation, giving rise to a large dipole moment along the direction 
connecting lhe donor-acceptor pair. Thus, large NLO response is expected in these donor- 
and acceptor-based nanostructures. In particular, they can be engineered by controlling the 
dopant number it and m.

Recently. Bockiath el al. [5441 reported a controlled chemical doping of individual semi
conducting SWN I ropes with potassium. Based on their scheme, they are able to control the 
level of doping by reversibly intercalating and deintcrcalating potassium, and potassium dop
ing could change the carriers tn the ropes from holes to electrons |544|. Their experiments 
open the way toward other experiments that require controlled doping, such as making nano- 
scale p-11 junctions. Xie et al. [543| demonstrated that incorporating CMI. „,NH) and Cw> „B„ 
into a semiconducting SWNT would result in n- and /’-type SWNT-based nanostructures. 
What arc the NLO properties ol this kind of nanostructure?

The small fullerene C\, is much more reactive than CWI and C70. Il has been shown that 
the ground state of Cv, is of diradical nature and the crystal C5„ is formed through covalent 
bonds among C\, units. Obviously, this is contrasted with CM, and C-(l. On the other hand, 
bounding the electron donor groups to C„, would remove the strong diradical character and 
stabilize the entire system, showing the possibility of synthesizing these molecules. Hence 
CW1 chemistry will be further explored to study lhe possibility of using C,(I derivatives for 
building NLO materials.

The improvement of the optical limiting performance observed in lhe molybdenum com
plex ol ( „„ or C-u, which is attributed to the increment on the triplet-state absorption by 
intramolecular charge transfer, shows that the charge-transfer nature would make rnetal- 
fullerene complexes good candidates for optical limiting applications and leads to a new 
means for significantly improving the performance of fullerenes.

Lhe solubility of CM1 can be improved by combining it with an alkyl group of substituted 
CuPc through Diels-Alder reaction. lhe combined molecules exhibit good optical limiting 
performance. Hence, baser! on the combination of various optical limiting molecules through 
covalent bonds, broadband optical limiting materials mav be designed, and phase separation 
problems, which exist in the mixture of various materials, can also be avoided.
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I he large optical limiting performance observed from the novel nanocompositcs DTCW>- 
Ag or HDTCW|-Ag at 532 nm is due to the combination effort from the C(J, derivative and 
silver nanoparticles. Thus, these kinds of novel nanocomposites would lead lo nos cl opto
electronics as well as catalytic properties assembled by fullerene and metals. Surely, much 
work needs to be done to understand the interesting photophysical phenomena observed in 
these systems.

I he attachment of two cyano groups to CM, reduces its quantum yield, increases the 
absorption of the excited triplet state, and leads to CW|(CN);. which has a similar optical 
limiting behavior to C(10 for nanosecond laser at 532 nm. Because the differential absorp
tion between the excited triplet state and the ground slate in Cfll|(CN), is larger in the 
near-infrared region, we expect that this molecule may also have better optical limiting per
formance in the near-infrared region than at 532 nm.

Different from adsorption or noncovalent functionalization, the molecule can attach to 
the sidewall of a carbon nanotube via a lube-molecule covalent bond |469], Such cova
lent functionalization might lead to new opportunities in nanotube-based materials and 
devices [469]. Experiments on nanotube covalent functionalization start with the fluorination 
of SWNTs and the substitution reaction of fluorinated SWNTs in solutions. On the other 
hand, direct functionalization to the sidewall of SWNTs by various chemical groups, such as 
atomic hydrogen, aryl groups, nitrenes, carbenes, and radicals. COOII and Nil., A alkyli
dene amino groups, alkyl groups, and aniline have been reported |469|. I he covalent bond 
formed between functional groups and a carbon nanotube sidewall is expected to disturb the 
perfect tube «r bonds via the local sp' rehybridization. Thus, the electronic and optical prop
erties of carbon nanotube should be modified by the functionalization. It was found that the 
band-to-band transition features of tt electrons in the UV-visible spectra of pristine SWNTs 
disappear upon covalent functionalization. (See the detailed review by Zhao and Xie |469].) 
Hence, it would be interesting to investigate the effect ol covalent sidewall functionalization 
on the NLO properties of pristine carbon nanotubes.

Most theoretical and experimental works on the NLO of carbon nanostructures wore 
focused on the spherically and rod-shaped carbon nanostructures. There arc no studies on 
the NI.O properties of several interesting carbon nanostructures, for example, carbon onions, 
carbon nanoparticles, carbon nanoparallelepipeds, rings of single-walled carbon nanotubes, 
graphitic nanocones, carbon nanohorns, carbon-beaded cone microstructures, and carbon 
microtrees. This is an open and interesting important area for the near future.

TD-DFT is a relatively expensive numerical method that cannot be employed to calculate 
the properties of very large systems. I he recent development of a linear-scaling TD-DFT by 
Yam. Yokojima, and Chen 1145] is exciting news in the computational community because 
it scales as O(N). where N is the number of atoms involved. This method has successfully 
evaluated the linear optical response of large molecular systems. Il would be interesting to 
develop a NLO formalism within this theory for studying the NLO properties of carbon and 
other nanostructures.

As mentioned in Section 2, the tight-binding approach to TD-DFT (TD-DFT-TB) devel
oped by Niehaus et al. 1146] is able lo study the linear optical response of large nanosystems 
with hundreds of atoms. As of now, there is no report about the application of this approach 
to studying NLO responses of large nanosystems. Hence, the development of the NLO for
malism within TD-DFT-TB would be also very’ interesting and important for studying the 
NLO properties of carbon and other nanostructures.
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APPENDIX: DETAILS OF INTERFERENCE TERMS
In this appendix, the details ol the Cartesian components of interference terms. itf .
I3'lh. fi‘ . y'... and y/(M al the desired frcqucncx co, . presented tn the chapter, arc summarized. 
Here the index ij/<li denotes the Cartesian components.

 Ull'h
(Aft)

III. Interference terms of the second hyperpolarizability y:
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1. INTRODUCTION
lhe electronic levels are quantized in atomic clusters and small nanostructures, essentially 
reflecting the behavior of electrons in a potential well of finite size. The electronic properties 
arc sensitive to the ordering of those electronic levels and to their evolution as the number of 
atoms in the cluster increases. The optical spectrum provides information on lhe electronic 
structure. In particular, the optical response of the clusters depends on their size and also 
on the cluster structure. This is an important feature, as the determination of the structure 
is, in general, a hard task, using either experimental techniques or sophisticated total energy 
calculations, and knowledge of the geometrical structure of a cluster is required as a basis 
for understanding many of its properties.

In this work wc review some of the theoretical methods and models that are currently in 
use to calculate the response of clusters to general time-dependent external fields. One is 
often interested in the response to an external field that is not strong, and in such a case it is 
enough to consider linear response. For the simple case of a system with only one particle, 
the excited states can be calculated by solving the time-independent Schrodinger equation. 
Similarly, the probability P,r(t) for transitions from an initial state |y>,) to an excited state 
|<py ) is calculated by solving the time-dependent Schrodinger equation in the presence of the 
time-dependent perturbing potential and then using the expression

/>(') = K«P/d<£(O>l2 (l)

where )) is the solution of the time-dependent Schrodinger equation in the presence of 
the external field, with initial condition |ip,) at t = 0. In the usual case of a many-electron 
system the whole method becomes very difficult because of the complications introduced by 
the interactions between the electrons. In this case, the process can be conveniently formu
lated within the framework of density-functional theory (DET) |l], which has become the 
method most often used in the study of the electronic structure of molecules, nanostructures, 
and solids. In particular, the spectrum of optical excitations can be efficiently calculated by 
the so-called time-dependent density-functional theory (TDDFT) [2. 3],

This chapter presents a review of the theoretical methods used to study the optical spec
trum of clusters and nanostructures based on the TDDFT. Before discussing that general 
method, the main theoretical concepts required to connect with the experiments are intro
duced in Section 2, and a simple approach based on the study of sum rules is presented in 
Section 3. The general formalism of the TDDFF is given in Section 4, and its formulation 
in the linear response regime in Section 5. Then Sections 6-9 present several practical ways 
that have been introduced to apply this formalism, with a first illustrative application to 
atoms. Sections 10-17 then provide abundant examples of the applications of TDDFT to 
the study of the optical excitations in clusters; mainly, clusters of the metallic elements. 
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and fullerenes. A recently developed method, based on the explicit solution of the time
dependent Kohn-Sham equations, is reviewed in Sections 18 and 19. This method is also 
able lo treat nonlinear effects, and this is one of its most interesting features. Some exam
ples arc shown in Section 20. Finally, in the last section of the chapter. Section 21. a brief 
account of many-body techniques is presented.

2. RELATION BETWEEN THEORY AND EXPERIMENT
When a nanostructure interacts with an applied time-dependent electric field characterized 
by an external potential F'csl(r. i) with Fourier components F’LAt(r, to) (we work in the longi
tudinal gauge).

^.(r,/) = /‘i/cue (2)

the external field induces a time-dependent perturbation of the electron density <5>/(r. f) (we 
neglect magnetic and current-induced effects)

8/t(r, z) = I due ,a"8/i(r.to) (3)

The key quantity to calculate the response of the system in the linear regime is the dynamic 
susceptibility ^(r. r . w). which relates the individual components of the induced density to 
those of the external potential; that is.

6«(r, <u) = / </’r'y(r. r . w)l<.xl(r', cu) (4)

For the case of a dipole field, 5//(r. w) allows us to calculate the induced dipole moment. 
The dynamical polarizability a(co), which is the ratio between the induced dipole moment 
and the intensity of the applied field, then becomes

cr(w) = — / d'rz8n(r. w) 
t()./ (5)

Dissipation results in 3/t(r. w) being a complex function, and its imaginary part represents 
the power absorption of the cluster that is ihe result of electronic excitations. By application 
of the Fermi’s Golden Rule, one obtains the photoabsorption cross section

<r(ca) = ----- Imcr(ca) (6)
c

where Imcr(oj) is the imaginarity part of the dynamical polarizability and c is the velocity 
of light.

Experiments have been performed to measure the photoabsorption spectrum, especially 
of metallic clusters. The typical experimental setup |4. 5| is shown in Fig. I. A beam of 
neutral clusters is first produced in a cluster source by supersonic expension of a vapor 
through a small nozzle. The beam is first collimated by a rectangular aperture and then 
photoionized by ultraviolet light (ultraviolet lamp in the figure). The resulting cluster cations 
enter a quadrupole mass analyzer (QMA), and selected masses are steered into the detector. 
I he entire cluster beam is illuminated by a collinear and counter-propagating laser beam. 
On absorption of light, the clusters warm up and fragment. The transverse recoil removes 
the daughter clusters away from the initial direction of motion of the collimated beam, and 
the ratio between the number of clusters of a given size arriving at the detector with and 
without light excitation is proportional to the absorption cross section. One can adjust the 
QMA to a specific cluster mass and measure (he counting rate of that cluster.

In the case of metallic clusters, the process responsible for the fragmentation is the 
excitation of a collective mode, the so-called surface plasmon. All the valence electrons par
ticipate in this collective resonance, moving back and forth uniformly against the positive 
ionic background |6. 7). For sodium clusters, for example, the excitation energy of the sur
face plasmon is about 3 eV. This energy is higher than the binding energy of an atom in
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Figure 1. Experiment for measuring the photoahsorption cross section of metallic clusters. The collimated beam is 
ionized with ultraviolet light (UV) and the ionized clusters enter a quadrupole mass analyzei (QMA). A counter
propagating laser beam heats up the clusters. Some clusters evaporate atoms and tire removed from the original 
beam, and the ratio between lhe number of clusters of a given size arriving at the detector with and without laser 
excitation gives the cross section. Reprinted with permission from |4|. K. Selby, M. Vollmer. J Masai. V. Krcsin. 
W. A. de Heer, and W. D. Knight. Phys. Rev H 40, 5417 (IW)). IW. American Physical Society.

the aggregate, which is below I eV, and the excited cluster decays by evaporating single 
atoms. Using statistical models, lhe time required to evaporate an atom, it one assumes 
that the energy ol the collective excitation is converted into atomic vibrations, turns out to 
be, for small clusters, orders of magnitude smaller than the time of Hight of the molecular 
beam in the spectrometer. As a consequence, it can be assumed that the photoabsorption 
and photofragmentation cross sections are equal. When the cluster size increases, lhe time 
required to evaporate atoms also increases, and multiphoton absorption techniques have 
been used |6], The surface plasmons in metallic clusters are similar to the giant dipole 
resonances in nuclei [8].

The integral of the photoabsorption cross section leads to the dipole sum rule (or the 
Thomas-Reiche-Kuhn sum rule)

/’00 h “
/ tr^du) = lir-----Z (7)
At w,.c

where e and mc are the electron charge and mass, respectively, h is Planck’s constant divided 
by 2tt, and Z is the total number of electrons taking part in the collective motion. The 
experimental determination of <r(w) then helps identify the collective nature of a resonance. 
The observed resonances of alkali clusters account for 60% of the total dipole strength.

For spherical metal particles of a diameter 2R, small compared to the photon wavelength, 
the classical theory of the dynamical polarizability [9] gives the following expression for the 
photoabsorption cross section:

4ttZc-
<r(«) = - --------

m,.c

w-r
("2 - + <"r)2

(8)

where wMlt. and F represent the frequency and the width of the resonance, respectively. This 
relation assumes that all the dipole oscillator strength is exhausted by the surface plasma 
resonance at <uM)V (plasma-pole model). The frequency of the single-dipole resonance, rep
resenting the collective oscillation of the valence electrons with respect to the positive ions, 
is related to the cluster radius by

/ Zh'c
(9)

This gives for <uMk, a value equal the bulk plasma frequency <upt divided by v’3 (wp| = 
v/47Te2n"//n(. where n" is the average electron density in the bulk).



Models lor Optical Properties ol Clusters anil Nanostructures 213

3. SUM RULES
I'hc photoabsorption cross section is determined in Eq. (6) by the imaginary part of lhe 
polarizability tensor tt(w) Alternatively [<>]. one can use the strength function .S(E)

5(E) = £5(E - Ej|(;i|0|O)|-’ (10)

connected to rr(ai) by

S(E) =---- Im «(a») (11)
77

In Eq. (Ill), the ket |0) represents the electronic ground state of the cluster, and the sum 
is extended over the excited many-body stales |n) of the system. The quantities E„ are the 
excitation energies, and E = h«>. The operator Q represents the external field, the electric 
dipole operator in most cases of interest. The full response is not required in some applica
tions. and a know ledge of some moments

mk=fdEEkS(E) (12)

of the strength function is sufficient to have a correct picture of lhe physical processes (in 
this equation, k is an integer number, positive or negative). For instance, the average energy 
E and the variance cr' of <r(w) can be obtained from in,,. and as E = >nt/m„ and 
rr- = . A direct evaluation of the moments nik is difficult, because the
whole excitation spectrum is needed, but the odd moments can be easily obtained with RPA 
precision [6, l()|. The RPA (random phase approximation) 11 11. can be derived as the small 
amplitude limit of the time-dependent Hartrce-Fock theory’ by linearizing lhe equations of 
motion, l he characteristic feature of RPA is to construct excited states as a superposition of 
one particle-hole excitation. The linear moment /n, for the electric dipole operator is model 
independent, and its RPA value

is exact, so one obtains the sum rule of Eq. (7). By defining mean energies as c\ = 
(Mij/m, ,)' -. the bounds e, < E < c, and <r < (e, — eJ)/4 can be proven. .Also

m | = a/2 (14)

where « is the static polarizability [12]. As a consequence, one may estimate the centroid 
and variance of 5(E) by evaluating the three RPA moments in H /«, and I’he physical 
significance of the upper limit e, of E is that of a rapid oscillation (diabatic) of lhe valence 
electrons against the ions, whereas the lower limit c, is connected with a slow adiabatic 
motion of the electrons adjusting their density at any moment to the external field. This lower 
limit turns out to be a good estimation of the experimental energy of the collective excitation 
for metallic clusters [6. 13]. The moment inx represents the restoring force parameter for 
lhe collective translational oscillations of the electrons against the ionic background |6|. 
For a spherically symmetric electron density /i(r), is given by an overlap integral of the 
electronic and ionic densities 114]

This integral is easily evaluated for a metallic cluster of radius R in the spherical jellium 
model (SJM). In this model, the positive charge background of the ions is smeared out over 
the volume of the cluster to form a distribution of positive charge with density 

n (r) = „"(->( K — r) (16)
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where (-)( R - r) is the step function with values 1 for r < R and (I for r > R. The radius R of 
the positive background is related to the number of atoms ,V in the cluster by the equation

^77 R' = Nll (17)

where (1 is the experimental volume per atom in the bulk metal. Also, the constant it"+ is 
related to (1 and to the valence z (z = 1 for alkali elements) by

z = n* 11

For the SJM, the moment my becomes

(18)

(19)

where r, is related to the average electron density h" of the bulk metal by 

/ 3 \1?
\ 47r?i" /

(20)

and 8Z measures the spill-out of the electronic charge beyond the radius of the positive 
background

(21)

By neglecting the spill-out charge, then 2/m , = R' (the classical polarizability of a metallic 
sphere is « = /?'), and e, = v7i2e-’Z//ui_a = e, gives the resonance frequency of the classical 
Mie surface plasmon <uMlc. In general. E is a reasonable estimation for the resonance energy 
when most of the absorption strength is concentrated in a narrow region. This is the starting 
point of the plasmon-pole models. In those models e, = e3 and the knowledge of the static
polarizability determines the value of the dipolar plasma resonance energy as

(22)

For 3Z = 0, e, becomes equal to the classical Mie frequency (o>Mie — <opi/s/3).
Table I gives the calculated values of the bounds et and ey of the dipole surface collective 

mode for some neutral and charged Na and K clusters [15). Local density approximation 
(LDA) labels the results obtained using the LDA to exchange and correlation [I, 16| in the 
calculation of the density and the single-particle orbitals needed in the RPA formulas for 
tnK and ek. However, nonlocal (NL) corresponds to the results obtained using a nonlocal

table I. Calculated random phase approximation mean energies <*, and e, (in electron 
volts) of the dipole surface collective mode of some neutral and charged sodium and 
potassium dusters.

Ci c'l et

1 DA Na, 2.83 3.14 I DA Na 3.(15 3.16
Nl. Na, 2.53 (2.53) 2.81 Nl. Na.; 2.79 2.93
I DA Na,, 2.91 3.14 LDA Na 3.04 3.19
NL Na„ 2.l>7 (2.4(0 2.97 NL Nat, 2.77 3.113
I DA K, 2.21 2.32 I DA K. 2.33 2 39
Nl. K, 1.9b 2.12 NL K, 2.13 (1.93) * 11
I DA K, ■*> 2.37 LDA K *> V 2.40
NL K„ 2.0(1 2.24 NL KJ, 2.1(1 (1.98) 2.28

Vote: LDA .mJ Nl relet to the local density (LDA) and n.mlocal (NL) approximations Io 
exchange and correlation effects. The experimental surface plasma resonance energies ate given in 
parentheses. Dau collected from Ref. |I5|.
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approximation, known as ihe weighted density approximation (WDA) 117|. that goes beyond 
the LDA (a brief description of the WDA is presented in Section ID) The experimental 
energies ol the surface plasma resonance arc in reasonable agreement with e,. in particular 
for the NL approximation, and those experimental values arc given tn parentheses next to 
the calculated e,(NL). The effect of the cluster charge is to increase the resonance energy. 
The analysis of c, and (*, for larger clusters shows that the resonance energy increases with 
size [ I5|. a prediction in agreement with experiment [IS]. The theory also allows us lo obtain 
an upper bound ot the variance of the photoabsorption cross section, but the predicted 
widths of the resonances are. of course, larger than the experimental widths. The variance 
is found to decrease by charging the cluster.

The general expressions for the odd moments corresponding to </- and /-dependent 
external fields </>) arc given in Ref. 114], This field represents the angular decom
position of an incident photon, described as a plane wave e'1’1' With those operators, one 
can analyze the multipolar response and also the inelastic scattering of electrons (relevant 
for electron energy loss spectroscopy. EELS). In small metallic clusters, and lor fields of high 
multipolarity, there is a competition between the coulombic contribution to the response 
(diffusivity and collective excitations) and the kinetic energy contribution (single-particle 
excitations). I he later dominates for large / or large momentum transfer q. indicating the 
vanishing of collective effects. The response of a metallic sphere to a photon of intermediate 
energy is dominated by dipolar excitations and al large energies by electron-hole excita
tions 113. ID. 20|. As the size of the cluster increases, higher multipolar excitations start to 
dominate together with retardation effects (completely neglected until now).

4. TIME-DEPENDENT DENSITY-FUNCTIONAL
THEORY: FORMALISM

The original formulation of the I lohcnberg-Kohn-Sham DI-1 11, 16. 21.22] is an incomplete 
theory, so far as it is not, in general, applicable to excited stales or to problems involv
ing nonlocal potentials or lime-dependent external fields, thus excluding the calculation ol 
optical response properties, electronic spectra, quasiparticles, photochemistry', and so forth. 
However. theorems have now been proved for TDDFT that extend the applicability of the 
original theory |23|. Ihe lirst applications ol TDDFT were actually done before its formal 
development and relied on the analogies with the time-dependent Hartree-Fock (TDIIF) 
theory [24. 25]. Techniques for avoiding summation over virtual states, typical of all pertur
bation methods, were developed and applied with success. This, together with the simple 
multiplicative form of the DFT exchange-correlation potential makes the solution of the 
response equations easier. These methods arc now' used in all fields, ranging from atomic 
physics to nuclear physics to condensed matter physics, including applications to the study 
of the optical properties of clusters (23. 26]. In this section, we introduce the foundations of 
TDDFT. A novel feature of this formalism, not present in ground-state DFT. is the depen
dence of the time-dependent density functionals on the initial many-body state. The main 
practical result of TDDFT is a set of time-dependent Kohn-Sham (TDKS) equations whose 
structure is similar to the time-dependent Hartree equations. However, the TDKS equations 
include, exactly in principle, all the many-body effects through an unknown time-dependent 
local exchange-correlation potential.

Runge and Gross |27| have developed a theory for time-dependent potentials similar 
to the Hohcnbcrg-Kohn-Sham theory [21. 22]. In a first theorem, a one-to-one mapping 
between time-dependent potentials and time-dependent densities that are K-representable 
(i.e.. densities that come from antisymmetric A'-electron ground-slate wavefunctions for 
some choice of external potential I '(r. / )) is proved. A second theorem proves an stationary- 
action principle. The proof of the first theorem is based on the evolution of a many-particle 
state 'l'(r) under the influence of a potential l'(z). following the time-dependent Schrodinger 
equation. The initial state 'l'(/h) = % is not required lo be the ground state or some other 
eigenstate of the initial potential I (r. i(t) = I and this means that the case of a sudden 
switching of the potential is properly included in the formalism. The liine-dependent poten
tials .ire required to allow for a Taylor expansion around Then the lirst theorem can be
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formulated in the following way: I'he densities n(r) and n(r) evolving from a common initial 
state '!'(/,,) = % under the influence of two external potentials. Ftr. t) and F"(r. /) which, 
both Taylor-expandable, are always different provided that the potentials differ by more than 
a purely time-dependent (r-independent) function: lz(r, r) / V (r. t) + <(r). By virtue of 
this theorem, the time-dependent density determines the external potential uniquely up to 
an additive, purely lime-dependent function. The potential determines the time-dependent 
wavefunction, which can be considered as a functional of the time-dependent density up to 
a purely time-dependent phase; that is, 'F(t) = eAs a consequence, the expec
tation value of any quantum mechanical operator Q is a unique functional of the density: 
£>|n|(f) = )). In addition to their dependence on the density, these func
tionals depend on the initial state 'I',. Furthermore, the lime-dependent particle and current 
densities can be calculated exactly from the following set of hydrodynamical equations:

—; - = -/<'l'(/)|[j./7(/)||'l'n))

(23)

(24)

The first equation stands from the continuity equation of quantum mechanics and the sec
ond from the quantum mechanical equation of motion of operators, where j is the usual 
paramagnetic current density operator

. I ,v
j(r) = ^E(Vr/(r- r,) + <S(r-r;)Vr ) 

j=t
(25)

and ll(t) is the Hamiltonian operator.
l he second theorem deals with the variational principle of the action functional. From 

quantum mechanics we know that the time-dependent Schrodinger equation with the initial 
condition 'P(rn) = corresponds to a stationary (not minimum) point of the quantum 
mechanical action integral

A = I"' dl^\'(t)\i^ - H(mt) (26)

From the previous one-to-one mapping between time-dependent potentials and densities, 
the action is a functional of the density A[it] that must have a stationary point at the correct 
time-dependent density. Thus, the density can be obtained by solving the Euler equation

3/l|n|
8n(r, /)

(27)

with the appropriate boundary conditions. As in the static Hohenberg-Kohn formalism, one 
can write the action functional as

zl[n] = Bpr] — [ ill I tlrn(r. t)^(r. t) (28)

with a universal ('1',,-depcndent) functional formally defined as

/?[n| = £ r//{'l'(/)|^ -f- {/j'p(r)) (29)

where T is the kinetic energy operator and U is lhe operator for the Coulomb interaction 
between the electrons. The variational Eq. (27) and the hydrodynamical Eqs. (23) and (24) 
are. of course, equivalent. The functionals .-1|//| and B|/i| are. in general, unknown and arc 
well defined only for k-representable densities.

As in the static case, a time-dependent Kohn-Sham scheme can he introduced by consid
ering a noninteracting system that reproduces the exact interacting density n(r. r). Assuming 
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the J representability of the time-dependent densities, we gel the following lime-dependent 
Kohn-Sham equations:

/= t

In Eq. (30), 1 (r,/) = Fv(r,/) + Eej(l(r. i) is the sum of the nuclear (or ionic) potential 
l\(r, i) and the applied perturbing field fcxt(r. /). The nuclei (or the ions) occupy positions 
RA(t). However. f’/z(r./) — /' y-yrt/r is the time-dependent Hartree potential and l\c(r./) 
is the time-dependent exchange-correlation potential that is defined through the equiva
lence between the interacting and fictitious noninteracting systems. As in the static case, the 
advantage of the lime-dependent Kohn-Shani-scheine lies in its computational simplicity 
compared lo other quantum-chemical schemes as the TDHF or the configuration-interaction 
(CI) methods.

5. EXCITATION ENERGIES IN TIME-DEPENDENT DENSITY 
FUNCTIONAL THEORY: LINEAR RESPONSE

TDDFT has become the most popular method for the calculation of excitations in finite 
systems, both in physics (atomic, molecular, and condensed matter) [2. 3] and in quantum 
chemistry. As a first approximation of the excitation energies, one can simply take differences 
Ae = s■ £,. between the ground-state Kohn-Sham eigenvalues. Although this procedure is 
not entirely justifiable, it is often employed to obtain a first approximation lo the excitation 
spectrum. It is well known that the Kohn-Sham eigenvalues and wavefunctions do not have a 
precise physical interpretation, with the exception of the eigenvalue of the highest occupied 
state, Ehomo- which is equal to minus the ionization potential //’ of the system |28, 29]. 
In addition. Chong et al. [3(1] have shown that the orbital energies of other occupied levels 
of atoms and molecules can be interpreted as approximate, but rather accurate, relaxed 
vertical removal energies. It should be stressed that the relation eHOmo = an<J that the 
findings ol Chong et al. |3(l] are valid in exact DI- L hut not for the approximate exchange
correlation energy functionals currently used. Those relations fail for the I.DA, but better 
functionals, especially those improving the asymptotic behavior of lzc, lead to more accurate 
results. An excellent agreement between the calculated Kohn-Sham energy eigenvalues and 
the experimental results for the removal energies of inner electrons of the noble gas atoms 
was obtained [31] using the nonlocal WDA approximation [17] (see Section 10). A similar 
good agreement was found [32] between WDA eigenvalues of occupied orbitals of sodium 
and potassium clusters in the spherical jellium model and quasiparticle energies calculated 
by Saito et al. [33] using the many-body GW formalism [3],

Another approach, called A-SCF (delta self-consistent field), is based on the observa
tion that the Hohenberg-Kohn theorem and the Kohn-Sham scheme can be formulated for 
the lowest state of each symmetry class [34], In fact, the single modification of the stan
dard proofs is to restrict the variational principle to wavefunctions of a specific symmetry. 
Ihe unrestricted variation will clearly yield the ground state. However, the states belonging 
to different symmetry classes will correspond to excited states. Ihe excitations can then 
be calculated by simple total-energy differences. However, this approach suffers from two 
drawbacks: only the lowest lying excitation for each symmetry class is obtainable, and the 
exchange-correlation functional that now enters the Kohn-Sham equations depends on the 
particular symmetry' we have selected. As specific approximations for a symmetry-dependent 
xc-functional are not available, one is forced to employ the usual ground-state functionals. 
The excitation energies calculated in this way are only of moderate quality.

TDDFT allows one to calculate the excited state energies of a many-body system based 
on information from an ordinary, self-consistent DFT calculation. In the time-dependent 
approach, one studies the behavior of the system subject to a time-dependent external per
turbation. The response of the system is directly related to the A'-particle excited states of 
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the N-particle system. We now present the formalism developed by Petersilka et al. [35] for 
a spin-unpolarizcd system. A formally exact Dyson-like representation of the linear density 
response of an interacting niany-electron system in terms of the noninteracting Kohn-Sham 
response is first derived.

The linear response x is a functional derivative

^(r. t. r , r ) = Mr, f)
(«"-

(32)

that measures the degree to which the density responds to the external perturbing potential 
in first order, x can also viewed as the coefficient of the linear term in a functional power 
series of the time-dependent density in terms of f’esI; that is.

/t(r. i) - /ztl(r. /„) + I) x(r, t, r . rjl^fr', i')dr'dl' + O(P£,) (33)

The linear response of the fictitious noninteracting Kohn-Sham system is defined in a 
similar way

A\(r- /. r . /') = (34)

and can be computed exactly (see below). The effective potential corresponding to a 
given external potential Pzexl is the time-dependent Kohn-Sham potential

Fd)(r, t) = l\.M(r, t) + |/A,(r. /) + ^(r, /) + Fxc(r. /) (35)

where all the components have been defined after Eq. (30). We now evaluate the following 
functional derivative

—=^(r~r')g(r-/')+ ff dr'dt"x(r",t".r‘.t')

where

(37)

is the so-called time-dependent XC kernel (which is a functional of the initial ground-state 
density). Employing the chain rule for functional derivatives in Eq. (32). we have

y(r,r,r', /') = dr'dt" 8^,ni
Mcff(r", <") 8Vn(r',t) I (38)

S/i(r. /)

-u

and combining this with the previous equations, we obtain the following Dyson-like equation 
for the interacting linear response in terms of the Kohn-Sham noninteracting response

X(r, r. r , /') = x,(r. t, r , t) + ff dridr2Xi(r- '■ ri- M

~5('i - E)
. Id -dI + MIM(rP 'i r’>E) T(D-E,r./) (39)

Taking the Fourier transform with respect to time, the exact frequency-dependent linear 
response function becomes

r. r , o>) = x,(r. r . o>) + // c/rp/r:^,(r. r,. w)K(r,. r,. (u)^(r2. r . w) (40)

where the Kernel AT(r,. r2. w) is given by 

r,. m ) (41)
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Equilion (411) has to he solved iteratively. Multiplying both sides of Eq. (.39) with I lXl(r . / ) 
and ntegrating over r and / yields

/i,(r.r) = / <// / </r vdr./.r ./ )l<n(r ./ ) (42)

whcc the notation n, has been chosen to explicitly indicate linear response. Fourier trans
forming with respect to time wc have an exact representation

H|(r,w)= / </r yjr.r .w)K.I((r . w)= [ dr Jfjr.r .u/)[f\.xl(r ,w)+ I M(r.s.w)«|(x.w|]

(43) 
shoving that the exact linear density response of an interacting system, which can be directly 
usee to compute the photoabsorption cross section [see Eqs. (5) and (6)]. can be written as 
the incar density response on a nonintcracting system to the effective per.urbation I tl|.

6. 'ECHNIQUES TO STUDY EXCITATIONS IN
LINEAR RESPONSE: MATRIX EIGENVALUE METHOD

Let is consider the analytical structure of the interacting linear response function for a finite 
systen. Wc now show that the linear response function has poles at <u = fl„(. where 11„, are 
the V-particle excitation energies of the actual system. Using the Kubo formula for the 
densiy response in terms of a retarded density density correlation function |36|

yfr./.r .0) = — ’<-></)<(»||/7(r./).r .(>)||(>> (44)

when <->(/) is the step function. /’r(r.r) is the density operator, and |0) is the exact many- 
partile ground state, and inserting a complete set of many-particle states |/?r>. we have

^ir.r.r .()) = -/H(r)£(()|Mr./)|m)<m|»(r .I))|0)+ /(■)(r)^(0|n(r .l))|///)(//t|/‘r(r./)|())
in »i

(45) 
Node.’ that the density operator is particle-number conserving; that is, it only connects 
\-pa ticle excited states with the N-particle ground state. By taking into account the time- 
evoluion of the density operator /r(r./) = <,,//'//(«•,())<• the linear response function can 
be revritten as

\(r.l.r .()) = -/<-)(/)[^J/1,„(r )zf;„(r>c*'’7" ),4;,((r )<• '-"I (46)
L in in

when. 4„,(r) = (0|/i(r.r)|//r). and Enl is the energy of the /nth N-particle excited state. 
Fourier tranformation leads to the spectral representation

<()|/*i(r)|//r>'/n|n(r')|0> _ <()|/t(r')|/n>(/n|//(r)|()) 
h (» - (E„, -£.„) + / h <u + (-£„)+■ i&Aflr.r ,<o) = 22

One van observe that the time-Fourier transformation of the linear response function has 
poles it /><</=£( - £„); that is. at the excitation energies of the A/-particle system. We have
seen previously that the interpretation of the Kohn-Sham single-particle energy differences 
as excitation energies has no rigorous basis and that in practical implementations they may 
differ substantially from the experimental excitation energies.

In the work of Petersilka el al. [35). excitation energies are extracted from TDDFT by 
exploi ng the fact that the frequency-dependent linear density response of a Unite system 
has discrete poles at the excitation energies of the unperturbed system. I he noninteracting 
susceptibility. which is needed to solve Eq. (4(1). can be computed directly from the Kubo 
formica and has the form

X,(r.r .w) = ^J/A-/,)
(//Jr)^((r)t//'(r )i//Jr )

Z»(w-wA()+/<5
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where = e and /, are the Fermi occupation numbers of the /th single-particle 
orbitals obtained from the Kohn-Sham calculation. As a function of has poles at the 
Kohn-Sham orbital energy differences wA,. To calculate the shift toward the (rue excitation 
energy 11. we rewrite Eq. (43) for the induced density as

I </.x[<5(r — x) — I ilr \,(r.r . w)A (r . x. ij/i, (x. w) = I dr %%(r,r . w)E.xl( r . «>) (40)

where we see that the integral operator acting on rq on the left-hand side cannot be invertible 
for <<>—<• !1 because if it were invertible we could act with the inverse operator and get on the 
right-hand side a finite value, in contradiction with lhe fact that m, has poles at the excitation 
energies. Thus, the true excitation energies $1 can be characterized as those frequencies 
at which the eigenvalues of this integral operator vanish. As noted previously, in lhe limit 
w — 12 the linear density /q has a pole, whereas the right-hand side of Eq. (49) remains 
finite. For the equality to hold, it is therefore required that the operator acting on on the 
left-hand side of Eq. (49) has zero eigenvalues al lhe excitation energies !): that is. A( w) — I. 
when w— (2. where A(w) is the solution of lhe eigenvalue equation

+ • r . w) £(r .<o) = A(w)£(r.w) (50)

This is a rigorous statement that allows the determination of the excitation energies from 
the knowledge of the independent-particle Kohn-Sham susceptibility and the kernel Kk. 
It is possible to transform this equation into another eigenvalue equation having the true 
excitation energies (2 as eigenvalues {37], We begin by defining the quantity

+ K,«.[/in](r",r ,w) f(r .w) (51)

With the help of Ck, Eq. (50) can be written in the form

E (A-/,)</',(r)^<r> 
w—(fij ">

£M(w) = A(w)£(r.w) (52)

By solving this equation for £(r.w) and inserting the result into Eq. (51) we arrive at the 
equation

E
I A

(A•-/,
&>-(£,.-£* ) + /5

(w) = A(w)<M(w) (53)

where the coupling-matrix element is defined

t-A.'sJ/i0](r.r .w) (54)

Introducing now the new eigenvector

12-(£,-£*)
(55)

taking the r/—»() limit, and using the condition A(H) = 1. it is straightforward to recast 
Eq. (53) into the eigenvalue equation

+ ^(12)1)3^=12)3^ (56)

lhe exact solution of this equation fully incorporates the collective electronic excitations. 
To solve the eigenvalue Eq. (53). one can expand all quantities in an appropriate basis and 
solve numerically the resulting matrix-eigenvalue equation. z\n alternative way to calculate 
12 is to expand all quantities appearing in l.q. (50) about one particular energy difference 
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Ar-fz- i:k between lhe Kohn-Sham eigenvalues of the occupied orbital A and the unoc
cupied orbital j. Assuming that the true excitation energy is not far away from Art, it is 
suff -ienl to consider only lhe lowest-ordcr terms in those expansions. This leads to

a,A = (e,-eA) + B(Ae) (57)

is a correction given by

B(Ae) = 2/? H drz/r i/a (r)t//[(r )^(r')i// A’(r) --------- 4-A\t[/jJ(r,r'.As) (5b)

where R indicates the real part of the expression. Equations (57) and (58) provide a simple 
and fast way to calculate excitations energies, although this method is not as precise as solv
ing Eq. (56) directly. The approximation can be viewed as an attempt to correct the Kohn- 
Sham excitation energies individually without including collective electronic effects. Apart 
from the truncation of the expansions, two main approximations arc necessary: first, the static 
Kohn-Sham orbitals have to be calculated with an approximate static exchange-correlation 
potential I \,(r). and second, the frequency-dependent XC kernel Kw[nJ(r.r , w) has lo be 
approximated.

It is also possible to derive an operator whose eigenvalues are the square of the excita
tion energies, reducing then the dimensions of the matrix Eq. (56) [38. 39|. The oscillator 
strengths can then be obtained from the eigenfunctions of that operator

T -y/ /)k<rtl>jku Mikn.j'k r y/ A A r A r ) I1 ~ f f „ T/ (59)

Here <r is the spin index, wzt(r=ey„ Kktr are the Kohn-Sham transition energies, and f.ktr is 
the difference between the occupations of the j and A states. l he coupling matrix M ka t-k . 
is the generalization of Mlk ; A of Eq. (54) to the spin-dependent case. Some simplifications 
can also be introduced to approximately solve this equation [39], Let us consider the spin 
unpolarizcd case; that is, /)A. = f/k, = f)k (the results can be easily generalized to any spin con
figuration). Assuming that the coupling between different one-electron transitions is weak, 
one can neglect all matrix elements with and A ^k . The only remaining off-diagonal 
elements of the coupling matrix are generated by the spin index, and Eq. (59) reduces to a 
series of independent 2x2 matrix equations. Solving for the transition energies.

)l)' (6,))

The plus sign describes transitions to the singlet excited state and the minus corresponds 
to triplet transitions. The approximation can again be viewed as an attempt to correct the 
Kohn-Sham excitation energies individually without including collective electronic effects. 
Assuming that the corrections with respect to lhe Kohn-Sham transition energies are small, 
one arrives at a further simplification by taking a linear expansion around w A

J1 (a M ) 4- /ik(Mik (61)

This equation is equivalent to the result in Eq. (57).

7. THE EXCHANGE CORRELATION KERNEL
As wc have seen in the previous sections, a main ingredient in linear response theory is 
the XC kernel A.\.[zi(l|(r,r, <<>). This is a complex quantity that includes all nontrivial many
body effects. Approximate kernels have been proposed over the past years, and we consider 
here some of the most commonly used ones, lhe simplest and most used one is the ALDA 
(adiabatic local density approximation) kernel [40]

KAI *’A[zt](r,/.r ./ ) = 6(r-r )<;UA|zz]ZJ_,1(r z) (62)
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where
^•y)AHI(r)

k'-da|//|=
tin

(63)

is just the derivative of the XC potential of a homogeneous electron gas with density n; that 
is, l/;DA|/t](r) = I''1. The Al.DA kernel is local in both the space and time coordinates.

Another XC kernel was derived by Petersilka et al. |35], Its derivation starts from a simple 
analytic approximation to the exchange-only optimized effective potential (OEP) [41, 42]. 
The OEP kernel has the following form

^’’’’(r./.r , / ) = -<5(/-t J—!—
2 [r-r | n(r)/i(r)

(64)

As in the ALDA case, the OEP kernel is local in time. It should be noticed that in the 
calculation of excitation energies through Eqs. (57) and (58) using lhe ALDA or the OEP 
kernels, only ground-stale quantities arc needed; that is. Kohn-Sham orbitals and energy 
eigenvalues.

Recently, Gbrling and coworkers derived and implemented the exact-exchange kernel 
(EXX) for solids [43]. Using the EXX, Kurth and Von Barth [44| have computed the elec
tronic excitations for atoms obtaining good agreement with experiment, and their results are 
encouraging for the development of new1 kernels having exact-exchange as an ingredient. 
A simplified version of the EXX scheme has been applied to clusters and will be reviewed 
in Section 19.

8. APPLICATION OF LINEAR RESPONSE THEORY TO ATOMS
The lowest excitation energies of atoms of the alkaline earth and the zinc groups, calculated 
from Eqs. (56) and (57). are given in Table 2 [35. 39], The LDA columns report results 
obtained with the LDA XC potential and the ALDA kernel. In contrast, the OEP columns 
correspond to the use of the OEP potential and the OEP kernel. First of all, the table shows 
how the difference Ae of energy eigenvalues is corrected by the term in Eq. (58), leading to 
improved excitation energies ll-1 ppmx va]ues (I"']1’],'" are superior to the LDA results

an(J are a,so better than the ASCF values. The AsrF results are obtained by subtracting 
the total energies corresponding to the ground state and excited configurations. Petersilka 
et al. [35) have argued that the main reason for the superiority' of the OEP potential is 
that it is self-interaction free, and therefore has the correct asymptotic — 1/r behavior far 
from the nucleus, whereas the LDA XC potential decays exponentially. From this argument, 
the importance of a good description of the static XC potential becomes evident. A study 
of the excitation energies of the CO molecule [46] again indicates a good agreement with 
experiment.

However, Chelilowsky and coworkers [39] have pointed out that the differences between 
^ida" and the experimental excitation energies are caused by the approximations involved

Table 2. The lowest A — 1P excitation energies for alkaline-earth atoms and atoms of 
the Zn group.

Exp
tip"

Eq (56)

,w.ippr<u
Ul DA

Eq. (57)
n(H-P

Eq. (57) As(i -4S| IM 4COEP

Be 5.28 4.94 5.43 5.33 4.50 3.50 3.52
Mg 4.34 4.34 4.76 4.45 4.07 3.39 3.18
Ca 2.94 3.56 3.18 2.87 2.39 2.14
Sr 2.69 2.96 3.28 2.86 2.62 2.22 1.92
Zn 5.79 5.71 6.54 5.74 5.48 4.79 4.27
Cd 5.41 5.1(1 5.86 5.11 4.71 4.12 3.66

.Vote the experiment al valui •s (first column) 1451 arc compared with results calculated from
Eqs (56> and (57:I within local density appri >\imation (IDA) and opt ini ized effective potential
(OEP) and w illi or< linarv As< | va lues lhe corresponding Kohn Sham orbit.al energy differences As
arc shown in the la si two col 11 111 IT«. All cneieics ron volts. SCE, self-consistent field.
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Table 3. Comparison between the experimental singlet and triplet excitation cncr 
gics for atoms and excitation energies calculated by the limc-dcpcndenl local density 
approximation (TDI DA), optimized effective potential (Ol 1’1. and AX1, methods |3CJ|

Aloni transition Experiment
TDLDA
Eq. (59) OEP 1

Be '.S- P 5.28 4.94 S B 4.50
'.S - P 2.72 2.45 1.88 2.46

Mg '.S- P 4.34 4.34 4.45 4.07
'.S- P 2.72 2.79 2.05 2.80

(a '.S T 2.94 3.22 3.18 2.87
'.S'- 7' 1.89 1.93 1,22 1.96

Sr '.S •'P 2.69 2.96 2.86 2.62
'.S' 7’ 1.82 1.82 1.10 1.84

7.11 .S' .1 /• 5.79 5.71 5.74 5.48
.S • 1P 4.05 4.27 3.40 4.30

Cd .S'- 7’ 5.41 5.10 5.11 4.71
‘.S'- 7* 3.88 3.69 2.87 3.70

Xi>/« lhe values of the expci imcnlal triplet transitions arv the average over different %pm-orbit 
components All energies arc given in eV.

in Eqs. (57) and (58). When the excitation energies arc calculated by exactly solving Eq. (56) 
(the results are given in lhe column lljpJJ of Table 2). the experimental and theoretical 
results agree within 5-10'7 for all atoms. The differences between and show 
lhe important role of collective electronic effects. The electronic correlations are particularly 
large for Zn and Cd. being caused by d levels, which are close in energy. The encouraging 
conclusion is that the wrong asymptotic behavior of the LDA potential appears not to be 
as important for the excited state properties as previously thought [35. 47|. but more work 
needs to be done to clarify this point. Table 3 presents the calculated singlet '.S'—* and 
triplet '.S'—* ’/’ transition energies for the same atoms |3l)|. l he TDLDA transition energies 
arc in better agreement with experiment (han the results obtained by the OEP or AS(J 
methods. Although the singlet excitation energies from the OEP method arc almost as 
accurate as the TDLDA energies, the triplet transition energies are less accurate, because the 
OEP method does not include coulomb correlation effects, which play a significant role for 
triplets.

9. SELF-CONSISTENT GREEN’S FUNCTION METHOD
There is another traditional method [24. 25] to calculate the excitations in linear response 
by self-consistently solving Eq. (43); this requires the evaluation of the independent-particle 
susceptibility y, given by Eq. (48). This expression involves an explicit sum over the complete 
energy eigenvalue spectrum of the LDA effective potential J/,,. That is, not only the occu
pied orbitals are required, but the unoccupied bound states and the continuum orbitals are 
required as well. This problem can be circunvented by using the Green's function associated 
lo the LDA Schrodinger-type equation

£’+ - K-ff(r) G'(r.r :£')=<5(r-r )

G(r.r ;£) has an eigenfunction expansion

G’(r.r ,£’) =
»//„,(r)i/<„(r )

and satisfies the symmetry condition

G(r. r : £.') = G” (r . r. E)

(65)

(66)

(67)
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Using the Green functions, the expression tor the susceptibility x> becomes [24. 25
UCL*

^(r.r ,w)= 52|^;(r)t//*(r )6'(r.r';EA +//w) + i//Jr)i//;(r')G"(r.r '-,ek -hw)] (6B)
i=l

where the sum is now restricted to occupied states. The integral Eq. (43) is then solved 
iteratively. If lhe result of the first iteration is inserted into Eq. (5). we obtain the indepen
dent particle approximation to u(oj). The photoabsorption cross section is then calculated 
from Eq. (6).

10. APPLICATION OF LINEAR RESPONSE THEORY TO
METAL CLUSTERS: SPHERICAL JELLIUM MODEL

The linear response theory can be applied to study the response of atomic clusters to a laser 
pulse of wavelength in the optical range. The TDLDA, in conjunction with the jellium model 
(see Section 3). follows the Mie result of Eq. (X) in a qualitative way, shown schematically 
in Fig. 2 for the case of sodium clusters [6]. The dipole absorption cross section of spherical 
sodium clusters usually exhibits a dominant peak, which exhausts 75-90% of the dipole 
sum rule and is shifted by 10-20% with respect to the Mie frequency. The centroid of 
the strength distribution tends toward the Mie resonance in the limit of a large metallic 
sphere. Its red shift in finite dusters is a quantum mechanical, finite size effect closely 
related to the spill-out of the electrons beyond lhe edge of the positive jellium background.
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Figure 2. Schematic representation of the collective dipole spectrum of sodium clusters obtained in linear response 
theory. The strength function 5(«i) is plotted as the percentage ol the total dipole strength nt , normalized Io 
KHI1; |scc Eqs. (7) and (I3)|. lhe spectrum in lhe lowest panel represents the classical limit for a large metallic 
sphere, where all lhe strength is concentrated in the surface plasmon ol frequency wM1 and the volume plasmon 
(of frequency <•»,.,> has it strength. I or finite clusters the surface plasmon is red-shifted and its missing strength 
is distributed over the icmindci ol the strongly fragmented volume plasmon. Reprinted with permission from (6|. 
M Brack. Rec !/<«/. /’/in 65.677 (1993). ■ 199.1. American Physical Society.
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Hovever. about 10-25G ol the dipole strength is typically found at higher energies and 
can tc interpreted as a rcminescence ol a strongly fragmented volume plasmon. Often, the 
dominant peak is fragmented into two or more lines. For spherical clusters, this can he 
attri tuted lo the interference of specific particle-hole excitations (or more complicated ones) 
with the predominant collective mode. This fragmentation may be compared to the Landau 
damping in a solid.

B.forc presenting specific applications, it is convenient to recall the main features of the 
elec ronic structure ofclusters of the alkali metals. The population in the typical experiments 
in which the clusters form by aggregation of atoms in a supersaturated vapor shows magic 
sizes corresponding to a number of atoms .V = 2.8. 18.20,34,40... [48], These magic num
bers are explained by the formation of electronic shells in the common self-consistent poten
tial »f the cluster, which to a good approximation can be considered as a spherical droplet. 
The effective potential can be modeled by using the spherical jellium model. Then, as the 
cluster grows in size, the electronic shells become filled in the order lx. Ip. lr/.2.$. 1 f.2p... 
Clusters with tilled electronic shells show an energy gap between the highest occupied and 
the lowest unoccupied molecular orbitals (HOMO-LUMO gap) and are evidently more 
stab c than other clusters, giving rise to the observed magic numbers.

Most of the specific calculations to be reviewed next, and up to and including Section 16, 
use the Green’s unction method. However, when other techniques, like the matrix eigen
value method, are used, this will be explicitly indicated. I he results of a TDLDA calculation 
[26. 49| of the photoabsorption spectrum for Na2l) within the spherical jellium model are 
shown in Fig. 3. The dotted curve is the spectrum obtained using the independent-particle 
susceptibility y, in Eqs. (4) or (33), and the continuous line is the result for the interacting 
susceptibility y. The ground-state electronic configuration of Na?(l in the spherical jellium 
model is l.v-1/?*’!//1,12s2, where the superscripts indicate the occupation of the electronic 
shells. Above these occupied subshells there are other unoccupied ones If.2/7. lg,2c/,3.s.... 
and the peaks in the noninteracting spectrum represent allowed particle-hole excitations in 
which one electron is promoted from an occupied level to an unoccupied one. I he transitions 
have been artificially broadened to simulate the effect of temperature (a full discussion of 
temperature effects is presented in Section 17). When electron-electron interactions are 
switched on (using the fully interacting y). some particle-hole transitions are shifted in 
energy, just as Eq. (58) indicates, and othei excitations lose their individual identities, merg
ing into a collective resonance.

Compared to experiment, the LDA calculations for the spherical jellium model |6. 49] 
yield an insufficient red shift of the collective Mie resonance. For instance. Yannoulcas 
et al. |5fl| predicted the plasmon position of Nax at 2.82 eV, to be compared with the peak 
experimentally observed at 2.53 eV [511. This is also evident for Na,(1 in Fig. 4, where the 
calculated resonance lines |26] have been broadened to simulate finite temperature effects

figure 3. Imaginary part of the dynamical polarizability (per electron; of Na-,,. The calculations employed the 
spherical jellium model and the time-dependent local density approximation Dotted and continuous curses corre
spond to using the noninteracting (y, ) and fully interacting (y) dynamic susceptibilities, respectively. transitions are 
broadened lo simulate temperature effects. Reprinted with permission from [26|. A. Rubio, J A. Alonso. X. Blase, 
and S. (I. Louie, hit ). Mod. Phys. H II. 2727 (1997), © 1997, World Scientific Publishing Company.
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Figure 4. Calculated (local density approximation |LDA|. weighted density approximation [WDA]) [26, 49] and 
experimental [53| phot oabsorpt ion cross sections (per electron) ol Na,,, in the spherical jellitm model. Arrows 
mark the positions ol observed peaks |5(>|, Reprinted with permission from [26], A. Rubio. J. A Alonso, X. Blase, 
and S. Ci. Louie. Ini J. Mod. I‘lm. R II. 2727 (1997). <? 1997. World Scientific Publishing Company.

|6, 52]. I'he form of lhe l.DA spectrum is similar to the experimental on; [53], but the 
main LDA peak is displaced 0.3 eV io higher energy. The physical process underlying the 
fragmentation of the spectrum of Na,() is. however, not well described by the LDA. In the 
LDA calculation, fragmentation occurs because of the proximity to the plasmon line of a 
particle-hole excitation (2.v—*3p) with energy /tw = 2.8 eV. In addition, the 3p subshell is 
practically degenerate with the vacuum level, and the fragmented line is broadened by the 
proximity of transitions from the 2.v states to scattering states in the energy continuum. In 
contrast, the experimental ionization threshold lies al an energy of 3.76 eV. more than 1 eV 
higher than lhe main plasmon peak. A calculation using a spherical jellium with a smoothed 
surface leads to an improvement of the position of the dipole resonance [54].

Replacing the L.DA by a nonlocal description of exchange and correlation improves the 
results. Calculations [49] using the nonlocal WDA [55] (the continuous line in Fig. 4) shift 
the plasmon resonance to lower energies and place the main peak at 2.56 eV. This effect 
arises from a better description of the asymptotic (large r) behavior of the XC potential Kxc 
and from the improvement of the local field correction, or kernel Kkc , with respect to the 
LDA. In the WDA. the XC hole around an electron at position r,

/itt.(r,.r2) = »(r2)[gu.(rI,r,)-l] (69)

presents two improvements with respect to the LDA. One is that the prefactor n(r2) is not 
approximated by the local density »(rt). In the LDA. the pair correlation function gxc(i"|,r2) 
is replaced by gd'Jlr, -r^j/tfr,)]; that is, the pair-correlation function for a homogeneous 
(h) electron gas with density n equal to the local density /t(r,). In the WDA. the functional 
form A’xt(|r| —r,|:h) for a homogeneous electron gas is preserved, but the effective density 
n = n(r|) is fixed al each point r, by requiring the fulfillment of a sum rule stating that 
the integral of /tu.(r,.r>) over the variable r equals the exact value ol -1. This means 
that lhe effect of the XC hole is equivalent to removing a net charge of one electron from 
the neighborhood of the reference electron. The WDA prescription leads to an improved 
potential L'*I,A and kernel K£”A. Returning to Na:u, the more accurate F*OA also leads 
to an improved value of lhe ionization threshold. 3.27 eV. which does not interact with the 
plasmon because of the large separation between those two features. Instead, a shoulder 
develops at =s2.7—2.8 eV. and a pronounced secondary peak appears on the low-energy side 
of the resonance, at ^2.2 eV. with both features being the result of the interaction of the 
plasmon with particle-hole excitations. Three resonances observed [56] at ^2.19, 2.41, and 
2.76 eV support the predicted WDA spectrum in the region below 2.9 eV. Calculations
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inducing sell-interaction corrections (SICS) [57. 58] also improve the results with respect to 
the LJA. SIC corrects for the spurious self-interaction of an electron with itself anil improves 
the asmplolic behavior of I . Saito et al. [57] introduced SIC in the kernel A\e|//](r.r ) by 
an Analdi-lype correction

Ksu (r,.r:) = ^--— R'"’A(r1.r?) (70)

when A' is the number of electrons. In contrast, Pacheco and Ekardt [58] followed the 
standard SIC scheme.

Intiresting effects are expected when the plasmon excitation energy is close to the ion- 
izaliot threshold. This occurs for large-cluster anions [49, 59|. For small negatively charged 
clustes, the electron detachment threshold is low. and the energy of the collective resonance 
lies ir the region of electronic excitations to the continuum of states, where Landau damping 
prodices a broadening of the resonance. This is appreciated by comparing the calculated 
spectium of Na,,,, given in Fig. 5. with that for neutral Na1(, in Fig. 4 (the two clusters are 
isoele.lronic. with 20 electrons). The WDA was used in the calculations reported in Fig. 5. 
The eectron detachment threshold of Nap, is indicated by the arrow in Fig. 5. As the cluster 
size iicreascs, the plasmon approaches the region of discrete states. Then, w hen the detach
ment hrcshold of the negative cluster lies in the region of the plasmon resonance, electron 
cmisson becomes a decay mechanism that competes with the usual one of evaporation of 
atonv. The calculated photoabsorption cross sections of Nat|| and Nal97 are also given in 
Fig. f In those two clusters, the detachment threshold overlaps with the collective reso
nance Reiners and Haberland |6()| measured the photoabsorption cross section of Na()| and 
fount a broad collective resonance centered at 2.65 eV (its width is (1.92 eV) whose decay 
can kad to two final channels: atom and electron emission. The calculated position of the 
collecive resonance of Na0| in Fig. 5 is 2.69 eV, in good agreement with the experiment of 
Reiners and Haberland. Changing the net cluster charge, from anionic to neutral to cationic 
cluste s, for a fixed total number of valence electrons has the effect of shifting slightly the 
plasmin to higher energies. For instance, the maximum of the resonance occurs at 2.65 eV

Figure 5. Calculated photoabsorption cross sections, per electron, of Nas cluster anions. The clusters are described 
by the spherical icllium model. The nonlocal WDA approximation was used for exchange and correlation. The 
arrows mark the binding energy of the highest-occupied molecular orbital. Reprinted with permission from |26|. 
A Rubm. I A Alonso. X Blase, and S. G tonic Im. I Morl I’hyi H 11. 27?7 (l‘W7) |W7. World Scientific
Publisl ng ( ompatn.
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and 2.77 eV for Nayt and NaJ,, respectively, and the corresponding width decreases from 
0.92 eV to 0.51 eV.

11. SHAPE DEFORMATIONS: ROLE IN
THE ABSORPTION SPECTRUM

A splitting of the collective resonance is observed in clusters with open electronic shells, 
which is a consequence of the static spheroidal deformations of the cluster shape. A double 
peak in lhe photoabsorption cross section has been observed for K and Na clusters |4, 61. 62] 
and for Ag clusters in the region !0<A; < 16 [63]. The two modes correspond to excitations 
along the main axis of the spheroid and perpendicular to that axis, respectively. Figure 6 
shows the experimental results ol Borggrecn cl al. |62| tor cationic Na dusters. These results 
reveal the systematics of cluster shapes after the spherical clusters with 8 and 20 electrons, 
respectively. The trend in the shapes goes spherical—* prolate—* oblate—* spherical. This sys
tematics is reproduced by total energy calculations within a spheroidal jellium model [64], 
and the splitting of the collective- resonance is obtained by the TDLDA applied to the 
deformed clusters |65|. In larger clusters, it is difficult to disentangle lhe effects originat
ing from static shape deformations from those resulting from the fragmentation mechanism 
discussed above.

Figure 6. Experimental photoabsorplion spectra of Nas cations. The curses arc Lorentzian functions fitted to 
the data. Adapted with permission from |62|. J. Borggrecn. P. Choudhury. N. Kebaili. L Lundsberg-Niclsen. 
K. Liitzenkirchen. M. H. Nielsen. .1. Pedersen, and H. D. Rasmusen. Phvs. H 4X. 17507 (1993) 1993. American
Physical Society
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A splining ol the dipole resonance into three peaks has been observed in some Na clusters 
14. 62|. This is interpreted as corresponding to collective vibrations of the valence electrons 
in the directions of the principal axis of a triaxially deformed cluster and has motivated the 
extension of the jellium model to fully triaxial shapes [66-68]. The triaxial deformations ol 
the uniform background can be classified in terms of the Hill-Wheeler coordinates (3 and y 
[69]. fl describes the overall quadrupole deformation; y = ()°. 120°. and 240° describe prolate 
deformations: and y = 60". ISO", 300° oblate ones—all other values of y give truly triaxial 
shapes, l.et us consider Na)? and Nau. The potential energy surfaces of those two clusters 
in the triaxially deformed jellium model have been calculated by Lauritsch et al. [66]. In 
addition to the shape deformation of the positive background, the jellium was also allowed 
to have a diffuse density profile at the surface (54]. The ground state of Nar is triaxial. with 
deformation parameters /3 = 0.54. y= 15°. This structure is energetically well separated from 
competing prolate and oblate configurations. Nau is characterized by two axially symmetric 
isomers, prolate and oblate, respectively, which are almost degenerate in energy. The oblate 
minimum is rather soft in the y-di reel ion, whereas the prolate minimum predicts stiffer 
■y-vibralions. The pronounced shape isomerism found for both clusters bears some resem
blance to that found by fully microscopic quantum chemical [7(l| and uh initio DFT calcu
lations 171], The resonance energies of the collective dipole excitations were obtained from 
the approximate expression

= —/'Mr)—^T'.x,(r)</'r (71)
Nmf ■' <ir~

obtained from the RPA sum rules |6|. In this equation. T'ext is the electrostatic potential of 
the jellium background, nt, is the electronic mass, and i runs over the spatial directions; that 
is. r, = {.r.y,z[ for the triaxial clusters and r( = {r,z] for axial ones. The resonance energies, 
calculated for the ground state of Na,? and for the two degenerate minima of Nau are given 
in Table 4. Three different energies arc obtained for Na,_>, reflecting its triaxial shape. The 
three energies are in qualitative agreement with the experimental peaks |4. 62|, although 
the calculated energies are 10-15% too high because of the simple sum rule approximation 
used. Each of the two competing axial isomers of Na)4 is characterized by a double-peak 
structure in which lico, has double weight compared to hat.. The actual strength distribution 
will be an incoherent superposition of the two isomeric minima.

Kohl et al. |72] extended the calculations to a larger set of Nav clusters (/V=2-20). They 
have- confirmed the results of the spheroidal jellium model: prolate clusters after the magic 
numbers N = 2 and /V=8, and oblate ones before N = 8 and TV = 20. However, a transition 
region formed by triaxial shapes was found separating the prolate and oblate regions. This 
region is very small between N — 2 and Af = 8. containing only the cluster Nas, and is larger 
in the region between /V=8 and A'= 20. The triaxial minimum is well developed in Nas, 
but the others are extremely soft, such that thermal fluctuations will easily wash out the 
triaxial signatures in the dipole resonance. For cationic Na£ clusters, Kasperl et al. |67j have 
concluded that the signal of triaxiality on the resonance energies is faint for clusters larger 
than Na*.

The mechanisms responsible for the width of the plasmon resonance have been inves
tigated [73] for spherical clusters (Na.j, Na2t, Naj,) in the framework of the structurally 
averaged jellium model [74]. In this model, the effects of the ionic structure are added in 
an averaged manner: first as an additional potential on the electrons, second as an aver
age Madelung energy in the volume, and third as an ionic surface energy. The two leading

table 4. Calculated surface dipole plasmon energies (in electron volts) lor the 
triaxial ground state of Na,. and for the oblate (Ol:) and prolate (PE) isomers of 
Nalt. obtained from the random phase approximation sum rule of Eq. (71) [66].

Na, Triaxial Na 4 Oblate Nau Prolate

Ahu, hu. hiu/ hat hat, fun.

2.K57 3.23b 2.313 2.531 3.401 3.102 2.313
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mechanisms for the line broadening arc the fragmentation of the resonance into nearby 
particle-hole transitions and splitting through thermal quadrupole fluctuations |52].

12. APPROXIMATE ACCOUNT OF THE IONIC STRUCTURE
The experimental measurements of the photoabsorption cross section of the closed shell 
cluster Nat, show a plasmon resonance in the region 2.65-2.74 eV; more specifically, at 
2.65 eV in Ref. [6I], at 2.68 eV in Ref. [62], and at 2.74 eV in Ref. [75]. with an averaged 
value of 2.69 eV. This cluster, having 20 electrons, is isoelectronic with Na2(), but the plasmon 
resonance occurs at a slightly higher energy in Na,, because of the stronger confining poten
tial. A TDLDA calculation for Na^, within the jellium model, shown in the upper panel of 
Fig. 7 |76|, gives the plasmon energy at 2.95 eV. overestimating its energy by (I.2-II.3 eV. 
Introducing in the calculation nonlocal corrections to exchange and correlation improves 
the position of the resonance (2.63 eV) but also leads to the appearance of a separated 
fragmentation peak. This fragmentation of the plasmon peak has not been observed in the 
experiments, although a shoulder was detected by Borgreen et al. [62] and by Reiners et al. 
[75] on the blue side of the peak.

The photoabsorption cross sections obtained with the spherically averaged pseudopoten
tial model (SAPS) are plotted in the bottom panel of the same figure. The SAPS model 
[77, 78] provides an approximate description of the cluster structure, intermediate between 
the simple uniform background model and the full treatment of the geometry of the ionic 
skeleton. Consider a cluster with the ions at positions (R,} j = I......V. If each ion is replaced
by a local pseudopotential, i!ps(|r-R,|). then the total external potential seen by the valence 
electron cloud is given by

A
»/ps(r) = EM|r-R/l) <72)

i=i

Experience with the spherical jellium model indicates that for clusters with a nearly spherical 
shape this external potential can be replaced by its spherical average about the cluster center

Figure 7. Calculated photoabsorption cross section of Na; in the jellium (upper panel) and SAPS (lower panel) 
models. Dashed and continuous curves correspond to local density approximation and nonlocal weighted density 
approximation treatments of exchange and correlation. The arrows indicate the experimental position of the plas
mon resonance. Reprinted with permission from |26|. A. Rubio. J. A. Alonso, X. Blase, and S. (>. Louie, bit. J. 
Moil. Phyu. fi ll. 2727 (I997). © 1997. World Scientific Publishing Company.
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This simplification greatly reduces the computational effort of calculating the electronic 
levels because lhe electrons now move in a spherically symmetric potential well. However 
the SAPS model goes beyond the Spherical Jellium model, as the radial structure of the 
elusici becomes reflected in the SAPS potential, and the ton-ton interaction is calculated 
for the true three-dimensional arrangement of lhe ions [78]. One can set limits of validity 
to the SAPS model. The cluster cannot be too small, because small clusters substantially 
deforn away from the spherical shape. However, very large clusters have a tendency to form 
planar surface facets. The range of intermediate sizes is, then, the most appropriate one. 
Returning to Na,1), the structure of this cluster is rather spherical (OZ/ symmetry in a recent 
calculation [7M]). so the use of the SAPS model is justified. The results are given in the lower 
panel of Fig. 7. The LDA again overestimates the experimental plasmon energy, but the 
nonlocal WDA calculation places the plasmon at 2.70 eV; this time the strong fragmentation 
has disappeared, and only small features remain at 3.0 eV and 3.5 eV. which correlate 
with the observed shoulders [62. 75]. The photoabsorption spectrum of Nat has also been 
calculated [80]. using the SAPS model and the WDA for exchange and correlation. The 
position and shape of the plasmon resonance is again in good agreement with experiment.

For CsH. a fragmentation peak has been observed near the surface plasmon resonance al 
1.55 eV [81. 82]. The surface plasmon is obtained at 1.70 eV using lhe Spherical Jellium 
model. The SAPS model predicts a square antiprism as the ground-state geometry of Css 
[83], By adjusting the cluster radius and the core radius of a pseudopotential developed by 
Manninen [84], the SAPS model leads to a good fit to the experimental plasmon peak and 
its fragmentation [81, 83]. A good fit was not obtained for the geometries tested other than 
the square antiprism.

In an extension of the SAPS model. Schone et al. [85, 86) expand the total ionic pseu
dopotential of Eq. (72) in spherical harmonics about the center of the cluster

Fr(r) = |/„(r)+£ E (74)
l=lm=4

The first term fj, is just the monopole, spherical part of the total ionic potential. This is 
the SAPS potential. The other part can be included perturbatively up to the second order 
on top of a SAPS calculation. Similar ideas, based on a perturbative introduction of geo
metrical effects beyond SAPS, were applied by Rubio et al. [87] to the fullerene molecule.

Figure 8. Pholoabsorption cross section per electron for Nal(, in the ground slate configuration (the structure is 
given in the inset), the dashed line is from the SAPS model. The lull symmetry is taken perturbatively in the 
calculation tor the continuous line. Adapted with permission from |X6|. W. 15. Schone. W Ekardt. and J. M. Pacheco, 
/’/ns. Rev. Jf 5(». 11079 (1994). © 1994, American Physical Society.
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The perturbative theory can also be developed within the TDLDA formalism, and the 
method has been applied |85, 86] to calculate the optical spectrum of the closed-shell (Nas. 
Na.t. Nahs) and open-shell clusters (Na,,. Na,,,). For the closed-shell clusters, the perturba
tive calculations predict a photoabsorption spectrum in agreement with that of the SAPS 
model and justify the validity of this model for magic clusters. For small open-shell clusters 
there are differences, as expected. The geometry of Na„ is a planar-like pentagonal pyramid 
(C\ symmetry) |71|. The SAPS spectrum |85| gives a main absorption line at 2.3 eV. In con
trast. the perturbative calculation for the C<v geometry gives several peaks in the energy 
range 2.0—2.8 eV, in qualitative agreement with the experimental results of Wang et al. [88], 
and also with al) initio quantum chemical calculations [89], Surprisingly, the spectrum of 
Na)u, given in Fig. 8, does not resemble that of the spheroidal jellium model [64, 65], and 
this appears to indicate a pronounced effect of the pseudopotentials beyond the jellium 
approximation. In summary, quantitative agreement with experiment was obtained by the 
perturbative method, hut this method becomes difficult for c usters with low symmetry.

13. MIXED METAL CLUSTERS
Experiments with metal vapors [90, 91] have shown that some changes occur in the magic 
numbers of alkali metal clusters when these arc doped with divalent impurities: Ba, Sr, Eu, 
Ca. Yb, Mg, and Zn dopants in Na clusters, and Mg, Hg, and Zn dopants in K clusters. 
These authors concentrated on the case of clusters containing a single dopant atom. For 
some impurities, a new magic cluster corresponding to 10 valence electrons is found: for 
instance. NasMg. KsMg, K^Hg, NasZn, and KsZn, and at the same time the magic number 
corresponding to 18 valence electrons vanished. The single coordinate A//+ = n" (impurity)— 
n'|(host); that is, the difference between the average conduction electron densities in the 
pure host and those in impurity metals, allows us to separate the doped clusters into two 
subsets |92|. Values of A/\ roughly higher than 0.008 c/a.u.’ induce changes in the magic 
numbers. In contrast, there are no changes for An+ <0.008 e/a.u.\ The success of this coor
dinate indicates a simple extension of the Spherical Jellium model [92|. The impurity is 
embedded in a host cluster with a background density equal to //"(host). The impurity, 
placed at the center of the host cluster, is then characterized by a positive background 
with density //"(impurity) and radius The radius of the doped cluster is determined 
by R and the number of host atoms. Calculations for this jellium-on-jellium model show 
that the binding energy of the electrons w'ith s-character (7=0) increases in comparison to 
the undoped cluster because the presence of the divalent impurity induces a more attrac
tive effective potential in the central region of the cluster, whereas the binding energies of 
electrons with />! change very little. The main effect on the electronic structure is that 
the magnitude of the gap between the 2s and Irf shells decreases with increasing A/i_. 
When A//_ becomes roughly 0.008 c/a.u.’, a reordering of these two subshells occurs and the 
filling order changes from the original l.v 1/?lz/2.v to the new one l.s lp2sid. Clusters with 10 
valence electrons then have a closed-shell configuration ls2lpft2s2, which accounts for the 
experimental observation of the new magic number. The magic number corresponding to 20 
electrons, corresponding to the electronic configuration Is2 lpf'2s2 Id1”, is still present, but 
evidently there is no shell-closing for 18 electrons.

The optical response of doped clusters has been studied by Yannoulcas et al. using the 
jcllium-on-jcllium model [93]. The calculated spectrum of NasZn is characterized by two 
closely spaced lines at 2.87 eV. carrying 26% of the total strength, and a stronger line at 
2.57 eV, which carries 42%/ of the strength. This is in good agreement with the experimental 
double peak, formed by a higher-energy component at 2.97 eV. which carries a smaller 
amount of strength than the lower-energy component at 2.63 eV. The fragmentation of 
the plasmon peak is caused by its degeneracy with the 2x—>2p and Ip—>3.s particle-hole 
transitions. This result was obtained for an electron density parameter r,(Zn) = 1.15 a.u. 
|see Eq. (2())]. a value substantially smaller than the typical value of r, = 2.31 a.u. for bulk 
Zn. The smaller value of /,(Zn) produces a strong attractive potential at the impurity site, 
which leads to the downwards shift of those transitions required for the degeneracy with 
the plasmon to develop. The spectrum of pure Nas contains a single line at 2.53 eV. so the 
effect of the Zn impurity is evident. The need for such a small value of r, may be related 
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to the application of the jellium model to an element, like Zn. at the end of the transition 
metal group. Baibas et al. |94| have calculated the optical response of NasZn using the SAPS 
model, with the Zn atom al the center of lhe cluster. Two peaks tire obtained al 2.68 and 
2.9 eV. The second peak was interpreted as a fragmentation ol the surface plasmon induced 
by its proximity to the ionization threshold, an interpretation that differs from that proposed 
by Yannoulcas et al. [93],

As another example of the influence of impurities on the optical reponse Yannoulcas 
et al. considered the group formed by K19Rb, Ka„ and K|l(Na. all of them having 2(1 valence 
electrons. The calculated optical spectrum of K-o, shown in Fig. 9, exhibits a split plasmon 
because of a degeneracy between the collective plasmon and a 2,s—»3p particle-hole transi
tion. In lhe case of K.HNa. the Na impurity, with a smaller r, than the host, shifts the 2.v level 
downward, so the energy of the 2s -*3p transition increases. At the same time, the energy 
of the plasmon remains unchanged, and the consequence is that a single line dominates the 
spectrum. The opposite effect occurs for a Rb impurity. The energy of the 2s — ?>p transition 
is lowered and the plasmon splitting is more pronounced.

The absorption spectrum of Cs)0O shows two peaks at 1.39 and 1.54 eV [81. 82]. One 
can expect the 2p shell of the Oxygen atom to be filled by two electrons provided by the 
Cs atoms. In this way. Yannoulcas and Broglia [95] have treated Cs1((O as a system with 
eight active electrons. These authors employed a modified jellium potential in which the 
central part of the cluster was made less attractive to simulate the repulsive effect of the 
oxygen anion O’ . The fragmentation of the plasmon was reproduced, although a difference 
of 341.2 eV remained between the positions of the theoretical and experimental peaks. Cal
culations using the SAPS model show that the absorption spectrum is sensitive to the radius 
of the cluster [83]. and this can be adjusted lo obtain a good description of the spectrum. 
Also, inclusion of the /^-electrons of the oxygen atom is required, as particle-hole transitions 
from the p shell lo the unoccupied 4s shell contribute to lhe fragmentation of the collective 
resonance. The cluster geometry used in the calculations was the one predicted by the SAI’S 
model, with the oxygen atom at the center of a square pyramid and each of the live faces 
capped by one Cs atom.

A common phenomenon in binary metallic alloys is the preferential segregation of one 
of the components al the surface [96. 97], Surface segregation affects also the collective 
electronic response of clusters. The ground-state structure of N«i2iiK.h obtained with lhe 
SAPS model is composed of three layers surrounding a central Na atom. All the potassium 
atoms are on the surface, and the two inner layers have 11 and eight Na atoms, respectively. 
The calculated photoabsorption spectrum [98] shows a collective resonance peak at 2.1 eV 
The tail of the resonance extends up to 3 eV and concentrates a sizable amount of oscillator

Energy (eV)

Figure 9. Calculated photoabsorption cross section of RbK.... K.,. and NaK... Reprinted with permission from |''?|.
C Yannoulcas, I’. Jena, and S. N. Khanna. /7ivs. Rcr. li 46. 9751 (1992). « 1992. American Physical Society.
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strength. The position of the collective resonance is closer to the corresponding resonance of 
pure K clusters, calculated with the same method, compared to pure Na clusters, and this is 
a manifestation ol the fact that the cluster surface, whose electron density contributes most 
to the collective excitation, is formed by K atoms. A calculation of the photoabsorption spec
trum for other isomers allows us to analyze the sensitivity of the spectrum to the structural 
features. When the positions of some Na and K atoms are simply exchanged, preserving 
other features of the cluster geometry, a shift of the resonance peak to higher energies 
occurs as Na replaces K on the surface. More drastic variations of the structure produce 
pronounced changes in the spectrum, like the broadening and fragmentation of the plasmon 
peak. The optical response of mixed Li-Na clusters has also been studied [94], In summary, 
the shape of the photoabsorption spectrum is sensitive to the cluster geometry' and to the 
degree of segregation of one component to the surface, so. a comparison between measured 
and calculated spectra may be useful to elucidate segregation effects in mixed clusters.

14. SIMPLE MODEL FOR THE PHOTOABSORPTION 
SPECTRUM OF FULLERENES

Extensions of the jellium model have been applied to more complex systems, like carbon 
fullerenes [87]. Experimental studies [99-103] have shown the presence of two collective 
excitations in CWI, a broad one in the region 15-25 eV. associated with the <r electrons of 
lhe cage, and the other around 6 eV, which was interpreted as a collective oscillation of lhe 
rr-electrons. 1 he electrons in tr orbitals (three electrons per C atom) link neighboring atoms 
in the cage and provide most of the cohesion. In contrast, the tt orbitals extend in and out 
of lhe cage and are more delocalized. For this reason, to describe the response of the tt 
electrons, a model [87] has been used that simulates the CW) cage by a thin spherical shell 
of positive charge

R -A] <r <R + \ 

otherwise
(75)

with the observed radius /?=6.64 a.u [104] and a width 2A, in the range 0.8—1.0 a.u., com
pensated by a distribution of tt electrons (one tt electron per C atom) self-consistently 
calculated. The constant nt is easily related lo R, A, and the total number of electrons (60). 
The calculated plasmon resonances of CW1 and CJ, arc roughly in the right position [87, 105],

The model was extended to CN) coated by a layer of Na atoms [105]. In that case, the 
positive background was modeled as two concentric spherical thin layers, one on top of the 
other, with the inner one. of thickness 2A,. representing the fullerene cage, and the outer 
one. of thickness A2, representing the alkali coating: that is,

R-A, </•</? +A,

R + A, < r </? +A, + A, 

otherwise

(76)

r (a. it.)

Figure 10. Electron density (continuous line) and positive background density (dashed-dotted line) as a function of 
distance to the cluster center in a simple continuous model lor |<’,„Na.n| ‘. Adapted with permission from |105|, 
A. Rubio. J. A. Alonso. J. M. Lopez, and M. J. Stott, /Vnv Rc\. H 49. 17397 (1994). 1994. American Physical Society.
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Figure II. ( akulatcd photoahsorption cross section, per electron, ol | C N;i., s |

rhe background density ;n of the external layer was fixed equal to its value for bulk Na metal, 
/i, = 0.004 e/a.u.'. and the thickness A, then depends on the number of coating Na atoms, 
l he background density and the self-consistent electron density of |CHINa.n|' are plotted in 
Fig. It). The election density shows two different decay lengths. This cluster has an outer 
surface (hat resembles a lol lhe surface of pure Na clusters. The development of the coaling 
metallic layer becomes reflected in the calculated photoabsorplion spectrum, shown in Fig. 11.

For small Na coverage, like in |CW(Na1Ap. the interaction between the electrons originating 
from the Na atoms and the unoccupied levels of is strong and the TDLDA calculation 
predicts a spreading of the 77-plasmon of CM(, down to lower energies by more than I eV. and 
a reduction of its amplitude. This is mainly because of lhe fragmentation of the collective 
resonance caused by the interaction with particle-hole transitions. Then the characteristic 
features of the C,,u plasmon progressively vanish as lhe number of coaling Na atoms grows. 
Al the same time, a new feature develops at lower energies that can be related to the surface 
plasmon of pure Na clusters. For [C'MINa„|' the Na surface plasmon is well developed and 
the cluster responds much like a pure ionized Na cluster; the resonance has, nevertheless, a 
broad tail at high energies.

The fragmentation of the peak may have relevance for the interpretation of experiments 
by Martin and coworkers |IO6j. These authors have produced CMI clusters coaled with Cs. 
For large coverage, say |C,^Csv )' with N300, (he photoabsorption spectrum is very similar 
to that ol large pure C’sv clusters, except tor having a more intense tail. As N decreases, a 
fragmentation of the plasmon occurs that resembles that which was obtained in the TDLDA 
calculations for |Cw(NaA |'. Thus, the TDLDA based on the model of two spherical jcllium 
slabs appears to afford a plausible explanation for the optical absorption spectrum of alkali- 
coated clusters.

15. FULL ACCOUNT OF THE CLUSTER STRUCTURE
TDLDA calculations of the optical spectrum with a full account of the geometry of the cluster 
have also been performed. Apart from being more realistic compared to the other calculations 
discussed above, which retain only the overall shape characteristics, these new calculations 
can provide a useful method to determine lhe cluster geometries. Sometimes, the differences 
in binding energy between lhe ground state and some low-lying isomers obtained by <ib inilio 
calculations are so small as to cast doubts about the calculated lowest energy structure, and 
a comparison of the experimental optical spectrum and those calculated for several isomers 
with similar energies can help in the identification of the ground stale.

A method based on a space and time representation of the response functions of extended 
systems has been developed that lakes advantage of the rather sparse Hamiltonian matrix in 
a coordinate representation 1107. 1OS|. The advantage is related to lhe localization range of 
the independent-particle susceptibility y,(r.r:<u) and other response functions, as localized 
objects arc easily described in real space. In practice, lhe response functions of nonmetallic 
systems decay rapidly as |r —r’|—»oo, so that for each r, y, (r.r tzo) needs to be calculated 
only for r inside a region of a certain radius /?nbiv around r. This is the origin of the success 
of recent A '-lineal methods (wheie A' is (he number of atoms in the unit cell) proposed to 
perform band-structure calculations for solids 1109-113]. However, for metals and small-gap 
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semiconductors, the decay rate may be slow and Rmay span many unit cells. This problem 
can be solved by a mixed-space representation yjr.r ;w) of the response functions, where 
r and r' are restricted to a single cell and q spans the irreducible part of the Brillouin zone 
1108]. The method, described in Refs. |26| and |108|. has been adapted to clusters by using 
a supcrcell formalism, in which the unit cell containing the cluster is periodically repeated in 
space, which allows us to expand the wave functions on a basis of plane waves. The volume 
of the cell containing the cluster has to be sufficiently large to avoid the interaction between 
clusters in neighbor cells: that is, a large part of the volume of the cell is empty.

The photoabsorption cross section of Nas. calculated by this method 1114], is in excellent 
agreement with experiment, with the calculated position of the plasmon peak al 2.55 eV 
and the experimental one al 2.53 eV |4. 51]. (The calculated value of the polarizability of 
Lis given in 1114] is not correct. The correct value is 97 A.) The TDLDA photoabsorption 
cross section of Lis is given by the continuous curve in Fig. 12. The calculated ground state 
structure, given in the inset, is a centered trigonal prism with an atom capping one of the 
lateral faces. The averaged value of the static dipole polarizability (-t-4-o v)/3 is 97 A1, 
which is larger than the value of 63 A' obtained in the spherical jellium model |l I4|. From 
classical arguments, a larger polarizability corresponds to a lower resonance frequency, so 
a redshift of the resonance with respect to the jellium value of 3.5 eV should be expected. 
Indeed, the effect of explicitly accounting for the cluster structure produces a redshift of 
I eV, which leads to very good agreement between the calculated resonance at 2.45 eV and 
the experimental value of 2.5 eV 1115| (compare the position of the peak of the continuous 
curve with that of the arrow in Fig. 12). The nearly isotropic polarizability tensor explains 
the presence ol a single resonance. The red shift can be tracked down to an increase of the 
electron effective mass, an effect of the i.i ionic pseudopotential.

The computed structures of silicon clusters (114). given in the insets in Fig. 13. agree 
with other calculations [116. 117] and with Raman experiments |118|. A planar rhom
bus (D2/1 symmetry) is obtained for Si4, and two nearly isoenergetic structures for Si(1: a 
distorted octahedron (D4;,), and an edge-capped trigonal bypiramid (C2l,), with the octa
hedron being slightly more stable by =^0.02 eV. Could structural isomers be distinguished 
from their absorption spectra? This question is analyzed in Fig. 13. where the calculated 
single-photon-avcraged absorption profiles have been plotted for two different isomers of 
each of these two clusters, Si4 and Si„ (the second isomer of Si4 is the tetrahedron). All 
the spectra have been broadened by (l.i eV to simulate finite temperature effects [52], The 
calculated spectra of different isomers are sufficiently different, and the conclusion is that 
the optical spectrum contains structural information, so the comparison between calculated

Figure 12. Pholoahsorption cross section ol l.i. The dashed line is lot the Jellium model and the continuous line 
is obtained with lull account ol the geometrical structure. The centroid ol the experimental resonance is indicated 
In the arrow
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Figure 13. .Averaged photoabscirplion cross section ol two different isomers ol the Si, and Si, clusters, shown by 
lhe continuous line The independent-particle spectra (dotted curves) have been included lor comparison. All the 
spectra have been broadened by 11,1 eV, The cluster geometries are included in the insets, and some bondlcnglhs 
arc given in Angstroms. Reprinted with permission from 11I4|. A. Rubio. J. A. Alonso. X Blase. I ('. Baibas, and 
S . (i. I oinc /7n> /(<i. / <7/ 77. 247 (|W(>) > |W6. American Physical Society.

and measured optical spectra can provide a powerful tool to assign structures to the clusters. 
Even more striking differences in the spectra are obtained if each of the tensor components 
of the absorption cross section are considered separately instead of using the averaged com
ponent. XC effects play a minor role here as compared to the metallic clusters (the same 
observation is known to hold for the bulk). Surface and confinement effects are responsible 
for lhe appearance of absorption in the optical range seen in the IDLDA spectra for the 
two Silicon clusters. In fact, this effect could be related to the luminescence of porous sil
icon 1119]. showing that small clusters could present different and very interesting optical 
properties as compared to their bulk counterpart.

Other authors have been accounted for the cluster structure in the TDl.DA. using differ
ent methods. Vasiliev et al. |39| have calculated the optical spectrum of small sodium clusters 
(Na.. Na4, and Nas). using the coupling matrix method (sec Section 6). l he results obtained 
from the exact calculation [Eq. (59)| and the two approximate expressions [Eqs. (60) ami 
(61)] are reproduced in Fig. 14. The approximate expressions do not give a good account 
of the experimental data. However, the exact TDLDA calculation remarkably reproduces 
the experimental spectral shape [51. 120-122], and the peak positions agree with experiment 
within 0.1-0.2 eV. The calculated spectrum of Na- exhibits three peaks in the 2-5-eV range. 
Na4 has a rhombic shape, and its spectrum consists of three peaks in lhe 1.5-3.0-eV range 
and a broader feature al higher energy, l he results arc almost as accurate as the spectra 
calculated by the configuration interaction method |I23|. For increasing cluster size, the 
spacing between the discrete lines decreases, evolving toward the collective plasmon. For 
Nax. with the rather spherical structure of a bicapped octahedron, a single peak is already 
obtained. The importance of electronic screening is evident by comparing lhe different pan
els in lhe figure.

Pacheco ami Martins [124| have studied lhe sensitivity of lhe calculated photoabsorplion 
cross sections of the magic clusters Lix. Li,„, Na„. and Na.,, to the use of different ah initio 
nonlocal pscudopotcntials. The pscudopotenlial of Bachelet. Hamman, ami Schluter (BUS) 
|I25| and the pseudopotential of Troullicrs and Martins ( I M) [126] were employed together
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Figure 14. Calculated and experimental absorption spectra of sodium clusters, (a) Absorption spectra from the 
difference of Kohn Sham eigenvalues. Ihe other plots show spectra calculated from Eq. (61) (panel b). Eq. (Ml) 
(panel c). and Eq. (5*1) (panel d). All calculated spectra are broadened by (1.06 eV to simulate finite temperature. 
The experimental spectra arc adapted from Rets [51. 120 122| Reprinted with permission from |39|. I. Vasiliev, 
S Ogut. and J. R. Chelikowsky. Phys. Rev. Lett. 82. 1919 (19*8)). re, 1999. American Physical Society.

with the LDA lor exchange and correlation. I he different pseudopotentials lead to the same 
equilibrium geometries obtained previously for l.i and Na clusters in the LDA: a bicapped 
octahedron for Nax [127] and a trigonal prism for Li# [114. 128]; the structures obtained 
for the 20-atom clusters arc more difficult to classify. However, the average bond lengths 
depend on the input pseudopotential, and the bond lengths calculated with the BHS pseu
dopotential are smaller than those obtained with the I'M pscudopotential. I he difference is 
sizable for sodium clusters but minor in the lithium case. As a consequence of the different 
average bond lengths, differences arc also found in the calculated static polarizabilities. The 
multipeaked line shapes of the photoabsorption cross sections are nearly identical, except for 
small overall energy shifts. Compared with the jellium LDA spectrum of Fig. 4. the spectrum 
of Naa) obtained by taking into account the full geometry of the ionic background is slightly 
shifted to lower energies; that is, in the correct direction.

Very small mixed clusters have been studied by quantum chemical ab initio methods. Moti
vated by the measurements of the optical absorption spectra of LiNa, and Li2Na2 [129], 
configuration interaction calculations have been performed for those two clusters [130], as 
well as Hartree-Fock calculations for the whole family Li,„Na4 [131]. The optical response 
was obtained in both cases from configuration interaction calculations for excited elec
tronic states. The two theoretical studies predict planar rhombic forms as the most stable 
structures: slightly distorted for LiNa, and Li,Na and undistorted for Li4, Na4 and Li2Na2. 
The photoabsorption spectrum is sensitive to nr, that is, lo the relative proportion of Li 
and Na. The spectrum of Na4 resembles that obtained from the Mie-Drude theory for an 
ellipsoidal droplet with three different axes. However, as Li atoms replace Na atoms, the 
deviations from the Mie theory increase. I he measured spectra of LiNa, and Li2Na2 arc 
explained by the ah initio calculations. Ihe calculations found low-lying isomers in each 
Li,„Na4 ni case corresponding to different ways of arranging the Li and Na atoms in the four 
vertices of the rhombus. The comparison between the experimental absorption spectrum of 
Li.Na- and the spectra calculated for the three isomers detected confirmed that the best 
agreement is obtained for the lowest-energy isomer. However, the calculated spectra for the 
two singlet isomers of LiNa, arc so similar that it was not possible to distinguish which isomer 
or whether a combination of both singlet isomers contributes to the measured spectrum.

TD1.DA calculations for the whole Na„ „tLi(1I family [ I32| obtained single (plasmon) peaks 
at both ends of the series, Lis and Nas. consistent with a spherically symmetric electron 
density for both clusters. The replacement of one or two atoms in the homogeneous clusters 
produces a spheroidal deformation of the density and introduces extra shoulders in the 
spectrum. In the middle of the series, for LkNa, and Li4Na4. the resonance is fragmented in 
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two close peaks. Iliesc lw<» clusters have tetrahedral symmetry, and .is a rule, the oscillator 
strength in the absorption spectrum of clusters with nonspherical shape is spread over a wide 
energy range, thus leading to a broader spectra.

16. OPTICAL RESPONSE OF FISSIONING CLUSTERS
Multiply charged metal clusters, like N.t‘^‘ are less stable than the corresponding neutrals 
Na, because of the coulombic repulsion of lhe unbalanced positive charges, and they can 
easily experience a process of fission, l he process of cluster fission has close analogies to 
the fission of nuclei |133], In both cases, a charged droplet will become unstable toward 
the division into two or more fragments. In simple terms, the multiply charged cluster can 
be viewed as a droplet, which because of. the unbalanced excess positive charge, tends to 
deform through elongated shapes keeping the total volume constant. The shape deforma
tion increases the surface area and then lhe surface energy of lhe cluster, however. This 
decreases the cohesion of the cluster and builds up an energy barrier that prevents the 
spontaneous fission for large cluster sizes, even when the sum of lhe energies of the fission 
products is lower than the energy of the multiply charged parent. For small clusters, in con
trast. lhe coulombic repulsion may be so strong that there is no barrier, and fission occurs 
spontaneously. Optical spectroscopy has been proposed as a tool to follow the dynamics of 
fragmentation along lhe fission path [I34|. As an example, let us consider the symmetric 
fission of Najs': that is,

Na;^ — NaJ+Na„ (77)

l he results of TI)I.L)A calculations ot the optical spectrum [134] along lhe fission path are 
given in Fig. IS. The cylindrically average pseudopotential (CAI’S) model was employed 
to calculate lhe ionic and electronic distributions. The CAI’S model can be viewed as an 
extension of the SAI’S model considered in Section 12. l he CAI’S model is based on lhe 
observation that most clusters of simple metals have axial symmetry. Taking up this idea. 
Moolag and Reinhard [135] have proposed replacing the total exlernal ionic pseudopo
tential by its cylindrical average. Using cylindrical coordinates, the CAPS potential then 
becomes

.v
v,s(,'./o=EiV-'.p;z,.p/) (7K)

/= I

I /’"'7r
vps(z,p;z>,p/) = —u|n(|r-R,|)dg; (79)

A proper choice of the c axis is critical for the success of the method. Monlag and Reinhard 
considered the inertia tensor 1 of the ionic distribution and identified the c-axis with lhe 
principal axis of I whose momentum /, deviates most from the average momentum I = 
(/i T A-f-/,)/3. Because the electrons sec an axially symmetric potential, their wave functions 
separate accordingly as

^ (/>. ^ Z ) = /?„„(/AW (X(>)

l he calculation of lhe ground-state geometry and the electronic structure then proceeds by 
an interlaced iteration of the Kohn-Sham equations and the ionic stationary conditions.

The energy of the ground state of Na;,’ corresponds to the point labeled A in the energy 
curve of Fig. 15. Its ionic configuration (not shown in the figure) hints at preformed subunits 
Na,\ and Na,, which reflects the high stability of the magic two-electron cluster Na, |13(>|. 
Nevertheless, the barriers for the asymmetric and .symmetric fission channels arc practically 
equal [ 136. 137|. Several cluster configurations along the symmetric fission channel arc shown 
on t ne upper right side of Fig. 15. together with the corresponding electronic distributions. 
To calculate those configurations, the ions of the cluster arc divided in lw,» groups, each one 
with nine ions (to simulate lhe symmetric fragmentation), and a constraint is set up on the 
distance cl between the centers of mass of these two fragments. I'hc electronic distribution
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Figure 15. The symmetric fissi.m of Na;\' illustrated by plots of the ionic distribution (upper right) and equidensity 
plots of the electron density (middle right) at various stages indicated over the fission barrier (lower right). The 
left side shows the calculated optical response at some of those stages. Reprinted with permission from (134|, 
J. A. Alonso. M. Barranco, F. Garcias, I’ G. Reinhard, and E. Suraud. in “Fission Dynamics of Atomic ('lusters and 
Nuclei" (J. da Prpvidencia, D. M. Brink, F. Karpechine. and F. B. Malik. Eds.), p. 163. World Scientific. Singapore 
21X11. © 2001. World Scientific.

and the ionic configuration are then optimized for each value of d in an increasing series 
of fixed distances d. A marked structural change occurs between configurations A and B 
(where symmetry is established). This rearrangement corresponds to a large difference in 
energy between the two configurations. Ionic scission takes place at stage D only shortly 
before the saddle configuration E, whereas the electron cloud breaks up rather late after the 
saddle point, around configuration E

The linear optical response, shown on lhe left side of Fig. 15. gives an enlightening pic
ture of lhe various stages along the fission path, l he ground-state configuration A exhibits 
a pronounced resonance between 2 and 2.2 eV. With increasing cluster deformation along 
the fission path we first observe (basically up to stage D) a gradual increase tn the frag
mentation of lhe spectrum, but still centered around 2 eV. l he connectivity of the electron 
cloud still existing in stages C and D has lhe effect of centering the dipole spectrum around 
2 eV. whereas the ions are already fully separated at stage D. A marked change occurs when 
lhe electron densities separate at stage F and beyond, l he fragmentation of the spectrum 
disappears and is replaced by the clean plasmon resonance of free Na,J around 2.7-2.8 eV. 
I'hc optical response thus provides a tool of analysis of lhe various configurations along lhe 
fission path. It might he experimentally feasible to follow such a fission path by femtosec
ond lime-resolved recording of the electronic response following short laser pulses, as done 
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nowadays lot mapping the isomerization path* ol biological photoreceptors and chemical 
reaction path ol molecules |I3S. I3‘)|. One might even hope to have access to fission time 
scale* and to thus be able to estimate viscosity effects, in a way somewhat similar to the 
nuclear case.

17. THERMAL LINE BROADENING
To compare with experiment, most TDDFT calculations perform an ad hoc broadening of 
the photoahsorption spectrum: The spectral lines, calculated for a static geometrical con
figuration of the cluster, are broadened through convolution with Gaussian or Lorcntzian 
functions [50. 65. 114|. but a first-principles description of absolute magnitudes, peak posi
tions, and line broadening can be achieved by calculating the photoabsorption cross sections 
along finite temperature molecular dynamics simulation trajectories. Shape fluctuations were 
introduced to account for the line broadening of simple metal dusters |52|. with good results 
for Na clusters. A step forward was taken by Pacheco and Schonc 1!40|. by treating in per
turbation theory the desialion of the ionic potential from being spherical The Monte Carlo 
simulations performed in this work mimic the effect of temperature on the line width and 
on the position of the resonance peaks.

However, true first-principles calculations have only been done recently by Moselcr et al. 
[I4I |. Ihey have calculated the TDLDA optical spectra of NaT. Na,. and Nat|' at finite 
temperatures. The excitation energies were calculated by solving the eigenvalue problem |38| 
of Fq. (59) and averaging the calculated cross sections for a lime propagation of II) ps. The 
result* are shown in Fig. 16. The structure of Naf is an equilateral triangle. Its calculated 
spectrum ol al / = IO() K. given by the histograms in panel (a) of the figure, shows two 
peaks. I he low-energy peak originates from two transitions (/tw, = fiw?=2.65 eV) from the 
occupied ,v-likc state to two empty p-like states with orbitals in the plane of the cluster. 
The three relevant orbitals are shown in the inset on the left of panel (a), where they arc 
labeled as I. 2. and 3, respectively. The other peak, centered at an energy of 3.41 eV. is 
the result of the excitation to the other p-like orbital, perpendicular to the cluster plane 
(see the inset on the right side of the same panel). I he positions of the two calculated 
peaks agree well with the experimental spectrum, given by the continuous line [I42|. I hc 
intensity and width ol the low-energy peak arc correctly predicted, but the measured high- 
energy peak is less intense than the calculated one. 'Hie reason is that the experimental cross 
section rr(w) is determined by measuring the photodepletion of the Na J intensity because 
ol dissociation following the absorption of one photon. The two />-like states in the cluster 
plane are antibonding, so excitation into these states promotes dissociation, but excitation 
into the p-like state perpendicular to the cluster plane docs not have a direct destabilizing 
effect. Thermal motion distorts the symmetry of Nat and lifts the degeneracy of the co, and 
io: transitions. In addition, the mean bond distance in the cluster is antioorrelated with the 
average of and «r>. and also with As a consequence, the line width can be explained 
by the combined effect of the line splitting caused by symmetry' breaking (called degeneracy 
lifting by Moselcr et al. | I4I ]) and breathing vibrations (or spectral sweeping mechanism).

At a temperature of I Oil K. the dynamics of Nat distort the ground-state O21/ symmetry 
(compare structures a and /J in the inset in panel h. where the left triangle of structure fl is 
more elongated compared to structure a) and fragments the absorption line at fiw=2.S eV 
into two spectral lines (compare the oscillator strengths given in the upper-right inset in 
panel b). The increase of T lo 300 K results in bent geometries (structure y in panel c). In 
this case, the low-energy line at %2 eV is fragmented. All the lines arc further broadened by 
the effect of the breathing modes. For larger clusters, thermal isomerization leads to another 
line-broadening mechanism, which adds lo the other two mechanisms discussed above. The 
ground slate of Na.j is oblate (the contours of constant electron density have the shape 
of an ideal oblate spheroid). As a consequence, the absorption lines are distributed in a 
bimoda manner, with further broadening arising from the line fragmentation and breathing 
mechanisms. By increasing the temperature to 450 K. the spectrum transforms to one with 
a single broad maximum. I hc main reason for the change in shape is the transformation 
between the low-temperature ground-state structure « (a tricapped trigonal prism) and the
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(0<eV)

Figure 16. Comparison of theoretical (histograms) and experimental (solid curves) 1142] photoabsorption cross 
sections of Na,' at 1(X) K (panel a). Na.' at 100 K (panel b). Na, at 300 K (panel c). Na.; at ItX) K (panel d). 
and Na, at 450 K (panel e). Insets in panel (a) indicate constant density contour plots corresponding to electronic 
orbitals relevant for the discussion of the spectrum (see text). The contour plots in panels (d) and (e) correspond 
to the total electron density and reflect the shape of the duster. Insets on the upper right sides of panels (b). (c). 
(d). and (c) give the oscillator strength for the cluster structures shown on the left side. Reprinted with permission 
from [1411 M. Moseler, II. Hakkinen, and U. Landman. P/iyv. Rci. Lett. X7, 053401 (2001). © 2001, American 
Physical Society.

isomer labeled /3. The static spectrum of this isomer is shitted to lower energies compared 
to that of the ground state, and the broad spectrum at 450 K is the result of contributions 
from both isomers.

18. FULL SOLUTION OF THE TIME-DEPENDENT
KOHN-SHAM EQUATIONS

18.1. Theory
Another efficient method exists lor calculating the optical spectrum in finite systems, based 
on directly solving lhe TDKS equations of DFT in response to the external laser field. This 
method, originally used for the study of nuclear reactions 1143], has been applied to clusters 
1144-147], The set of equations to be solved for the combined electron and ion dynamics is 
formed by the TDKS Eqs. (3(1) and (31), together with lhe Newton equations for the motion 
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of the ions
»;<1^=F„(R,,/) (SI)

The applied perturbing field F’„xl(r./) appearing in Eq. (30) is, in this case, the laser potential 
Fj.14c,(rJ) describing the classical time-dependent external electromagnetic field acting on 
the system. In the Newton's equations for lhe ions, R„ stands for the position of the ion 
labeled u. iun for its mass, and F„ is the instantaneous force on that ion. This force is 
calculated through the Ehrenfest theorem

F„(R„./) = -'!'(/) ---- H
<iR

T(/) (82)

This is just the extension of the Hellmann-Feynman theorem to the time-dependent domain. 
There arc no Pulay corrections to this expression when the Kohn-Sham wavefunctions are 
expanded in a regular grid space, but this would not be the case if one used localized basis 
sets [146. 148. 149).

The ground state of the electronic system in the nuclear equilibrium configuration, that 
is. the solution of the ground-state Kohn-Sham equations

t//,(r) = £,<//,( r) (83)

.■v

//(r) = 52|t//,(r)|:
f-l

(84)

is the starting point for the time-dependent simulations. The Kohn-Sham orbitals arc then 
propagated in time as

i//; (r. r + Ar) = e '< " u"(/', (r. r) (85)

In this method, only occupied states need lo be propagated, and there is no need of com
puting empty stales.

To obtain the linear optical absorption spectrum, one can follow an scheme proposed by 
Yabana and Bertsch | 144, 147] and excite all frequencies of the system by giving a small 
momentum k to the electrons. This is achieved by initially transforming the wave functions 
according to

iA/(r,5/) = e't:i/r,(r,0) (86)

and then propagating these wavefunctions for some (finite) time. The spectrum can then be 
obtained from the expression of the dipole strength function 5(w)

2w
S(<o) =—-lma(to) (87)

77

where the dynamical polarizability a(w) is essentially the Fourier transform of lhe dipole 
moment of the system

a(w) = |D(r)-A)(())]</z (88)
k

With this definition, the Thomas-Reichc-Kuhn /-sum rule for the number of electrons. A', 
is given by the integral

N = [ (89)

This sum rule can be used to check the quality of the calculations. Another check is energy 
conservation, which the TDDFT respects when there is no external field applied.
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For the purposes ot obtaining nonlinear optical properties, the evolution of the system 
under the influence ot a laser field, treated in lhe dipole approximation (although this con
straint can be removed), is followed. The emitted harmonic spectrum can then be calculated 
from the acceleration of the dipole moment [150, 151]

H(w)a (90)

In the implementation of Rubio and coworkers, who have developed a code called OCTO
PUS 1146], charge is absorbed at the boundaries of lhe simulation region during the prop
agation. This can be simulated by using an imaginary absorbing potential [152]. which is 
added lo the Kohn-Sham potential; that is.

Knlr’/> = h<s(r./)-iT'.,h,.(r) (91)

where K,bs(r) is zero in the inner region of the simulation box and rises smoothly until 
reaching the edges. By adjusting both the height and the shape of the potential, one can 
select which momenta arc absorbed and prevent the unwanted reflections at the boundary. 
Another option for simulating the absorption is to use a mask. In this case, the wavefunction 
is multiplied at each time step by a function that is I in the inner region of the simulation 
box and gradually goes to (1 at the borders. The absorbed charge can be interpreted as the 
ionization probability and can be used to estimate the photo-electron spectra. The box size 
has to be big enough that the physical system is not perturbed by the absorbing boundaries.

18.2. Applications to Carbon Clusters
Medium-size carbon dusters are predicted to have a wide variety of isomers with the form 
of cages, bowls, planar graphitic structures. lings. and lincai chains. The theoretical and 
experimental study of the different isomers may help to understand the way fullerenes form 
[ 153], The smallest possible fullerene, consisting of 12 pentagons with no graphitic hexagons 
intercalated, is an isomer of C2(). Other low-energy isomers of C20 include a bowl (which 
can be considered as a fragment of Cwl), several rings, and other closed three-dimensional 
arrangements. Prinzbach et al. [154] have reported the production of the cage and bowl 
members of the family. The smallest fullerene cannot be expected to form spontaneously, 
but has been produced from lhe precursor C2OH24I. The bowl was produced in the same way. 
and photoelectron spectroscopy has been used to distinguish between the different species.

It is very difficult to make reliable theoretical predictions of the most stable structure of 
C2(). In fact, different levels of theory favor different isomers. At the Hartrec-Fock level, the 
ring is the ground state, followed by the bowl and the cage [155], DFT in the LDA approx
imation reverses the order, predicting the cage as the lowest-energy structure [156, 157], 
The use of better functionals based on the generalized gradient approximation (GGA) does 
not clarify matters: the ordering of the isomers depends on the correction used [155-157]. 
Quantum Monte Carlo (QMC) and coupled cluster (CC) methods have also been applied in 
an attempt to resolve the issue, yielding bowl-ring-cage ordering using the former method 
1155] and cage-bowl-ring ordering using the latter [158]. Furthermore, it seems that the 
results are sensitive to the pseudopotential [158]. Changing slightly the pseudopotential cut
off radius may actually reverse lhe ordering of the isomers. Another complication is that 
entropy effects affect the relative stability, and lhe calculated free energies as a function ol 
the temperature [159] have been used to assign the dominant species generated in exper
iments by vaporizing graphite or prepared from precursors. Thus, it is important to find 
experimental methods to determine the structure that are sensitive enough to be usable with 
lhe available cluster beam intensities, and optical spectroscopy fulfills the requirements. The 
geometrical structures of six members of the C2n family arc given in Fig. 17: the smallest 
fullerene (cage), which is a Jahn-Teller distorted dodecahedron: the ring: the bowl: and 
three cagelike structures, labeled as (ci), (c), and (f). Structures (d) and (f). related by a 
Stone-Wales transformation |16()|, are composed of four hexagons, four pentagons, and
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Figure 17. Dipole strength function, in eV for several isomers ot Adapted with permission from (162], 
A. t astro. M. A I Marques. J. A. Alonso, G. I Bertsch. K. Yabanti. and A. Rubio../ Cheir. I‘lm. 116. 1930 
(2002) ■< 2(102. American Institute ol Physics.

four four-membered rings. These structures arc the six isomers with lower energy as cal
culated by Jones within the LDA approximation |16l|. Other structures, such as bicyclic 
rings, chains, and tadpoles may be favored by entropy al high temperature and have been 
observed experimentally. I lowever, neither of them seem to be a possible low-temperature 
ground state. The results of TDDFT calculations of the optical absorption |162| are also 
shown in f ig. 17. Table 5 gives the energies and strengths of the lowest transitions with 
appreciable strength. These results were obtained by solving the TDKS equations, with the 
LDA for exchange and correlation, and representing the wavefunctions on a uniform spatial 
grid. The norm-conserving soft-core pseudopotentials of Troullier and Martins [126] were 
used to avoid explicit consideration of the I s core electrons.

The dipole strength functions shown have been averaged over all orientations of the sys
tem. In the case of the ring, the response in the direction perpendicular to the ring plane 
is almost negligible below 8 eV compared with the response within the plane. Also, for 
the quasi-planar bowl isomer, the perpendicular response is extremely weak in that energy 
range. Although present molecular beam experiments arc not able to discriminate between 
the different spatial directions, the averaged spectra arc still sufficiently different to discrim
inate between the different structures without ambiguity. Two regions can be distinguished 
in all the graphs: the peaks that can be seen in the near ultraviolet, and a broad absorption 
that starts at around 7.5 eV. Focusing attention on the lower-energy peaks, the ring exhibits 
the largest optical gap in the spectrum and also the strongest collective transition. The bowl 
also has a high optical threshold, larger than 5 eV, but the intensity of the first significant

Table 5. Energies. in electron volts, and strengths (between parentheses) of selected 
peaks in the optical response of the C,, isomers of lig. 15 [162].

Ring Bowl Cage d c f

A 5.20 (5.4) 5.05 (0.7) 3.SS (0.2) 2.47 (0.03) 3.77 (0.1) 3.53 (0.1)
B 6.42 (1.4) 5.35 (0.7) 5.07 (1.3) 3.23 (0.1) 4.33 (0.2) 4.S4 (0.7)
( 7.09 (2.0) 6.6(1 (0.7) 4.21 (11.3) 4.96 (0.5) 5.X9 (0.3)
D 7.41 (2.3) 4.67 (0.4)
E 5.S6 (0.4)
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transition is an order of magnitude weaker than in the ring. The relative intensities of the 
peaks, the fact that the first excitation is divided into two for the bowl, and the relative 
strength of the excitations in the 6-7 eV region can all be used to distinguish the bowl isomer 
from the ring.

The spectra of the four three-dimensional isomers start at much lower energy and are 
more similar to each other, which is expected from their similar geometries. The fullerene 
isomer exhibits two peaks at 3.9 and 5.1 eV, with the second peak much stronger than the 
first one. Most of the strength concentrates above the ionization threshold (7.5 eV) and has 
a broad plateau starting at around 7 eV. This is different from planar-like isomers, in which 
an important fraction of the strength appears below 7 eV. Isomer (d) can be distinguished 
by the presence of a transition at quite low energy. 2.5 eV, as well as by the fragmentation 
into many states going up to 6 eV. Isomer (e) differs from the fullerene cage by the presence 
of a transition (labeled "B” in the figure) between the transitions that would be seen in the 
cage. I he spectrum of isomer (f) is similar to that of the fullerene cage up to the second 
peak, but it is shifted down by about 0.3 eV. This is close to the border of where the TDDFT 
energies are reliable. However, isomer (f) also has a third peak near 6 eV in a region in 
which there is a gap in the fullerene cage spectrum, and that difference would be definitive.

The benzene molecule, ChI lfl, was studied using the OCTOPUS code [146] and its pre- 
decesor code [163]. The results from the OCTOPUS code are shown in Fig. 18. The main 
features are the narrow peak at about 7 eV, which corresponds to the transition between the 
77 and 77* orbitals (also shown in the figure) and that is a characteristic of carbon conjugated 
compounds, and the broad feature above 9 eV, which corresponds to the <r—> rr1 transition. 
1'he method works well for all organic molecules studied (see the OCTOPUS Web page 
[146] for a database).

Figure 18. Optical absorption of the benzene molecule calculated with the OCTOPUS code. Experimental result 
are from Koch |I64|. The bottom panel shows — and tt‘ Kohn-Sham orbitals. Transitions between these two states 
arc responsible for the large absorption peak at 7 eV. Reprinted with permission from 1146]. M. A L. Marques, 
A. ( astro, G. F. Bertsch, and A. Rubio, Computer Phvs. Commun. 151. 6(1 (2(103). © 2003, Elsevier.
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18.3. Applications to Biomolecules
In addition to the spectacular advances over the last years in the characterization of struc
tural anil dynamical properties of biomolccules by a combination ol quantum mechanical 
and classical molecular mechanics methods, the theoretical understanding of the interaction 
of those molecules with external lime-dependent Helds is in its infancy in spite of the large 
amount ol experimental work on photoactive molecules. In particular, processes related to 
vision and photosynthesis rely on a subtle interplay between optical absorption in the pho
toactive center and its decaying mechanism through the coupling to the internal vibrational 
modes of the molecule, including isomerization processes as well as coupling to the environ
ment (supporting protein and solvent).

In this context the green flouresccnt protein (GFP) has been studied experimentally in 
vaiious environments (in solution as well as in vacuo) and has been found to exhibit a rich 
and complex behavior that is lhe subject of much current debate. The measured optical 
absorption spectrum of the wild-type (wt) GFP shows two main resonances at 2.63 and 
3.05 eV 1165. 166| (see Fig. 19). that are attributed to two different thermodynamically 
stable protonation states of the chromophore (neutral and negative configurations of the 
chromophore, respectively). So far. ab initio quantum chemistry has not been able to provide 
satisfactory' agreement with the spectroscopic data, and thus it has not contributed too much 
to confirm or rule out various possible scenarios of photodynamics in GFP.

A. good description of the optical properties of the GFP photoreceptor has been achieved 
in recent work [167] using an approach combining a quantum-mechanical molecular- 
mechanics (QM-MM) method to obtain the structure with TDDFI' to treat the electronic 
excitations. I’he structures were optimized using a hybrid QM-MM method [168. 169] with 
a semiempirical Hamiltonian [170] to describe the quantum subsystem. The QM region was 
formed by three amino acid sequences. Ser65. Tyr66, and Gly67. The frontier between the 
QM and MM regions was treated within the H-link approximation. In this approach, a 
hydrogen atom is included whenever the frontier between the QM and MM regions passes 
through a chemical bond. This H-link atom is forced during the minimization to be on 
the line along the frontier bond and does not interact with the MM atoms. The optimized 
structure of the chromophore with the most important neighbor residues is shown in Fig. 2(1.

In contrast, the anionic form of the chromophore was obtained by deprotonation of the 
Tyr66 and protonation of Glu222. The computed photoabsorption spectra of the GFP neutral 
and anionic chromophores, shown in Fig. 19, arc in excellent agreement with experiment, 
assuming the presence of lhe two forms, protonated and deprotonated, of the photoreceptor 
in an approximate 4:1 ratio. Furthermore, it can be seen in the inset of Fig. 19 that light 
polarized along the .r-direction is responsible for the lowest optical transition. The molecule 
is nearly transparent to visible light polarized along the other two orthogonal directions. 
GFP turns out to he a rather anisotropic molecule in the visible range, a property that 
could be used to enhance the photodynamic processes in well-oriented GFP samples for

Figure 19. Computed photoabsorption cross section of the neutral (thick solid line) and anionic (thick dashed line) 
chromophores. For comparative purposes the anionic results have been divided by four. Experimental results at 
1.6 K (thin solid lines) |I65| and room temperature (crosses) 1166| arc also given, l he inset shows a decomposition 
of the calculated spectrum of the neutral chromophore in the three directions, showing the inherent anisotropy 
ot the green fluorescent protein molecule. Reprinted with permission from |1(>7|. M. .A. L Marques. X. Lopez. 
D. Varsano. A. Castro, and A. Rubio. 1‘liys. Her I.ell. MO. 25X101 (2003). © 2003. American Physical Society.
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Figure 20. Optimized structure ol the neutral chromophore and its closest charged residues inside the green fluo
rescent protein: Hisl-IN Arg'tfr (positive), and Glu222 (negative), Reprinted with permission from 1167], M A. I.. 
Marques. X. Lopez, D. Varsano, A. Castro, and A. Rubio. Phys. Rev. hell. 90. 25SIO1 (2003). 2003. American
Physical Society.

opto-electronic devices. This new approach holds great promise for future applications in 
biochemistry and biophysics, as it is able to handle not only the optical response but also 
ultrashort femtosecond electron-ion dynamics. Preliminary calculations [171] for the optical 
spectra of the DNA basis are also in excellent agreement with available experimental data.

18.4. Local Orbitals
A method has been derived [172] on the basis of the description of the electronic wave
functions using a linear combination of atomic orbitals (LCAO). Because the size ot the 
LCAO basis is small, the scheme leads to matrices with a size substantially smaller than 
other methods. In that method, use is made of the SIESTA code [173, 174] to compute the 
initial wavefunctions and the Hamiltonian matrix for each time step. In the SIESTA code, 
the core electrons are replaced by norm-conserving pseudopotentials, and the basis set is a 
linear combination of numerical atomic orbitals (NAOs), constructed from the eigenstates 
of the atomic pseudopotentials.

To calculate the linear optical response, the explicit time evolution of the wavefunctions is 
followed. A bounded system in a weak electric field is first considered and the ground state 
of the system is calculated using standard time-independent DFT This is achieved in practice 
by including a perturbation AH = -Ex and setting a small value for the field. Then, the 
field is switched off at time f=() and the occupied Kohn-Sham eigenstates are propagated 
in lime by solving the TDKS equation with the ALDA for XC [172).

The calculation of the optical response of Nax is a difficult test for codes that use localized 
orbitals because of the delocalized electron density of this cluster. The basis set used by 
Tsolakidis [ 172] includes 13 NAOs per atom: two radial shapes to represent the 3s states plus 
a polarization /? shell with confinement radii equal to 12.2 a.u.. and two additional 3p 
and 3J shells with confinement radii rp = rlt of 10.0 a.u. The shape of the calculated imaginary 
part of the linear dynamical polarizability is in good agreement with other calculations [39] 
and with experiment [51]. However, the maximum of the plasmon is obtained at 2.8 eV; that 
is. the peak is shifted by 0.27 eV to higher energies with respect to experiment. This shift 
seems to be related to the extension of the LCAO basis: The more confined the orbitals, 
the larger the shift.

CM, is characterized by strong electron-electron interactions as a result of the confinement. 
Thirteen NAOs were used for this cluster: two different radial shapes for the description of 
the 2s states, followed by another two for the 2p, plus an additional shell of </ orbitals. The 
calculated spectra show a small dependence of the confinement radii. The dipole strength 
function obtained from the time evolution of the dipole moment is shown in Fig. 21. for 
energies up to 6(1 eV. The main features of the spectrum are the low-energy transitions 
arising from the 7? electrons and the ir and 77 transitions in the region of 14-27 eV In the
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Figure 21. Calculated dipole strength function ot C„„ versus energy. Reprinted with permission from 1!72|, 
A. Isulakidis I) Sanehe/ I’ort.il. and R. M, Marlin, /’/ns Kit. W 66. 235416 (2002). 1 2002. American Physical 
Society.

low-energy region, peaks appear at 3.5, 4.4. 5.4. and 5.8 eV. which agrees well with those 
observed in (he experiments [I75|. The integration of the dipole strength over energy gives 
a sum rule strength of 223.8, whereas an exact fulfillment of the sum rule should give a 
strength of 24(1. I'hc sum rule is then satisfied up to 93.2%. which reflects the incompleteness 
ol lhe basis set, which fails to reproduce some of the high-energy excitations.

rhe nonperlurbativc nature of the method allows, for large values of lhe applied field, to 
obtain nonlinear polarizabilities. Tsolakidis et al. [172] also developed a method for the cal
culation of the imaginary part of the integrated frequency dependent second-order nonlinear 
polarizability. The advantage of the explicit time method is that it uses the same operations 
as in the linear case. The disadvantage is that, unlike the linear case, in which each Fourier 
component is independent, the nonlinear response depends on the detailed spectrum of lhe 
applied field. I'hc method developed is valid lor it field that is a step function, and it was 
applied to C(ll).

19. ASSESSMENT OF EXCHANGE-CORRELATION FUNCTIONALS 
FOR THE CALCULATION OF OPTICAL PROPERTIES

When the excitation energies are obtained from the time-dependent density, that is, by 
solving the I DKS equations [see Eq. (30)]. an approximated time-dependent XC potential 
f'a/r,/) has to be used. This potential is expected to be much simpler to model than the 
XC kernel Ku[n](r./,r ,/'). which is required in the other formulation: that is, when the 
excitations are obtained from the position of the poles of the KS linear response function.

The simplest and most commonly used approximation is again the Al.DA in which the 
static LDA XC potential is used in the TDK.S equations but is evaluated al the time
dependent density; that is,

EX1MDA(r,f) = Ky,A[n(r./)| (92)

One can also start with the static GGA 1176, 1771

tGGA = I i/97t(r)£G<iA|?t(r). V/t(r)| (93)

where W?(r) is the gradient of the density at the point r and £GG'1 is an analytic function ot 
/Hr) and V/;( r) with some free parameters that arc either fitted to experiment or determined 
by fulfilling some exact sum rules. Following, then, the same reasoning, it is straightforward 
to construct adiabatic GGA potentials. Unfortunately, the onset ol absorption calculated 
either with the adiabatic I.DA or GGA functionals are typically below the observed ones 
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(by several electron volts in the case of atoms). This problem is once more related to the 
wrong asymptotic behavior of the effective Kohn-Sham potential, which goes exponentially 
to zero instead of having the correct behavior 1/r for neutral systems. This is a result of 
the insufficient correction of the self-interaction part of the Hartree potential. As a simple 
way to correct the asymptotic part of the adiabatic potential, one can use the adiabatic 
approximation of van Lceuven and Bacrcnds (known as 1.B94) [178]. 1 hesc authors applied 
the Bccke GGA construction [176] not to the derivation of the exchange energy functional 
(as in Bccke’s original work), but to the modeling of the XC potential directly. By imposing 
the correct asymptotic behavior to the XC potential, much better ionization potentials, and 
better energy eigenvalues in general, have been obtained. However, the high-lying excitation 
energies calculated with the LB94 potential are usually overestimated for small molecules, 
and the performance for low-lying states is less accurate than tor /XLDA [ 17‘>],

To overcome some of the difficulties encountered when trying to write as an explicit 
functional of the density, orbital-dependent xc-functionals have been introduced. Those func
tionals arc written explicitly in terms of the Kohn-Sham orbitals, albeit remaining implicit 
density functionals because of the Runge-Gross theorem (see Section 4 and Ref. [27]). The 
EXX functional, which is a typical member of this family, is obtained by expanding the action 
functional zlxc in powers of e- (e is the electronic charge), and retaining the lowest-order 
term only; that is, the exchange term. This is given by the Fock integral

I Ol'c r'l r r dtl^rfcl-r (94)r - rj

From this action functional, one determines the local Kohn-Sham potential by a series of 
chain rules for functional derivatives. The procedure is called the OEP, and lhe derivation 
of the time-dependent version of lhe OEP equations [42] is very similar. The final equation 
that determines the EXX potential has the form of an integral equation, and its solution 
poses a hard numerical problem. By performing an approximation first proposed by Krieger, 
Li, and lafrate [41], it is possible to obtain a scmianalytical solution of the integral equation. 
The kernel corresponding to the OEP was presented in Eq. (64). The SIC-LDA [180] is 
another example of an orbital-dependent functional

E“=^“|„T(r),„1(r)|-EErr|!*..,lrlr.0|

(95)

In this functional, a is the spin index (f.f). The first term in the functional is the LDA 
approximation; in its spin-dependent version, the second term subtracts the self-interaction 
part of the XC functional, and the last term exactly cancels the self-interaction part of the 
Hartree term (that is the spurious interaction of an electron with itself that appears in the 
classical Coulomb interaction expressed in terms of the total electron density). The time
dependent generalization of fz^.lc_LDA is immediate.

19.1. Metal Clusters
The performance of the adiabatic Fxv(r./) functionals discussed above has been compared 
for small sodium and silane molecules [145]. All the calculated optical spectra of Na. (LDA, 
GGA. EXX. SIC-LDA, and I.B94) arc quite similar, regardless of the XC potential used. 
Those spectra show' three peaks in the 2-5-eV range, and they compare quite well with 
experiment, although the DFF peaks are all shifted toward higher energies by amounts 
ranging from 0.2 to 0.4 eV. Because the electronic transition energies can be expressed [sec 
Eq. (57)] 

(%)

the shift can be understood as resulting from the competition between the Coulomb repul
sion contribution to the response and the electron-hole attraction in the XC pan For a 
given v—>c transition, lhe ALDA approximation introduces only an effective static attractive 
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electron-hole interaction (the expressions are more complicated lor othei kernels)

f i (r)Au = /r/ nA(r)i//, (r)—:(r)i//(r) (97)
•' <hi

but it is clear that the effective attractive interaction is not complete. Dynamic effects may be 
needed in the kernel to recover this minor effect. Also, temperature effects may introduce 
a broadening of the spectrum as well as a shift of the peaks to lower frequencies 1140. 1411. 
The functional giving the best results, although b\ a small margin, is EXX. whereas the 
strongest departure from the experiment is found for LB94.

For Na4. shown in Fig. 22. all the calculations yield similar spectra. The spectrum consists 
of three peaks in the 1.5-3.5-eV range and a broader feature around 4.5 eV. The comparison 
with the experimental peak positions is quite good, although the calculated peaks appear, 
again, shifted Io higher energies by ~0.2 eV The deviation of the LB94 is a little bit larger. 
In general, the errors in the calculations with all these functionals are larger for the high- 
energy peaks, which involve transitions to states near the ionization threshold. The figure 
also contains the results of a GW quas particle many-body calculation including excitonic 
effects 1181) (sec Section 21).

19.2. Silanes
Ihc two simplest hydrogen-terminated silicon dusters, silane (Sill4) am: disilane (Si2ll„), 
pose a much harder challenge that the alkali clusters because of the presence of j> electrons 
ami also because of the hydrogen atoms. As expected, the different XC functionals lead 
to dissimilar results |145], The HOMO-LUMO gaps obtained for Sil l4 with the different 
functionals arc 8.10 eV (LDA). 8.I2 eV (GGA). 8.40 eV (I.B94). 7.70 eV (SIC-LDA). and 
8.77 eV (EXX). I hc differences between them are not large, although it is woth noticing 
the smallest value is obtained for SIC and the largest ones for LB94 ami EXX. All those 
gaps arc. however, smaller than the value of 13.0 eV obtained in a GW calculation [I82|, 
For Si H„ the HOMO-LUMO gaps are 6.76 eV (LDA). 6.8(1 eV (GGA). 6.58 eV (LB94), 
5.98 eV (SIC), and 7.17 eV (EXX), and again the variations are not large. However, the 
main difference between those methods is a nearly rigid shift of the spectrum of the LDA 
and GGA energy eigenvalues with respect lo I.B94 and EXX. The upward shift leads to 
lower electronic binding energies. The SIC spectrum is also shifted, but much less so.

The experimental absorption spectrum of silane |I83|. given in Fig. 23. has three peaks 
between 8 ami 12 eV followed by a much broader feature at higher energies. The peaks 
derive from a Jahn-Teller splitting of the triply degenerate 2n-»4.v transition. I he spectra 
obtained with the LDA and GGA functionals (upper panel in the figure) are quite similar 
to each other, and Ihe onset of absorption is underestimated by around I eV with respect to

Figure 22. Averaged dipole strength ol N;t, The curve labeled “exp' shows the experin cnlal photodepiction 
spectrum of Wane cl al. [511. GW shows the results ol a many-body calculation including self-energy and exci 
tonic effects |ISI|. and PBI indicate' the results of GGA calculations with the functional ol Pcrdcw. Burke, and 
I rnzcrlu I 1177], I he other curves (L.DA. EXX. SIC-LDA. and I.B94) correspond lo calculations with functionals 
explained in the text I he geometrical structure of Na4 is shown nt the inset Reprinted with permission from |I45|. 
M. A. L. Marques. A ( astro, and A. Rubio. / (hem. Phy* 115. 3006 (2001) ' 2001. Amcricin Institute of Physics
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Figure 23. Averaged dipole Mrenglh ol Sill, l he esperimenlal curse (expl is from Itoh |IS3|. PBI indicates the 
results of generalized gradient approximation calculations with the functional ot Perdew. Burke, and Ernzerhol 
1177|, The other curves <LOA. EXX, S1C-LDA. and LBV4) correspond to calculations with functionals explained 
in the text. The geometrical structure of Sill, is shown in lhe inset. Reprinted with permission from |145|. 
M. A L Marques. A. Castro, and A. Rubio. .1 ( hem. Phys 115. '(MM> (2001) ' 2001. American Institute of Physics

experiment. However, the SIC spectrum (given in the lower panel) is unphysically shifted to 
lower energies, and its first peak is split. The shifts of the SIC. LDA. and GGA spectra could 
be anticipated from the low HOMO-LUMO gaps, l he LB94 and EXX functionals behave 
quite well: The onset of absorption is now correct and the error in the position of the first 
three peaks is reduced by a factor of two from the LDA or GGA results. The LDA. GGA. 
LB94, and EXX spectra of disilanc (Si ,H(1) are all very similar and consist of five peaks in the 
interval 7-12 eV. followed by a broader feature al higher energies. The overall comparison 
with experiment is slightly better than for silane. The SIC-LDA functional yielded again a 
quite unreasonable spectrum.

20. NONLINEAR PROCESSES
20.1. Clusters in Strong Laser Fields
Progress in laser technology has opened new lines of research in the domain of nonlin
ear cluster dynamics. Lasers offer an ideal tool for spanning various dynamical regimes, 
ranging from the linear regime with plasmon-dominated dynamics (already discussed in pre
vious sections) to the semilinear regime of multiphoton absorption processes [184, 185] 
and to the strongly nonlinear regime of Coulomb explosion (186, 187]. From the theoreti
cal side, only theories based on DFT have been able to deal with such different situations 
and dynamical regimes for clusters. Those calculations [188] have exploited the numerical 
experience acquired in nuclear physics.

Let us sketch the various steps appearing in the response of highly excited metal clusters. 
In addition lo the irradiation by intense femtosecond laser pulses [189], one can consider 
another class of rapid, intense, excitations: collisions with energetic, highly charged ions 
[190]. In both cases, the excitation takes place in times between tens of femtoseconds down 
to below 1 fs. This time is directly comparable to characteristic timescales of the valence 
electron cloud, and consequently the cluster response is primarily of electronic nature. The 
first phase of the reaction is a direct emission of electrons and an oscillation of the col
lective plasmon. This first phase is characterized by timescales on lhe order 1-1(1 fs. In a 
second stage, still ol purely electronic nature, damping of the collective electronic motion 
takes place, both by means of Landau-like damping (i.e.. excitation of resonances in the con
tinuum) and by electron-electron collisions. The timescales associated lo these effects are 
variable depending on lhe cluster size (Landau-like damping) and the deposited excitation 
energy (electron electron collisions). Landau-like damping takes 10-20 fs and collisional 
effects around 1(1 100 fs. After that, lhe electronic degrees of freedom slowly couple to 
lhe ionic motion and may lead lo the explosion of lhe charged cluster on long times of 
several hundred femtoseconds. Two mechanisms operate here: lhe first one is lhe coulombic 
repulsion resulting from the net charge of the cluster following ionization, and the second 
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one corresponds lo energy exchanges between lhe hoi electron cloud and lhe still-cold ions, 
t he two effects interfere constructively to activate ionic motion and lo lead to evapora
tion. lission. or fragmentation. Thermal evaporation of electron- proceeds on a very long 
timescale, usually slower than ionic processes like monomer evaporation and fragmentation. 
It can become competitive in the KM) fs range only for very hot clusters.

Two examples are now considered, to illustrate the various stages ot the excitation and 
response of metal clusters in the nonlinear regime. The first example places the focus on the 
electronic response. Figure 24 represents the first stage in the response of Na,7, irradiated by 
an intense laser pulse |I34|: that is. the electronic response. The cluster structure is treated 
in the jellium approximation and the laser pulse is modeled by a lamp pulse (trapezium 
shape) with a total duration of 100 Is. The intensity is 7 = 1010 W/cnr. and lhe photon 
frequency. 7iu> = 3.1 eV. is slightly above the Mie resonance for this duster. I’hc response 
depends crucially on the actual laser frequency [IKS. 1911. For laser frequencies sufficiently 
far away from the plasmon resonance, the dipole response follows closely the pulse profile 
and disappears w hen the laser pulse profile vanishes. On the contrary, for laser frequencies 
close to the Mie resonance, the laser may attach the resonance. This results in a sizable 
electron emission, and the dipole response survives the laser pulse, as it generates a true 
eigenfrequency of the system. The example considered in Fig. 24 corresponds to a situation 
in which the plasmon actually comes into play during the process. For the first 50 fs. the laser 
pulse remains above resonance and the electronic dipole moment D(i) follows the profile of 
the pulse (sec the upper panel in the figure). The laser intensity is still enough to induce lhe 
ionization of the cluster, l he charge deficit makes the electronic cloud of the cluster more 
compressed (the ionic background does not change in the model), and this shifts the plasmon 
resonance toward higher frequencies, and thus closer to the laser frequency. From about 50 fs 
on. the Mie plasmon couples resonantly with lhe laser, and this leads to a substantial increase 
in ionization. The process reaches a peak until the violent electron emission produces a

Figure 24. I Icetionic response ol Na as a function ol lime (femtoseconds) lo a too fs laser pulse ol peak intensity 
It)1' W cm the upper panel gives lire dipole moment (in atomic units) along tile axis of laser polarization, 
und the lower panel gives the number ol emitted electrons Reprinted with permission from |I34| J A Alonso. 
M. Baminco. I. Garcias, P, G. Reinhard, and I . Simiud. in l ission Dynamics ol .Atomic Clusters and Nuclei" 
(J. da Providencia, D. M Brink. I Isarpechinc. ami I B. Malik. Id-.). p, 163. World .Scientific. Singapore 2(1111. 
© 2001. World Scientific.
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further blueshill of the plasmon frequency that detunes the plasmon from the laser. Still, 
even after the pulse has been switched off and electron emission has leveled off. the electron 
cloud continues performing collective oscillations at the actual plasmon frequency ol the 
system (i.e.. the frequency is consistent with the net charge of the cluster).

1’his example illustrates the role of the plasmon resonance in triggering ionization. For the 
moderately short pulses considered, the ion positions remain practically frozen and do not 
interfere with the ionization process. However, this is not the case when longer pulses are 
considered. Indeed, experiments 11X7] in platinum clusters indicate that the highly charged 
cluster rapidly undergoes a Coulomb expansion with a timescale of 100-500 fs. An inter
ference can thus occur between the laser pulse and the ionic motion, which may enhance 
the ionization.

A second example, the excitation of Naj, subjected to a long laser pulse (24(1 1s) of fre
quency =2.86 eV. shows how the ionic motion can interfere with the excitation pro
cess. The excitation of this cluster has been simulated using the TDLDA 11M2]. l he results 
are presented in Fig. 25. An explicit account of the ions is needed, and the ion-electron

figure 25. rinw-depcndenl local density approximation simulation of the excitation oi NaJ, with a laser of 
frequency ft<>» 2.86 eV. intensity I =9x lu W cm . and pulse length 240 fs. from top to bottom: global exten
sion of the ionic distribution in ; (along laser polarization) and axial r-dircction (transverse to laser polarization), 
average resonance frequency <«,..(/) for the actual structure and charge state, number of emitted electrons ,Vcv and 
dipole signal. Reprinted with permission from 1I92|. I Suraud arid P. G. Reinhard. /’Ins. Rev. I.ett. 85. 2296 (2000). 
' 200(1. American Physical Society 



interaction was modeled with pseudopotentials. I he third panel, giving the number of elec
trons emitted. Vc„. shows that ionization takes place in several steps. Again, in a first phase, 
lasting lor about Sil Is. the response is fully electronic ami is characterized by a low ioniza
tion, but the net charge ol the cluster shifts the plasmon resonance upward until it comes 
into resonance with the laser. This results in a sudden increase in ionization around 100 Is, 
leaving the cluster in a state with a net charge 5+. Up to that stage, the situation is simi
lar to the previous case of Na*,, f rom then on. ionization proceeds at a slower pace until 
another burst of electrons shows up around 250 fs. again stripping about five electrons. The 
lowest panel of the figure gives the electric dipole signal D(t). It is clear that large slopes in 
ionization (.V^J are correlated with large dipole amplitudes, which again reflects resonant 
conditions.

A relation between the two observables is observed by plotting in the second panel the 
instantaneous plasmon frequency «>,c,(/). calculated at each time t for the instantaneous 
structure and charge of the duster. I he laser frequency is the dashed horizontal line in 
the same panel. The correlation between large slopes in and resonant conditions is 
noticeable. I he first coincidence at time I (Ml fs reflects the blueshilt of the plasmon resulting 
from the first stage of ionization and corresponds to an electronic effect. Il also triggers 
the time at which a sizeable Coulomb expansion of the ionic distribution starts (see also 
uppermost panel), and it is noteworthy that this occurs rather soon (about 50 fs) after the 
violent initial charging. The Coulomb expansion in turn leads to a red shift of the resonance 
[see Eq. (9)], which is responsible for the second coincidence at 230 fs. The system thus 
acquires a much higher charge state and ends up in a violent Coulomb explosion.

Other nonlinear phenomena related to the coupled electron-ion dynamics correspond 
to the selective dissociation of molecules, isomerization, and the possibility of having an 
inverse Landau damping process: that is. an electron-hole excitation decaying by emitting a 
plasmon [193|.

20.2. High Harmonic Generation
By irradiating an atom, a molecule, or a surface with a high-intensity laser, an electron may 
absorb several photons and then return to its original slate by emitting a single photon. I he 
emitted photon will have a frequency that is a multiple number of the laser frequency. This 
process is known as high harmonic generation. Because the emitted high energy photons 
maintain a high coherence, they can be used as a source for X-ray lasers. Figure 26 shows 
the harmonic spectrum of the helium atom. I he experimental data, from Miyazaki and Sakai 
1I94|. is represented by the squares. I he solid line gives the theoretical results 1195] obtained 
from the TDDFT using the EXX functional. The spectrum shows a series of peaks that

Harmonic Order

Figure 26. < alculatcd harmonic spectrum lor He at A = (> lb rim and intensity equal to 3.5 x 10“ W cnr. I"hc squares 
represent the experimental data |I*M|. normalized to the value of the thirty-third harmonic of the calculated 
spectrum Reprinted with permission from |l‘>5|. C. A. Ullrich. S. Erhard, and E. K. U. Gross, in "Super Intense 
Easei Atom Physics (SLAP IV)'' (H Ci. Muller and M. A Fedorov. Eds.). Kluwer. Amsterdam. I94(>. < I'Mi. 
Kluwer.
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first decrease in amplitude until a plateau is reached that extends to very high frequency'. 
The frequencies of the peaks are odd multiples of the laser frequency. The even multiples 
are forbidden by symmetry. All theoretical approaches based on perturbation theory would 
produce a harmonic spectrum that decays exponentially. TDDFT, however, reproduces well 
the measured intensities.

High harmonic generation can. as indicated above, be used as a source of soft X-ray lasers. 
To this end. one should optimize the laser parameters, frequence, intensity, and so forth to 
increase the intensity of the emitted harmonics and to extend (he plateau as far as possi
ble. TDDFT “computer experiments” can be helpful for this task. Erhard and Gross [196] 
have modeled the irradiation of H atoms with lasers of a common frequency and different 
intensities They found that the amplitude of the harmonics increases as the intensity of the 
laser increases, until a maximum amplitude is reached for a given intensity. Beyond that 
Riser intensity, the aplitudc of the harmonics decreases bee;.use the probability for ionization 
becomes substantial.

21. MANY-BODY TECHNIQUES: GW QUASIPARTICLES
We have seen above (Section 5) that the eigenvalues of the Kohn-Sham equations of DFl 
cannot be interpreted as electron removal energies. A successful development to compute 
excitations tn electronic systems has been a liist-principlcs self-energy approach in which 
the quasiparticle (qp) energies arc determined directly by calculating the contribution of 
the dynamical polarization of the surrounding electrons. I’here are no parameters in this 
theory, and the qp energies and wavefunctions are determined by solving a Schrodinger-like 
equation

(T + K,, + V„)<//,'"’(r) + (dr’X(r.r ; E,^(r) = E.^ (r) (98)

where 7 is the kinetic energy operator. I\ v is the external potential resulting from the ions. 
f '„ is the Hartree potential of the electrons, and 1 is the self-energy operator where all the 
many-body exchange and correlation effects arc included. The self-energy operator describes 
an effective potential on the qp resulting from the response of the other electrons in the 
system. In general. ~ is nonlocal, energy-dependent, and non-l lermitian. with the imaginary 
part giving the lifetime of the quasiparticles. In practical implementations (the so-called GW 
approximation [197-199]), the self-energy operator is taken to be the first order term in a 
series expansion in terms of the screened Coulomb interaction B7 and the dressed Green’s 
function G of the electron as

X(r.r';E)=-^- Zdwe ,A"G(r.r';E-w)IF(r.r ;<o) (99)
2tt J

where 3 is a positive infinitesimal. Vertex corrections are not included in this approximation 
[197—199]. I hc quasiparticle energy is usually computed within the framework of DFT as

w here I/^’11 is the XC potential w'ithin DFT and ej”' and 1 are the corresponding orbital 
energies and wavefunctions. Two major components of the theory are the time-ordered one- 
electron Green’s function

(3 = (E for E < fi. and 3 = 0 for E >/x. where /a is the Fermi energy ) and the dynamically 
screened Coulomb interaction 

where 11 is the volume and n(r.r :E) is the time-ordered dielectric response function of the 
system. In general, the I ledin's procedure is a self-consistent scheme to first order in IK. The 
general equations are (the numbers stand for spatial and temporal coordinates and u for the 
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hare coulomb interaction)

1( 12)=/ / G(I3)l(324)11 (41 )</(34) (103}

H (I2) = i;( 12) + fv( l3)P(34)lf(42)d(34) (104)

/’(I2) = if(H I3)G’(41 )F(324)</(34) (105)

I ( 123) = <S(12)<S( 13) + / G(46)G(75)F(673)</( 4567) (106)
J 6G(45)

The polarizalor /*( 12) is (he time-ordered counterpart of the retarded response functions, 
l he main idea of lhe GW approach is to start the iteration of these equations neglecting 
vertex corrections; that is. 1(123) is assumed to be a diagonal operator. In this way, the 
polarizalor and sell-energy operators read as P = iCt(i and l = /'G'll'. explaining why the 
approximation is called GW. Adding on top of these equations the Dyson equation for 
the Green function

G' = Ghl 1 + G'1’11167 (1(17)

where G'*’*1 is lhe DET Green's function obtained from the Kohn-Sham orbital energies and 
wavefunctions, we can see that, even at lhe GW level, we have a many-body sell-consistent 
problem. Most GW applications do this self-consistent loop by varying the energy of the 
quasiparticle but keeping the wavefunction fixed equal lo lhe DFT wavefunction.

Using standard many-body techniques, one can write the XC energy and gel from it lhe 
XC potential. In this way. we can extract an exact equation for the XC potential in terms of 
lhe XC part of the self-energy operator |200]

/ </ri1 \. (ri) / <IEG»(r. r,. I )G( r,. r. /•.) - dr, Jr. f tlEGn(r,r,. E)i„ (rt, r,. E)(/'(r.. r. E)

If only lhe exchange term is kept in 2. and G' is replaced by G’„ we obtain the local potential in 
the I lartree-Fock approximation. When applying this equation to bulk Si. it is found that the 
overlap between the quasiparticle wavefunctions and the LDA-wavefunction is higher than 
Wi. which justifies choosing the DFT Green's functions in the GW procedure. However, 
this agreement is less satisfactory for II—VI or 111—V semiconductors with semicorc levels 
dose lo the valence complex and for transition metal systems. In those cases, it is necessary 
lo iterate the GW equations to get good quasiparticle energies and wavefunctions, and from 
these the corresponding XC potential. The formalism can be extended to the time-dependent 
domain to derive correlation contributions lo the time-dependent XC potential [2011. The 
inclusion of vertex corrections, that is. the inclusion of I’ for P. can be achieved through a 
second iteration of Hedin's equations. For a review comparing many-body approaches and 
TDDFT schemes, see Ref. [3I[.

The quasiparticle energies of small closed-shell sodium and potassium clusters have been 
calculated [33] using a spherical jellium model description of the cluster structure. The 
results for Na.n are compared in Table 6 w ith the DFT energy eigenvalues. The quasiparticle

Tahle f>. Calculated quusiparticle energies of Na.,, in lite spherical jellium model |33| 
compared with Kohn Sham local densih approximation (l.DA) [33| and weighted den
sity approximation (Wl)A) [32| energy eigenvalues.

GW DFT-LDA DFT-WDA

5.X : (1.4 5.1 -5.8
>. 5.2 r 0.4 4.4 -5.1
1 4 4-11 1 -3.5 -4.2
I 3 K±(I.O5 -2.‘> 3.7

-l.7±0.l -2,4

: 1)1 I. dunMiv-luiKliiMi.il Iheorv

luiKliiMi.il
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energies of the occupied slates (shells Is. l/>. !</ and 2 s) are more negative than the LDA 
eigenvalues. I hc opposite occurs for the quasiparticlc energy Eu of the lowest unoccupied 
shell, and consequently the energy gap is larger in the GW calculation. The result found 
for bulk semiconductors and insulators is similar |2(I2|. As expected, the absolute value 
of the highest occupied quasiparticle energies of the Na and K clusters are closer to the 
experimental ionization potentials than the LDA Kohn-Sham eigenvalues [33]. It is useful 
to notice that a DFT calculation using the nonlocal WDA for XC effects has been able 
to give Kohn-Sham energy eigenvalues of occupied states in very good agreement with 
the quasiparticlc energies (32). The WDA results arc given in the last column of Table 6. 
The description of the ionization potentials of the Na and K clusters, as approximated by the 
absolute value of the HOMO eigenvalue, becomes also substantially improved with respect 
to the LDA. I hc improvement is the result of the more accurate account of the asymptotic 
part of the XG potential.

The results of a GW calculation of the optical spectrum of Na4 by Onida ct al. 11811 includ
ing the rhombic structure of the cluster arc given in Fig. 22. The LDA energy eigenvalues and 
orbitals form the input for the evaluation of the RI’A screened Coulomb interaction IT and 
the self-energy - Ihc quasiparticlc energies arc then evaluated in first-order perturbation 
theory in i- l\c. The GW corrections to the energies of the empty states arc between 0.75 
and 0.9 eV. The HOMO and the LUMO are lowered by 1.55 and 1.4 eV. respectively. This 
leads to a HOMO-LUMO gap of 3.0 eV, to be compared to the small LDA gap of 0.55 eV. 
These large corrections are expected fora system in which screening is weak. The calculation 
of Onida et al. also includes excitonic effects, which is the binding interaction between the 
electron and hole quasiparticles that occurs when electron-hole pairs are created, as in opti
cal excitations. Starling with the quasiparticlc energies, the excitonic effects are computed 
from an effective two-particle interaction, which includes the screened electron-hole inter
action and also an unscreened exchange term [203]. These excitonic effects are expected to 
be large when screening is weak, and in fact, absorption occurs in Na4 at energies substan
tially smaller than the quasiparticlc gap. In summary, the figure reveals good agreement with 
experiment for both the positions (within 0.2 eV) and the relative oscillator strengths of the 
main peaks of the photoabsorption spectrum. The final results arc in similar agreement with 
experiment as the calculations based on TDLDA discussed in Section 19.1, and Fig. 22 puts 
in evidence this comparison.
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1. INTRODUCTION
Since the first proposals by Yablonovitch |l| and John [2], photonic crystal (PC) or pho
tonic band gap (PBG) material has quickly emerged as one of the most important classes of 
materials for photonic applications. PC is an artificially made material in which the dielectric 
constant, or the index of refraction, is periodically modulated. As a result, the electromag
netic wave undergoes Bragg scattering by the dielectric structure in much the same way as 
the electrons in a periodic potential are produced by a crystal As a consequence, the disper
sion relation is modified to form a photonic band structure that bears strong resemblance 
to the electronic energy' band structure. Some structures even exhibit PBGs in which no 
photon modes exist, just as some crystals exhibit electronic energy band gaps in which no 
electronic states are present, l he complete PBG, in which light propagation is prohibited 
in all directions, is particularly important, with extremely high technological potential, and 
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thus lhe efforts to identify the structures exhibiting complete PBG have been a major driv
ing force in PC research. The technological importance of complete PBG lies primarily in 
the possibility of deliberately introducing defects that subsequently create localized modes 
within the PBG. Such delect modes would then act as waveguides or cavities, depending on 
their exact geometry. Because the features in PC structures have dimensions on the order 
of the optical wavelength, these photonic defect waveguides and cavities can be made with 
nanoscale geometries. Furthermore, in these structures the light is strongly confined by the 
photonic band structure, sharply contrasting the weak confinement with the index difference 
in conventional waveguides. Therefore, PCs present exciting new possibilities of realizing 
large-scale integrated optical devices, analogous to the large-scale integrated circuits that 
revolutionized the electronics and computing industry several decades ago. Since the first 
demonstration of near-perfect waveguiding around a sharp corner in a PC waveguide 
[3|. lhe research on the integrated optical devices based on PC structures has been extensive, 
ranging from analysis of mode structures in PC waveguides |4. 5| to design ol new devices 
such as channel add/drop tillers [6] to coupling with optical libers |7|.

In addition lo controlling the propagation of light, the photonic band structure also affects 
the generation of light through the strongly modified photon density of stales. Spontaneous 
emission of an atom, as the name suggests, has long been believed to be an intrinsic, unal
terable property. However, spontaneous emission is. in fact, a result of interaction between 
atom and vacuum, and it can be greatly enhanced or suppressed if the vacuum stales of pho
tons are modified. The research on the atom-vacuum system, often referred to as the cavity 
quantum electrodynamics (QED). has led lo the prediction and demonstration of many 
novel optical phenomena |8|. A hallmark application of cavity QED effects is the thresh
oldless laser, in which all spontaneously emitted photons are coupled to the lasing mode, 
and thus the light output increases linearly with the pump power. The key to achieving the 
thrcsholdless laser is to increase the spontaneous emission factor [3. which is given by

0 = 47r?rt’F’AA
where n is the refractive index, F' is the mode volume. A is the emission wavelength, 
and AA is the linewidth |9j. Obviously, one can increase (3 by decreasing the mode vol
ume and simultaneously increasing the cavity (7 factor, which is inversely proportional to 
AA. Although a variety of structures such as micropillars and microdisks have been devel
oped. the PC provides the most efficient platform for creating very small cavities with high 
(2 factors. A recent report on a two-dimensional PC cavity showed a (A factor as high 
as 2800 and a mode volume as small as 0.43(A/n)’ |1()|. In addition to the strong light 
confinement by PBG, PCs also offer high design flexibility that allows tailoring of mode 
structure to yield lhe strongest coupling between light emitter and cavity modes |ll|. Il 
is thus believed that lhe PC is one of the best material platforms for high-efficiency light 
sources.

Another exciting phenomenon observed in PC structures is the extraordinary refraction 
and dispersion characteristics, which may become orders of magnitude greater than in con
ventional optical materials. This novel phenomenon was first reported by Lin et al. in the 
millimeter wave region |I2|. Kosaka et al. then constructed a three-dimensional Si SiO: PC 
structure using a self-replicating sputtering technique and observed a similar super prism 
effect at optical wavelengths 113]. Both of these structures possess sixfold rotational sym
metry. which results in a highly anisotropic dispersion curve with corresponding sixfold 
rotational symmetry'. This anisotropy is responsible lor lhe giant refraction characteristics. 
In Ref. 113], it was reported that a ray entering the crystal with a small incident angle 
(7°) experiences a strong refraction with an extraordinarily large refraction tingle (as high 
as 7(1°). Furthermore, the dispersion relation can also become highly nonlinear, resulting in 
a superprism effect in which closely spaced wavelength components are widely dispersed. 
It was recently reported that two wavelength components differing only by 1G could be sep
arated by as much as 5(1 . an angular dispersion 5<M» times greater than conventional prism 
114|. In addition, a PC may also exhibit a negative refractive index, causing the incident ray 
refracted back lo the side on which it was incident. This unconventional phenomenon is a 
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direct consequence ol the periodic index modulation in PC’s, which results in strong mixing 
of diffracted waves with various reciprocal lattice vectors [I5|. It should be noted that these 
unconventional refraction and dispersion properties do not require the existence of PBG. 
which significantly relieves material and fabrication requirements. These novel properties 
present an exciting possibility of achieving nanoscale optical devices that can collect, focus, 
disperse, switch, and steer light in a highly integrated geometry.

In all of the recent developments in PC-related research, theoretical modeling has been 
the most critical component. It has led the early developments, providing the basic infor
mation about the photonic band structures and the resultant optical properties. In recent 
years, the experimental research for realizing many novel PC structures has significantly 
intensified. However, the theoretical modeling study still plays a crucial role as a design tool 
while it continues to explore the new frontiers of the exciting new phenomena PCs might 
exhibit. In this review, we give an overview of the theoretical framework, numerical modeling 
techniques, and recent research findings of the theoretical modeling studies.

2. THEORETICAL BACKGROUND
As in any problem involving electromagnetic waves, the theoretical treatment of PC begins 
with the four Maxwell's equations

V I) ~ 4”p

V B = 0

V x

The information of the medium in which the fields are present is included by the constitutive 
relations that relate D to E and B to 11

1) = «E

H = pB

Here, t: and p may be functions of spatial coordinates and also of frequency. When dealing 
with nonmagnetic, lossless, and sourceless medium, which is often the case for PCs. we can 
simply put p = I. p = 0, and .1 = (). This condition also gives that k is purely real. We note 
that we make these assumptions for illustrative purposes. As we shall sec later, the formalism 
can be fairly easily extended to the more general cases such as metal-dielectric PCs, where 
some of the above assumptions arc not valid. We now employ the familiar technique of 
assuming harmonic time dependence for E and H fields. The two divergence equations 
in Eq. (2) are then simply reduced to the transversality condition, whereas the two curl 
equations in Eq. (2) may be transformed into a pair of wave equations

V x V x E(r) = e(r) — E(r)
c-

V x l~V x H(r)| = — H(r)
I £(r) I c-

(4)

The resemblance of Eq. (4) to the Schrodinger equation is quite remarkable. In the equa
tion lor £ field, lor example, we may regard the second-order differential operator in the 
left-hand side as the kinetic energy term, while in the right-hand side e(r) acts as the poten
tial energy and w as the energy eigenvalue. This recognition is particularly important for 
modeling of PCs. as one may then explore the possibility of using techniques similar to those 
developed and widely used in solid-state physics. In fact, many modeling techniques currently 
used for PCs were originally developed for electronic systems and later adapted for PCs. 
However, there are two crucial differences that must be taken into account. First, the £ and 
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H fields are vectors with two degrees of freedom for polarization, whereas the electronic 
wavefunction in Schrodinger equation is a scalar quantity. The full incorporation of the vec
tor nature of the E and // fields is critical for accurate prediction of photonic band structure. 
As a matter of fact, during the early theoretical development there was some confusion 
about the existence of complete PBG in some structures as a result of incorrect prediction 
by scalar wave approximation. In addition, the dielectric constant e appears in a product 
with the frequency, and thus lhe periodic potential and energy eigenvalue are intrinsically 
tangled together, contrasting the Schrodinger equation, where the two are independent.

The periodicity of PC is contained in the functional form of e(r). which satisfies

£(r) = e(r + R) (5)

where R is a lattice translation vector generated by the primitive lattice vectors a,, such 
that R — a, + + /i,a3, where n/s arc integers. Mathematically, the periodicity may be
expressed by translational symmetry'; that is, the system is invariant under certain translations 
defined by the primitive lattice vectors. This translational symmetry then allows us to invoke 
Bloch’s theorem and write the fields as

Ek(r) = uk(r)?kr (6)

where u is a function with the same periodicity as the lattice. u(r) = u(r + R). A key 
characteristic of the Bloch states is that the states with certain wave vectors are identical. To 
be precise

Ek-c;(r) = Ek(r) (7)

if G = m,b| + (N-.b, 4- m.b, where b/s are the reciprocal lattice vectors defined by a, • b, = 
. This is a direct consequence of the real space periodicity, which causes the wave 

vector space, or equivalently, its Fourier-transformed space or the reciprocal space, also 
periodic. As a result, we only need to consider a unit cell in the reciprocal space, which 
is conventionally taken to be a Wigner-Seitz unit cell, often called lhe first Brillouin zone. 
Finding all allowed frequencies for the k vectors within the first Brillouin zone yields the 
dispersion relation w(k), or the photonic band structure, from which most optical properties 
may be predicted. The photonic band structure also gives rise to the photonic density of 
slates (DOS), which could be strongly modified from the case of homogeneous medium. 
The DOS is, by definition, the number of allowed states at a given frequency w. and thus 
may be found by counting all allowed states.

p(<o) = f — <a(k)] (8)
■'BZ

In the free space, the dispersion relation is simply given by w = ck. from which one finds a 
DOS quadratically increasing with angular frequency [16]

In a PC structure, however, the DOS is strongly modified in such a way that the DOS 
becomes zero inside the PBG, whereas it tends to be strongly enhanced near the band edges. 
The modified DOS subsequently affects the light-matter interaction and plays an important 
role in controlling spontaneous emission rate, as discussed later.

Before we start the discussion of various numerical techniques used for computing the 
photonic band structure, it is profitable to investigate the symmetry properties of photonic 
bands, which is lhe most effectively done by using group theory. A PC structure is often 
composed of a highly symmetric arrangement of dielectric materials. For example, one of 
the most widely studied two-dimensional PC structures is a triangular array of air holes in 
a background dielectric medium. From the geometry', we find that there exist six rotations 
and six reflections that leave the structure invariant. They arc the six rotations by angles 
that are multiples of 6(1° (/:. (2C-„ and 2C(1) and three reflections in the planes along the 
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nearest-neighbor directions (3<r,) and three more reflections tn the planes along the next 
nearest-neighbor directions (3rrd). These symmetry operations form the point group Cln.

Following the group theoretical approach originally developed in solid-state physics 117], 
wc can then proceed to identify the subgroup leaving the given wave vector k invariant, 
which is called the group of k vectors. Then, the eigenmodes having the given k vector arc 
specified by the irreducible representations of this group of k vectors. In general, the quan
tum states are specified by the irreducible representations of the symmetry group containing 
all symmetry operations that leave the Schrodinger equation invariant, but when dealing with 
the Bloch stales as wc arc now. substitution of the Bloch functions such as those given in 
Eq. (61 gives rise to an additional term involving the wave vector k. Therefore, the resulting 
wave equation is invariant under the operations, leaving both the k vector and the potential, 
or the dielectric function «(r). in our case, invariant. This process is analogous to the well- 
known hydrogen atom problem, in which one can first invoke the full spherical symmetry 
to determine the angular part of the wavefunction in terms of the spherical harmonics and 
then deal with the resulting radial part of the Schrodinger equation to obtain the radial part 
of the wavefunction. In this case, we first use Bloch’s theorem to account for the periodicity 
from unit cell to unit cell and then deal with the resulting wave equation to determine the 
wavefunction within one unit cell.

To proceed further, we now need to specify the group of k vectors and this requires us 
to consider particular k points in the first Brillouin /one. For the triangular crystal currently 
being considered, the reciprocal lattice is also a triangular lattice, and therefore the first 
Brillouin zone is defined by a regular hexagon. The center of the Brillouin zone is called the 
I' point and corresponds to k = 0. Other high-symmetry points are K and M points, which 
correspond to the corners of the hexagon and the midpoints of the sides, respectively. Il is 
immediately clear that there arc six equivalent K and M points. Examining the symmetry for 
the I point shows that it remains invariant under all symmetry' operations in the full point 
group C,n, which is thus identified as the group ot k vectors tor the I point. This means 
that any eigenmodes having k = II can be specified by the irreducible representations of 
C(rt. or equivalently the symmetry of these eigenmodes may be classified by the irreducible 
representations of I he point group C(n has six irreducible representations; four of them 
arc one-dimensional, and two arc two dimensional. Using the Mulliken notation, they arc 
A|. A?. B|, B2. E(, and E2. where the A’s and B's are one-dimensional representations and 
the E's are two-dimensional representations.

The transformation properties of these representations under the symmetry operations 
in Q arc found in the character table shown in Tabic 1. Ihe lowest band at the I point 
corresponds to w = (I mode, which is invariant under all symmetry operations in C,H. This 
mode obviously belongs to the identity’ representation /!,. For the second band with the 
E-field vector polarized within the two-dimensional plane (transverse electric [IE] mode), 
wc show in Fig. la the real part of Hz field distribution calculated by the plane wave (PW) 
method that will be described in the following section (these figures were generated using a 
freely available software program 118|). The field profile clearly retains the sixfold rotational 
symmetry of the PC lattice. A closer examination reveals that the field changes its sign 
under C„ and C2 rotations and also under <rd reflections, although it remains invariant under 
C\ and rrv. Inspection of the character table shows that this is exactly the transformation 
property of B? to which this mode belongs.

This process may be continued for the classification of higher modes, and the character 
table indicates that all of the eigenmodes at the F point are either nondegeneralc (belonging 
to the A’s and B's) or double degenerate (belonging to the E's). As we move away from 
the I point, the symmetry' of the k point is lowered. For example, we find the M point 
remains invariant under operations E. C2. (reflection in the vertical plane along one of 
the second nearest-neighbor directions; i.c.. the V-M direction), and crv (reflection in the 
vertical plane perpendicular to <rj. which form the point group C\. For the intermediate k 
points lying along the I'—A/ direction, the symmetry and is even lower and represented by 
the point group C,,, — {/.. <rj. Similarly, the symmetry of the K point is C\. and for the 
k points lying along I -K directions, the symmetry is C)h. The eigenmode with a particular
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fable I. Character table lor the point group (a) ( <h> ( . and (c)

GO

E 2C> 2C„

A, i 1 1 I 1 1
A. i I 1 1 1 -t
B i -1 1 -1 I 1
B i -■ i I — I 1 -1
Ei T _1 -1 1 (1 u
Ej 1 1 -1 -I <1 n

(b)

1 rrs tr,

A, i 1 1 1
A. I ] 1 -1
B. 1 -I I 1
B, 1 -I -1 1

£ <r,

A I I
B I -1

k vector is then represented by one ol the irreducible representations of the point group 
describing the symmetry of the k point.

One can identity the symmetry' of the eigenmode by inspecting the field profiles, as wc did 
above, but one may also predict the symmetry' from the symmetry reduction scheme. Group 
theory provides a powerful means of predicting the symmetry reduction and consequent 
energy level splitting by using the character tables [17|. For example, when we move away 
from the I point toward the M point, the symmetry of the k vector is lowered from C(>1 
to C|h and the group theoretical reduction formula predicts that the mode described by the 
irreducible representation B> of C(1V should be reduced to the one represented by irreducible 
representation A of C|h. Equivalently, it is said that the symmetry B, of point group C(IV for 
eigenmodes at the T point is compatible with the symmetry A of the point group C|h for 
eigenmodes with k values along the T-Af direction. Thus, the second band for the k points 
lying along the V-M direction has the symmetry of irreducible representation A of C(h. 
Collecting all possible reduction schemes of all irreducible representations of Cfn constitutes

Figure I. Color plots ol (al the real part ot II field for the second lowest band at the I point and (b) the real part 
of II field for the second band at the \l point Blue, white, and red indicate negative, zero, and positive values, 
respectively.
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the compatibility table for the symmetries of wavefunctions at the I point and al k points 
along I AZ.

Similarly one can obtain the compatibility table lor the modes al lhe \f point and for 
those with k values lying on l-AZ. As shown in Table I, the eigenmodes at the M point 
may be classified by the irreducible representations At, A>. Bt. and B2 of the point group 
Cs. Straightforward application of reduction formula using the characters shown in Table I 
reveals that among the four one-dimensional irreducible representations A|. A-. Bt. and 
B. of (\. A, and B. arc reduced to A of C(h and A. and B- are reduced to B. Thus, we 
expect that the second band at lhe AZ point should possess the symmetry corresponding 
to either At or B,. In Fig. lb. we show the H field profile foi (he second band al lhe 
AZ point, which is invariant under the reflection tr. in the plane along the l-A/ direction 
(the horizontal direction in Fig. lb) and is anti-symmetric under the 180° rotation. C\. and 
the reflection cr' in the plane perpendicular to that of <rs (the vertical direction in Fig. lb). 
Ir comparison with the character table of C\ given in Table I, this mode belongs to the 
irreducible representation B,. which is consistent with the compatibility relationship.

As demonstrated by the example we just discussed, the eigenmodes of a PC structure 
possess transformation properties that may be derived from the symmetry of the PC lattice 
and that could be effectively described by using the group representation theory. This tech
nique is also applicable to lhe localized modes associated with defects, for which the defect 
mode symmetries are determined by the symmetry of the defect structure. An example that 
dramatically shows the effectiveness of the symmetry argument is the existence of the uncou
pled mode 119], Considet a band along the T-AZ direction that has symmetry corresponding 
to irreducible representation B of CUl. Inspection of the character table of Clh. shown in 
Table 1. reveals that irreducible representation B is antisymmetric under lhe reflection o\, 
which is a plane containing the I’-AZ segment and c-axis. Consider now that a plane wave 
traveling along the T-AZ direction is incident on this PC lattice. The incident wave is clearly 
symmetric under the reflection and is thus incapable of exciting the B band because of 
the symmetry mismatch. If there is a range of frequency in which only lhe uncoupled modes 
arc present, then the transmission coefficient will be zero even though the density of states 
is nonzero. This is a completely different mechanism of suppressing transmission without 
the presence of a PBG.

3. MODELING TECHNIQUES
3.1. Plane Wave Method
l he PW method is the most widely used technique in PC modeling where Eq. (4) is solved 
by expanding the dielectric constant and the periodic part of the Bloch function into Fourier 
scries over reciprocal lattice vectors.

e(r) = ^e<.e,Gr (10)
G

E(r> - V /;,ie'"'G,r and H(r) = £ H<,e'lk G’r (II)
G G

Substitution of E'q. (10) and (II) into Eq. (4) converts lhe original differential equations 
into matrix eigenvalue equations. We realize that only one of the two eigenvalue equations 
in Eq. (4) needs be solved because once the E or II tick! is known the other follows directly 
from the original Maxwell's equations. Let us first consider the wave equation for lhe E field 
for which the matrix eigenvalue equation is

(k + G) x (k + G)xE(;+ -7 y e(i(> E(, =0 (12)
c' <,

where r(i<i = . Equation (12) is an infinite dimensional generalized eigenvalue equation
of lhe form Ax = ABx. where both A and B ate Hermitian and B is positive definite. When 
the system possesses inversion symmetry so that K(r) = c(—r). the Fourier coefficients e(i 
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become real and also the matrix B becomes real symmetric, which then allows the use 
of standard numerical techniques to solve the problem. One may, of course, attempt to 
recast Eq. (12) into the standard form of eigenvalue equation. B 'Ax = Ax. However, this 
complicates the problem even more because the matrix B 'A is not Hermitian.

We may also choose to solve the equation for lhe II field, for which the differential 
operator is Hermitian. In this case, we expand the periodic part of the H field into a Fourier 
scries

H(r) = ££/<<; A Zk+G,r (13)

Here eG , and eG , are the tw;o polarization unit vectors that are chosen to be per
pendicular to k + G to satisfy the transversality condition. Note that imposing the 
transversality condition allows us to deal with a 2N x 2N matrix instead of 3.V x 3/V, 
where N is the number of PWs used in the expansion per polarization. Substitution of 
Eq. (13) and a similar Fourier expansion of e(r) into Eq. (4) yields the following matrix 
equation 

L Ik FG||k4-G-|7|(.<; (14)

where r/G G = ??(G — G ) is the Fourier transform of e 1 (r). This form of matrix eigenvalue 
problem, derived first by Ho et al. |2(l|. is the most convenient form, as the matrix is real 
and symmetric. Equation (14) would be exact if an infinite number of PWs were used in 
lhe expansion of H(r) and £(r), but in practice, the series must be terminated with a finite 
number of PWs to make the matrix finite, so that the eigenvalue equation may be solved 
numerically by the standard matrix diaginalization techniques. This truncation is an intrinsic 
problem of the PW method and will always introduce numerical errors, whether one chooses 
to solve the equation for E or for H fields. However, in the case of the H field equation, 
there is an additional problem concerning the evaluation of tjg (;. If an infinite number of 
PWs were used, we have

Z2 £gg 7Tg g' = ^gg (13)
G"

When the PW expansion is truncated at a finite number, however. Eq. (15) is no longer 
valid and pGG and £GG can become quite different. One may choose to first invert the 
dielectric constant in real space, take the Fourier transform of £ *(r). and then truncate it 
to obtain r/GG (direct method). Alternatively, we may first compute the Fourier transform of 
fi(r), truncate it. and then invert the matrix to find ijGG . This method is sometimes referred 
to as the HCS method after those who first suggested it [20]. The question is ther which 
technique provides the more accurate treatment of dielectric function, which in many cases 
contains discontinuities. The convergence properties of these two methods have beer inves
tigated for a one-dimensional lattice that has a dielectric constant with a step function profile 
|2I|. According to this study, the direct method was found to be inaccurate in reproducing 
the discontinuity of £(r). Dealing with large dielectric constant is particularly probematic 
because then £ 1 (r) becomes very small and the Fourier expansion may become localy neg
ative. producing singularities in dielectric function. Figure 2a shows the dielectric finction 
reconstructed from the truncated matrix r/GG by the direct method. The dielectric finction 
exhibits singularities, and the high dielectric constant part is also significantly overest mated. 
The IK'S method, in contrast, was found to yield more accurate reconstruction of dielectric 
function without any singularities, l he superior reproduction of dielectric function can be 
seen dearly in Fig. 2b. l he HCS method was also shown to exhibit superior convergence for 
a two-dimensional lattice [22].
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Figure 2. (.1) Step profile dielectric function reproduced Iron, lhe truncated obtained by the direct method 
with X plane waves, (b) Step prolile dielectric function reproduced from the obi.lined by lhe IK'S method, 
with V plane waves Reprinted with permission from [211. I'. R Villeneuve and M Piche. /Yog (luuntuni I !<■<mm 
18. 153 (l<W4|. . |'W4. I Isevict

3.2. Finite-Difference Time-Domain Method
Another popular technique that is in many ways complementary to the PW method is the 
finite-difference time-domain (FDTD) method |23, 24], Since the original proposal by Yce 
[25], FDTD has become one of the most widely used modeling techniques in optics and 
electromagnetics. and there exists a large database on numerical techniques and applications 
of this method (e.g.. see Ret. |2b|).

The FDTD method solves the discretized version of the original Maxwell s equations given 
tn Eq. (2) rather than the wave equation. To solve lhe coupled equations for the E and II 
fields accurately. Yce proposed a unique discretization scheme now widely known as the Yce 
cell. As shown in Fig. 3. in lhe Yce cell, each E and II lield component is surrounded by (he 
loops of II and E fields, respectively, according to the Faraday's and Ampere’s laws. This 
scheme is divergence free in nature, automatically satisfying the two Maxwell's divergence 
equations, and also allows us to express the spatial derivatives in lhe two Maxwell's curl 
equations by central differences that arc accurate to the second order.

Once the difference equations are obtained according to the Yce cell, the time domain is 
discretized in such a way that the E field is first updated from the previous H field stored in 

Figure 3. Positions of lhe electric and magnetic livid vector components in the Yce cell Reprinted with permission 
from |24|. A lallove and S. C. Ilagness, "Computational Electrodynamics: The Finite-Difference Time-Domain 
Method 2nd cd Ailech House. Norwood. MA Based on K S Yce. Ill 1 Txin\. -Inlcmia* I'ropaf-. AP-14. 302 
(|90h|. • l*Mrf». Artech House and IEEE



272 Modeling of Photonic Crystals

memory and then the II field is recalculated from the updated E lield. I he explicit forms of 
the discretized Maxwell’s equations for B, tind Dt are 

ii';" :(i.j + 1/2. A +- 1/2) - Ii'; ' '(i.j + 1/2. A + 1/2)
Az

/•-"(/,/ + 1/2. A- 4- I) - + 1/2, A ) + l.A + 1/2) - k + 1/2)
Az Ay

ir(i+ 1/2,/. A)- I)1; ■(/ + 1/2,/, A)
’ Az

IT ' *’(/ + 1/2, /- \/2.k)~ H" ' -ft + 1/2. / 1/2.A)
Av

+ j;, , . . + i/2 .

(16)

where the superscripts represent the time step and the indices inside the parentheses are 
spatial grid points at which the lield values are defined. I he remaining discretized Maxwell's 
equations can easily be found by properly permuting the a-. v-. and ’-components of the 
fields in Eq. (16). and they may also be found in Yce's original paper |25|. Each time B and 
1) fields arc updated according to Eq. (16), and they arc converted to II and E fields by the 
constitutive relations given in Eq. (3).

The repeating cycle of updating fields, sometimes called the leapfrog lime-stepping pro
cedure. is carried out for a lime period long enough lo provide accurate information on the 
quantities one originally intended to obtain. Of fundamental importance in FDTD proce
dure is lhal the time-stepping procedure must remain stable In other words, the field values 
must not diverge because of the accumulation of numerical errors. This requirement puts a 
restriction on the values for the space grid size and time increment, which is known as the 
Courant stability condition. I he condition is derived from the numerical dispersion relation, 
where one must avoid the emergence of imaginary parts in angular frequency that can lead 
to exponential growth of fields [24], For //-dimensional space uniformly discretized into a 
Cartesian grid, the stability condition is

where Az and A.v are time and space grid resolutions, respectively, and c is the speed of 
light.

For photonic band structure calculation, the computational cell is usually the unit cell ter
minated by the periodic boundary conditions according to the Bloch theorem. In some cases 
such as two-dimensional slab PCs. one needs to simulate a uniform medium extending to 
infinity, which can be done by implementing an absorbing boundary condition. A simple and 
effective scheme to implement an absorbing boundary condition was proposed by Mur [27]. 
Mur's absorbing boundary condition uses the one-way wave equation to determine the field 
values at the boundaries that yield zero reflection at all incident angles. The one-way wave 
equation is the partial differential equation that allows propagation in only one direction 
and that can thus be used at FDTD grid boundaries to create conditions that absorb all 
incident waves, as was first proved by Engquist and Majda [2X|

I he analytical form of the one-way wave equation, however, cannot be directly imple
mented in the FDTD scheme but has to he approximated with a Taylor series. After retaining 
only one or two terms in the Taylor series. Mur transformed the resulting differential equa
tion into the finite difference equations by taking central differences in both space and lime. 
A more powerful scheme that gives much less reflection at all incident angles is the perfectly 
matched layer (PMl.) boundary condition, which was originally proposed by Berenger [29]. 
PM1. is an artificial medium perfectly impedance matched to Ihe host medium so that PWs 
with any incident angle, polarization, and frequency would not experience any reflection at 
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lhe boundary. At lhe same lime, the region is defined to be lossy so (hat lhe wave propagat
ing inside the PMl region dies out before it encounters the edge of the PML region. This 
is accomplished by making both i- .mJ /i complex quantities.

To implement this concept for the FDTD algorithm, Bcrengcr modified the Maxwell’s 
equation by splitting up the field components so that he can separately define .v-, v-. and 
z-components of the imaginary parts of c and p. This way. he could define PMl. layers that 
preferentially absorb waves propagating in certain directions. This is called the Bcrengcr’s 
split-field formalism. Since the original proposal by Bcrengcr. numerous variations and 
implementation methods for the PMl. boundary condition have been proposed, and inter
ested readers are referred lo the literature available on this subject [26], The PML boundary 
condition has been shown to exhibit superior performance to any other analytical absorb
ing boundary conditions. For example. Bcrengcr’s original paper reported a local reflection 
coefficient 3(100 times smaller than that obtained by Mur's absorbing boundary condition.

Once the computational cell is defined with proper boundary condition, a certain initial 
field profile is assigned and then evolved in time by the leapfrog time-stepping procedure, 
At each time step, field values at certain low symmetry' points are stored and the time series 
is later Fourier transformed to obtain allowed mode frequencies. This procedure is repeated 
for various k vectors lo yield the complete band structure. I'he total lime during which lhe 
fields are evolved must be kept long because it determines the frequency resolution in the 
subsequent Fourier transform. In addition, the initial field profile must be carefully chosen so 
that it contains nonzero projections to all allowed modes we wish lo find while avoiding the 
unwanted dispersionless longitudinal modes. A convenient way to impose the transversality 
condition was proposed by Chan et al., who set up the initial II field as |30|

H = (r) = J2lv * ( k-f G)]e'<k+G,r (18)
c.

where G's are reciprocal lattice vectors and v is a vector that has roughly equal magnitudes 
for v. y. and z components. The H field defined in Eq. (18) obviously satisfies V H = 0 and 
will remain transverse throughout the time-stepping procedure. It should also be mentioned 
(hat the summation does not have to cover many reciprocal lattice vectors, and the accuracy 
of (he simulation docs not depend on lhe number of reciprocal lattice vectors in the sum.

Because the FDTD method works in the real space and lime domain, it is an excellent 
technique for visualization of lield profile and time evolution. It can handle impulsive or 
transient behaviors naturally. Also, like other real space techniques, choosing and impos
ing various different kinds ol boundary conditions, as needed by the system of interest, is 
straightforward. This is in contrast to the PVV method, in which the use of the periodic 
boundary condition is mandatory. The freedom in choosing boundary conditions is partic
ularly advantageous for the modeling of nonperiodic structures such as photonic defects 
because in the FDTD method, one does not need to construct artificial supercells as in the 
PW method. Furthermore. FDTD is considered well suited for large and complex systems 
because the simulation load scales with N. the size of the system. This is again in con
trast to the PW' method, in which the computational load scales with /V* because of lhe 
A '-dependence of the matrix diagonalization procedure. Sakoda cl al. compared (he CPU 
lime needed for simulations by PW and FDTD methods and. as shown in Fig. 4. the FDTD 
method was found more efficient for larger systems [31],

Calculating transmission and reflection spectra using FDTD is also straightforward. For 
this type of simulation, a finite size PC must be encoded in the computational cell, which 
is surrounded by absorbing boundary layers. Then an incident PW is specified as the ini
tial lield that is evolved in time by the FDTD algorithm. The transmission and reflection 
coefficients arc calculated simply by recording field values al appropriate points and then 
comparing them with the incident field amplitude. This procedure can be repeated lor vari
ous frequencies to obtain the full spectrum, or more efficiently, the initial PW can be made 
to be a Gaussian pulse in time, which yields a Gaussian pulse in frequency domain too. One 
then proceeds to record the field values at the appropriate detection points and to convert 
the times series into the fiequency spectrum bv Fourier transform. This way. transmission 
and reflection spectra for a range of frequency may be obtained with a single simulation run.
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Figure 4. CPU time necessary lor numerical calculation lor one wave vector as a function ot the number of mesh 
[tonus X or the numbet ot plane waves A/ PW. plane waves. 11)11). finite-difference time-domain Reprinted with 
permission from |31], K. Sakuda cl al.. /7tv\ Rex H 64. 1)45116 (2111)1) 1 2001, American Physical Society

3.3. Transfer Matrix Method
Another useful real space method derived from low-energy electron diffraction theory has 
been proposed by Pendry and MacKinnon |32. 33]. Similar to the FDTD method, the trans
fer matrix method begins by discretizing the two Maxwell s curl equations and constructing 
the transfer matrix that relates E and H fields at grid points in two parallel planes. The dis
cretization scheme is very similar to the Yee cell in the FDTD method, and each component 
of the E and II fields is surrounded by other components in a manner consistent with the 
Ampere's and Faraday’s laws. For the time derivatives, however, explicit harmonic depen
dence is introduced instead ol the direct discretization used in FDTD. This process yields six 
difference equations relating the E and 11 field components at one grid point with those at 
the neighboring grid points. One then proceeds to eliminate two components, usually chosen 
to be lhe z-components of the E and H fields to obtain a set of four equations relating the x- 
and y-components of E and II fields at one plane to those at an adjacent plane perpendicular 
to the z-axis. If a cubic mesh defined by vectors a, b, and c pointing x-, y-, and z-directions, 
respectively, and all with a length a, is used to discretize the Maxwell's equations, one finds 
through an algebraic procedure that is rather tedious but straightforward [32]

£1(r+c) = £,(r) + ^-/4(r)W,'(r) + tr l(r)(//l(r-a)-//,(r)- //Jr-b)+ //[(r)]

-e '(r + a)|//'(r)~ 7/’(r + a) - //j(r + a-b) + //j(r4-a)]
i 2

£, (r+c) = £v(r) — (r) 4-e 1 (r)| H[(r - a) - W'(r) - /7[(r-b) + /7j(r)]

-s ,(r + b)|//>(r-a + b)-//1(r + b)-//;(r)+//;(r + b)|

//,fr + c) = //’(r) + r(r + c)£,(r+c)

l(r-a-+c)[£l(r + c)-£v(r-a + c)-£l(r-a + b4-c) + £1(r-a-f-c)| 
a-to-

+ '(r + c)|£ (r + a + c) E.(r-t-c)-£t(r + b4-c) + £,(r + c)]
iru)-

//l(r + c) = //j(r)-E(r+c)£l(r+c)

---- ../u '(r-b - c)|£.(r+a b + e) - £,(r-b+c)- £1(r-t-e) + £l(r- b-be)| 
a id-

1

'(r+c)|£.(r + a + c)-£,(r+c)-£l(r + b+c)-f-£,(r+c)J (ll>)
(l- CD~

where H is the reduced II defined as H = i'HowEi,. The first two transfer equations given 
in F.q. (IM) express E in the next plane by E and II in the previous plane, whereas the last
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two equations describe H in the next plane in terms of II in the previous plane and E in the 
same plane. It is therefore possible to find all field components in the next plane (z — z' + a) 
if the fields at the previous plane (c — ; ) arc known. Equation (19) may be recast into a 
matrix form to define the transfer matrix as follows

F(z + «) = T(z)F(r) (20)

where

£,(r)

W;(r)

\//;<r)/

with the position vector r lying in the plane defined by z and where T(z) is the transfer 
matrix whose elements are specified by w. e(r), and yu(r) according to Eq. (19).

The transfer matrix method provides a very convenient way to calculate transmission and 
reflection coefficients. For this purpose, one first needs to choose a basis set for which a 
set of PWs are frequently used. In the transfer matrix formalism, PWs are expressed as the 
eigenvectors of transfer matrix T<(” for free space,

T'-Fj^z) = F"”(z + a) = cxp(ik^a)F^(z) (21)

Because the transfer matrix is not Hermitian, there exist distinct left eigenvectors

f;'”(z)t("» = /’-/‘"(z +«) = cxp(/a.;,’,</)f;;"(z) <221

They are orthonormal to the right eigenvectors. These left and right eigenvectors then define 
a unitary transformation that may be used to transform a given transfer matrix to the PW 
basis set. Consider a layer of PCs whose transfer matrix is T(z). Using Ihe PW basis set. the 
transfer matrix is expressed as

(T(z))„ = f;;'’(z)T(z)F!"'(z) (23)

If the matrix elements are arranged in such a way that the waves traveling to the right come 
first and are followed by the waves traveling to the left, the transfer matrix may be divided 
into four submatriccs.

where the superscripts + and — indicate right- and left-propagating waves, respectively. 
Consider now PWs, F incident on a PC slab from the left. The reflected and transmitted 
waves arc related through the reflection and transmission matrices t ~ and t . The total 
wave on the left is given by X,l,, F, "" + 0 F whereas the wave on the right is expressed 
as ZLj,) F*’"1 + F‘‘"l. These two waves are also related through the transfer matrix as 

T = t (t ) 1

T = (t ) 1

from u hich we find

(26)
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Similarly, the two other submatrices of the transfer matrix can be found by considering PWs 
incident on the PC slab from the right. One then arrives at the final expression of transfer 
matrix in terms of reflection and transmission matrices as follows

/T*+ t \ r»' 4 -t (t ) ‘t + t (t“ I’1'
= , . <27)\t ' t / |_ -(t r'r* (t ) 1

Thus, once the transfer matrix is determined in the PW basis set. transmission and reflection 
coefficients may be obtained using the above equation. Transmission and reflection for a 
thick slab can also be found by using the same equation :f one uses the proper transfer 
matrix for the thick slab.

Photonic band structure may also be calculated using the transfer matrix. For a periodic 
system, translation by a primitive unit vector obeys the Bloch theorem.

F(r-)• u,) = exp(/A,;/,)F(r), i = ,v. y, z (28)

where u, arc lhe unit vectors for the crystal with lengths a,. Translation along the z-direction 
by a unit vector is also related to the transfer matrix

F(r -F u .) = TF(r) = cxp(fA.« )F(r) (29)

When the frequency w is given and A, and A, specified according to the periodic boundary 
condition, the transfer matrix T for translation by a unit cell is obtained, and then the 
eigenvalue equation in Eq. (29) is solved to find all allowed values of A .. This procedure 
may be repeated for various frequencies to yield lhe complete band structure A.(w).

3.4. Kohn-Korringa-Rostocker Method
Adapted from the Kohn-Korringa-Rostocker (KKR) method widely used for electronic 
energy band structure studies, this technique uses expansion over vector spherical harmonics 
to solve the eigenvalue equation in Eq. (4) [34-37]. It turns out that for spherical scatterers, 
each vector spherical wave is scattered independent of others, and as a consequence this 
technique can handle discontinuities in dielectric constant across spherical boundaries with 
arbitrarily high accuracy. It is therefore extremely efficient in dealing with the PC s made of 
spherical building blocks, such as self-assembled opals. As pointed out by Busch [38], KKR 
and PW methods may be regarded as complementary to each other in dealing with systems 
with spherical symmetry. The KKR method allows an extremely accurate representation 
of the discontinuities in the dielectric function, but the lattice structure or the periodic
ity is incorporated approximately by the multicenter expansion technique. In contrast, the 
PW method provides an accurate representation of periodicity through the expansion over 
reciprocal lattice vectors but incompletely incorporates the discontinuities in the dielectric 
constant through the Fourier coefficients.

Following the original development by Stefanou et al. [35. 39], we begin with a general 
expression for spherical wave expansion.

x '!(Ar)X;„;(r) + x Z;(Ar)Xf)„(r) (3d)

where z, is a combination of spherical Bessel and Hankel functions and X;,„ arc the vector 
spherical harmonics. When a PW is incident on a single spherical scatterer. the coefficients 
in Eq. (30) for the scattered wave are given by the well-known Mie scattering solution (e.g.. 
Ref. |40]). When the scattering is caused by a periodic array of spherical scatterers in a 
two-dimensional plane, the scattered wave can be expressed as a sum of the waves scattered 
by individual scatterers. Because of the periodicity, the wave scattered by a sphere at r = 
R„ differs only by a simple phase factor exp(/k R„) from lhe wave scattered by a sphere 
at the origin. Here, k,. represents the tangential component of k vector parallel to the plane 
of scatterers. The tangential k vector k can be redefined by using the reciprocal lattice 
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vectors of the two-dimensional lattice, k,nl= k 4- g, so that k now represents a vector 
w ithin the unit cell of the two-dimensional reciprocal lattice, which is often called the surface 
Brillouin zone. Once the expression for the scattered wave in the form of Eq. (30) is found, 
one can construct a matrix equation relating the coefficients of the incident wave and the 
total scattered wave.

IM,= 1ot)
1

The explicit expression for the matrix M may he found in Ref. [41]. To obtain the photonic 
band structure of a three-dimensional PC. we proceed to construct a three-dimensional 
system consisting of many layers of the two-dimensional structure and consider the multiple 
scatterings between layers in the same way as in the transfer matrix method. The held 
between the //th and (11 -1- 1 )th layers is determined by the scattering of the two neighboring 
planes of scatterers. That is, the backward-propagating wave in the region between the //th 
and (n + 1 )th layer is the sum of the forward-propagating wave in the same region back 
scattered by (n f 1 )lh layer and of the backward-propagating wave between the (11 + I )th and 
(n 4- 2)th layers transmitted by the (// 4- 1 )th layer. The forward-propagating wave is similarly 
defined. The transmission and reflection (or back scattering) matrices are obtained from 
the M matrix in Eq. (31) modified to account for the shift of origin. T his way, one obtains 
equations relating Helds at adjacent layers that must also satisfy the Bloch theorem because 
the system is periodic in the third dimension as well. Combining the multiple scattering 
equations and the Bloch theorem, one finds

/ Q *

\ -|Q |'Q Q IQ

Q‘ \ E(/t)
= cxp(/k ■ a,)

1(h)

'[l-Q Q ]/ ET//4 I) E~(h + I)
(32)

where Q arc the scattering matrices defined similarly to the t matrices in Section 3.3. and 
their elements arc determined from the M matrix in Eq. (31). Also. a; is the primitive unit 
vector representing the periodicity among the two-dimensional layers. For given w and kN in 
the surface Brillouin zone. Eq. (32) can be solved to find A . the wave vector component in 
ihe direction perpendicular to the two-dimensional layers. In practice, only a finite number 
of g vectors arc included in evaluating Eq. (32), which means the matrix equation would be 
ft/V dimensional, where N is the number of g vectors. The eigenvalue equation would then 
result in 6/V eigenvalues for A (w, k^). Most of the solutions are complex and thus represent 
evanescent waves. Only a few of the solutions arc real, corresponding to propagating waves. 
By scanning the frequency region of interest and the various kq's in the surface Brillouin 
zone, one can obtain complete photonic band structure. Note that the multiple scattering 
formalism is very similar to the transfer matrix and thus naturally provides transmission and 
reflection coefficients. In addition to having finite g vectors, the spherical wave expansion 
in Eq. (3(1) must also be truncated at a certain value of lm.M in practice, similar to the 
PW method where the PW expansion has to be truncated. This truncation consequently 
introduces numerical errors. However, it was found that the KKR method generally requires 
far fewer basis functions than the PW method. For example. Wang et al. reported that using 
/„,.IX — 3 resulted in the same level of accuracy as the PW method (34]. Typically. /roax = 6 is 
enough to yield good convergence, in which case the dimensions of the secular determinant 
are less than 1(1(1. T his is in contrast to the PW method, which typically handles secular 
determinants with dimensions of '-500.

4. PHOTONIC BAND STRUCTURE
4.1. Photonic Band Gap
Since Yablonovitch first suggested the prospect of completely inhibiting spontaneous emis
sion by PBG [I], the search for structures exhibiting complete PBG has been one of the 
most strong driving forces in PC research. PBG refers to a range of frequency in which there 
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are no allowed photonic states, and thus propagation and generation of light is completely 
prohibited. Realization of complete PBG then provides opportunities to suppress unwanted 
radiative transitions or light transmission and also to create strongly localized states within 
the PBG by deliberately introducing defects. Because of the strong confinement mecha
nism provided by PBG. the photonic defect structures can be made to exhibit extraordinary 
properties, such as near-perfect transmission around a sharp bend and an extremely high 
confinement factor, as will be discussed in Section 5.

4.1.1. Bragg Reflector
The formation of PBG is best illustrated in the simplest example of one-dimensionally peri
odic multilayer film, which is usually referred to as a Bragg reflector and is widely used 
in various photonic devices. A Bragg reflector consists of repeating pairs of two dielectric 
layers with distinct refractive indices, /i, and n>. The interfaces between materials n( and 
n. generate a series of reflected and transmitted waves, which interfere with one another 
to produce the system response. If we denote the individual layer thicknesses as n and h, a 
pair of two dielectric layers may be considered a unit cell, with a lattice constant A = </ + b. 
Then, the condition for constructive interference between all reflected waves is given by

K \ = nm; in = integer (33)

where K is the wave vector component along the direction perpendicular to the film (x- 
direction in the following discussion). This is the optical analog of the well-known Bragg 
condition for x-ray diffraction in crystals, from which the name Bragg reflector is derived. To 
proceed farther, let us construct a transfer matrix relating the amplitudes of forward- and 
hackward-propagating waves in two adjacent unit cells. Noting that the periodicity affects 
only the propagation along the x-direction. wc will omit, for simplicity, the in-plane prop
agation in the following discussion, hut the extension for arbitrary propagation direction is 
straightforward. Following the development by Yeh and Yariv (42], we write

(34)

where a and b are the amplitudes of electric field for forward- and backward-propagating 
waves, respectively, and the subscripts indicate the unit cell in which the fields are defined. 
The matrix elements A, B, C. and D arc obtained by using the standard technique, where 
we account for the propagation through the individual layers with the wave vector and 
layer thickness and for the reflections and transmissions at the interfaces with the Fresnel 
coefficients. For normal incidence, one finds,

A = e<k'a cos kA) 4-

(35)

where A( — n^ai/c and k: = noii/c. Since the system is periodic, wc can also invoke Bloch’s 
theorem, which asserts that the fields must be described by a PW modulated by a periodic 
function with the same periodicity as the multilayer film

E(x) = EK(x)e where EK(x + \) = £\(x) (36)

or

E(x + A) = E(x)e lK '
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Combining Eqs. (34) anil (36) yields

' "H"<■ \i’j
(37)

The Block wave vector. K. is therefore determined from the eigenvalue of the transfer matrix 
describing the light propagation over a unit cell. Solving the secular equation, we find

ai „ i rp+z)Y
7 \ 7 / (38)

It should be noted that this formalism is the one-dimensional version of the transfer matrix 
method described in Section 3.3. Because the transfer matrix is unimodular, the two eigen
values are reciprocal to each other, and thus one finds two eigenvalues e ~‘K ' for a given fre
quency. They represent forward- and backward-propagating Block waves, which arc expected 
to appear together for an infinitely periodic system. Eq. (38) provides the dispersion relation 
between K and w.

(39)

If (/I -p D)/2 < 1. then K is real and we have propagating Bloch waves. If, however, (.4 + £>)/ 
2 > I. then K becomes complex, leading to exponentially decaying evanescent waves. This 
region is called the forbidden band in which no propagating waves are allowed. Notice that 
(.4 + D)/2 has a maximum at which the Bragg condition is met. Thus, the Bragg condition 
corresponds to the middle of a forbidden band. Il is noted that the evanescent waves arc 
indeed solutions to the eigenvalue Eq. (37). but they do not satisfy the periodic boundary 
conditions that are routinely imposed in photonic band calculations. Therefore, they do not 
constitute proper solutions for a perfect, infinite PC structure and are relevant only for a 
finite PC or a PC containing defects.

Rewriting Eq. (37) explicitly using Eq. (35) gives.

cosKA = cos A pi cos A ■>/) — — 4—- sin Arm sin Ao/’ (40)
2 \ /?, n2 /

Figure 5 shows the dispersion curve obtained from Eq. (40). Forbidden gaps open when 
the Bloch wave vector K satisfies the Bragg condition. For an infinitely periodic system, 
all K’s related by integer multiples of 2ir/A are equivalent because of Bloch’s theo
rem. We may therefore represent the whole dispersion curve within a finite region of K, 

Figure 5. Dispersion relation tor a Bragg reflector lor normal incidence. From A. Yariv and P. Yeh. "Optical Waves 
in Crystals,” p. 173. Wiley. New York, 1984. © 1984, Wilcv.
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say —77/A < K < 77/A. which is equivalent to the well-known reduced zone scheme in con
densed matter physics.

We will conclude this section by estimating the width of the forbidden band. F or this 
analysis, let us consider a quarter-wave stack for which kta = kJ) = 77/2 when w — to,,, the 
central frequency of a forbidden gap. The band edges are defined by setting the left-hand 
side equal to 1 in Eq. (40), which leads to

/ to,, — M \ / ton — w'1 = cos I —--------n | a ) cos I nJ)
\ c / \ c

l/zr /n \ . / to.. - w' \ . / tou - to' ,
— — -t---- ) sin ---------- a, a sin ----------nJ)

2 \ /r| zn / \ c / \ <’
(41)

where we introduced a new variable to = w„ — to that represents the deviation from the 
middle of the forbidden gap. In a quarter-wave stack. n}n = nJ) — irc/lw,,. so Eq. (41) gets 
reduced to

>/ 77 to \ I / II-, It | \ 77 to'
1 = sl,r X— I “ S ~ + — cos’ T“\ 2 w(l / 2 \ /q II-, / \ 2 to,1

(42)

Solving for w yields.
. , 2to„ .to = ±---- sin

77

— 111

n2 + 111
(43)

from which we find lhe forbidden gap width Aw as

Aw =
4to„
— sin I ~ »l

l«3 + "l (44)

Equation (44) shows that lhe forbidden gap width is generally bigger for a larger An = 
|/i, - n2| and is linearly proportional to An when An is small This principle holds for 
two-dimensional and three-dimensional systems, as wc will see later, and thus one of the 
fundamental requirements for the realization of PBG is to have a high refractive index 
contrast.

4.1.2. Two-Dimensional Photonic Crystals
The concept discussed in the previous section can be extended to a system that possesses two- 
dimensional periodicity. In this case, the Helds in lhe plane of two-dimensional periodicity 
is described by a Bloch wave

E(r) = e'k e'k''«(p) (45)

where k. and k are the wave vectors for propagation in the out-of-plane and in-planc direc
tions, respectively, and u(p) is a function with the same periodicity as the two-dimensional 
PC lattice. The two-dimensional periodicity restricts the in-plane wave vector k within the 
first Brillouin zone, whereas k is unrestricted. For in-plane propagation, that is, k. = 0, 
the two-dimensional periodicity may give rise to Bragg reflections for certain frequencies, 
producing a two-dimensional PBG in which the light propagation in all in-planc directions is 
forbidden. For the ideal two-dimensional systems that are invariant in the out-of-plane direc
tion. there exist two independent polarizations. TE (E-fiekl in the two-dimensional plane) 
and TM (H field in lhe two-dimensional plane), and therefore a complete PBG requires 
overlapping band gaps for both polarizations. This was found to be realized in a triangular 
array of air holes in a dielectric material, which has naturally been the most widely investi
gated system. Figure 6 shows the photonic band diagram for a triangular lattice of air holes 
in Si, which has a dielectric constant 8=12. The air hole radius was set to be 0.45a, where 
it is the lattice constant (i.e.. the center-to-center distance between two adjacent holes). The 
reciprocal lattice of a triangular lattice is also a triangular lattice, and thus the first Brillouin 
zone is a hexagon, as shown in the inset of Fig. 6. in which two high-symmetry points, K 
and M. as well as the zone center. I . arc also indicated. Because of the sixfold rotational



Modelire ol Photonic C'rvsiab 281
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Figure 6. Photonic band structure lor a triangular array of air holes in a dielectric material with e - 12. The solid 
line is for I’M modes, and the dashed line is for TE modes. The inset shows Ihe hexagonal Brillouin zone of the 
triangular crystal structure.

symmetry of ihe triangular lattice, there are six equivalent A and M points. It is noted that 
the F-A' direction points -along the nearest-neighbor direction in the real space triangular 
lattice, as the real space triangular lattice and the reciprocal lattice are rotated by 30° with 
respect to each other. Figure 6 shows a complete PBG opening up for both TE and TM 
polarizations for normalized frequencies (wfl/drrc) from 0.40 to 0.44. Early theoretical stud
ies have found that a system with isolated high dielectric material tends to support TM band 
gaps, whereas a system with interconnected high dielectric material favors TE hand gaps 
[43]. Consistent with this general observation, the TE band gap shrinks rapidly as the air hole 
radius is fuilhci increased and completely disappears al approximately r = 0.5u. al which 
the air holes begin to overlap, forming isolated dielectric columns. In contrast, the TM hand 
gap tends to decrease for smaller air holes and closes up at around r = 0.4a. Therefore, 
the complete PBG is supported in a relatively narrow region in which the triangular lattice 
exhibits the characteristics of both interconnected and isolated dielectric systems.

The emergence of PBG is closely related to the symmetry of the system. Quantum mechan
ics tells us that degeneracy originates from symmetry, and thus the lowering or breaking of 
symmetry can lift degeneracy, possibly opening up complete PBG. Symmetry lowering can he 
achieved cither by using a multiple atom basis or by making the atoms themselves nonsym- 
metric. The first scheme was realized first in the three-dimensional system in which a large 
complete PBG was predicted in a diamond lattice, whereas the simple face centered cubic 
(fee) lattice was found not to support a complete PBG [20]. The same approach is certainly 
possible for two-dimensional PC structures, as well. A square lattice of circular air holes in 
a dielectric material (e = 11.4) supports TE band gaps for small air hole radii and TM band 
gaps for large air-hole radii, as shown in Fig. 7a. A complete PBG for both polarizations 
opens up in a very narrow range of air hole radius around r = 0.5a. The maximum width 
of the PBG is also very' small. Aw = 0.01X8. Attempts to increase the PBG width by simply 
changing the air hole radius are not effective because of the conflicting tendencies of the TE 
and TM band gaps. After close examinations of the band structures. Anderson and Giapis 
recognized that the TM band gap closes at large air hole radii because the second and third 
bands tend lo be degenerate al the M point in the first Brillouin zone [44]. They attempted 
to lift the degeneracy by inserting an additional small air hole al the center of each square 
unit cell. I he resulting new structure is still a square lattice, but with a two-atom basis. The 
subsequent changes in photonic band structure depend on the size of the second air hole. 
It was found that the largest increase in PBG width is realized when the radius ratio of
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Figure 7. Gap map for (a) simple square lattice and (h) reduced-symmetiy square lattice of air holes in a back 
ground dielectric material with f = II.4. The reduced symmetry increases the second I'M gap. resulting in much 
increased complete PBG. Arrow indicates lhe occurrence of maximum PBG. Reprinted with permission from [44|. 
C. M. Anderson and K P Giapis. Phys. Rci. I.cit. 77. 294V (|996). © |99f>, American Physical Society.

the two air holes (3 = 0.I ~ (1.2. Figure 7b shows the gap map for the reduced-symmetry 
square lattice with (3 = (). I6. The increase of the second TM gap is clearly visible, resulting 
in a corresponding increase in the complete PBG. The largest PBG width was Aw = 0.0548. 
almost three times greater than the largest gap width possible in the simple square lattice, 
l he same scheme can also be applied to the triangular lattice, which may be transformed 
to honeycomb lattice by incorporating a two-atom basis. The honeycomb lattice was found 
to exhibit wide, complete PBGs in a wide range of air-hole radii, demonstrating lhe effect 
of symmetry lowering [43]. The PBG width may be further increased by inserting small air 
holes at the center of the hexagonal cells. Anderson and Giapis reported about 10% increase 
in PBG width when (3 = (). 11 |44).

One may also attempt to lower symmetry by incorporating noncircular scatterers. How
ever, early studies indicated that elliptical scatterers in square and triangular lattices did not 
yield larger PBGs than the circular scatterers, nor did they create new PBGs [45], It was 
later recognized that reorienting the asymmetric scatterers off the symmetry directions of 
the lattice is essential in creating and widening PBGs. Wang et al. investigated a square lat
tice of square air holes in a dielectric background material [46], When the refractive index 
of background material, nh, is 3.4 and the air filling fraction is 0.5. this structure does not 
exhibit a complete PBG.

As shown in Fig. 8a, this interconnected dielectric structure exhibits a large gap for TE 
polarization but not for TM polarization, which is consistent with the general rule of thumb. 
In fact, this structure was found to not support complete PBG at any filling fraction, indicat
ing that the mere change of scattcrer shape is not enough to significantly alter photonic band 
structures. However, because of the noncircular shape of lhe individual scatterers. further 
reduction in symmetry is possible by rotating the scatterers so that they would be oriented 
off the symmetry axis of the lattice. This reorientation of noncircular scatterers was found 
to have profound effects on photonic band structures. When the square holes are oriented 
45° off the symmetry axis of the square lattice, the degeneracy of the third and fourth TM 
bands at F point is lifted, and the second and third TE bands arc also further separated, 
opening a complete PBG, as shown in Fig. 8b.

Comprehensive numerical modeling study for various reorientation angles and filling frac
tions revealed that the largest complete PBG is obtained for U ~ 30° and / — 0.68. The 
resultant PBG width was Aft) = 0.063. or in terms of lhe gap width to midgap frequency ratio, 
Aw/ft)„ — 14.2%, which is much greater than the largest gap width. Aw/w, = 4%, achievable 
in the triangular lattice of circular air holes. It should also be noted that the smallest feature 
size, which is the width of lhe dielectric material between two adjacent square holes in this 
structure is ■'-0.05a for the structure with maximum PBG width. This is much greater than 
that for a triangular lattice of circular holes, --0.003ft, for the structure exhibiting maximum 
PBG width. The larger minimum feature size, as well as the elimination of the need for 
patterning circular holes, makes lhe fabrication process more tractable.
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Figure 8. Photonic band structures for a square lattice of square air-rod structures with background index 11 - ? I 
and tilling fraction I = 0.5: (a) tt — tf. and (hi <1 45°. The solid and dotted lines correspond to the TM and TL
polarization modes, respectively. The reorientation angle H is defined in (c). Reprinted with permission from |4i>|. 
X. II. Wang et al.. Phys. Rev. H till, 11417 (|9'W). i<: |4W, American Physical Society.

A comprehensive survey was later made on the dependence of two-dimensional PBG on 
the types of lattice and shapes of lhe scatterer |47|. In lhe triangular lattice formed by 
air rods in dielectric background, the hexagonal rods tilled by 24’ off the lattice symme
try axis produced the largest complete PBG for which the gap width to midgap frequency 
ratio amounted to 23.6% for a tilling fraction f = 0.805. For circular rods, lhe maximum 
PBG width was = 19.5% for a tilling fraction /’ — 0.843. In contrast, square- and 
rectangular-shaped rods yielded smaller PBG, even with reorientation. Honeycomb lattice 
exhibited a similar behavior, with hexagonal and circular rods producing larger PBGs and 
with square and rectangular rods showing smaller PBGs.

Unlike lhe triangular lattice, however, lhe honeycomb lattices with reoriented hexagonal 
rods were found to yield about the same PBG width as the circular roils. This could be 
explained by the fact that in the honeycomb lattice the symmetry is already lowered from the 
original triangular lattice by the two-atom basis, and thus the further symmetry reduction 
by the shape of atoms has smaller effect on the PBG. In the square lattice of air rods in 
a dielectric medium, square rods exhibited lhe largest gap width. The maximum gap width 
to midgap ratio was Aw/w„ = 14.9% when / = 0.68 and the reorientation angle H — 30’. 
Circular and hexagonal rods yielded much smaller gaps with maximum gap width to midgap 
ratios of only 5.1% and 3.1%. respectively. It is interesting to note that the behavior of 
triangular and square lattices are almost opposite and that the scatterers that have the 
same symmetry as the lattice tend to give the maximum PBG width. The results on other 
types of lattices and scatterer shapes are listed in Table 2. Summarizing the studies on 
two-dimensional PC's, a variety of two-dimensional structures, some of which seem quite 
attractive from the fabrication standpoint, exhibit complete PBGs. and lhe maximum gap 
width was found in the triangular lattice of misoriented hexagonal scatterers.

So far. we only discussed pure two-dimensional structures that are assumed to be invariant 
in the third dimension. This type of structure can be made on Si or AFO, by ar electrochem
ical process in which ordered pores ate created with an extremely high aspect ratio [48. 49|. 
The use of prepaltcrned substrates improves high crystallinity and also allows the creation
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'Ail nxJs in dielectric media
' Dielectric rods in an

I cnglhs ol lattice vectors satisfy /, lt O.K, frequencies are in units ol 2r< i,
J0.84.
R„'R„ = (1.44.

1 Rt.R„ = 0 64
Source Reprinted with permission from |47|. R Wang el al. J 4/>/>/ /’/n». ‘Ml. 4307 (2001) • 2001. American Institute ol 

Physics.

table 2. Dependence ol photonic band gaps on 1 he lattice types and scalicrer shapes.

Shape ol
1 alticc type Brillouin zone Scatter f H

Iriangulur' hexagon hexagon 0.805 24 H.449 0.106 23.65? 2.1%
circle 0.843 — 0.481 0.094 19.5% —
square 0.843 31 r 0.476 0.059 12.35? (1.6%

rectangle <1.678 0" 1.378 0.034 8.9% 1.3%
1 lonevcontb1 hexagon hexagon 11.143 3(1- 1.544 0.058 10.6% 0.0%

circle 11.150 — (1.539 0.055 10.3% —
square 0.405 4J- 0.200 0.01 I 5.4'7 0 1%

rectangle 0.383 58e 11203 on 13 b.Vc 0.0%
Square' sqtl.HC square 0.68(1 30 11.425 <I.(M>3 14 9', 2.8%

rectangle 0.585 45 0.386 0.030 7.6% 0.6%
circle 0.770 — 0.475 0.024 5.1 % —

hexagon 0.780 15“ 0.488 0.015 3.1% 0.0%
Square1 squill c square 0.395 111 11.648 0.037 5.8% 2.5%

rectangle'1 0.495 39® 0.356 0.015 4.1% 6.0%
ellipse 0.355 41 0.493 0.013 2.6% 13.5%

Rectangular rectangle rectangle' 0.688 28’ 0.480 0.053 11.0% 2.7%
ellipse1 0.710 40 0.728 0.031 4 3% 1.2%
hexagon 0.62(1 30 0.430 0.012 2.8% 0 1%
square 0.555 ■sv 0.419 <1,007 18% 0.6%

of waveguide or cavity structures. However, despite the recent progress in this area, the 
two-dimensional structures with finite thickness that can be fabricated by the conventional 
lithography-based techniques still bear the highest practical importance. Naturally, extensive 
research has been carried out on two-dimensional slab PCs with finite thickness. A slab PC 
typically consists of a thin layer of high-index material that is periodically patterned. The 
slab may lie on a low-index substrate or be suspended in air.

In either case, the electromagnetic fields are scattered by the periodic structure in the 
plane of the dielectric slab, and at the same time they are confined within the slab because of 
the index profile along the direction perpendicular to the slab. Therefore, the confinement of 
light within the slab is imperfect and only the modes that satisfy the total internal reflection 
condition survive: the rest radiate into the surrounding media with short lifetimes. This 
imperfect light confinement consequently imposes limitations on the functionality of slab 
PCs. However, it has been discovered that many of the desired properties of pure two- 
dimensional structures are retained by the guided modes in two-dimensional slab PCs.

From the modeling standpoint, the photonic band structure of two-dimensional slab PC 
may be calculated by the PW or FDTD methods. In the PW method, where the periodic 
boundary condition must be used, it is necessary' to set up an artificial supcrcell that contains 
the slab in the middle sandwiched by thick layers of background medium, typically air. It 
is important to ensure that the supcrcell size is large enough that the coupling between 
the slabs in the adjacent supercclls is negligible. In this case, the guided modes whose field 
amplitudes decay exponentially outside the slab arc not affected by the artificial periodicity 
along the out-of-planc direction, and thus the bands within the guiding regime are accurately 
modeled. The radiation modes, however, may possess substantial field amplitudes even at a 
large distance away from the slab. I hus. these modes are always affected by the supcrcell 
and cannot be faithfully modeled by the PW method.

When accurate band structures are needed for both guided and radiation modes, it is desir
able to use the FDTD technique, in which an absorbing boundary condition can be used to 
accurately simulate a medium with infinite extent. Thus, lor the modeling of a slab PC struc
ture. the FDTD computation cell is typically terminated by periodic boundary conditions for 
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the directions of two-dimensional periodicity and by absorbing boundary conditions in the 
direction perpendicular to the slab. In any ease, the most important characteristic of the 
band structure ol a two-dimensional slab PC that distinguishes itself from that ol a pure 
two-dimensional PC is the presence of light line that forms the boundary between the guided 
and radiation regimes. When the slab is located in a uniform dielectric medium, the light 
line is simply given by the dispersion relation of the background medium. In addition, the 
system is no longer invariant along the direction perpendicular to the slab.

As a consequence, the modes in a slab PC can no longer be classified into two nonin
teracting TE and TM polarizations. Instead, the slab possesses mirror symmetry (i.e.. the 
system remains invariant on reflection in the plane lying in the middle of the slab, il the 
slab is surrounded by the same dielectric material on both sides). Therefore, the modes in 
the two-dimensional slab PC arc either even or odd. depending on how they transform on 
reflection in the mirror plane. The even and odd modes in a slab PC bear close resemblance 
to TE and TM modes in the pure two-dimensional PC. In fact, in the mirror plane, even and 
odd modes do have the same polarization as the TE and TM modes, respectively. For this 
reason. Ihe even and odd modes are sometimes referred to as IE-like and TM-like modes.

Figure 9 shows the photonic band structures for two-dimensional slab PCs calculated by 
the PW method |5(l|. I he shaded regions represent the radiation regime, in which modes 
are unbounded and thus can couple out of the slab. The modes under the light line, in 
contrast, arc guided and arc thus confined within the slab. Because of the presence of a 
continuum of radiation modes, it is clear that there is no complete PBG in these systems. 
I lowever. as indicated in Fig. 9. there are regions of frequency in which there exist no guided 
modes. These regions are frequently called PBGs, in which it is implicitly understood that 
only the guided modes are concerned. The square lattice of finite dielectric rods exhibits a 
PBG for odd modes, whereas the triangular lattice of air holes in a dielectric slab shows 
a PBG for even modes. This is consistent with the fact that the corresponding pure two- 
dimensional structures exhibited I'M and TE gaps, respectively, confirming the similarity 
between the even ami odd modes in slab PCs and the TE and TM modes in pure two- 
dimensional structures. Furthermore, the lower modes were found to be tightly confined 
within the slab, and their field profiles also closely resemble those of corresponding modes 
of the pure two-dimensional structures. In the slab PC structure, in addition to the usual 
parameters such as the type ol lattice, shapes ol the scatterers, and the filling fraction, the 
slab thickness critically affects the photonic band structure. If the slab is very thick, it will 
support many guided modes, which would naturally decrease the chance of opening a PBG. 
If the slab is too thin, however, it will support only weakly guided modes that will exist close 
to the light line. Thus, it is conceivable that there will exist an optimum thickness leading 
lo the maximum PBG width. Johnson et al. reported that the maximum PBG width was 

Figure 4. Photonic hand structures ol two two-dimensional slab photonic crystals, ta) square lattice ot dielectric 
rods with futile height, and (bi triangular lattice ol air rods in u dielectric slab. Reprinted with permission from |5H|. 
S. G. Johnson el al . /’/»» Kei H Ml. 5751 (|WQ) • I't'w. American Physical Society.
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found at thicknesses of 2.3« and ().6c/ lot dielectric rod and air hole lattices, respectively 
|50|. The optimum thickness for maximum PBG width will, of course, change with the exact 
dimensions of the two-dimensional PC structures, hut from the large difference in optimum 
thickness between dielectric rods and air holes systems, one notices that the polarization 
plays an important role in determining the optimum thickness.

Although the previous analyses showed that two-dimensional slab PCs support guided 
modes that can propagate losslessly within lhe slab, when the perfect periodicity is disturbed 
either intentionally or unintentionally, the guided Bloch modes can couple with the radiation 
modes and leak out of the slab. Accurate estimation of radiation losses is therefore very 
important for practical applications based on two-dimensional slab PC structures. For a 
quantitative description of radiation losses, Benisty et al. considered a two-dimensional PC 
of a triangular array of air holes in a dielectric slab and developed a phenomenological 
model in which the losses arise from the radiations by effective dipoles located inside the air 
holes [51|. The strength of the oscillating dipole is determined by the average field inside 
lhe hole. I he two-dimensional periodicity would result in Bragg scattering that can strongly 
modify lhe radiation losses, but this effect was assumed to be small, and lhe dipoles were 
assumed lo radiate independent of one another. It was further assumed that the radiation is 
isotropic from normal direction to the critical angle—below which lhe light will be confined 
within the slab by total internal reflection. As a result, the model predicts that the radiation 
loss be proportional to (As)-, where As is the difference of dielectric constant between the 
slab and cladding materials.

To incorporate this loss term into a pure two-dimensional modeling, the holes are treated 
as a dissipative medium with an imaginary dielectric constant that gives rise to a pow'er 
dissipation equal to the radiation loss. This fictitious imaginary dielectric constant allows 
lhe use of simpler and faster two-dimensional modeling tools for quantitative estimation of 
radiation loss in two-dimensional slab PCs. Figure 10 shows the transmission coefficients 
calculated by the transfer matrix method along with the experimental ones measured from 
a GaAs-based two-dimensional slab PC. l he theoretical curves calculated with no loss term 
show sharp, well-defined edges at both lhe low and high frequency boundaries of the stop 
bands where the transmission coefficient abruptly rises from zero to close lo 1. However, the

f igure 10. Comparison of experimental transmission of eight-rows-thics two-dimensional photonic crystals (thin 
line) wilh calculations, w th losses i - 0 IS (hold line) and without losses (dashed line) as a function of the 
normalized frequency it — u/A. Orientations (I K on top and 1'5/ on bottom) and polarizations (TE to the left and 
IM to the right) arc indicated. Reprinted with permission from |5I|, II Benisty et al.. .-!/>/>/. Pins. I.ell. 76. 532 
(2000). • 2000. American Institute of Physics.
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experimental curves indicate that the edges of the stop bands are smeared out and do not 
show sharp edges, particularly on the high-frequency side. The theoretical curves calculated 
with nonzero imaginary dielectric constant better represent the experimental results. The 
strong decrease in transmission on the high-frequency side of lhe stop band is readily under 
stood if one considers the field profiles. The photonic band below' the stop band has most 
of its fields in the dielectric region (dielectric band), whereas the band above the stop band 
has its field concentrated in the holes (air band). This naturally leads to a higher loss for 
the air band, which is correctly reflected in the calculated spectra.

The above model is somewhat simplistic because it disregards the guiding condition for the 
slab and treats the holes as independent radiators irrespective of the frequency. Numerical 
simulations by Bogaerts et al. later found that that the photonic bands of a slab PC that 
lie below the light line do not exhibit radiation loss in the bulk, as expected [52]. The only 
radiation sources in this case are defects, which include intentional and unintentional defects 
and also the interfaces that inevitably exist in a finite-size PC structure. Il was also discovered 
that the radiation loss is proportional lo (Ac)2 only for small A>; and tends to level off for 
high Ar;. Thus, it is advantageous to keep Ae as low as possible when Ae is relatively low 
because a small decrease in Ar; would result in a large decrease in radiation loss. When Ac 
is large, however, the radiation loss becomes insensitive to Ae.

4.1.3. Three-Dimensional Photonic Crystals
Three-dimensional PC is needed to produce complete three-dimensional PBG. in which 
light propagation or generation is absolutely forbidden. Unlike the two-dimensional slab 
PC in which one needs to worry about guidance condition and out-of-plane losses, a three- 
dimensional PC exhibiting complete three-dimensional PBG can serve as a platform where 
light is controlled entirely by the photonic band structure. Three-dimensional PCs hold high 
promises for novel applications such as three-dimensional optical interconnects and nano
cavities with extremely high confinement factors. The most widely studied three-dimensional 
system is fee structure. In the original proposal of the PC concept, it was suggested that 
an fee crystal would produce the most round-shaped Brillouin zone in the reciprocal space, 
thereby increasing the chance that a PBG would encompass lhe entire Brillouin zone sur
face [I |. Soon after. Yablonovitch et al. manufactured fee crystals consisting of dielectric 
spheres, ait spheres and elongated air spheres, and experimentally demonstrated in the 
microwave region that complete three-dimensional PBG is possible in some of these fee 
crystals [53. 54],

These pioneering works were followed by extensive experimental research on creating fee 
crystals with atoms small enough for optical applications. In particular, lhe rapid progress in 
nanoparticlc self-assembly technique has provided a fast and economical means of produc
ing high-quality fee crystals [55, 56], Early modeling studies on fee crystals were primarily 
based on scalar-wave approximation [57, 58|. Ignoring the vector nature of the electro
magnetic fields, this approach incorrectly suggested that simple-cubic, body-centered-cubic, 
face-centered-cubic, and diamond structures all exhibit complete three-dimensional PBG.

It was soon realized that the vector nature of the electromagnetic field critically affects 
the photonic band structure. Thus followed more rigorous theoretical investigations, taking 
the vector nature fully into account, which determined that a simple fee structure did not 
support a complete PBG [20]. In clear contrast to the scalar-wave approximation, the vector 
calculation showed the second and third photonic bands are degenerate at If' and U points of 
the Brillouin zone, preventing lhe complete PBG. An alternative structure was thus sought, 
having lower symmetry that can lift the degeneracy at IV and U points but at the same 
time preserve the round shape of the Brillouin zone, which is believed to be favorable for 
complete PBG. On the basis of this reasoning, a diamond lattice made of two-atom basis 
on fee lattice was modeled and a wide complete PBG was observed. Note the analogy with 
lhe two-dimensional systems, for which we observed much larger PBG by going from a 
simple triangular lattice to a honeycomb lattice made of a two-atom basis on triangular 
lattice.

Figure 11 shows the photonic band structure for a diamond lattice, comprising dielectric 
spheres with a refractive index of 3.6 and filling ratio of 0.34. A complete PBG opens between
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Figure 11. Photonic hand structure ol a diamond lattice consisting ol dielectric spheres with retractive index 3.6 in 
an air background. Reprinted with permission from [2(>|, K. M. Ho el al., /7ns. Rev. Leii. 65, 3152 (1990). is 199(1. 
American Physical Society.

the second and third photonic bands and encompasses the entire Brillouin zone including 
the IF and U points, f urther studies discovered that the diamond lattice supports a complete 
PBG if the refractive index contrast exceeds 2. and that the killices with air spheres tend to 
provide wider PBGs. I hc largest gap width was Aw/w„ = 28.8% for air spheres with filling 
fraction (LSI.

Another method to reduce symmetry and lift the degeneracy is to use nonspherical atoms, 
as discussed in Section 4.1.2 for two-dimensional systems. This new structure, often called 
the Yablonovite after its inventor, is made by drilling three sets of holes 35.26“ off the vertical 
axis into a dielectric slab |54J. The three drilling axes are 120° apart from each other on 
the azimuth. This process results in a network of holes with roughly cylindrical shape that 
forms a fee lattice. This structure was found to exhibit complete PBG if the background 
index is greater than 2.1 and, for a background index of 3.6. the gap width to mid gap ratio 
was 2(1%.

Although these modified fee structures with reduced symmetry' exhibit wide and robust 
PBG. simple fee structures with spherical atoms are still the most favorable system from the 
fabrication standpoint. In this respect, it was a significant discovery that a simple fee struc
ture composed of spherical air atoms in a dielectric background also possesses a complete 
PBG between the eighth and ninth bands [59], which happened to fall in the high-frequency 
region not examined in the earliest modeling studies. This structure can be readily pro
duced by the self-assembly technique in which highly monodispersed nanospheres (most 
often SiO, or polystyrene) self-assemble themselves into a fee close-packed structure. The 
self-assembled opal then serves as a template into which high-index dielectric material may 
be infiltrated to create an inverted opal structure comprising air spheres in a dielectric back
ground. As the self-assembly process makes rapid progress, further theoretical investigations 
on self-assembled opal and related structures followed.

Busch and John determined that rhe simple fee structures made by mono-dispersed SiO- 
and TiO? nanospheres do not support a complete PBG and that the total photonic DOS 
changed little from the tree-space DOS |60|. Infiltration of dielectric material anil subse
quent removal of SiO, particles, however, can produce a complete PBG if the infiltrate 
possesses a high enough refractive index. Figure 12a shows the photonic band structure of 
a Si inverted opal structure that is a fee lattice of air spheres in a Si background. It can 
be seen clearly that a complete PBG extends across the entire Brillouin zone between the 
eighth and ninth bands. I hc gap width to midgap ratio was Aw/w = 4.25%. The PBG is also 
visible in the photonic DOS plot in Fig. 12b. in which the total photonic DOS falls to zero in 
the PBG.

The DOS plot also reveals that there exists a pseudogap between the fourth and fifth 
bands, where the normalized frequency io (1.524. In the inverted opal structure, complete
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figure 12. (al Photonic band structure and (b) photonic density ol slates for a Si-inverted opal structure; that is, 
fee structure ot air spheres in a silicon background (f — I 1.9). Reprinted with permission from |6tl|. K Busch and 
S. John. /7ns Rci I 58, 3896 (|*W8). <i 1*8)8, American Physical Society.

PBG begins to open up when the background refractive index exceeds 2.8 and the gap width 
monotonically increases with an increasing background index. For Ge infiltration (n — 4.0). 
the gap width amounts to A<o/w = 7.35%. It was also found that the hexagonal close-packed 
(hep) structure made of air spheres in Si has a pseudogap and a complete PBG at roughly 
the same frequencies as its fee counterpart. The width of the PBG. which opens between 
the sixteenth and seventeenth bands in this case, was somewhat smaller, with Au/w = 2.8%. 
During the inverted opal manufacturing process, it is customary to sinter the self-assembled 
opal so that the nanoparticles bond together, providing enough structural integrity to with
stand further processing. After infiltration, the bonded particles provide passage for the 
chemical etchant to flow through, enabling complete removal of original template. There
fore. the real inverted opals are not truly close-packed structures of touching air spheres but 
arc better modeled by a fee structure of slightly overlapping air spheres. The photonic band 
properties will then he affected by the degree of overlapping.

Busch and John investigated the dependence of PBG width in a Si-inverted opal on the 
size of the opening created by the bonded particles [60], The PBG width was found to 
increase as the opening size was increased. A maximum width of Aw/w 6,6% was obtained 
when the radius of the opening was (1.13.%/. where fl is the lattice constant of the fee lattice. 
Considering that the sintering improves the connectivity of air, this result indicates that the 
formation of PBG is promoted by the presence of true network topology.

The same authors also investigated the effect of incomplete infiltration, another strong 
possibility in inverted opal fabrication. By assuming that the air spheres arc coated with Si 
rather than immersed in a completely filled Si background, it was discovered that the PBG 
width could be almost doubled from the full infiltration case when the Si volume fraction was 
21%. When the infiltration becomes more incomplete, the PBG is eventually closed because 
there is not enough high-index material in the system. However, as the infiltration becomes 
more and more complete, the gap width approaches the value for the Si-inverted opal.

Another three-dimensional structure that has received much attention is the woodpile 
structure first proposed by Ho et al. [611 and fabricated by Lin el al. [62]. As shown in 
Fig. 13a. this structure is derived from the diamond structure by replacing the (110) chains 
of atoms with the rods and has a layered design so that it can be fabricated by the lithogra
phy technique. Each layer consists of parallel rectangular rods whose orientation is rotated 
by 9(F as they arc stacked on top of one another. Furthermore, the rods are shifted by half 
the spacing between every other layer. Therefore, four adjacent layers are combined to form 
a unit stacking sequence. This structure in general forms a face-centered-letragonal (I'd) lat
tice and in the special case in which c/d — 1.414 (c and d arc indicated in Fig. 13a). it forms 
an fee lattice. The photonic DOS calculation for the woodpile structure made with Si show's a 
wide, complete PBG opening between frequencies (1.46 and 0.56. resulting in A/u/to 20%.
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Figure 13. (a) Schematic diagram of the woodpile structure, (b) calculated photonic density of states for rod index 
n — 3,(>, f = m/d - 0.28 and <•/</ - 1,414. Reprinted with permission from |62|. S. Y. Lin el al.. Nature 394, 251 
(1998). <C' |998, Nature Publishing Group.

The presence of PBG was also confirmed by optical transmission measurements, which 
showed a strong decrease in transmission in the midinfrared region.

Other structures that were also found lo support complete PBG involve atoms with a 
cylindrical shape. Chan et al. discovered that a whole class of structures with rhombohe- 
dra! symmetry, known as the A7 structure, supports wide three-dimensional PBGs and that 
many structures known to possess complete three-dimensional PBG are in fact a subset 
of this broader class of materials [63], The A7 structure is a rhombohedral lattice with a 
two-atom basis. The structure is characterized by the shear angle, the angle between two 
primitive translation vectors, and the displacement of two basis atoms. A system in which 
circular cylinders connect the lattice points, thereby producing interconnected topology for 
both high and low dielectric materials was studied in Ref. [63]. The structures created this 
way were found to exhibit wide PBG for a variety of values of shear angle and displace
ment of basis atoms, except when the combination of the two parameters accidentally pro
duced a high-symmetry structure. The maximum PBG width was found to be as large as 
Aw/w = 30%.

Another structure designed for lithographic fabrication is composed of multiple layers of 
dielectric slabs patterned with a triangular array of air holes [64]. These slabs arc separated 
by a triangular array of dielectric columns, and the positions of the air holes in the adjacent 
slabs are shifted according to the stacking sequence of a fee lattice along the (111) direction. 
The resulting structure is essentially a fee lattice with nonsymmctric atoms. The photonic 
band structure exhibited a complete PBG of over 21%' for a Si-air system and the PBG was 
found to persist down to a refractive index contrast of 2:1. Furthermore, when intentional 
defects were introduced for waveguides or cavities, this structure was expected to support 
modes similar to those of a two-dimensional slab PC because it comprises stacks of two- 
dimensional slab PCs. This would allow one to use the extensive research carried out on 
two-dimensional slab PCs. as discussed in the previous section.

It has recently been recognized that wide and robust three-dimensional PBG may be 
realized by using metals that are generally strong light scatterers. Periodic metallic or metal
dielectric structures in both two-dimensional and three-dimensional geometry have been 
widely investigated for microwave or millimeter-wave regions in which most metals behave as 
perfect conductors. At optical frequencies, however, metals become strongly absorbing and 
dispersive, hindering the development of metal-based PCs for photonic applications. It was 
recently discovered that absorption loss in metallic PC can be made very small [651. Transfer 
matrix calculations on simple cubic structures showed that structures with interconnected 
metal exhibit higher loss than those with isolated metals. This is because lhe long-range 
conduction current that can How in lhe interconnected geometry' leads lo higher absorption. 
Among the metal species studied. Cu exhibited the lowest loss, and Au and Ag were found 
acceptable, though the loss was slightly higher. Al showed the highest absorption loss and is 
thus not recommended for optical applications.
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To properly model metallic PC. the issue ot dispersion must be addressed. Metals generally 
possess a strongly frequency-dependent complex dielectric constant that is frequently 
described by lhe Drudc model.

e(w) = I----- -----(46)
<t>( to 4-1 y)

where is the plasma frequency and y is the damping parameter, which gives rise to 
absorption. This poses a serious problem for the PW method. A study of two-dimensional 
metallic PCs showed that the eigenvalue equation by the PW expansion coefficients is no 
longer linear in or/c-, and thus must be linearized by taking a larger basis set |66|. It was 
found that three or four limes larger basis sets are needed, depending on the polarization, 
resulting in a 27-64 times heavier computational load. Thus, extension of the PW method 
to three-dimensional metallic or metal-dielectric systems scents difficult. In contrast, the 
dispersion does not bring any new problem Io the KKR method, as it calculates allowed k 
vectors forgiven w. Thus. KKR method is one of the most widely used modeling techniques 
for metallic systems. As pointed out in Section 3.4. the KKR method can handle spherically 
symmetric scalterers very efficiently. This naturally directs much attention to lhe opaline 
structure that may be produced from lhe colloidal suspension of metallic nanospheres.

Moroz pointed out that a fee lattice constructed with nonabsorbing metal spheres can 
induce a wide PBG because c(mp) — 0. which subsequently results in a very high dielectric 
constant contrast at frequencies near to [67]. His KKR calculations showed that the metal 
fee structures indeed possess complete three-dimensional PBGs. As shown in Fig. 14. the 
photonic band structure of the metallic system is similar to that of a purely dielectric system, 
but the complete PBG between the eighth and ninth bands is now much greater than the 
inverted opal structure. In addition, there is a second PBG opening between the fifth and 
sixth bands. The dependence on the metal till fraction revealed that the largest PBG opens 
in the close-packed structure with / = (1.74. In this case, rjih/X., > 0.9 is required, where r, 
is the metal sphere radius. nh is the refractive index of the background dielectric material, 
and A;, is the plasma wavelength. The metal lattice in air (/»,, = 1) represents the worst case 
in which the dielectric contrast is lowest. Even in this case, however, a complete PBG as 
wide as Ahj/oj — 9G opens when i\nh/Xr — 1.013. This PBG is almost twice as huge as that 
in the Si-inverted opal structure. It was later found that complete PBG opens in any periodic 
system containing metal spheres or metal-coaled dielectric spheres.

Approximately treating metal with a large negative dielectric constant that is frequency 
independent. Zhang et al. found complete PBGs in all simple-cubic, fee. body-ccntcred-cubic.

Wave vector Wave vector

Figuri* 14. Photonic band structures for fee lattices ol metal spheres. The background dielectric material was 
assumed to In. uir. (al <■>, 9 amt r,/A/t — 1.013 and (b) = 12 and r,.A, - 1 35 Reprinted with permission
from |67|. A Moroz, /'/nv. Mt. I ell 83. 5274 (1999). > |999. American Physical Society



292 Modeling ol Photonic Crystals

body-cenlered-tctragonal. hexagonal-close-packcd, diamond, and hexagonal diamond struc
tures made of metallic cores with dielectric coating whose thickness is 5% of lhe radius |68|. 
The midgap frequency and the gap width are shown in Fig. 15. In the inset, the gap width to 
midgap frequency ratio is plotted as a function of the till fraction of the metal core. Complete 
PBG begins to open at /' — 0.53 and is seen to monotonically increase with an increasing 
metal till fraction, l he gap widths arc much larger than those predicted by Moroz [67]. This 
disparity seems to arise primarily from lhe difference in frequencies. Moroz investigated 
the frequency region near the plasma frequency, but Zhang et al. [68] primarily looked al 
frequencies much smaller than the plasma frequency by assuming a large negative dielectric 
constant.

l he same technique was extended to deal with the frequency dependence of the dielectric 
constant and was applied to fee structures made with Ag. Cu. and Ni |69|. Despite the 
differences in plasma frequency, all three metals exhibited complete PBG in the visible and 
near-infrared region, when the metal nanospherc radius was 160 nm. As before, the PBG 
width was seen lo increase with increasing metal fill fraction and reached = 40% for 
case of close-packed structure of Ag nanospheres. Despite lhe different plasma frequencies, 
the minimum fill fraction of metal required to open complete PBG was the same for all 
three metal species. The position of the PBG. however, was seen to follow the same order 
as the plasma frequency. Ag. which has lhe largest plasma frequency, has the gap situated at 
the highest energy, and Ni and Cu followed in the same order as their plasma frequencies.

These modeling studies, however, assumed purely real dielectric constant and thus did not 
include the effect of absorption. To see the effect of absorption by metals, the same authors 
performed transfer matrix calculation, taking the experimentally determined complex dielec
tric constant for each metal species |69|. Figure 16 shows the transmission, reflection, and 
absorption spectra calculated for four-laycr-thick (111) oriented fee slabs of Ag. Cu. and Ni. 
l he spectra for nonabsorbing Ag plotted for the sake of comparisons shows well-defined 
stop band and PBG at energies 0.92-1.54 eV and 2.04-2.40 eV, respectively. The presence 
of absorption strongly distorts the transmission and reflection spectra. For Ni. which has 
the smallest plasma frequency among lhe three, the effect of absorption is so strong in 
the visible and near-infrared, that the characteristic features of the PC are almost com
pleted washed out. In contrast. Ag. which has the highest plasma frequency, exhibited only 
small changes from lhe ideal case, preserving the stop band and PBG. The Cu structure 
represents the intermediate case, in which the stop band is well preserved but the PBG 
is destroyed. This result once again shows that the choice of proper metal species is very

Figure 15. Positions and widths of complete three-dimensional PUG* in various structures made of metal spheres 
with a thin dielectric coating (e = 12). The inset shows the gap widthto-midgap frequency ratio lot vacous filling 
fractions of metal in the fee lattice. Reprinted with permission front |<>S|. \V. Y. Zhang el til., Phys. Re: Lett. 84. 
2853 (2000). c' 2000. American Physical Society.
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Figure 16. Calculated Iransniission. reduction, and absorption spectra ioi four layers ol (III )-orienled fee lattice 
formed by spherical Ag, Cu. and Ni particles with a radius of 16(1 nm. Nonabsorbing Ag is also shown for com
parison. Reprinted with permission front [69|. Z. Wang et al.. Phys. Ker. H 64. 113108 (2001). © 2001. American 
Physical Society

important in metallic or metal-dielectric PCs and that metals with high plasma frequency 
arc desirable.

It is also possible to model metallic or metal-dielectric PCs with the FDTD method. No 
major change from the purely dielectric system is necessary if one chooses to model the metal 
with a large negative dielectric constant that is independent of frequency. Assignment of 
initial field profile docs need be changed, however, because the initial field given in Eq. (IS) 
tends to result in incomplete bands. Defining, instead, an oscillating dipole source at a low- 
symmetry position in the unit cell works much better. The dipole source may be weighted 
with a Gaussian envelope in time, so that it would excite modes in a range of frequency. 
A minor concern is that most FDTD codes incorporate the Cartesian coordinate system, 
and thus it is most convenient to use the conventional cubic unit cell when modeling an fee 
lattice. However, because the conventional cubic unit cell is not the primitive unit cell, the 
corresponding unit cell in the reciprocal lattice is smaller than the first Brillouin zone and 
thus the resulting band structure will be a folded version. As Fan et al. [7(1] suggested, to 
obtain the proper band structure, one needs to set up four dipole sources that are displaced 
from one another by a primitive unit vector and also their phases satisfy the Bloch theorem. 
Sakoda ct al. later developed an FDTD algorithm that can effectively deal with frequency
dependent dielectric constant |3I |. In this method, to be able to handle frequency-dependent 
dielectric constant, a generalized constitutive equation is used

D(r. / ) = eo / <// <!'(r. I - I )E(r. / ) (47)
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where ‘l’(r.t) is the dielectric response function given by the Fourier transform of dielectric 
constant. «(r. a>)

I r'<l>(r,/)=- / Jw£(r. «)exp(-/a>/) (48)
2 77 J x

Using lhe dielectric function, «(r. «j). given by the Drude model, one finds

4>(r./) = £\<S(/) +----- -|1 -exp(-y/)]0(f) (49)
y

where I) is the unit step function needed to ensure <l>(r. r) = (I for I < 0. as required by 
causality condition. Combining Eqs. (47) and (49). one obtains

10 0
— — D(r./) = —E(r./) + / die ''E(r.t-t) (50)
fc'u <>i <ii ' Ai

for the metal region. For the dielectric region, lhe usual constitutive Eq. (3), is used. In 
actual computation, the integral in Eq. (50) is evaluated by using the following recursive 
equation

Fl'”"(r) = A/E<',+"(r)+ e 1"'F<'”(r) (51)

where F*^’ represents the integral in Eq. (50) being evaluated by a discrete sum up to the 
pth time step. Evaluation of F requires additional storage and computation time, but the 
additional load was found to be not very serious, amounting to only a few tens of percent 
increase from the purely dielectric case. The remaining steps arc the same as in the regular 
FDTD method, and the periodic boundary condition extracts only the eigenmodes.

Thanks to the large database on metallic colloids, most metal-dielectric PC's arc being 
made by the self-assembly of metallic or metal-dielectric composite colloidal particles. 
Recently however, a three-dimensional metallic PC with a woodpile structure was fabricated 
using a lithography technique |71|. The PC was produced by first creating a SiO2/Si wood
pile structure by layer-by-layer lithography process. Si was then removed from the mold by 
selective etching, and tungsten was back-filled by chemical vapor deposition. This structure, 
as explained before, forms a fee lattice and the incorporation of tungsten proved to open a 
wide PBG in the infrared region.

As shown in Fig. 17a. the transfer matrix calculation predicted that reflectance would 
reach almost 100% at wavelengths between 8 and 25 gm, indicating the formation of PBG. 
Also observed are an absorption peak at 6-7 gm and an allowed band at ~5 gm at which the 
transmission reaches ~80% in a four-layer system. For a six-layer structure, the transmission 
peak height increased to ~95%. which is consistent with the photonic band effect. To further 

0 5 10 15 20 25
Wavelength (pm)

Figure 17. Reflectance and transmission absorption spectra of three-dimensional tungsten photonic crystal calcu
lated by the transfer matrix method, (a) Calculated reflectance (black), transmittance (blue), and ahsorptancc (red) 
spectra for a four-layer three-dimensional tungsten photonic crystal, (bl Calculated transmission spectra for three- 
dimensional tungsten photonic crystals with different numbers of layers. X _ 2. 4. and 6. Reprinted with permission 
from |7I |. .1 Ci Fleming et al., \'umre 417. 52 (2002). ■ 2002. Nature Publishing Group.
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conhrn that the observed optical properties arc the result of the PC structure, and not the 
absorpion by metal, the transmission spectrum is calculated for various number of layers, as 
shown n Fig. 17b. Hie transmission spectrum for a tungsten thin film, which is also shown 
in Fig. 17b lor comparison, exhibited very low transmission at A < 6 gm. consistent with the 
small s;in depth (300—500 A) in the infrared region.

In ctnlrast. the tungsten PC showed much higher transmission at the same spectral region, 
indicatng the transmission is dominantly determined by the photonic band effect. In addi
tion. tie attenuation observed at A > X gm scaled with the number of layers and not with the 
skip dcith of tungsten. This also indicates that the attenuation in this region is the result of 
the plutonic band effect. These theoretical calculations were confirmed by Fourier-transform 
infrarel (FTIR) spectroscopy measurements, and the reflectance measured for various tilt 
angles ilso suggested the presence of complete PBG at A > 8 jam. This strongly modified 
transmssion and absorption can lead to the development of a unique lighting device in which 
the bla kbody radiation in the infrared region is suppressed by the PBG. thereby recycling 
energy into the visible spectrum. I he photonic band enhanced absorption band at the band 
edge cm then act as an emission channel. It can also be used for a thermal-photovoltaic 
device, in which case the efficiency was predicted to be more than 4 times higher than the 
blackhcdy emitter.

4.2. Eeyond the Photonic Band Gap
Idenifing conditions for a large PBG is important because the PC can then support linear 
wavegudes or cavities produced by intentionally introducing linear or point defects, as will 
be discussed later. However, it is increasingly being recognized lhal the optical properties of 
a Pt oitsidc the band gap could be just as intriguing and technologically important as the 
band gip itself. An immediate benefit of a device that does not require a PBG is the sig
nificant relaxation of material requirements, which would make fabrication of PC structures 
tnucl easier. Among the interesting properties of the photonic band structures of PCs arc 
the sung anisotropy and nonlinearity that some structures may exhibit. These properties 
can Milscqucntly lead to nonclassical phenomena such as giant refraction, superprism, and 
nega iv; refraction.

This was first recognized by Lin et al., who designed and experimentally demonstrated 
a PBG prism in the millimeter wave region |I2|. A two-dimensional PC structure exhibits, 
in geie al. a mostly linear dispersion curve at low frequencies but strongly nonlinear disper
sion ictr the PBG. where the bands become flat. At low frequencies corresponding to the 
lowed ihotonic band, the dispersion surface remains fairly isotropic, and thus the PC may 
be treaed as a homogeneous dielectric material with an effective refractive index. In this 
case, tfe slope of the dispersion curve is inversely proportional to the effective refractive 
index " hus. the effective index is expected to increase near the band gap. By measuring 
the cevation angle of millimeter wave by a triangular PC of alumina rods. Lin cl al. 112] 
determ ned the effective index of the PC as a function of frequency. The dependence of 
the cevation angle on the incident angle was found to be described well by an effective 
index Also, as shown in Fig. IX, the effective index was found to increase by up to ~2()% 
as th; nillimeter-wave frequency approached the band edge, which was consistent with the 
band sructure. If the same structure is made for visible light, a strongly dispersive prism 
can fe made in a very compact size. ~20 gm. which can be integrated with other optical 
compncnts such as ridge waveguides, forming highly integrated photonic devices.

At hghcr frequencies, the photonic bands can become highly anisotropic, causing a 
strong angular dispersion. This was first demonstrated by Kosaka et al., who used a three- 
dimeisonal PC structure to enable an angular dispersion ~500 times greater than in the 
conventional prism [14], The PC structure used in this study consists of alternating layers 
of ano phous Si and SiO- deposited by self-replicating sputtering technique. The substrate 
was [rcpaltcrncd with a triangular array of holes so that the subsequent deposition creates 
alienating layers of triangular lattice of Si and SiO,.

Th resulting three-dimensional structure shown in Fig. 19 is then a simple hexagonal 
graphic structure belonging to the space group P6/mmm. Because the structure is uniaxial, 
the a lowed modes may be classified as TE-like and TM-like modes. Figure 20 shows the
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Figure IS. Measured effective retractive index as a function of frequency for a two-dimensional (2D) triangular 
lattice structure with lattice constant —11.81 mm and rod diameter d =0.305 mm, As expected, effective index 
increases rapidly as lhe frequency approaches lhe band edge of the fundamental TM band gap. Reprinted with 
permission from 112). S.-Y. I.in et al.. Opt. Lett. 21. 1771 (1996). © 1996. Optical Society ol America

20 pairs
(6.4 pm)

Figure 19. Schematic diagram of the Si/SiO, three-dimensional PC structure prepared by a self-replicating sput
tering technique. Reprinted with permission from [14], H. Kosaka et al.. AppL Phys. Lett. 74, 1370 (1999). © 1999. 
American Institute of Physics.

Figure 20. Photographs showing light paths inside (a) a photonic crystal and (b) a silicon water lor incident lights 
with two different wavelengths, 0.99 and 1.0 gm. The TM polarized laser lights were incident at a tilting angle of 
15' onto the edge measured from normal to the edge. Reprinted with permission from | 141. H. Kosaka ct al., Appl. 
Pins. Lett. 74. 1370(1999). <; 1999. American Institute of Physics.
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propagation ol a TM-polarizcd laser beam directed into the crystal with an incident angle 
of 15 Two beams whose wavelengths differ only by I'r were found to propagate along 
two completely different directions. The angle separation was 50 . which is in sharp con
trast with the less than lc separation expected in a homogeneous dielectric material. The 
vastly increased angular dispersion is the result of the strongly anisotropic and frequency
dependent dispersion surface that causes lhe group velocity, and particularly its direction, to 
be strongly dependent on incident angle and frequency. The photonic band structure calcu
lated by the PW method showed that the third photonic band possesses strong anisotropy.

As shown in Fig. 21a. the third photonic band exhibits very different slopes for the T-.Y 
and I'-.V/ directions. As a result, the constant frequency surface is strongly deformed from 
the circular shape of a homogeneous material and becomes a starlike shape, as shown in 
Fig. 21b. Recalling that the group velocity is defined by the gradient of dispersion surface in 
k space.

v;, = V;w(k) (52)

the group velocity points to the direction normal to the constant frequency dispersion curve. 
Therefore, the large curvature near the tips of the dispersion curve shown in Fig. 21b means 
that a small change in incident angle will result in a very' large variation in the group velocity 
direction. Indeed, a laser beam directed into the crystal with an incident angle of 7° was 
observed to be deviated with a refraction angle of 70“. The observed refraction angle was 
consistent with the group velocity direction predicted from lhe dispersion diagram.

The two structures discussed above arc cither pure two-dimensional crystal with long rod 
structures or a complicated three-dimensional crystal, both of which arc rather difficult to 
fabricate in the nanoscale required for operations at optical frequencies. In this respect, two- 
dimensional PC slabs previously discussed in Section 4.1.2 represent more realistic structures 
that can be fabricated by the conventional thin-film deposition and lithography techniques 
commonly used in the electronics industry. Recently. Park and Summers investigated the 
refraction and dispersion properties of two-dimensional slab PCs and showed that the novel 
properties that have been predicted for two-dimensional and three-dimensional PCs are also 
realizable in slab PCs |72|. In this study, FDTD method was used to analyze a thin slab 
of Si (r = 12) patterned with a triangular array of air (r — I) holes. The computation cell 
consisted ot three layers: a dielectric slab with an air hole, an air layer, and an absorbing 
boundary layer. Only the upper half of the dielectric slab was defined, with a mirror boundary 
condition imposed at the computation cell boundary.

This system simulates a symmetric slab surrounded by air on both sides of the slab, in 
which case all modes arc either even or odd under the reflection in the symmetry plane. 

(a) photonic band structure (b) dispersion surfaces

Figure 21. (a) Photonic band structure and (b) lhe constant-frequency dispersion surfaces calculated by the plane 
wave method. 1 he solid and dashed curves denote the I L and I M modes, respectively. Reprinted with permission 
from .13], H Kosaka el al.. I‘h\y Ret R 58, 1(10% (1998). ;< 1998, American Physical Society.
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By imposing the mirror boundary condition, the computation load was reduced by half, and 
it is also possible to select only even or odd modes. Within the plane of the slab, the peri
odic boundary condition according to Bloch's theorem is used to simulate the triangular 
lattice. The thickness of the air layer was varied between In and 4a, where a is the lattice 
constant; that is. the distance between two adjacent air holes. The absorbing boundary layer 
was used to prevent unphysical reflections from the computation cell boundary and to simu
late infinitely large air layers. For this purpose, the Berenger-typc PM1. boundary condition 
discussed in Section 3.2 was used.

More specifically, the authors used an implementation of PML similar to that originally 
developed by Zhao and Cangellaris [73] but modified to work properly with the nonorthog- 
onal coordinate system used for the triangular periodicity in the slab. The photonic band 
structure for a Si slab PC with an air-hole diameter of 0.4a and a slab thickness of 0.5a was 
found to exhibit two band gaps between normalized frequencies of 0.25-0.27 and 0.37-0.39 
for the even modes. The band gap here refers to the region in which no guided modes 
exist, in accordance with the previous discussion in Section 4.1.2. Despite the drastic changes 
in the band structure resulting from the guiding condition, the slab PC proved to exhibit 
anisotropic dispersion surfaces similar to what was found in a pure two-dimensional PC.

I he inset of Fig. 22a shows the dispersion diagram calculated at a normalized frequency 
of 0.357. The circle is the cross-section of the light cone, inside which no guided modes may 
exist. Although partially cut away by the light cone, a significant portion of the dispersion 
diagram, which is highly anisotropic and exhibits sharp inflection points along the V-M 
directions, still lies within the guiding regime. Because the group velocity is defined by the 
gradient of the dispersion surface, the light propagation direction may be predicted from the 
shape of the dispersion diagram. As shown in Fig. 22a, the refraction angle calculated from 
the group velocity direction changed from 0° to over 70° as the incident angle, measured in 
reference to the V-M direction, was varied from 0° to 7°. It should be pointed out that the 
cutoff is reached at an incident angle of 11°, as indicated in Fig. 22a, and thus the entire 
variation of 70° in the refraction angle is achieved within the guiding regime. The giant 
refraction properties were also strongly frequency dependent, leading to an extraordinary 
dispersion (superprism) effect.

As shown in Fig. 22a, for a range of normalized frequencies between 0.357 and 0.364, 
the refraction angle rapidly decreases as the frequency is increased. For a fixed incident 
angle of 2°, the refraction angle increased from 35° to 56° as the frequency was decreased 

Figure 22. (a) Calculated refraction angles tor normalized frequencies between 0.357 and 0.364. Ihc incident angle 
is measured in the 1 3/ direction. Inset: dispersion diagram calculated at a normalized frequency of 0.357. The 
circle represents the cutoff line, outside of which is the guiding regime, (b) Calculated refraction angles for normal
ized frequencies between (1.425 and 0.440. The incident angle is measured from the I'-K direction. Inset: dispersion 
diagram calculated at a normalized frequency of 0.430. I he circle represents the cutoff line, outside of which is 
the guiding regime. Reprinted with permission from [72|. W. Park and C. J. Summers. Opt. Lett. 27, 1387 (2002). 
»• 2002. Optical Society of America.
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from (1.364 to 0.357. yielding over 21 separation in the retraction angle lor a 1' < change 
in frequency. This corresponds to approximately 8 nm in the visible spectrum and to about 
0.03 /on neat the communication wavelength of 1.54 gm. This strong dispersion effect is 
caused by the rapid contraction of the dispersion curse with the increasing frequency.

This process unfortunately moves a greater portion of the dispersion diagram inside the 
cutoff circle, where the dispersion surfaces become radiation modes. Therefore, as indicated 
in Fig. 22a. the cutoff occurs at a smaller incident angle for a higher normalized frequency, 
limiting the range of refraction angles attainable with guided modes. This problem, however, 
is not intrinsic to the structure. At a different frequency range, it was found that the same 
structure exhibits a similar giant refraction and superprism effect entirely within the guiding 
regime.

The inset of Fig. 22b shows the dispersion diagram calculated for a normalized frequency 
of 0.430. As shown, the dispersion curve is anisotropic and shows a sharp negative curvature 
along the I-A direction. Figure 22b shows lhe calculated refraction angle as a function of 
incident angle, which is now measured with respect to the F-A direction. At a normalized 
frequency of 0.430. for example, the refraction angles were found to change from 0" to 
nearly 60° as the incident angle was varied from (I to 6°. Strong frequency dependence 
was also observed in this frequency region, as shown in Fig. 22b. At small incident angles, 
the refraction angle increased with increasing frequency, opposite to what was observed in 
Fig. 22a. For an incident angle of 2®. the refraction angle was increased from 29° to 44° as 
the normalized frequency was increased from 0.425 to 0.440. yielding a 15° separation for 
a y< change in frequency. This phenomenon has a similar origin to lhe case in Fig. 22a, 
that is, the dispersion curves shifts rapidly as the frequency is changed. However, it should 
be emphasized that in this case the entire dispersion curve lies outside the cutoff circle at 
all frequencies, and thus the observed giant refraction and superprism effects are achieved 
with guided inodes only.

A significant extension of the concept discussed in the preceding paragraph is incorpo
rating electro-optic material and thereby achieving timability. Incorporating liquid crystal 
(LC) in a PC structure to lune the photonic band structure was first proposed by Busch and 
John 1741. which was soon followed by experimental demonstrations by Yoshino et al. |75| 
and Leonard et al. |76|. who showed how lhe PBG could be tuned by using the tempera
ture dependence ol the retractive index of LC that was infiltrated into a silica opal and a 
two-dimensional anodic Si PC, respectively. Applying this scheme to the giant refraction in 
two-dimensional slab PC. Park and Summers performed three-dimensional FDTD simula
tions on LC-in til (rated Si slab PC structures and found that, with an LC index change of 
A,i = 0.2. lhe incident optical beams could be steered over ~5® [77|. This value was much 
smaller than what have been predicted by pure two-dimensional modeling studies carried 
out for lead lanthanum zirconate titanate incorporated PC structure in which an An of 0.12 
and gigahertz switching speed could be achieved [78. 79|.

When a high-performance LC with A/i = 0.4 was used, the range of steering angle could 
be increased to over 20 |80|. However, lhe effect of dynamic changes in refractive index 
can be dramatically increased by selectively biasing the optically active material so that the 
PC structure is transformed into a superlattice structure. This scheme significantly enhances 
lhe achievable tunability because in addition to the refractive index it also modifies the 
periodicity, l he proposed superlattice two-dimensional PC structure is shown in Fig. 23. 
In addition to the refractive index modulation by the triangularly periodic holes patterned 
in a dielectric slab, an additional modulation is achieved by selectively addressing alternate 
rows of the LC'-lilled holes, This modulation creates a superlattice PC in which the additional 
periodicity superimposed by the selective biasing scheme modifies both the reciprocal lattice 
space and consequently the photonic band diagram, with profound effects on the optical 
behavior.

In the simplest implementation of this concept shown in Fig. 23. the top electrodes arc 
linearly patterned to align along one side of lhe triangular lattice. In the reciprocal space, 
this direction corresponds to the l'-A direction, as shown in Fig. 24. The bottom electrode, 
however, is unpatterned and covers the entire slab. The top electrodes are used to sepa
rately bias rows of holes alone the l’-A direction. When biased in an alternating fashion.
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Figure 23. Schematic diagram <>l a superlattice photonic crystal structure produced by alternating biasing of liquid 
crystal-tilled holes.

an additional periodicity in the refractive index arises alone the direction perpendicular to 
the top electrodes (which corresponds to the 13/ direction in ihe reciprocal lattice) and 
thereby creates a superlattice PC. I he effect of the super attice is to make some of the k 
vectors in the reciprocal space equivalent to one another, and thus to reduce the size of the 
first Brillouin zone, which is known as the Brillouin zone folding. For the superlattice struc
ture shown in Fig. 23, the original hexagonal Brillouin zone of the triangular PC is folded 
into a rectangular Brillouin zone, as shown in Fig. 24. Because of the symmetry lowering 
induced by the superlattice, only four of the six M points in the original hexagonal Brillouin 
zone remain equivalent. The other two M points that are no longer equivalent to the rest 
are folded onto the 1' point in the new rectangular Brillouin zone. The K points are simi
larly affected, and only two (along the vertical direction in Fig. 24) remain as high-symmetry 
directions The new high-symmetry points are labeled X and X. as shown in Fig. 24.

Figure 24 shows two dispersion curves calculated at a normalized frequency (wa/Ztrc) 
of (1.36. the first for a triangular PC in which all the holes are infiltrated with LC but are 
unbiased, and the second for the superlattice created by biasing every other electrode. The 
two dispersion curves exhibit distinctly different shapes as a consequence of the change in 
refractive index and (he Brillouin zone folding. In interpreting this data, attention must be 
paid to the major difference between a two-dimensional PC slab and a pure two-dimensional 
or three-dimensional PC. which is the imposition of the guiding condition represented by 
the cutoff circle. Only the modes located outside the circle meet the guiding condition and

Figure 24. Dispersion diagrams tor the liquid crystal-infiltrated lwo-dim;nsional slab photonic crystal calculated at 
a normalized frequency o 11.36. Blue curses are tor the triangular PC. ssith all liquid crystals unbiased. Red curves 
correspond to the superlattice created by biasing every other electrode.
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tire confined or guided within the slab, whereas those inside the circle radiate into the 
surrounding media. Examination ol the dispersion curves shows that the optical properties 
become critically dependent on lhe direction ol light propagation direction.

For light incident along lhe l-A direction (the direction perpendicular to lhe top elec
trodes shown in Fig. 23). the dispersion curves for the triangular PC and superlattice do 
rot exhibit a significant difference in their curvatures, and thus the refraction properties 
remain similar to the case of uniform biasing. However, (here is a major difference, in that 
the Brillouin zone folding transfers lhe originally guided modes of a triangular PC into the 
radiation regime in the superlattice. Thus, along the I'-A” direction, one achieves switching 
between guided and radiation modes with modest changes in refraction angles. In contrast, 
along the I’-A’ direction, which corresponds to light propagating parallel to the lop elec
trode. the triangular PC with all electrodes unbiased exhibits a stop hand and thus docs not 
support any modes. However, when the electrodes are switched on in an alternating manner 
lo create a superlattice PC. the Brillouin zone folding brings in allowed modes along the 
I'-A' direction, as shown in Fig. 24. Thus, along the I’-A' direction, one may switch between 
tw'o stales in which light is allowed to propagate with modest refraction or in which all of 
t ic incident light is back reflected.

A more complicated behavior is expected along the l-A/ directions, which make an angle 
of 30° with the top electrodes. As shown in Fig. 24. the superlattice possesses three allowed 
modes along the \'-M direction, but only two are guided modes lying outside the cutoff 
circle, lhe outermost mode (mode I) exhibits a curvature similar to that of the triangular 
PC. Thus, loi this branch, we expect only modest changes in lhe refraction angle.

Figure 25 shows the refraction angles calculated by numerically evaluating the curvatures. 
As shown, the outermost branch exhibits a refraction angle of ~HI° for very small incident 
angles ((/, ■ 2 ) and reaches a refraction angle of almost 5(1° for H, = 12°. beyond which 
lhe mode ceases to exist, lhe other guided mode (mode 2) exhibits a fundamentally dif
ferent curvature. Al small incident angles, the refraction angle has its maximum of 47 and 
decreases with increasing incident angle This behavior is completely opposite to the triangu
lar PC. which exhibits small refraction effects at low incident angles. Therefore, by preferen
tially coupling to this branch, light incident along the I'-A/ direction may be electronically, or 
optically, scanned over very large angles up to 47°. Furthermore, for incident angles greater 
than 12 , lhe outermost branch no longer exists, resulting in a single-mode regime in which 
the superlattice exhibits refraction angles smaller than the triangular PC. In this single-mode
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operation, the largest achievable difference in refraction angle was approximately 20' at an 
incident angle of 15”.

As the anomalous light propagation in PC structures receives increasingly strong attention, 
Notonii recently provided the theoretical framework within which the unconventional light 
propagation in PC structures is to be interpreted [81]. According to this theory, the light 
propagation in a weakly modulated PC is described in a similar way to the conventional 
diffraction grating. In the limit of vanishingly small index modulation, the dispersion curve at 
a constant frequency consists of many circles displaced by various reciprocal lattice vectors, 
as shown in Fig. 26a. Unlike the diffraction grating in which the periodic modulation is 
typically one-dimensional, however, the reciprocal lattice vectors in a PC structure have 
two-dimensional or three-dimensional periodicity.

This model predicts that the light could be decomposed into more than one beam in the 
PC: one corresponding to the refracted wave and the other corresponding to the diffracted 
wave, as indicated by arrows A and B in Fig. 26a. The propagation direction of each beam 
is normal to the curve, as determined by Eq. (52). An interesting behavior is then pre
dicted near the intersections of the dispersion curves, where a large variation of propagation 
direction is expected even for a slight change in incident angle. This giant refraction and 
superprism effect has been discussed in the previous paragraphs.

As the strength of index modulation is increased, however, an additional effect arises at 
the intersections. The different modes approaching together at the intersection begin to 
repel each other and create discontinuities. As a result, the dispersion curve at a constant 
frequency now consists of a set ol disjointed starlike curves, as shown in Fig. 26b. As the 
modulation strength remains weak, the overall shape of the curves is much the same as 
the vanishingly small modulation case. Because of the gaps near the intersections, however, 
some of the modes will not be excited. Figure 26b shows the case in which the parallel 
component of the incident k-vector falls in one of the gaps. As a result, the refracted wave 
becomes evanescent, and the only propagating wave is the diffracted wave, as indicated in 
Fig. 26c.

This situation may seem as if the optical beam is refracted in an unconventional way, but 
it merely represents the special condition under which the refracted beam is suppressed. 
The overall picture still remains the same, and the mode inside the PC is characterized by 
either a diffracted wave corresponding to a reciprocal lattice vector G, or a refracted wave

Figure 26. Dispersion curves at a constant frequency (a) for a hexagonal two-dimensional photonic crystal with 
a vanishingly small index modulation and <h) lor a hexagonal two-dimensional photonic crystal with finite index 
modulation. The lirst Brillouin zone is shown as a hexagon, (c) Schematic of anomalous diffraction near the singular 
point Reprinted with permission from |SI|, M. Notomi. /Vnv. Wei. W 62. l<lf>‘W> (2<MHl> ■ 2<HHI. American Physical 
Society
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(corresponding to (» = 0). Furthermore, because this behavior occurs only tor the limited 
special cases in which lhe tangential component of incident k vector falls in the gap between 
dispersion curves, one cannot define a meaningful effective refractive index that describes 
the light propagation lor all possible incident angles.

This is the situation lor PC structures with low refractive index contrast or for frequencies 
far from PBG. If. however, lhe index modulation is large, lhe constant-frequency disper
sion curve is now dominated by the effect of mode mixing and the resultant gap openings. 
This consequently leads to the breakdown of the grating picture used for the case of weak 
modulation. The mode inside the PC can no longer be characterized by a single dominant 
reciprocal lattice vector but by a linear combination of many Bloch waves corresponding 
to various different reciprocal lattice vectors. As a consequence, the dispersion curve at a 
constant frequency strongly deviates from a simple ensemble of circles

Near the PBG. the dispersion curves are found to approach a circular shape, as shown 
in Fig. 27a. This is a general phenomenon also observed in Fermi surfaces of electrons 
in crystals. Therefore, at frequencies near lhe PBG. lhe refraction angles determined by 
Eq. (52) could be fitted well by Snell's law, from which an effective refractive index may be 
deduced. Figure 27b shows the refraction angles calculated by Eq. (52), and Fig. 27c shows 
the effective refractive index obtained by fitting lhe refraction angle curves. It was found 
that the effective index is not sensitive to the incident k vector for frequencies between 0.59 
and 0.645. This defines the range of frequencies in which the effective index is well defined. 
Furthermore, wc notice that the effective refractive index is negative for frequencies below 
the band gap, which is centered around 0.635 in lhe example shown in Fig. 27. This means 
that the light is refracted at negative angles for all incident angles.

The difference is clear from lhe previously discussed case of weak modulation, in which 
negative-refraction-likc behavior is observed for a limited range of incident angles. The 
negative refraction provides ample opportunities to observe novel phenomena. An example 
is readily seen in Fig. 27b. which shows a cutoff in refraction al an incident angle of ~30 for 
to = 0.61. In other words, no refraction occurs at incident angles larger than this cutoff angle 
given by sin 1 |/iclt/H,,|. which represents the onset of total internal refraction. Clearly, this is 
not possible in the conventional dielectric system, in which lhe light is incident in (he lower- 
index air to an interface with a dielectric material. Also, recognizing that the effective index 
is related to the curvature of the band. Notomi pointed out an interesting analogy between 
the electronic and photonic systems in periodic structures. It is well known that electrons 
near the band edges in a crystal behave in much the same way as the free electrons and their 
motion is characterized by their effective masses which are determined from lhe curvature 
ofthc energy bands. The conduction band electrons possess positive effective mass, whereas

Incident angle (deg) k angle (decree)

ligme 27. (a) Dispersion curves lor TE modes in a two-dimensional GaAs pillar hexagonal photonic crystal (n, - 
3.6,/r - I. Ir = H.7d) al <u -- <1.56 io 0,635 (from outer to inner). The colors represent frequency, as indicated in 
(c). (bii Retraction angle versus incident angle at a - 0.575 and 0.61. (e) Effective refractive index as a function of 
the angle ol the k vector at various Ircquencies. Reprinted with permission from |KI|. M. Notomi, I'hw /<rr. H 62. 
10616 2000). < 2000. American Physical Society 
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the valence band represents negative effective mass states. Just like this electronic system, 
the photonic states described in Fig. 27 represents two bands above and below the PBG that 
are characterized by positive and negative effective refractive indices, respectively.

Luo et al. later discovered that negative refraction does not necessarily require negative 
effective index but is also possible in a system exhibiting positive effective index 182). By cal
culating the constant-frequency dispersion curves for a two-dimensional square lattice of air 
holes in a Si slab, the authors observed that the curvature (photonic effective mass) of the 
first photonic band becomes negative near the Af point of the Brillouin zone. This subse
quently results in negative refraction, as shown in f ig. 28a. For this negative refraction to 
occur at all incident angles, the dispersion curve around lhe A/ point must be larger than lhe 
circle representing the dispersion curve in air. Also, to ensure that there is no mode branch
ing inside the PC. the frequency must be restricted to to < where </, is the periodicity 
along the interface. Using these criteria, the authors discovered that all-angle negative refrac
tion occurs at frequencies between 0.186 and 0.198 for the Si-air two-dimensional structure. 
ITiis all-angle negative refraction was then used to demonstrate the strong focusing effect 
anticipated from a slab of negatively refracting material. Figure 28b shows the result of 
FD I'D simulation for a continuous-wave source placed 0.35« apart from the surface. A point 
image with a transverse size of 0.67A appears on the opposite side ot the thin slab of PC. 
In this calculation, the slab thickness and symmetry were adjusted to achieve resonant max
imum in transmission. Also, to focus a distant object, the PC slab should be thick enough 
that the rays negatively refracted at the front surface crosses one another within the slab. 
This ensures that the subsequent negative refraction at the hack surface brings the light back 
into focus.

5. PHOTONIC DEVICES BASED ON PHOTONIC CRYSTAL
5.1. Photonic Crystal Waveguides
l he presence of PBG presents exciting possibilities of creating active optical elements in 
which light is strongly confined by the surrounding PBG matrix. When a line defect is intro
duced in an otherwise perfect PC structure exhibiting a PBG in the frequency region of 
interest, light is forced to stay within the defect structure, which therefore acts as a waveg
uide. In the conventional dielectric waveguides, the light confinement relies on the index 
difference between the guide and the surrounding materials. The confinement is therefore

Figure 28. (a) Schematic of constant-frequency dispersion curve exhibiting all-angle negative retraction, (b) II 
field of a point source and its image across a photonic crystal slab (yellow), exhibiting all-angle negative retraction. 
Blue, white, and red correspond, respectively, lo negative, zero, and positive H . Reprinted with permission from 
|«2|. C. Luo ct al.. I’hxx Kci H 65. 201 |O4(R) (21X12). < 2002. American Physical Society
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weak, ami a large loss is expected whenever a ntmrcgularily is encountered, l or this reason, 
to steer light around a corner, the radius ol curvature must be made much larger than the 
light wavelength Io minimize radiation loss, which consequently limits the miniaturization 
of the photonic device containing such waveguides. In a waveguide constructed inside a PC 
structure, however, the guidance is provided by the PBG. which can lead to low loss guid
ance around a very sharp corner. This unique features of the PBG-bascd waveguides make 
the PC an ideal platform for highly integrated photonic devices that may be considered the 
photonic equivalent of very large scale integrated circuits in electronics.

In a two-dimensional PC . a linear waveguide is usually produced by modifying the dielec
tric constant of a row of cylinders or holes that comprise the PC structure. This type of linear 
waveguide is usually modeled by constructing a supercell containing the modified element 
in the center. Along the waveguide direction, the supercell contains only one unit cell and 
is terminated by the periodic boundary condition as the structure still remains periodic in 
that direction. /Mong the direction perpendicular to the waveguide, however, the supercell 
must contain many unit cells so that it would properly simulate the surrounding PC matrix 
of infinite extent. Because (he guided modes decrease exponentially as one moves away from 
the waveguide, either periodic or absorbing boundary conditions may be used for the com
putational cell boundary in this direction. When the periodic boundary condition is used, 
the numerical results are actually for a system of parallel waveguides, but as long as they 
are far apart, the guided modes in separate waveguides would have negligible coupling and 
therefore provide proper simulation of the single-waveguide structure.

Mckis ct al. used the PW method to calculate the guided modes in a linear waveguide 
created in a square lattice of GaAs rods [83|. This structure exhibits a I M band gap. which 
reaches a maximum of Aw/w = 38G when the rod radius is r = (I. I So. When a row of rods 
along the (10) direction is removed, new allowed modes arc created within the band gap.

In Fig. 29a. the result of supercell calculations for various A values along the waveguide 
direction is overlaid on the hand structure of the perfect PC. The shaded region indicates 
the presence of extended modes that arc the eigenstates of the perfect crystal. I he supercell 
calculation showed that the waveguide supports one mode at most of the A values along 
the waveguide direction but ceases to support guided modes for wave vectors close to the 
Brillouin zone boundary. The electric field profile indicates that this mode has even sym
metry with respect to the mirror plane along the middle of the waveguide. Similar to the 
conventional dielectric waveguide, the field was found to decay exponentially outside the 
waveguide while propagating along the guide.

Figure 29b shows the dispersion curves for a waveguide made by removing three rows of 
GaAs rods along the (II) direction. In this case, three guided modes were found to exist. 
The mode with the lowest frequency was again an even mode and was followed by odd and 
even inodes al higher frequencies. It is easily understandable that a wide waveguide sup
ports more modes because it provides more room for the fields to develop nodes within the 

Figure 29. Dispersion relations lor the two PC waveguides the aeometn ol the waveguides is shown in the insets, 
t he gray areas are the projected hand structure of the perfect crystal The lilted circles correspond to even modes, 
and the open circles correspond to odd modes. The frequencies at the points indicated arc (in units of 2rrc/«) 
A = O.3II2. B (I.3I2. C = 0.371. I) 0.373. and E - 0.400. Reprinted with permission from |X3|, A. Mckis ct al., 
/’/tvs. Rev H 5X. 4SII9 (I99S). ■■ |WX. American Physical Society.
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waveguide, creating higher-frequency modes, l he strong guiding mechanism provided by the 
PBG forces the light confined inside the waveguide even in the presence of a sharp bend. 
Mekis et al. used the FDTD method to calculate the transmission around a 90° bend intro
duced in a linear waveguide in a square lattice of GaAs rods |3|. The waveguide direction 
corresponds to (10) direction and thus forms a single mode guide as shown in Fig. 29a.

The condition for single-mode operation is important because irregularities such as sharp 
bends can cause mode mixing in a multimode waveguide. Input light pulses were created 
from a point dipole source placed at the entrance of the waveguide, and a Gaussian envelop 
in lime was imposed to produce a Gaussian frequency response, as shown in Fig. 30a. The 
transmission coefficients remain close to 100% at frequencies above lhe cutoff. At high 
frequencies, reflection from the bend becomes larger, reaching -10%. This reflection could 
be mitigated by slightly modifying the shape ol the bend l he field profile shown in Fig. 30b 
clearly indicates that the fields remain completely confined within the guide despite the 
existence of a sharp bend. It should also be noted that the light is guided in the region 
of lower effective index, which is not possible in conventional dielectric waveguides. This 
phenomenon is uniquely observed in PC -based structures only.

As mentioned in Section 4.1.2. from the fabrication standpoint, the two-dimensional slab 
PC with a finite thickness is more desirable than the pure two-dimensional PC, which 
requires very long structures with high aspect ratios. Because the two-dimensional slab PCs 
can exhibit a photonic band gap for guided modes, it should be possible to introduce a line 
defect and create localized modes that arc confined by lhe photonic band structure in the 
plane of the slab and by lhe index difference in the direction perpendicular to the slab. 
Johnson et al. used the PW method to calculate the waveguide modes in various types of line 
defects in two-dimensional slab PCs [84]. Figure 31 shows the dispersion curves for a linear 
waveguide formed by a row of rods with reduced radius in a two-dimensional square array 
of rods with a radius and height of 0.2« and 2.0u. respectively. The line defect of reduced 
rods is formed along the (10) direction, as shown in the inset of Fig. 31. and therefore the 
dispersion curve was plotted along the corresponding I'-A' direction in the Brillouin zone. 
The two shaded regions in Fig. 31 represent the light cone, where the light can propagate 
out of the slab into the surrounding medium, and the slab bands, for which the light can 
freely propagate into the bulk of the two-dimensional slab PC. The calculations for various

(b)

Figure30. (a) Spectral profile of six input pulses and computed transmission and reflection coefficients for each 
input pulse; (hl electric field pattern in the vicinity ol the bend for frequency <o — (1.353 x 2w< /<(. The electric field 
is polarized along the axis of lhe dielectric columns Reprinted with permission from |3|. Mekis et al../’/rys. /?<*r. 
/.ch. 77. 37x7 (|>Wf>) ■ |W<>. American Physical Socictx
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Figure 31. Projected baud structure lor the reduced-index-rod slab waveguide showing the odd-symmetry-guided 
bands tor various detect rod radii, l he bulk radius was set lo be (>.20rt. Reprinted with permission from |IS4|. S. Ci, 
Johnson et al.. Phys. lies. li 62. S212 (2000). C 2000. American Physical Society.

radii for the defect rods showed that, for radii between O.lOrr and 0.18«. the linear defect 
gives rise to a single mode that lies outside of both the light cone and the slab bands.

As a consequence, these modes cannot couple to the radiation modes leaking out of the 
slab nor to the slab modes propagating throughout the two-dimensional slab. The fields 
arc therefore strongly confined within the line defect and decay exponentially away from 
it. forming linear waveguide modes. When the defect rod radius is decreased to 0.08«, the 
guided mode disappears completely into the light cone. This contrasts with the pure two- 
dimensional case, in which the line defect of zero radius (i.e.. the case in which the defect 
waveguide is formed by entirely removing a row of rods), still supports waveguide modes. 
This shows the restrictions that can be imposed by the additional condition of guidance 
within the slab that the modes in a two-dimensional slab PC must satisfy.

In general, it is difficult for a waveguide in a slab PC to support modes that exist mainly 
in air because of the difficulty in vertical confinement. Investigations for other types of 
waveguide structures led lo similar conclusions that the two-dimensional slab PC waveguides 
do support waveguide modes but that the parameter values that support waveguide modes 
are restricted by the slab guiding condition. For the waveguide consisting of a solid dielectric 
strip that can be formed by, for example, removing a row of holes in a PC structure of 
periodic holes in a dielectric slab, new modes arise at frequencies below the continuum of 
slab hands. These modes sense the surrounding PC structure as a homogeneous medium 
with an average refractive index, which is lower than the index of the dielectric strip. Thus, 
in this case, the light is guided by the index difference in both the vertical and the lateral 
direction. The field profile indicates that the index guided modes arc the fundamental modes 
with no nodes or with the lowest-order modes when there is more than one index-guided 
mode. However, the modes that fall in the PBG region and that arc therefore guided by the 
photonic band structure tend to be higher-order exhibiting nodes in either the vertical or 
lateral directions.

Although the PW method using a large supercell provides accurate descriptions of guided 
modes, lhe FDTD technique incorporating absorbing boundary conditions is sometimes 
more desirable because it can correctly describe even the radiation modes. One still needs 
to construct a supercell, but the supercell boundaries are terminated with absorbing bound
ary conditions, except for the waveguide direction, for which periodic boundary condition 
is used. Depending on the symmetry' of lhe given structure, computational cell size can be 
reduced by properly applying mirror boundary conditions.

Figure 32 shows the dispersion diagrams for a linear waveguide in a slab PC consisting 
of a square array of holes in a Si slab [85]. As shown in the inset, the waveguide is formed 
along the symmetry direction, corresponding to the V-X direction in the reciprocal lattice.
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Figure 32. Dispersion diagram lor (a) vertically even ( If. like) and (b) vertically odd (TM-like) guided modes in 
the waveguide made as a single-line defect in a square t’( lattice. Solid line from (II. II) to ( tr;a, II.5) represents the 
light line. Insets show Held patterns of (a) H and (b) E components in the middle of the slab (c-slicc) for different 
guided modes. In the case of TM-like guided modes (ol and o2). the distribution of the /•?. component along the 
cross section ol the waveguide is also shown. Reprinted with permission from |85|. M. Loncar cl al.,./. Lightwave 
lechnol. 18, 1402 (20011). v 2000, IEEE.

Square Lattice Waveguide - TM like modes

l he index-guided inodes lying below the continuum of slab bands arc present for both polar
izations. For the TM-like polarization, they are the only waveguide modes, as the photonic 
band structure docs not exhibit a band gap. For TE-like polarization, however, a wide PBG 
opens and three waveguide modes arise within the PBG. The vertical field profiles indicate 
that all these modes are fundamental and exhibit no nodes.

The lateral held profiles show, however, that higher-frequency modes exhibit more nodes. 
The lateral profiles shown in the inset of Fig. 32 were calculated for a k vector close to the 
Brillouin zone boundary where the lowest PBG guided mode approaches the slab band. As a 
result, the lield pattern for this mode extends deeper into the PC matrix. Ideally, a waveguide 
should support only a single mode, so that it would not exhibit mode mixing or cross-talk 
even in the presence of bends or interfaces. This could be achieved by properly modifying 
the waveguide structure, which consequently affects the waveguide mode frequencies and 
field profiles. Furthermore, this technique can also be used for minimization of radiation 
loss and efficient coupling with fiber or other integrated optical elements.

One of the simplest ways to change the waveguide mode frequency is to modify the 
w'idth of the waveguide. Loncar et al. investigated the effect of modifying the width of a 
waveguide structure defined along the I-A direction in a triangular PC structure [86], First, 
the waveguide width was reduced by translating the two surrounding PC structures along 
the direction normal to the waveguide axis (I’-M direction), as shown in Fig. 33a and 33b. 
As the waveguide width is decreased, the mode frequencies begin to increase, pushing mode 
I. for example, into the midgap, as shown in Fig. 34a. The mode located in the midgap 
is better confined by the photonic band structure and thus exhibits less loss through the 
coupling with the slab bands. This type of waveguide, however, cannot be used to create 
a sharp bend of lhe same width, as illustrated in Fig. 33b. because the original triangular 
symmetry is broken by the translation along the V~M direction.

A better scheme is to translate the two PCs along the nearest-neighbor direction (T-A), 
as shown in Fig. 33c and 33d. This way, the waveguide width can be adjusted freely and a 
6(1“ bend can be introduced without an abrupt change in waveguide width at the corner. The 
dispersion curves for this type of waveguide arc shown in Fig. 34b. Similar to the previous 
case, the waveguide modes are pushed upward in frequency as the width is decreased. An 
advantage of this type of waveguide is that the band labeled mode 2 in Fig. 34b can be 
pushed up all the way into the air band. This mode has a more or less Hat dispersion curve 
extending into the light cone and thus can couple efficiently with the radiation modes, leaking 
light out of lhe slab. By pushing this mode oul of the PBG, it is possible to have a reduced 
radiation loss and more efficient in-coupling.
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Figure 33. Different types of waveguides. By moving planar photonic crystal mirors that surround (a) a single-line 
defect waveguide along the direction indicated by arrows (F-A’ direction), we can form (b) a type 1 waveguide, 
(c) Unperturbed planar photonic crystal lattice. If we offset the gray holes along the T A direction by </, wc can 
form (d) a new type of waveguide (type 2), Reprinted with permission from |86|. M. Loncar et al.,./. Opt. Soc. Ain. 
It 18. 1.302 (2(11)1). i£ 2001. Optical Society of America.

It is. however, difficult to create a 120° bend with this type of waveguide, and also the 
coupling with a nanocavity is not straightforward. It is noted that new modes, labeled as 
"accept, mode" in Fig. 34. appear in both types of reduced-width waveguide. These modes 
are acceptor-type modes pulled up from the slab band located below' the band gap. This 
slab band has the fields concentrated ir the dielectric region, and thus referred to as the 
dielectric band. When a waveguide is created by removing the dielectric material (i.e., by 
removing a row of dielectric rods in a two-dimensional array of rods) then the dielectric 
band is primarily perturbed and the waveguide modes arise from ihe dielectric band pulled 
up into the band gap. This type ol waveguide mode is usually called the acceptor-type mode. 
I he slab band lying above the band gap, however, exhibits a lield prolile concentrated in the 
air holes and thus called the air band.

If a waveguide is introduced by removing air holes, the air band is mainly disturbed anil 
pulled down into the band gap. giving rise to the waveguide modes. This type of waveguide 
mode is called the donor-type mode. In this structure, the waveguide is created by removing

Figure 34. Dispersion relations for the guided modes of ihe type I and tvpc 2 waveguides shown in Fig. 33 for 
different values of controlling parameters, At and <!, respectively, (a) Type I waveguide. The width of the waveguide 
(center to-ccnter distance between two holes adjacent to the waveguide) is defined as «>/3 2(1 + I/ , 6); W = 6 
yields a single-line defect waveguide, (b) Type 2 waveguide. Position of the modes ns a function of the parameter 
</. offset along the I A direction. Reprinted with permission from [86]. M. Loncar et al.. J. Opt. Soc. . Ini. li 18, 
1362 (20*11). <■ 2001, Optical Society of America.
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rows of air holes, and thus only donor-type modes are expected. In the case of the single-line 
defect waveguide created by simply removing a row of air holes, this is indeed the case, and 
we only see the donor-type modes. When the waveguide width is reduced, however, sonic 
regions that were originally occupied by the dielectric material in the perfect PC structure are 
now replaced by air holes, and other regions that were originally air holes are now dielectric. 
Therefore, both the dielectric and air bands are perturbed, creating both the donor- and 
acceptor-type modes.

One way to change the waveguide width without physically translating air holes is to modify 
the size of the air holes neighboring the waveguide. As the size of the air holes adjacent 
to the waveguide is increased, the effective width of lhe waveguide decreases, and thus 
the waveguide modes are shifted to higher frequencies. At the same time, acceptor modes 
appear because the enlarged air holes perturb the dielectric band. In general, this type of 
waveguide exhibits a complicated band structure, as three rows of air holes are modified.

Yet another scheme to control the waveguide modes is to change the size of a row of air 
holes instead of completely removing them. A row of reduced air holes forms a waveguide 
supporting donor-type modes. As the hole size is reduced, it acts as if the waveguide width 
is increased, and thus the waveguide modes arc shifted to lower frequencies. In contract, 
when the defect air holes are larger than the regular air holes, the waveguide supports only 
acceptor-type modes. Increasing hole size once again pushes the mode frequencies upward. 
As shown in Fig. 35, this type of waveguide can produce a truly single-mode waveguide, 
and the guided mode can be made to exist near the midgap by adjusting the defect hole 
size. This would lead to strongly confined, low-loss propagation through the waveguide. It 
is pointed out once again that this type of waveguide is uniquely achieved in the PC only 
because the waveguide region has a lower effective index than the surrounding medium.

5.2. Photonic Crystal-Based Nanocavity
Spontaneous emission of an atom has long been believed to be an intrinsic property that can
not be altered by external perturbations. However, in the correct quantum electrodynamical 
description, spontaneous emission is an interaction between atom and vacuum. The appar
ent irreversibility of spontaneous emission is in fact caused by the infinitely many vacuum 
states available for the emitted photon. Therefore, the vacuum acts as a large reservoir in 
which the original atomic excitation decays. If, however, the vacuum states are significantly 
modified, it can result in strong suppression or enhancement of spontaneous emission. One 
way to strongly modify the photonic density of states is to use an optical cavity. The cavity 
design then allows tailoring the photonic density of states and controlling the interaction 
between atom and vacuum.

Figure 35. Dispersion relations lor the modes guided in the waveguide shown in the inset as a function of the 
radius of the defect holes Reprinted with permission from [86j. M. Loncar et al., 7 Opt. Soc. Am. li 18, 
1362 (2001). 2001. Optical Society of .America.
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This exciting possibility has naturally attracted much attention and led to the establishment 
of cavity quantum electrodynamics (CQED) [<S|. The most highly publicized effect predicted 
by the COED is the possibility of strongly enhancing the spontaneous emission rate. I'he 
probability |(, of spontaneous emission per unit time, widely known as the Einstein A coef
ficient, is proportional to the square of the Rabi frequency, the characteristic frequency that 
describes atom-field interaction, and also to the mode density a p„(w), which represents the 
number of available photon modes at the emission frequency [<S],

r - o P"^ - 10
3 _ 377hc' E(1 (53)

where is lhe Rabi frequency, p„ is the free-space photon density of states, and Z)c, is 
the electric dipole matrix element between the two levels of the atom. The above equation 
describes the familiar exponential decay law for spontaneous emission. When the atom is 
placed in a cavity, however, lhe consequent modification of the photon density of states 
leads to large variations in spontaneous emission rates. A simple and well-known example 
is the planar cavity constructed by two parallel mirrors. This system is known to exhibit 
a cutoff at A = 2d (d is the spacing between lhe two mirrors), below which there exist 
no allowed TE modes (electric fields parallel to the mirrors). This subsequently leads to 
complete suppression of spontaneous emission resulting from a parallel dipole. This problem 
is illustrative of the spontaneous emission modification effect in a cavity and is also very 
useful as a reference because it has analytical solutions.

The spontaneous emission rate in this cavity may be found by using an infinite set of 
image charges [87], As shown in Fig. 36. the emission rate by a parallel dipole is zero when 
J/2A < 1.0 and shows sudden increases whenever d/2k =■ odd integers. These discontinuities 
occur because at those values of cavity spacing, new modes begin to propagate inside the 
cavitys New modes are added when cl/2k = even integers, too. However, these modes do 
not have electric field components parallel to the mirrors at the center of the cavity where 
the dipole is located, and therefore do not affect the radiation rate of the parallel dipole. 
This is why we do not see any discontinuities at d/2k — even integers.

For a vertical dipole polarized perpendicular to the mirrors, there is no cutoff because 
it can always couple to the TF.M mode, for which the electric field is uniform and normal 
to the mirrors. For small values of d/2k. the radiation rate diverges as \/d because of the 
divergence of the normalized field distribution. I'he discontinuities appear at d/2k = even 
integers at which new modes with nonzero coupling to the vertical dipole arc introduced.

For both dipoles, the radiation rate approaches the free-space value as d is increased 
because in a large cavity there exist a large number of modes available irrespective of the 

Figure 36. Radiation rates of dipole sources polarized (a) parallel and (h) perpendicular to the mirrors ot a parallel 
plate cavity. The dipole is assumed to he located at the center of the cavitv. and the radiation rates are normalized 
to the free-space value. Reprinted with permission from |<Sh|. E. A. Hinds, in "Cavity Quantum Electrodynamics," 
(P. R. Berman. Ed ). Academic, New York, |9<M. © 1994, Elsevier.



312 Modeling of Photonic Crystals

polarization. More general cases need full quantum mechanical treatment, in which one 
must solve the Schrodinger equation for the atom-field system. For a two-level atom located 
in a cavity with a quality factor Q. one finds two regimes of atom-field system evolution 
[88]. If the cavity has a very high Q value such that a)/Q c 411 where w is the photon 
frequency and 41 is the Rabi frequency, the atom-field states exhibit coupled oscillations with 
a frequency 241. and the oscillation is damped at a rate of w/2(7. as shown in Fig. 37a. This 
behavior represents a periodic exchange of energy between atom and field and is called the 
Rabi oscillation. This effect, dramatically showing the reversibility of spontaneous emission, 
is caused by the spontaneously emitted photon staying inside the cavity long enough to be 
reabsorbed by the atom. The damping term obviously represents the rate at which the energy 
inside the cavity decays away. In the opposite regime, w'here a>[Q > 441, the cavity damping 
rate is high and. thus the atom-field states exhibit irreversible decay, as shown in Fig. 37b.

The decay is quasi-exponential with a rate

3 £M’I ,v = 441 v = rLj; where = 7-777- (54)
W 477- fcf|

Here F, is the free-space decay rate and fj, is the effective cavity volume. Equation (54) 
shows that the spontaneous emission rate of an atom inside the cavity' is enhanced by a 
factor of 7)v,,v. often called the Purcell factor, compared to lhe free space rate. If the effective 
cavity volume is similar to A\ then the enhancement factor is on the order of the cavity Q. 
This phenomenon was first theoretically predicted by Purcell more than 50 years ago and is 
thus called the Purcell effect [89].

Although the Purcell effect in a planar cavity has been extensively investigated both the
oretically and experimentally, cavities providing three-dimensional confinement are much 
more desirable because they can support small effective cavity volume and also independent 
control of cavity'volume and quality factor. Many different ways to create three-dimensional 
cavities have been investigated during the past decade, including microspheres, pillars, disks, 
wires, and PCs [90], Micropillars attracted much attention because they have the same struc
ture as the vertical cavity surface emitting laser. A micropillar is typically composed of a A 
cavity sandwiched between a pair of distributed Bragg reflectors, which provide vertical con
finement of light. The lateral confinement is achieved by the large refractive index difference 
between the semiconductor and air.

Figure 38 shows a GaAs/AlAs micropillar structure with a diameter of 1 gm [911. Using 
the linear combination of guided modes in a GaAs cylinder, the effective cavity volume 
was estimated to be ~5(Av/n)3. The resonant modes of the cavity are usually studied by 
investigating the photoluminescence from the quantum dots embedded inside the cavity. 
The resultant photoluminescence spectrum consists of a series of sharp lines whose positions

Figure 37. Decay ol a two-level atom in a cavity, (a) oscillatory regime. _ (>.211: (It) overdamped regime. 
= 511. Reprinted with permission from |XX|. S. Haroche and .1. M. Raimond. in "Advances in Atomic and 

Molecular Physics” (D. Bates and B. Bcderson. Ed.). Vol. 20. Academic. Orlando. I t.. 1985. 1 IWS5. Elsevier.
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Figure 38. Phoiolumiiicscencc spectrum lor a 3-jtim-diameier GaAs/AIAs micropillar containing InAs quantum 
dots. Inset: scanning electron micrograph ol a I-jum-diameler pillur structure. Reprinted with permission from |9I|. 
J.-M. Gerard and B. Ciayral. in "Confined Photon Systems: Fundamentals and Applications.' H, Benistv el al.. 
Springer. Berlin. 1998. < 1998. Springcr-Vcrlag.

and widths provide cavity mode frequencies and C> factors. The O factor was found to be 
close to the planar cavity value for large pillar diameters and to decrease as the pillar diame
ter was reduced. This was because ot the increased scattering loss by lhe cavity walls. Despite 
the decrease in Q. lhe Purcell factor exhibited a sharp increase for small pillar diameters 
because the decrease in effective cavity volume overcame the degradation in Q. For a cavity 
with a 1 gm diameter, the Q factor was approximately 10(10 and the Purcell factor was found 
to exceed 30 [91], Other structures that can exhibit high Q and small-cavity volume are 
microdisks, microspheres, and microhemispheres, which support whispering gallery modes. 
In the whispering gallery modes, light is guided by total internal reflection along the curved 
boundary of the cavity. When an extremely smooth surface is achieved, these modes exhibit 
extraordinarily high Q values, reaching as high us 10s in a near-spherical liquid droplet. As a 
consequence, a very high Purcell factor. - 120. has been observed for dye molecules in this 
cavity |90|.

All of the above-mentioned conventional cavities rely on refractive-index difference for 
light confinement. As the cavity volume is reduced, it becomes more and more difficult to 
achieve high (J factors, and one needs a stronger light confinement mechanism than the 
refractive index difference. Soon after the introduction of the photonic crystal concept, it 
was recognized that the photonic band gap could be used to create strong light confinement 
in a very small volume. Just as a linear defect acts as a waveguide, a point defect in a PC 
structure can act as an optical cavity. If the PC matrix possesses a complete PBG. light would 
be strongly confined within the defect, which can lead to a very high quality factor and small 
mode volume. This defect naturally commanded much attention for its potential for realizing 
thresholdless lasers. The strong light confinement by lhe PC structure was first demonstrated 
in a one-dimensional periodic structure fabricated in a ridge waveguide [92-94],

The structure schematically shown in Fig. 39a is composed of a series of periodic holes pat
terned on a single-mode Si ridge waveguide. The periodic air holes form a one-dimensional 
PC structure and produce a one-dimensional PBG (stop band resulting from Bragg reflec
tion), prohibiting light propagation along the waveguide in a certain wavelength range. The 
dimensions and spacing of the air holes were chosen such that the strop band extends from 
1.3 to 1.7 gm. Then a defect is introduced by deliberately increasing the hole spacing in 
the middle of the structure. The defect produces an allowed mode within the stop hand, as 
shown in Fig. 39b. Numerical calculations predicted that the resonant mode should appear 
at A = 1.547 gm. The resonant mode was also found to be strongly confined within the 
cavity. The confinement was achieved by the index difference in the direction perpendicular
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Figure 3*>. (a) Schematic diagram and dimensions of a photonic crystal cavity formed in a Si ridge waveguide, 
(b) Theoretical and experimental transmission spectra for the photonic crystal cavity shown in (a). Reprinted with 
permission from |94|. .I. S. Foresi et al.. Nature 390. 143 (I997). |997, Nature Publishing Group.

to the ridge waveguide and by the periodic structure in the direction of the waveguide. The 
(2 factor was estimated as 280 and the modal volume, defined as

where P(r) is energy density and PIUa!i is the peak value of /’(/ ), was found to be 0.055 /rm3. 
An experimental transmission spectrum, shown also in Fig. 39b, confirmed the theoretical 
estimations, showing a sharp transmission band at A = 1.560 gm and a Q factor of 265. The 
slight discrepancy of the resonant mode wavelength was well within the experimental error 
margin of the scanning electron microscope used to determine the feature sizes. The modal 
volume corresponded to ~5(Ac/2/i)3 and represented the smallest volume ever achieved at 
that time.

The success in the one-dimensional PC structure naturally directed attention to the exten
sion of the concept to two-dimensional and three-dimensional systems in which light is 
confined by PC structures in two or more directions. In the two-dimensional system, the 
simplest way to create a point defect is to eliminate or modify one rod or hole from a per
fect photonic crystal structure. For numerical modeling, one needs to set up a supercell as 
for the waveguide discussed earlier. This time, the supercell contains many unit cells along 
both directions in the two-dimensional plane, with the point defect placed at the center. The 
supercell may be terminated with the periodic boundary condition, which is mandated in the 
PW method. In this case, one actually models a system of periodically arranged defects.

Therefore, to simulate a single defect surrounded by an infinitely large PC structure, the 
supercell must be made large enough to prevent any significant coupling between neigh
boring defects artificially introduced by the periodic boundary condition. In a real space 
technique such as the FDTD method, one may also use an absorbing boundary condition. 
In this ease, the size of the supcrccll represents the actual size of the PC structure. One can 
therefore investigate, for example, the effect of the size of the surrounding PC structure on 
the Q factor and Held profile. Sakoda and Shiroma proposed a unique methodology based 
on the FDTD scheme for the calculation of defect modes [95]. In this method, a point dipole 
source is placed inside the photonic defect, and the electromagnetic energy emitted by the 
dipole is monitored by calculating the Poynting vector Because the frequency dependence 
of the emitted energy should peak at the resonant frequency of the defect mode, one can 
determine the defect mode frequency by calculating the frequency spectrum of the dipole 
emission inside the defect.

Villeneuve et al. used the PW method to calculate the frequencies and field profiles of 
the allowed modes in a point defect in a two-dimensional PC structure [96|. The modeled 
structure is a square array of dielectric rods of radius ().2«, and the point defect is created 
by modifying the radius of one rod. This structure exhibits a wide PBG for TM polarization 
between normalized frequencies (I.29 and (I.42. Introduction of a point defect subsequently 
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create> illowed modes within the PBG. The defect mode frequency and field profile depend 
on the size of lhe defect rod. as shown in Fig. 4(1. l he mode frequencies were calculated by 
the PV method using a 7 > 7 supercell As the defect rod radius is decreased from the regular 
value, a new mode begins to appear from the band below the PBG. This is because the band 
below lhe PBG has the field concentrated in the dielectric region (dielectric band) and is 
thus perturbed most significantly by the reduction in size of the defect rod This is exactly 
the behavior observed in PC waveguides, too. As the defect rod radius is further decreased, 
the mode gets pushed further into the PBG. The field profile indicates that the electric 
field is polarized along lhe rod axis (TM mode) and rapidly decays away from the defect. 
The field profile does not exhibit any node in the azimuthal direction and is thus named 
a monopole mode.

When lhe rod size is increased, instead, a new mode begins to appear from lhe band 
above the PBG. T his band has its held mainly in the air region (air band) and is therefore 
perturbed significantly when the air region is taken away by the enlarged rod. As the defect 
rod size is increased further, the defect mode frequency decreases, and finally the modes 
disappear into the dielectric band. This mode is doubly degenerate, and the electric field 
profile is concentrated along one of the two symmetry directions of lhe crystal. Because 
they have two nodes along the azimuthal direction, they are labeled as lhe dipole mode. 
As the defect radius is further increased, more modes appear within the PBG. and their 
field profiles tend to become more and more complicated. One of the key parameters for a 
cavity is its quality factor. (J. By definition, it represents the rate of energy dissipation away 
from the cavity |47|.

to.,/:
(36) 

where m, is the resonant frequency. /: is the energy stored in the cavity, and /’ is the rate 
of energy dissipation away from the cavity. Therefore. Q may be calculated hy monitoring 
the dissipation of energy as a function of time after initially exciting a resonant mode. The 
FDTI) method is then a natural choice for this type of calculations.

Villeneuve el al. investigated the (J factors of a defect formed by eliminating one rod 
in the square array of rods, lhe (_) factor will obviously be affected by the size of the 
surrounding Pl structure. Figure 41 shows the () factors calculated lor various sizes of 
surrounding PC' matrix. The strong light confinement by the surrounding PBG medium is 
evident from lhe fact that the £> factor reaches us high as 10000 for a defect surrounded by 
the PC structure extending only four unit cells in each direction. The only loss mechanism 
is the tunneling through the PBCj and into the outside medium, and therefore (J does not 
saturate. This result is, however, somewhat unrealistic, as the structure is assumed to be

Figure 40. Frequency of lhe defect inodes in a square array ol dielectric rods (r = O.Jri). t he shaded area indicates 
lhe allowed bands. Reprinted with permission from |9(>|. I’ R Villeneuve el al.. I’hw Rc\. H 54, 7X37 (1996) 
■ 1996. American Physical Soviets
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Figure 41. Qualitv factors as .1 function of the size <>t the surrounding photonic crystal matrix. Reprinted with 
permission from [lN>|. P. R Villeneuve et al.. Pins Rei. R 54. 7837 (IM96). < 1‘KMi. American Physical Society.

infinitely long and the light is considered to be perfectly confined in the two-dimensional 
plane perpendicular to the rods. In practice, one has a two-dimensional periodic structure 
with a finite height and thus must be concerned about the light confinement and propagation 
in the direction perpendicular to the plane ol two-dimensional periodicity.

A delect formed in a triangular array of holes in a dielectric slab has been studied by 
Painter et al., using the FDTD method |98|. The model structure consisted of a defect 
surrounded by the hexagonal shape of the triangular PC structure extending three unit cells 
along all six symmetry directions. The dielectric slab has a refractive index of 3.4 and the hole 
a radius of 0.3o. The defect hole has the same radius but a different refractive index, which 
varied between 1.4 and 3.4. The computational cell was terminated by absorbing boundary 
conditions in all directions. As in the case of linear waveguides, the analysis of a defect mode 
in a two-dimensional slab PC must include the guiding condition by the slab. The perfect 
crystal was found to have a PBG for the TE-likc (even) modes in which no guided modes 
exist. Introduction of a defect then produces allowed modes that are confined by the PBG 
within the slab and by the index difference along the direction perpendicular to the slab. 
As the refractive index of the defect hole is increased, the defect mode frequency was found 
to decrease. This is consistent with the previous observation, where the modification of the 
air region primarily affects the air band and pushes the mode down into the PBG. The 
defect mode turned out to be doubly degenerate, and the field profiles exhibited symmetry 
belonging to the point group C(>v. which is the symmetry' of the surrounding lattice.

Figure 42 shows the field patterns for the two degenerate defect modes. Inside the cavity, 
the modes are concentrated along the x- and y-directions and are thus named ,r- and y-dipole 
modes, respectively. In both cases, the field was strongly confined within the cavity. In Fig. 42. 

Hume 42. in plane electric icld profiles ol (a) v-dipolc and (b) r-dipcle modes (cl Electric field profile of the 
v-dipolc in a vertical cross-x-clion. Ihe held amplitudes were enhanced l<> bcllci show the leakage away from the 
cavity Reprinted with permission horn |‘>8|. (). Painter et al.. J Opi V«. Ini R l(». 275 (IW|. 1 1999. Optical 
Society ol America.
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the field amplitude was enhanced to show the coupling outside the cavity. Along the vertical 
direction both inodes exhibited an antinode in the center of the slab, which is important 
lor effi.icnt coupling with the light emission front the semiconductor. The in-plane coupling 
away fi rm the cavity was found to be highly directional, as clearly shown in Fig. 42. This 
directioial out-coupling must be considered when designing a coupled system of a waveguide 
and a civity.

The adiation pattern along the vertical direction is also shown in Fig. 42. The mode 
volume estimated according to Eq. (55) was *-2(A/2n)’. which was much smaller than the 
one-dirrensional PC cavity. The (2 factor for this cavity was also calculated using the FDTD 
method where the power absorbed by the absorbing boundary layers was monitored and 
compand with the energy stored in the cavity. This method allows the separation of ver
tical anJ in-plane (J factors, (J and Q . whose harmonic mean gives the total Q factor. 

= (2 1 + (2 '• The Q factor has a maximum when the cavity mode exists in the middle 
of PBG and decreases rapidly as it approaches the continuum of slab PC bands. This means 
that th< defect possessing a refractive index lower than that of the slab has much greater 
(2 factcr than the simple missing hole, which has the same index as the slab. The total 
(2 factcr was found to be limited by the in-plane () factor, which is probably a result of 
the ratfer small size of the PC structure used in the simulation. When the number of lay
ers ol tic surrounding PC structure was increased to seven, the in-plane (J factor exceeds 
the vertical (2. resulting a total (2 factor of -2(HNMI. The vertical (2 factor was very sen
sitive k the relative position of the air band with respect to the light line. Using a larger 
air-hole size for the surrounding PC matrix tends to shift the air band closer to the light 
line, subsequently increasing the coupling of light into the vertical direction. This air-hole 
size car be used as an independent parameter to optimize the radiation pattern in the 
out-of-plane direction.

As discussed earlier, the Purcell factor has quantum mechanical origin and must be calcu
lated by ( QI I). However, it has been shown that classical electrodynamics gives the same 
results ts the quantum mechanical approach [87, 99). This allows the use of the numerical 
modeling tools based on classical theory to directly compute the Purcell factor. In the classi
cal description, spontaneous emission rate is given by the rale of radiation by an oscillating 
dipole, which can be calculated by the surface integral of Poynting vector. This can be done 
in a slraightfoiwaid manner by using, lor example, the FDTD method 11(1(1, 101 J.

In the scheme proposed by Hwang et al. [ 101 |. a point dipole source is placed inside a 
cavity, and the radiation power is computed by evaluating the Poynting vector over a sur
face enclosing the source. Ihe infinite extent of the surrounding medium was simulated by 
the PML boundary condition, and the frequency spectrum is obtained from a single com
putation by imposing a Gaussian pulse excitation for the dipole source. The resulting lime 
scries ot the fields were then Fourier transformed to obtain frequency spectrum. When the 
computational cell size is large, and thus the number of points at which the Held values 
need be stored is large, the discrete Fourier transform [ 1()2| becomes more efficient than 
the popular fast Fourier transform (e.g.. Ret. 1103]). In the discrete Fourier transform, the 
summation of time series is carried out along with the progression of FDTD time evo
lution. and thus the storage of the entire lime series is not necessary, which significantly 
relieves the memory requirement. It is also a significant advantage of the discrete Fourier 
transform that the frequency resolution can be chosen independent of the length of the 
times series.

The validity of this scheme was tested by calculating the spontaneous emission rate in a 
parallel mirror cavity, which showed excellent agreement with the analytical solution. It was 
then applied to the radiation rate calculations for point dipole sources in various PC struc
tures. Figure 43a shows the PC-based nanocavity for which the emission from a point dipole 
source was investigated. As mentioned before, this structure exhibits a band gap for TE-like 
(even) modes it there were no defect, and the introduction of the missing hole produces 
cavity modes within the band gap. The radiation rate calculated for a point dipole polarized 
along the y-dircction is shown in Fig. 43b. The radiation rate is strongly enhanced near the 
band edges, which could he attributed to the increased photon density of states. However, 
the photons emitted in this region will mostly be guided within the slab ami therefore will not
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Figure 43. (.1) Schematic diagram of the PC-based nanocavity structure investigated for spontaneous emission 
enhancement effect, (b) Radiation rate of a point dipole polarized along the (-direction located al the center of 
the defect, (c) Radiation rate of the same point dipole as in (bl but shifted along the .(-direction by 0.45a from 
the center of lhe defect. Reprinted with permission from 1101]. J.-K. Hwang el al., /’/ivv. Rev. H 60. 4688 (1999) 
© 1999. American Physical Society.

contribute to the emission in the vertical direction. However, the radiation rate was greatly 
suppressed within the hand gap. and the emission caused by the localized mode was not 
observed despite the presence of the defect. This is because of the poor coupling between 
the defect mode and the point dipole source. The defect mode has very small electric field 
amplitude near the center of the cavity, which is where the point dipole was located in this 
simulation.

To confirm this argument, the radiation rate was calculated after shifting the point dipole 
to 0.45a along the x-direction. As shown in Fig. 43c. several lines associated with the defect 
modes were clearly visible. Both the radiation rates and extraction efficiencies were high 
at the defect mode frequencies. The extraction rate was defined as the ratio of light flux 
to the top and bottom surfaces of the slab, to the total emitted flux. This was calculated 
by taking the ratio of the z-component (the vertical component) of the Poynting vector 
integrated over a closed surface containing lhe dipole to the same integral performed for 
the normal component of the Poynting vector. Compared to the uniform dielectric slab, the 
light emission along the vertical direction at the defect mode frequencies was enhanced by 
as much as a factor of nearly 50, which was attributed to the combination of spontaneous 
emission enhancement and increased light coupling into the out-of-plane direction.

While the defect in a two-dimensional slab PC exhibits a large Purcell factor thanks to the 
small mode volume and high (J. for applications to thresholdless lasers, one needs to consider 
the spontaneous emission coupling factor. C. which is defined as the ratio of power emitted 
lo the cavity mode to the total power emitted. We note that the same factor is denoted as 
ft in some literature, but here we follow the notation by Baba et al. (9. 104]. The variable C 
is obviously dependent on the fractional solid angle subtended by the cavity mode ft. which 
ranges between 10 1,1 and 10 ' in conventional laser cavities. Because of the small values 
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of fractional solid angle, the number ol cavity inode photons increase substantially only 
when the pumping reaches the threshold for stimulated emission. If a substantial amount 
of spontaneously emitted photons arc coupled into the cavity mode, one would expect a 
subsequent lowering of the threshold.

Yokohama et al. solved the rate equation for a four-Icvel laser as a function of the frac
tional solid angle subtended by the cavity mode, ft [105]. Figure 44 shows the population 
inversion and output power as a function of input power for various values of /$. It is clearly 
shown that the threshold pumping level to achieve population inversion decreases as /3 is 
increased. More remarkably, the threshold behavior in the output power becomes less pro
nounced with increasing (3 and completely disappears when [3 reaches unity. It should be 
noted that even tor the case in which fj = I. the laser oscillation begins only after the pump
ing level reaches a certain threshold, as shown in the population inversion curve. Below this 
threshold, the emission consists primarily of spontaneously emitted photons. It is therefore 
observed that the thresholdless laser does in fact have a threshold for laser oscillation, but 
it does not appear in the output power curve.

The analyses of the spontaneous emission coupling factor have so far been performed 
mainly for cavities with simple geometry, but for a nanocavity defined in a PC structure, 
one needs to incorporate more rigorous numerical computation methods. Vuckovic et al. 
has proposed using the FDTD method for the calculation of the spontaneous emission 
coupling factor of PC-based nanocavities [106]. In this method, the resonant modes for the 
given cavity structure are first obtained by solving the Maxwell’s equation with the FD TD 
method, as described previously. Then, the radiation from the semiconductor material inside 
the nanocavity is simulated by placing randomly polarized and randomly distributed point 
dipole sources in the cavity. The dipole sources are assumed to have a single frequency and 
a single lifetime, but random phase. The total radiation power is then calculated from the 
surface integral of the Poynting vector, and the total radiated energy is given by the 
time integral of the radiation power. The total energy radiated into the fundamental mode 
is given by

W'k = di *Rc E‘(r,/)• f P^’Z-d-r (57)

where P(r.t) is the polarization resulting from the point dipole sources and E(,(r. /) is the 
field profile of the fundamental (0//t) mode whose time dependence is given by the wave 
equation. I he spontaneous-emission coupling factor is then obtained by the ratio
If inhomogeneous broadening is to be included, the radiated energy must be calculated for 
various frequencies and multiplied by the line shape function to obtain the total radiated 
energy over the broadened frequency range.

This approach has been applied to the structure shown in Fig. 42. The active region was 
assumed to be a quantum well structure located in the middle of the slab, and thus strong

Figure 44. Calculated (a) population inversion and (b) light output lot a four-level laser with various values of 
fractional olid angle subtended by the cavity mode. fl. Reprinted with permission from | i<»5J. Yokoyania et al..

(Jutinmtn Elvcwon. 24. S245. (1992). © 1992. Plenum.
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coupling is expected for IE-like polarization. The dipoles were therefore assumed lo be 
polarized in the plane of the quantum well, and their lifetime was set to be 0.1 ps. Figure 45 
shows the spontaneous emission coupling factor calculated by assuming only homogeneous 
broadening. The coupling factor has a maximum when the oscillation frequency of the dipole 
sources is equal to the cavity resonance frequency and decreases rapidly as it gets detuned 
from the resonance. The effect ol inhomogeneous broadening has also been investigated by 
assuming a Lorcntzian line shape function. When the full width at half maximum (FWHM) 
was 25 nm. the coupling factor was 46ri. As the broadening became more significant, the 
coupling factor decreased and became 40r< for the FWHM value of 200 nm.

The cavity modes can be tailored in a similar fashion to the waveguides discussed in the 
previous section. As discussed earlier, the simplest form of defect cavity in a PC structure 
is created by removing a hole, as shown in Fig. 46a. This type of defect forms a symmetric 
cavity supporting a doubly degenerate mode, which are the ,v- and y-dipole modes shown 
in Fig. 42. The modes arc located deep inside the band gap and thus exhibit small mode 
volume and high Q factor. Painter et al. suggested lifting the degeneracy and modifying the 
mode structure by breaking the cavity symmetry' [107|. Figure 46b shows a cavity modified 
by vertically shifting the four holes located above and below the cavity. This cavity is no 
longer symmetric, and thus we expect the two originally degenerate cavity modes to split. 
Ihe radiation rate calculation by the FDTD method showed the splitting, which was also 
confirmed by the photolumincsccnce spectroscopy.

Figure 47a shows the calculated and measured spectra lor the modified cavity shown in 
Fig. 46b, where the shift Ay = O.(J5u. Il is clearly shown that the originally degenerate modes 
split into two modes at ohi/Ittc = 0.385 and 0.374. The lield profile indicated that the mode 
with strong field amplitude along the vertical direction, along which the cavity dimension 
was decreased, possessed a higher frequency than the mode with fields concentrated along 
the lateral direction. The modification of the cavity geometry was also found to increase the 
out-coupling in the out-of-planc direction, decreasing the {) factors for both split modes. 
The additional modes, labeled as SA modes, were the result of the nonuniformity of the 
holes introduced in the fabrication process.

Figure 45. Ihe spontaneous emission coupling factor for various dipole emission wavelength A, lot a photonic 
crystal-based cavity with resonant wavelength A Reprinted with permission I tom | l<M>|. J Vuckovic et al.. IEEE J 
(huiHlitm I Icclnm. 35. ||68(1Q9M) • |QW. II II
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Figure 46. Various geometries tor a photonic crystal cavity, (a) Symmetric cavity. <b) cavity with contracted vertical 
dimension. and (c) cavity with contracted lateral dimension Reprinted with permission from | IO7|. O. Paintci et al.. 
7 Op: I Pure Appl. Opi 3. Slot (2001). < 2001. |()|> Publishing Ltd.

Ailothet type ol modification is shown in Fig. 46c. This time, the lateral dimension of the 
cavity is decreased by enlarging the two nearest-neighbor holes located along the horizontal 
(I'-Af) direction and also moving them inward. The resultant emission spectra for this type 
of cavity arc shown in Fig. 47b. The enlarged holes perturb the dielectric band and create 
new modes (acccptor-likc modes) within the band gap. These modes are labeled DA modes 
in Fig. 47b. The originally degenerate modes are once again split, but this time the splitting 
is so large that the one of the split mode gets pushed out of the band gap. The remaining 
mode, labeled DD mode in Fig. 47b, is the one with its field profile concentrated along 
the vertical direction, l he light confinement was found to be improved in this cavity, and 
both the in-plane and oul-of-plane (J factors were greater than those for the symmetric 
cavity. This cavity also exhibited a much improved spontaneous emission coupling factor 
compared to the symmetric cavity. According to the FDTD simulations by Vuckovic cl al., 
the coupling factor can be as high as 87rr. which is almost twice as high as that lor a 
symmetric cavity 11()6|,

A different type of asymmetric cavity suggested by Vuckovic et al. involves elongation ol 
holes on lhe horizontal axis, as shown in Fig. 48a [108]. FDTD simulations were carried 
out for a structure with = 3.4. = 2.4. hole radius r = 0.3u. and slab thickness
<1 = tl.6r/. With live layers of holes surrounding the defect, the perfectly symmetric cavity 
was found to exhibit (>|| = 2070, (?_ — 1290, and mode frequency wa/lirc = 0.316. As the 
elongation is imposed, the cavity dimension is increased along the vertical (y) direction. This 
modification consequently affects the frequency and () factor, particularly for the .v-dipolc 
mode, whose fields are concentrated along the v-direction. As the elongation was increased, 
the mode frequency was (bund to decrease. This behavior could be explained qualitatively by 
noting that the .v-dipolc mode has originated from the air band pushed down in frequency 
into the band gap as a result the perturbation caused by placing a high-index material where

Normalized frequency
(a)

Normalized frequency (a/Z0)

(bj

Figure 47. (a) Finite-difference time-domain and photoluminescence spectra for the modified cavity structure 
shown in t ig 4<>tb ). (b) Finite-difference lime-domain and photoluminescence spectra for the modified cavitv struc
ture shown in Fig.46(c). Reprinted with permission from | IH7|. (). Painter cl al.. 7 Opi. I I'mAppl. Opi 3.SI61 
(2001 I. ' 2(><H. IOP Publishing l td.
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(a>

Figure 4N. (a) Schematic diagram of a delect cavity modified by elongating a row of holes on the horizontal axis 
(l>) In plane and oui-of-ptanc (J factors calculated for various values ot elongation parameter, p. p = 1 corresponds 
to a 15 Reprinted with permission from | IOS], J. Vuekovic cl al., /’/rv' Rex L (i5, (116608 (2(101). < 2001. American 
Physical Society.

a perfect PC structure would have air. lhe elongation adds even more high-index material 
inside the cavity at positions where air would be in a perfectly symmetric cavity. This would 
then perturb the mode even more, pushing lhe mode frequency farther down.

More remarkable is the changes in Q factor shown in Fig. 48b. As the structure is elon
gated, the in-plane (/ factor showed only a modest increase, but the out-of-plane Q factor 
increased dramatically, reaching 20000 when the elongation was 3a/15. This was attributed 
to the fact that the elongation resulted in the suppression of wave vector components of the 
cavity mode that can couple into lhe radiation modes. The total Q factor is obviously limited 
by the in-plane Q factor, which is one order of magnitude smaller. However, the in-plane 
£) factor can be increased simply by increasing the number of PC layers surrounding the 
defect. Increasing the number of PC layers to seven yielded an in-plane (/ factor exceeding 
the out-of-plane Q factor, raising the total (/ factor above 10000.

As discovered in Rei. [98|, defect with a lowered refractive index is desirable for a high (J 
cavity. However, in practice such a structure is very' difficult to fabricate. To circumvent this 
difficulty, using a smaller hole to mimic a defect with a lower refractive index was proposed 
[108, 109]. When this defect is coupled with the elongation discussed above, the (3 factor is 
estimated to reach 4401) and lhe mode volume 0.43(A/n)3. Although the theoretical Q factor 
was not as high as the lower index defect, this structure has actually been fabricated and 
shown to exhibit a Q factor of 2800, much larger than what has been measured for other 
types of PC-based nanocavities.

Although the cavities formed in a triangular lattice continue to be investigated extensively, 
the much less studied square lattice was recently found to support whispering gallery modes 
1110). Ryu et al. performed FDTD simulations on the square lattice of air holes in a dielectric 
slab with n — 3.4. The cavity was formed by eliminating one hole and cavity was found to 
support tw'o resonant modes, one nondegenerate mode, and one doubly degenerate mode. 
The doubly degenerate mode is the dipole mode similar to that observed in lhe cavity formed 
in a triangular PC structure.

The in-plane and vertical field distributions for the dipole mode are shown in Fig. 49d 
and 49f. Interestingly, the resonant frequencies of this mode calculated for various air hole 
radii were found to be located outside the complete in-planc band gap. The frequencies did 
fall within the pseudo band gap for F-.Y direction, along which the mode predominantly 
resonates. Unlike the triangular PC lattice, both a- and y-dipolcs resonate along the F-A' 
direction in the square lattice, which makes it possible to achieve light confinement only 
with the pseudogap along the F-.Y direction. The in-plane (J factor could become as high 
as 1500 for an air-hole radius of 0.35a.

l he nondegenerate mode exhibited completely different in-plane field patterns, as shown 
in Fig. 49a and 49b. Both the electric and magnetic fields were found to have a node at the
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Figure 49. Resonant mode profiles of a free-standing square lattice single-cell cavity calculated by the three- 
dimensional finite-difference time-domain method, (a) Electric-field intensity profile of the lowest-order whispering 
gallery (1WG) mode calculated at the center of the slab, (b) Magnetic-field intensity profile of the LWG mode, 
(c) Electric-field directions of the LWG mode, (d) Electric-field intensity profile of the v-dipolc mode. Side
view electric-field intensity profile of (e) the LWG mode and (f) the dipole mode tire calculated along lhe I -A’ 
direction through the defect center. The color map of relative intensity scales is shown for reference. Reprinted 
with permission from 11 IO|. H.-V. Ryu el al.. Appl. 1‘lrys. Lett. 80, 3883 ( 2002), 21X12. American Institute ot
Physics.

center of the cavity and four maxima near the cavity boundary. For the electric Held, the 
maxima occur near the four nearest neighbor holes along the T-A" directions. The magnetic 
field, however, showed four maxima along the I’-Af directions. Furthermore, the electric 
Held vector at the maxima pointed inward and outward in an alternating fashion, as shown 
in Fig. 49c. These are the characteristics of the whispering gallery mode with an azimuthal 
mode number 2. Consistent with the fact that the whispering gallery modes in microdisk 
cavities arc strongly confined within the slab and radiate primarily in the radial direction, this 
mode was found to be well-confined in the vertical direction (see Fig. 49e and 49f), yielding 
much higher Q factors than the dipole modes. The vertical Q factor calculated from the 
surface integral of Poynting vector in the vertical direction was found to be as high as 40000 
for an llxll unit cell system with a hole radius of 0.38«. The surface for integration was 
placed at 0.5u above the surface of the slab PC structure to avoid complications resulting 
from the evanescent waves. The high vertical Q factor is very important because that is what 
essentially limits the total Q in a slab PC cavity, and the in-plane Q can always be increased 
by increasing the size of the PC structure surrounding the cavity. The whispering gallery 
mode also exhibited a very small mode volume ol 0,04 gm’, which corresponds to Cl.l( A/2) 
The combination of small mode volume and high (4 factor led to a very' high Purcell factor, 
exceeding 1000.
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In efforts to further improve the cavity characteristics, Ryu et al. investigated the effects 
of slab thickness and hole size [ 111 ]. As the slab thickness was increased, the mode became 
more confined within the slab, increasing the vertical Q factor. The in-plane Q factor also 
increases initially as a result of the fact that the in-plane PBG widens as the slab thickness 
is increased. However, the increased slab thickness also shifts the mode frequency lower. As 
a result, the cavity mode gets closer in frequency to the guided modes allowed to propagate 
within the slab, and this reduces the in-plane Q factor. Thus, there exists an optimum thick
ness at which the in-plane Q factor, and consequently the total Q factor, reach maximum. 
For a 13 x 13 structure with a hole radius of 0.38a, the total Q factor has a maximum of 
~18000 when the slab thickness is 0.6a. One may also attempt to further increase the Q fac
tor by modifying the hole sizes in a similar manner to what has been done for the triangular 
lattice.

Ryu et al. modeled the modified cavity structures in which the size of the nearest and 
second-nearest neighboring holes were different from the regular hole size [111]. In contrast 
to the triangular lattice, modification of neighboring hole sizes only decreased the Q factor, 
and (he unmodified structure in which the hole sizes are the same for all holes exhibited 
the highest Q factor. The effective mode volume was also calculated using Eq. (55). With 
increasing slab thickness, the mode volume naturally increases. When expressed in units of 
cubic lattice constant a1, the effective mode volume increased linearly with increasing slab 
thickness. However, because the change in slab thickness shifts the resonant frequency of 
the cavity mode, when expressed in units of cubic half-wavelength, (A/2)'. the mode volume 
was found to exhibit a minimum at a slab thickness of 0.5a. The minimum mode volume was 
0.093(A/2)3. From the Q factor and effective mode volume, the Purcell factor was estimated 
and was found to reach a maximum of ~8000 for a slab thickness of 0.6a at which the Q 
factor was the largest.

6. CONCLUDING REMARKS
An overview was given on the basic theory and numerical techniques of photonic crystal 
modeling and on how they are applied to the forefront of PC' research. The basic theoretical 
framework for PC's has been established on the marriage of condensed matter physics and 
optics. The analogy between PC and real crystal is quite remarkable and is clearly reflected 
in the theoretical development of PC. It has also become clear, however, that there are fun
damental differences between the photonic and electronic systems; for example the vector 
nature of an electromagnetic field versus the scalar nature of an electronic wave. Thus, the 
theoretical development of PC often involved adaptation and extension of the condensed 
matter theory to properly describe the photonic system. The theoretical research has clearly 
been the driving force of initial PC research and has put the emerging new field on a firm 
scientific foundation. For example, the predictions of complete PBG by the early theoretical 
studies attracted much attention and spawned a wide array of experimental works to realize 
it. Eight localization by the PBG has also received extensive theoretical investigations, lead
ing to the conception of waveguide with a sharp bend and extremely high Q nanocavity. Even 
now, when the fabrication of the complex nanostructures and experimental demonstration 
of the theoretically predicted novel phenomena are increasingly emphasized, the modeling 
of PC remains a critical component of research as design and validation tool.

Furthermore, theoretical modeling studies continue to pioneer new areas and keep dis
covering new optical phenomena possible in PCs. For example, it was recently discovered 
that the interaction between shock wave and electromagnetic wave in a PC can lead to fre
quency up-conversion, slowing of light, and pulse narrowing in an optically linear medium 
[112]. Also fast emerging is the study of nonlinearity in photonic crystals. The novel optical 
properties and the design flexibility of photonic crystal structures provide unique oppor
tunities to tailor the input and output characteristics of a nonlinear nanophotonic device. 
For example, Soljacic el al. recently reported that optical bistability observed a coupled 
system of nanocavity and waveguide based on two-dimensional PC [113]. These systems 
could potentially lead to all-optical photonic circuits for communication, interconnection, 
and information processing.
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Il should be pointed out that lhe theoretical development ol photonic crystals has largely 
been based on the classical electrodynamics. Although some quantum effects such as the 
spontaneous emission enhancement in nanocavities have been extensively studied, it was 
found that classical theory adequately describes them, as discussed in the (ext. However, 
as the theoretical research on PC’s continues to pioneer new fronts, it will be necessary to 
develop fully quantum mechanical treatments. Another important issue to be more com
pletely addressed hy theoretical studies is that of integration. One of the greatest advantages 
of PC is found in its potential for large-scale integration, which will involve numerous mutu
ally interacting devices in a compact and complex geometry. Therefore, controlling the light 
propagation and coupling between various components will be critical lo lhe realization of 
large-scale integrated photonic systems, and extensive theoretical studies will be needed to 
address this issue.
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1. INTRODUCTION
The area of quantum information owes its fast development in the past years to the ability, 
developed in several labs, of controlling and measuring simple microscopic systems, to the 
discovery of fast quantum algorithms, and to the recognition that Moore’s law will soon 
lead to the single-atom limit of elementary' computing gates. This could possibly lead to 
new architectures of hardware and new methods of computation, using the properties of 
the quantum world I-4]. The development of quantum computers faces, however, a major 
obstacle, due to the fact that quantum software deals with entangled states of many qubits 
(ideally of Ihe order of 1000): the fast loss of coherence between any two different macro
scopic states, which transforms the entangled states into mixtures and the quantum computer 
into a classical one. This problem, of great practical importance, is related to a very funda
mental question in physics.

Indeed, one of the most subtle problems in physics is the relation between the macroscopic 
world, described by classical physics, and the microscopic world, ruled by the laws of quantum 
physics |5-7], Among the several questions involved in the quantum-classical transition, one 
stands out in a striking way. As pointed out by Einstein in a letter to Max Born in 1954 |8|. 
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it concerns the inexistence at the classical level of the majority of states allowed by quantum 
mechanics, namely coherent superpositions of classically distinct states. Indeed, whereas in 
the quantum world one frequently comes across coherent superpositions of states (like in 
Young’s two-slit interference experiment, in which each photon is considered to be in a 
coherent superposition of two wave packets, centered around the classical paths that stem 
out of each slit), one does not sec macroscopic objects in coherent superpositions of two 
distinguishable classical states, localized for instance around two distinct positions in space. 
There is an important difference between a state of this kind and one that would involve just 
a classical alternative: the existence of quantum coherence between the two localized states 
would allow in principle the realization of an interference experiment, complementary to 
the simple observation of the position of the object. We know all this already from Young’s 
experiment: the observation of the photon path (that is. a measurement that is able to 
distinguish through which slit the photon has passed) unavoidably destroys the interference 
fringes.

If one assumes that the usual rules of quantum dynamics are valid up to the macroscopic 
level, then the existence of quantum interference at the microscopic level necessarily implies 
that the same phenomenon should occur between distinguishable macroscopic states. This 
was emphasized by Schrodinger in his famous "cat paradox” [9], An important role is played 
by this fact also in quantum measurement theory, as pointed out by Von Neumann (10. 11]. 
Indeed, let us assume for instance that a microscopic two-level system (states |+) and |-)) 
interacts with a macroscopic measuring apparatus in such a way that the pointer of the 
apparatus points to different (and classically distinguishable!) positions for each of the two 
states, that is, lhe interaction transforms the joint atom-apparatus initial state into

HIT) - 1+) I /)
Hit) - H'l \)

where one has allowed for a change in the state of the two-level system due to its interaction 
with the measurement apparatus.

The linearity of quantum mechanics implies that, if the quantum system is prepared in a 
coherent superposition of the two stales, say |i//) = (|+) + |-))/v2, the final stale of lhe 
complete system should be a coherent superposition of two product states, each of which 
corresponds to a different position of the pointer:

(^)(l+> + l-))IT> -* (^]<l+)'l z> + H)'l = (t0(I + 1 (1)
where in the last step it was assumed that the two-level system is incorporated into the 
measurement apparatus after their interaction (for instance, an atom that gets stuck to the 
detector). One gets, therefore, as a result of the interaction between the microscopic and 
the macroscopic system, a coherent superposition of two classically distinct states of the 
macroscopic apparatus. This is actually the situation in Schrodinger’s cat paradox: the cat 
can be viewed as a measuring apparatus of the state of a decaying atom, the state of life or 
death of the cal being equivalent to the two positions of the pointer. This would imply that 
one should be able in principle to get interference between the two states of the pointer: it 
is precisely lhe lack of evidence of such phenomena in the macroscopic world that motivated 
Einstein's concern.

Faced with this problem, Von Neumann introduced through his collapse postulate 110] two 
distinct types of evolution in quantum mechanics: the deterministic and unitary evolution 
associated with the Schrodinger equation, which describes the establishment of a correlation 
between states of the microscopic system being measured and distinguishable classical states 
(for instance, distinct positions of a pointer) of the macroscopic measurement apparatus; 
and lhe probabilistic and irreversible process associated with measurement, which trans
forms coherent superpositions of distinguishable classical states into a statistical mixture. 
This separation of the whole process into two steps has been the object of much debate 
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[11-15]; indeed, it would not only imply an intrinsic limitation of quantum mechanics to deal 
with classical objects, but it would also pose the problem of drawing the line between the 
microscopic and the macroscopic world.

Several possibilities have been explored as solutions to this paradox, including the pro
posal that a small nonlinear term in the Schrodinger equation, although unnoticcable for 
microscopic phenomena, could eliminate the coherence between macroscopic states, thus 
transforming the quantum superpositions into statistical mixtures [12. 13]. The nonobserv
ability of the coherence between the two positions of the pointer has been attributed both 
to the lack of nonlocal observables with matrix elements between the two correspond
ing states 116] as well as to lhe fast decoherence due to dissipation 117-26]. This last 
approach has been emphasized in recent years: dccoherence follows from the irreversible 
coupling of the observed system to a reservoir. In this process, the quantum superposi
tion is turned into a statistical mixture, for which all the information on the system can 
he described in classical terms, so our usual perception of the world is recovered. Fur
thermore, for macroscopic superpositions, quantum coherence decays much faster than the 
macroscopic observables of the system, its decay time being given by the dissipation time 
divided by a dimensionless number measuring the “separation" between the two parts. The 
statement that these two parts are macroscopically separated implies that this separation 
is an extremely large number. Such is the case for biological systems like “cats" made of 
a huge number of molecules. In the simple case mentioned by Einstein [8| of a particle 
split into two spatially separated wave packets by a distance d. the dimensionless measure 
of the separation is (d/\,m)?. where A(/w is the particle de Broglie wavelength [6|. For a 
particle with mass equal lo I g at a temperature of 300 K, and d = 1 cm, this number is 
about 104", and the dccoherence is for all purposes instantaneous. This would provide an 
answer to Einstein’s concern: decoherence of macroscopic states would be too fast to be 
observed.

Careful consideration of the interaction between the macroscopic system and the reser
voir. and especially of its local character, leads to the understanding of a puzzling aspect of 
dccoherence: why. among the huge variety of states in Hilbert space, are some states pre
ferred in the classical limit? Indeed, localized states of macroscopic objects tend to be much 
more stable than their coherent superpositions. One knows now that the form of the inter
action with the environment plays an essential role in inducing the selection of a set of states 
that are more resistant to dccoherence ]7], These states have been called “pointer states” by 
Zurek [7], One may say that the environment induces a superselection rule (“environment 
induced selection" or “ein-selection.” according to Zurek). which inhibits coherent superpo
sitions of pointer states.

In this article, it will be shown that the study of the interaction between atoms and elec
tromagnetic fields in cavities can help us understand some aspects of this problem. In fact, 
many recent contributions in the field of quantum optics have led not only to the inves
tigation of the subtle frontier between the quantum and the classical world, but also of 
hitherto unsuspected quantum mechanical processes like teleportation [27-37]. Research on 
quantum optics is therefore intimately entangled with fundamental problems of quantum 
mechanics.

It is also of interest lo the area of quantum information, for several reasons. First, the 
individual control of atoms and photons attained in the area known as “cavity quantum 
electrodynamics” (cavity QED) has led to the demonstration of elementary quantum gates, 
which are the building blocks of quantum computation. Second, as mentioned before, the 
phenomenon of decoherence, which has been lhe subject of detailed studies in cavity QED, 
plays a central role in the quest for a quantum computer, as quantum software involves 
entangled states of many individual subsystems (many entangled “qubits"). These are true 
quantum superpositions of macroscopic states and therefore highly sensitive to decoherence: 
if special care is not taken, and the relevant states are not protected from decoherence, the 
quantum computer becomes a classical one within a very short time!

The whole area of cavity quantum electrodynamics is a very recent one. It concerns the 
interactions between atoms and discrete modes of lhe electromagnetic field in a cavity, under 
conditions such that losses due to dissipation and atomic spontaneous emission are very 
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small. Usually, one deals with atomic beams crossing cavities with a high quality factor (9 
(defined as the product of the angular frequency of the mode and its lifetime. <9 = mt). 
Experiments have been realized both in the optical |38| and in the microwave domain 
[39-44] In the strong-coupling regime, attained in the experiments realized in the past 
It) years, the characteristic coupling frequency is much larger than the atomic and field 
decay rates and also the inverse of the interaction lime between the atom and the cavity 
field.

Sevet.il factors contributed to the development of this area, among them the production 
of very good cavities and lhe development of techniques for controlling atomic beams. In 
lhe microwave region, the production of superconducting Niobium cavities, with extremely 
high quality factors, up to the order Id1", allows one to keep a photon in the cavity for a 
time of the order up to I s. New techniques of atomic excitation [45. 46| (alkaline atoms, like 
rubidium and cesium, are frequently used for this purpose) to highly excited levels (principal 
quantum numbers of the order 50)—the so-called Rydberg atoms—with maximum angular 
momentum (I = n — I) (so that the electrons describe circular orbits, a configuration known 
as "planetary" or "circular" atom) have led to the production of atomic beams that interact 
strongly even with very weak fields in the microwave domain, of lhe order one photon, due 
Io the large magnitude of the relevant electric dipoles. Besides, the lifetime of these states 
is large—of the order 3(1 ms for n = 50—which may be understood semiclassically. from the 
correspondence principle (which should be valid for n 50): the electron is always very far 
away from the nucleus, and therefore its acceleration is small, implying weak radiation and a 
long lifetime. One should also mention the new techniques of atomic velocity control, which 
allow the production of approximately monokinetic atomic beams, leading to a precise control 
of lhe interaction time between atom and field.

Although in lhe optical domain open geometries have been adopted for the cavities, made 
with two highly polished mirrors facing each other, both open [39. 4(1. 43| and closed |41. 42] 
geometries have been adopted in microwave experiments. The closed geometry, typically 
a cylinder with holes on its bases that allow the injection of atoms, has the advantage of 
increasing the quality factor of the cavity, as the leakage of photons is thus reduced. It docs 
not allow, however, the injection of atoms in planetary states, as these arc very unstable. This 
instability is due to the high degeneracy ol these slates: lot l — n - I. there ate 2/' + I = In - 1 
states with the same energy, corresponding to different directions in space of the electron 
orbit. Rydberg states with small values of the orbital angular momentum have substantially 
smaller lifetimes, of lhe order 20(1 to 400 jus in recent experiments. On the other hand, the 
open geometry , though leading to lower quality factors, allows the removal of this degeneracy, 
by submitting the atom to an electric field in the space between lhe two mirrors. In this way. 
planetary atomic states, with larger lifetimes, can be used.

In the follow ing two sections, some of the basic properties of the quantized electromagnetic 
field and its interaction with two-level atoms are reviewed. Sections 4 and 5 apply this formal
ism respectively to the description of optical lattices and lhe trapping of a single atom by a 
single photon. Section 6 shows that two-level atoms interacting with photons in cavities may be 
used to demonstrate basic building blocks of quantum computation, as well as subtle quantum 
effects, like teleportation. Section 7 analyzes recent experiments that led to the monitoring in 
real-time of the decoherence process and of the dynamics of the quantum-classical transition. 
The quantum nondemolition measurement of a field in a cavity is discussed in Section X. and 
the full characterization of the stale of the system, through the measurement of the corre
sponding Wigner function, is discussed in Section 9. Section 10 reviews a technique, recently 
demonstrated experimentally, for directly determining the Wigner function of an electromag
netic field in a cavity. I’he measurement of the corresponding characteristic function and of 
the Htsimi function arc also discussed in that section, and the effect of dissipation is treated 
in Section 11. Section 12 shows how entanglement between two cavity modes can be charac- 
lerizec through the Wigner function. Several methods to control decoherence arc reviewed 
in Section 13. The use of lhe Wigner function to describe the quantum-classical transition 
for cla.siciilly chaotic systems is discussed in Section 14. The conclusions are summarized in 
Section 15.

Sevet.il
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2. THE QUANTIZED ELECTROMAGNETIC FIELD
The free-held Hamiltonian for a mode of the electromagnetic field is given by the harmonic 
oscillator expression 116]

H = (2)

where N = ivii is the number operator, and it and d' satisfy the commutation relation

[«.«+] = i (3)

I he eigenstates of II arc denoted h\ /i). and satisfy the equation

A/|n) = n|/i), n = 0.1,2,... (4)

and the cigcncncrgics arc given by = (n + l/2)/i<u. It is easy to show that

= v n + l|n + I), <i|n) = v/n|/t - I) (5)

The eigenvalue n of the number operator N is interpreted as the number of photons in the 
field, while, in view of Eq. (5). a and a are (he photon annihilation and creation operators.

The states |/i) arc the so-called lock states, and have a well-defined number of photons. 
The state corresponding to n = (I is the vacuum state. It is easy to show from the above 
relations that

The electric field is expressed in terms of the annihilation and creation operators by

£(/•) = Ew(flM(r)e+ d*i/*(r)e'| (6)

where u(r) is a function that describes the spatial dependence of the field mode, f is the 
polarization vector, and Eia = v /rur/F is the field per photon. Here V — f\u{r is the 
effective volume of the mode, defined so that the expectation value of the electromagnetic 
energy in the vacuum state, ( 1/4tt) J(0|[E(r )]2|0)d’r (in CGS units), is equal to the zero
point energy hto/2. Typically, the mode function u(r) is a standing wave along the axis of 
the cavity, and a Gaussian exp(—r2/u?) along the transverse direction, where w is the mode 
waist, of the order the micrometer in the optical case and the centimeter for microwave 
cavities. The volume of the mode is then given by f' = (tt/4)Liu2, where L is the cavity 
length (distance between mirrors). In the microwave region, one has typically V % 0.7 cm’, 
so that % 1.5 mV/ni. In the optical region, one may have V % 10’ gm’, so that Eu % 
150 V/cm. It is interesting to note that the much smaller transition dipole in the optical case 
(of the order 1 atomic unit versus 1000 atomic units for the Rydberg states) is compensated 
by a much larger electric field per photon, which is due to both the larger frequency and the 
smaller mode volume in the optical domain.

One should note that = 0. that is, the average electric field is zero in a Fock state. 
A special role will be played in the following by the phase displacement operator.

U(f))=vvp(-i9N) (7)

It follows from the commutation relations that

0\H)dU(fl) = aexp(-iO) (8)

For fi = tot. the phase displacement operator coincides, up to a factor exp(-/w//2) coming 
from the zero-point energy, with the evolution operator corresponding to the Hamiltonian 
(2). and (8) yields the time evolution of the Heisenberg operator associated with a.



Decohe cnee. Quantum Information, and (Quantum-Stale Measurement 335

2.1. Quadratures of the Electromagnetic Field
The quadratures of the electromagnetic field correspond to the position and momentum of 
a harmonic oscillator:

This commutation relation implies the Heisenberg inequality AqSp > 1/2.
From Eqs. (8) and (9), we see that, for 8 = tt.

U'(7T)qU(ir) =-q. U‘(ir)pU(ir) = -p

so that is the parity’ operator.
Setting u(r ) — \u(r )| expf—/</»(r )| in Eq. (6), we have, in the Heisenberg picture, for the 

electric field operator in terms of these quadratures (for a real polarization vector):

E(r, r) = Ew|z/(r )|'/2[</cos(wr + </>) — psin(w/ + <Z>)]e

This expression is analogous to the one that yields the position of a harmonic oscillator 
at time t in terms of its initial position and momentum:

.v(r) = ,v(/0)cosw(z - rl() + sin w(r - l,) (10)

1'he quadrature eigenstates (which correspond to states with well-defined position and 
momentum for the harmonic oscillator) will be denoted by

= <zkz>- pIp) = pip)

Exactly as for the position and momentum eigenstates, these states provide two non- 
normalizable bases. The corresponding quadrature wave functions are given by

'/'(?) = W>< '/'(/’) = (fl'/')
where |i//) is an arbitrary state of the field.

Using the phase-displacement operator given by Eq. (7). it is possible to define generalized 
quadratures:

qtl = 0^(8)q0 (8) — = r/cos 8 + p.sin 8 (11)

p„ = U\8)pU(8) =-qsin 8 + pcos8 (12)

where of course p„ = q„+„/2-
It is clear from these expressions that 0(8) is the rotation operator in phase space. For 

a harmonic oscillator, and with 8 = uu. Eqs. (11) and (12) correspond respectively to the 
position and the momentum of the oscillator at time /, expressed in terms of the position q 
and momentum p al time / = 0.

2.2. Coherent States
We have seen that the average value of the electric field operator vanishes in a Fock state. 
Therefore, we cannot associate Fock states to classical fields with amplitude different from 
zero and well-defined phase. Eet us look now for "quasi-classical" field states [47]. We 
require that the average value of the electromagnetic field in these states, which we denote 
by |a), coincides with the classical expression for an electromagnetic field with complex 
amplitude a:

(a|£’(F)|a) = y‘hu)/V'u(r )ea + c.c. (13)
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From (6) and (13). it follows that

(a|tf|a) = a (14)

We also require that the expectation value of the electromagnetic energy in the state |ot) 
coincides with the classical expression for this energy, expressed in terms of the complex 
amplitude rr. at least in the limit when |cr| » 1. It is easy to show that the classical energy, 
when the electric field is expressed in terms of a like in (13). is given by £'cl = /iio|a|2. 
Comparing this expression with (2). we must have therefore

(a|«\i|a) = |a|2 (15)

From (14) and (15). it follows that

(a|(<i — o' )(</ - rr)|a) = () (16)

and therefore the state |o) must be an eigenstate of the annihilation operator ii with eigen
value a:

«|cr) = o|o) (17)

These arc the cohereni slates |48], which play an important role in quantum optics, and 
also in the understanding of the classical limit of quantum mechanics.

It is clear from the above discussion that the average number of photons in a coherent 
state |o) is given by

(n) = (a|«’ </|o) = |a|‘

It also follows from the definition (17) and the commutation relations that, for a coherent 
state.

or, more generally, A</„ = l/>/2. Therefore, coherent states are minimum uncertainty states. 
This property can be pictorially depicted by drawing a circle in phase space, with a radius 
equal lo the uncertainly in Ar/W, as shown in Fig. I

In terms of Fock states, coherent states can be expressed in the following way;

|„) = £ ^|„) = ,-»!'« £ <^10) (|8)

corresponding to the photon number distribution

(tl\np(n) = |(/r|«)|2 = exp(-|cr|2) —— = exp(-(n})^— (19)
n! m

This is a Poisson distribution, with the variance (An)2 = (n).

Figure I. Pictorial representation of a cohereni stale in phase space.
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I hc disphu fJiiem operator is defined by

D(a. <r‘) = exp(a<? - a’d) (20)

Note that the right-hand side of (18) implies that

|<») = c "• -’e'1'i'|0> = e e ""|0) = cxp(««' cr«)|O> = Q(ct. <f)|0) (21)

where in the last step the Baker-HausdorlT transformation has been used to entangle the 
annihilation and creation operators in the exponent, t herefore, a coherent state |ir) can be 
obtained by applying the displacement operator D(a. <r') Io the vacuum slate. The displace
ment operator is closely connected to the evolution operator corresponding to the interaction 
of the electromagnetic field with a classical current. Indeed, this interaction is described by 
the Hamiltonian

//.„,= jj-Ad'r

which can be written in the form = i(acT — n'd). I he evolution operator corresponding 
to this interaction coincides, up to a phase, with D(a.cr’). Therefore. Eq. (21) implies that 
classical currents generate coherent stales from the vacuum. In an analogous way, it is easy 
to show that for a harmonic oscillator, a coherent stale can be physically realized by applying 
a classical force to the oscillator, initially in the ground state.

From the expansion of the coherent states in terms of the Fock states, one easily derives 
the following scalar-product and completeness relations:

|(a|«)|2 = e (22)

- j d2a\a)(a\ = 1 (23)

where c/2a ~ d^Hea)d(^ma).
Equation (22) implies that two different coherent stales arc not necessarily orthogonal 

This is not surprising, as. according to Eq. (17), coherent states are eigenstates of a non- 
I lermitian operator. On the other hand, if | rr — a' |» I, then the coherent states \a) and 
)<r') will be approximately orthogonal. In view of this non-orthogonality, Eq. (23) allows one 
to express any coherent state in terms of the others: lot this reason, coherent states arc said 
to form an over-complete set.

In terms of the quadrature eigenstates |</>. one may write:

with = (</„ + tpll)/s/2.
Therefore, the probability density of finding a quadrature q of the field with a value </, 

for a coherent state |n„). is given by a Gaussian (for the vacuum, q„ — p„ = (I):

= ‘-xp|-(i/- i/„)2|

This expression coincides with the probability density of measuring the value q for the 
position of a harmonic oscillator, when its ground state is displaced by </„. as expected.

2.3. Measurement of Quadratures
Several methods have been proposed to measure quadratures of the electromagnetic lield 
(for a review', see for instance Ref. |49|). The general idea consists in mixing the signal to 
be delected with an intense coherent signal, called local oscillator, before detection [50-52).
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The discussion here is restricted to lhe method of balanced homodyne detection, sketched 
in Fig. 2. The field to be measured (complex amplitude £„) is sent on a beam splitter, 
together with a coherent field (complex amplitude Eh) with the same frequency. One mea
sures then lhe difference of intensity of the two beams emerging from the beam splitter 
(complex amplitudes £, and Eit). The detection is said to be balanced when the mirror 
transmits 50% of the incident light.

Let /• and t be the reflection and transmission coefficients of the mirror, respectively. Let 
us set:

E. = rEu - tE„ (24)

E., = tEu + /•/-.; (25)

or yet. in matrix form.

Energy conservation (assuming that losses arc negligible) implies that

From (26) and (27), one gets:
|r|2 + |l|2 = 1

(26)

(27)

(28)

/■ / /•/’ = 0 (2S)

If one takes r real and equal to (one should note that phases in r and t can be removed 
by redefining the phases of the incoming and outgoing fields), it follows from Eq. (28) that 
/ = ±( I — r;)1 -. Choosing the positive sign, one gels then

(3fi)

Normalizing the intensity to the photon number, and introducing annihilation operators 
corresponding to the several fields involved through

E., «-
E, -+ c.

E„ -* b
Etl - d

Figure 2. Method of balanced homodyne detection.
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one gc >. from (3(1).

r = x 17k v I Y)h.

For falanccd detection, q = 1/2. so that

</ = V 1 - r)ii |- <fqb (31)

V
d — —p(a + b)

v2
(32)

Ihcs expressions relate the field operators after the beam splitter with those before 
this deice. They should be understood therefore as Heisenberg operators, which evolve 
under tie action of the beam splitter. Note that the conditions expressed by Eqs. (28) and 
(29) irmly that the transformation between the field operators corresponding to Eq. (26) is 
unitary'(this is the requirement lor operators that corresponds to energy conservation for 
lhe clasical fields).

lhe iiffcrcnce between the intensities of the fields Etl c E, is given then by

/ = d'd - c1c = a'b + If a (33)

Assuning that the field Eh may be described classically (this would be the case for a 
cohereit state with large average photon number), one replaces b by — He so that 
(33) ges transformed into

/ = Ii\ae' (34)

Becaise a = (all fields are taken in the Heisenberg picture), one gets finally.

/ = /?(«,<'" + a>"') (35)

This eqiation shows that the difference of intensities, measured by the method of homodyne 
deteetkn. is directly proportional to the quadrature X(b) of the field E„, defined by

A(W) = -2=(«oe (36)

Therefore, by detecting the difference of intensities, as the phase of the local oscillator E/, 
is chanted, one may measure an arbitrary quadrature of the field E„. for i. stationary field, 
a sequcice ol measurements for the same phase yields the probability distribution for the 
corresponding quadrature. P(X„). In practice, one deals with a continuum of modes, and 
the abtve analysis applies to the situation when the frequency window of the detector is 
much snaller than the linewidth of the light that is being measured.

In oiler to keep the phase difference constant between the local oscillator and the field 
to be neasured. in spite of the unavoidable phase diffusion of the local oscillator, one 
frequency uses part of the local oscillator beam to pump the medium that produces the field 
to be analyzed. In this way. lhe local oscillator is used both for analyzing and for providing 
a phase reference for the detected field.

3. THE ATOM-FIELD INTERACTION
3.1. The Interaction Hamiltonian
We Consider now the interaction of atoms and fields. We will be considering situations in 
which the atom is resonant or quasi-rcsonant with one of the modes of lhe electromagnetic 
field in a cavity. Under these conditions, it is possible to consider just two of the atomic 
states aid therefore reduce the atom to a two-level system [we will call e the upper level 
and g tic lower level, and define their energy difference as The basic Hamiltonian 
describing this system can then be expressed in terms of Pauli spin operators, if we let
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Then.
H = H , + H, + H u

is the free-atom Hamiltonian, with rr a Pauli matrix:

is the tree-field Hamiltonian, and

with

(38)

(39)

(40)

(41)

(42)

(43)

The operator <r. applied to |g) yields the state |e). The interaction in Eq. (42) is thus easily 
interpreted: the term <r a describes the excitation of lhe atom from state |g) to state |e). 
through the absorption of a photon, whereas the term it a describes lhe inverse process, 
with the atom emitting a photon while it gels deexcited from |e) to |g).

In Eq. (42). we have neglected terms of the form a, if and <r_a. which do not conserve 
energy in first order and which lead to small corrections in the results to be obtained, as 
long as |<o — tu(,| « ian and <K w, o>0, where (n) is the average number of photons
in the field. Wc have also adopted the dipole approximation, neglecting the variation of the 
electromagnetic field within the atom.

l he coupling constant Mlh/2 depends on the transition dipole dfS between the two levels, 
on the polarization vector e and the frequency w of the electromagnetic field, as well as the 
effective volume of the mode E. From Eq. (6), it follows that

7 - /

= v“(R) (44)

where the mode function «(/<) is evaluated on lhe center-of-mass position R of the atom 
interacting with the field (this is a consequence of the dipole approximation). One should 
note that, as only two atomic states are involved, one may always choose their phases so that 
(ln is real and positive. If u(R) is real, then this choice will not depend on R. The frequency 
Iiu is the resonant vacuum Rabi frequency.

The above equations define the Jaynes-Cummings model [53], a very useful model in 
quantum optics, which has successfully described many experiments in cavity QED. One 
should note that this model neglects dissipative processes, which will be considered in a while. 
The most interesting regime, from the point of view of demonstrating quantum features of 
the system, corresponds to the so-called strong-coupling regime, when the frequency » 
k. y. 1//In,, where k and y arc respectively the atomic and field damping rates, and is the 
interaction time between the atom and the field in the cavity.

3.2. Semiclassical Approximation and Bloch Equations
We note that the above Hamiltonian can be written as

(45)

2

where <5 = w,, - w is the detuning between lhe two-level atom and lhe cavity mode.
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We transform now the above Hamiltonian to the interaction picture with respect to

= /iwl <?(/ + - + -<r. (4b)

1’his transformation eliminates the free evolution of lhe field and at the same time rotates the 
components <r,, a\ of the pseudo-spin associated with the two-Icvcl atom around the z axis 
with the field frequency co. That is why it is called a “rotating-frame transformation.” Indeed,

exp = (i cxp(—iftrt) = a/

/ / / /()r \ . / ,
expl -------  ]<r expt ---------- I = cr expt zt<j/)=<r_ t

\ h / \ fi /

where the subscript I stands for interaction picture.
We get then, for the corresponding interaction-picture Hamiltonian,

W, = I — Im. 4 I — l(m+J«, +

(47)

(48)

(49)

lhe semiclassical approximation corresponds lo setting «z —» a, where a stands for the 
complex slowly varying envelope of the held | that is, with the factor exp(-/w/) taken out], 
which now becomes an external classical Held. Both its quantum character and the reaction 
of the atom on the field are neglected in this approximation. It is usually assumed that this 
should hold for sufficiently intense fields, described by coherent stales. This is not necessarily 
so. however: this approximation can be shown to be valid even for coherent states with an 
average number of photons of the order one, as long as the dampening of the field in the 
cavity is very strong (low Q cavity), and the cavity is pumped by a classical source [54]. Of 
course, in this case both the pumping and the losses should be included in lhe model. This is 
the situation in recent experiments held at F.colc Normalc Superieure, in Paris [55], where 
indeed the number of photons in the cavity mode that interacts with the two-level atom is 
of the order one. and yet the field can be treated classically.

With this approximation, the semiclassical Hamiltonian becomes.

n hfi . . h-Hi = ~y<r. 4——(fr. jo: + ir jCt*) = -<Tt ■ Q (50)

where
fl = (hi = (H,. F,.6) (51)

the components F, and h\ are defined by

Hoa= 1/= K,-/|/2 (52)

We note that /7, corresponds to the precession of a pseudo-spin around a pseudo-magnetic
and n is a unit vector.

where we have replaced the Pauli operators in the interaction picture by the same matrices 
as before (this is allowed because their commutation relations arc lhe same as before—of 
course the corresponding basis will differ from the one defined before by the product with 
oscillating exponentials, which stem from the transformation of the previous basis to the 
interaction picture).
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Setting
r|S(d\./), r, = (<>, ,), /•, = <(?./) (54)

we get, from Eq. (5(1), via the Heisenberg equations of motion for the atomic operators, the
expected result:

^=!lxr (55)
lit

This is the Bloch equation (except for the absence of phenomenological decay terms): it 
represents the atomic state by a pseudo-spin r (Bloch vector), which precesses around the 
pseudo-magnetic field IL as shown in Fig. 3. The precession frequency, given by

(56)

is the Rabi frequency.
One should note that, in terms of the atomic density matrix, in the same interaction 

picture considered before.

one may write:

= Trp.p'.Q)] = p'g + p', = 2tHe(p'j (57)

i = Tr[o-(X(r)| = i(p'eg - p'„) = 21Vn(p'(.) (58)

r, = Tr[<r,p/I(/)| = p'e - p' (59)

and therefore the components of the Bloch vector are easily expressed in terms of the matrix 
elements of the atomic density operator in the rotating frame.

The third component of the Bloch vector represents the atomic population, whereas the 
equatorial projection is associated with the atomic polarization (/’ in Fig. 3). This picture of 
the evolution of a two-level atom is due to Feynman, Vernon, and Hellwarth [56],

For a pure state, |0) = eje) + cg|g), one has

Therefore, in this case, the tip of the Bloch vector is situated on a sphere of unit radius. 
In general, rf + rf + r; < 1. the equality being valid if and only if the atomic state is pure.

Pee Pgg

Figure 3. 1 he Bloch vector r precesses around the pseudo-magnetic held 12.
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Two limiting eases ol this expression correspond to the resonant and to the dispersive 
interaction When the interaction is resonant. 6 — (I. (2 = (I \. K.O). and the Bloch vector 
precesses around a sector in the equatorial plane. One gels in this case maximum population 
transfer. The precession frequency is then |f'|.

In particular, it follows from Eq. (53) that a sequence ol 77/2 rotations for (2 = 
(tt/2)( - sin <Z>, cos</>) would yield, if one starts with the atom in state |e):

I <-'■*
|e> - — (|e) +e"»|g>) - - — (-e **|e> + |g» - -|e) (60)

so that after a 277 rotation, one recovers the initial state, except for a minus sign, character
istic of the behavior of a spin 1/2 system.

In the dispersive limit, |6| |E'|. and !2 —> (0,0,6). lhe Bloch vector precesses then
around a vector parallel to the axis 3 (population axis), with a frequency equal to 6. as shown 
in Fig. 4. Therefore, the atomic population does not change.

3.3. Quantum Theory: The Dressed Atom
We go back now to the Hamiltonian given by Eq. (.38) and consider the effects resulting 
from the quantization of the electromagnetic field.

The eigenstates of the Hamiltonian in Eq. (38) define lhe dresxed atom [57—59]. Whereas 
H , has two energy levels. Ht. has an infinite number of discrete levels, given by /iw(n + I/2). 
n = (I. 1.2....... The interaction HAl couples these levels, leading to a discrete structure of
levels of the composed system, which one could call the “atom-field molecule.’' Wc study 
first the structure of the uncoupled system, and then we analyze the energy levels of the 
coupled system.

3.3.1. Uncoupled States
The slate corresponding to the atom in state e and ii photons in the held will be denoted 
by |e. analogously for |g.n). Let again 6 — w(l - to be lhe detuning between the atom 
and lhe field. If |6| w(l, the energies of lhe states |e, n) and |g, n F I) will be very close 
to each other. If 6 > I), the energy of the slate |g. n + I) will be smaller than the energy of 
the state e. n) (Fig. 5). In fact, we can write

E,.„ = hw(n + I) + —
(6I)

... , , M
+ I) - —

We have therefore a sequence of quasi-degenerate subspaces e(/i) = -I- 1): |c. n)}.
Note that +■ <oll)/2. and H = — h8/2 = h(to — <o())/2, consistently with the fact
that the zero-point energy is hw/2 and the energies of the two atomic states are ±hto„/2.

Figure 4. Dispersive limit: the Bloch vector precedes around the vertical axis.
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Figure 5. Energy level diagram for the uncoupled .it uu-ficld system Here <i - <u , - <u is taken to he positive.

Figure 6 shows the energy diagram lor the uncoupled states as a function of the detuning 
b — ii),, - a). The two straight lines correspond to the energy levels given by Eq. (61). There 
is a crossing for 6 = 0. when the two states |e. n) and |g, n + I) become degenerate.

3.3.2. Coupled States
The Hamiltonian in Eq. (38), with Hgiven by Eq. (42). couples only states within the same 
subspace (this is a consequence of the rotating-wave approximation; the counter-rotating 
terms, neglected in II connect stales belonging to different subspaces, which leads to small 
corrections lo the results considered here, due to the large energy differences involved). 
Iherefore. in order to calculate the eigenvalues of the complete Hamiltonian, one has to 
diagonalize a 2 x 2 matrix, given in the subspace <* (n) by:

/ , . 5 /? + 1) - -

The eigenvalues of this matrix define the energy levels of the dressed atom:

E±>„ = (n + I )h(u ±

F —r-g.ii

(63)

where
Q = [n2(«-|-D + s-l1'2 (64)

Figure 6. I nergtes as a function of the detuning <i for the uncoupled Mates <•. n and g. n + I
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is lhe quantum Rabi Irequeiicv of the system, whereas l!(, as defined before is the resonant 
vacuum Rabi frequency, which coincides with !1 when n = 0 and <5 = 0. The quantum Rabi 
frequency given by Eq. (64) coincides precisely with the classical expression in Eq. (56) if 
one identifies Q,,vz/i + 1 with |lz|. One should note, however, that contrary to the classi
cal expression, the quantum Rabi frequency remains different from zero even when the 
number of photons in the mode is equal to zero. The remaining contribution is associ
ated with spontaneous emission into the mode, which couples the state |c. (I) to the state 
|g. D-

Equation (63) shows that the two states are separated by the coupling, the energy differ
ence between them going from hfi to Till. This effect is displayed in Fig. 7.

One should note that the coupling fiu depends on the position of the atom, as the field 
amplitude depends on the mode profile. For a Gaussian profile, the interaction is stronger 
at the mode center and vanishes as the atom approaches the edges of the cavity. Figure 8 
displays lhe lower energy levels of the dressed atom as functions of lhe radial distance with 
respect to lhe center of the mode.

The corresponding eigenstates are given by:

|+. n) = sinfl|g. it + 1)4- cos 0\e. n) (65)

| n) — cos 6|g, n + 1) — single, ii) (66)

with

cot20 =-------------- , () <2ti < ~
floV/l 4- I

3.3.3. Resonant Interaction
At resonance. S = (). and therefore fi — tt/4, so that

|+. n) = ~^(|g, n + I) + |e, «))

|-. n) = -^=(|g. n + I) - |e. n)) 
s/2

(67)

(68)

(69)

In this case, each subspace '' (//) becomes two-fold degenerate, and the dressed states are 
expressed in terms of the sum and the difference of the corresponding uncoupled states, 
with equal weights. The corresponding energies are, for n / 0,

Li,, — (" 4 I ± (/Aluv/n 4- 1/2) (70)

3.3.4. Dispersive Interaction
For large detuning (|fi| » l)ns/n + 1), one gets H —» tt/2 if <5 < 0 . and H —• I) if <5 > 0. and 
therefore

|+. -» |g,n+ 1), |—. ?z> —* |e. «>,

| 4—n) —> n). |-, n) -* |g, H + 1).

(S<0)

(8 > 0)

(71)
(72)

|+.n)

I

Figure 7. Energy displacement of levels, produced by the coupling.
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Figure X. Lower energy levels of the dressed atom as functions of the radial distance with respect to the center of 
the mode.

These equations show that, for a dispersive interaction, the coupled states approach the 
uncoupled states, with an energy shift obtained from Eq. (63):

£+.„ (" + I ± ± + I)/4|8| (73)

In any case, we have in this limit:

+ (741

AE-*-*(§)" (75)
The two energy levels of each subspace get displaced in opposite directions. These displace
ments coincide precisely with those that would be obtained using second-order perturbation 
theory, and constitute the JC Stark effect.

These considerations are summarized in Fig. 9, which displays the energies given by 
Eqs. (63) and (64) as functions of the detuning The interaction transforms the crossing 
exhibited in Fig. 6 into an anti-crossing.

3.4. Dynamics of the Interaction
Once the Hamiltonian is diagonalized, one can easily describe the dynamical behavior of the 
system. From Eq. (65), one has:

|e, /;) = cos0|4-, n) — sin0|-, n) (76)

|g, n + 1) = sinfl|+, n) + cos 0|—, n) (77)

Figure 9. Energy levels ;.s functions of the detuning n = uj,, <u, tor the dressed states.
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and therefore. if the initial state ol the system is |i//(0) c. id. we have at lime /:

|t/t(z)) = CosWe ,' sinOr J ’ ’’ -.11) (78)

or yet. rcexpressing in terms of the uncoupled states:

I^r(/))=e -/sin(2d)sin|— g.n + I)

/ (1/ \ . / 11/ \
+ |cosl — I /cos(2W)sml — )]|e. it) (79)

which is an atom-field entangled stale. I he probabilities of finding the system in the states 
ie, h) e |g. n + I) are thus given by

= sin’(2W)sin*

(50)

(51)

oscillating therefore with the Rabi frequency (1. At resonance, when H — jt/4, one gets 
Pt. „ = cos'(fl//2), /’e „+| = sin(l!//2). so the oscillation has maximum amplitude.

These considerations extend to the quantum case the description of the atomic evolution 
in terms of the Bloch vector, previously discussed within the semiclassical approximation. 
One should note that, if one starts from the state |c. //). the quantum system evolves even 
when the number of photons in the mode is equal to zero, contrary to what would happen if 
the held is not quantized. This extra quantum feature is again due to spontaneous emission 
by the atomic excited state into the cavity mode.

On (he other hand, when ii » I. the above expressions for the probabilities coincide with 
those obtained from the semiclassical theory', if one identifies the amplitude n of the classical 
field with v n. One should note, however, that Eq. (79) displays an entanglement between 
atom and field states, which could never be obtained from a semiclassical theory.

One should also note that, in the dispersive limit, neither the number ot photons nor 
the populations of states e and g change, exactly as in the semiclassical treatment. In this 
case, the dynamics of the atom is well represented by the precession of the Bloch vector 
around the vertical axis (population axis): if there arc ii photons in the field, the angle of 
precession is given by (AE,.„ AEV „)//fi. with the Stark energy displacements given by 
Eqs. (74) and (75).

3.5. Single-Atom Refraction Index
According to Eq. (74), if the two-level atom is in stale |c) and the field in the cavity is in a 
coherent state with amplitude in (and frequency <u). one should have, if the atom interacts 
dispersively with the field: 

where Aw — 11^/43. The frequency of the field is shifted, becoming smaller or larger depend
ing on whether the detuning 3 is positive or negative.

In this situation, the atom plays the same role as a slab of transparent material introduced 
into the cavity. If the refraction index of the material is different from one. the speed of light 
inside the cavity should change, and therefore the frequency of the standing wave should 
also change, as the wavelength is fixed by the boundary conditions. The frequency of the 
field will increase or decrease, depending on whether 3 is negative or positive. This results 
in a change of ihc phase of the field, equal lo Awf,nl. where /„„ is the interaction time 
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between lhe material (atom or slab) and lhe cavity mode. From Eq. (82). one can see that 
the quantity

</> = (83)
4o

is the phase shill per photon.
In a recent experiment [60|. a single Rydberg atom, with a speed ol about 15(1 ms. crossing 

a cavity mode of 51.1 GHz with a 6-mm waist, produced a phase shift of about zr/2 for 
each level e and g. thanks to the huge transition dipole involved. The corresponding Rabi 
frequency was U/2it = 49 kl Iz. and the detuning was S/2?r - 105 kl Iz.

If the held changes its frequency, its energy also changes. This means that the slab (or the 
atom) introduced into the cavity realizes work, and therefore suffers a force, which can be 
attractive or repulsive, depending on the sign ol the detuning.

Wc discuss in the following four nice applications ot these concepts, in optical lattices, in 
the demonstration of single-atom effects in cavities in lhe optical region, in the realization 
of quantum gates and teleportation, and in lhe study of the dynamics of the dccoherence 
process.

4. DISPERSIVE FORCES AND OPTICAL LATTICES
The dispersive force has been explored in experiments involving optical lattices: four laser 
beams produce a three-dimensional standing-wave pattern n space, similar lo an egg carton. 
With the proper detuning, nonresonant atoms can get trapped in the valleys of the standing 
wave, thus mimicking lhe situation in crystals, with the atoms here replacing the electrons 
and the standing wave replacing the periodic potential in the crystal. This system has been 
used to demonstrate a quantum-mechanical phase transition, from an insulator to a super
fluid phase (Mott transition) |61], following a proposal by Jaksch et al. [62|. In this exper
iment, * Rb atoms from a Bose—Einstein condensate arc loaded into a three-dimensional 
optical lattice potential. The interaction between the atoms is repulsive, and the atom sam
ple is sufficiently dilute so that the number of atoms per site (valleys of the standing-wave 
pattern) is of the order one to three. The condensate is a superfluid and is described by 
a wavefunction that exhibits long-range phase coherence. As the amplitude of the lasers is 
smoothly increased, one observes a phase transition from a situation in which a macroscopic 
phase is defined (this ;s the phase of the Bose-Einstein condensate) to a situation in which 
the atoms get localized at the valleys, the system thus behaving as an insulator. The system 
remains in the superfluid phase as long as the atom-atom interactions are small compared 
to the tunnel coupling through the crests of the lattice potential. In the opposite limit, when 
the repulsive atom-atom interactions are large compared to the tunnel coupling, the total 
energy is minimized when each lattice site is filled with the same number of atoms. The 
reduction of fluctuations in lhe atom number in each site leads to increased fluctuations in 
lhe phase. Thus, in the state with a tixed atom number per site, phase coherence is lost. In 
addition, a gap in the excitation spectrum appears.

In this way. one was able to demonstrate experimentally, in a situation in which one gets 
a much better control of the parameters than with experiments done with real crystals, the 
Bose-Hubbard Hamiltonian [63|:

+ 1) (84)
” t

where the first term on the right-hand side stands for the tunneling of the bosonic atoms 
between different sites, the second term represents the energies of the different sites (due 
to lhe harmonic potential that coniines the cold atoms), and the third term, with U > (I. 
corresponds to the repulsive short-range interaction between atoms in lhe same site. The 
phase transition originates here from lhe competition between the tunneling term, measured 
by lhe energy ./. and the repulsion term, associated with the energy as opposed to normal 
temperature-dependent phase transitions, where the competition is between the inner energy 
anil the entropy.
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in the experiment described in Ref. |6||. the lattice had about 150.00(1 sites (about 65 
sites in each direction), and the stale of the atomic system was probed b\ suddenly turn
ing oil the combined trapping potential, l he atomic wavefunctions were then allowed to 
expand freely and interfere with each other. In lhe superfluid regime, where all atoms are 
delocalized over the entire lattice with equal relative phases between different lattice sites, 
a high-contrast three-dimensional interference pattern was obtained. As the lattice potential 
depth was increased, the resulting interference pattern changed markedly, with an inco
herent background of atoms gaining more and more strength until no interference pattern 
was visible at all. thus demonstrating the continuous decrease of the superfluid fraction for 
increasing ratios U J.

In experiments with optical lattices, not only the tunneling matrix elements can be con
trolled (by changing the intensity of the lasers that generate the optical lattice), but also 
the interaction between the atoms, through Fcshbach resonances |64, 65]. Furthermore, this 
setup allows the realization of quantum gates with neutral atoms (66). Optical lattices have 
also been considered for lhe simulation of other quantum Hamiltonians (67].

5. TRAPPING A SINGLE ATOM WITH A SINGLE PHOTON
The dependence on lhe atomic position of the energy levels of the dressed atom, displayed 
in Fig. 8. creates an effective potential well for the center-of-mass motion, which can be used 
to trap the atom in the cavity field |68-7()|. Also, the variation of the energy of lhe dressed 
mode with the position of the atom can he used to control its position inside the cavity with 
great accuracy.

This was demonstrated in a beautiful experiment done by Jeff Kimble's group, in 
CALTECH |38|. l he experimental scheme is sketched in Fig. It). A high-(J optical cavity is 
pumped by a laser held /’. tuned to lhe frequency displayed in Fig. 11. This frequency is 
detuned with respect to the relevant mode of the empty cavity, with frequency tn. The initial 
intensity inside the cavity is very small, corresponding to an average photon number equal to 
0.05. so under these conditions the relevant cavity mode is excited by a small, off-resonance 
field.

A magneto-optical atom trap (MOT) is placed 3 mm above the cavity (about I04 cesium 
atoms, cooled to a lempeiatuic of about 20 /aK). so that lhe released atoms tall under the 
action of the gravity, in a vacuum chamber at 10_x Torr, crossing the cavity mode. The atoms 
arc initially in the ground state and each time the trapped atoms are released, at most 
one or two atoms cross the standing-wave mode of the cavity. The initial mean velocity of the 
atoms is about 4 cm/s. and after the 3-mm fall they reach the cavity with a velocity of about 
24 cm/s. As the atom accelerates toward the center of the mode, under the action of the

Atom
o

figure Ml. Sketch of the experiment lli.il led to lhe trapping of a single atom by a field with one photon in the 
average, t he cavity is pumped hy a laser detuned from the empty-cavity mode. As a cold atom, released from an 
atom trap placed above the cavity axis, crosses the cavity mode, the pumping field gets resonant with the dressed- 
system mode. While the atom approaches the center ot the mode, lhe intensity ol the pumping field is suddenly 
switched up. at some predetermined threshold, so that the atom gets napped in the cavity, l he average number ot 
intracavity photons, under these circumstances, is of the order one. l he transmitted field depends on the position 
of lhe atom in the cavity Measurement ol this field allows the rcconsiruction ot the orbit followed by the atom 
trapped by the cavity field.
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f igure 11. Dressed levels relevant for Kimble's experiment as functions of the transverse distance p l he atom gets 
trap|*cd in the potential well corresponding to the unperturbed level g. I

potential well depicted in Fig. 11. the frequency a> approaches resonance with the dressed 
mode sketched in Fig. 11, implying that lhe intensity of the transmitted field increases. This 
intensity is a function of the position of the atom in the cavity, and it is possible to find an 
inversion algorithm thai gives this position as a function of the intensity [38]. On the other 
hand, by suddenly increasing the pumping intensity after some predetermined threshold, in 
such a way that the depth of the well gets higher than the kinetic energy of the atom, it is 
possible to trap the atom in the cavity.

In the experiment described in Ref. [38], the pumping power was switched up to a level 
of 0.3 intracavity photons, thus creating a deep confining potential around the atom, which 
trapped it. The depth of the potential was about 2.3 mK. greater than the initial kinetic 
energy of the atoms, of about 0.46 mK. When the atom is in the center of the mode, the 
average number of photons in the cavity is of the order one. This experiment demonstrates 
therefore the trapping of a single atom by a quantum held with an average number of 
photons of the order of one.

6. ATOMS AND PHOTONS AS QUBITS
Qubits are the natural generalization of bits in the quantum world: they are described by 
states of two-level systems, of the form o|0) -1- />|1). In cavity quantum electrodynamics, one 
may associate qubits to two-level atoms, the corresponding states being = eje) + 
c |g), and to field modes in high-C? cavities, under the restriction that there is at most one 
photon in the mode. The state of the field is then expressed as co|0) -I- cjl).

6.1. Measuring the Atomic and Field Qubits
Measurement of the atomic qubit is achieved by sending the atom through an ionization 
chamber, which consists of two conducting plates with a potential difference between them, 
in such a way that a sialic electric field is produced with an amplitude that increases linearly 
along the direction of atomic motion. This field ionizes the atom, at a time that depends 
on the atomic state: the higher excited state is ionized under a weaker field than the less 
excited one. I’he ionized electron gives rise to a current, and the position of the current 
pulse on the screen of an oscilloscope will determine if the atom was measured in the upper 
or the lower state. Atomic coherence can also be measured by first letting the atom interact 
with a classical field (produced, lor instance, in a low-0 cavity by a classical current— 
say a microwave generator, as described in Section 3.2), so that it undergoes a r nation in 



Dceohcrcnee. Quantum Inloimalion. .mil Quantum-Slate Measurement 351

state space, and then measuring its state. The resulting population will be a function ot the 
rotation angle and the state coherences.

On the other hand, the field in the cavity is measured by sending an atom in state |g) 
through the cavity, interacting resonantly with the Held. If the interaction time is such that 
the atom undergoes a it rotation, the field state is mapped onto the atomic state, which can 
then be measured by the techniques described above. Indeed, if the atom enters the cavity' 
in the state . and the field is in the state c„|0) 4- 11), the 77 interaction yields:

|g>«kolo) + q|i)l k<>h?) - Gk>] ® |0> (xs)
so that the field probability amplitudes can be determined by measuring the atomic state.

For an open cavity geometry (two mirrors facing each other), the interaction time between 
the atoms and the cavity mode can be calibrated by applying a potential difference between 
lhe mirrors of the high-Q cavity. The atomic levels are Stark shifted by lhe resulting electric 
field, so that they can be taken into or out of resonance with the cavity mode, as they cross 
the cavity, by changing the potential difference applied to lhe mirrors.

6.2. Production of Entangled States
Note that an interaction time corresponding to a 77/2 rotation would lead to lhe entangled 
state

k>®|0>- -J=(k)®l<>> + |g)® |D) (86)

Multiparticle entanglement can be achieved in the following way [71). After the above 
state is prepared, one sends a second atom through the cavity, prepared in the state 
(|gi) + |6))/s/2. where |/\) is nonresonant with the cavity mode, and |g;) undergoes a 2tt 
rotation if there is one photon in lhe cavity. One gets then, denoting by the index I the first 
atom:

4=(lK2) + 16))® -4(kt)® H’) + b?i>® 10)
v - v 2
- +16)) ® k.)® K>) + (-lg2> +16))®|g,)®|i)| (87)

This is already an entangled state ol three subsystems: atom 1, atom 2. and the cavity 
mode. Indeed, if one defines |±,) = (±|g2) + l';))/^. the above state can he written in the 
following way:

1%) = -4(1+2) ® ki) ® l<)> +1-2) ® ki) ® |i» (88)

Sending a third atom in state (|g,) -t- |6))/v/2 would produce an entangled state of four 
subsystems, and so on. One should note that, after entangling N atoms, using the above 
procedure, one may send a final atom in state |gv.t), with a 77 interaction with the field 
mode if one photon is present. This atom absorbs the photon and gets excited to slate |eA. ^), 
so that the cavity state is factored out and one is left with an entangled state of N + I atoms:

!</'■,,!) = ^(k1)®l+2)--'®l+v)®kA+i>- ki)® 1-2)■••®I-v)®k.v4i)) <89)

This is a generalized state of the GHZ type, originally defined by Grcenbcrger, Horne, 
and Zeilinger [72-74). A GHZ state involving three photons was produced by Bowmecster 
et al. [75|. An entangled state involving four atoms in a trap was demonstrated by the NIST 
group 17(»).

These interactions actually provide the basic building blocks for doing in principle any 
quantum computation, as it will be shown now.
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6.3. Quantum Computation with Atoms and Photons
The main ideas of quantum computation were set off by Paul Benioff |77|. Richard 
Feynman |78|. and David Deutsch [79| in the 1980s (for reviews, see Refs. [1—f|). In 1995. 
David DiVincenzo cl al. [80. 811 established that unitary transformations on a single qubit, 
plus a special kind of two-qubit operation, lhe controlled-not gate, form a universal set for 
quantum computation: this implies that any computation can in principle be done if one 
knows how to implement these operations.

6.3.1. The Controlled-not Gate
The controlled-not (CNOT) gate is already defined in classical compulation by the following 
“truth table.” where the first and second digits correspond to the values of the first and 
second bits, respectively: OU —► 00,01 -* 01,10-» 11. 11 -» 10. That is. the value of lhe 
second bit is changed (implying a “not" operation) if and only if the value of the first bit 
is equal to 1 (therefore, lhe “not" is controlled by the value of the first bit). The first bit. 
which is not changed by the operation, is the ‘control" bit. whereas the controlled bit is the 
“target" bit. This gate can be represented by a circuit diagram, as shown in Fig. 12. It is easy 
to check that this gate is reversible.

One should note that, even though this gate is already defined in classical computation, its 
behavior acquires an interesting twist if one alkws lhe inputs to be states in Hilbert space. 
Indeed, if one takes the control bit in the state c„|0) 4- e, 11> and the target bit in state |0), 
one gels, following the above truth table, the transformation

(c(,|0) +q|l)) ® |0> -* U00) + q|1l> (90)

which is an entangled state. This shows that entangled states appear naturally in quantum 
computing.

Equation (90) is basically the same as Eq. (1) specialized to lhe case in which the state of 
the system does not change upon measurement. This shows that the CNOT operation plays 
a basic role in quantum measurement.

rhe quantum ('NOT can be expressed in terms of a Pauli rx, matrix, as show n in Fig. 12, as

crj()>|1> (91)

Or yet. in lhe two-qubit product basis, by the matrix

/I 0 0 ()\
0 1 ° l)
0 0 0 1 ' ’

<0 0 1 0,

6.3.2. Building Phase Gates
A related gate, which can also be taken as a building block of quantum computation, together 
with the single-qubit unitary' transformations, is the Z gate. which is represented by a circuit 
analogous to the one corresponding to the CNOT, except that <rt is replaced by a.. It does 
not have any classical equivalence, as it involves a quantum phase, and it is defined through 
the truth table |00> — |00), |01> -* |0l>, 11()> -> 110), |11) — — 111>. That is, the phase of

—®— —0—
Figure 12. Diagrantalic representation ol a controlled-not gate lhe tipper line represents lhe control bit. which 
controls (he suite of the target bit. represented by the lower line: lhe slate of the control bit does not change, 
whereas the target bit changes if and only if lhe control bit has the calue one II one associates to each bit a two-line 
column matrix, lhe negation operation can be represented be the Pauli matrix <r,.
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the two qubit siale is changed by “ it anil only 
product basis, it corresponds to the matrix

it both qubits arc in the state I). In the

/I 0 (I O'
() I () I)
0 (I I ()

k0 () (I -1>

Il is also a reversible transformation, as can be readily seen.
I he ( NOT and the Z gates are simply related via a Hadamard transformation:

(94)

Because II = I. this is also a reversible transformation. One should note that -ill is a 
77 rotation around an axes in the .v — ~ plane forming an angle of 77/4 with both axes. This 
can be seen from Eq. (53). with Hr = or from the representation of H tn terms of rr, 
and rr..

As can be seen from the algebra of Pauli matrices. Htr.ll = <rs. and therefore the ('NOT 
gate can be obtained from the Z gale by sandwiching the target bit between two Hadamard 
operations, as shown in Fig. 13.

Wc have already seen how to implement unitary transformations on a single atomic qubit, 
by submitting it to a classical electromagnetic field. Let us show how two-qubit gates can be 
implemented.

The Z gate may be implemented in the following way. Let us consider three atomic levels, 
specified by the letters e. and i. as shown in Fig. 14. Wc assume that the atom has a 
resonant interaction with the cavity mode when the atom is in state |e). so that if there is 
a photon in the cavity, the atom undergoes a 277 transition, going from state |e) to state 
|/) and then back to state |c). This will multiply the stale by a minus sign. On the other 
hand, if there is no photon in the cavity or if the atom is in state |g). nothing happens to 
the state. Therefore, if the atom is in level |e) and there is one photon in the cavity, the 
atom field stale is multiplied by a minus sign, whereas nothing happens in the other cases. 
This is precisely what one expects from a Z gate.

More generally, a phase gale can be built, corresponding to the following matrix:

/I 0 0 (I \
() I 0 (I
() 0 I 0

(0 0 0

(95)

This gate is implemented by detuning, through a Stark shift. Ihe atomic transition with 
respect to the field mode, and letting again the Bloch vector describe a full circle on the 
Bloch sphere, if there is one photon in the field and the atom is in state |e). As the detuning 
increases, one may show that the phase </> goes from 77. corresponding to a Z gate, to a 
value close to 0. as the detuning gels much higher than the resonant Rabi frequency. This 
was demonstrated experimentally in Ref. [82].

By adding now to this setup two low-(? cavities, which rotate the atomic state by 77/2. in 
the way described before, one gets, as the atom crosses the three-cavity system, that if there

Eigurt 13. Relation between a conlrolled-not anil a Z gate I lie eonirolled-nol gale is obtained front lite Z gale 
by sand*idling the / operation between two Hadamard gates.
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g --------------------------------

Figure 14. Level scheme tor the implementation ol .1 Z gate The transition <■ — |») is resonant with a cavity 
mode If there is one photon in the mode, ihe atom initially in stale lc undergoes a 2tt rotation in state space, 
going from <• lo i and then back to e, the state acquiring in the process a minus sign

is no photon in the cavity, the atomic state is just flipped by the interaction with the two 
low-Q cavities. On the other hand, if the atom is in state and there is one photon in the 
cavity, the atom-field stale undergoes the following transformations, as the atom crosses the 
system:

|e>®|l>- -J=(k) + I«))®|l) - 4=(-k>+|g»®|l)-* (96)

In the same way, one shows that the state |/») ® |l) does not change. One gets therefore the 
following table:

|e)®|0)-l«)®|0)Jg)®|0)--k)®|0),|c’)®|l)-*-|e)®|l),|^®|i)->lK)®|l> (97)

If one calls the state with zero photons in the mode as bit “one" and the state with one 
photon as bit “zero,” we get a gate that looks similar to the CNOT gate, in the sense of 
flipping the atomic bit if the field bit is I, and doing nothing, except for a sign change, 
if the field bit is zero. Of course, this is not strictly a CNOT gate, as there are phase 
changes, in addition to the flipping. Indeed, one has here ir/2 rotations, as opposed to the 77 
rotation associated with ill. This is not a problem, as the resulting two-qubit transformations, 
together with the single-atom transformations, also constitute a universal set for quantum 
computation.

An immediate application of these gates is the teleportation of an atomic state, which will 
be discussed in the following section.

6.4. Teleporting an Atomic State
I he interactions and transformations discussed above could be used to demonstrate the phe
nomenon of teleportation. The possibility of teleporting a quantum state using an entangled 
state as communication channel was proposed in Ref. |27|. This proposal is summarized in 
the following.

Suppose Alice wants to transmit to Bob a quantum state of a system in her possession. 
For instance, she could have a spin in the state

\<!>) = C,|T>| + (98)

If she would have only classical means for that purpose (for instance, a telephone line), she 
would face serious problems. First, if she only has a single spin with her. and she ignores 
its state, then it would be impossible for her lo measure it. as this would require an infinite 
number of systems prepared in the same way. So she would not be able to know the state 
to he transmitted! Even if she had produced the stale somehow (for instance, through a 
Stern-Gerlach apparatus), so that she would have full knowledge about it. she would still 
run into problems. Indeed, she would need to transmit the information on the complex
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coefficients < t and c,. and this would require, in most cases, an infinite numbers ol bits, as 
these cccfficienls would involve, in general, an arbitrary number of digits.

Alice can do much better by sharing with Bob a two-spin entangled state, of the form 
(singlet state):

= -^(IT>2IA>5 - li>2lr),) (99)

The combined system (Alice's spin plus entangled pair) is described by the stale:

I*/'.??) = U\l1)t +c

= (it>, it>2i j,>3 - it)iii>2ir>3) + - u->iiihit>3)

The products of the states of spins 1 and 2 that show up in the above equation are now 
reexpressed in terms of the Bell states, defined as:

i'i<;,) = ^(ir>1iO2-iOiit)2) 

i^) = 4j(ir)lii)2 + iPiiT>2) 

= -J=(ir>llt>2-li)iU>2) 

= 4(10.11)2+ in1m2)

One gets then:

l*AlZl) = T [1^12 ')(~c+lt)3 — <■ ID?) + |^I2 ')( ~ It)? + C- If’.?)

+/bp'}(<•, If)-. + c |f),)+ ‘bp ')(ci.|p, - c |t)?)]

One should note that the Bell state I'lf, ') is correlated with the state of spin 3 that 
coincides with lhe original state of spin 1 (except for an irrelevant overall minus sign), 
whereas the other Bell states arc correlated with states of spin 3 that arc obtained from 
the original state by 77 rotations around the z, y. or v axis. Alice now performs a Bell-state 
measurement on the two spins in her possession (spins 1 and 2), thus projecting the above 
state onto one of the four Bell components. She then informs Bob about the result of the 
measurement (note that this implies two bits of information, as there are four Bell states). 
Depending on the two bits of information he gets, he applies to particle 3 either no rotation 
at all (if system 1-2 is found in state |Mf*)), or a 7T rotation around the z, y. or a axis, thus 
replicating lhe original stale.

In this way, Alice succeeds in transmitting to Bob the full information about lhe quantum 
state, using only two bits of information!

In Ref. [27|, it was not made clear how the measurement of Bell states could be made, in 
concrete terms.

A logical circuit that implements this measurement is shown in Fig. 15. This circuit builds 
up the four Bell states from product-state inputs anil inversely transforms Bell states into 
product states, according to the table:

In Out

Iff) (IW + liinM^Kb1)
111) (Iff) + 11 r>)/v^2 = |M'+)
ir) (|H)-IU»/s/2 = |<b )
Iff) (lU)-lK))/s/2 = |M'-)

(100)
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Figure 15. Circuit leading to the production and the detection ot Bell stales. When lhe input on the left-hand side 
is one of the product stales f)|f), |T>|i>. |4)|T). and I; 'ID- lhe output on lhe right-hand side is one of the Bell 
states. On lhe other hand, when Bell states arc entered on the right hand side, lhe output on the left-hand side is 
a product state. Measurement of the two output spins in this case allows one to know which of the Bell states was 
fed into the right-hand side of the circuit.

Upon measuring the spins of the product stales, one can uniquely determine the Bell state 
at the input.

The first experimental proposal for implementation of this teleportation scheme was pub
lished in Ref. [28]. We present here a modified version of that proposal.

The basic setup is illustrated in Fig. 16. A high-0 cavity (C), used to keep the field qubit, 
is placed between two low-0 cavities (R, and R,). used to transform the atomic qubits.

The high-0 cavity does not have any photons, initially. We start by sending through this 
cavity a two-level atom in the excited state |e3), so that it undergoes a tt/2 interaction in C 
(the two low-0 cavities do not play any role in this part of the process—one may assume for 
instance that lhe atom is Stark-shifted as it crosses these cavities, so as to be highly detuned 
with respect to the corresponding cavity modes):

|e3>|0) -^(|e3>|0> + |^.,>|l» (101)

This atom is then sent to Bob. The quantum channel is here formed by the entangled pair 
photon + atom 3.

Once this state is prepared, the teleportation process is carried out in the following way. 
One sends an atom prepared in the state |t/r)„ = eje,) +c1.|£i) (the state to be teleported) 
through the system of cavities, so that the atom undergoes a 2tt resonant interaction in C if 
it is in state |e) and this cavity contains one photon, thus adding a minus sign to the state. 
The atom also undergoes tt/2 resonant interactions with the classical fields in cavities R, 
and R2. This setup was discussed in Section 6.3. and according to Eq. (97), we get for the 
state that includes atom I, atom 3, and the cavity field:

(Cgltft) + ^kt)) ® +

(102)

Microwave 
generator

Atomic excitation

Figure 16. Teleportation experiment. The atoms are sent through the three cavities R,. anil 1<>. anil may be 
measured by a set of ionizing plates, with a static electric held that has an increasing amplitude along the direction 
of the atomic beam.
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71/2

rc/2

Figure 17. Circuit corresponding to the teleportation experiment with atoms and photons. The tr/2 rotations of 
the atomic state, plus the 7. gate, replace here the Hadamard gate and the CNOT in Fig. 15.

After atom 1 exits the cavity, another atom, which we call atom 2, prepared in the state 
|gi), is sent through the same cavity (for this atom, the interaction with the field in the first 
low-(> cavity R, is turned off), and it has now a resonant interaction with the field, so that 
if there is one photon in the cavity, this photon is absorbed by the atom, which ends up in 
state -|<>). This second atom undergoes then a tt/2 rotation, by interacting with the lield in 
the cavity R2.

The state of the system becomes now:

< - |gi, f9(cg|gs) +

+ h’i- S.’X-<’gk’.r) + ce|#i» + + fjgj))] (103)

This expression makes it clear that, if the populations of atoms I and 2 are measured, 
one projects the state of the third atom either on the same state atom 1 had initially (if 
atom I is detected in state |g,) and atom 2 is detected in state |is)), or on states that 
are easily transformed onto this state by simple 77 rotations around the axes v, y, and z, 
generated by the three Pauli matrices. The proper rotation depends on which of the four 
possibilities (/»,,&.), (g,,c2), (C|,g2), or (tq.zs) is measured by Alice. By calling Bob. she 
can tell him which one she got (this amounts to two bits of classical information), and with 
this information Bob can apply the proper transformation to the atom in his possession, so 
as to recover the state of atom 1. In this way. one succeeds in teleporting the state of atom I 
to atom 3.

The circuit corresponding to the above proposal is shown in Fig. 17. It is not quite the 
one shown in Fig. 15. Indeed, one deals here with tt/2 rotations in state space, rather than 
Hadamard gates.

One should notice two characteristic features of the teleportation process: first, the original 
state is destroyed, by letting atom 1 interact with the photon in cavity C and then detecting 
its state. This can be seen as an illustration of the “no-cloning" theorem [83, 84]: it is 
not possible to replicate the state of a single quantum system. The second feature is that 
Bob is able to reconstruct the state of the atom that was with Alice without either Alice 
or Boh knowing about it. Indeed, it is impossible to know the quantum state of a single 
quantum system (one needs an ensemble of identically prepared systems in order to measure 
a quantum state).

The teleportation ol atomic stales, as described above, has not been realized experi
mentally yet. Teleportation of spin states using nuclear magnetic resonance techniques was 
demonstrated by Nielsen et al. [32]. Demonstrations of teleportation with light beams have 
been done by several groups [29-31. 33-37].

7. COHERENT SUPERPOSITIONS OF MESOSCOPIC
STATES IN CAVITY QUANTUM ELECTRODYNAMICS

7.1. Building the Coherent Superposition
Wc now show how. by carefully tailoring the interactions between two-level atoms and one 
mode if the electromagnetic field in a cavity, one can produce quantum superpositions of 
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distinguishable coherent stales of the field, thus mimicking the superposition of two classi
cally distinct states of a pointer.

The method for generating the quantum superposition of two coherent states, proposed 
in Ref. [85], and sketched in Fig. 18. involves a beam of circular Rydberg atoms [45 ] crossing 
a high-Q cavity C in which a coherent state is previously injected (this is accomplished by 
coupling the cavity to a classical source—a microwave generator—through a wave guide). 
The use of circular levels is due to their strong coupling to microwaves and their very long 
radiative decay times, which makes them ideally suited for preparing and detecting long- 
lived correlations between atom and field states [86]. On either side of the high-Q cavity 
there are two low-£) cavities (R, and R,). which remain coupled to a microwave generator, 
as in the scheme proposed for lhe teleportation experiment. The fields in these two cavities 
can be considered as classical, for the reasons mentioned before.

This set of two low-Q cavities constitutes the usual experimental arrangement in the Ram 
sey method of interferometry [86. 87|. Two of the (highly excited) atomic levels, which we 
denote by |e) (the upper level) and |g) (the lower one), arc resonant with the microwave 
fields in cavities R, and R2. The intensity of lhe fields in R( and R, is chosen so that, for 
the selected atomic velocity, effectively a tt/2 pulse is applied to lhe atom as it crosses each 
cavity. For a properly chosen phase of the microwave lield. this pulse transforms the state 
|c) into lhe linear combination (|e) 4 |g))/>/2. and the state |g) into ( —|t’) 4- |g))/s/2.

Therefore, if each atom is prepared in the state |<») just prior to crossing the system, after 
leaving R, the atom is in a superposition of two circular Rydberg states |e) and |g):

On lhe other hand, the superconducting cavity is assumed not to he in resonance with 
any of the transitions originating from those two atomic slates. This means that the atom 
does not suffer a transition and does not emit or absorb photons from the field. This prop
erly is further enhanced by the fact that lhe cavity mode is such that lhe field slowly rises 
and decreases along the atomic trajectory, following a Gaussian mode profile, so that, for 
sufficiently slow atoms, the atom-field coupling changes adiabatically. However, the cavity is 
tuned in such a way that it is much closer lo resonance with respect to one of those transi
tions. say the one connecting |e) to some intermediate state |/). The relevant level scheme is 
illustrated in Fig. 19. This implies that, if the atom crosses the cavity in state |c). dispersive 
effects can induce an appreciable phase shift on the field in the cavity. That is, the atom acts 
like a refraction index, changing the frequency of the field while the interaction is on—the 
corresponding energy change is just the AC-Stark shift, which for a Fock state of the electro
magnetic field is proportional to the number of photons in the cavity. This frequency shift, 
multiplied by the interaction time between the atom and the mode, leads to a phase shift

Microwave 
generator

Microwave 
generator

Figure IS. Experinient.il. ii.ingeincnt fur producing and measuring a coherent superposition of two coherent states 
of the field in ctnitv (

Experinient.il
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figure IM. Atomic level scheme used lor the production and measurement of a coherent superposition of two 
coherent states of the electromagnetic field in a cavity: The transition i — e is detuned by 6 from the frequency 
w of a mode of cavity C, whereas the transition e g is resonant with the fields in R, and R., Slate |g) is not 
affected b\ the held in C.

of the field in lhe cavity, if the atom is in state |e). The phase shift is negligible, however, if 
the atom is in state |g).

Note that, as discussed in Section 3.5 and shown in Eq. (82), if there is a coherent state 
in the cavity, a phase shift of <1> per photon if the atom is in state |e) implies that the phase 
of the coherent state is shifted by </>. After the atom has crossed the cavity, in a time short 
compared to the field relaxation time and also to the atomic radiative dampening time, the 
state of the combined atom-field system can be written as

W'atom-rtiew) = < 1(,5>

assuming that the phase shift is tt per photon if the atom is in the excited stale. The entan
glement between the field and atomic states is analogous to the correlated two-particle states 
in the Einslein-Podolski-Rosen (EPR) paradox [88-911. The two possible atomic stales e 
and g are here correlated to the two field states | - cr) and |a), respectively, t his entangled 
state may also be interpreted as an example of the measurement process discussed in the 
introductory section of this article: the two coherent states arc pointers of the measuring 
apparatus in this case, their phases depending on the state of the microscopic system being 
measured.

One should also note the analogy with the CNO7' gates discussed in Section 6. Here the 
atom plays the role of control bit, whereas the cavity field is the target bit. If one associates 
the bit 0 to state |o) and the bit 1 to state | - a). then one sees that state |e) changes 
the target bit, whereas state |g) does not change it. The atomic state remains the same, as 
expected from a control bit.

After the atoms leave the superconducting cavity, one can detect them in the e or g 
states, by sending them through the ionization chamber described before. This measurement 
projects the field in the cavity cither onto the state |a) (if the atom is detected in state 
g), or onto the state | - a) (if the atom is detected in state e). However, as in an EPR 
experiment [91], one may choose to make another kind of measurement, letting the atom 
cross, after it leaves the superconducting cavity, a second classical microwave field (R, in 
Eig. 18). which amounts to applying to the atom another tt/2 pulse. The state in Eq. (105) 
gets transformed then into

I'/'auun.iidd) = - I*:«) + |g; «) + k; -«)) (106)

If one detects now the atom in the state |g) or |e), the field is projected onto the state

IO = ^(l«> (107)
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where = ,/2[ I + cosi//j exp(—2|a|?| j] and </q —0 or 77. according to whether the detected 
slate is g or e, respectively. One produces therefore a coherent superposition of twro coherent 
states, with phases differing by it. For |a|’ » 1. this is a “Schrodinger cat-like" state: a 
coherent superposition of two classical distinguishable states.

Superpositions of coherent states were first prepared with trapped ions [92], using similar 
techniques. In this case, the superposition involved different states of the center-of-mass 
motion. The vibrational mode of the ion plays the role of the cavity mode, whereas the ion’s 
electronic states stand for the two-level atom.

Superpositions of coherent states of the tick! were produced in the experiment reported in 
Ref. [55| and were detected by a procedure proposed in Refs. [93, 94]. This was the first time 
the continuous dccohercncc process was monitored in real-time. The method for following 
lhe decoherence is discussed in the following Section.

7.2. Measuring the Coherent Superposition
Once the quantum superposition is produced, how could one tell the difference between 
such a superposition and a statistical mixture of the two coherent states? This can be done 
by simply sending another atom, in the same initial state as the first one. It can be shown 
then [94] that, for the state (107), with ]«, » I, there is a perfect correlation between the 
measurements of the first and the second atom: both are always detected in lhe same state. 
On the other hand, for the corresponding statistical mixture, the probability of detecting the 
second atom in state |e) is 50%, independently of which state was detected for lhe first atom. 
By delaying the sending of the second atom, one may thus explore the dynamical process by 
which the quantum superposition is transformed into a statistical mixture, due to the always 
present dissipation in a nonperfect cavity.

The time-dependent behavior of the conditional probability for measuring the second 
atom in the upper state, knowing that the first atom was also measured in the upper state, 
is displayed in Fig. 20. The sharp decay of this conditional probability from the perfectly 
coherent situation to the plateau associated with an incoherent superposition defines the 
decoherence lime. This time can be shown to be equal lo the dissipation time for the field 
in the cavity divided by twice the average number of photons in the field [94]. More gen
erally. for a coherent superposition |t/z) a. |tr() + |a2), the decoherence time is equal to the 
dissipation time divided by the “distance” in phase space D = |a] — a2|2/^- Thus, it becomes 
shorter as lhe field becomes more macroscopic. Note also that the plateau eventually disap
pears, and lhe probability for measuring the second atom in the state |e) goes to zero. This 
can be easily understood: the field in the cavity C leaks out. and therefore the sole effect on 
the atom initially prepared in the state |e) is the sum of two tt/2 pulses in the cavities R, 
and R,. that is a 77 pulse, which takes the atom into lhe state |g).

This analysis shows that the coherent states are “pointer states" in the current context: 
while they decay with the characteristic dampening time of the mode, fcav. the coherence 
between these states decays with a much faster rate.

Figure 20. Conditional probability lor finding the second atom in state r it the tir^t atom was detected in state 
|r), as a function of time (measured in units of lhe field damping time).
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An experimental realization of this proposal was made in 1996 by I laroehe’s group at 
Ecole Normale Superieure. in Paris [55]. I'he dynamical measurement of lhe decoherence 
process, as proposed above, was in agreement with the theoretical predictions. In the actual 
experiment, instead of the three-level configuration discussed above, both the states |e) and 
|g) underwent a dispersive interaction with the cavity mode, resulting in a phase displace
ment of the field by some angle </> for state |e) and -</> for state |g). This scheme has the 
advantage that one is able to get (he same separation between the two coherent states as 
in the previous configuration, but with a smaller interaction time, which helps to keep this 
interaction time smaller than the decoherence time.

In the experiment described in Ref. [55], the slates e and g were circular Rydberg levels 
of rubidium atoms, with principal quantum numbers 51 and 50 (transition frequency equal 
to 51.099 GHz), with a long radiative lifetime (30 ms) and a strong coupling to radiation 
(resonant Rabi frequency flu/277 = 48 kHz). The (7 °f the superconducting Niobium cavity, 
cooled to 0.6 K. was 5.1 x 10 . corresponding to a photon lifetime equal to 160 /is. At this 
temperature, the number of thermal radiation photons is negligible (of the order 0.05 pho
tons). l he cavity was tuned by adjusting the mirror separation, thus varying 8/2tt between 70 
and 800 kHz. The effective interaction time f,nl between the atoms and the cavity mode was 
19 ms, corresponding to atoms with a velocity of 400 m/s. The average number of photons in 
the cavity was changed from 3.3 to 5.1. Different detunings give rise to different phase shifts 
and therefore to different distances between lhe two coherent states in phase space. T his 
allows testing the dependence on this distance of the decoherence time. For 5 = 100 kHz, 
<b is 0.69 radian, a large single-atom refraction index effect, l he separation between the two 
successive atoms, the one used to build the coherent superposition and lhe probe atom, was 
varied from 30 to 250 /is.

7.3. Physical Interpretation of the Measurement of Decoherence
l he measurement of decohercnce discussed above has a simple physical interpretation, when 
the phase difference between the two coherent states is equal to 77. In this case, one should 
notice that

mi (108)

x ’
|o) - I- o) -X - ■ |2A- + I) (109)

so that the parity of the field is well-defined in these two cases. Therefore, if one starts with 
the atom in state |e) (Bloch vector up), it will undergo a 7r/2 rotation in the first low-Q 
cavity, around the pseudo-magnetic lie d (which in this resonant situation will be on the 
equatorial plane of the Bloch sphere), implying that the corresponding Bloch vector will 
be taken to the equatorial plane of lhe Bloch sphere. Upon crossing the high-(3 cavity, the 
Bloch vector is rotated around the vertical axis, due to the dispersive interaction, by an odd 
multiple of 77, if the parity of the field is odd, or an even multiple of 2tf, if the parity is even. 
In the first case, after the atom crosses the second low-(9 cavity, the corresponding Bloch 
vector will be pointing upward (so the atom will again be in the state |e)). Otherwise, the 
Bloch vector will point downward. This sequence of transformations is displayed in Fig. 21.

This scheme amounts therefore to a measurement of the parity of the field in the cav
ity [95]: as one measures the state of lhe atom, after the second Ramsey region, one gains 
information about the field in the cavity. If the atom is measured in state |e), one knows that 
the parity ol the field (initially not well-defined, as the field was in a coherent state) should 
be odd. otherwise lhe parity of the held should be even. This acquired information amounts 
to lhe projection of lhe original coherent slate onto a “cat-like" state of the electromagnetic 
field. If nothing else happens to the cavity field, then sending the second atom in the same 
state as the first should confirm the first measurement: that is the reason why there is perfect 
correlation between the two measurements, if no dissipation is present.
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Figure 21. Evolution of the Bloch vector (gray arrow) of an atom that crosses the proposed setup, interacting with 
the elelromagneiic field (black arrow) in the two Ramsey zones, and having a dispersive interaction with the held 
in the superconducting cavity C, when the number of photons of the field in C has a well defined parity. The atom 
is initially in the state e. As the atom crosses the lirst Ramsey zone, its Bloch vector is rotated by sr/2 around the 
vector representing the electromagnetic field along the real polarization axis, as shown in (a) and (d). As the atom 
crosses the cavity C, the Bloch vector rotates around the population axis. If the number of photons in the cavity 
is odd (b). the Bloch vector ends up pointing toward the opposite direction, and the rotation in the second zone 
leads the atom back to state |e) (c). On the other hand, if the number of photons in C is even, the Bloch vector 
turns by an integer multiple of 2it. so its direction does not change (e). The second Ramsey zone then brings the 
atom lo |g) (f).

On the other hand, dissipation will imply that, if one starts with a state of well-defined 
parity, the holes in the photon-number distribution will quiekly get filled, as the cavity may 
lose photons, the characteristic time for losing a single photon being the decay lime for the 
field. fCilv. divided by the average number of photons in the state. After the holes get filled, 
again parity is not well-defined, and the atoms will exit the system either in the |e) or the 
|g) state.

The physical origin of the decoherence process is actually very simple: as the field in the 
cavity leaks into the external reservoir, the states of the field get correlated with states of 
the reservoir that become approximately orthogonal after the time it takes for one photon 
to leave the cavity, thus implying the disappearance of interference effects between the 
two internal states. This is more easily seen for the state |t/0 = (l/.A )[|2a> + |0>], which 
is obtained by displacing the state (107) in the cavity by a. For the state |2a), a photon 
leaves the cavity in a time of the order (1 /4|«pF), whereas for the state |0), no photon 
leaves the cavity. Because the probability for finding the system in each of these states is 
1/2 for |a| » 1. it follows that the effective lifetime of a photon is (l/2|a|2F), which is 
precisely the decoherence time obtained for the state (107): this is a consequence of the 
fact that the distance D is the same for both states. After this time, the state |2a) becomes 
correlated with a state of the reservoir containing approximately one photon, whereas the 
state |(1) remains correlated with the vacuum. Decoherence of the system under observation 
is therefore closely connected with entanglement between this system and the reservoir.

A formal treatment of the effect of dissipation will be developed in Section 11.

7.4. Decoherence due to Classical Noise
I he decoherence discussed in the previous sections involved entanglement between states 
of the system and the environment. Classical noise may also induce decoherence, which is 
however quite different conceptually. In fact, if one starts with a system in a pure state and 
one turns on classical noise on the system and then after sometime one turns it off, the system 
will remain pure, whereas with entanglement a mixed state unavoidably sets in. Classical 
noise may serve useful purposes, however, for demonstration purposes. Also, it is a matter 
of concern for the realization of quantum computers, and therefore it should be understood 
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and controlled. It was used by Wineland s group at NIST to investigate the decohercnce of 
several states of the center-of-mass harmonic motion of a trapped ion under different kinds of 
noise |96, 97], In these experiments, the action of both classical noise and quantum reservoirs 
was studied.

8. QUANTUM NONDEMOLITION MEASUREMENT OF
THE FIELD POPULATIONS

In the previous section, decohercnce was measured by sending a single atom through the 
cavity and measuring the parity of the field. This amounts to one bit of information on the 
field in the cavity: either the photon distribution is odd or even. It is translated into one 
bit of information on the exiting atom: either it is in state e or in state g. Getting more 
information on the field in the cavity implies sending other atoms through it. It will now be 
shown that the experimental scheme discussed above could be used to implement a quantum 
nondemolition (QND) measurement of the field populations.

The QND method consists in measuring a signal observable As of a quantum system S by 
detecting a change in an observable AP of a probe P coupled to .S' during the measurement 
time, without perturbing the subsequent evolution of /ls [98-101]. QND measurements of 
the photon number in a cavity would allow the detection of very small classical forces act
ing on the cavity walls, which would be the case if these cavities were used as sensors of 
oscillations of gravitational-wave bar detectors.

QND methods are generally based on dispersive and nonlinear effects. One may, for 
instance, send a light beam through a dispersive medium with a nonlinear refraction index 
(Kerr cell). As long as the absorption is kept negligible, the intensity of the beam remains 
constant (it would correspond to the observable As mentioned above). Only its phase 
changes, but this change does not affect the intensity. On lhe other hand, the change in 
the refraction index, and therefore the intensity of the beam, can be determined by mea
suring the dephasing of another beam sent through the same medium [102]. The phase of 
this probe beam would correspond to the observable At.. This possibility was demonstrated 
experimentally by Shelby et al. [103] and Grangier et al. [104]. This measurement can be 
used to reduce quantum iluctuations in the original beam through the technique of active 
stabilization 1105, |()b|: the intensity iluctuations of the beam are counteracted according to 
the result of the nondemolition measurement.

QND measurements can he used to reconstruct the photon-number distribution of a field 
in a cavity. Furthermore, through the successive increase of quantum-mechanical knowledge 
about the state of the field, acquired by a continuous QND measurement, one may produce 
a Fock state of the field in a cavity [87. 107]. This method is now discussed in detail.

The proposed experimental scheme is the same as the one used to produce and detect a 
coherent superposition of two coherent states, sketched in Fig. 18. It consists of a supercon
ducting cavity with a high quality factor, containing the electromagnetic field to be measured, 
and placed between two other cavities R( and R,.

A beam of excited atoms interact resonantly with the fields in Rt and R2, and dispersively 
with the field in the superconducting cavity. Before crossing the first cavity R,. the atoms are 
prepared in a circular Rydberg state, that is, a state with high principal quantum number and 
maximum angular momentum, so as to increase its decay time and increase the atom-field 
coupling. This state will be denoted by |c) in the following. The relevant atomic levels arc 
shown in Fig. 19. Levels t and g are of the same parity, opposite to the parity of level e. The 
cavity mode, with angular frequency w, is slightly detuned from the e -* i transition, which 
corresponds to the angular frequency a>je.

The field in R( induces resonant transitions between |e) and the lower-lying Rydberg state 
Ig). One may assume that the interaction time and the intensity of the field in R, (which is 
essentially classical, as is the field in R,) are such that the state of the atom, after it leaves 
R,. is (|e) + |g})/\/2 (one says then that the atom suffers a tt/2 pulse).

The atom enters then the superconducting cavity, where due to the dispersive coupling 
between the field and lhe transition e —> i. the state |e) suffers a second-order Stark level 
shift, given by -hil2n/8, where (1 is the vacuum Rabi coupling between the atomic dipole
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on the e —>■ i transition and the cavity mode, and <5 = w — |tt> j is lhe frequency mismatch. 
It is assumed here for simplicity that the Rabi coupling is constant throughout the cavity. It 
is also assumed (hat <5 is sufficiently large so that I. and at the same time small
compared to the difference in frequency between the e —>■ i transition and all the other 
transitions in the Rydberg atom spectrum (specially the e —> g one), fn this case, only levels 
e and i are appreciably affected by the nonresonant atom-field coupling, which leaves the 
level g unperturbed.

If the field in the high-Q cavity is initially in the state '■(//„) — c„ it}, the state of the 
atom-field system right after the atom exits that cavity is

(110)

where e -- (f)2/<5)tjnl is the one-photon phase shift that originates from the Stark energy 
shift. The atom crosses then the cavity R,. where it interacts with another rr/2 pulse, which 
lakes |e) again into (|t*) + |s))/v/2 and |g) into (-|e) + |g))/s/2. The correlated atom-field 
state becomes:

(Hl)

After crossing R,. the atom is detected by letting it go through ionization plates, with an 
electric field in the form of an ascending ramp, so that lhe atom is ionized earlier if it is in 
state |<?) and later if it is in state |g). If the atom is found in lhe state |i'). then the atom-field 
system is described by the slate

£„e-'^sin(»e/2)c„|,i) 
|E„|cM|-sin2(/i6/2)|i:!

A similar expression applies if the atom is detected in slate |g). Equation (112) shows that 
detection of the atom changes the field populations, even though the atom has not exchanged 
photons with the field (as lhe interaction is dispersive). The photon-number probability 
distribution previous to the passage of the atom is multiplied, after the detection, by a 
modulation factor that oscillates with n:

s'n;("t/21 -m cis)
/J0(»)sin-(ne/2)

This modulation is displayed in Fig. 22. Depending on the choice for e, detection of the first 
atom may dizimate several populations. For instance, for e = 77. one gets /’ '’(«) — 0 for all 
the even values of 11.

fa)

Atom detected in g:

Figure 22. Modulation of the original photon-number distribution after the detection of lhe first atom. The initial 
distribution, displayed in (a), is Poissonian with ii - 10. It is multiplied by the oscillating fringe function sin'(we/2). if 
the atom is detected in lhe state c. or cos(/r«/2), if the atom is detected in stale .g, These functions are represented 
as a function of n in (b). In the resulting distributions (e). photon numbers closest to the ’ dark fringes" have been 
decimated. Reprinted with permission from |S7], M. Brune et al.. /’ftp. Rev. I 45, 5B>3 (IW2). © 1W2. American 
Physical Society.
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Figurv 23. Typical OND sequence, l he initial stale is coherent with n — 5. and its photon-number distribution 
is displayed in (a). Plots (b) (J) correspond to the detection of I. 3. 6. ill. and 15 atoms, respectively. In this 
realization, the Held collapses, after detection of 15 atoms, in the n — 3 Fock state. Reprinted with permission from 
|87|. M Brune et al.. P/ivs. Rev I 45. 5193 (1992). © 1992. American Physical Society.

Detection of successive atoms, with changing velocities and therefore different values of 
e. will dizimate other populations, until one is finally left with a single Fock stale, which 
is stable under the transformation (113). Figure 23 illustrates a typical OND sequence. By 
repealing this experiment many limes, starting with the same initial state, one finds each 
Fock state with a probability equal to lhe one in the initial distribution: one ends up therefore 
reconstructing the initial photon-number distribution.

This process can be thought of as a model of quantum measurement: the sequence of 
atoms can be seen as the macroscopic measuring device, and the process of dizimation as lhe 
gradual convergence of the state of the system toward an eigenstate of the observable being 
measured, in this case the photon number, to which the dispersive phase shift is proportional.

This process can be optimized by careful selection of the velocity of each atom, taking 
into account the result of the previous measurement. Thus, if the phase shift per photon 
associated with the first atom is tt, then after detection of this atom only odd or even 
populations will remain. In case even populations remain, the velocity of the second atom is 
chosen so that the phase shift per photon is equal to tt/2, then only populations with n = 2k. 
and A even or odd, will remain. Proceeding in this way, one can show that one reaches a 
Fock space after a number of atoms of the order of log, A(n), where A(/i) is the width of 
the photon-number distribution [108].

9. FULL CHARACTERIZATION OF THE STATE OF
THE SYSTEM: MEASURING THE WIGNER DISTRIBUTION

One might wonder if it could be possible to gel. from the experimental setup discussed 
before, a more complete information on the field in lhe cavity. This was shown to be indeed 
possible in Refs. [109, 110): a slight modification of the experiment on decoherence leads to 
the reconstruction of the so-called Wigner distribution [111] of the field in lhe cavity, which 
provides a complete description of the quantum state of the field in phase space.

Phase-space probability distributions are very useful in classical statistical physics. Aver
ages of relevant functions of the positions and momenta of the particles can be obtained by 
integrating these functions with those probability weights.

In quantum mechanics, similar averages are calculated by taking the trace of the product 
of the density operator that describes the system with the observable of interest. Heisenberg’s
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inequality forbids the existence in phase space of bona fide probability distributions, as one 
cannot determine simultaneously the position and the momentum of a particle. In spite of 
this, phase-space distributions may still play a useful role in quantum mechanics, allowing 
the calculation of the average of operator-valued functions of the position and momentum 
operators as classical-like integrals of c-numbcr functions. These functions arc associated 
to those operators through correspondence rules, which depend on a previously defined 
operator ordering.

From all phase space representations, the Wigner distribution is the most natural, 
when one looks for a quantum-mechanical analog of a classical probability distribution in 
phase space. This is a consequence of a beautiful result demonstrated by Bertrand and 
Bertrand [ 112). which will be presented here. The following account stays close to the ones 
in Refs. 1112] and [113].

Let us look for a representation for which the marginal distributions coincide with the 
quadrature probability distributions:

I dpWfq. p) = (q\p\q), j dqWfq. p) = {p\p\p}, (114)

where p is the density operator for the system. One should note that from (114) it follows 
immediately the normalization property:

I dpdqlV(q. p) = I (115)

Properties (114) must remain true if one rotates the axes in phase space, so that

q„ = U'(P)qU(O) = qcosO + psinfl (116)

p# = Ut(0)pU(t)) = -r/sinW + p cos fl (117)

or, inversely,

<7 = cos - (118)
p — qlt sin H + p/(cosfl (119)

Here U(0) is the rotation operator in phase space, given by Eq. (7). Thus:

P(qe) = I W(qfl cos 0 - pffsin0, r/rtsinfl + pe cos fi)dpH (120)

where now
P(q„) = (q\U(0)pU\e)\q) (121)

Expression (120), which yields the probability distribution for in terms of the function 
W(q, p). is called a Radon transform. It was investigated in I9I7 by the mathematician Johan 
Radon [114], who showed that, if one knows P(q0) for all angles ft, then one can uniquely 
recover W(q. p), through the so-called Radon inverse transform. If one now identifies P(qf), 
given by Eq. (120), with the quantum expression given by Eq. (121), then it follows that
Eqs. (12(1) and (121) uniquely determine the function W(q.p), in terms of the density 
operator p of the system. The function fF(r/, p) is in this case precisely the Wigner function 
of the system.

Before demonstrating this result, let us note that Radon’s result is the mathematical basis 
of tomography. In fact, application of this procedure to medicine (Fig. 24) brought the 
Nobel Prize in Medicine to the physicist Allan Cormack and the electrical engineer Godfrey 
llounslield in 1979.

9.1. Reconstruction of the Wigner Function
it is shown now that the distribution W(q.p) is uniquely determined from the knowledge 
of P(qH). For this end. let us introduce the cluiracieristic function corresponding to l¥(q. p).
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Figure 24. M edical tomography. Measurement of lhe x-ray absorption for all angles along a plane allows one to 
reconstruct the absorptive part of the refraction index for a slice of the organ under investigation.

which is just the Fourier transform of this distribution:

v) = II W(q. p)exp(—iuq —ivp)dqdp (1-2)

The characteristic function corresponding to /’(r/(/) is introduced in a similar way:

I P^expi-itq^dqv (123)

Inserting into Eq. (123) the expression for P(q„) as a function of B/. given by Eq. (12(1), 
one gets:

/>(£.1>) = If (q- />) exp( -/£q„)dq„ tip,,

where q = qtl cos H - p„sind and p = qHsind F pHcos6f and therefore q„ — r/cos fl + psinfl. 
Changing the integration variables in p(£. so that (q„, p„) -* (q. p). one gets:

p(i.0)=l I W(q, p)cxp[-i£(qws() + psin(l)]dq dp (124)

Therefore, p(f. II) is the Fourier transform of H'(q, p) in polar coordinates:

p({. fl) = f?(fcosfl. fsinfl)

which as wc have seen is the characteristic function corresponding to li'(q. p). This implies 
that, from P(q„), one can calculate p(^, H), and from this function one can calculate 
JF(r/. p).

This demonstrates the tomographic reconstruction of W(q.p). In order to connect this 
distribution to the density operator of lhe system, one uses Eq. (121):

P(^d)= I (ql,\p\qll>t‘~'t‘,"dqM = f {qH\pe ’^"^dq,, =^Tr[pe ll‘h'] (125)

But (q„ — r/fcosfl +- p^sinfl. Therefore, setting it = fcosfl, u = £ sin fl, one gets, for the 
characteristic function.

IE(/i. v) = Tr|pe ''’'’I (126)
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Another form for II'(</. />) can be obtained in the following way. We rewrite the charac
teristic function I4(n. n) as:

IF(n. v) = {q\pe~iu^\q)dq = j'\q\pe "“'\q + v)<ty

where we have used that
. . /-iuv\ . ,exp( mq ivp) = cxpl—-— I exp(-mq) e.xp( —ivp)

and wc have set </ = .1 — v/2. Taking the Fourier transform of IF(u, t») given by Eq. (127). 
one gets the following expression for the distribution li ft/. />):

Hz (</. p) = ' /" X e (q + ,v|p|r/ - ,v)r/.v (128)
77 - x

which, except for a normalization constant, is the famous expression written down by 
Wigner [111] in his article "On the Quantum Correction for Thermodynamic Equilibrium," 
published in 1932. Wigner used this quasi-probability distribution in phase space as a con
venient way of calculating quantum corrections to classical statistical mechanics. He wrote 
in his paper (hat the expression in Eq. (128) “was chosen from all possible expressions, 
because it seems to be the simplest.” lie added a quite intriguing footnote: “This expres
sion was found by L. Szilard and the author some years ago for another purpose. One has 
shown here that the Wigner distribution has in fact a quite distinctive feature: it is the only 
distribution in phase space that yields the correct marginal distributions for any quadrature!

The tomographic procedure has a simple interpretation for a harmonic oscillator. From 
Eq. (10), it is clear that in this case measuring the quadratures for all angles is equivalent to 
measuring the position of the harmonic oscillator for all times from 0 to This implies 
that the measurement of |<//(x,()p for 0 < t < 2tt/<d allows one to reconstruct the state 
i//(.v. /) of the harmonic oscillator.

A direct connection between the density matrix of the Held and the tomographic prob
abilities was established by D Ariano et al. [115]. Use of unbalanced homodyne detection 
to reconstruct the quantum state of the field was proposed in Ref. [116]. The use ol tomo
graphic techniques to reconstruct the vibrational state of trapped ions was proposed in 
Refs. [117] and [118].

The question about what is the minimum set of measurements needed to reconstruct the 
state of a system is actually a very old problem in quantum mechanics. In his article on 
quantum mechanics in the Handbuch der Physik in 1933 [119]. Pauli stated that "the mathe
matical problem, as to whether for given functions IF(.t) and Bz( p) [probability distributions 
in position and momentum space], the wave function i/v. if such a function exists, is always 
uniquely determined has still not been investigated in all its generality.” One knows now the 
answer to this question: the probability distributions Wz(.v) and H (p) do not form a com
plete set in the tomographic sense and therefore are not sufficient to determine uniquely 
the quantum state of the system.

9.2. Expression of the Wigner Function in Terms of a and af

From Eq. (128). one may write

= - f (x|e 'l"le,,''1pe-“",e,',,'\-x)d.x = - I (x|c ,'’'ie“"‘pe-'‘l',ei,"'ent“’i\x')dx 
IT J IT J

= -Tr|Dt(<r.a’)pZ)(a.a,)e,’f‘i'“| (129) 
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where wc have used the definition lor lhe displacement operator D(a,a) and that 
exp(/77</'<i) is the parity operator.

The last expression defines the Wigner function in terms of the operators a and </'. Il 
shows that this distribution is proportional to the average of the displaced parity operator.

The Wigner function expressed in terms of d and a involves usually a different normal
ization with respect to the one delined before: one must set IF —* so that

r / da \
/ ---- H (<r. <r') = I (130)' \ 77 /

We have then 1120]:

IF(n. «•) = 2Tr|D+(a. «)p/5(«. «■)<'"“'“] (131)

9.3. Properties of the Wigner Distribution
Thorough discussions of properties of he Wigner distribution can be found in Refs. |1I3| 
and [1211. Here only some of them are summarized.

It is easy to show that the Wigner function is real and bounded. If one adopts the nor
malization of Eq. (128). so that Eq. (115) holds, then Schwarz’s inequality implies that 
|IE(r/. p)| < 1/77. If the Cahill-Glauber normalization in Eq. (131) is adopted instead, so 
that Eq. (130) is satisfied, one has

|H («.«-)| < 2 (132)

Furthermore, let fF,;,(</. /’) be lhe Wigner function corresponding to the state i//(r/). and 
IFrf,(rp p) the Wigner function corresponding to the state </>(</). as given by Eq. (128). Then.

/ </</(//• (r/)</>(</) = 277 I dq I r/pH'JF,.

This relation has several consequences. First, setting i//(r/) = </>(</), one gets 
J dq I dp\lV(q. p)]2 - 1/277. More generally, it is easy to show that

Tr(/r) = 277 II dqdpl^'iq, p)]2 (133)

and therefore 1/ dq </p[ll(r/. p)| 1/277 for a statistical mixture. It is also clear that

( dq I dpW,,, IF,,, = (I if <«//|«A> = 0 (134)

which implies that IF cannot be always positive. This may be thought as a consequence of the 
Heisenberg inequalities: as it is not possible to measure simultaneously q and p. one cannot 
have in quantum mechanics bona tide probability distributions in phase space. In fact, one 
can show that the only pure stales leading to positive-definite Wigner functions correspond 
to Gaussian wave functions 1122|. This is the case for coherent states, and also for squeezed 
states, which arc obtained from coherer! states by a scale transformation of two orthogonal 
quadrature axes, amounting to multiplying one of the quadratures by a constant factor and 
dividing the other quadrature by the same factor. One gets then a squeezed Gaussian as the 
Wigner distribution corresponding to a squeezed state.

One should note that the Husimi or Q distribution [123], often found in the literature, 
and defined by

(/(o. a’) = — <«|p|cr> (135)
77

is always positive, but does not lead to the correct marginal distributions. It is easy to show 
that

(/(cr. cr) = — d2Ae ’|A ,,|’U’(A. A') (136) 
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so that lhe Husirni distribution is obtained by smoothing out the Wigner distribution. 
Although this may bring some mathematical convenience, it makes it harder to uncover 
quantum features, from the experimental point-of-view.

Equation (136) shows that the Husirni distribution can be obtained from lhe Wigner func
tion. The converse is also true, as can be seen from the convolution character of Eq. (136): 
the Fourier transform of the Husirni distribution (that is. the corresponding characteristic 
function) is equal to the Fourier transform of the Wigner function, as given by Eq. (122). 
multiplied by exp[ —(tr + tr)/4].

9.4. Averages of Operators
As shown by Moyal in 1949 [124], the Wigner distribution can be used to calculate average- 
of symmetric operator functions of q and p. as classical-like integrals in phase space, Thus 
for instance.

Tr (p{<f pk.m) = Tr|p(</’p + </p</ + pt/2)/3| = I dqdpW(qp)q2p (1371

The association of a symmetrized quantum operator to a classical function is called 
ffFr/ correspondence.

This property of the Wigner function can be shown by considering the two equivalent 
expressions for the characteristic function W(u, v).

W(u,v) = Tf[pe~‘uq '*>*] (138)

IF(t<, v) = II W'(q. p) exp(-inq - ivp)dqdp (139)

from which one gets

. . l dk ~Tr [p(p</+ t-p) | = / ^IT(^p.^i') IT(</. p)(pq + vp)kdqdp (14(1)

Comparing powers of p and v, one gels

Tr (p{qmpn}sim) = f W(q, p)q"'p"dq dp
J -<x>

Of course, the same property holds for the Wigner function expressed in terms of « and 
a*. Thus, for instance.

eta" H'(tr, a*) (141)

Other distributions in phase space can be introduced, which allow writing as classical-like 
integrals averages of functions of the operators a and a' written in normal and antinormal 
order. Thus, for instance, the Husirni distribution can be shown to correspond to operators 
in antinormal order. These distributionswill not be discussed here [125-130).

9.5. Examples of Wigner Functions
Wigner functions corresponding lo special states of the electromagnetic field can be obtained 
from either Eq. (128) or Eq. (131). We adopt in this section the normalization corresponding 
to Eq. (128).

For the vacuum state, one has the Gaussian

IT(1(a, p) (142)
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The Wigner function tor a coherent state can be easily obtained by applying a displacement 
to the above Gaussian:

H,(r/. p) =-e (143)

Application ol a scaling transformation to Eq. (142) yields lhe Wigner function for a 
squeezed vacuum, plotted in Fig. 25a:

H /;) = - exp( -e2tq: - e :-fr) (144)
77

For a one-photon Fock state |1). one gets:

H |(r/, />) = —e (2<f + 2/r - 1) (145)

This function vanishes for v </- + /?- = i/v2 and is negative at the origin of phase space. This 
negative value reminds us of the highly nonclassical nature of a Fock state. For higher photon 
numbers, the Wigner function displays more oscillations, the number of zeros coinciding 
with n. Figure 25b displays the Wigner function corresponding to a Fock state with n = 3.

Of special interest for our discussion on lhe classical limit of quantum mechanics is the 
state formed by superimposing two coherent states |ah) and | — <x(l) (setting a0 = real for 
simplicity):

|t//) = .V||a0) +|(146)

where . I is a normalization constant, given by

\ = |2(1 4-exp(-2kr,J-)| 1 ’ (147)

Figure 25. Examples ol Wigner distributions, (a) Squeezed stale: (b) Fock slate with n 3: (c) superposition of 
two coherent states. \ili :s |<t,, - | <»„ . with = 3; (J) statistical mixture (|«„ «„ 1 l <i„; <t.,|)/2. also with 
«o = 3.
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The corresponding wave function in configuration space is given by

tl>(q} = \|c + e 2|

whereas the Wigner function is

»,(</,/>) = *■'' '■ + +2e cos(2/n/M)] (148)
\ 7T 7

This function is displayed in Fig. 25c.
It is interesting to compare this Wigner function with the one corresponding to a statistical 

mixture of the same coherent states, with equal weights:

p = + I “ (1491

for which

H (</. p) = \— ) <’''' + (15(1)

This function is displayed in Fig. 25d.
Although the expression in Eq. (150) is just the sum of two Gaussians, corresponding to 

the coherent states and |—respectively, the one in Eq. (148) displays interference 
fringes around the origin of phase space, which is a dear signature of the coherence between 
the two states |a(l) and | — al() in Eq. (146). Therefore, the measurement of the Wignet 
function of the electromagnetic lield would be a clear-cut way of distinguishing between a 
coherent superposition and a mixture of the two coherent states. As shown in Section 7.2, 
these coherent states may be interpreted, within the framework of recent experiments in 
cavity QED, as pointers of a measuring apparatus. The mechanism by which a state like the 
one in Eq. (146) loses its coherence, approaching the state in Eq. (149), is thus very relevant 
for the quantum theory of measurement.

9.6. Measurement of the Wigner Function
We discuss two methods that have been used to reconstruct Wigner functions of electromag
netic fields in this Section.

9.6.1. Quantum Tomography
I he inverse Radon transform suggests that the Wigner function of an electromagnetic field 
can be reconstructed by determining the probability distribution for the generalized quadra 
lure q„. P(qH). through homodyne detection [131]. As discussed in the section on homodyne 
measurement, the angle t) is changed by varying the phase difference between the local oscil
lator and the measured field. For each 0. the resulting intensity is measured many times, 
so as to build enough statistics, thus leading to the measurement of P(qH). As this angle is 
continuously changed between 0 and 2n. the changing distribution P(qu) mimics the time
dependent probability distribution for a harmonic oscillator.

The first measurements were made in 1993 by Smithey et al. 1132]. In view of the low 
detection efficiency in those experiments, the detected distribution was actually a smoothed 
version of the Wigner function, closely related to the llusimi distribution. A much bet
ter result was achieved by Mlynck's group in 1995 |133, 134], clearly displaying a highly 
compressed Gaussian, corresponding to the experimentally obtained Wigner function of a 
squeezed state of light emerging from an optical parametric oscillator. A procedure closely 
related to the homodyne detection method was used to reconstruct the vibrational state ol 
a molecule by T. J. Dunn et al. 1135].

The results obtained by Mlynck's group are displayed in Fig. 26. The first column exhibits 
the noisy current, resulting from the homodyning procedure, measured lor each angle 0 (in 
the actual experiment, this angle is swept by 2ir in approximately 200 ms; the horizontal axis 
represents the sweeping time). The second column stands for the probability distributfak.
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Figure 26. Noise traces in the current (left), quadrature distribution teenier), and reconstructed Wigner functions 
(right) of several generated quantum slates. From the top: coherent state, phase-squeezed state, state squeezed 
in the 48‘ quadrature, amplitude-squeezed state, squeezed vacuum stale. Reprinted with permission from |134J, 
G. Breilenbach el al., future 387. 471 (1997). Ji 1997. Nature Publishing Group.

of the quadrature as a function of As mentioned before, it could also be interpreted as 
the time-dependent behavior of lhe probability distribution for a harmonic oscillator, with 
period approximately equal to 200 ms. Finally, the third column exhibits the corresponding 
Wigner distributions, obtained by applying the inverse Radon transform.

9.6.2. Measurement of Displaced Populations
The Wigner function can also be obtained by measuring the populations of displaced stales. 
Indeed, from Eq. (131), one has:

Hz(a.a*) = 2Tr|p/9(«. a’)<-*’" "D '(a,a’)| = 2 a*)pD(a.
rl

= 2£(-l)"(//|/5 '(a,a-)pD(a,a-)|H> = 2£(-l)"P„(-a,-a'} (151)

where -«*) is the probability of finding n photons in the field after the Held is dis
placed by —a. This displacement can be implemented for instance, for a field in a cavity, by 
injecting a coherent state into the cavity, through the coupling of the cavity with a microwave 
generator (if the frequency of the mode in the cavity is in the microwave range). In order 
to determine the Wigner function by this method, one must measure then the population of 
the displaced states, which can be done for instance by applying the procedure described in 
Section 8.

This method was used by Wineland's group at NIST to measure the Wigner function of 
vibrationaE^j^s of a trapped 'Be' ion [136]. The relevant level scheme is shown in Fig. 27. 

and |f) correspond to two ground-state hyperfine sublevels (~-S'( with F — 2. 
wFf — —2 and F = I, m, = — 1, respectively), separated by The ion is trapped in a
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Figure 27. Measurement of t ie Wigner function for a trapped ion. by Leibfried et al. Displacement of the vibra
tional state associated with the internal state ||) (a hyperfine structure sublevel) is achieved by applying fields 
A and B, which induce transitions between neighboring vibrational slates corresponding to the electronic level 
|f), without changing the ion's internal state. Population of displaced states is measured by inducing a resonant 
exchange during a time t between states |f, >i) and |f, n + 1) with fields H and C (turning off field Ab Probability 
of finding the atom in ||) as a function of t, determined by exciting it to level b (with a high fluorescence yield), 
leads to information on population of displaced vibrational states.

harmonic potential, and the vibrational levels associated with each electronic state ||) and 
| f) are also sketched in Fig. 27.

Initially, the ion is in the internal state ||). The displacement of the vibrational state in 
phase space is obtained by inducing a Raman transition between neighboring vibrational 
states, when the internal state of the ion is ||). This is accomplished by applying the two fields 
A and B illustrated in Fig. 27, with a frequency difference equal to the vibrational frequency 
co. Beam B is circularly polarized (a_), and does not couple |t) to any virtual ~P]/2 state, 
so that only the motional slate correlated with ||) is displaced. These fields do not lead to 
transitions between electronic levels of the trapped ion, as they arc detuned with respect to 
the possible electronic transitions, and therefore they affect only the center-of-mass motion. 
The action of the two fields can thus be modeled by an effective Hamiltonian of the form 
H oc (a + af), where a and are harmonic oscillator lowering and raising operators. The 
evolution operator corresponding to this Hamiltonian is precisely the displacement operator, 
therefore the Raman process induces a displacement of the original state in phase space.

A resonant exchange between states ||)|n) and |t)|zi + 1) is then induced for a time /, 
with fields B and C (turning off field A). For each time f and each displacement a the 
population o) of the ||) state is measured. A fourth level h is used for detecting the 
electronic state of the ion (and also for Doppler precooling): a circularly polarized pulse D 
resonant with the \b) transition leads to a fluorescence signal if the ion is in ||). and 
the absence of fluorescence implies that the ion is in | f>, which is not coupled to level b 
due to angular momentum selection rules (the detection efficiency for this process is close 
to 100%). The internal stale at t = 0 being always equal to | j), the signal averaged over 
many measurements is

1 + E /"„(«)cos(2gx/n + lf)e
n-1J

(152)

where t = g/ is a dimensionless time, g is the coupling constant between the ion and 
the external resonant fields. the experimentally determined decay constants (in units of 
the coupling constant g), and P„(a) = {n\Dt(a)pD(a)\n) is the population distribution of 
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rhe displaced state. By fitting the measured Pit. a) with the above expansion, one can deter
mine P„(«) |I36|. and from P,,(a} one determines the Wigner function through Eq. (151).

Figure 28 displays the Wigner function measured lor the centcr-of-mass state of a trapped 
ion in the n = I eigenstate of lhe harmonic-oscillator trapping potential. The correspond
ing density matrix, in the harmonic oscillator basis, is also displayed in lhe same figure, 
confirming that the only state with appreciable population is the n = I eigenstate.

Similar techniques have been proposed for the reconstruction of the Wigner function of a 
running-wave field through photon-counting (137—139). by mixing the field to be measured 
with a coherent held through a beam splitter. This is equivalent to displacing the field in 
phase space.

The reconstruction of the Wigner function of an intracavity field, by measuring the photon
number through the atoms that have interacted with the field, was proposed in Ref. 1140).

The determination of the coefficients /’„(cr) in the expansion given by Eq. (152) can also 
be made, when dissipation is neglected, by using the Fresnel representation of the Wigner 
function 1141]. One uses then lhe integral relation

(153)

so that, in the absence of dissipation, one gets from Eq. (152):

- IT(<». a’)
4

(154)

The Wigner function is thus determined, at each phase space point a, by a weighted time 
integral of the atomic dynamics due to the applied lields. with the vibrational stale displaced 
by —a. the weight function being the Fresnel phase factor cxp(/'r’/7r).

One should note, however, that the infinite-time integration in Eq. (153) is impossible 
to achieve in practice, as it would involve knowing /^(/.-a) for all interaction limes. In 
Ref. [1411, the authors discuss the degree of approximation obtained when the integration 
time remains finite. Due to the oscillatory character of the kernel, the convergence is slow: 
for an upper limit of integration t = 4rr. an error of about 10*# is obtained, in the determi
nation of the Wigner function of an ion in the first excited vibrational level.

It is clear that the above-described methods are highly indirect. It will be shown in the 
following, however, that it is possible to conceive a much more direct method for measuring 

Figure 21. (a) Experimentally determined Wignci function corresponding to the first excited vibrational state ol a 
trapped on. as measured by Wineland et at. in NISI: (b) corresponding density matrix. Reprinted with permission 
from [13r|. I) I ciblried cl al.. /7irv. /ter. /,ew. 77. 42KI | 1996). <: 1996 American Physical Society.
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the Wigner function at any point in phase space, for either an electromagnetic field in a 
cavity or a trapped ion.

10. DIRECT MEASUREMENT OF THE WIGNER FUNCTION
Once the proper state of the Held is produced in the cavity, how would one be able lo 
measure it? As shown in Refs. [I09. HO], it is actually possible to measure the Wigner 
function of the field by a relatively simple scheme, which provides directly the value of 
the Wigner function at any point of phase space. This is in contrast with the tomographic 
procedure, or the method based on the measurement of populations, which yield the Wigner 
function only after some integration or summation. Furthermore, and also in contrast with 
those methods, the present scheme is not sensitive to detection efficiency, as long as one 
atom is detected writhin a time shorter than the decoherence time. A similar procedure can be 
applied to the reconstruction of the vibrational state of a trapped ion 1109], and also in some 
cases to molecules 1142]. We will discuss here only the application to the electromagnetic 
field.

10.1. Experimental Scheme
i'he basic experimental scheme for measuring lhe Wigner function [I09. I l()| coincides with 
lhe one used to produce the “Schrodinger cat”-like state, illustrated in Fig. 18. A high-0 
superconducting cavity C is placed between two low-0 cavities (R( and R2 in Fig. 18). The 
cavities R, and R, arc connected to the same microwave generator, the field in R2 being 
dephased by p with respect to the field in R,. Another microwave source is connected to C, 
allowing the injection of a coherent state in this cavity, so that the density operator p of the 
field to be measured is transformed into p' = D(ct, ct')pD '(a, a*). This system is crossed 
by a velocity-selected atomic beam, such that an atomic transition e <-* g is resonant with lhe 
fields in Rt and R2. while another transition e «— i is quasi-resonant (detuning <S) with the 
field in C. so that the atom interacts dispersively with this field if it is in state e. whereas no 
interaction takes place in C if the atom is in state g. The relevant level scheme is shown in 
Fig. 19. Just before R,. the atoms are promoted to lhe highly excited circular Rydberg state 
|e) (typical principal quantum numbers of lhe order of 50, corresponding to lifetimes of the 
order of some milliseconds). As each atom crosses the low-0 cavities, it sees a tt/2 pulse, 
so that |e) -> ]|e) -f-exp(i7/)|g)]/s/2, and |g) — [-exp(-/p)|e) + |g)]/s/2. with »/ = 0 in R,. 
If the atom is in state e when crossing C. there is an energy shift of the atom-field system 
(Stark shift), which dephases the field, after an effective interaction time rinl between the 
atom and the cavity mode. The one-photon phase shift is given by </> = (£l~,/4S)rjnl, where the 
resonant Rabi frequency ll(l measures the coupling between lhe atom and the cavity mode.

The atom is detected and the experiment is repeated many times, for each amplitude and 
phase of the injected field a, starting from the same initial state of the field p. In this way. 
the probabilities Pt. and PK of delecting the probe atom in states e or g are determined.

Then [HO],
Ps - pr = ;He(e'''Tr | f>(a. a’)pD '(«, a'(155)

Setting r; = 0 and <£ = r, we can see from (131) that

Pt-P^W^01'^- (156)

Therefore, the difference between the two probabilities yields a direct measurement of the 
Wigner function!

Wc show now a simple derivation of this result. Let \(d>) = cxp(/</><?«) be the phase 
shift operator associated with level e. The field is displaced so that p —> p. and the atom, 
prepared in stale e, crosses R,. C, and R,. The entangled atom-field state becomes:

pahim+lidd= IM ® (X - e'" 1 )p (7J - e- "’1) + |g)(g| ® (i + e'" 7e)p(\ + e"'17?)

+ terms non-diagonal in atomic space (157)
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Calculating from this expression the probability !\ =TrlhMtl.lK.!(l||e)^t’|p.1I(inwl(l.|ll|. and anal
ogously for one gets immediately Eq. (156).

One may notice that the experimental procedure discussed above amounts Io imple
menting experimentally on the state to be reconstructed the two operations explicitly rep
resented in Eq. (131): lhe displacement operation (implemented through the injection of 
the coherent microwave field) and the parity operation (implemented through the condi
tional 77-phase shift). In particular, the distribution in Eq. (156) clcarlv satisfies (132). as 
\PK ~ I S 2.

An important feature of this scheme is lhe insensitivity to the detection efficiency of the 
atomic counters (of the order ol 40 ± 15r< in recent experiments [87]). Indeed, if an atom is 
not detected after interacting with the cavity mode, the next atom will find a field described 
by the reduced density operator obtained from the entangled atom-field density matrix bv 
tracing out the atomic states: p —* p" = l/2(/7 + 7,.p' 7J). where - exp(/</></ </) is the 
phase shift operator associated with level e. The value of P„ — P for this second atom is 
then easily shown to reduce to Eq. (156).

The measurement accuracy does depend, however, on the detector's selectivity, that is. 
the ability to distinguish between lhe two atomic states. Another possible source ol error is 
the velocity spread of the atomic beam, which would produce an uncertainty in the angle <t> 
and in the angles of rotation in R| and R,. For a 1% velocity spread and for average photon 
numbers of lhe order of 10, one can show that the distortion is at most equal to 0.04, in the 
relevant region of phase space, so that the measured distribution is practically indistinguish
able from the true one. In fact, the insensitivity of the proposed scheme to the detection 
efficiency allows a passive selection of atomic velocity (only the atom which goes through 
the detectors at the right time after excitation is delected), which can be made with high 
precision.

One should note that this method allows the measurement of the Wigner function at 
each time t. as for each realization it involves the measurement of a single atom. It allows 
therefore the monitoring of the decoherence process “in real-time.’- This should be con
trasted with lhe photon-counting measurement, as described in Section 8, which involves the 
measurement of many atoms in each realization.

It is interesting, in this respect, to compare the procedure described above with the one 
suggested by Davidovich et al. |94|. with the objective of observing the dccoherence of a 
Schrodinger cat-like state. In that reference, as discussed in Section 7.2. it was proposed 
that Lhe dccoherence of the state |±) = (|a) ± | - a))/jV. could be observed by measuring 
lhe joint probability of detecting in states |e) or |g) a pair of atoms, both prepared in the 
state |e> initially, and sent through the system depicted in Fig. 18. The atomic configuration 
considered in that reference coincides with the one adopted here. Detection of the first atom 
prepares the coherent superposition of coherent states, as described above. Detection of the 
second atom probes the stale produced in C. Because no field was injected into the cavity 
between the two atoms, it is clear now that the experiment proposed in Ref. |94| amounts 
to a measurement of the Wigner function at lhe origin, which is nonzero for the pure state 
|±). as shown in Fig. 25c. vanishes after the dccoherence time (shorter than the intensity 
decay time by the factor 2|a|?). as shown in Fig. 25d. and increases again as dissipation takes 
place, bringing the Held to the vacuum state.

In the experiment realized by Brune et al. |87], both |e) and |g) lead to dephasings (in 
opposite directions) of the field in In this case, it is easy to show that the Wigner function 
is again recovered, as long as the one-photon phase shift is </» = tt/2 (with opposite signs 
for e and g), and a dephasing p = tf/2 is applied to the second Ramsey zone [11)9], One 
gets then Eq. (156). with a minus sign added to the right-hand side. This condition was not 
satisfied, however, in the experiment reported in Ref. [87]: due to experimental limitations, 
the angle <5 was actually smaller than 77/2.

Getting a it phase shift per photon imposes stringent conditions on lhe experiment. 
The interaction time between the atom and the cavity field should be large enough, which 
implies using slow atoms, with a precisely controlled speed. Furthermore, the interaction 
time between the atom and the cavity field should be much smaller than the dampening 
time of the field in the cavity, and therefore a very good cavity is required.
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10.2. Experimental Measurements of Negative
Values for the Wigner Function

An easier task consists in measuring the value of the Wigner function at the origin of phase 
space when one knows beforehand that the field in the cavity contains at most one photon. 
In this case, one does not need to inject a field into the cavity, and lhe dispersive interaction 
leading to the phase shift of the field can be replaced by a resonant 2rr interaction between 
levels e and i (see Fig. 14). As we have seen before, this interaction takes the atom from state 
e to state i and then back to state e. if there is one photon in lhe field, the state changing 
sign under this transformation On the other hand, nothing happens
if the atom is in state g or if there is no photon in the field. The conditional one-photon 
77 phase shift is thus accomplished in this case with a resonant interaction, which requires 
an interaction lime much shorter than the dispersive case. This idea was implemented in 
an experiment at Ecole Normalc Supcrieure. in Paris [143. 144]. The one-photon state was 
produced by sending an excited atom through the empty cavity, where the atom suffers a 
77 transition, leaving one photon in the cavity, from which it exits in the state g. This was 
the first time a negative value was measured for the Wigner function of an electromagnetic 
field, namely the value at the origin of the Wigner function corresponding to a one-photon 
state [this distribution is shown in Fig. 29a]. The experimentally obtained value was 1.32, 
to be compared with the theoretical value -2. associated with the normalization defined by 
Eq. (13(1). The smaller experimental value is due to a contamination of the vacuum state, 
due to the possible decay of the photon in the cavity in the time interval between preparation 
and measurement.

The full Wigner function corresponding to a running-wave one-photon field was measured 
by Lvovsky et al. [145]. The single-photon Fock state was prepared using conditional mea
surements on photon pairs born in the process of parametric down-conversion: the homo
dyne detection of one of the photons of the pair was conditioned to the detection of the 
other photon, thus making sure that a single-photon was detected. In practice, experimental 
limitations cause an admixture of the vacuum to the measured state, so that the measured 
negative value of the Wigner function at the origin of phase space was -(1.062, as opposed 
to the theoretical value —2/tt, for the normalization of the Wigner function adopted by the 
authors.

10.3. Direct Measurement of the Wigner Function for
a One-Photon State in a Cavity

More recently [60], the Paris group was able to measure the full Wigner function for a 
one-photon state in the cavity, using the technique proposed in Ref. [109], The result is 
displayed in Fig. 29b, which exhibits a slice of the cylindrically symmetric distribution. From 
the Wigner function, it is possible to get the photon-number distribution, which is displayed 

Figure 29. Wigner function for a one-photon stale: (a) Distribution in phase space; (b) distribution measured 
in Ret. [6(1]; (c) corresponding photon-number distribution, showing that one does not have a pure one-photon 
state, due to imperfections in the preparation process, the possible decay of the photon in the cavity, and lhe 
contamination with thermal photons. Reprinted with permission from |6()|. I’. Bertel et al., f’hys. Rev. I.ctt. 89. 
20(1402 (2002). © 2002, American Physical Society.
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in Fig. 29c. This distribution shows that the state produced in the cavity is not a perfect one- 
photon state, which explains the tact that the value of the Wigner function at the origin of 
phase space is larger than -2. the value it should have tor a one-photon state. An interesting 
feature of this measurement is that it probes a region of the phase space with area smaller 
than h, which corresponds to the negative region of the Wigner function displayed in Fig. 29. 
It is thus an explicit demonstration of the fact that it is possible in principle to probe regions 
of phase space as small as one wants!

10.4. Measurement of the Wigner Function and Quantum Circuits
The above scheme for measuring the Wigner function of an electromagnetic field in a cavity 
amounts to a controlled operation, after the field is displaced. Indeed, the field phase shift 
depends on the atomic state, as explicitly shown in Eq. (157). Therefore, the direct measure
ment of the Wigner function can be described in the following way: a 77/2 rotation is applied 
to the atomic states, while a displacement is applied io the field, which undergoes thereafter 
a 77 phase shift conditioned to the atomic state. Finally, the atom undergoes another 77/2 
rotation and is then detected. This sequence can be represented by the circuit displayed in 
Fig. 30.

Quantum circuits analogous to the one in Fig. 30 were used to interpret tomography and 
spectroscopy as dual forms of quantum computation [146], In Ref. |146|, the above pro
cedure was extended to discrete systems and applied to measure the Wigner function of a 
system ol two qubits, corresponding to spin-1/2 nuclei, in a quantum computation involv
ing liquid-state nuclear magnetic resonance. Further discussions and applications of the 
measurement of the Wigner function for discrete systems can be found in Refs. [147] and 
[148].

10.5. Measurement of the Characteristic Function
It is also possible to measure the characteristic function of the electromagnetic field in a 
cavity, by measuring atoms that have interacted resonantly with the field. Proposals have 
been presented in Refs. [149-151].

A simple procedure for directly getting the characteristic function involves the application 
ol the quantum-switch concept presented in Rcl. |93|. In this implementation, the cavity is 
connected to a microwave generator detuned with respect to the cavity mode. Because of 
this frequency mismatch, the field from the generator docs not enter the cavity. However, if 
a two-level atom enters the cavity in the state |c), which interacts dispersively with the cavity 
mode, the single-atom refraction index effect will displace the frequency of field, so that now 
the field from the generator becomes resonant, and enters the cavity. This means that the 
field in the cavity is displaced conditioned to the state of the atom (if the atom is in state 

nothing happens to the field). The magnitude of the displacement can be controlled by 
changing with Stark shifts the interaction lime between atom and field, while the phase of 
the displacement is controlled by submitting the field coming from the microwave generator 
to a delay line.

Figure 30. Circuit corresponding to the direct measurement of the Wigner function lor an electromagnetic field 
in a cavity. The lipper line corresponds to the atom, lhe lower one io the field. The atomic slate undergoes a 
rr/2 rotation before and after interacting dispersively with lhe field. This dispersive interaction can be thought as 
a phase shift of the field controlled by the atomic state. The field is displaced by o before undergoing this phase 
shift. Measurement ol the atomic slate leads to the determination of the Wigner function of the field at the point 
-n of phase space.
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I he experimental scheme coincides with the one used to measure the Wigner function, 
displayed in Fig. 18. Before crossing the cavity, the atom is placed in the state (|f) + |g))/v2, 
in the first cavity Cj. After the atom interacts with the cavity mode, and undergoes in cavity 
C2 the transformation |e) -> j|e) + exp(z?j)|g)]/s/2, and |g) — | — cxp(—ztj ) |e> + |g)|/s/2 
(where r> is the relative phase between the classical fields in cavities C, and C,), the entangled 
atom-field stale can be written, similarly to Eq. (157):

m ® «’) - a*) -
+ ll?>(g| ® 1'1 + e,r>D(a, a‘)]p[i + (a, a)]

+ terms non-diagonal in atomic space (158)

From this expression, one gets

— P, — we{e'’rrr |£>(«, a')/)]) (159)

From Eq. (126) and the definition of the displacement operator, one sees that the trace 
in the above expression is just the symmetrically ordered characteristic function, expressed 
in terms of the operators a and a'. Therefore, letting

C(a,a*) = Tr [D(a, cr*)/5| (16(1)

one can see that
PK - = .^|<’'”C(a,a’)| (161)

which means that both the real and the imaginary part of the characteristic function can be 
measured, by choosing 17 equal to zero and ir/2, respectively.

The circuit corresponding to this method of measurement of the characteristic function is 
displayed in Fig. 31.

10.6. Measuring the Husimi Function
As we have seen before, a phase-space picture of the quantum state of the electromagnetic 
field is also provided by the Husimi function, defined by Eq. (135). Because

(?(a, «’) = — (0|£> 1 (a, at*)pD(o, a*)|0)7F
(162)

where D(a, a*) is the displacement operator, one can see that the Husimi distribution can be 
determined by first displacing the electromagnetic field, as in the Wigner function measure
ment, and then measuring the population of the vacuum state. This can be done for instance

Figure 31. Circuit corresponding to the direct measurement ot the characteristic function foi an electromagnetic 
field in a cavity, t he upper line corresponds to the iiotn. the lower one to the lield. The atomic state undergoes a 
rr, 2 rotation before and alter interacting dispersively with the field. The field produced by the microwave generator 
is out of resonance with the empty cavity mode and therefore does not enter into the empty cavity but becomes 
resonant due to the dispersive interaction between the atom in state |c ami the cavity mode, so that it the atom 
enters the cavilv in state |r’>.a microwave field with complex amplitude rr is injected into the cavity. The magnitude 
|aj ol this field is adjusted by changing the interaction time, whereas the phase is changed by letting the microwave 
field go through a delay line. On the other hand, it the atom is in stale |gnothing happens to the field This implies 
that the field in Ihe cavity undergoes a displacement in phase space, conditioned to the atomic stale. Measurement 
of the atomic state, for two different relative phases between the classical fields in cavities C, and leads to the 
determination of the characteristic function of the field nt the point ri ot phase space. 



Decohternce. Quantum Information, anil Quantum-State Measurement 3X1

by the OND method discussed above. For trapped ions, the measurement of the Husimi 
functioi of the motional state through the measurement of the ground-state population was 
propose 1 in Rei. 1152|.

11. EFFECT OF DISSIPATION
11.1. Modeling the Interaction with the Reservoir
We ditsetss here the effect of dissipation, due to imperfections in the mirrors and diffrac
tion losics. A simple model for dissipation is obtained by coupling the held oscillator (of 
frequency <u) to a bath of harmonic oscillators, which represent the modes of the reservoir. 
We comtider here for simplicity a rotating-wave Hamiltonian, which may be written as

/7 = hwd'd + Y,ha)<i'b<ih‘i + b A + <lft3)
'/ <i

where C are the coupling constants, and the bath oscillators have frequency w .
From (his Hamiltonian, and under the hypotheses of weak coupling and Markov approx

imation. one can derive the following master equation for the reduced densitv operator of 
the lie Id oscillator |57|

<lPf I..t.— = r«i fl -Aw p, -p,«« i

+ 1(1+ — -u'flp, — ^p,fl\5 j (164)

where ii is the average number of thermal photons at frequency w. given by Planck's distri
bution, and I’ — I//C1V. where rc.,v is the dampening time of the cavity mode.

This equation has the general form of the Lindblad equation, which describes the reduced 
dynamics of a system interacting with its environment [153—157]:

where p is the reduced density operator of the system in lhe interaction picture, and we 
have omitted the unitary evolution term ~(i, p\. The operators c, arc closely related 
to the system operators present in the interaction Hamiltonian and % measures the strength 
of the system-environment coupling.

By solving Eq. (164). with the initial state of the mode in the cavity being a coherent super
position of two coherent states, one arrives at the results mentioned in Sections 7.2 and 7.3. 
Rather than doing this, we adopt a procedure that leads directly to the time-dependent 
Wigner function corresponding to the cavity mode.

11.2. Heisenberg Equations of Motion
The method here exposed, and which results from unpublished work of the author with V 
M. Kenkrc. involves solving the Heisenberg equations of motion for the cavity mode and 
bath operators. It is straightforward to write down the evolution equation for the Heisenberg 
operators «(/), />,,(/), and their adjoints. Because the resulting equations are linear, they may 
be solved by the Laplace transform method.

The explicit solution for d(t) is given by

«(/) = fl(())tT/) + £ T),,(/)/>,((» (166)

The Laplace transforms of the c-number functions f(r) and p (t) appearing in (166) are 
given respectively by

f(v) — |,v + ini + </>(s)| ' (I67)

TjJ.v) = -/G'(/(.s + icoj '[.v + ia> + </>(s)| 1 (168) 
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The function <b that appears in both (167) and (168) reflects the nature of the coupling and 
is given in the time domain by

</>(/) = £|G\|:e '■“■/'= ['dv 6(Pk-"'' (169)

In the second equality in (169) we have introduced the quantity 6(p), which equals the 
product of the coupling |G p. assumed to be a function of the frequency alone, and the 
density of states 22<> - w,,) of the 6-oscillators.

Because the total number of oscillator excitations in both oscillators, a'd + 22,, com
mutes with the Hamiltonian and is therefore an invariant, it follows that

<1

11.3. Time-Dependent Wigner Function
In order to get now the time-dependent Wigner function, we express it in terms of the 
corresponding characteristic function:

W(a, a’. I) = — I d~z e"2 (z. z’. t) (I7l)

The characteristic function, which is the expectation value of the displacement operator, 
is given by Eq. (138), expressed in terms of the operators a and d'. One gets

Cir(z, ?•) = Tr [p((l)r-i,,',-’>",'’| (172)

where p((J) denotes the initial density matrix. This expression may be evaluated from 
Eq. (166):

C(z. z') = Tr p(0)exp[z£*(/)<P - z’£(z)o]exp 'E(zrfil(j)b\ - (173)

This result is obtained by using the Baker-Hausdorff identity in the standard manner.
We will take the initial state of the oscillator to be a Schrodinger-cat-like state, and the 

reservoir to be in thermal equilibrium initially, so that the initial density matrix of the entire 
system is an outer product of the thermal density matrix for the 6-oscillators at temperature 
T and the Schrodinger-cat state characterized by an for the ^-oscillator:

p(0) = -(|a„> + | - ) 8 (174)

Here is \/knT, kn is the Boltzmann constant, the trace over the 6-oscillators is denoted 
by Trh, and A = 2| 1 4- exp(-2|a()|’)] is a normalization constant. We denote the thermal 
average of the bath operators by and use the identity [158] 

where x and r are any c-numbers and it is the Bose-Einstein distribution function:

(176)

Evaluation of the characteristic function in Eq. (173) is then straightforward, and its substi
tution in Eq. (171) and computation of the integrals leads immediately, upon using Eq. (170). 
to the explicit expression for the Wigner function for all times and arbitrary temperatures:

exp (177)
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(178)

while the width function K(t), which reduces to I/2 for zero temperatures, is generally larger 
and a function of the temperature:

(179)

Equations (177), (178), and (179) show that the initial Wigner function consists of two 
Gaussians centered around and interference fringes in between. As time evolves, the 
centers of the Gaussians move, and the visibility of the interference fringes also changes. 
The function £(/) governs both the motion of the Gaussians and the change in fringe 
visibility.

The Markovian limit corresponds to setting </>(/) = 175(Z). which implies that

(180)

More generally, one could have a frequency shift as well, in the Markovian limit, arising 
from the fact that the integration in Eq. (169) is from zero to infinity.

For zero temperature, the centers of the two Gaussians decay exponentially with a lifetime 
given by 2/T. while the visibility of the interference fringes decays initially with the lifetime 
l/|o()|’r, which is the decoherence time in this case. After this initial decay of the coherence, 
which for |a0| » 1 is much faster than the decay rate of the energy of the system, the slate 
of the system is very close to a statistical mixture of the two states |a0) and | - «0).

For temperatures different from zero, one has. in addition, a variation in time of the width 
of the Gaussians and of the fringe function, which corresponds to the thermalization of the 
initial state ol the system. This function may be calculated by making another approximation, 
in addition to the Markov one: one assumes that one may extract from the sum in Eq. (179) 
the temperature-dependent factor, setting <u(/ —> w [159]. From Eq. (170), it follows that 

l77,/(OI2 = 1 - l£(')|+ and therefore

Because |f(())| = 1 and lim, |£(/)| —* 0, this expression explicitly displays the evolution of 
the width of the Gaussian contributions to the Wigner function, from the initial value 1/2 
to the final thermal expression 1/2 + ii, where ii is, as in Eq. (164). the number of thermal 
photons at the cavity-mode frequency w. given by Planck’s distribution.

12. WIGNER FUNCTION AND ENTANGLEMENT
The Wigner function may also be useful to characterize entanglement between two or more 
particles, or modes of the electromagnetic field. In fact, it was shown by Banaszck and 
Wddkiewicz [160] that Bell-type inequalities can be established between four points of the 
two-mode Wigner function corresponding to the pure entangled state (|l)|0) - |<)>|I>)/v/2. 
which involves Fock states of the electromagnetic field. Further relations between the Wigner 
and Husimi functions and nonlocality were explored by Banaszek et al. [139, 161, 162]. In 
special, it was shown by these authors that a non-negative Wigner function may have non- 
classical features, involving the violation of Bell-type inequalities. Experimental verification 
was obtained through the homodyne measurement of an optical Einstcin-Podolsky-Roscn 
(EPR) state, produced in the spontaneous parametric down-conversion of an ultrashort clas
sical pump pulse [163]. This experiment was based on measuring interference between the 
light in the EPR state and weak light pulses in a coherent state. In this case, the correspond
ing Wigner function is non-negative, but a Bell-type inequality was shown to be violated.
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More generally, it is possible to show that the Wigner function may provide a quanti
tative measurement of the entanglement between two Fock states of the electromagnetite 
field 1164],

The two-mode Wigner function can be written as

W{a, (3) = ir{pU{a. [3)} (182)

where ri(a, /?) is the product of the displaced parity operator for each mode (A and /?).

H(a.0) = D(a)(-l)W(a)D(0)(-I)""D\/3)

This expression shows that the value of the Wigner function at any point {«. £J} in phase 
space may be measured by first displacing each mode with a complex amplitude (a and 
13 respectively), and then measuring the sum of the parities for the resulting fields. These 
modes may be in a same cavity and have different frequencies, or may be distributed in two 
cavities and have the same or different frequencies. It is easy to generalize the procedure 
discussed before to the direct measurement of the Wigner function corresponding to these 
modes: after displacing the field in each mode (by different complex amplitudes), one lets 
the same atom interact dispersively with the two modes, so as to realize the corresponding 
parity operators. Measurement of the atomic population difference after this interaction 
lends to the multimode Wigner function (182).

Let us consider a two-mode pure state of the form:

= fl|(Z-i)|(b) + ^I<I.-i)|Ih) + cII.-i)KIb) + ^1 (183)

where a,h,c,d are arbitrary complex numbers restrained by the normalization condition 
= 1, and we have restricted ourselves to the state space generated by the Fock 

states with n = (), I in each mode, A and B.
The quantity of entanglement is defined as [165]

E{Pau} = log p.4 }

where p.( is the reduced density operator corresponding to mode A.
For state (183), p_, is given by

/|«|24-|6|2 ac* + bd*\ 
Pa = ,rn{pAii} = I ... . p , I\a*c + b*d |c|- + |r/|7

The von Neumann entropy corresponding to this density operator may be expressed in terms 
of the eigenvalues A± of p

£{p.4«} = ~2{A. log A. + A log A_} (186)

These eigenvalues are the roots of the equation A2 — A 4- /t( 4- n, = 0, where

n, = |a|2|c|24-|fr|2|rf|2-ac*6*c/-<z*cM* (187)

n. = (|r/|2 — |6|2)(|d|2 — |c|2) (188)

It will be shown now that n, and /?2 can be obtained from four points of the two-made 
Wigner function corresponding to the state given by Eq. (183):

M^(a./i) = (ri2/|ri(a.)8)|'l<iB) (189)

It is easy to show that

rF(CTJ2cF2^-t>,(° = |fl|2"|fr|2 + (4|a|1 ~ 1)(|c|2 “ ,4|2) (19Q)

(184)

(185)
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Evaluation of this expression lor two different values ol <r| is enough to determine the 
population differences </ < |* and |</ ]/’!*- and therefore n-. Therefore, two pairs of
symmetric points lying on different ci reunite rences in the plane /-> — n determine n .

On the other hand.

(iyi»
(I) - H'(|<r|t''". <)) 

2|er|e -’"h

More generally, any set ol points of the two-mode Wigner function containing the vertices 
of a rhombus located in the plane ft - J. and centered at « = fl. allows one to calculate 
the eigenvalues of the reduced density matrix for mode A. with the only restriction that the 
diagonals of this rhombus must be different (|a | |rr|). Once the eigenvalues ol p , are 
obtained, through these four points, one can fully determine the quantity of entanglement 
for the proposed system. Obviously the same conditions apply to mode 13.

For a three-mode entangled stale, it is also possible to relate its entanglement with prop
erties of the Wigner function. In particular, it is possible to show that the value of the Wigner 
function at the origin of phase space provides a test for the quantum charactei of a GHZ 
state [IM>|.

13. CONTROL OF DECOHERENCE
Wc have seen that decoherencc is an important mechanism for the establishment ol the 
properties of the classical world. It is also a major obstacle for the realization of quantum 
computers. For this reason, several ideas have been presented for overcoming decoherence 
and protecting quantum information.

13.1. Quantum Error Correction
A possible approach is. in analogy with classical computation, lo encode the information 
redundantly, through error corn'cling codes [I67-I7I], Ihus, for correcting flip errors (in 
which the hit (I gets transformed into the bit I. and vice versa), one may encode the state 
|j/z) = «|()) + /)|l) into the state |'lr) = a|()()0) + b\ 111). The circuit that implements this 
encoding is displayed in Fig. 32.

A Hip error could then be detected in the following wav. if one assumes that the probability 
of having two Hip errors is very small. One measures lhe binary sum of the values of the first 
and third bits, v ® z. and also of the second ami third bits, y® z. For the states |(KI(I) and 
1111), these sums arc equal to zero, but il one of the bits Hips, then at least one of the sums 
becomes equal to one. Then 5 (y©z, v®z) indicates in binary notation the position (1.2. 
or 3) of the bit that has Hipped. I'hc pair of bits (v ® z. .v ® z) constitutes a syndrome that 
allows the identification and the correction of the error. For instance, if a ()()(!) + />|l 11) —» 
u|l()0) + /j|(II Ij. then .S' = ((I, I), implying that the lirsl bit must be corrected.

The measurement of lhe syndrome can he implemented through the circuits displayed in 
Fig. 33. Note that these circuits lead to the measurement of the sums v® z and v® z. but not 
of the individual qubits, which are unaffected by the measurement. They can be corrected 
therefore after the syndrome is known.

This procedure docs not correct phase errors, that transform for instance the qubit n (I) + 
/’|I) into the qubit «|(l) — /»|1). In order to also correct these errors. Shor |I67| proposed an

Figure 32. C'ircuil lor encoding an initial stale Hie stale i!i — nil - b I is encoded into the state 'I' a (HUI -+-
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Measuring v®. Measuring t ® ~

(bi

Figure 33. Circuits for identifying flip errors. The circuit shown in (a) provides the sum v z. where v stands for 
lhe upper hit. and 2 for the third one from up to down The lower hit is used to register the sum. The circuit shown 
in (h) provides, in the same way. the sum v $2.

encoding involving nine qubits:

|0> -> 16) = (1000} + 1111>)(|(MM)> + II1I) )(|(MM>) 4-1111>>/2‘ -
(192)

11 > —► 11 > = (|0()()> - 1111})(1000} - 1111))(|000) -|lll))/23/2

A Hip error can be corrected in the same was as before, by addressing two of the qubits 
inside one of the three groups in lhe above encoding. On the other hand, a phase error can 
he delected by comparing the relative phases ol the states within two of the three groups. 
This can be done by applying to this state products of spin-flip operators <r, corresponding 
to six of the qubits.

A simpler scheme for general quantum error correction, involving only five qubits, was 
proposed in Ref. [168].

13.2. Decoherence-Free Subspaces
A different scheme for protection against dccohercncc involves the concept of decoherencc- 
free subspaces. They arise whenever all the qubits are coupled to lhe same environ
ment [172-175]. An example is provided by the following interaction Hamiltonian, which 
may describe the interaction of N two-level atoms (or N spins) with a common reservoir:

£, = E0U+**+g*‘^) (193)
k

where
5'

S+ = X(K (194)

is a collective spin operator, and a~ is the spin-raising operator for atom i. We note that if 
N = 2, then the two-atom singlet state (| -I—} — | — +))/>/2. belonging to the subspace with 
total angular momentum J = 0, is not affected by the interaction with the environment. For 
N =4. the subspace corresponding to 7=0 has multiplicity equal to two. and therefore it is 
possible to find in this subspace two basis vectors, which would be associated to two states of 
a decoherence-free qubit. The dimensionality of the decoherence-free subspace gets larger 
as N increases.

In practice, the conditions for application of this method may not be easy to achieve, as in 
general the coupling with the environment depends on the position of (he qubit. Experimen
tal demonstrations have been made for twin-photon beams 1176] and trapped ions [177].

Subspaces may also be decoupled from lhe environment through dynamic techniques, 
involving time-dependent short-lime modifications of the dynamics of the system [175. 178|.

13.3. Reservoir Engineering
Another possible technique consists in engineering an artificial environment, which has a 
stronger interaction with the system of interest than the other environments, and which is 
built for the purpose of protecting a given state [179], This is based on the idea of reservoir
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engineering, first proposed by Cirac and Zoller [180]. and closely related to the method of 
Ham Itonian engineering proposed by Matos Filho and Vogel [181]. One submits two internal 
electronic states of the ion to a nonresonant laser field, so that the upper level remains with 
negligible population all the time. Il can be then adiabatically eliminated, leading to a net 
effect that may be characterized as a nonunilary evolution of the center-of-mass of the ion. 
described by an extra term in the center-of-mass master equation, of the form

=Jp+(-^}(2DpD' -D'Dp~pL) D) (195)
az \ 2 /

where the first term on the right-hand side stands for the Lindbladian associated with the 
environment, described by Eq. (165). and the operator D is chosen so that the state one 
wants to protect is the only steady-state of Eq. (195) without the environment term 2 p. For 
Feng » %, where y, are the decay constants in the Lindbladian given by Eq. (165), the steady 
state of Eq. (195) will be very close to the state to be protected (if however lhe state is not 
unique, the term J.p could still induce transitions between the steady states). Besides, any 
state of the system will decay into the state chosen to be protected.

14. DECOHERENCE AND CLASSICALLY CHAOTIC SYSTEMS
The problem of understanding the classical world from quantum theory is subtle and espe
cially challenging when dealing with classically chaotic systems.

Indeed, the definition of classical chaos cannot directly be translated to quantum mechan
ics, as the exponential sensitivity to initial conditions, used to define classical chaos, relies 
on the concept of individual trajectories in phase space, which is absent in the quantum 
formalism. The use of classical phase space distributions, instead of trajectories, helps to cir
cumvent this problem, as they can readily be compared with quasi-probability distributions, 
like the Wigner distribution, defined for the corresponding quantum system.

14.1. The Ehrenfest Time
One expects, however, that the dynamics of the quantum and the corresponding classical 
system should differ, after some time, even if the initial distributions coincide. This time, 
often called lihicnfcsl time oi breaking lime, while large foi integrable systems, can be very 
short lor chaotic systems. Indeed, in this case it has been shown [182. 183] to be proportional 
to the logarithm of lhe inverse of an effective Planck constant, fidl, which is the ratio between 
Planck's constant and a typical action of the system. For integrable systems, on the other 
hand, it scales as an inverse power of 6c(l. In fact, quantum corrections become important 
when the distribution is able to explore the nonlinearities of the potential, which for chaotic 
systems occurs in a logarithmic time-scale due to the exponentially fast stretching of the 
distribution, imposed by chaotic dynamics.

In the macroscopic limit, namely \.H -» (I, one gets an infinite breaking time r,(. Neverthe
less, for any physical system, \.fr is not zero and therefore rh has a finite value, which can be 
short, even for macroscopic systems. Indeed, it has been argued that, due to the shortness of 
the separation lime, components of the solar system should exhibit quantum features, which 
is in contradiction with observation [184-187],

Reconciliation of quantum and classical predictions in this case is provided by the irre
versible coupling of the system with an environment, which leads to the elimination of the 
quantum signatures, so that quantum and classical evolutions remain alike [188-198].

14.2. The Kicked Harmonic Oscillator
An example is provided by the kicked harmonic oscillator, described by the Hamiltonian:

p~ mv-x~ mvK , , 2L, „
H = — 4- —----- 1——— cos(A.r) V8(z - nr) (196)

2/n 2 A- „

where n is the oscillator frequency, r the interval between two consecutive kicks, and K 
their dimensionless amplitude. The kicking potential is position dependent with a periodicity

/.fr
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v
Id)

Figure34. Classical probability distribution for the kicked harmonic oscillator, after f) (a). 3 (h). 6 (c) and '(d) 
kicks.

given by the wave vector k. The same Hamiltonian represents the classical and the quantum 
systems.

The role of effective Planck constant in this case is played by the Lamb-Dicke parameter, 
defined as

(197)

In the following, we describe the system in phase space through the renormalized dimen
sionless variables

pnv kx p kp
v = x\ TT = -y : ' 11 = 7^-—^ = 7---------- 7= (■V 2h 2^rj y/2mvh Zwp/ij

Figure 35. Wigner distribution after 9 kicks for p = 0.5 (a) and >; =0.1 (b). tn both cases, the Wigner furction 
presents negative values, but as the Lamb-Dicke parameter is decreased (doser to the classical limit), then is a 
better correspondence with the overall classical structure shown in f ig. 34d.
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Eigure Classical (tup) and Wigner (bolloin) distributions for K = 2.0, I) — yr/2 = 0.01047, and q - 0.5 (left) or 
>7 0.1 (right). Diffusion leads to a better quantum-classical correspondence as compared lo Eig. 35. Eor r; = 0.1, 
this correspondence is quite impressive, whereas for »/ = 0.5. differences still remain Diffusion also prevents the 
uppearuii.e of small scale structures on classical dynamics (top).

Diffusion may be introduced via a diffusive term in a Fokker-Planck equation, satisfied 
by both the classical and the quantum (Wigner) distributions, which in terms of these renor
malized variables it and n can be written as:

77
y I \4 — + DF4 \ dp- da- / (199)

Figure 34 displays the evolution of the classical distribution with the number of kicks, 
in the absence of diffusion, and for an initial stale that coincides with the ground slate of 
the quantum harmonic oscillator. For the classical distribution, the plot is made in terms of 
the variables it and v, which are obtained from il and v by setting 17 = 1. For other values 
of 17, the renormalized variables ii and v arc used, so that the initial state has always the 
same width. In all cases, we take pt = tt/3 and K = 2. Figure 35 displays the corresponding 
quantum Wigner distribution after 9 kicks, also in the absence of diffusion, and starting with 
the same initial disli ibution. The situation when diffusion is present is displayed in Fig. 36. 
Comparison between these two figures clearly demonstrates the important role played by 
the interaction with the environment in the classical limit of quantum mechanics [198],

15. CONCLUSIONS
In this article, it was shown that techniques used in the field of quantum optics arc helpful 
to demonstrate several peculiar features of quantum physics, of relevance to the area of 
quantum information, and to the discussion of the quantum-classical transition. They allow 
in particular the monitoring of the decoherence process, which not only is at the heart of 
the quantum theory of measurement, bu: is a major obstacle to the realization of quantum 
computers. Its understanding and control is therefore an important aim in current efforts to 
build these devices. It is interesting that a problem of such practical importance should be 
so intertwined with fundamental questions of physics.
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The demonstration that lhe decoherence time decreases with the size of the system does 
not mean, however, that the problem of the classical limit has been solved. In fact, coher
ence does not really disappear, and it is still present in entangled states of the cavity field 
and the rest of the universe. A detailed treatment of this problem would thus involve the 
consideration of the quantum character of the universe. According to Murray Gell-Man and 
Jim Hartle, "quantum mechanics is better and more fundamentally understood within the 
context of quantum cosmology” [199].

Even though fundamental problems related to the classical limit of quantum mechanics 
and the quantum theory of measurement remain to be solved, I think it is fair to say that 
quantum optics has helped us to understand and observe some important pieces of this 
puzzle.

Recent developments in the area of cavity quantum electrodynamics involve the investiga
tion of mesoscopic systems (Cooper-pair boxes) interacting with the quantized electromag
netic field in a cavity [2l)0|. They may provide new directions for the study of entanglement 
and quantum measurement physics with macroscopic objects.
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1. INTRODUCTION
Although there is a lot of quantum physics at the nanoscale, one often has to work hard to 
observe it. In this review, we shall discuss how this can be done for semiconductor quantum 
dots. These arc small islands of lower bandgap material embedded in a surrounding matrix of 
higher bandgap material. For properly chosen dot and material parameters, carriers become 
confined in all three spatial directions within the low-bandgap islands on a typical length 
scale of tens of nanometers. This three-dimensional confinement results in atomic-like car
rier states with discrete energy levels. In contrast to atoms, quantum dots are not identical 
but differ in size and material composition, which results in large inhomogeneous broad
ening* that usually spoil the direct observation of the atomic-like properties. Optics allows 
overcoming of this deficiency by means of single-dot or coherence spectroscopy. Once this 
is accomplished, wc fully enter into the quantum world; the optical spectra are governed 
by sharp and ultranarrow emission peaks—indicating a strong suppression of environment 
couplings. When more carriers are added to the dot (e.g. by means of charging or non-linear 
photoexcitation), they mutually interact through Coulomb interactions, which gives rise to 
intriguing energy shifts of the few-particle states.

This has recently attracted strong interest as it is expected to have profound impact on 
opto-clectronic or quantum-information device applications. A detailed theoretical under
standing of such Coulomb-renormalized few-particle states is therefore of great physical 
interest and importance and will he provided in the first part of this paper. In a nutshell, 
we lind that nature is gentle enough to not bother us too much with all the fine details of 
the semiconductor materials and the dot confinement, but rather allows for much simpler 
description schemes. The most simple one. which we shall frequently employ, is borrowed 
from quantum optics and describes the quantum-dot states in terms of generic few-level 
schemes. Once we understand the nature of the Coulomb-correlated few-particle states and 
how they couple to lhe light, we can start to look closer. Mote specifically, we shall show that 
the intrinsic broadenings of the emission peaks in the optical spectra give detailed informa
tion about the way the states are coupled to the environment. This will be discussed at the 
examples of photon and phonon scatterings. Optics can do more than just providing a highly 
flexible and convenient characterization tool: it can be used as a control that allows transfer 
of coherence from an external laser to the quantum-dot stales and to hereby deliberately 
set the wavefunction of the quantum system. This is successfully exploited in the fields of 
quantum control and quantum compulation, as will be discussed in detail in later parts of 
the paper.
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lhe field of optics and quantum optics in semiconductor quantum dots has recently 
attracted researchers from different communities and has benefited from their respective sci
entific backgrounds. This is also reflected in this paper, where we review genuine solid-state 
models, such as the rigid-exciton or independent-boson ones, as well as quantum-chemistry 
schemes, such as configuration interactions or genetic algorithms, or quantum-optics meth
ods. such as the unraveling of the master equation through "quantum jumps" or the adi
abatic population transfer. The review is intended to give an introduction to the field and 
to provide the interested reader with the key references for further details. Throughout. 1 
have tried to explain briefly all concepts and to make the manuscript as self-contained as 
possible. The paper has been organized as follows. In Section 2, wc give a brief overview 
of the field and introduce the basic concepts. Section 3 is devoted to an analysis of the 
Coulomb-renormalized few-particle states and of the more simplified few-level schemes for 
their description. How these stales can be probed optically is discussed in Section 4, The 
coherence and decoherence properties of quantum-dot states are addressed in Section 5. and 
we show how single-photon sources work. Finally. Sections 6 and 7 discuss quantum-control 
and quantum-computation applications. To keep the paper as simple as possible, wc have 
postponed several of the computational details to the various appendices.

2. MOTIVATION AND OVERVIEW
2.1. Quantum Confinement
The hydrogen spectrum

provides a prototypical example for quantized motion: only certain eigenstates character 
ized by the quantum number n (together with the angular quantum numbers t and ) 
are accessible to the system. Although the detailed form is due to the Coulomb potential 
exerted by lhe nucleus. Eq. (I) exhibits two generic features: first, the spectrum e„ is dis
crete because the electron motion is confined in all three spatial directions; second, the 
Rydberg energy scale Eo = and Bohr length scale = lr/(nie~) are determined
by the natural constants describing the problem (i,e., the elementary' charge e. the electron 
mass in. and Planck's constant ft). These phenomena of quantum confinement and natu
ral units prevail for the completely different system of semiconductor quantum dots. These 
arc semiconductor nanostructures where the carrier motion is confined in all three spatial 
directions [1-3]. Figure 1 sketches two possible types of quantum confinement: in the weak 
confinement regime of Fig. la, the carriers are localized at monolayer fluctuations in the 
thickness of a semiconductor quantum well; in the strong confinement regime of Fig. lb. the 
carriers are confined within small islands of lower bandgap material embedded in a higher 
bandgap semiconductor. Although the specific physical properties of these systems can differ 
drastically, the dominant role of the three-dimensional quantum confinement establishes a 
common link that will allow us to treat them on the same footing. To highlight this common

Figure 1. Schematic sketch of the (a) weak and th) strong confinement regime. In the weak. confinement regime. 
the carriers arc usually confined al monolayer fluctuations in the width of a narrow quantum well, which form 
terraces ot typical size IUO x 10(1 x 5 nm1 [4-X|. In lhe strong confinement regime. the carriers are confined within 
pyamidal or lens-shaped islands of lower-bandgap material, usually formed in strained layer epilaxv. with typical 
spatial extensions of 10 x 10 x 5 nm1 |2, 9-11|.
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perspective as well as the similarity to atoms, in the following we shall frequently refer to 
quantum dots as artificial atoms. In the generalized expressions for Rydberg and Bohr

E, = c?/(2k,«J ~ 5meV ... semiconductor Rydberg (2)

a, — h2Kj(ntse2) ~ lOnm .. .semiconductor Bohr (3)

wc account for the strong dielectric screening in semiconductors, k. ~ Id. and the small 
electron and hole effective masses /?i, ~ 0.1 m [12, 13], Indeed. Eqs. (2) and (3) provide 
useful energy and length scales for artificial atoms: the carrier localization length ranges 
from 100 nm in the weak to about 10 nm in the strong confinement regime and the primary 
level splitting from 1 meV in the weak to several tens of meV in the strong confinement 
regime.

The artificial-atom picture can further be extended to optical excitations. Quite gener
ally. when an undoped semiconductor is optically excited, an electron is promoted from a 
valence to a conduction band. In the usual language of semiconductor physics, this pro
cess is described as the creation of an electron-hole pair [12. 13]: the electron describes the 
excitation in the conduction band, and the hole accounts for the properties of the missing 
electron in the valence band. Conveniently, electron and hole arc considered as indepen
dent particles with different effective masses, which mutually interact through the attractive 
Coulomb interaction. What happens when an electron-hole pair is excited inside a semicon
ductor quantum dot? Things strongly differ for the weak and strong confinement regime: 
in the first case, the electron and hole form a Coulomb-bound electron-hole complex— 
the so-called exciton [12]—whose center-of-mass motion becomes localized and quantized 
in presence of the quantum confinement; in the latter case confinement effects dominate 
over the Coulomb ones and give rise to electron-hole states with dominant single-particle 
character. However, in both cases the generic feature of quantum confinement gives rise to 
discrete, atomic-like absorption and emission-lines—and thus allows for the artificial-atom 
picture advocated above.

2.2. Scope of the Chapter
Quantum systems can usually not be measured directly. Rather, one has to perturb the sys
tem and measure indirectly how it reacts to the perturbation. This is schematically shown in 
Fig. 2 (shaded boxes): an external perturbation (e.g., a laser field) acts upon the quantum 
system and promotes it from the ground to an excited state; the excitation decays through 
environment coupling (e.g., photo emission) and finally a measurement is performed on

Figure 2. Schematic representation of optical spectroscopy (shaded boxes) and quantum control (dashed lines): an 
external Held acts upon the system and promotes it from the ground to an excited state; the excitation decays thtough 
environment coupling (e.g.. photo emission) and a measurement is performed indirectly on the environment (e.g., 
photo detection). In case of quantum control, the perturbation is tailored such that a given objective (e.g.. the wish 
to channel the system from one state to another) is fulfilled in the best way. This is usually accomplished by starting 
with some initial guess for the external held, and to improve it by exploiting the outcome of the measurement The 
arrows in the figure indicate the flow of information.
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seme part of the environment (e.g., through photo detection). As we shall see. this mutual 
interaction between system and environment—the environment influences lhe system and 
in turn becomes influenced by it (indicated by lhe arrows in Fig. 2, which show the flow of 
information)—plays a central role tn the understanding of decoherencc and the measure
ment process [14].

Optical spectroscopy provides one of the most flexible measurement tools, as it allows for 
a remote excitation and detection. It gives detailed information about the system and its 
environment. This is seen most clearly at the example of atomic spectroscopy, which played 
a major role in the development of quantum theory and quantum electrodynamics 115| and 
most recently has even been invoked in the search for nonconstant natural constants 116]. 
In a similar, although somewhat less fundamental manner, spectroscopy of artificial atoms 
allows for a detailed understanding of both electron-hole states (Section 4) and of the 
way these slates couple to their environment (Section 5). On the other hand, such detailed 
understanding opens the challenging perspective to use the external fields in order to con
trol the quantum system. More specifically, the coherence properties of lhe exciting laser 
arc transfered to quantum coherence in the system, which allows deliberate setting of the 
state of the quantum system (sec lower part of Fig. 2). Recent years have seen spectacular 
examples of such light-matter manipulations in atomic systems, for example, Bose-Einstein 
condensation or freezing of light (sec, e.g.. Chu 117] and references therein). This tremen
dous success also initiated great stimulus in the field of solid-state physics, as we shall discuss 
for artificial atoms in Section 6. More recently, the emerging fields of quantum computa
tion [18-2(1] and quantum communication [21] have become another driving force in the 
field. They have raised the prospect that an almost perfect quantum control would allow for 
computation schemes that would outperform classical computation. In turn, a tremendous 
quest for suited quantum systems has started, ranging from photons over molecules, trapped 
ions and atomic ensembles, to semiconductor quantum dots. We will briefly review some 
proposals and experimental progress in Section 7.

2.3. Quantum Coherence

Quantum coherence is the key ingredient and workhorse of quantum control and quantum 
computation. To understand its essence, let us consider a generic two-level system with 
ground state |0) and excited state |1) (e.g., an artificial atom with one electron-hole pair 
absent or present). The most general wavefunction can be written in the form

(4)

with a and [3 arbitrary complex numbers subject to the condition |a|*’ + |)8|- - 1. Through
out this paper, we shall prefer the slightly different description scheme of the Bloch vector 
picture [12, 15. 22], Because the state (4) is unambiguously defined only up to an arbitrary 
phase factor—which can for instance be used to make a real—it can be characterized by 
three real numbers. A convenient representation is provided by the Bloch vector

«= 2 ?m( a*/3) 
\ |a|2 - W2 >

where the z-component accounts for the population inversion, which gives the probability for 
finding the system in either the upper or lower state, and the a and v components account 
lor the phase relation between a and (3 (i.e., the quantum coherence). As we shall see. this 
coherence is at the heart of quantum computation and is responsible for such characteristic 
quantum features as interference or entanglement. For an isolated system whose dynamics 
is entirely coherent (i.e., completely governed by Schrodinger's equation), the norm of the 
Bloch vector is conserved. A pictorial description is provided by the Bloch sphere shown in 
Fig. 3, where in case of a coherent evolution u always slays on the surface of the sphere.
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Figure 3. Schematic rupreseniation ol the Bloch vector «. Fhc component accounts tor the population inversion 
and gives ihe probability lor finding the system in either the upper or lower stale. Ihe a and v components 
account for quantum coherence (i.e., the phase relation between the upper and lower state), which is responsible 
lor quantum-interference effects. For the coherent lime evolution of an solated quantum system, u slays at the 
surface of the Bloch sphere. For an incoherent time evolution in presence ol environment couplings, u dips into 
the Bloch sphere: the system decoheres.

2.4. Decoherence
Isolated quantum systems are idealizations that cannot be realized in nature, as any quantum 
system interacts with its environment. In general, such environment couplings corrupt the 
quantum coherence and the system suffers decoherence. Strictly speaking, decoherence can 
no longer be described by Schrodinger’s equation but calls for a more general density-matrix 
description, within which, as will be shown in Section 5. the x and y components of the 
Bloch vector are diminished—u dips into the Bloch sphere. The most simple description for 
the evolution of the Bloch vector in presence of environment couplings is given by [12. 15] 

where the first two equations account for the above-mentioned decohcrence losses, and 
the last one for relaxation where the system is scattered from the excited to the ground 
state because of environment couplings. T, and T2 are the relaxation and decoherence time, 
sometimes referred to as longitudinal and transverse relaxation times. They are conveniently 
calculated within the framework of Fermi’s golden rule, where

= 2ir ( D(o))d(i)g2 8(E, - Ef - w) (?)

accounts for the scattering from the initial slate i to the final state f through creation of 
an environment excitation with energy w. for example, photon; D(a)) is the density of slates 
and g the matrix element associated to the interaction. In semiconductors of higher dimen
sion, T2 is always much shorter than 7t [12, 27] because all elastic scatterings (i.e.. processes 
where no energy is exchanged, such as impurity or defect scatterings) contribute to decoher
ence. whereas only inelastic scatterings (i.e.. processes where energy is exchanged, such as 
phonon or mutual carrier scatterings) contribute to relaxation. On very general grounds, one 
expects that scatterings in artificial atoms become strongly suppressed and quantum coher
ence substantially enhanced: this is because in higher dimensional semiconductors, carriers 
can be scattered from a given initial state to a continuum of final states—and therefore 
couple to all environment modes <u—whereas in artificial atoms the atomic-like density of 
states only allows for a few selective scatterings with w = E, — Et. Indeed, in the coher
ence experiment of Bonadeo et al. |28| the authors showed for a quantum dot in the weak 
confinement regime that the broadening of the optical emission peaks is completely life
time limited, that is. T2 = 2 7\ ~ 40 ps—a remarkable linding in view of the extremely short
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table I. Relations between /, and / ami typical scattering limes lor spontaneous pho 
ton emission and phonon-assisted dephasing |23-25|. In the last two columns, we report 
experimental values measured in lhe weak and strong confinement regime, respectively.

interaction mechanism Relation Weak Strong

Photon emission
Phonon dephasing

£ 
«

1 
i

40 ps [26| ns [24J 
~5 ps |24|

sub-picosccond dccoherence times in conventional semiconductor structures. Similar results 
were also reported for dots in the strong confinement regime [24]. However, there it turned 
out that at higher temperatures a decoherence channel dominates, which is completely inef
fective in higher dimensional systems. An excited electron-hole pair inside a semiconductor 
provides a perturbation to the system and causes a slight deformation of the surrounding 
lattice. As will he discussed in Section 5.5, in many cases of interest this small deformation 
gives rise to decoherence but not relaxation. A ^.-estimate and some key references arc 
given in Table 1.

2.5. Quantum Control
Decoherence in artificial atoms is much slower than in semiconductors of higher dimension 
because of the atomic-like density of slates. Yet. it is substantially faster than in atoms 
where environment couplings can be strongly suppressed by working at ultrahigh vacuum—a 
procedure not possible for artificial atoms that are intimately incorporated in the surrounding 
solid-stale environment. Let us consider for illustration a situation where a two-level system 
initially in its groundstate is excited by an external laser field tuned to the 0-1 transition. As 
will be shown in Section 4. the lime evolution of the Bloch vector in presence of a driving 
field is of the form

u — — Ht’i x u (8)

with the Rahi frequency 11 determining the strength of the light-matter coupling and the 
unit vector along .v. Figure 4a shows lhe trajectory of the Bloch vector that is rotated from the 
south pole ri of lhe Bloch sphere through the north pole, until it returns after a certain lime 
(given by the strength 11 of the laser) to the initial position — e,. Because of the 27T-rotation 
ol the Bloch vector, such pulses arc called 277-pulses. If the Bloch vector evolves in presence 
of environment coupling, the two-level system becomes entangled with the environmental 
degrees of freedom and suffers decoherence. This is shown in Fig. 4b for the phonon-assisted 
dccoherence described above: while rotating over the Bloch sphere the length of u decreases, 
and the system docs not return to its original position. Quite generally, in the process of 
dccoherence it lakes some time lor the system to become entangled with its environment. 
It during this entanglement buildup the system is acted upon by an appropriately designed

Figure 4. Trajectories of the Bloch vector u lor a 2tr-pulse and for (a) an isolated two-level system |Il = —tit-, is 
the vector defined in Eq. (S)|: (b) a two-level system in presence of phonon-assisted dephasing (see Section 5.5) 
and a Gaussian pulse envelope; because of dccoherence the length of u decreases |29, 3(l|: (c) same as (b) but lor 
an optimal-control pulse envelope (for details, sec Section (>.2),
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Table 2. Summan of some important parameters for semiconductor quantum dots in the weak and strong con
finement regime. The pitman and fine-structure splittings iclei to the level splittings associated Io charge and '.pin 
degrees of freedom, respectively (for details see text).

Property ( ontincmenl Group Method Result

Carrier localization Weak Matsuda el al. |K| Near-field microscopy 100 x 100 x 5 run'
length

Inhomogeneous Weak Guest et al. [311 Optical spectroscopy 1 -5 meV
broadening

Primary level splitting Weak Guest et al. [311 Local spectroscopy 0.1-1 meV
Fine-structure splitting Weak Tischler et al. |32| Magnetoluminescence 10-100 peV
Exciton decohercnce Weak Bonadeo et al. Coherence spectroscopy 4(1 ps

lime |26, 28|
Carrier localization Strong Bimberg et al |2| III x II) x 5 nm’

length
Inhomogeneous St l ong Bimberg cl al. [2| 10 50 meV

broadening
Primary level splitting Strong Bimberg el al. 121 10-100 meV
Fine-structure splitting Strong Bayer et al. [3.3| Magnetoluminescence 10 100 gc-V
Exciton decohercnce Strong Borri et al. |24| Four-wave mixing -ns“

time
Spin relaxation tune Strong Lenihan et al. |34| ( ohcrcncc spectroscopy 750 ps

Strong Lenihan et al. |34| Coherence spec!roscopy >40 ns
Strong Paillard et al. |35| Luminescence ■'Frozen earner

spins"

' There exists an additional phonon assisted decohercnce that is strongly temper, lure dependent and can dominate at higher 
temperatures.

control, it becomes possible to channel back quantum coherence from the environment to 
the system and to suppress decohercnce. This is shown in Fig. 4 for an optimized laser field— 
for details see Section t>.2—which drives u from the south pole through a sequence of excited 
stales back to the initial position without suffering any decohercnce losses. Alternatively, 
in presence of strong laser fields, the quantum dot states become renormalized, which can 
be exploited for efficient population transfers. Thus, quantum control allows to suppress or 
even overcome decohercnce losses. In Section 6 we will discuss prototypical quantum-control 
applications and ways to combat decohercnce in the solid state.

2.6. Properties of Artificial Atoms
The picture wc have developed so far describes artificial atoms in terms of effective few-level 
schemes. They can be characterized by a few parameters, which can be either obtained from 
ah initio type calculations or can be inferred from experiment. Table 2 reports some of the 
relevant parameters for artificial atoms. For both the weak and strong confinement regime, 
the inhomogeneous broadening due to dot-size fluctuations is comparable to the primary 
level splittings themselves, and spectroscopy of single dots (Section 4) is compulsory to 
observe the detailed primary and fine-structure splittings. Decoherence and relaxation times 
for electron-hole states range from tens to hundreds of picoseconds, which is surprisingly 
long for the solid state. This is because of the atomic-like density of states and the resulting 
inhibition of mutual carrier scatterings and the strong suppression of phonon scatterings. Yet, 
when it comes to more sophisticated quantum-control or quantum-computation applications 
(Sections 6 and 7) such sub-nanoscecond relaxation and decoherence appears to be quite 
limiting. A possible solution may be provided by spin excitations, with their long lifetimes 
because of weak solid-state couplings.

3. FEW-PARTICLE STATES
Electron-hole states in semiconductor quantum dots can be described at different levels 
of sophistication, ranging from ab initio type approaches over effective solid-state models 
to generic few-level schemes. All these approaches have their respective advantages and 
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disadvantages. For instance, initio type approaches provide results that can be quanti
tatively compared with experiment, but require a detailed knowledge of the confinement 
potential which is difficult to obtain in many cases of interest and often give only little insight 
into the general physical trends. On the other hand, few-level schemes grasp all the essential 
features of certain electron-hole states in a most simple manner, but lhe relevant parame
ters have lo be obtained from either experiment or supplementary calculations. Depending 
on the physical problem under consideration, we shall thus chose between these different 
approaches. A description in terms of complementary models is not at all unique to artificial 
atoms, but has proven to be a particularly successful concept for many-electron atoms. These 
are h ghly complicated objects whose physical properties depend on such diverse effects as 
spin-orbit coupling, exchange interactions, or Coulomb correlations—and thus make first- 
principles calculations indispensable for quantitative predictions. On the other hand, in the 
understanding of the aufbait principle of the periodic table, it suffices to rely on just a few 
general rules, such as Pauli's principle, Hund's rules for open-shell atoms, and Coulomb 
correlation effects for transition metals. Finally, for quantum optics calculations, one usually 
invokes generic few-level schemes, for example, the celebrated A- and V-type ones, where 
all details of the relevant states arc lumped into a few effective parameters. As we shall 
see, similar concepts can successfully be extended to semiconductor quantum dots. In the 
remainder of this section, wc shall discuss how this is done.

Throughout, we assume that lhe carrier states in semiconductor quantum dots arc 
described within a many-body framework such as density functional theory [36], and can be 
described by the effective single-particle Schrodinger equation (/i = I throughout)

v- \
- ------- |-t/(r) )«//(r) = 6t/r(r) (9)

In the parentheses on the left-hand side, the first term accounts for the kinetic energy, where 
m is the tree electron mass, and the second one for the atomic-like potential of the crystal 
structure. For an ideal periodic solid-state structure, the eigenstates i//„t(r) = exp(iAr) 
are given by the usual Bloch function u, with n the band index and A the wavevector, and 
the eigenenergies provide the semiconductor bandstructure (12, 13, 36], How are things 
modified for semiconductor nanostructures? In this paper, we shall be concerned with quan
tum dots with spatial extensions of typically tens of nanometers in each direction, which 
consist of approximately I million atoms. This suggests that the detailed description of the 
atomic potential U(r) of Eq. (9) is not needed and can safely be replaced by a more phe
nomenological description scheme. A particularly simple and successful one is provided by 
the envelope-function approach [12. 13], which assumes that the single-particle wavefunctions 
t/*(r) are approximately given by the Bloch function m of the ideal lattice modulated by an 
envelope part </>(/*) that accounts for the additional quantum confinement. In the follow
ing, wc consider direct 111-V semiconductors (e.g., GaAs or InAs). whose conduction and 
valence band extrema are located at A = 0 and describe the band structure near the minima 
by means of effective masses ni(, for electrons and holes. Then,

(-—+ E,(r) W(r) = e^(r) (10)
\ /

approximately accounts for the electron and hole states in presence of the confinement. 
Here, U, (l(r) is the effective confinement potential for electrons or holes, and m, is the 
effective mass of electrons or holes that may depend on position (e.g., to account for the 
different semiconductor materials in the confinement of Fig. lb). In the literature, numerous 
theoretical work—mostly based on the kp [37-40] or empirical pseudopotential framework 
[41-43]—has been concerned with more sophisticated calculation schemes for single particle 
states. These studies have revealed a number of interesting peculiarities associated to effects 
such as piezoelectric fields, strain, or valence-band mixing, but have otherwise supported 
the results derived within the more simple-minded envelope-function and effective-mass 
description scheme for few-parlicle states in artificial atoms.
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3.1. Excitons
3.1.1. Semiconductors of Higher Dimension
What happens for optical electron-hole excitations that experience in addition to the quan
tum confinement also Coulomb interactions? Wc first recall the description of a Coulomb- 
correlated electron-hole pair inside a bulk semiconductor. Within the envelope-function and 
effective mass approximations

(H)

is the Hamiltonian for lhe interacting electron hole system, with a\ lhe sialic dielectric 
constant of the bulk semiconductor. In the solution of Eq. (Il), one usually introduces the 
center-of-mass and relative coordinates R = (m,r, + inhrh)/M and p = r, - rh (I2|. and 
decomposes // = //+// into the parts

2 A/ (I2)

with M = in, + inh and p = Correspondingly, the total wavefunction can be
decomposed into parts <l»(Jf) and </>(p) associated to the center-of-mass and relative motion, 
respectively, whose solutions arc provided by the Schrodinger equations

//<!>(/?) = ><!>(«). lulpp) = eip(p) (13)

Here, the first equation describes lhe motion of a free particle with mass A/ and the second 
one the motion of a particle with mass p in a Coulomb potential —e2/K,|p|. I'he solutions 
of lhe latter equation are those of the hydrogen atom but for the modified Rydberg energy 
E, and Bohr radius </, of Eqs. (2) and (3). Similar results apply for the lower dimensional 
quantum wells and quantum wires, provided that <l>(p) is replaced by the corresponding two- 
and one-dimensional wavefunction, respectively. For instance (12],

, , . 4 I 2p\
= — exp----- (14)

is the approximate groundstatc wavefunction for a two-dimensional quantum well, whose 
energy is = —4£,. For a quantum well of finite width. Eq. (14) only accounts for the 
in-plane part of the exciton wavefunction. If the quantum well is sufficiently narrow, the 
total wavefunction is approximately given by the product of (14) with the single-particle 
wavefunctions for electrons and holes along z—that is, those of a “particle in the box” [ 12]— 
and the exciton energy is the sum of €u with the single-particle energies for the z-motion of 
electrons and holes (44-46J.

3.1.2. Semiconductor Quantum Dots
How are the results of the previous section modified in presence of additional quantum 
confinements U,.(r, ) and t/;,(rZl) for electrons and holes? In analogy to Eq. (II) we describe 
the interacting electron and hole subject to the quantum-dot confinement through the 
I lamiltonian 

l he first term on the right-hand side accounts for the motion of the carriers in presence 
of U,. Because ol the additional terms U,(r,). a separation into center-of-mass and relative 
motion is no longer possible. Provided that lhe potentials arc sufficiently strong, the carrier 
motion becomes confined in all three spatial directions. Suppose that L is a characteristic 
confinement length. Then two limiting cases can be readily identified in Eq. (I5): in case of 
weak confinement where L » a,. the dynamics of the electron-hole pair is dominated by the 
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Coulomb attraction, and the confinement potentials (/’(r,) only provide a weak perturbation: 
in the opposite case of strong confinement where /. <K </,. confinement effects dominate, and 
the Coulomb part ot Eq. (15) can be treated perturbatively. In the following we shall discuss 
both eases in slightly more detail.

3.1.2.1. Weak Confinement Regime We first consider the weak-confinemeni regime. 
A typical example is provided by monolayer interface fluctuations in the width of a semicon
ductor quantum well, as depicted in Fig. la. where the electron-hole pair becomes confined 
within (he region of increased quantum-well thickness [4-6. 8, 31, 48-50]. If the resulting 
confinement length L is much larger than the Bohr radius a,, the correlated electron-hole 
wavefunction factorizes into a center-of-mass and relative part, where, to a good degree of 
approximation, the relative part is given by the wavefunction of the quantum well ("rigid- 
exciton approximation” |46]). It then becomes possible to integrate over p and to recover 
an effective Schrodinger equation for the exciton center-of-mass motion (for details, see 
Appendix A)

(~2M<l6>

where U (R) is a potential obtained through convolution of t/(,(/•,.) and (.^(rj with the two- 
dimensional exciton wavefunction (14). Figure 5 shows for a prototypical square-like con
finement the corresponding U(R). which only depicts small deviations from the rectangular 
shape. The corresponding wavefunctions and energies closely resemble those of a particle in 
a box. Figure 6 shows for the confinement potential depicted in Fig. 5 the square modulus 
of (a) the v-like groundstatc, (b.c) the p-likc excited states with nodes along v and v. and 
(d) the third excited state with two nodes along ,v. A word of caution is in order. Despite 
the single-particle character of the envelope-part i|>(/?) of the exciton wavefunction, that of 
the total wavefunction <!<(/?) </>0(r ) is dominated by Coulomb correlations. This can easily be 
seen hy comparing the length scale of single-particle states /,„ /./// (n is the single-particle 
quantum number) with the excitonic Bohr radius To resolve spatially the variations of 
<A,i(p) on the length scale of we have to include states up to l.n ~ Hence, n L/ns 
which, because of I. u, in the wcak-conlincincnt regime, is a huge number.

Figure 5. Confinement potential along a tor the center-of-mass motion of excitons (solid line) and bicxcitons 
(dashed line). The insets report the probability distributions for finding an (e) electron or (h) hole at a given 
distance from the center-of-mass coordinate R (c’.lf) same tor bicxcitons—the reduced probabilitv at the center of 
th ) is attributed to the repulsive part y of the trial wavefunction. In the calculations, we use material parameters 
representative tor (iaAs and assume an interface-fluctuation confinement of rectangular shape with dimensions 
ltd) x 71) nm ', and monolayer fluctuations of a 5 nm thick quantum well [47],
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Figure 6. Contour map showing the square modulus of the wavefunction <l>,(R) tor the ccntcr-ol-mass motion ot 
(a) the s-typc groundstate, (b,c) the p-type first excited states with nodes along .v and y. and (d) the third excited 
state with two nodes along .v. We use material parameters of GaAs and the confinement potential depicted in 
Fig. 5.

3.1.2.2. Strong Confinement Regime Things ate completely different in this strong
confinement regime where the confinement length is smaller than the excitonic Bohr radius

This situation approximately corresponds to that of most types of self-assembled quantum 
dots [ I-3] where carriers are confined in a region of typical size 10 x 10 x 5 nm’. To the 
lowest order of approximation, the groundstate 'Fu of the interacting electron-hole system is 
simply given by the product of electron and hole single-particle states of lowest energy (see 
also Fig. 7)

l^o(r.-)|2|<^o(G.)l:!Eo = ~ y

(17)

(18)

Here, the groundstate energy E() is the sum of the electron and hole single-particle ener
gies reduced by the Coulomb attraction between the two carriers. Excited electron-hole 
states 'I'( can be obtained in a similar manner by promoting the carriers to excited single
particle states. In many cases, the wavefunction ansalz of Eq. (17) is oversimplified. In 
particular, when the confinement length is comparable to the exciton Bohr radius the

electrons

semiconductor bandgap

holes

Figure 7. Schematic representation of the two possible groundstates of bright excitons in the strong confinement 
regime. The solid lines indicate the single-particle stales of lowest energy and the dotted lines the first excited 
states. Excited exciton states can be obtained by promoting the electron or hole to excited single-particle states. 
The black triangles in the left and right panel indicate the different spin orientations of the electron and hole, as 
discussed in more detail in Section 3.1.3.
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electron-hole wavefunction can no longer be written as a simple product (17) of two single
particle states. We shall now briefly discuss how an improved description can be obtained. To 
this end. wc introduce the fermionic field operators and </’ which, respectively, describe 
the creation of an electron in state p. or a hole in state r (lor details, see Appendix B.l). 
The electron-hole wavefunction of Eq. (17) can then be written as

where |0' denotes the semiconductor vacuum (i.c., no electron-hole pairs present), and 
0t. and 0/r denote the electron and hole single-particle states of lowest energy. Although 
Eq. (19) is an eigenstate of the single-particle Hamiltonian, it is only an approximate eigen
state of the Coulomb Hamiltonian. Wc now follow Hawrylak [51] and consider a simpli
fied quantum-dot confinement with cylinder symmetry. I he single-particle states can then 
be labeled by their angular momentum quantum numbers, where the groundstate () has ,v- 
type symmetry and the degenerate first excited states ±1 have /’-type symmetry. Because 
Coulomb interactions preserve the total angular momentum [3], the only electron-hole states 
coupled by Coulomb interactions to the groundstatc are those indicated in Fig. 8. Wc have 
used that the angular momentum of the hole is opposite to that of the missing electron.
Within the electron-hole basis |0) = |(JUM and | ± 1} = l± i ., ±1(|) the full Hamiltonian
matrix is of the form

/ 1) r J/ \

+ (20)
V r Aip pp "J

where Eo is the energy (18) of the exciton groundstate, A the detuning of Ihe first excited 
state in absence of Coulomb mixing, and I7 and K describe the Coulomb couplings 
between electrons and holes in the s and /’ shells (Fig. 8). The Coulomb renormalized eigen
states anti energies can then be obtained by diagonalizing the matrix (2(1). Results of such 
configuration-interaction calculations will be presented in Section 4 (sec Appendix B for 
more details).

3.1.3. Spin Structure
Besides the orbital degrees of freedom described by the envelope part of the wavefunction, 
the atomic part additionally introduces spin degrees of freedom. For Hl-V semiconductors, 
an exhaustive description of the band structure near the minima (at the so-called T point) 
is provided by an eight-band model [12, 52] containing the .v-like conduction band states 
|s, ±|) and the /’-like valence band states |^.±s), ||,±')» ancl [note that these
s- and /’-states refer to the atomic orbitals and have nothing to do with those introduced 
in Eq. (20)]. In the problem of our present concern, four of the six valence band states 
can be approximately neglected: first, the |5,±|) ones, which arc energetically split off by 
a few hundred meV because of spin-orbit interactions [12, 13, 52, 53|: second, the states

Figures. Schematic sketch of the configuration-interaction calculation of the Coulomb-correlated electron hole 
stales in the restricted single-particle basis of the ground states 0 and the first excited slates - I (left) and +1 (right): 
the numbers correspond t<> the angular momenta of electrons and holes. The figures show the allowed Coulomb 
transitions between different electron and hole states, indicated by the filled and open triangles. 
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l^. ±|) associated to the light-hole hand, which are energetically split off in case of a strong 
quantum confinement a ong the growth direction z (e.g.. those shown in Fig. 1).

Thus, the atomic part of the electron and hole states of lowest energy is approximately 
given hy the s-type conduction band states |.v, and the p-typc states |s, ±s) associated 
to the heavy-hole band. From these two electron and hole states, wc can form four possible 
electron-hole states | ± |, ±5) and | ± where the entries account for the 2-projection 
of the total angular momentum m) for the electron and hole, respectively. A word of caution 
is in order: because the hole describes lhe properties of the missing electron in the valence 
band, its /n value is opposite of that of the corresponding valence band state. For that 
reason, the usual optical selection rules Aj = 0 and A/??, — ±1 [ 12| for the optical transitions 
under consideration translate to the matrix elements 

(I er - (21)

with the optical dipole matrix clement, |0) the semiconductor vacuum, and the polar
ization vector for left- or right-handed circularly polarized light. Below, wc shall refer to hole 
states with = ±5 as holes with spin-up or spin-down orientation and to exciton stales 
| ± as excitons with spin-up or spin-down orientation. Thus, for optically allowed 
excitons, the spins of the electron and hole point into opposite directions, as indicated in 
Fig. 7 and Table 3. The degeneracy of the four exciton states of Table 3 is usually split. 
First, the bright and dark excitons are separated by a small amount 8 ~ 10-100 /ieV because 
of the electron-hole exchange interaction [32, 33, 43, 54], This is a genuine solid-state effect 
that accounts for the fact that an electron promoted from the valence to lhe conduction 
band no longer experiences the exchange interaction with itself, and we thus have to correct 
for this missing interaction in the band structure description. It is a repulsive interaction 
that is only present for electrons and holes with opposite spin orientations. Additionally, in 
case of an asymmetric dot confinement, the exciton eigenstates can be computed from lhe 
phenomenological Hamiltonian [33]

(8 8' I) 0 \_ 1 8r 8 () 0
** exchange -y (.) 0 -5 8"

V’ 0 8" -v
where 8' and 8” are small constants accounting for the asymmetry of the dot confinement. 
The corresponding eigenstates arc linear combinations of the exciton states of Table 3, 
for example, (||, - 5) ± | - |, §))/s/2 for the optically allowed excitons, which are linearly 
polarized along x and y. If a magnetic field is applied along the growth direction z, the two 
bright exciton states become energetically further split. Alternatively, if in the Voigt geometry 
a magnetic field is applied along x. the two bright exciton states become mixed [33]; 
we will use this fact later in the discussion of possible exciton-based quantum computation 
schemes.

Tabic 3. Spin structure of electron-hole stales.

Electron-hole state Optical coupling Polarization notation

i + l, -?> bright c
A
V

1 bright e *

i+i.+b dark A'

dark AT
T.

The first column reports the r-components of the angular momenta for the electron and hole, 
the second column indicates whether the exciton can be optically excited (bright) or not (dark), 
the third column shows the polarization vector ol the transition. and the Iasi column gives the 
short-hand notation used in this paper; Ihu upper triangles indicate whether the electron spin points 
upward (AV) or downward (&▼) and the lower triangles give the c< responding information about 
the h<Me spin
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3.2. Biexcitons
In semiconductors of higher dimension, a few other Coulomb-hound electron-hole com
plexes exist: for instance, the negatively charged exciton, which consists of one hole anil two 
electrons with opposite spin orientations, and the biexciton, which consists of two electron
hole pairs with opposite spin orientations. In both cases, the binding energy is of the order 
a few meV and is attributed to genuine Coulomb correlations: in the negatively charged 
exciton, the carriers arrange such that the hole is preferentially located in-between the two 
electrons and thus effectively screens the repulsive electron-electron interaction: similarly, 
in the biexciton, the four carriers arrange in a configuration reminiscent of the //2 molecule, 
where the two heavier particles—the holes—are located at a fixed distance, and the lighter 
electrons are delocalized over the whole few-particle complex and are responsible for the 
binding (sec insets of Fig. 5). In the literature, a number of variational wavefunction ansiilze 
are known for the biexciton description, for example, that of Kleinman [44]

^(r. .rh,r, .rl: ) = exp|-(,y. + )/2| cosh|/3(/,. - r,. )J A (/„,, ) (23)

with s,. - rih + r(7(. r(. = reh — reh . and r,; the distance between particles i and /. The first 
two terms on the right-hand side account for the attractive electron-hole interactions and 

) for the repulsive hole-hole one (fi is a variational parameter). In the inset of Fig. 5. 
we plot the probability distribution for the electron and hole as computed from Eq. (23): in 
comparison to the exciton, the biexciton is much more delocalized, and correspondingly the 
biexciton binding is much weaker |44. 55].

3.2.1. Weak Confinement Regime
Suppose that the biexciton is subject to an additional quantum confinement (e.g.. induced 
by the interface fluctuations depicted in Fig. la). If the characteristic confinement length /. 
is larger than the excitonic Bohr radius </, and the extension of the hiexc ton. one can, in 
antilogy to excitons, introduce a “rigid-biexciton” approximation: here, the biexciton wave
function (23) of the ideal quantum well is modulated by an envelope function that depends 
on the ccnter-of-mass coordinate of the biexciton. An effective confinement for the biexciton 
can be obtained through appropriate convolution of U,{r1) (for details, see Appendix A), 
which is shown in Fig. 5 for a representative interface fluctuation potential. Because ol the 
larger extension of the biexciton wavefunction, the effective potential exhibits a larger degree 
of confinement and correspondingly the biexciton wavefunction of Fig. 9 is more localized. 
Wc will return to this point in the discussion of local optical spectroscopy in Section 4.6.

3.2.2. Strong Confinement Regime
In the strong confinement regime, the “binding” of few-particle complexes is not due to 
Coulomb correlations but to the quantum confinement, whereas Coulomb interactions only 
introduce minor energy' renormalizations. It thus becomes possible to confine various few- 
particle electron—hole complexes that are unstable in semiconductors of higher dimension.

Figure 9. ( ontour plot of the square modulus of (a) the exciton and (b) the biexciton groundstate. The confinement 
potential is depicted in Fig. 5 and computational details arc presented in Appendix A. Because of the larger spatial 
extension ot the biexciton—see insets (e .h ) ol Fig. 5 the ccnter-of-mass motion of the biexciton becomes more 
confined |47|.
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We start our discussion with the few-particle complex consisting of two electrons and holes. 
In analogy to higher dimensional semiconductors, we shall refer to this complex as a biexci
ton, keeping in mind that the binding is due to the strong quantum confinement rather than 
Coulomb correlations. To the lowest order of approximation, the biexciton groundstate 'I/o 
in the strong confinement regime is given by lhe product of two excitons (17) with opposite 
spin orientations (Fig. ID)

,r/t ) S %(rt..rj%(rt.../-;,) (24)

S 2 + (%| H,.t. + Hhll + Hlie + H.,h |%) (25)

The second term on the right-hand side of Eq. (25) accounts for the repulsive and attractive 
Coulomb interactions not included in the exciton groundstatc energy £j|. If election and 
hole single-particle states have the same spatial extension, the repulsive contributions 
and Hhh are exactly canceled by the attractive contributions Heh and II, h and the biexciton 
energy is just twice the exciton energy (i.c.. there is no binding energy for the two neutral 
excitons). In general, this description is too simplified. If the electrons and holes arrange 
in a more favorable configuration, such as the H, one in the weak confinement regime, 
the Coulomb energy can be reduced. Within the framework of configuration interactions 
outlined in Appendix B, such correlation effects imply that the biexciton wavefunction no 
longer is a single product of two states but acquires additional components from excited 
states. A rough estimate for the magnitude of such correlation effects is given in first-order 
perturbation theory by (J/)2/(Ae). with (E) the average gain of Coulomb energy (typically 
a few meV) and At the splitting of single-particle states (typically a few tens of meV). In 
general, it turns out to be convenient to parameterize the bicxciton energy through

£0 = 2 E„ - A (26)

where A is the biexciton binding energy. Its value is usually positive and somewhat smaller 
than the corresponding quantum-well value but can sometimes even acquire negative values 
(“biexciton antibinding" [56]). We shall find that the Coulomb renormalization A has lhe 
important consequence that the bicxciton transition is at a different frequency than the 
exciton one, which will allow us to distinguish the two slates in incoherent and coherent 
spectroscopy.

3.3. Other Few-Particle Complexes
Besides the exciton and biexciton states, quantum dots in the strong confinement regime can 
host a number of other few-particle complexes. Depending on whether they arc neutral (i.e.. 
consist of an equal number of electrons and holes) or charged, we shall refer to them as

Figure II). Schematic sketch of the bicxciton groundstatc. which consists of two electron-hole pairs with < ppo- 
sitc spin orientations. Because of noncompensating Coulomb interactions and/or Coulomb correlation effects the 
energy of the biexciton is modified by a small amount A. In lhe figure. A’ and XX refer to the exciion and bicxciton 
groundslate, respectively.
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mtdiiexcitons or midtichawd excitons. Because electron-hole pairs arc neutral objects. quan
tum dots can be populated by a relatively large number of pairs ranging from six [57| to 
several tens |5S, 50] depending on the dot confinement. In experiments, such multiexciton 
population is usually achieved as follows: a pump pulse creates electron-hole pairs in contin
uum states (e.g.. wetting layer) in the vicinity of the quantum dot. and some of the carriers 
become captured in the dot; because of the fast subsequent carrier relaxation (Section 5), 
the few-particle system relaxes to its state of lowest energy, and finally the electron and hole 
recombine by emitting a photon. Thus, in a steady-stale experiment, information about the 
few-particle carrier states can be obtained by varying the pump intensity and monitoring the 
luminescence from the quantum dot [57. 60-62]. Results of such multiexciton spectroscopy 
experiments will briefly be presented in the next section. Experimentally, it is also possible 
to create electron-hole complexes with an unequal number of electrons and holes. Figure 11 
shows how this can be done |63-65]: a quantum dot is placed within a n-i field-effect struc
ture; when an external gate voltage is applied, the energy of the electron groundslate drops 
below ihc Fermi energy of the n-type reservoir and an electron tunnels from the reservoir to 
the dot. where further charging is prohibited because of the Coulomb blockade (i.e.. because 
of the strong Coulomb repulsion between electrons in the dot); when the dot is optically 
excited (e.g. by the same mechanism of off-resonant excitation and carrier capture described 
above). one can create charged excitons. A further increase of the gate voltage allows to 
promote more electrons from the reservoir to the dot. and to hereby create multichargcd 
excitons with up to two surplus electrons.

In |6b|. a quantum dot was placed in a it-i-p structure, which allowed to create in the 
same sample cither negatively (more electrons than holes) or positively (more holes than 
electrons) charged excitons by varying Ihe applied gale voltage. A different approach was 
pursued by Hartmann et al. [67], w here charging was achieved by unintentional background 
doping and the mechanism of photo depletion, which allowed to charge quantum dots with 
up to five surplus electrons. Luminescence spectra of such multicharged excitons will be 
presented in Section 4.4.

3.4. Coupled Dots
We conclude this section with a brief discussion of coupled quantum dots. In analogy to 
artificial atoms, we may refer to coupled dots as artificial molecules. Coupling is an inher
ent feature of any high-density quantum dot ensemble, as. for example, needed for most

figure 11. Hits figure schematically sketches the creation of charged or nrulticliargcd excitons. A quantum dot is 
placed inside a lield-effeci structure. By applying an external gale voltage. it becomes possible to transfer electrons 
one by inc from the nearby ri-type reservoir to the dot. When the sample is optically excited, an additional 
electron hole pair is created (i.e.. a charged or multi-charged exciton is formedr
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optoelectronic applications |2|. On the other hand, it is essential to lhe design of (quan
tum) information devices, for example quantum dot cellular automata |68] or quantum-dot 
implementations of quantum compulation (Section 7).

Artificial molecules formed by two or more coupled dots are extremely interesting also 
from lhe fundamental point of view, as the inlerdol coupling can be tuned far out of the 
regimes accessible in natural molecules, and the relative importance of single-particle tunnel
ing and Coulomb interactions can be varied in a controlled way. The interacting few-clectron 
states in a double dot were studied theoretically [69-711 and experimentally by tunneling and 
capacitance experiments [72-79], and correlations were found to induce coherence effects 
and novel ground-state phases depending on the interdot coupling regime. For self-organized 
dots, stacking was demonstrated [80]. and the exciton splitting in a single artificial molecule 
was observed and explained in terms of single-particle level tilling of delocalized bonding 
and antibonding electron and hole states [81—83|. When a few photoexcited particles are 
present. Coulomb coupling between electrons and holes adds to the homopolar electron
electron and hole-hole couplings. In addition, single-particle tunneling and kinetic energies 
are affected by the different spatial extension of electrons and holes, and the correlated 
ground and excited states are governed by the competition of these effects [69. 84-86]. A 
particularly simple parameterization of single-exciton and biexciton states in coupled dots is 
given by the Hubbard-type Hamiltonian |<S7]

// = - ' E^/.A., + A E . (27>
tr tr t-i K

with blir the creation operator for excitons with spin orientation tr = ± in the right or left dot. 
n,„ = b'firb,a the exciton number operator, / the tunneling matrix clement, and A the biex
citon binding. Indeed, the Hamiltonian (27) accounts properly for the formation of bonding 
and antibonding exciton states and the fact that in a bicxciton state the two electron-hole 
pairs preferentially stay together lo benefit from the biexciton binding A [69, 84J. We will 
return to coupled dots in the discussion of quantum control (Section 6) and quantum com
putation (Section 7).

4. OPTICAL SPECTROSCOPY
In the last section, we discussed the properties of electron-hole states in semiconductor 
quantum dots. We shall now show how these states couple to the light and can be probed 
optically. Our starting point is given by Eq. (9). which describes the propagation of one 
electron subject to the additional quantum confinement U. Quite generally, the light field is 
described by the vector potential X, and lhe light-matter coupling is obtained by replacing 
the momentum operator p = —iV with p — (q/c}A [13. 15], where 17 = —e is the charge of 
the electron and c the speed of light. The light-matter coupling then follows from

(p -I- - A)2 e e2 ,
< _L + U(r} = Hl) + — Ap + -—^A2 (28)

2 m me Imc-

where we have used the Coulomb gauge VX = (I [88| to arrive at the Ap term. In many cases 
of interest, the spatial dependence of X can be neglected on the length scale of the quantum 
states, that is. in the far-field limit—recall that lhe length scales of light and matter arc given 
by micrometers anti nanometers, respectively—-and we can perform a gauge transformation 
to replace the Ap term by the well-known dipole coupling | 15]

= — Ap = er£ (29)
1 me

l he relation between the vector potential and the electric field is given by <£'= (
In this far-field limit, we can also safely neglect the .-1 term. This is because the matrix 
elements (O' ± v,Tv) between the atomic states introduced in Section 3.1.3 vanish owing 
to the orthogonality of conduction and valence band states. Liquation (29) is suited lor both 
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classical ami quantum light fields. In the first ease. E is treated as a r-number. in the latter 
case, the electric field of photons reads 115. 22. 89. 9<l|

Here. A and A arc the photon wavevector and polarization, respectively. = <A/m, is the 
light frequency, ri, = the semiconductor refractive index. <-iA the photon polarization 
vector, and denotes the usual bosonic lield operator. The free photon field is described 
by the Hamiltonian iikKak!{.

4.1. Optical Dipole Moments
Optical selection rules were already introduced in Section 3.1.3. where we showed that light 
with appropriate polarization A (i.e.. for light propagation along z cither circular polarization 
for symmetric dots or linear polarization for asymmetric ones) can induce electron-hole 
transitions. We shall now show how things arc modified when additionally the envelope part 
of the carrier wavefunctions is considered. In second quantization (see Appendix B). the 
light-matter coupling of Eq. (29) reads

W,.p - E / (lr (MiA ^'(r)^(r) -I- h.c.) E (31)
A '

where A is the polarization mode orthogonal to A. Because of the envelope-function approxi
mation. the dipole operator er has been completely absorbed in the bulk moment 112. 13], 
The first term in parentheses of Eq. (31) accounts for the destruction of an electron-hole 
pair, and the second one for its creation. Similarly, in an all-electron picture, lhe two terms 
can be described as the transfer of an electron from lhe conduction lo the valence band 
or lice versa. This single-particle nature of optical excitations translates to the requirement 
that electron and hole are destroyed or created at the position r. Equation (31) usu
ally comes together with the so-called rotating-wave approximation |12. I5|. Consider the 
light-matter coupling (31) in the interaction picture according to the Hamiltonian of the 
unperturbed system: the first term, which accounts lot lhe annihilation ol an election-hole 
pair, then approximately oscillates with e and the second term with where is 
a frequency of the order of the semiconductor band gap. Importantly, <u(l sets the largest 
energy scale (eV) of lhe problem, whereas all exciton or few-particle level splittings arc 
substantially smaller. If wc accordingly separate E into terms oscillating with approximately 
(*wc encounter in the light-matter coupling of Eq. (31) two possible combinations of 
exponentials: first, those with e1'""11 “"M, which have a slow time dependence and have to be 
retained; second, those with which oscillate with twice lhe frequency of the band
gap. In the spirit of lhe random-phase approximation, the latter off-resonant terms do not 
induce transitions and can thus be neglected. Then, the light-matter coupling of Eq. (31) 
becomes

’ + (32)

where £' 1 <x e'"“"' solely evolves with positive or negative frequency components, and the 
complex conjugate of E is given by £* ’1 [22|. In Eq. (32). ‘P = I tlr ilE(r)il/\{r) is 
the usual interband polarization operator 112. 911.

Eet us finally briefly discuss the optical dipole elements for excitonic and bicxcitonic tran
sitions. Within the framework of second quantization, the exciton and biexciton slates |.rA) 
and \b) can be expressed as

|.vA) = f tlr 'I',(r . r,.) (r, )i// ’ (rh)jf)) (33)

|/>) = I df (rjil/1^ (r^ili^r' )«//J'«,) |0) (34) 
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with dr and dr denoting the phase space for excitons and biexcitons, respectively. 
In Eq. (33). lhe exciton slate consists of one electron and hole with opposite spin orienta
tions. and in Eq. (34) the biexciton of two electron-hole pairs with opposite spin orientations. 
From the light-matter coupling (31), we then find for the optical dipole elements

(O|J’|xA) = A/0,eA = p,teA I dr'l>l(r.r) (35)

(xa|5>|/>) = MlheA = /JL„eA f drdrrdrh 'FJ (r . r/r )%(r. r. r,. rh) (36)

In Eq. (35) the dipole moment is given by the spatial average of the exciton wavefunction 
'l',(r.r) where the electron and hole are at the same position r. Similarly, in Eq. (36) the 
dipole moment is given by the overlap of exciton and biexciton wavefunctions subject to the 
condition that lhe electron with spin A and the hole with spin A are at the same position r 
whereas the other electron and hole remain at the same position. In Appendix A.3. we show 
that in the weak confinement regime the oscillator strength for optical transitions scales with 
the confinement length L according to |Afl>( |2 ot /.2 (i.e„ it is proportional lo the confinement 
area). For that reason, excitons in the wcak-confinement regime couple much stronger to 
the light than those in the strong confinement regime, which makes them ideal candidates 
for various kinds of optical coherence experiments (8. 26. 28. 90. 92-95].

4.2. Fluctuation-Dissipation Theorem
We next discuss how to compute optical spectra in linear response. As a preliminary task, 
we consider the general situation where a generic quantum system is coupled to an external 
perturbation X(l) (e.g.. an exciting laser light) via the system operator A through /I A'(z) |96|. 
Let (B) be the expectation value of the operator B in the perturbed system and that in 
the unperturbed one. In linear-response theory, the change (A/?) = (B) - (fl)0 is assumed 
to be linear in lhe perturbation X(t)—an approximation valid under quite broad conditions 
provided that the external perturbation is sufficiently weak. We can then derive within lowest 
order time-dependent perturbation theory the famous fluctuation-dissipation theorem |96|

<A«(0)> = i f </z'(M(r'). *(())]>„ X(t') (37)

where operators A and B are given in the interaction picture according to the unperturbed 
system Hamiltonian Ho. In Eq. (37), we have assumed that the external perturbation has 
been turned on at sufficiently early times such that the system has reached equilibrium. The 
important feature of Eq. (37) is that it relates the expectation value of B in the perturbed 
system to the correlation [,4, B]—or equivalently to the fluctuation [A/f, A#| because com
mutators with c-numbers always vanish—of the unperturbed system. Usually, the expression 
on the right-hand side of Eq. (37) is much easier to compute than that on the left-hand 
side. We will next show how the fluctuation-dissipation theorem (37) can be used for the 
calculation of linear optical absorption and luminescence.

4.3. Optical Absorption
Absorption describes the process where energy is transferred from the light field to the 
quantum dot (i.e.. light becomes absorbed). Absorption is proportional to the loss of energy 
of the light field, or equivalently to the gain of energy of the system

«(<») ot — -I- Hl>p) = ( (38)

Consider a monofrequent excitation Z'(leAcoso>/. where /0 is the amplitude of the light field. 
Inserting this expression into Eq. (38) gives after some straightforward calculation a(w) <x 
to-'(1 .'/»(<-''■"(£■ jP)). From the fluctuation-dissipation theorem wc then find

«A{to)oc3m(/ f t/z (|c;.7’(0),eA.7’1(/')|)(<au'j (39) 
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(i.e.. optical absorption is proportional to the spectrum ol interband polarization fluctua
tions). We emphasize that this is a very general and important result that holds true tor 
systems at finite temperatures, and is used for ah initio type calculations of optically excited 
semiconductors (971. We next show how to evaluate Eq. (39). Suppose that the quantum dot 
is initially in its groundstate. I'hcn only the term (OIJ’(O)(z')|0) contributes in Eq. (39) 
because no electron-hole pair can be destroyed in the vacuum (i.e., 7’|0) = (I). Through 
J>'(/ )|0). an electron-hole pair is created in the quantum dot, which propagates in presence 
of the quantum confinement and the Coulomb attraction between the electron and hole. 
Thus, the propagation of the interband polarization can be computed by use of the exciton 
eigenstates |.v) through (t ) II) = e'1•' (.il.T' |(l). Inserting the complete set of exciton 
eigenstates in Eq. (39) gives

<x ^nili I clt'\M„^\: e 'd' j (40)

To evaluate the integral in Eq. (40). we have to assume that the exciton energy has a 
small imaginary part E, - iy associated to the finite exciton lifetime because of environment 
couplings (Section 5). Then, /"x dt’e~'{ut= //(w - E, + iy) and we obtain for the 
optical absorption the final result

a(w) oc £y(a» - E,() (41)
.iA

Here. Sv(w) — y/(w’ + yJ) is a Lorentzian that in the limit y -* 0 gives Dirac's delta 
function. According to Eq. (41), the absorption spectrum of a single quantum dot is given 
by a comb of delta-like peaks at the energies of the exciton states, whose intensities— 
sometimes referred to as the oscillator strengths—tire given by the square modulus of the 
dipole moments (35).

4.3.1. Weak Confinement
In the weak confinement regime the absorption spectrum is given by

a(w) a <//?<!>,(Jt)| 6r(w-’*,) (42)

where <1’,(K) is the center-of-mass wavefunction introduced in Section 3.1. Let us consider 
the somewhat simplified example of a rectangular confinement with infinite barriers whose 
solutions are <I»(A'. T) = 2/(/.,/.,)’ ' sin(/q tt,¥//.,) sin(/r.7r Y/L:). Here, X and Y are the 
center-of-mass coordinates along .v and y, L, and E, arc the confinement lengths in x- and in
direction. and /q and /n the corresponding quantum numbers. The energy associated to this 
wavefunction is > = it'/(2M) [(/»,/ZL, )2 + (m2/E2)’|. Inserting these expressions into Eq. (42) 
shows that the oscillator strength is zero when /q or it, is an even number and proportional to 
Eiotherwise. Figure 12 shows absorption spectra computed within this framework 
for (a) an inhomogeneously broadened ensemble of quantum dots and (b) a single dot. 
I hc first situation corresponds to typical optical experiments performed on ensembles of 
quantum dots. Single dots can be measured by different types of local spectroscopy such as 
submicrometer apertures |4. 31.48, 62. 98], solid immersion microscopy [50, 99|. or scanning 
near-field microscopy [8. 94. I(M)|. Note that such single-dot spectroscopy is indispensable 
for the observation of the atomic-like optical density of states depicted in Fig. 12b, which is 
completely hidden in presence of the inhomogeneous broadening of Fig. 12a.

4.3.2. Strong Confinement
In the strong confinement regime, the optical response is governed by the single-particle 
properties. However. Coulomb interactions are responsible for renormalization effects that 
leave a clear fingerprint in the optical response. In the context of quantum-dot based quan
tum computation schemes (Section 7). it is precisely this fingerprint that allows the optical
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Figure 12. Absorption spectra for quantum dots in the weak-contincment regime and lor (a) an inhomogcnousK 
broadened ensemble of quantum dots and (b) a single dot of dimension ItMl x 70 nm For the inhomogenous 
broadening, we assume a Gaussian distribution ol the confinement lengths I. and /... which is centered at 70 nm 
and has a full-width of half-maximum of 60 nm. and for the homogeneous lifetime broadening y — 10 geV. We 
use material parameters representative for GaAs Photon energy zero is given by the exciton energy of the two- 
dimensional quantum well.

manipulation of individual few-particle states. Similar lo the absorption (42) in the weak 
confinement regime, the linear optical absorption in the strong-confinement regime reads

a(w) <x </r'Vjr. r) <5(<g-E,) (43)

Because the electron and hole are confined within a small space region, the oscillator 
strength is much smaller as compared to the weak confinement regime. The approximately 
product-type structure (17) of the exciton wavefunction and the similar shape of electron 
and hole wavefunctions gives rise to optical selection rules where only transitions between 
electron and hole states w ith corresponding quantum numbers (e.g. s-.y or p-p) are allowed. 
Indeed, such behavior is observed in Fig. 13 showing absorption spectra representative for 
In,Ga|_AAs dots: the three major peaks can be associated to transitions between the respec
tive electron and hole ground states and the first and second excited states [3. 102. 103], In 
our calculations we assume parabolic confinement potentials for electrons and holes, with 
a 2:1 ratio between the electron and hole single-particle splittings [ 101 ] and compute the 
spectra within a full configuration-interaction approach (Appendix B) for the respective six 
electron and hole single-particle states of lowest energy. The single-dot spectrum of Fig. 13b 
shows that Coulomb interactions result in a shift of oscillator strength to the transitions of 
lower energy (in a pure single-particle framework the ratio wrould be simply 1:2:3, reflecting 
the degeneracy of single-particle states), and the appearance of additional peaks [103. 104]. 
For the dot ensemble. Fig. 13a, we observe that the broadening of the groundstate transi
tion is much narrower than that of the excited ones. This is because the excited states arc 
less confined and arc accordingly stronger affected by Coulomb interactions. Note that for 
the level broadening considered in the figure, the second and third exciton transitions even 
strongly overlap.

4.4. Luminescence
Luminescence is the process where in a carrier complex one electron-hole pair recombines by 
emitting a photon. To account for the creation of photons, we have to adopt the framework 
of second quantization of the light field 115. 22. 89| and use expression (30) for the electric 
field of photons. Then,

_/2t7w \12
-ZE( “7^ ) <44>
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Figure 13. Absorption spectra lor quantum dots in the strong confinement regime and for (a) an inhomogenoush 
broadened ensemble of quantum dots and (b) a single dot. We use prototvpical material and dot parameters for 
ln,Ga|_,As GaAs dots (65. H)l|. We assume a 2:1 ratio of single-particle splittings between electrons and holes 
and a 2tlr< stronger hole confinement associated to the heavier hole mass and possible piezoelectric fields. I he 
absorption spectra are computed within a full configuration interaction approach for the respective six electron and 
hole single-particle states of lowest energy.

Photon Energy (meV)

is the Hamilton operator that describes the photon-matter coupling within the envelope
function and rotating-wave approximations. The first term on the right-hand side describes 
the destruction ol an electron-hole pair through photon emission, and the second one the 
reversed process. We shall now show how to compute from Eq. (44) the luminescence spec
trum L(co). It is proportional to the increase in the number of photons {a'kkak/l) emitted at 
a given energy co. With this approximation we obtain

Z.(w) a y ( J S(w -
1,1 \ k\

(45)

We next use Heisenberg’s equation of motion <'■' = /p, //], with ** an arbitrary' time
independent operator, and //|) = 2/ H,By computing Ihe commu
tator with H , Eq. (44). wc obtain

i.(co) ex - <oM) (46)

The expression (a’T) is known as the photon-assisted density matrix 127, 1(15]. It describes 
the correlations between the photon and the electron-hole excitations in the quantum dot. 
Again, we can use the fluctuation-dissipation theorem (37) to compute Eq. (46) and to 
provide a relation between the photon-assisted density matrix and the correlation function 
([«u(f>)'A(>). A (/).7> (/)|). The calculation can be considerably simplified it wc make the 
reasonable assumption that before photon emission, no other photons arc present. Then, 
only (ak , cikk) = i>k(d>kk docs not vanish. It is diagonal in k and A. because the only photon 
that can be destroyed by the annihilation operator a is the one created bv a\ Thus,

L(w) octtY,'7™— >nt(i f di ^^PAne^^e^htco - «u) (47)

Suppose that the system is initially in the eigenstate |/‘) of the unperturbed system which 
has energy E,. We next insert a complete set of eigenstates X/ >n the above equation 
(note that because the interband polarization operator P can only remove one electron
hole pair the states / and i differ by one electron and hole), and assume that only photons 
propagating along z with polarization A are detected. Then.

l.(co) ex £ + co - E,) (4<S)
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gives the expression for calculating luminescence spectra. Here, the photon energies at the 
peak positions equal the energy differences of initial and final states, and the oscillator 
strengths are given by the overlap between the two wavefunctions subject to the condition 
that one electron-hole pair is removed through the interband polarization operator T.

4.5. Multiexciton and Multicharged Excitons
Let us first discuss the luminescence of multiexcitons (i.e., carrier complexes with an equal 
number of electron-hole pairs). To observe Coulomb renormalization effects in the optical 
spectra (such as. e.g.. the biexciton shift A), it is compulsory to measure single dots. For dot 
ensembles, all line splittings would be completely hidden by the inhomogenenous broaden
ing. The challenge to detect luminescence from single quantum dots (the density of typical 
self-assembled dots in the strong confinement regime is of the order of 5 x 10"' cm’- [2]) 
is accomplished by means of various experimental techniques, such as shadow masks or 
mesas [106]. Such single-dot spectroscopy [57, 58, 60, 61, 107-110] has revealed a surpris
ingly rich fine-structure in the optical spectra, with the main characteristic that whenever 
additional carriers are added to the dot the optical spectra change because of the resulting 
additional Coulomb interactions. This has the consequence that each quantum-dot spectrum 
uniquely reflects its electron-hole configuration. In the following, wc adopt the model of a 
quantum dot with cylinder symmetry (Section 3.1), and compute the luminescence spectra for 
an increasing number of electron-hole pairs within a full configuration-interaction approach. 
Results arc shown in Fig. 14. For the single-exciton decay, the luminescence spectra exhibit 
a single peak at the exciton energy £u whose intensity is given by |A/Ox|2. In the biexciton

Figure 14. Luminescence spectra for multiexcitons (left panel) and multicharged excitons (tight panel) as computed 
from a full configuration-interaction approach with a basis of approximately 10.00(1 states [ 102|. Wc use material 
parameters for GaAs and single-particle level-splittings of 2(1 meV for electrons and 3.5 meV for holes. 1 te insets 
report the electron-hole configuration of the groundstatc before photon emission (for multiexcitons. w< use the 
same configuration for electrons and holes). For clarity we use tt relatively large peak broadening.
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decay, one electron-hole pair in the Coulomb-renormalized carrier complex recombines by 
emitting a photon, whose energy is reduced by A because of Coulomb correlation effects.

Things become more complicated when the number of electron hole pairs is further 
incteased. Here, one pair has to be placed in the excited p-shell. which opens up lhe pos
sibility or different decay channels. Because of wavefunction symmetry, only electrons and 
holes in corresponding shells can recombine and emit a photon [3. 51], For recombination 
in tic p shell, lhe energy id + Ae, + AfZl of lhe emitted photon is blue-shifted by the 
energy splitting Af, + Ae,, of single-particle states, On the other hand, recombination in the 
s-shcll brings the system to an excited biexciton state with one electron-hole pair in lhe s 
and one in the p shell. Such excited states are subject to pronounced Coulomb renormaliza
tions. which can be directly monitored in the luminescence spectra of Fig. 14. The two main 
features of luminescence from the different single-particle shells and the unambiguous spec
troscope fingerprint for each few-particle state because of Coulomb correlations prevail for 
the other multie.xeilon complexes. Similar conclusions also apply for mullichargcd excitons 
[63-67. 111-113). Because of the strong single-particle character, the aufbau principle for 
negatively and positively charged excitons is dominated by successive tilling of single-particle 
states, whereas Coulomb interactions only give rise to minor energy renormalizations. The 
only marked difference in comparison to multiexcitons is the additional Coulomb repulsion 
due to the imbalance of electrons and holes, which manifests itself in the carrier-capture 
characteristics [67. 114] and in the instability of highly charged carrier complexes |64, 65|. 
Typical multicharged exciton spectra are shown in the right panel of Fig. 14. For negatively 
charged dots, the main peaks red-shift with increasing doping because of exchange and cor
relation effects, and each few-particle slate has its own specific fingerprint in (he optical 
response. When the dot is positively charged, lhe emission-peaks preferentially shift to the 
blue |66|. This unique assignment of peaks or peak multiplets to given few-particle con
figurations allows in optical experiments to determine unambiguously the configuration of 
carrier complexes.

4.6. Near-Field Scanning Microscopy
Up to now. we have been concerned with optical excitation and detection in the lar-licld 
regime, where the spatial dependence of the electric field c.’(r) can be safely neglected. 
However, the diffraction limit A/2 of light can be significantly overcome through near-held 
optical microscopy [115, 116). This is a technique based on scanning tunneling microscopy, 
where an optical liber is used as the tip and light is quenched through it. Most importantly, 
close to the tip the electric field contribution is completely different from that in the far- 
field [88, 115. 117).

For lhe quantum dots of our present concern, the carrier wavefunctions are always much 
stronger confined in the z-direction than in the lateral ones, which allows us to replace 
the generally quite complicated electromagnetic field distribution in the vicinity of the 
tip 1115. 118. 119] by a more simple shape (e.g., a Gaussian with a given full width of half 
maximum a,). Up to now. most of the local-spectroscopy experiments were performed with 
spatial resolutions a, larger than the extension of the semiconductor nanostructures them
selves [31]. This allowed to locate their but not not spatially resolve their electron-hole 
wavefunctions. Only very recently, Matsuda et al. [8, 120] succeeded in a beautiful experi
ment to map spatially the exciton and biexciton wavefunctions of a quantum dot in the weak 
confinement regime. In the following, we briefly discuss within the framework developed in 
Refs. 1103. 121. 122] the main features of such local-spectroscopy experiments, and point to 
the difficulties inherent to their theoretical interpretation. Our starting point is given by the 
light-matter coupling (31). We assume, however, that lhe electric field E has an explicit space 
dependence through

E'-'(r) = ^(R - r) (49)

Here. /„ is the amplitude of the exciting laser with frequency w. and ^(R r) is the profile 
of the electric field in the vicinity of the liber lip. The tip is assumed to be located at 
position R. Scanning the tip over the sample thus allows to measure the local absorption 
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(or luminescence [123, I24|) properties al different positions and to acquire information 
about the electron-hole wavefunction on the nanoscale.

The light-matter coupling for lhe electric field profile (49) is of the form

E I e'""^(R - r) + h.c.) (50)
A ‘

The remaining calculation to obtain the optical near-field absorption spectra is completely 
analogous to that of far-field. Section 4.3. with the only difference that the light-matter 
coupling (50) has to be used instead of Eq. (31). We finally arrive at

«(w) oc i/rf'(/; - r)eA'lz, (r.r)| 6y(w-Eli) (51)

In comparison to Eq. (41), the optical matrix clement is given by the convolution of the 
electromagnetic profile £'(/? — r)cA with the exciton wavefunction, rather than the simple 
spatial average of T'fr.r). Two limiting cases can be readily identified in Eq. (51). First, 
for a far-field excitation £() that docs not depend on r. one recovers precisely the far-field 
absorption (41). In the opposite limit of infinite resolution, where £ resembles a 3-function, 
the oscillator strength is given by the square modulus of the exciton wavefunction 'l'(K. R) al 
the tip position. Finally, within the intermediate regime of a narrow but finite probe. 'I'(r, r) 
is averaged over a region that is determined by the spatial extension of the light beam. 
Therefore, excitonic transitions that are optically forbidden in the far-field may become 
visible in the near-field. Figure 15 shows near-held spectra as computed from Eq. (51) fir a 
quantum dot in the weak-confinement regime, l he confinement for excitons and biexcitons 
is according to Fig. 5. In the second and third rows, we report our calculated optical near- 
field spectra for spatial resolutions of 25 and 50 nm. Note that the first (Fig. 15b) and second 
excited state (not shown) are dipole forbidden, but have large oscillator strengths for both 
resolutions. As a result of interference effects, the spatial maps at finite spatial resolutions 
differ somewhat from the wavefunction maps, particularly for the excited states: the apparent

figure 15. (a-d) Real-space map of the square modulus of the wavefunctions for the exciton (a) grouniMale. 
(b| first and (c) third excited state, and (d) the biexciton groundslate. The dashed lines indicate lhe bound.ires of 
the assumed interface fluctuation, (a'-d’l Near-field spectra for a spatial resolution ot 25 nm and (a"-d”) 51 nm. 
as computed according to Eqs. (51) and (52). lhe lull-width at hall maximum <r is indicated in tile sceoni and 
third row.
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localization is weaker, and in (c) the central lobe is ven, weak for both resolutions [47, l()3|. 
For the near-held mapping of the biexciton, we have to be more specific of how the system is 
excited. Wc assume that the dot is initially populated by the groundstatc exciton and that the 
near-tield tip probes the transition to the biexciton groundstate. This situation approximately 
corresponds to that of Refs. |8, 120] with nonresonant excitation in the nonlinear power 
regime. Similar to Eq. (51), the local spectra for biexcitons are given by

J dr(lr,.drh^{R - r)e^\'*(r,..rll)%(r.r.re.rll^ 8y(w + Eu - E„) (52)

The corresponding spectra are shown in column (d) of Fig. 15. Wc observe that for the 
smaller spatial resolution, the biexciton groundstatc depicts a stronger degree of localization 
than the exciton one, in nice agreement with the recent experiment of Matsuda et al. [8, 120],

4.7. Coherent Optical Spectroscopy
Absorption in a single quantum dot is the absorption of a single photon, which can usually 
not he measured. Other experimental techniques exist that allow to overcome this problem. 
In photo-luminescence-excilation spectroscopy, an exciton is created in an excited state; 
through phonon scattering it relaxes to its state ot lowest energy (Section 5.5) and finally 
recombines by emitting a photon which is detected. Other techniques are more sensitive 
to the coherence properties and will be discussed below. For instance, in four-wave mixing 
spectroscopy |27, I25|. the system is lirst excited by a sufficiently strong pump pulse, which 
creates a polarization. When at a later time a probe pulse arrives al the sample, a polarization 
grating is formed, and light is emitted into a direction determined by those of the pump and 
probe pulse [125]. This signal carries direct information about how much of the polarization 
introduced by the first pulse is left at a later time (i.e., it is a direct measure of the coherence 
properties). Another technique is coherent nonlinear optical spectroscopy [126], which is 
often used for quantum dots in the weak confinement regime. It offers a much better signal- 
to-noisc ratio and gives detailed information about the coherence properties of excitons and 
biexcitons.

5. QUANTUM COHERENCE AND DECOHERENCE
Quantum coherence and decoherence are the two key players in the fields of quantum 
optics and semiconductor quantum optics. The light-matter coupling (32) is mediated by 
the interhand polarization, which, in a microscopic description, corresponds to a coherent 
superposition of quantum states. For isolated systems, this provides a unique means for 
quantum control, where the system wavefunction can be brought to any desired state [127], 
Dccohercnce is the process that spoils such ideal performance. It is due to the fact that 
any quantum system interacts with its environment (c.g., photons or phonons), and hereby 
acquires an uncontrollable phase. This introduces a kind of “random noise” and diminishes 
the quantum-coherence properties. Although from a pure quantum-control or quantum
computation perspective decohcrcncc is often regarded as “the enemy" 1128], from a more 
physics-oriented perspective it is the grain of salt: not only does it provide a means to 
monitor the state of the system, but it also allows for deep insights to the detailed interplay of 
quantum systems with their environment. This section is devoted to a more careful analysis 
of these two key players. We first briefly review the basic concepts of light-induced quantum 
coherence and its loss due to environment couplings. Based on this discussion, wc then 
show how decoherence can be directly monitored in optical spectroscopy and how it can 
successfully be exploited for single-photon devices.

5.1. Quantum Coherence
In most cases, we do not have to consider the full spectrum of quantum-dot states. For 
instance, if the laser frequencies are tuned to the exciton groundstate, it completely suffices 
to know the energy of the exciton together with the optical matrix element connecting the 
stales. It is physical intuition together with the proper choice of the excitation scenario that 
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allows to reduce a complicated fcw-particle problem to a relatively simple few-level scheme. 
This situation is quite different as compared to lhe description of carrier dynamics in higher
dimensional semiconductors, where such a clear-cut separation is not possible because of 
the scattering-type nature of carrier-carrier interactions [12. 27, 125]. It is, however, quite 
similar to quantum optics 115, 22. 89], which relies on phenomenological level schemes (e.g.. 
A- or V-type schemes) with a few effective parameters—a highly successful approach despite 
the tremendously complicated nature of atomic states. Let us denote the generic few-level 
scheme with |/), where i labels the different states under consideration. If the artificial atom 
would be isolated from its environment, we could describe it in terms of the wavefunction

|'I') = £C,I/) (53)

with C, the coefficients subject to the normalization condition |C,|2 = 1. Such wavefunction 
description is no longer possible for a system in contact with its environment. Because the 
coefficients C, acquire random phases through environment couplings and the system can 
suffer scatterings, we can only state with a certain probability that the system is in a given state. 
In statistical physics this lack of information is accounted for by the density operator 1129]

p = = (-54)

where the sum of k extends over an ensemble of systems that arc with probability pA in the 
state |'I't). The last term on the right-hand side provides the usual short-hand notation of this 
ensemble average. By construction, p is a Hermitian operator whose time evolution is given 
by the Liouville von-Neumann equation ip - |//,p|. This can easily be proven by differen
tiating Eq. (54) with respect to time and using Schrodinger’s equation for the Hamiltonian 
H [12, 15, 129], If we insert the few-level wavefunctions (53) into (54), we obtain

Here, pt) = C,C; is the density matrix of the few-level system, which contains the maximum 
information we possess about the system. The diagonal elements p„ account for the probabil
ity of finding the system in state i, and the off-diagonal elements p,7 for the quantum coher
ence between states i and j. As consequence, p fulfills the trace relation trp = 'Z.,p„ = 1. 
which states that the system has to be in one of its states.

5.1.1. Two-Level System
A particularly simple and illustrative example is given by a generic two-level system. This 
may correspond to an artificial atom that is either in its groundstate 0 or in the single-exciton 
state 1. In optical experiments, the population of excited exciton states can strongly be 
suppressed through appropriate frequency filtering (recall that the principal level splittings 
arc of the order of several tens of meV) and that of biexcitons through appropriate light 
polarization. Thus, systems with dominant two-level character can indeed be identified in 
artificial atoms. The density matrix is of dimension two. It has four complex matrix elements 
corresponding to eight real numbers. Because p is a Hermitian matrix, only four of them 
are independent, which additionally have to fulfill the normalization condition trp = 1. 
A convenient representation of p is through the Pauli matrices

<r, = [1)(()| + |U)(1|, <r2 = —/(|l)(0| - |0)(l|), <r3 = |1><I) - |(J)<0| (56)

which together with the unit matrix II = |1)(1| + |0)(0| provides a complete basis within the 
two-level subspace. The Pauli matrices are Hermitian and have trace zero (Appendix C). 
Thus, the density matrix can be expressed as

with rr = (O|. rr2, cr,) and the first term guarantees the trace relation trp = 1.



Optical Properties of Semiconductor Nanostructures 423

The system is thus fully characterized by the three-dimensional Bloch vector u = 
(t/|, which was already introduced in Section 2.3: its v- and y-components n,
and ii. account for the real and imaginary part of the quantum coherence—or interband 
polarization —respectively, and the z-component gives the population inversion between 
the excited and groundstate. Equation (57) demonstrates that the Bloch-vector picture advo
cated in Section 2 prevails for density matrices. What happens when the system is excited by 
an external laser? As discussed in Appendix C, within a rotating frame the system subject 
to an exciting laser can be described by the Hamiltonian [22]

H = ^(A <r3 — fl* |0)(l| — fl |l)(0|) (58)

where A is the detuning between the laser and the two-level transition, and fl is the Rabi 
frequency. which determines the strength of the light-matter coupling. Note that fl describes 
the envelope part of the laser pulse which is constant for a constant laser and has an only 
small time dependence for typical pulses. From the Liouville von-Neumann equation p = 
—i\H. p|. we then obtain the equation of motion for the Bloch vector

it = il x u. fl = (-:h'e(!l), 3m(fl). A) (59)

We are now in the position to quantitatively describe the buildup of quantum coherence. 
Suppose that the system is initially in its groundstate 0 where the Bloch vector points into 
the negative z-direction. When the laser is turned on, the Bloch vector is rotated perpendic
ularly to fl. Upon expansion of the solutions of the Bloch equations (59) in powers of the 
driving field fl, we observe that to the lowest order the population (i.e., the z-component of 
the Bloch vector) remains unchanged and only a quantum coherence—described by zq and 
zz,—is created. This is due to the fact that the light couples indirectly (i.e., through the inter
band polarizations) to the quantum-state populations. When we consider in the solutions of 
Eq. (59) higher orders of fl, we find that this induced polarization acts back on the system 
and modifies the populations. A particularly simple and striking example of such nonlinear 
light-matter interactions is given by a constant driving field where the solutions of (59) can 
be found analytically [22, 130]

n,(r) = (A fl)/(fl2l() (I -cosfld(/)

m2(/) = -fl/(flcM) sin flcl)/ (60)

zz,(r) = -(A2 + fl2 cosflvftz)/(fl2ll)

Here, fl2ff = fl2 T A, and we have assumed that fl is entirely real. From Eq. (60), we 
readily observe that after a time T given by flefl 7 = 277 the system returns into the initial 
state. For that reason, pulses of duration T are called 277-pulses. The phenomenon of a 2tt- 
rotation of the Bloch vector has been given the name Rabi rotation [ 130], Figure 16 shows the 
trajectories of the Bloch vector for a pulse with fl 7 = 277 and for different detunings: only on 
resonance (i.e.. for A = 0), the Bloch vector returns at time 7 to its initial position, whereas 
off resonance u ends up in an excited state. We shall return to this point later in the discussion 
of self-induced transparency (Section 6.3). Rabi oscillations are a striking and impressive 
example of the nonlinear light-matter interaction. Indeed, the solutions (6(1) clearly show 
that terms up to infinite order in fl are required to account for the return of zz to its initial 
position. For semiconductor quantum dots, Rabi oscillations have been measured both in the 
time |95. 106. 131, 132] and frequency [133] domains. A particularly beautiful experimental 
setup is due to Zrenner et al. [106], where the authors used a quantum dot embedded in a 
field effect structure to convert the final exciton population to a photocurrent that could be 
directly measured. A somewhat different approach was pursued by Kamada et al. [ 133] where 
the appearance of additional peaks in the resonance-luminescence spectra at frequencies

± !leff centered around the laser frequency iu(1 were observed—a clear signature of Rabi- 
type oscillations [15, 22],
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Figure 16. trajectories of lhe Bloch vector u lor a laser pulse with ll f — 2ir ami tor detunings A of (a) zero 
(hi -11/2, and (c) -11. The light and dark arrows indicate the linal position of the Bloch vector and the driving 
field !1. respectively. Only on resonance, u returns to its initial positions, whereas off resonance. flL.t. > 11. and the 
Bloch vector is rotated further.

We conclude this section with a short comment on the coherence properties of the Bloch- 
vector propagation. In fact, the time evolution (60) of the isolated quantum system can be 
described in terms of the projector p = |'lz)('lz|, where |'IZ) is the system wavefunction. Such 
projector-like density operators have the unique property p — p. For lhe two-level system 
under consideration, this has the consequence that lhe length of the Bloch vector remains 
one throughout. In other words, the trajectory of it is located on the surface of lhe Bloch 
sphere (Figs. 3 and 16) (i.e.. the unit sphere in the Bloch space).

5.2. Decoherence
Decoherence describes the process where a quantum system in contact with its environment 
loses its quantum-coherence properties. We shall assume that the environment—sometimes 
referred to as a reservoir—has an infinite number of degrees of freedom, and we are not able 
to specify precisely the corresponding state vector. To account for this lack of information, in 
the following we adopt the framework of statistical physics. Suppose that the problem under 
consideration is described by the Hamiltonian Ws 4- HK 4- K, where Hs and Hh account 
for the system and reservoir, respectively, and V for their coupling. Let h’(t) be lhe density 
operator of the total system in the interaction representation according to Hs 4- HK. The 
quantity of interest is the reduced density operator p of the system alone. It is obtained from 
the total density operator by tracing over the reservoir degrees of freedom through p = trK w. 
We shall now derive the equation of motion for p when it is in contact with the environment. 
As a starting point, we trace in the Lioville von-Neumann equation for w over the reservoir 
degrees of freedom and obtain

p(/) = trK»V(r) = -itrK[fz(r),H’(i)| (61)

The important feature of this equation is that we are only able to trace out the reservoir 
on the left-hand side, but not on the right-hand side, which still depends on the full density 
operator w. The simple and physical deep reason for this is that through F. the system and 
environment become entangled and can no longer be described independently. Suppose that 
at an early time /(l, system and reservoir were uncorrelated such that m’(/u) = p(/()) ® Pto 
with pA. is the density operator of the reservoir. We can then use the usual time evolution 
operator £/(/, zl() to establish a relation between n(/) and H’(fd). To the lowest order in the 
system-environment coupling F we find [<S4]

H’(r) = H’(/n) - / dt fF(/ ),p(zn) ®pK] 4-^(F2) (62)

This expression no longer depends on the density operator u;(/) of the interacting system 
and environment. We can thus insert F.q, (62) into (61) to obtain an equation of motion for 
p that depends on the system degrees of freedom only. One additional approximation proves 
to be useful. To the same order in the system-environment interaction F one can replace 
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p(/H) by p(/) [S9|—a well-defined procedure that can be justified for any given order of I 
1134. 135]. This replacement is known as the Markov approximation and has the advantage 
that the lime evolution of the density operator p(t) only depends on its value at the same 
instant of time. Then,

p(t) = -f dt tr„ |P'(/). [E(r'). pH ®p(/)]| (63)

and we have made the assumption trK [E, p(/0) 0 Pi<] = d which holds true in most cases of 
interest [15. 89). Equation (63) is our final result. It has the evident structure that at time 
r the system becomes entangled with the environment, the entangled system and reservoir 
propagate for a while—note that E is given in the interaction representation according to 
//s + Hh—and finally a back-action on the system occurs at time t. Because of the finite 
interaction lime, within the processes of decoherence and relaxation the system can acquire 
an uncontrollable phase or can exchange energy with the environment. The general structure 
of Eq. (63) prevails if higher orders of the interaction E are considered ] 136-139], as will 
be also discussed at the example of phonon-assisted dephasing in Section 5.5.

5.2.1. Caldeira-Leggett Type Model
To be more specific, in the following we consider the important case where a generic two- 
level system is coupled linearly to a bath of harmonic oscillators 1140-142]

£
H — <r-. 4 ^2 L'b ail,i + ( ^7 £,(«,’ (r~ ~ (li ,T+ ) (64)

I lure. Eo is the energy splitting between ground and excited slate, o>, the energies of the 
harmonic oscillators that are described by the bosonic field operator and g, the system
oscillator coupling constant, which is assumed to be real. The last term on the right-hand 
side defines the system-environment interaction E where we have introduced the lowering 
and raising operators <r — |0)(l| and tr, = |l)(0| for the two-level system. If we insert E 
in the interaction representation according to IIs 4 IIH into Eq. (63). we obtain 

p(/) = -/ r//'^,g).i',((^(r)</; (r'))<r. (t)rr (t')p(t) 4 («,(/')«;(0>p(/)<r, (/ )<r (f)

- («,(/)(/](/ )>a (r')p(/)<r. (r) — («,(/ )</,’(/))rr (Z)p(/)<r, (/’)

4 («’(/)«,(/')>(r (/)<r, (/ )p(/) 4 («*(f')«,(/)>p(/)<r (t )<r+(l)

- «(')«,(' >>rr. (' )P('H'' (') ~ («;U’)<'((/)>fr. (')P(')^ (')) (65)

Here, the terms in brackets have been derived by use of cyclic permutation under the trace 
and describe the propagation of excitations in the environment. The remaining terms with 
p and tr account for the effects of environment coupling on the system. The expression in 
the second and third line describe emission processes where an environment excitation is 
created prior to its destruction, and those in the fourth and fifth line absorption processes 
where the destruction is prior to the creation. The latter processes usually only occur at 
finite temperatures. In the following, we suppose that pK describes the reservoir in thermal 
equilibrium such that = 5lln(a>j). with /;(«>) the usual Bose-Einstein distribution 
function. Within this spirit, we have also neglected in Eq. (65) terms with {aa) and 
which would only play a role in specially prepared environments such as squeezed reservoirs 
|89|. Let us next consider one specific term in (65), which can be simplified according to

/ dr J2g,g,(«,(-)n' (()))<’''"T = £g2| I 4 »(w,)|y(E(l - w, I - t„)
•'0

(66)

with y( < 1. r) — sin (and we have neglected terms that only contribute to energy renor
malizations but not to decoherence and relaxation [89]). y(52,/) has the important feature
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that in the adiabatic limit lim,y(! 1, t) = 7TZ>(11). it gives Dirac's delta function. Thus, 
for sufficiently long times, the various terms in Eq. (65) account for energy-conserving scat
tering processes (as discussed below the strict adiabatic I —* oc limit is usually not needed 
and it suffices to assume that the reservoir memory is sufficiently short-lived). Within the 
adiabatic limit, the environment couplings can then be described by the scattering rates 
l 'i = 277 ^2,^ [1 ■+ «(&>,)] 3(to( - £u) and I 2 — 2ir^, g; n(a),) 8(<at — E„) for emission and 
absorption, respectively, and the Lindblad operators = vTi rr and £2 = <r+ associ
ated to emission and absorption. We can bring Eq. (65) to the compact form

0 = - pH,„) + J2E,pL,
I

(67)

where Hcf( = Hs (i/2)^Li *s an effective, non-Hermitian Hamiltonian. Equation (67) 
is known as a master equation of Lindblad form (89, 143], It has the intriguing feature that 
it is guaranteed that during the time evolution the trace over p remains one throughout.

5.2.2. Unraveling of the Master Equation
In many cases of interest, the master equation (67) of Lindblad form can be solved by 
a simple and particularly transparent scheme. It is known as the unraveling of the master 
equation [144 -146]. Recall that the density operator is a statistical mixture of state vectors, 
p = pk I'KX'PJ. where the summation over k results from the statistical average of the 
various pure states |%). For simplicity, we restrict ourselves to a single state vector |'P). 
The general case (54) then follows from a straightforward generalization. On insertion of 
the projector |'I')('P| into the master equation (67), we obtain

^|'P)(^| = —/(Heff|'F)(TP| - |'P)('P|Hj11) + £ EJ'PXM/IL; (68)

The first term on the right-hand side can be interpreted as a non-Hermitian, Schrodinger- 
like evolution z'|'P) = //cff|'P) under the influence of 7/cff. In contrast, the second term 
describes a time evolution where I'P) is projected—or jumps—to one of the possible states 

For sufficiently small time intervals Z>/, the time evolution according to HM is given 
by |'P(z 4- 8tf) = (1 - z7/cff 8t)|T(z)). Note that /7ctf is non-Hermitian and consequently the 
wavefunction at later time is not normalized. To the lowest order in 8t the decrease of norm 
8p is given by

8p = i8t{V(t)\Heff - H^(t)) = 8t £('P(z)|£;L,|'P(z)) = £ 8Pi (69) 
i i

The full master equation evolution has to preserve the norm. This missing norm 8p is 
brought in by the states A4/(Z'))> to which the system is scattered with probability 8Pi. The 
time evolution of the density operator can thus be decomposed into

p(z + St) = (1 - Sp)p(|(z + fiz) + 8ppft + 8t) (70)

where pn(/-f-6r) = Udlp(t)U^f with the nonunitary time evolution L/eff = 1 — iHett8t accounts 
for the unscattered part of the density operator and p((z + 8t) — £, f>P< b, p(t) L1’ for the 
remainder where a scattering has occurred with probability 8p. For that reason, the different 
parts of p are often refered to as conditional density operators [ 146]. This allows for a simple 
interpretation of the master equation (67): the first term on the right-hand describes the 
propagation of the system in presence of and out-scatterings, which are responsible for 
decoherence, and the second one for in-scatterings which result in relaxation. This decompo
sition will prove particularly useful in the discussion of single-photon sources (Section 5.4).
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5.3. Photon Scatterings
The light-photon coupling of Eq. (44) can he described within the framework of the 
Cakleira-Leggett type model. For a generic two-Icvcl system, it is of the form (64) where 
the summation index i includes the photon wavevector k and polarization A. The coupling 
constant reads

= (71)
\ V

with e the exciton polarization defined in Section 3.1.3 and the optical dipole matrix 
element of Eq. (35). Inserting Eq. (71) into (66) gives for the memory kernel

„ 2/;<tu „ „ , 4/; , r" ,
= (72)

*a K' 3rrc-

To arrive at the right-hand side, we have replaced the summation over k by —» 
(2tt) ' k'dk fdtt, and f dil is the integration over all angles that has been performed 
analytically 115, 22, 147], The integral over ai accounts for the temporal buildup of photon 
scatterings. It is shown in Fig. 17 as a function of time. Most remarkably, the asymptotic 
value is reached on a timescale of femtoseconds. Thus, in the description of scatterings, one 
does not have to invoke the strict adiabatic limit / —> tx>. hut the asymptotic scattering behav
ior is rather due to the extremely short-lived memory kernel of the reservoir. This is because 
the system is coupled to an infinite number of photon modes that interfere destructively in 
the scattering process. If we replace the integral in Eq. (72) by its asymptotic value rrw,'. we 
find for the scattering rate of spontaneous photon emission

r = (r?r)|2 f dr\^t(r.r)\2 x I ns 1 (73)

This is the generalized Wigner-Weisskopf decay rate for a dipole radiator embedded in a 
medium with refractive index //,. The nanosecond timescale given on the right-hand side of 
Eq. (73) represents a typical value for GaAs- or InGaAs-based quantum dots. The values 
tor f dr |'l\(r, r)|~ range from one in the strong-confinement regime to several lens in the 
weak-confinement regime (Appendix A.3), and the corresponding scattering times 1/F from 
nanoseconds to a few tens of picoseconds [24. 28. 34], Such finite lifetime of excited exciton

Figure 17. Memory function /,/ u)'da> sin[ ( I <u)/|/( I <») of Eq. (72). which describes lhe temporal buildup of 
photon scatterings. The asymptotic limit is reached on a timescale of l/E„, where E,, is lhe energy difference of 
ground and excited state. For a typical value of E„ = 1 eV. the corresponding time is approximately 0.66 fs. The 
large negative values at early times arc attributed to the somewhat unphysical assumption made in (62) that system 
and reservoir are initially completely decoupled.
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states affects both the coherence properties and the lineshape of optical transitions. We 
first consider the case of Rabi-type oscillations in presence of a constant laser, which were 
already discussed at the beginning of this section. The equation of motion for the coherent 
time evolution follows from Eq. (59) and that for the incoherent part by Eq. (6). where 
the transverse and longitudinal scattering times T2/2 = 7~, = l/F are given by the Wigncr- 
Wcisskopf decay time (for details, see Appendix C). For simplicity, we consider a resonant 
excitation A = 0 and assume II to be real. The motion of the Bloch vector then only takes 
place in the (v, z)-planc and can be computed from

t/2 = Il- n2. //, = -It ii-. - I (n, + I) (74)

Typical results for rhe propagation arc shown in Fig. 18. We observe that Rabi-llopping 
occurs but is dampened because of the Unite exciton lifetime. In the limit i oo, all oscil
lations become completely dampened and the Bloch vector approaches w = 0. Such loss of 
coherence properties is a general property oi decohercnce and we will encounter similar 
results for the phonon-assisted dephasing (Section 5.5). Wc next discuss the influence of a 
finite exciton lifetime on the lineshape of optical transitions measured in absorption experi
ments (analogous conclusions hold for luminescence). Our starting point is given by Eq. (39), 
which, for the two-level system under consideration, states that the absorption spectrum is 
given by the spectrum of polarization fluctuations (<r (())</.(/)). The objective to calculate 
from the equation of motion for the Bloch vector, which depends on only one lime argu
ment. the two-time correlation functions can be accomplished by different means. A popular 
one is based on the (/uunium regression theorem, which relates for a system initially decoupled 
from its environment the density-matrix to the two-time correlation functions [22, 89, 148, 
149|. The primary idea of this approach is as follows. Let p(t0) denote lhe density operator 
at time f,(. The density operator at later time can be obtained by use of the time evolution 
operator (7(z,/0) through p(/) — t/(r, z0) p(/0) /0). Upon insertion of a complete set
of eigenstates |/‘), this equation can be transformed to matrix form

P„(f) = £</|U(/, t„)\j)
kl

= E hl) hl) Pkt(hl)
kl

= 'o)Pa/(A>) <75)
kl

Time (ps)

Figure 18. l ime evolution ot the Bloch vector as computed from Eq. 174) for a constant resonant laser with 
<2 - 0.2 meV and for a finite upper-state lifetime 1/1' — 40 ps. The solid and dashed lines in (a) show «,(/) and 
«,((). respectively, and (b) shows the corresponding trajectory ol the Bloch vector u.
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where the last equality defines lhe Green function 6 AZ(/.ftl). Once we know the Green 
function, we can compute the expectation value for any operator A according to (/I) = 
HijPiji1) '») Pkii'u) /I,,- However, it also allows lhe calculation of multi
time expectation values. Consider lhe correlation function for two operators A and F) in the 
Heisenberg picture

<,4(/)/?('„)> = trp(r„) A U(t, t„) B

= ^(E 'll) Bm PM Alm
— G III I. n ■ 'll) Bill Pili'll) ^Im (76)

where we have made use of the usual Einstein summation convention. Importantly. Eq. (76) 
shows that the two-time correlation function can be computed by replacing the density
matrix puiFi) at l'me ln ty the modified expression Blk p^fj^). The result, which is known 
as the quantum regression theorem, implies that the fluctuations regress in time like the 
macroscopic averages. Equation (76) holds exactly, but the factorization of the density oper
ator at time zn plays an essential role in the derivation [22], We shall now show how this 
result can be used lo compute the polarization fluctuations (a (/)at (f0)). According to the 
regression theorem, we have to use instead of the initial density operator p(r0) = |0)(0| the 
modified rr+p(r0) = |l)<0| = one. Inserting rr. into the l.indblad equation (67) gives

(77)

which show's that the excitation tr+ propagates with the transition energy £(l but is damp
ened because of spontaneous photon emissions. For the correlation function, we obtain 
((» (i)cr^(/,,)) = exp -/[E(> — 7( F/2)](r - zn), which, upon insertion into F.q. (39), gives the 
final result

«(w) :X r/2 _____

(w ~ £»)■ ■+■ (l!-)~
(78)

The lineshape for optical transitions of a two-level system subject to spontaneous photon 
emissions is a Lorcnlzian centered at £j, and with a full-width of half maximum of r/2. 
In a nonlinear coherent-spectroscopy experiment, Bonadeo et al. (26] made the important 
observation that for excitons in the weak-confinement regime energy relaxation and dephas
ing rates are comparable and predominantly due to photon emissions, thus reflecting the 
absence of significant pure dephasing. Such behavior is quite surprising for the solid stale, 
as all interaction mechanisms can contribute to 7’2 but only a few to l\. Similar results were 
also found in the strong confinement regime where, however, things turn out to be more 
complicated (Section 5.5) [24. 34, S3. 150. 151].

5.4. Single-Photon Sources

Single-photon sources arc one of the most promising quantum-dot based quantum devices. 
The creation of a single photon on demand—first a trigger is pushed and one single photon 
is emitted after a given time interval—plays an important role in quantum cryptography, 
for example, for secure key distributions [19, 21], Gerard and Gayral 1152] were the first to 
propose a turnstile single-photon source based on artificial atoms. Their proposal exploits 
tw'o peculiarities of artificial atoms: first, because of Coulomb renormalizations of the few
particle states in the decay of a multiexciton state, each photon is emitted at a different 
frequency (see Fig. 14); second, because of environment couplings—for details see below— 
photons are always emitted from the fcw-particle state of lowest energy. Thus, in the cascade 
decay of a multiexciton complex, the last photon will always be that of the single-exciton 
decay, and this photon can be distinguished from the others through spectral filtering.

This is how the quantum-dot based single-photon source works: a short pump laser excites 
electron-hole pairs in lhe continuum states in the vicinity of the quantum dot. where some 
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become captured in the dot; the resulting multiexciton complex decays by emitting photons— 
because of Coulomb renormalizations each photon has a different frequency and because 
of environment couplings emission only takes place from the respective fcw-particlc states 
of lowest energy; finally, the "single photon on demand" comes from the last single-exciton 
decay. Spectral filtering of the last photon is usually accomplished by placing the quantum 
dot in an optical resonator such as a microcavity [153, 154], The theoretical description of 
single scatterings is a quite nontrivial task. The framework of environment couplings devel
oped in this section is based on statistical physics and thus applies to ensembles of (identical) 
systems only. How do things have to be modified for the description of a single system? 
Surprisingly enough, not too much. The question of how to describe theoretically such prob
lems first arose almost two decades ago when it became possible to store single ions in a 
Paul trap and to continuously monitor their resonance fluorescence and led to the develop
ment of the celebrated quantum-jump approach |144-146], This approach combines the usual 
master-equation approach with the rules of demolition quantum measurements [146, 155) 
and provides a flexible tool for the description of single-system dynamics subject to continu
ous monitoring. Suppose that the artificial atom and the photon environment at time tn are 
described by the density operator h'(/u) = p(l„) 8 pH. We shall now let the system evolve 
for a short time 8/ in presence of the light-matter coupling. This time 8t is supposed to be 
long enough to allow the photon to become separated from the dot—see Fig. 17 for the 
buildup time of scatterings—and short enough that only a single photon is emitted. What is 
the probability that a photon is detected within 8/? Let Pu = |0K)(0K| denote the projector 
on the photon vacuum ()K. Then

= trPtJ t/(r(1 + 8t,/())h’(/0) (/t(rll, r0 f-8r)P„ (79)

gives the probability that within 8t no photon is emitted. The term UwlT describes the 
propagation of the quantum dot coupled to photons and the projection operators P(, the 
photon detection. With probability no photon is detected. If wc correspondingly project 
in Eq. (79) on lhe single-photon subspace wc get the probability l\ that one photon is 
detected within St. Obviously, Pt) -I- P, = 1 must be fulfilled. There is one important conclu
sion to be drawn from Eq. (79). If we compute according to Eq. (63) the time evolution of 
the density operator to the lowest order in K but replace the trace over the reservoir by the 
projection operators Pu and P(—which are associated to the outcome of the measurement— 
we encounter expressions that are completely similar to those of the emission processes in 
the second and third line of Eq. (65). However, the terms in the second line only show up 
for projection on P() and those in the third line only for projection on Pr This dependence 
can be understood as follows. In the quantum-mechanical time evolution (63) of the master 
equation, the density operator splits up into two terms associated to the situations where a 
photon is emitted or not. Through lhe measurement—described by the projection operators 
Pl( and P|—we acquire additional information whether a photon has been emitted or not, 
and wc correspondingly have to modify the density operator.

A particularly transparent description scheme for this propagation subject to quantum 
measurements is given by the master equation (67) of Lindblad form and its unraveling 
(70) [146, 155], In the time evolution of p(t), wc assume that after each time interval 
St, a gedanken measurement is performed [146, 155], where either no photon or a single 
photon is delected. These two situations correspond to the two terms of Eq. (70) with 
probabilities = I - 8p and Pt = 8 p. The decomposition of the lime evolution of the 
density operator into no-scattering and scattering contributions provides an elegant means 
to calculate probabilities for finite time intervals [/0, /]. Let us introduce the conditional 
density operator p„, associated to no-photon detection, whose time evolution is given by

Pn = - / ( 77u,, p<, — P(») (80)

subject to the initial condition p,t(ltl) — pOo)- Because //v(f is a non-Hermitian operator, the 
trace /^(f) = lrpH(/) decreases and gives the probability that the system has not emitted 
a photon within |/0, /[. The probability that a photon is emitted at l is given by -8/ P0(f). 
Once a photon has been detected, we acquire additional information about the system and 
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accordingly have to change its density operator. This is the point where the second term of 
the unraveled master equation (70) comes into play. For the photon emission described by 
the Lindblad operator L, (/ may correspond to the photon polarization),

p(t + 3f) —» (Hl)

gives the density operator right after the scattering (the denominator guarantees that the 
density operator after the scattering fulfills the trace relation). Table 4 lists some of the 
basic quantities of this scheme, which is known as the quantum-jump approach 1146]. Let us 
consider as a first example the situation where a quantum dot is initially in the single-exciton 
state. With the Lindblad operator L = Jv <r associated to photon emission, wc obtain 
for the effective Hamiltonian HM = —/(F/2)| 1>(1|. Thus, the decay of /’,(/) = cxp-R is 
mono-exponential and the probability to detect a photon at time l is given by P(((r) = 
3/ f cxp-R.

5.4.1. Photon Antibunching
We next consider the situation where a single quantum dot is driven by a constant laser 
with Rabi frequency (I, and the resonance luminescence—sometime refered to as resonance 
fluorescence—is measured. The quantity we arc interested in is the probability that once a 
photon has been detected at time zero, the next photon is detected at time /. it is similar to 
the two-photon correlation function g'?l(f) [15. 22. 146], with the only difference that we ask 
for the next instead of any subsequent photon. With the framework of the quantum-jump 
approach, we are in the position to compute readily things.

This is how it goes. Suppose that the system is initially in stale |0). The effective 
Hamiltonian in presence of the driving laser and of photon emissions is He„ = (I /2)[ A cr. — 
Q<T| — <T(1 + cr,)/2], with A the detuning between the lasei and the two-level transition.

Table 4. The primary quantities and equations of interest of the quantum-jump approach |I46] (for discussion, 
see text).

Description Expression

Full density operator
Time evolution (f>3) of w( t) = -t|f'(r).H(r)

Conditional density operator
for no-photon emission

Time evolution of p„(f)
Conditional time evolution operator 

for no-photon emission
Conditional time evolution

for no-photon emission in

Pu(i)

C,,(r. rl() = e.xp| c,)| for time independent /7cU

Projection on photon vacuum:
no photon delected

Projection on single-photon subspace; 
photon detected P,

Probability that photon
is detected in 1i.i + <5/1 ' 

Probability that no photon
is detected in |/„, /1 “

trlP,tr(/, t + 6/ )m*< / >0” ’ (/. i 4- fir V, tr|p(f) L AJ

(t, (t. /H) —• /0)|

l ull density operator after 
photon detection at lime I 

System density operator after 
detection of photon /

»■(,) = tr/;|P,H'(/)ir-l| 1̂

#>(/) = /lr|.|

‘‘The two expressions on the right-hand dde correspond, respectively, to the full density operator »(z) and the reduced density 
iperatoi /z(Z) ot the system. The latter is computed within the approximation of a master equation (<>7) in Lindblad form.



432 Optical Properties of Semiconductor Nanostructures

which we assume to be zero. As shown in Appendix C, the probability P„(t) lor no-photon 
emission can then be computed analytically

F<l(/) = e 4-sinhf/sintlul/) (82)

where Qjff = 12- - (F/2)2 for fl > 1/2 and we have defined the angle H through tanh# = 
(r/2fl). Equation (82) gives the probability that a system—which is initially in its groundslate 
and is subject to a constant laser field—has emitted no photon within ](>,/]. Small angles 
I) refer to the case that photon scatterings occur scldomly on the timescale of l/fl and 
large angles to the case where photon emissions and Rabi Hopping take place on the same 
timescale. Figure 19a shows P{l(t) as computed from Eq. (82) for different values of b. 
We observe that in all cases Fu(/) decays exponentially—the decay constant is given by 
sinh 011cff—and is modulated by the Rabi-type oscillations of sin fldt/. The latter oscillations 
reflect the fact that it requires the driving field fl to bring the system from the ground 
to the excited state and eventually back to the groundstate and that photons can only be 
emitted from the excited state. This is also clearly shown in Fig. 19b, which shows the 
probability distribution /J0(t) for the emission of the next photon: all three curves start at 
zero, and it requires a finite time to bring the system to the excited state where it can emit 
a photon. Finally, Fig. 19c shows the probability distribution that after a photon count at 
time zero, any other photon is detected at l. It is computed from the quantum regression 
theorem (76) for an initial density operator |0)(0|. Although at later times no correlation 
between the first and the subsequent photon count exist, at early times there is a strong 
anticorrclation because of the above-mentioned laser-mediated excitation of the upper state. 
This is a genuine single-system effect—for an ensemble of two-level systems the two-photon 
correlation would be a Poissonian distribution [22]—and is known as photon anlibttnching. 
Indeed, such behavior has clearly been observed in the two-photon correlations of single 
quantum dots. Using pulsed laser excitation, single-photon turnstile devices that generate 
trains of single-photon pulses were demonstrated [154, 156-160). In a somewhat different 
scheme, electroluminescence from a single quantum dot within the intrinsic region of a 
p-i-n junction was shown to act as an electrically driven single-photon source [161, 162]. 
Also, the decay of multiexciton states has attracted great interest, as it provides a source for 
multicolor photons with tunable correlation properties [163], In the quantum cascade decay 
of the biexciton, it was demonstrated that lhe first photon emitted from the biexciton-to- 
exciton decay is always followed by the photon of the single-exciton decay, that is. photon 
bunching [164], When both photons are emitted along z—which could be achieved, for 
example, by an appropriate design of the microcavity-—-the two photons not only differ in 
energy but also in their polarizations, which could be used for the creation of entangled 
photons [147, 162. 165-167],

We conclude this section with a more conceptual problem. It is known that under quite 
broad conditions, quantum measurements lead to a wavefunction collapse. How does this

Figure 19. (a) Probability distribution of Eq. (82) that a two-lcvd system initially in the groundstale and 
subject to a driving laser field and spontaneous photon emissions has cp to time / not emitted a photon. Times 
are measured in units of and the angles are H — II.I (solid line). U — (1.2 (dashed line), and H = 0.5 (dotted 
line), (b) Probability distribution —/’,(!) that the second photon is emitted at time I. (c) Two-photon probability 
distribution that any other photon is detected at r. as computed from the quantum regression theorem 76. 
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collapse show up in the quantum-jump approach under consideration? Suppose that a pho
ton is detected within lhe time interval + According lo lhe von Neumann-1 riders rule, 
the total density operator w has lo be changed to [14b. 155)

H'(/ + Ht) —♦ trK[P| U(t + + <5r. r)P|]Pl( (S3)

Here, the projector P( accounts lor the photon detection and the reservoir trace together 
with P;, for the demolition measurement where the photo detector absorbs lhe photon. The 
latter procedure leads to the collapse of the photon wavefunction. In Eq. (SI). the influence 
of the photon measurement on p is less obvious. In comparison to the full master equation 
(67). lhe main effect of lhe measurement is that we acquire additional information about 
the photon environment, and we correspondingly modify the system density operator. Is 
this equivalent lo a wavefunction collapse? The solution to this problem is quite subtle. 
In the derivation of the master equation (67) of Lindblad form, we made the adiabatic 
approximation i —* oo, which, as shown at the example of photons in Fig. 17. is equivalent 
lo the assumption of a sufficiently short-lived reservoir memory. In other words, in the 
process of photon emission described by lhe Lindblad operators the photon becomes 
fully decoupled from the system. Thus, when we measure the photon, no back-action on 
the system occurs. The environment is used “as a witness" [14] that provides information 
about the system (i.c.. whether it has emitted a photon or not). For that reason, we are 
neither forced to introduce explicitly a wavefunction collapse in the purification process (Hl) 
nor does it matter whether the photon is detected directly after emission or travels some 
distance before detection (as lhe time evolution of lhe system is described identically in 
both cases). On the other hand, we promise that we will use the photon only to perform 
photon counting but will not try to measure accurately its frequency—which would require 
a sufficiently long interaction time between the quantum dot and the photon, within which 
the two objects would become entangled.

5.5. Phonon Scatterings
In addition to lhe photon coupling, carriers in artificial atoms experience interactions with 
genuine solid-state excitations such as, for example, phonons. For sufficiently small interlevel 
splittings, phonon scatterings can he described within the framework of the Caldeira-Lcggett 
model of Section 5.2.1. Theoretical estimates for the corresponding relaxation times are of 
the order of several tens of picoseconds 1168-1711. This finally justifies our assumption made 
m single-dot spectroscopy that photon emission always occurs from the few-particlc states of 
lowest energy. However, things arc considerably more difficult when the interlcvcl splitting is 
larger than the phonon energies. This is the case for most types of self-assembled dots where 
the level splitting is of the order of 50-100 meV. to be compared with the energy of longitu
dinal optical phonons of 36 meV in GaAs. According to Fermi's golden rule (7). scatterings 
should here become completely inhibited because of the lack of energy conservation. This 
led to lhe prediction of the so-called phonon bottleneck [168. 169]. Most experimental stud
ies revealed, however, a fast intradot relaxation of optically excited carriers 1101. 172-174|. 
Furthermore. Borri et al. |24. S3. 150] observed in optical coherence spectroscopy experi
ments that phonon-induced decoherence can even occur in complete absence of relaxation. 
Such decoherence is due to the lattice deformation induced by the optical excitation and 
the resulting formation of a polaron (i.e., a composite exciton-phonon excitation). In the 
following, we first briefly review the theoretical description of polarons and phonon-assisted 
dephasing. Based on this, we then reexamine relaxation processes beyond the framework of 
Fermi’s golden rule.

5.5.1. Spin-Boson Model
Consider the model where a generic two-level system is coupled linearly to a reservoir of 
harmonic oscillators such that the interaction only occurs when lhe system is in the upper 
state 1231

II = tn I 0(11 + * w, <6 a, + 5Z.k’,(«, + «,)IO(H (^4) 
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Here. to, is the phonon energy, a, the bosonic field operator for phonons, and g, the cou
pling constant (details will be presented below). In comparison to the Caldeira-Leggett type 
model (64). the so-called spin-ht>.wn model of Eq. (84) does not induce transitions between 
the two levels. Yet. it leads to decoherence. This can easily be seen by writing Eq. (84) in 
the interaction picture according to the Hamiltonian for the uncoupled quantum dot and 
phonons

r(/) = £g^'«; + e a,)| l)(l| (85)
t

Through the phonon coupling, the two-level system becomes entangled with the phonons, 
where each phonon mode evolves with a different frequency w,. If we trace out the phonon 
degrees of freedom—similarly to the procedure employed in the derivation of the Lindblad 
equation (67)—the different exponentials e11"" interfere destructively, which leads to deco
herence. Because this decoherence is not accompanied by relaxation, the process has been 
given the name pure depluising. We shall now study things more thoroughly. We first note that 
the dot-phonon coupling term can be removed through the transformation [23, 175. 176|

e' H e ’ = £„ 11) (11 + £ (86)

with -V = |l)(l| ~a.) an anti-1 lermitian operator, tl( = I®, the renormal
ized two-level energy, and = g,/w,. The simple physical reason is that for the Hamiltonian 
(84). the oscillator equilibrium positions arc different for the ground and excited states of 
the tw'o-level system, and e’—which is closely related to the usual displacement operator 

= el" l'“ of the harmonic oscillator (15. 22, 89)—accounts for this displacement of 
positions. Let us first study the lineshape of optical transitions resulting from the phonon 
coupling (84). As shown in Appendix D, within the spin-boson model, the polarization fluc
tuations governing the absorption spectra (39) can be computed analytically [23| 

{tr (O)trjr)) = e'1"1 i sin to,i — (I - cos to,l) coth ~4 (87)
I x I'

with [i the inverse temperature. Because the final result (87) is exact (within the limits of 
our model Hamiltonian), it can be employed for arbitrarily strong phonon couplings g,. 
In addition, it provides a prototypical model for decohcrence that has found widespread 
applications in various fields of research [128, 135, 177-179], For semiconductor quantum 
dots. Eq. (87) and related expressions have widely been used for the description of optical 
properties [25. 176. 179-182]. We now follow Krummheuer et al. [25] and derive explicit 
results for GaAs-based quantum dots. For simplicity, wc assume a spherical dot model and 
acoustic deformation potential interactions [25, 29]

/ \1/2
= (De-Dh)e («8)\ 2pc, )

as the only coupling mechanism. Here, </ is the phonon wavevector, p the mass density. c, the 
longitudinal sound velocity. D, and I)h the deformation potentials for electrons and holes, 
respectively, and the electron and hole wavefunctions have been approximated by Gaussians 
with the same carrier localization length L. Because the exponential in (88) introduces an 
effective cutoff for the wavevectors </, we do not have to account explicitly for the cutoff 
at the Debye frequency. It turns out to be convenient to measure length in units of L, 
wavevectors in units of 1/L. energy in units of cjL. and time in units of L/c,. With material 
parameters representative for GaAs [25, 29] and a carrier localization length L — 5 nm. we 
obtain, respectively. I ps, (1.7 meV, and 7.8 K for the time, energy, and temperature scale. 
The dot-phonon coupling strength can be expressed in dimensionless form

cr = = 0.(133 (89)
1 4ir2pc*L2 
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where the estimate on the right-hand side corresponds to the material and dot param
eters listed above. With the natural units for lime, energy, and temperature, the cou
pling strength of Eq. (89) becomes the only parameter of the spin-boson model. We 
then gel XLU'J'/w, = «/F ( tt/2) 1 2 for the renormalization of the two-level energy and 
exp ap J’7 xdx e-' '• [z sin xt — (I — cos.vf) coth(/3.r/2)| for the polarization correlation func
tion (87). This function is shown in Fig. 2(Ja for different temperatures. We observe a decay 
at early times associated to phonon dephasing—that is, part of the quantum coherence is 
transfered from the two-level system to the phonons—and the curves approach a constant 
value at later times. The asymptotic value decreases with increasing temperature.

In a sense, this finding is reminiscent of the Franck-Condon principle of optically excited 
molecules: because the equilibrium positions of the ions in the ground and excited state are 
different, after photoexcitation the molecule ends up in an excited vibrational state. How
ever, in contrast to the molecule, which just couples to a few vibrational modes, optical 
excitations in artificial atoms couple to a continuum of phonon modes that all evolve with a 
different frequency. In the spirit of the random-phase approximation, this introduces dcco- 
herence. Figure 20b shows the imaginary part of the Fourier transform of (tr (0)cr( (/)). 
which is proportional to absorption. In addition to the delta-peak at energy £0—which would 
acquire a Lorcntzian shape (78) in presence of photon emissions—the spin-boson cou
pling (84) gives rise to a broad continuum in the optical spectra that increases with increasing 
temperature. Such behavior has been observed experimentally and attributed to phonon 
dephasing [24],

Rabi-Type Oscillations We next discuss the influence of the dot-phonon coupling (84) 
on the coherent optical response of artificial atoms. In contrast to the previous section, 
where all results could be obtained analytically, in presence of a laser pulse fl with arbitrary 
strength, the solution of the equations of motion is more cumbersome [128. 177, 179], and 
one is forced to introduce an approximate description scheme [29, 30, 183], To this end. 
in the following we adopt a density-matrix description. Our starting point is given by the 
Heisenberg equations of motion for <r and zz,, according to the Hamiltonian (58) and the 
spin-boson coupling (84),

zr - fl a <r | £g,(",' x tr, zi, --z(w,zz, + g, |1)(1|) (90)
i

The vector 11 is defined in Eq. (59). Our objective now is to derive from (9(1) an approx
imate equation of motion for the Bloch vector zz = (rr). Multiplying in Eq. (90) the total 
density operator h’ from the left-hand side and tracing over the system and phonon degrees

Figure 21). (a) Polarization fluctuations and (b) their Fourier transforms, which are proportional to absorption, as 
computed within the spin-boson model of Eq. (87) for temperatures of 0.1 (solid lines). 1 (dashed lines), and 10 
(dotted lines). For material and dot parameters representative for GaAs (i.e.. a mass density p — 5.27 gem '. a 
longitudinal sound velocity <, = 5110 m/s, deformation potentials D, =■ -14.(> eV and D,. - —4.8 eV for electrons 
and holes, respectively, and a carrier localization length L = 5 nm |25, 2*7]) time, energy, and temperature arc 
measured in units of 1 ps. 0.7 meV. and 7.8 K, respectively, We assume a dot-phonon coupling strength n;r = 0.(133 
(for details, see text). In (b). energy zero is given by the renormalized energy £„ of the two-level system.
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of freedom shows that the Bloch vector couples to (o,tr). If wc would derive similarly to 
Eq. (90) the equation of motion for we would find that it couples to higher order 
density matrices such as («,(/,rr). 1'his is because through the spin-boson coupling (84) the 
two-level system becomes entangled with the phonons, and each density matrix couples to 
a matrix of higher order. The resulting infinite hierarchy of density matrices has been given 
the name density matrix hierarchy [27. 184], Wc shall now introduce a suitable truncation 
scheme. Consider a generic expectation value (.4/?) with two arbitrary operators A and B. 
If there was no correlation between the two operators, the expectation value would simply 
be the product {A} (B).

We shall now lump all correlations between A and B into the correlation function ((.-4B)), 
and express the expectation value of the two operators through (/4B) = (/I) {B} -t- ((/4B)). 
Corresponding factorization schemes—which are known as cumulant expansions—apply to 
expectation values with more operators such as. for example. {ABC) [27. 185. 129], In the 
common truncation scheme of the density-matrix hierarchy, one selects a few cumulants, 
which are expected to be of importance, and neglects all remaining ones. To the lowest order 
of approximation, within the spin-boson model we keep the Bloch vector (<r), the coherent 
phonon amplitude ,v, = («,), and the phonon-assisted density matrix u, = ((u/r)) as dynamic 
variables. Their equations of motion can readily be obtained from Eq. (90), and we obtain

« = Q.ff x a + 2 ) [ g,c-3 x !'ic(w,) 
n

i, = -iu),s, - ^g, (I + m J

ti, = Qu X M, - /w,aA + g, yn, + - x u + ^-g,(uAw - e3)

(91)

with Q.lf = fl + g, .v, and = ((«,'«,)) the phonon distribution function that we 
approximate by the thermal distribution n(w,). Wc can correspondingly keep higher order 
cumulants such as {{a'a.a}) whose equations of motion are considerably more complicated 
[29, 3()|. On general grounds, wc expect that the neglect of higher order cumulants is appro
priate for sufficiently low temperatures and weak dot-phonon couplings g,—or equivalently 
a defined in Eq. (89)—which is a valid assumption for GaAs-based quantum dots (afl = 
0.033) at low' temperatures. Figure 21 shows results of calculations based on Eq. (91) for 
a 2ir-pulse and for temperatures of T = 1 and T = 10. We observe that Rabi flopping 
occurs but is dampened because of the phonon-assisted dephasing. In particular at higher 
temperatures, phonon dephasing is of strong importance and gives rise to decoherence on a 
picosecond timescale. We shall return to this point in Section 6.

Figure 21. Rabi flopping in presence of phonon-assisted dephasing at temperatures of (a) 7 - I and (b) T = 10 
and for a Gaussian laser pulse with a full-width at half maximum of 5 (for units, see caption to Fig. 2(1), The 
solid and dashed lines show u, and respectively. The dark curses show results of calculations including u, sy 
and u, as dynamic variables, and the gray ones (which are indistinguishable in panel (a)J those of calculations that 
additionally include ((« ti'tr'y, and The insets report the trajectories of the Bloch vector.
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Beyond the Spin-Boson Model Although in many cases of interest the spin-boson model 
(84) prosides a sufficiently sophisticated description of optical excitations in artificial atoms, 
there an situations where it is expected to break down. For instance, at higher tempera
tures, amarmonic decay of phonons—a phonon decays in an energy-conserving scattering 
into two phonons of lower energy—or higher order phonon processes [186] could play a 
decisive role. If the artificial atom can no longer be described as a genuine two-level system, 
one has to consider additionally phonon-mediated scattering channels. Quite generally, the 
strong pclar-optical coupling to longitudinal optical phonons introduces a marked deforma
tion of the surrounding lattice and the formation of a polaron [187-189], Because optical 
phonons have a very' small dispersion, this interaction channel has no significant impact on 
decohercnce. However, when the system is in an excited exciton or multie.xciton state, the 
anharmonic decay of phonons contributing to the polaron allows for relaxation processes 
even in absence of energy matching between the unrenormalized dot transition and the 
phonons 1180. 190-194], This demonstrates that phonon relaxation and decoherence in arti
ficial atoms is more efficient than one would expect in a simple-minded Fermi’s golden-rule 
picture. Future work will show to what extent carrier-phonon interactions can be tailored in 
artificial atoms [195. 196] and whether phonon-assisted dephasing can eventually be strongly 
suppressed or fully overcome [183, 197, 198],

5.6. Spin Scatterings
So far, we have seen that photon and phonon scatterings occur on a timescale ranging from 
several tens of picoseconds to nanoseconds. Such decohercnce times are remarkably long 
for the solid state but arc rather short when it comes to more sophisticated quantum control 
applications (Sections 6 and 7). Optical excitations in quantum dots possess another degree 
of freedom that has recently attracted enormous interest: spin [531. Spin couples weakly to 
the solid-state environment and is therefore expected to be long lived. Optics provides a 
simple means to modify spin degrees of freedom through coupling to the charge degrees. 
This dual nature of optical excitations is exploited in quantum-computation proposals, to be 
discussed in Section 7. What are the typical spin relaxation and decoherence times in artificial 
atoms? Things arc quite unclear. Experimentally, it was found that at low temperature spin 
relaxation is almost completely quenched |34, 35, 199. 20()|. Theoretical estimates indicate 
relaxation limes of the order of microseconds or above [201], whereas almost no conclusive 
results exist for the pertinent decohercnce times. Thus, spin keeps its secret in the game and 
holds a lot of promise and hope.

6. QUANTUM CONTROL
Recent years have witnessed enormous interest in controlling quantum phenomena in a 
variety of nanoscale systems [202], Quite generally, such control allows to modify the sys
tem's wavefunction at will through appropriate tailoring of external fields (e.g., laser pulses): 
whereas in quantum optics, the primary interest of this wavefunction engineering lies on 
the exploitation of quantum coherence among a few atomic levels (15, 22, 89], in quantum 
chemistry, optical control of molecular states has even led to the demonstration of optically 
driven chemical reactions of complex molecules [203]; furthermore, starting with the seminal 
work of [204|, coherent-carrier control in semiconductors and semiconductor nanostructures 
has been established as a mature field of research on its own. These research arenas have 
recently received further impetus from the emerging fields of quantum computation and 
quantum communication [19], aiming at quantum devices where the wavefunction can be 
manipulated with highest possible precision. It is worth emphasizing that hitherto there exists 
no clear consensus of how to tailor optimally the system's control, and it appears that each 
field of research has come up with its own strategies: for instance, quantum-optical imple
mentations in atoms benefit from the long atomic coherence limes of metastable states, 
and it usually suffices to rely on the solutions of effective models (e.g.. adiabatic popula
tion transfer in an effective three-level system [205]): in contrast, in quantum chemistry, the 
complexity of molecular states usually does not permit schemes that are solely backed from 
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the underlying level schemes, and learning algorithms, which receive direct feedback from 
experiment, appear to be the method of choice. Finally, coherent control in semiconductor 
nanostructures has hitherto been primarily inspired by quantum-optical techniques; however, 
it is clear that control in future quantum devices will require more sophisticated techniques 
to account for the enhanced decoherence in the solid state.

This section is devoted to an introduction into the lield. Throughout, we shall use the 
laser-induced quantum coherence as the workhorse, which allows to bring the system to 
almost any desired state |127). On the other hand, such ideal performance is spoiled by the 
various decoherence channels at play (e.g., the ones discussed in the previous section). From 
the field of quantum optics, a number of control strategies are known that allow to suppress 
or even overcome decoherence losses. In Section 6.1, we shall discuss one of the most 
prominent ones: stimulated Raman adiabatic passage [205], a technique that exploits the 
renormalized states in presence of strong laser fields for a robust and high-fidelity population 
transfer. Because of its simplicity, there has recently been strong interest in possible solid
state implementations [206-213], There exist other control strategies, which arc cither based 
on schemes developed in the fields of nuclear magnetic resonance [214-218] or rely on 
general optimization approaches such as optimal control [203. 219. 220] or genetic algorithms 
[203. 221]. Below, we shall review' the latter two approaches. Similar to the last section, it will 
prove useful to rely on effective level schemes, which grasp the main features of the excitonic 
and multiexciton quantum dot states (Fig. 22). Finally, for a more extensive discussion of 
coherent optical spectroscopy and coherent carrier control in quantum dots, the reader is 
referred to the literature [28, 34, 93, 95, 100. 106. 222].

6.1. Stimulated Raman Adiabatic Passage
Let us first consider the A-type level scheme depicted in Fig. 22b. It consists of two long-lived 
stales |0) and 11), which are optically connected through a third short-lived state |2). Such a 
level scheme may correspond to a coupled dot charged with one surplus carrier, where states 
|0) and |1) are associated to the carrier localization in one of the dots and |2) to the charged 
exciton, which allows optical coupling between states |0) and |1) [206]; alternatively, we may 
associate the two lower states |0) and |1) to the spin orientation of one surplus electron in 
a single quantum dot, where in presence of a magnetic field along x (i.e., Voigt geometry, 
Section 3.1.3), the two states can be optically coupled through the charged exciton |2) (see 
Refs. [213, 223, 224] and Section 7). Quite generally, for the level scheme of Fig. 22b and 
assuming that the system is initially prepared in state |0>, in the following we shall ask the 
question: What is the most efficient way to bring the system from |0) to 11)? Suppose that 
the frequencies of two laser pulses are tuned to the 0-2 and 1-2 transitions, respectively. 
For reasons to become clear in a moment, wc shall refer to the pulses as pump and Stokes.

Figure 22. Prototypical dot-level schemes, (a) Two-level system with |(l) and |1; Ihe ground and excited states; 
11 denotes the Rabi frequency in presence of a light field, (h) \-type scheme, for example, carrier states in coupled 
dots |206|: |0) and |1) are long-lived states, whereas |2) is a short-lived state that is optically coupled io both 
|1) and |2; (for details, see Section 6.1); the w iggled line indicates spontaneous photon emission, (c) Exciton states 
in a single dot: |0) is the vacuum state; A ? and |T) are the spin-degenerate single-exciton groundstates, and |XX} 
is the biexciton groundstate; optica! selection rules for light polarizations e, or e, (either circular or linear) apply 
as indicated in the figure.
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Because direct optical transitions between |0) and |1) are forbidden, we have to use |2) 
as an auxiliary state: however, intermediate population of |2) introduces losses through 
environment coupling (e.g., spontaneous photon emissions or phonon-assisted dephasing). 
We can use the master equation (67) of Lindblad form to describe the problem. Within a 
rotating frame, wc obtain the effective hamiltonian [205. 225]

/ o o n;\
/<„ = — <) o n;

H, 6 )
(92)

with e = 2A + /T, A the detuning of the lasers with respect to the 0-2 and 1-2 transitions, 
and I’ the inverse lifetime of the upper state. fl and II, are the Rabi frequencies for the 
pump and Stokes pulse, respectively. Throughout wc assume that fl only affects the 0-2 
transition and 11, only the 1-2 one. which can. for example, be achieved through appropriate 
polarization filtering, or for sufficiently large 0-1 splittings through appropriate choice of 
laser frequencies. Figure 23b shows results of simulations for different time delays between 
the Stokes and pump pulse, and for different pulse areas /I, = (It UK(t) (we assume 
,4, = Afl): black corresponds to successful and white to no population transfer. In the case 
of the "intuitive" ordering of laser pulses where the pump pulse excites the system before 
the Stokes pulse (i.e., negative time delays in Fig. 23b). one observes enhanced population 
transfer for odd multiples of tt. This is associated to processes where the pump pulse first 
excites the system from |0) to |2). and the subsequent Stokes pulse brings the system from 
|2) to 11). However, the large black area at positive time delays in Fig. 23b suggests that there 
is a more efficient way for a population transfer. Here, the two pulses are applied in the 
"counterintuitive" order (i.e., the pump pulse is turned on after the Stokes pulse). Because 
of the resemblance of this scheme with a Raman-type process, it has become convenient to 
introduce the expression of a Stokes pulse, and the whole process has been given the name 
stimulated Raman adiabatic passage [205]. This process fully exploits the quantum coherence 
introduced by lhe intense laser fields.

In presence of the Stokes pulse, the dot-states become renormalized, and these renormal
ized states are used by the pump pulse for a robust and high-fidelity population transfer. 
Although Fig. 23 presents solutions of the full master equation (67), in the following wc shall 
only consider the time evolution of p due to the effective Hamiltonian (92). If II and 11, 

Figure 23. Simulations of coherent population transfer in coupled dots: (a) transients of the populations pt„, pI(, 
and p;, | tor level scheme, see Fig. 22b|; (b) contour plot of final population pl: as a function of time delay between 
Stokes and pump pulse and of pulse area A, — .d;l; white corresponds to values below 0.1, black to values above 
0.9; lhe dashed line gives the contour of pH > 0.999, and the cross indicates the values used in pane! (a). In our 
simulations, we use the same Gaussian envelopes for the Stokes and pump pulses (with the time delay given in the 
figure) and a full-width at half maximum of 20 ps. Parameters arc chosen according to Ref. |206|.
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have a sufficiently slow time dependence—as will he specified in more detail further below'— 
at each instant of time the system is characterized hy the eigenvalues and eigenvectors of 
Hdl. Straightforward algebra yields for F « £2V, I’ « Llr the eigenvalues

nr„ = (), ’ (A ± £2C|I) +/(I - A/£2vff)F (93)

with 12;fl = A- + 11-, 4- fl;. Most importantly, eigenvalue nrH has no imaginary' part and 
consequently does not suffer radiative losses (this holds even true for large values of T). 
Indeed, introducing the time-dependent angle f) through tan 0 = £2p/£ 2, we observe that the 
corresponding eigenvector

|uH) = cosW|l) sinW|2) (94)

has no component of the "leaky" state |2)—in contrast to the eigenvectors |u_) which are 
composed of all three states |0>. |1). and |2). In |«u). the amplitudes of the 0-2 and 1-2 
transitions interfere destructively, such that the state is completely stable against absorption 
and emission from the radiation fields. For that reason, state |a(l) has been given the name 
trapped state. The population transfer process exploits this trapped state as a vehicle in order 
to transfer population between states |0) and |1). it is achieved by using overlap in time 
between the two laser pulses (Fig. 23a, Table 5). Initially, the system is prepared in state 
|0). When the first (Stokes) laser is smoothly turned on, the system is excited al the Stokes 
frequency. At this frequency no transitions can be induced: what the pulse docs, however, 
is to align the time-dependent state vector |'I'(f)) with |</u(f)) = |0) (as 0 = 0 in the sector 
12, 0.12 — 0), and to split the degeneracy of the eigenvalues nr(l and ct1. Thus, if the pump
laser is smoothly turned on—such that throughout 12cff(/) remains large enough to avoid 
non-adiabatic transitions between |nu(/)) and |a+(f)) [205]—all population is transferred 
between states |(l) and |1) within an adiabatic process where |M'(/)) directly follows the time
dependent trapped state |flti(z)). Stimulated Raman adiabatic passage is a process important 
for a number of reasons. First, it is a prototypical example of how intense laser fields can 
cause drastic renormalizations of carrier states; quite generally, these "dressed" states exhibit 
novel features in case of quantum interference (i.e., if three or more states arc optically 
coupled). Second, quantum control in quantum dots has recently attracted increasing interest 
in view' of possible quantum computation applications [213, 216, 226, 227] aiming at an all- 
optical control of carrier states; in this respect, the adiabatic transfer scheme might he of 
some importance because of its robustness and its high fidelity (Section 7). More specifically, 
from Fig. 23b it becomes apparent that the transfer works successfully within a relatively 
large parameter regime—in contrast to the "intuitive’’ order of pulses, where a detailed 
knowledge of the dipole matrix elements and a precise control over the laser parameters 
is required. Thus, it provides a robust scheme that only relies on sufficiently smooth and 
strong laser pulses.

6.2. Optimal Control
In many cases of interest it is more difficult—or even impossible—to guess control strategies 
solely based on physical intuition, and one is forced to rely on more general control schemes. 
Suppose that the system under investigation is described by the n-component vector x = 
(\ |. x;,... x„) of dynamic variables, whose equations of motion arc given by the differential

Table 5. Time evolution of the quantities characterizing the stimulated Raman adia
batic passage |2O5| (for discussion, sec text).

Quantity fl, on fl, and fl(, on fl,, on

Angle M fi () 77/2

m A/2 t-IA' + fl;) tl(A' + fl’ f fl;.)1 ; ±l(A +■ fl;,)'
17Ti| 1) 0 (1
Trapped slate IW |0) - ID II)
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equations v, = F](x. 12) with F a functional that depends on all stale variables x and the 
control Helds 12. Here, v may refer to the different components of a wavefunction i/i that 
obeys Schrodinger’s equation, or to the different components of the density operator p. or 
to the cumulants of a density-matrix approach. The main assumption we shall make is that 
of a Markovian time evolution, that is, we assume that for the time evolution of x,(/), the 
functional F only depends on the variables .v( /) at the same instant of time. The components 
x, are supposed to be real, which can always be achieved by separating </r; or p,; into their 
respective real and imaginary parts. Initially the system is in the state x0. Quite generally, in 
the field of quantum control we are seeking for control Helds 12 that bring the system from 
xu at time zero to the desired final state .r<( al time T, or promote the system within the time 
period [0, 7] through a sequence of desired states. To evaluate a given control 12. we have 
to quantify its success through the emit functional

Here. Jr(.v), which only depends on x(T), accounts for the terminal conditions and rates 
how close x( 7 ) is to the desired state x(/ (e.g., through i||t/r(T) — t/fjlp)- 7(x. /) is a func
tional that accounts for other control objectives within |(). T'j (e.g., the wish to suppress the 
population of certain states), and the last term accounts for the limited laser resources. Our 
task now is to determine a control that minimizes J(x, 12) subject to the constraint that x 
fulfills the dynamic equations x, = Ffx. 12) with the initial condition x(0) = xu. Within the 
framework of optimal control [203, 219, 220], this is accomplished by introducing Lagrange 
multipliers x for the constraints, and turning the constrained minimization of (95) into an 
unconstrained one. For this purpose, we define the Lagrangian function

/.(x. x. 12) = I dt £.v,(x, - F\x. 12)) + ./(x, 12) (96)

We next use that the Lagrange function admits a stationary point al the solution.
Taking the functional derivatives of L with respect to x,, x(, and 12A (k labels the different 

components of the control fields) and performing integration by parts for the term x, x,, we 
arrive at

; = /-(.v,12). x,
d/-;u, n)

<9x,- <»12
(97)

together with the intial x((0) = xu and terminal xfT) = —dJr(x, 12)/<?x, conditions. For the 
“optimal control." this set of equations has to be fulfilled simultaneously for x, x. and If. 
In general, analytic solutions can be only found for highly simplified systems [228]. whereas 
numerical calculation schemes have to he adopted for more realistic systems, A numerical 
algorithm for the solution of the optimality system (97) was formulated in Borzi et al. [220]. 
Suppose that we have 
dynamic equations for 
the dynamic equations 
backward in time. The
—(l/y) O)/dl2* for the new control fields 12
small A it is guaranteed that the new cost functional J(x. 12) decreases [220]. Figure 24 
sketches the basic ingredients of the resulting algorithm.

an intial guess for the control fields 12. We can then solve the 
x subject to the initial conditions x((l) = xH forward in time, and 
for x subject to the terminal conditions x,(T) = —rV,(x, 12)/dx( 
last equation in (97) then provides the search directions dlik = 

12A tAJq . where for sufficiently

6.2.1. Adiabatic Passage
As a first example, we shall revise the adiabatic passage scheme of Section 6.1 within the 
framework of optimal control. This can be done in absence of decohcrence analytically 
[228, 229] or. as wc shall do in the following, in presence of decoherence numerically [220], 
Our starting point is given by the master equation (67) of Lindblad form, where the effec
tive Hamiltonian 7/clt is given by (92). Because we are aiming at solutions that minimize 
environment losses, we neglect in Eq. (67) the in-scattering contributions and are left with
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Figure 24. Schematic sketch of the numerical algorithm for optimal control [220]. One starts with a guess for 
the control fields and sets the initial stepsize A to, for example, y/10. Then the equations of motion for x are solved 
forward in time and the cost functional dlrja| is computed. In the first iteration, Sllml) is accepted. Upon acceptance, 
the equations of motion for the dual variables x arc solved backward in time, one sets J = J,„.A and SI = n,riu|. and 
finally the new search directions </n are computed. Finally, a new is computed, and the loop is started again. 
In the ensuing iterations, tl„u| is only accepted if /tnal < J, and otherwise the step-size A is decreased and the loop 
restarted (i.e., linesearch with Armijo back-tracking). Through the procedure of increasing and decreasing A, it is 
guaranteed that the algorithm always finds an appropriate step-size. Finally, the algorithm comes to an end after a 
certain number of iterations or when x has come close enough to the desired state x(f.

the Schrodinger-like equation of motion iif/ = for the three-component wavefunction 
<//. The effective Hamiltonian reads

Wett = (A-/y)|2)(2|-| £(,<!!, + */,11*) (98)

with the optical transition matrix elements Mp = |0)(2| and M, = |l)(2| for the pump and 
Stokes pulse, respectively. We assume that at time zero the system is in state The objec
tive of the control is expressed through

H) = 1(1 _|l/Z|(T)p)+Z f'd, Y, KM')I2
2 ■ 11 t-p.s

(99)

The first term has its minimum zero for (7’)| = 1, that is, when the system is finally in 
state |1). and the second term accounts for the limited laser resources and is needed to 
make the optimal-control problem well posed (we set y = 10 s). For this system (as well as 
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lor its Imdblad generalization |23(l|). we can easily obtain the optimality system in complex 
form |2'<l|

/•/> = //ct1iA. 4 = 11^. !i, =--!-((i//|A<|<A) + (<A|3/;|tA)) (100)

subject o the initial i//(0) = <A0 and terminal </',(7') = —iHJt (t//)/4tA, = —fS,, <//, (7’) conditions. 
The las: term in Eq. (100) is written in the usual bra and ket shorthand notation. Figure 25 
shows t.‘suits of prototypical optimal-control calculations and for different initial control 
fields D.,w|. Wc start with pump and Stokes pulses of Gaussian form centered al time 30 
and with a full-width of half maximum of 15. and use different pulse areas of 10. 25. and 50. 
For the two fields of lowest area, the optimal control loop (Fig. 24) comes up with control 
Helds wiere in addition to the initial Gaussians components at the detuning frequency A 
are present. Reminiscent of the stimulated Raman adiabatic scheme of Section 6.1, at this 
frequen.'y the Stokes pulse is turned on prior to the pump one. In contrast to that, for lhe 
highest initial pulse areas, the pump and Stokes fields keep their Gaussian shape (and no 
additional frequency components show up). The resulting control strategy is similar to that 
of the hack regions in Fig. 23b at zero time delay. Thus, different initial control fields fltriai 
in the oitimal control algorithm lead to different control strategies.

This s not particularly surprising, as even for lhe relatively simple situation shown in 
Fig. 23. where the pump anil Stokes pulse are characterized by the two parameters of area 
and puke delay, a huge number of successful control strategies (indicated by the black 
regions) is found. In the optimal control case shown in Fig. 25. where lhe control fields 12 
arc discretized at about I (),<)()() points in time, the control space is tremendously increased, 
and correspondingly an even much larger number of possible solutions can be expected. In 
absence of decoherence (i.e.. for an isolated few-level system), it can be shown that the only 
allowed extrema of the Lagrange function (96) correspond to perfect control or no control 
1127). In presence of decohcrcnce. things are modified. This is shown in Fig. 25 and even 
more clearly in Fig. 26. where one observes that the deviation of the final state t//(T) from the 
desired state t//, differs for different initial conditions. In other words, starting at one point 
of the high-dimensional control space, the search algorithm of Fig. 24 proceeds along the 
direction of the steepest descent and becomes trapped in a suboptimal local minimum. The 
way the search algorithm evolves can be studied in Fig. 26. For the small pulse areas (dotted 
and dashed lines), one observes that initially no population is transfered (and ./ has its largest 
possible value of 0.5). whereas for lhe largest pulse area (solid line), the initial guess for

Figure 25. Results of optimal control calculations for the adiabatic population transfer. We assume that the system 
is initially tn state |l,. The objective of the optimal control is to maximize the population of 1) at lime 7 = 60. As 
an initial guess tor the pump and Stokes laser pulses, wc assume Gaussians centered al time 30 with a lull-width 
at hall maximum of 15 and areas of 10. 25. and 50. We use A - 20 and I' = 0.1. Panel (a) shows the population 
transients |sec Fig. 23a] for lhe initial areas of 10 (dotted lines). 25 (dashed lines), and 50 (solid lines) Panel (b) 
shows the corresponding optimal control fields: the solid and dashed lines, respectively, correspond to frequency 
components centered around zero and A lhe zero-frequency components arc attributed in order of increasing 
magnitude to the initial areas of 10. 25, and 50.
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Iterations Iterations Iterations

Figure 26. Details ol the optimal control calculations shown in I tg. 25 for initial pulse areas ol III (dotted lines!. 
25 (dashed lines), anil 5(1 (solid lines) Panel (a) shows lhe decrease ol lhe cost functional ./(i/r. 11) of Lq. (99) as a 
function ol the number ot iterations, panel (b) the step size A chosen i t lhe optimal control algorithm, and panel 
(c) the derivative ||</,,|| (whic t should vanish al the extremum).

lii,ial already leads to a quite efficient transfer. Within lhe first few iterations of the optimal 
control loop, J does not decrease significantly. I'his is because the initial stepsize A is too 
small [panel (b)] to cause a significant decrease of J. After approximately 10 iterations, an 
adequate step-size is obtained (through the increase of A — 1.2 A after successful steps, see 
Fig. 24). and J decreases rapidly over approximately 100 iterations. This regime is followed 
by one with a much slower decrease of./. where the control approaches slowly that associated 
lo the local minimum. This discussion allows us to pinpoint the respective advantages and 
disadvantages of the optimal control algorithm. II we start with a reasonable guess for 
(whose solutions can be even completely away from the desired ones, such as for the smaller 
pulse areas), we obtain a strongly improved fl whose solutions fulfill lhe objective of the 
control much better than that of flIrul. On the other hand, the solutions fl of the control 
algorithm (Fig. 24) are most probably associated to local minima of the control space rather 
than to the global minimum.

6.2.2. Phonon-Assisted Dephasing
l he adiabatic passage scheme that we have just discussed is an extreme example in the 
sense that there exist numerous solutions—as indicated in Fig. 23b—and one expects that 
the search algorithm becomes quickly trapped in a suboptimal, local minimum. As another 
example, we shall now discuss the coherent control of the two-level system in presence ol 
phonon couplings. In Section 5.5, we showed tor the spin-boson model that in presence of an 
exciting laser pulse Rabi flopping occurs but is dampened because of phonon decoherence. 
However, contrary to other dccohcrcnce channels in solids where the system's wavefunc
tion acquires an uncontrollable phase through environment coupling, in the independent 
Boson model lhe loss of phase coherence is due to the coupling of the electron-hole state 
to an ensemble of harmonic oscillators that all evolve with a coherent time evolution but 
different phase. This results in destructive interference and dephasing and thus spoils the 
direct applicability of coherent carrier control. On the other hand, lhe coherent nature of 
the state-vector evolution suggests that more relined control strategies might allow to sup
press dephasing losses. To address the question whether such losses are inherent to the 
system under investigation, in the following we examine phonon-assisted dephasing within 
the optimal-control framework aiming at a most efficient control strategy to channel the 
system's wavefunction through a sequence of given states. We quantify the objective of the 
control through the cost function

Jlu. Il) = ,(/ , <//0(Ol«(') - GF’ + |m(7 )+g|: + y f dl |ll(O|-) HOI)

with fi a Gaussian centered at lime zero with a narrow full-width of half maximum of (I. I w( 1 
and y — 10 ' a small constant. In other words, we are seeking for solutions where w passes 
through the excited state al time zero and goes back lo lhe ground stale al T. For 
the system dynamics, we assume lhe equations of motion (91) for lhe cumulants w. a,, and 
it,. subject to the initial conditions «(-/’) = c(. v,( — 1) = I), and m,(-T) = (I. Again, the
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method of Lagrange multipliers is used to minimize ./(«. !2) subject to Eq. (9|). and to 
obtain the adjoint equations [ l<S3|

M = 11 x u 4-7 _g,
t

u.u,) +I3(l)(u e,}

s, + (iixii^ + lllc^ii'xuje, *
— J -

M, = £1 X M, — + 2g,P( X u

with terminal conditions u(T) — -e, - u(T). s,(T) = I), and u.(7) — (I. Equations (91) 
and (102) together with

y
(103)

form the optimality system. It is solved iteratively through lhe scheme depicted in Fig. 24, 
with integration of Eq. (9|) forward and Eq. (102) backward in time, and computing an 
improved control by use of Eq. (103). Results of such optimal-control calculations arc shown 
in Fig. 27. Most remarkably, one can indeed obtain a control field for which «(/) passes 
through the desired stales of e, al time zero and -e, at T. Thus, appropriate pulse shap
ing allows to control fully the two-level system even in presence of phonon couplings. We 
emphasize that, with the exception ol the somewhat pathological quantum ‘ hang-bang” con
trol 1128|. where the system is constantly Hipped to suppress dccohcrcncc. no such simple 
control strategy lor suppression of environment losses is known in the literature. This result, 
which also prevails in presence of finite but low temperatures |IS3|. clearly highlights the 
strength and flexibility of optimal control

6.2.3. Genetic Algorithms
In several cases ot interest, one is often neither able to solve the equations of motion 
not know the lull Hamiltonian characterizing the system. I his holds in patliculai line lot 
laser-induced reactions of molecules |2O3|. where the configuration landscape is highly com
plicated. Judson and Rabitz [2311 were lhe first to propose an evolutionary algorithm that 
allows the search for control fields even without any knowledge ot the Hamiltonian, l or 
the sake of completeness, in the following we shall briefly outline lhe main ideas of this 
approach. Suppose that the laser pulse can be encoded in terms of a “gene,” that is, a 

Figure 27. Results ol out calculations with a Gaussian 2~ (dashed lines) and optimal-control (solid lines) laser 
pulse and for zero temperature and an electron ph< non coupling of >r .11.1 Panel (a) shows !•(/) and panel(b) 
lhe time evolution ol «.(i) anil lhe insets the traject.rrics of lhe Bloch sector it( I) I or the Gaussian 257-pulsc. Rabi 
Hopping recurs but is dampened due to electron phonon interactions I ot lhe optimal control, dccolieiciiic losses 
are completely suppressed, and the lhe system passes through lhe desired slates of e, at lime zero and <• at /
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vector !l = (12(, Q,.... J2„) with typically n ~~ 10 to 100 components. Within the evolution
ary approach, a population A'r,,r = 48 of different genes I)** is considered. Al the beginning, 
the different components of each gene arc chosen randomly. Next, we compute for each gene 
the objective function ,/M. Within the evolutionary approach, the next population of genes 
is determined in biological terms according to the fitness .I1' of each individual [221, 2311. 
Following Zeidler et al, |22l|. this can be accomplished as follows: first, the individual with 
the best ,/M is included without change in the next generation (elitism); next, the A'pau.n, 
.N /7 individuals with the best are chosen as parents for the next generation; about 
“^parent °* lhe individuals of the next generation are determined by randomly choosing two 
parents, cutting their genes at one given point (single-point crossover) or two points (two-point 
crossover), and pasting the different pieces of the genes together (recombination); finally, the 
remaining individuals of the next generation are obtained by randomly taking one parent 
and randomly modifying its genetic information 12*1 (mutation).

There exist numerous other implementations that differ in one or several points. 1 lowevcr. 
the grand idea of all these approaches is to provide a sufficiently large gene pool and to 
let the individuals benefit from their respective advantages and peculiarities. This has the 
consequence that once an individual acquires a successful control strategy (either through 
recombination or mutation), it will distribute it to the next generation where it possibly 
becomes optimized through further mixing or mutation. For that, it is compulsory to keep 
not only the fittest individual but to provide a larger gene pool. In this respect, mutation 
plays an important role as it determines the degree of modification from one generation to 
the next. For normalized control-field components 12? e [<), 1| mutation can be computed 
according to [221, 232] 

nr = n{* — a log (104)

where r € (0. 1) is a uniformly distributed random number (and 12f € [0, 1] has to be 
asserted). <r is the quantity that determines how much ll*1' can deviate from 12**. Il has a 
similar role as lhe step-size A in the optimal control scheme, and its value should be adapted 
during optimization. Here, one can proceed as follows [2211: let A'I1)UI be the number of 
mutated individuals and /V5I1CC the number of successful mutations with J**' < for /Vsuce < 
0.2/V^rn,. we conclude that the mutation rate is too high and set a —> 0.9 a; otherwise wc 
increase the rate according to rr —» (t/0.9. Quite generally, the genetic algorithm works 
formidably well for laser fields that can be by characterized by a few parameters (e.g., laser
pulse shaping experiments [203. 221)). For instance, parameterizing the pump and Stokes 
pulses of the adiabatic passage scheme by Gaussians (i.e., in terms of areas, detunings, time 
delay, and full-width at half maxima), a highly successful transfer scheme is found after a few 
generations. In comparison to the optimal control approach, the evolutionary one examines a 
larger portion of the control space (through its different individuals), and therefore chooses 
out of several local minima the lowest one. On the other hand, evolutionary approaches 
are usually much slower [no information about the steepest descent V(1 J(x, (2) is used] and 
have huge problems to find nontrivial pulse shapes, such as the one depicted in Fig. 27a.

6.3. Self-Induced Transparency
We conclude this section with an at-lirst-sight somewhat different topic, namely laser pulse 
propagation in a macroscopic sample of in homogenously broadened quantum dots. Let lhe 
central frequency of the laser pulse be tuned to the exciton groundstate transition (see 
Fig. 13). We then describe the dot states in terms of generic two-level systems with different 
detunings A. When the light pulse enters the dot region, it excites excitons and hereby suffers 
attenuation. It should, however, be emphasized that inhomogeneous line broadening leads 
to losses which are substantially different from those induced by homogeneous broadening 
[233|. Through the pulse propagation in the medium of inhomogenously broadened dots, 
all of them arc excited in in phase, where—at variance with homogeneous broadening— 
each dot has a coherent time evolution. However, lhe phase varies from dot to dot, thus 
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leading to interference effects that in most cases prevent the observation of the coher
ent radiation-matter interaction. A striking exception is the phenomenon of self-induced 
transparency [22. 234-238]. a highly nonlinear optical coherence phenomenon that directly 
exploits inhomogeneous level broadening. Light-matter coupling plays a crucial role in its 
theoretical analysis. Not only one has to consider the material response in the presence of 
the driving light pulse, but also the back-action of the macroscopic material polarization on 
the light propagation (through Maxwell’s equations). For the inhomogenously broadened 
two-level systems, we assume a lime evolution according to the master equation (67) of 
Lindblad form, where the coherent part is given by the usual Bloch equations (59) for dif
ferent detunings A. For the light pulse, we assume a geometry (Fig. 28) where the laser 
enters front the left-hand side into the sample of inhomogenously broadened dots. Denoting 
the pulse propagation direction with z and assuming an electric-field profile with envelope 
<%(z, /) and a central frequency of [239], we describe the light propagation in the slowly 
varying envelope approximation [22]

n \ 2ttuj„d. -|—d. )£0(z. t) =--------- o/nTYz. /)
<• / nc (105)

Here, .'/’(:) = AftkeAN /’g(A)r/A 1/2[m,(z, A) — i u2(z. A)] is the material polarization, with 
M(h the excitonic dipole moment (assumed to not depend on A). eA the exciton polarization. 
N the dot density, g(A) the inhomogenous broadening, and tq(z, A) and «,(z, A) the real 
and imaginary part of the Bloch vector, respectively, at position z and for a detuning A. 
For a coherent time evolution, there exists a remarkable theorem that asserts that the pulse 
area, defined through

/t(z) = AfOl lim [' dt'e\,£(z,t ) (106)

satisfies the equation [22, 235]

(107)

Figure 28. Results of our simulations lor /) of pulse propagation in a sample of inhomogenously broadened 
quantum dots and for different pulse areas: we assume a setup where the pulse enters from a dot-free region 
(negative z-values) into the dot region. Length is measured in units of zu = l/«. lime in units of rlt — nz„/c, and 
energy in units of £„ - !//,„ with 250 jam, /„ — 3 ps. and £„ — 0.2 meV for typical InGaAs dot samples. 
The insets report contour plots of the time evolution of the exciton and biexciton population at position : — 5 
[225. 239. 24()|.
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Here, a provides a characteristic length scale. For a weak incident pulse, one immediately 
observes from the linearized form of Eq. (1(17) that /I decays according to exp-az/2, as 
expected from Beer's law of linear absorption. Within the Bloch vector picture, this decay is 
due to the small rotations of Bloch vectors out of their equilibrium positions and the resulting 
intensity loss of the light pulse. However, completely new features appear when A > 77. Most 
importantly, if A is an integer of 77, the pulse area suffers no attenuation in propagating 
along z. Indeed, such behavior is observed in Fig. 28. which shows results of simulations 
for the more complete level scheme depicted in Fig. 22c: for small field strengths, Fig. 28a, 
the pulse becomes attenuated quickly. However, if the pulse area exceeds a certain value, 
Fig. 28b. self-modulation occurs and the pulse propagates without suffering significant losses. 
In a sense, this situation resembles a material control of the laser pulse. The latter acquires 
a 2tt hyperbolic secant shape [22. 235], which—contrary to the situation depicted in Fig. 16 
for a constant laser—rotates all Bloch vectors from their initial state through a sequence of 
excited stales back to the initial ones, irrespective of their detuning A (inset of Fig. 28b). 
Here, the leading edge of the pulse coherently drives the system in a predominantly inverted 
state; before decohcrcncc takes place, the trailing edge brings then the population back to 
the groundstate by means of stimulated emission, and an equilibrium condition is reached 
in which the pulse receives through induced emission of the system the same amount of 
energy transferred to the sample through induced absorption. Finally, at the highest pulse 
area, Fig. 28c, we observe pulse breakup [22, 234, 235]. The inset shows a 477-rotation of 
the exciton states and an additional population of the biexciton ones. As apparent from 
the figure, this additional biexciton channel does not spoil the general pulse propagation 
properties (for details, see Ref. [240|). Self-induced transparency in semiconductor quantum 
dots has been demonstrated recently [132, 241]. No pulse breakup was observed, a finding 
attributed to a possible dependence of the dipole moments A/lh(L) on the quantum dot 
size L.

7. QUANTUM COMPUTATION
Quantum computation is a quantum control with unprecedented precision [19, 18|. Its key 
elements are the quantum bit, or qubit, which is a generic two-level system, and a register of 
such qubits (with a typical size ranging from a few tens to several hundreds). This register 
allows to store the quantum information, which is processed by means of unitary trans
formations (quantum gates) through an external control. Besides the single-qubit rotations 
(unconditionalgates), one also requires two-qubit rotations (conditionalgates) where the “tar
get qubit” is only rotated when the “control qubit" is in an inverted state. Through the latter 
transformations, it becomes possible to create entanglement, which is at the heart of quan
tum computation. In his seminal work, Shor [242] showed that such quantum computation 
could—if implemented successfully—eventually outperform classical computation. Yet, the 
hardware requirements and the degree of controllability are tremendous (error-correction 
schemes permit only one error in approximately 10’ operations [243]), and it is completely 
unclear whether a quantum computer will ever be built. Despite this very unclear situation, 
recent years have seen huge efforts in identifying possible candidates for quantum computers 
and performing proof-of-principle experiments. Quite generally, any few-level system with 
sufficiently long-lived states, that allows for efficient readout and scalability, can serve as a 
possible candidate [244], Among the vast amount of work devoted to the implementation 
of quantum-information processing in physical systems, several have been concerned with 
optical and spin excitations in quantum dots. In the following, wc shall briefly review some 
of the key proposals and experiments.

There are a number of crucial elements to be met in any implementation of a quantum 
computer, among which the most important ones are the identification of qubits with long 
decoherence times, of a coupling mechanism between different qubits (for performing con
ditional gates), and of a readout capability for the quantum information. In the field of 
quantum dots, optical and spin excitations have been considered as qubits. With the limits 
discussed in the previous sections, long decohcrcncc times, efficient control, and reliable 
readout schemes arc available. The strategies for coupling qubits are motivated by related 
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schemes in different fields of research, which either exploit sonic local nearest-neighbor 
interactions |245|. (e.g.. hyperfine interactions in nuclear magnetic resonance |246|). or rely 
on a common "bus ' that connects all qubits (e.g.. phonon excitations of a linear chain of 
ions |247|). For quantum dots. Barenco et al. [24b] were the first to propose the quantum- 
confined Stark effect as a means to couple optical excitations in different dots. This proposal 
was elaborated by Troiani et al. |226| and Biolalti et al. |249, 25(1], who proposed to use the 
Coulomb renormalizations of fcw-particle states for an efficient inter-qubit coupling. Let us 
briefly address the first proposal [22ft] at the example of the level scheme depicted in Fig. 22c.

We denote the groundstate with |()>|()>, where the first and second expression account, 
respectively, for the (missing) exciton with spin-up and spin-down orientation; within this 
qubit language, the single-exciton stales correspond to l)|0) and |0)|I) and the biexciton 
state to I |1). Because of the polarization selection rules (Section 3.1.3) and the Coulomb 
renormalization A of the biexciton, all these states can be addressed individually by means 
of coherence spectroscopy. Indeed, optical control of these two exciton-based qubits was 
demonstrated [93, 95, 2511. To allow within this framework for scalability, optical excita
tions in an array of quantum dots were proposed; enhancement of the Coulomb couplings 
between different dots could be either achieved by relying on the quantum-confined Stark 
effect [249. 250]—in an electric field electron and hole wavefunctions become spatially sepa
rated. and in turn the dipole-dipole interaction between excitons in different dots is strongly 
enhanced—or on intrinsic exciton-exciton couplings [252, 253]. Other work has proposed 
Fdrstcr-typc processes where optical excitations are near-lield coupled [254-256],

Qubits based on optical excitations have the glaring shortcoming of a fast decoherence 
on the sub-nanosecond timescale. Much longer decoherence times are expected for spin 
excitations. Loss and DiVineenzo |257| proposed a quantum computation scheme based on 
spin states of coupled single-electron doped quantum dots, with electrical gating as a means 
for the unconditional and conditional operations. A mixed approach was put forward by 
Imamoglu et al. |223|. where the quantum information is encoded in the spin degrees of 
freedom, and coupling to the optical degrees is used tor efficient and fast quantum gates. 
Within this proposal, the quantum computer is realized through single-electron charged 
quantum dots The unconditional gales are performed through optical coupling of the differ
ent electron-spin states to the charged-exciton state (Voigt geometry. Section 3.1.3). and the 
condilional ones by means of cavity quantum electrodynamics where all quantum dots arc 
located in a microcavity and coupled to a common cavity mode [223. 25S, 259|. Differently. 
Picrmaiocchi et al. [26(>| proposed a coupling via virtual excitations of delocalized excitons 
as a genuine solid state coupling mechanism between electron-spins in different quantum 
dots. There are a number of further proposals for quantum computation with spin mem
ory and optical gating, where cither the quantum-confined Stark effect |224. 261] or the 
enhanced flexibility of molecular states in artificial molecules [213. 262] is used for switch
able qubit-qubit interactions. In addition, some work has been concerned with strategies 
for sophisticated optical gating (e.g. based on pulse shaping [216. 217| or spin-flip Raman 
transitions |2IS|). As regarding stimulated Raman adiabatic passage (Section 6.1). a slightly 
modified level scheme and a somewhat different control strategy is required for qubit rota
tions or entanglement creation by means of adiabatic population transfers (263-265|. Cor
responding quantum-dot implementations were proposed for unconditional and conditional 
gates [2I3|. and for storage qubits [227|. f inally, in the context ot molecular systems, the 
applicability of optimal control for quantum gates was shown to be feasible [266|.
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APPENDIX A: RIGID EXCITON AND 
BIEXCITON APPROXIMATION
Excitons
Consider the trial exciton wavefunction

'I'r/( ) = 4>(/? )</>„( p) (A. I)

which consists of the groundstale exciton wavefunction d„(p) of an ideal quantum well 
and an envelope function In other words, we assume that in presence of a quantum 
confinement, the electron and hole are Coulomb bound in lhe same way as they would be 
in an ideal quantum well, and only the centcr-of-mass motion is affected by the quantum 
confinement. In Eq. (A.I) lhe centcr-of-mass and relative coordinates are given by the usual 
expressions R = (m,r. + m,,rh)IM and p = re — rh, respectively. We next insert the trial 
wavefunction (A.I) into the Schrodinger equation (15) and obtain

# + /» + £ G,(r,) <l>(J?)<bu(p) = E<l>(/?)d»n(p) (A.2)

with H and h defined in Eq. (12). The left-hand side can be .simplified by using lul>Ap) =■ 
Multiplying Eq. (A.2) with fi(R - R,)<blt(p} and integrating over the entire phase 

space r finally gives

52 prfitK -R,)U,(/-,) |«/»„(p)|- <!»(«,) = ? <!>(/?.) (A.3)

Comparing this expression with Eq. (16) shows that the term on the left-hand side is identical 
to the averaged potential U(R,).

Biexcitons
A similar procedure can be applied for biexcitons. In analogy lo Eq. (A.I), we mtke the 
ansatz

'T(f) = 0(R)d„(f) (A.4)

with </>,, the variational function (23) and <!>(/?) the corresponding envelope function which 
depends on lhe center-of-mass coordinate R = + r^/M -I- mh(rh + rh)/M witi M —
2(me + finally f denotes the set of variables r,„ rA, r,.., and rft,. Suppose that the 
Hamiltonian can be decomposed into the parts

^ = -^+A + E^(r,> (A.5)

where in analogy lo excitons, /id,, = gives the energy of the quantum-well bicxcii in (44] 
and i runs over all electrons and holes. From the Schrodinger equation defined by Eqi. (A.5) 
and (A.4) we then obtain after multiplication with S(R integration O'er the
entire phase space f the final result

r v; _ f -
+ L / '/T^(^-^.)t',(r.)|d0(f)! •!»(#,) = f <!>(/?,.) (A.6)

where the term on the left-hand side defines the effective confinement potential foi biexci
tons (see Fig. 5).
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Optical Dipole Elements
Let us investigate the dependence ol the dipole matrix elements (35) on the confinement 
length L for the exciton states under consideration. Because of lhe prodact-typc exciton 
wavefunction (A.I), the optical dipole moment (35) is given by the spatial average of the 
envelope part We shall now show how this average depends on the confinement length
L. Our starting point is given by the normalization condition f dR |4>(/?) ’ = I. We next 
introduce the dimensionless space variable = R/L. which is of the order one. Through 
L'1 j'd£ |‘I>(L£)| — fd£; |<b(£)|- = 1. we define the wavefunction (b(£) = L‘‘ 24>(L£). 
where d = 2 denotes the two-dimensional nature of the electron-hole states. Then,

Wni = Ai‘/’n(O) [ d(L£)L ■/:‘i>(^) = /z1.^(0)/-J 2 /</£<*>(£) (A.7)

is the dipole moment for excitonic transitions in the weak confinement regime. Equa
tion (A.7) is the result we were seeking. The integral on the right-hand side of the last 
expression is of the order unity. Thus, the oscillator strength for optical transitions scales 
with |A/(h|: <x L'1 (i.e., it is proportional to the area L2 of the confinement potential).

APPENDIX B: CONFIGURATION INTERACTIONS
Second Quantization
Second quantization is a convenient tool for the description of few- and many-particle 
problems [23, 267-269], The central objects are the field-operators «//f(r) and t//(r), which, 
respectively, describe the creation and destruction of an electron at position r. The Held 
operators obey the usual anticommutation relations {»//(r), t/»'(r')} = S(r-r') and zero oth
erwise. Within the framework of second quantization, one replaces all one- and two-particle 
operators f ,(r) and ,(/•,,r,) by [23, 268]

ri(r) —-► y c/rt/, (r)i" |(r)«/r(r) (A.8)

<,(r,r)—♦ y</rJr«/»l(r)</rl(r')r's(r,r')l/r(r)^(r) (A.9)

When a semiconductor is described in the envelope-function approximation, electrons and 
holes have to be treated as independent particles. This can be accomplished by introducing 
the field operators and «/rA(r) accounting for the electron and hole degrees of freedom, 
where A is the spin of the electron or hole (Section 3.1.3); below we shall denote the spin 
orientation orthogonal to A with A. We find it convenient to expand h(r) in the single
particle bases of Eq. (10),

(A.10) 
Ai I'

where creates an electron with spin orientation A in the single-particle state /a, and d,r/i 
a hole with spin A in state v. With these field operators, we can express the few-particle 
Hamiltonian accounting for the propagation of electrons and holes in presence of the quan
tum confinement and mutual Coulomb interactions as [23, 269]

H Ei ^/<A H‘A^mA "h ziZ ^i'A ^I'A^ i’A f -) ^M'A^g A ^J1A L ft A

pA rA mm'.mm'

+ | E E ^4.4^ (A.H)
“ rr*3'i/ P >.«•**

where the terms in the first line account for the single-particle properties of electrons and 
holes, those in the second line for the mutual electron and hole Coulomb interactions, and 
those in the third line for the Coulomb attractions between electrons and holes. All Coulomb 
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couplings in Eq. (A.II) preserve the spin orientations of the particles. For simplicity, we 
have neglected the electron-hole exchange interaction discussed in Section 3.1.3 as well as 
Auger-type Coulomb processes [27(1, 271], The Coulomb matrix elements are given by

„ =r 2
./ Kjr-r'l

A word of caution is in order. It might be tempting to assume that Eq. (A. 11) can be 
obtained in a first-principles manner from Eq. (9). This is not the case. Whereas Eq. (9) has 
a rather precise meaning in the first-principles framework of density functional theory [36]. 
no comparably simple interpretation exists for the Coulomb terms of Eqs. (A. 11) and (A.12). 
It turns out that dielectric screening in semiconductors is a highly complicated many-particle 
process [97, 271], which, surprisingly enough, approximately results in the dielectric screening 
constant Thus, Eqs. (A.l 1) and (A. 12) should be understood as an effective rather than 
first-principles description.

Direct Diagonalization
We will now' show how the framework of second quantization can be used for the calculation 
of few-particle states in the strong confinement regime. Throughout, we shall assume that 
the single-panicle description of Eq. (10) provides a good starting point and that Coulomb 
interactions only give rise to moderate renormalization effects. More precisely, for Ae a 
typical single-particle level splitting and V a typical Coulomb matrix element, we assume 
that V <$C Ae, which allows to describe approximately the interacting few-particle system in 
terms of a limited basis of single-particle states—typically around 10 states for electrons and 
holes [58, 65, 67]. We stress that exciton or biexciton slates in the weak confinement regime 
(i.e., electron-hole complexes that are bound because of Coulomb correlations) could not 
be described within such an approach.

Excitons
Consider first the Coulomb correlated states for one electron-hole pair-that is, the exciton 
states in the strong-confinement regime. Although they could be easily calculated without 
invoking the framework of second quantization, this analysis will allow us to grasp the essen
tial features of configuration interaction calculations. Wc first define the Hilbert space under 
consideration. In view of the above discussion and keeping in mind that we are aiming at 
a computational scheme, wc restrict our basis to a limited number of single-particle states 
(e.g., the 10 states of lowest energy for electrons and holes). Then, \/i, v) = |0) pro
vides a basis of approximately hundred states suited for the description of one electron and 
hole with opposite spin orientations (Fig. 7). We next expand the exciton in this basis,

(A.13)

The exciton eigenstates 4^,. and energies are then obtained from the Schrodinger equa
tion H\x) - EJ.v). where // is the many-body hamiltonian defined in Eq. (A. 11). To this 
end, we multiply the Schrodinger equation from the left-hand side with (jjl. i>\ and obtain 
after some straightforward calculation the eigenvalue equation

+ (A.i4)
ji'i-'

Here, the term in parentheses on the left-hand side is the Hamiltonian matrix in the single
particle basis, and E\ and 'I'], can be obtained by its direct diagonalization.
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Biexcitons
Things can easily be extended to biexcitons. Before presenting the details of the under
lying analysis, two points are worth mentioning. First, the proper anti-symmetrization of 
the electron-hole wavefunction is automatically guaranteed within the framework of second 
quantization. Second, the size of the Hilbert space for an n-body problem scales according 
to ~ N", where N is the number of single-particle states under consideration. This num
ber becomes exceedingly fast prohibitively large for computational approaches. One thus 
introduces a further cutoff adapted from the single-particle energies of the few-particle basis 
slates. Consider the basis |pi. p; /A v') = |0) for the description of a biexciton
where the two electron-hole pairs have opposite spin orientations. Then,

E (A.15)
pr.p »■

defines the biexciton state. The biexciton wavefunctions 4'^, p r and energies Eh are obtained 
from Schrodinger’s equation with the many-body Hamiltonian (A. 11),

(6' +e'' + e‘' + e',.)M''' ip'1 +yy/l'1 T''’ . .' g ' ’ p T r ' r p pr.p r t I'C.r r /Jtr.p r
fL^ ri>’

- Y F-, /' M''1 - V P‘;' M''1pp.pr ’ pr.p r pp’.rr ’ pi-.p r

= (A. 16)

Here, the terms in the first line account for the single-particle energies and the repulsive 
electron-electron and hole-hole interactions and those in the second and third line for 
the various attractive Coulomb interactions between electrons and holes. Again, the biex
citon eigenstates M'* and energies Eh are obtained through direct diagonalization of
the Hamiltonian matrix. The same scheme can further be extended to other few-particle 
complexes, such as, for example, triexcitons or multicharged excitons. It turns out to be 
advantageous to derive general rules for the construction of the Hamiltonian matrix. The 
interested reader is refered to the literature [272-274],

APPENDIX C: TWO-LEVEL SYSTEM
Two-level systems arc conveniently described in terms of the Pauli matrices

/() l\ /() -A /I ()\
gr. = I I , a-, = I ] , a, = I I (A. 17)

\1 ()/ ' \t 0/ \0 -1/

They are Hermitian tr,’ = <r,_ have trace zero trrr, = 0, and fulfill the important relation

Cr, (Tl = n + ieijk ak (A.1K)

Here, « A is the total antisymmetric tensor, and we have used the Einstein summation con
vention. Il immediately follows that rr; = H. For the commutation and anticommutation 
relations, we obtain

= 2/6„A rrA . { rr,. a J = 26„ 11 (A.19)

We have now all important relations al hand. Let us first compute the expression exp(Aorr). 
with a = ue an arbitrary real vector that has the norm a = ||a|| and the direction described 
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by the unit vector e — a/a. To this end, we expand the exponential into a power series and 
obtain

A" A’ A4
eAa" = 11 + A(arx) + — (a<r)2 + — (a<r)’ + — (a<r)4 + ..

= H + (Aci)etr +
(Art)’- (Ar/)4

= cosc/AL + sin r/Ae/r (AJO)

To arrive at the second line, we have used (air)2 = a21, which immediatly follows 
from Eq. (A. 18). This expression can be used, for example, for computing the time evolution 
operator of a two-level system. Things have to be slightly modified for the conditional time 
evolution in the unraveling (80) of the master equation. The conditional time evolution (80) 
of a two-level system driven by the resonant laser 11 and subject to spontaneous photon 
emissions is described by the effective Hamiltonian

r
= -'4H -//ot = 11 <r, + f I'—(11 + /r.) (A.2I)

Here, 11^, — 11- — (T/2)- and e = (cosh fl. 0, i sinh 0). where the angle d is defined through 
tanhfl = f'/(2Q). By use of e* = 1, we obtain for the conditional time evolution operator 
e | jn a similar manner to Eq. (A.20)| the result

Uct((t) = e = e ' J'(cos^ 11+/sin^e(r) (A.22)

For the initial density operator |0)(0| = (1 — /t3)/2, the probability that within [0./] the 
system has not emitted a photon is

W = 5 tr| C/vlf(r)(I - <Tj) t/c;f(/)| (A.23)

In the evaluation of the above expression we only have to consider the products of those 
terms which give 11 (because those with <r vanish when performing the trace). Then,

P()(0 = e-,7-'[Cos2^+sin-^-/Cos^ sin^(e-e*)e, (A.24)

which after a few minor manipulations finally gives Eq. (82).

Bloch Equations

Consider the Hamiltonian (58) of a two-level system subject to the driving laser e 11. In 
the interaction representation according to w() |1)(1|, we can remove the fast time depen
dence of e 11 (rotating frame [15, 225]), and obtain

H = hlrx,-IT |0><l| - O |l><0|)

= | A /x, — ^[('Hc 11 — i^m 41)(cx1 — ia2) + (.'He 11 + i^m fl)(tX| + 10s)]

= - (A rx, - :He 11 <rt + ?■///11 <x?) (A.25)

Here, we have used |0)(l[ = (cr, — z/x, )/2 and )1)Z()| = (<x, + /<x,)/2 and have decomposed 
11 into its real and imaginary part. A = £n - w(l is the detuning of the two-level system 
with respect to the laser frequency w((. Inserting this Hamiltonian together with the density 
operator (57) into the Lionville von-Neumann equation gives 

H/r = —/ - 11/x = (41 x u)(x (A.26)
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where we have used Eq. (A. 10) to arrive at the last term. We next multiply this equation with 
a and take the trace to arrive finally al the coherent part (59) of the optical Bloch equations. 
For the incoherent part, we express the Lindhktd operators according to /. = «O1 + acr. with 
the complex coefficients «0 — a’u -+■ ia't', and a — « + ia'. When this operator is inserted into 
the master equation (67) of Lindblad form, we obtain after some lengthy but straightforward 
calculation the incoherent part of the Bloch equations [147|

u — 2(2 (o x o") - (ana — alta ) x u — |a|‘u + (a u)a' 4- (a'u)a") (A.27)

For the Lindblad operator L — s/T|())(l| = v l (<rt — /oy)/2, corresponding to — () and 
fl = x/T (e, — ie:)/2. we finally arrive at Eq. (6). with the longitudinal and transverse scattering 
times 7', = 1/1' and — 2/1’, respectively.

APPENDIX D: INDEPENDENT BOSON MODEL
In this appendix, we show how to evaluate the polarization fluctuations G’(r) = (rr (0)ct+(/)) 
for the spin-boson Hamiltonian il = E^ | l)(l| + //(l+ V of Eq. (84), with //„ = w,and 
lz the dot-phonon coupling. E0|l)(l| commutes with both //,, and F, and correspondingly

_ efl.0<|i i| (,,(//„+! x inserting this expression into G(r) allows to evaluate all expressions 
involving the system operators |l)(l| and <r. explicitly, and we obtain

G(/) = >' t, (A.28)

Here, we have assumed that the expectation value (.) is for the system in the groundstate 
and for a thermal distribution of phonons, and we have used that >z|()^ _ t.
which follows upon expanding the exponential in its power scries and using that F|0) = (). 
We next introduce the displacement operator

D(£) = e(tt' /)'(£) = 1) '(() = /)(-£) (A.29)

ol the harmonic oscillator [89, 275]. It has the important properties

Z)+(f)fl£)(f) = a + £

= a‘ +^- (A.30)

ZF(/)/(fl. a' )DU) = f(a + £,a* +

with /(«. «') an arbitrary function of the field operators « and «f. The last expression 
can easily be proven by inserting L>(f)/7t(f) = 1 in the power series of /(a. fl1). Because 
in Eq. (A.28) the different oscillators propagate independently of each other, in the follow
ing it suffices to consider only one phonon mode. Then, Eq. (A.30) can be used to simplify 
the time evolution operator according to

e"-1'_ e H(A.31)

with f = g/w. Accordingly, wc can express G(/) for a single phonon mode through

G(/) = e'^' e',lu' D(£)e ,H"‘) = e,T"' (£>f(f) Z)(f ?“')) (A.32)

where E,, — E„ - £2<u, and the last expression has been derived by evaluating in 
the interaction representation according to H(l. We can now use the relation 77(f) 77(f) = 

* £)( f 4. f) for t|le displacement operators [89. 275] to simplify expression (A.32) to

G(t) = F(g‘,'+eMn,o'’(f7(f[F“' _ ||^ (A.33)
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In the remainder, we discuss how this expression can be evaluated for a thermal phonon 
distribution, lb this end. we use lhe factorization !)(£;) — e t' ei"‘e of the displace
ment operator. For a Bose-Einstein distribution n(w) ol the phonons, it can he shown that 
[23, 135. 275)

<(«*)'«’> = f! h(w)]' (A.34)

To compute (£>(£)). we expand the exponentials e1" and e~('“ in power series and use that 
only terms with an equal number of creation and annihilation operators give a nonvanishing 
contribution. Then,

= exp (A.35)

lhe final result (87) is obtained by using |e'"" - 1|2 =2(1 — cos to/). n(co) 4- 1/2 = 
1/2coth(jBw/2) and introducing an appropriate summation over all phonon modes.

REFERENCES
/. Li. Woggon. "Optical Properties of Semiconductor Quantum Dots.” Springer. Berlin. 1997,
2. D. Bimberg. M. Grundmann. and N. L edentsov, “Quantum Dot Hctcrostructures." John Wiley. New York. 

1998.
5. I.. Jacak, P. Hawrylak. and A. Wojs, “Quantum Dots." Springer. Berlin. 1998.
4 A. Zrcnner. L. V. Butov. M. I lagn. G. Abstreiler. G. Bohm, and G. Weimann, P/tv.s. Wer. Leu. 72. 3382 (1994),
5. H. I Hess. E. Betzig. T. D. Harris. L. N. Pfeiffer, and K W. West, Science 264, 1740 (1994).
6. D. Gammon, E, S. Snow, B. V. Shanabrook, D. S. Katzcr, and D. Park. Phys. Rev. Leu. lb. 3005 (1996).
7 D. Gammon. E. S. Snow. B. V. Shanabrook. D. S. Katzcr. and D. Park. Science 273. 87 (1996).
<S. K. Matsuda. T. Saiki. S. Nomura. M. Mihara. Y. Aoyagi. S. Nair, and T. Takagahara. Phys. Rev. Leu. 91. 177401 

(2003).
9. J. Y. Marzin. J. M. Gerard, A. Izrael. D. Barrier, and G. Bastard. Phys. Rev. Leu. 73, 716 (1994).

10. M. Grundmann, .1. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S. Ruvimov. P. Werner. U. Richter. 
LJ. Goscle, J. Hcydcnrcich. V. M. Ustinov. A. Yu. Egorov, A. E. Zhukov, P. S. Kopev. and Zh. 1. Alferov. 
Phys. Rev. Leu. 74. 4043 (1995).

11. R. Leon. P. M. Petrofl. D. Leonard, and S. Fafard, Science 267. 1966 (1995).
12. H. Haug and S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors." 

World Scientific. Singapore, 1993.
13. P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors." Springer. Berlin, 1996.
14 W H. Zurck, Rev. Mod. Phys. 75, 715 (2003).
15. M. O. Scully and M. S. Zubairy. "Quantum Optics." Cambridge University Press. Cambridge, UK, 1997.
16. H. Fritzsch, CERN Courier 43. 13 (2003).
17. S. Chu, Nature 416. 206 (2002).
18. C. II. Bennett and D. P. Di Vincenzo, Nature 404, 247 (2000).
19. D. Bouwmeester. A. Ekert, and A, Zcilingcr (eds ), “The Physics of Quantum Information." Springer. Berlin. 

2000.
20. M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information." Cambridge University 

Press, Cabmridge, LIK, 2000.
21. N. Gisin. G. Ribordy, W. Tittcl, and H. Zbindcn. Rev. Mod. Phys. 74. 145 (2002).
22. I.. Mandel and E. Wolf, "Optical Coherence and Quantum Optics.” Cambridge University Press, Cambridge. 

UK. 1995.
23. G. D. Mahan. "Many-Particle Physics.” Plenum, New York. 1981.
24. P. Borri. W. I.angbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang. and D. Bimberg. Phys. Rev. Lett. 87, 

157401 (2001).
25. B Krummhcucr. V. M. Axt. and T. Kuhn. Phys. Rev. B 65, 195313 (2002).
26. N. II. Bonadeo. G. Chen. D. Gammon. D. S. Katzer. D. Park, and D. G. Steel. Phys. Rev. Lett. 81, 2759 

(1998).
27 E Rossi and T. Kuhn. Rev. Mod. Phys. 74. 895 (2002)
28 N. H Bonadeo. .1 Erland. D. Gammon. D Park. D. S. Katzer. and D. G. Steel. Science 282, 1473 t 1^-98).
29. .1. Fbrstncr, C. Weber. J. Dankwcrts. and A. Knorr. Phys. Rev. Leu. 91, 127401 (2003).
30. J. Fbrstncr. C Weber. J. Dankwcrts, and A. Knorr. Phys. Status Solid! (b) 238, 419 (2003).
31 .1. R. Guest. T H. Stievaier, X. Li, J. Cheng. D. G. Steel. D. Gammon. D. S. Katzer. D. Park. C. Ell. 

A. Thriinhardt. G. Khitrova, and H. M. Gibbs. Phys. Rev. B 65. 241310 ( 2002).
32. J. G. Tischler. A. S. Bracket. D. Gammon, and D. Park. Phys. Rev. B 66. 081310 (2002).
33 M. Bayer, G. Ortner. O. Stern. A. Kuther. A. A. Gorbunov. A. Forchel. P Hawrylak. S. Fafard. K. llinzer, 

I L. Reinecke. S. N. Walck. J. P. Rcithmaicr. E Klopf. and F. Schafer. Phvs. Rev. B 65. 195315 (2002)
34 A. S. Lenihan. M V. Gurudcv Dutt. D. G. Steel. S. Ghosh, and P. K. Bhattacharya. /7ns /(er. Lett 88. 223601 

(2002).



Optical Properties ol Semiconductor Nanostructures 457

35. M Paillard. X. Marie. I’. Renucci. E Arnaud. A. Jbeli. and .1. M. Gerard./’/nv Res: l.eu. 86. 16.34 (2001).
3o. K. VI Drcizlet and F U. Gross. 'Density I unctional Theory." Springer. Berlin. 1990.
3" II Jiang and J. Singh. /7ns Rev. R 56, 4696 (1997)
38. C. Pryor. /7ns. Res: R 57, 7190 (1998).
.59 C. Pryor. /7ns. Rev. li 60. 2X69 (1999).
41). O. Slier. M. Grundmann. and D. Bimberg, Phys. Rev. R 59. 5688 (1999).
41 A. .1. Williamson. L. W, Wang, and A. Zunger. Phy.s. Rev. R 62. 12 963 (2000).
42. J. Shumway. A. Franceschctli. and A. Zunger. /7ns. Rev R 63, 155316 (2001).
47 G. Bester. S. Nair, and Alex Zunger. /7ns. Rev. R 67, 161306 (2003).
44. D. A. Kleinman, Phys. Res. R 28. S7I (19X3).
45. G. Bastard. "Wave Mechanics Applied to Semiconductor Heterostruelurcs." Les Editions die Physique. 

Les Ulis. 19X9.
4b. R. Zimmermann, F. Grofie. and E. Runge. Pure Appl. Chem. 69. 1179 (1997).
47. U. Hohencster. G. Goldoni, and E. Molinari; Appt. Phvs. Lett. 84. 3963 (2004).
48. K. Brunner, G. Abstreiter. G. Bohm. G. Triinkle. and G. Weimann. /7ns. Rev. Lett. 73. 1138 (1994).
49 D. Gammon. E. S. Snow, and D. S. Katzer. Appl. Phys. Lett. 67. 2391 (1995).
50, Q. Wu. R. D. Grober. D. Gammon, and D. S. Katzer, Excitons. /7ns. Rev. R 62. 13022 (2000).
5Z. P. Hawrylak, Phy.s. Res. R 60. 5597 (1999).
52. E. O. Kane, in "Semiconductors and semimetals." (R. K. Willardson and A. Beer. Eds.). Vol. 39. p. 75. 

Academic. New York. 1966.
53. I. Zutic. J. Fabian, and S. Das Sarnia, Res. Mod. Phvs Its. 323 (2004).
57. M. Bayer. A. Kuthcr, A. Forchel, A. Gorbunov, V. B. Timofeev. F. Schafer. J. P. Reithmaier, F. L. Reinecke, 

and S. N. Walck, Phys. Res: Lett. 82. 1748 (1999).
5.5. A. V. Filinov. M. Bonitz, and Y E. Lozovik. Phys. Stums Solidi (c) 0. 1441 (2003).
56. S. Rodt, R. Ilcitz. A. Schliwa. R. L. Sellin. F. GulTarth. and D. Bimberg. Phy.s. Rev. R 68. 035331 (2003),
57. M. Bayer, (). Stern. P. Hawrylak. S. Fafard. and A. Forchel. Nature 405. 923 (2000)
58 R. Rinaldi. S. Antonaci. M. D. Vittorio. R. Cingolani, 11. Hohencster, E Molinari, 11. Lippsanen, and J. Tulkki. 

/7ns. Res R 62. 1592 (2000).
59. S. Raymond, S. Sludcnikin, A. Sachrajda. Z. Wasilewski. S. J. Cheng, W. Sheng. P Hawrylak. A. Babinski, 

M. Potemski. G. Ortner. M. Bayer. Phvs. Res: Lett. 92. 187402 ( 2004).
bit. L. Landin. M. S. Miller. M. E. Pistol. C. E. Pryor, and I Samuelson. Science 280. 262 (1998).
bl. 1 . Dckel. D Gcrshoni, E Ehrenlreund, D. Spektor. J. M. Garcia, and M. Petroll. Phvs. Rev. l.eu. 80. 4991 

( 1998).
62. A. Zrenncr. J. Chem. Phvs. 112. 779(1(2000).
6,J.  R. .1. Warburton. C S. Durr. K. Karrai. J. P. Kolthaus. G. Medeiros-Ribeiro, and P. M. Pelroll. Phvs. Rev. Lett 

79, 5282 (1997).
67. R. J. Warburton. < . Schaflein. D. Halt. E Bickel, A. Lorke. K. Karrai. .1. M. Garcia, W. Schoenfeld, and 

I’. M. I’cliolT, Niiltuv 405. 92t> (2000).
65, |. Findcis. M. Baier. A. Zrenncr. M. Bichler, G. Abstreiter. U. Hohencster. and E. Molinari. Phs-s. Res: R 63. 

I2I3()9(R) (2001).
66 D. V. Regelman, E. Dckel. D. Gcrshoni. E. Ehrcnfreund, A .1. Williamson, J Shumway. A. Zunger. 

W. V Schoenfeld, and P. M. Pctroff. Phys. Res: R 64. 165301 (2001).
67. A. Hartmann. Y. Ducommun. E. Kapon. U. Hohenester. and E. Molinari, Phy.s. Res: Leu. 84, 5648 (2000).
68. G. L. Snider, A. O. Orlov, I. Amlani, X. Zuo, G. H, Bernstein, C. S. Lent. J. L. Merz, and W. Porod. J. Appt. 

Phys. 85. 4283 (1999).
69. M. Ronlttni. F. Troiani. U. Hohenester. and E. Molinari. Sblid State (ommim. 119. 309 (2001).
79 B, Parloens and F. M. Pccters, Phys. Res: Lett. 84, 4433 (2000).
71. L. Martin-Moreno, L. Brey, and C. Tejcdor, Phys. Res: R 62. 10 633 (2000).
72 I. H. Oosterktimp. S. F. Godijn. M. J. Uilcnrect. Y. V. Nazarov. N. C. van der Vaart, and L. P. Kouwenhoven. 

Phys. Rev. Leu. 80.49.51 (1998).
73. T. H. Oosterkamp. T. Fujisawa. W. G. van dcr Wiel. K. Ishibashi. R. Hijman, S. Tarucha. and L. P. Kouwen

hoven, Nature 395. 873 (1998).
77. T. Fujisawa. T. H. Oosterkamp. W'. G. van der Wiel. B. W. Broer. R. Aguado. S. Tarucha. and 1.. P. Kouwen

hoven, St truce 282. 923 (1998).
7.5. I. Schmidt. R. J. Haug. K. V. Klitzing, A. Forster, and H. Liith. Phys. Rev. Leu. 78, 1544 (1997).
76 R. I I. Blick. D. Pfannkuclie. R. J. Haug. K. V. Klitzing. and K. Eberl. Phvs: Rev. I.ett. 80, 40.32 (1998).
77. R. H. Blick. D. W. van der W’eide. R. J. Haug, and K. Eberl, Phvs. Rev. l.eu 81. 689 (1998).
7,S'. M. Brodsky. N. B. Zhitcnev. R. C. Ashoori. L. N. Pfeiffer, and K. W. West. Phys. Rev. I.ett. 85. 2356 (2000).
79. S. Amaha. D. G. Austing. Y. Tokura. K. Muraki. K. Ono, and S. Tarucha. Solid State Commuu. 119. 183 

(2001).
8<>. S. Fafard. M. Spanner. J. P. McCaffrey, and Z. R. Wasilewski. Appl. Phvs. Leu. Its. 2268 (2000).
81 G. Schcdclbcck. W. Wcgschcidcr. M. Bichler. and G. Abstreiter. Seieitee 278. 1792 (1997).
82. VI. Bayer. P. Hawrylak. K. Ilinzer. S. Fafard. M. Korkusinski, R. Wasilewski. O. Stern, and A. Forchel, St iener 

291.451(2001).
83. P. Boni. W. l.angbcin, U. Woggon. M. Schwab. M. Bayer. S. Fafard, Z. Wasilewski. and P. Hawrylak. Phvs. 

Res: l.eu. 91, 267401 (2003).
87. F. Troiani. U. Hohencster. and E. Molinari, Phvs. Res: R 65. I613OI(R) (2002).



458 Optical Properties of Semiconductor Nanostructures

iS‘5. K L Janssens. B Partoens. and F. M Peelers, /’/ns W<i. B 65. 233301 (2002)
6’6. K. L. Janssens. B. Partoens. and E M. Peelers, /Vnv. Rev. B 66. 075314 (2002).
87. P. Koskinen anil U. Ilohenester, Solid Stale (oitintutt. 125,520 (2003).
<W, .1. I). Jackson. "Classical Electrodynamics.'' Wiley. New York. 1962.
6'9. 13. I Walls and G. J. Millburn. “Quantum Optics." Springer. Berlin. 1995.
W. I. ( . Andrcani. G. Panzarini. and J.-M. Gerard. /Vivi. Rev. B 60. 13 276 (1999)
9/. F. Rossi. Seinicond. Set. Technol. 13. 147 (1998).
92. N. II. Bonadeo. A. S. Lenihan. G. Chen. J R. Guest. D. G. Steel. I). Gammon. D. S. Katzer. and I). Park. 

. !///•/ /Viva. Lett. 75. 2933 (1999).
93 G. Chen. N. II Bonadeo. D. G. Steel. I). Gammon. D. S. Katzer. I). Park, and I. J. Sham. Science 289. 1906 

(2000).
94. J R. Guest. T. II. Stievatcr. Gang C hen. I . A. Tabak. 13. G. Orr. 13 G. Steel. 13. Gammon, and D. S. Katzer. 

Science 2*13. 2224 (2001).
9.5, X. | i. Y. Wu. 13. Steel. D. Gammon. I II. Stievatcr. D S. Katzer. I). Park. C Piermarocchi. and I .1. Sham. 

Science 301. 8(39 (2003).
96. R. Kubo. M. Toda, and M. Hashilsume. ' Statistical Physics II. " Springer, Beilin, 1985.
97. G. Onida, 1. Reining, and A. Rubio. Rev. Mini. Phvs. 74. 601 (2002).
9,S'. 1 I. Battch. Jun Cheng. Gang Chen. 13. G Steel. 13 Gammon. 13. S Katzer. and D. Park. .!/>/>/. /Viva. Lett

84. 1928 ( 2004).
99. O. Wu. R. I). Grobcr. D. Gammon, and 13 S. Katzer. Phvs. Res. Litt. 83. 2652 (1999).

100 I Guenther. C l.ienau. 1 Elsaesscr. M. Glancmann. V M. Axt. 1 Kuhn. S. I shlaghi. and A. D Wieck, /Vni 
Rev I.ell 89. 057401 (2002).

Iltl I S Sosnowskn T. B Norris II hang. J Singh. K Kamath. and P. Bhaltacharya. ZVns. Wei B 57. R9423 
(1998).

102. U. Ilohenester and E. Molinari. Phvs. Status Solicit (b) 221. |9 (2000).
103. ( . Simseridcs. LI. Hohcnester. G. Goldoni, and E. Molinari. ZViva Rev B 62. 13657 (2000).
104. P. Ihiwrylnk. G. A. Narvaez. M. Bayer, and A. Forchel. Phys. Rev. Lett. 85. 389 (2000).
105. M. Kira. I Jahnke, and S. W. Koch, Phvs. Rev. Lett. 81. 3263 (1998).
106. A. Zrcnncr. E. Beham, S. Slutter. E Eindeis. M. Bichler. and B. Ahstreiter. Nature 418. 612 (2002).
107. J. Motohisa. J. J. Baumberg. A. P. Ilebcrle, and J. Allam, Solid-State Electron. 42. 1335 (1998).
108. M. Bayer. 1 Guhrod. A. Forchel, V. 13. Kulakovskii. A. Gorbunov. M. Michel, R. Steffen, and K. II Wand. 

Phys. Rev. R 58. 4740 (1998).
loo E. Dekel. I) Gershoni. E. Ehrenfreund. J M Garcia, and P M PetrolT. Phys. Rev B 61. 11009 (200(1).
110 F Findcis, A. Zrenner. G. Bohm, anil G Ahstreiter. Solid Stale (onimun. 114. 227 (2000).
111. J. J. Finley. P. W. Fry. A. D. Ashmore. A I cmatirc, A. 1 Tartakoxskii, R. Oultoit. L). J. Mowbray. M. S. Skolnick 

M llopkinson. P 13. Buckle. P. A. Maksym. Phys. Rev. B 63. 161305 (2001).
112. B. llrbaszck. R. J. Warburton, K. Karrai. B. 13. Gerardol. P. M. PctroCf. and J. M. Garcia. Z’/iys. Rev. Lett. 90, 

247403 (2003).
11.< I Bcsombes. .1. .1. Baumberg, and J. Motohisa. Phvs. Rev. Lett. 90, 257402 ( 2003).
114. M. Loma.scolo, A. Vergine. T. K. Johal. R Rinaldi. A. Passaseo, R Cingolani. S. Patane. M Labardi, 

M. Allegrini. F. Troiani. E. Molinari. /7n.s. Rev. B 66. 041302 (2002).
115. M. A. Paeslcr and P. J. Moyer. "Near-Ficld Optics: Theory, Instrumentation, and Applications.' Wiley. 

New York. 1996.
116. B. Hecht. B Sick. LI. P. Wild. V. Dcckert. R Zcnobi. O. J. F. Martin, and I). W. Pohl. J. Chem. Phys. 112. 

7761 (2000).
117. B. Ilancwinkel. A. Knorr, P. Thomas, and S W. Koch. Phys. Rei R 55. 13 715 (1997).
118. A. Liu and G. W. Bryant. Phys. Rev. H 59. 2245 (1999).
110. Liu and G W. Bryant. Pltvs. Rev. H 59. 2245 (1999).
120. K Matsuda, T. Saiki, S. Nomura. M. Mihara. and Y. Aoyagi. Appl. Phys Lett. 81. 2291 (2002).
121. (3. Mauritz, G. Goldoni. F. Rossi, and E. Molinari, Phys. Rev. Lett 82, 847 (1999).
122. (3. Mauritz. G. Goldoni. E. Molinari, and F. Rossi. Phys. Rev H 62. 8204 (2000).
123. S. Savasta. O. Di Stefano, and R. Girlanda. Phvs. Rev. A 65. 043801 (2002).
124. G. Pislone, S. Savasta. O. Di Stefano, and R. Girlanda, Appl Phys. Lett. 84. 2971 (2004).
125. J Shah. “Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures." Springer Berlin. 

1996.
126 N II Bonadeo. G Chen. 13. Gammon, and 13 G. Steel. Phvs. Status Solidi tbl. 221. 5 ( 2000).
127. IL A Rabitz. M M Hsieh, and C M Rosenthal. .Su.ncc 303. IW8 (2004)
128. L. Viola and S. Lloyd. Phys Res I 58. 2733 (1998).
120. L. E. Reichl. "Statistical Physics." Wiley. New York. 1998.
130 I I. Rabi. Phvs. Rev 51. 652 (1937)
131. 11. Iltoon. T. Takagahara. 13. Kulik. (). Baklenov. A. I Holmes, Jr., and ( . K Shih. Phvs. Rev. Lett. 88 087401 

(2002).
I3J. P. Borri, W. I angbein, S Schneider. II. Woggon. R. L. Sellin. 13. Ouyang. and 13 Bimberg, Phvs. Rtv H 66. 

08|306(R) (2002).
133. >1 Kamada. II. Gotoh. and J Temmyu. Phvs Res. Lett 87. 246401 (2001).
134 il l’ Breuer. B Kappler, and F. I’ctruccionc. Phss Rev 1 59. 1633 (1999)
135 II P Breuer and F. Pctruccionc. “Open Quantum Systems.” Oxford University Press. New York. 2002.



Optical Properties of Semiconductor Nanostructures 459

7 ¥>. S. Nakajima. Prog. Theor. Phvs. 20,948 (1958).
737. R. Zwanzig. .7. (hem, Phvs. 3.3. 1.3.38 (I960)
7 ?<8. R. Zwanzig. Phvs. Rev 124 . 983 (1961)
739. E. Fick and G. Sauermann. l he Quantum Statistics ol Dynamic Processes." Springer. Berlin. 1990,
140. A. (). Calderia and A. J. Leggett. Phys. Rev. Lett. 46. 211 (1981).
141. A. (). Caldeira and A. .1. Leggett, .bin. Phys. (N.Y) 149. 374 (198.3).
142. A. J. Leggett, S. Chakravarty, A. T. Dorsey. M. P. A. Fisher and A. Garg, and W. Zwerger. Ret: Moil. Phys. 

59. I (1987).
143. G. Lindblad, Common. Math. Phys. 48, 119(1976).
144. R. Dum, A. S. Parkins. P. Zoller, and C. VV. Gardiner. Phys. Rev. .4 46. 4.382 (1992).
145. J. Dalibard. Y. Castin. and K. Molmcr. Phvs. Rev. Leu. 68. 580 (1992).
146. M. B. Plenio and P. I.. Knight. Rev. Mo,I. Phys. 7(1. 101 (1998).
147. U. llohenester. C. Sifel. and P. Koskinen. Phvs. Rev. B 68. 245.304 (2003).
148. M 1 ax. Phvs Rev 129. 2342 (1963)
140. M. Lax. Rev. Mod. Phvs. .38. 541 (1966).
75ft P. Borri. VV. Langbein, S. Schneider. IL VVoggon, R. I.. Sellin. D. Ouyang. and D. Bimberg. Phvs. Rev. Leu. 89. 

187401 (2002).
151. V. Zwiller. T. Aichele. and O. Benson. Phys. Rev. B 69. 165307 ( 2004).
152. J. M. Gerard and B. Gayral. Z Lightwave Technol. 17, 2089 (1999).
153. Y. Yamamoto. F. Tassonc. and H. Cao, ’‘Semiconductor Cavity Quantum Electrodynamics." Springer. Berlin. 

2(.MK).
154. P. Michler. A. Kintz, C. Becher, VV. V. Schoenfeld. P. M. Petrofl’. L. Zhang. E. Hu, and A. Imamoglu. Science 

290. 2282 (2000).
155. G. C. I legcrfcldt. Phvs. Rev. .1 47, 449 (1993).
756. C. Santori. M. Pelton. G. S. Solomon. Y. Da e. and Y. Yamamoto. Phvs. Rev. Lett. 86. 1502 (2001).
757. M. Pelton. C. .Santori. .1. Vuekovic. B. Zhang. G. S. Solomon. J. Plant, and Y. Yamamoto. Phvs. Rev. Lett. 89. 

233602 (2002).
158. C. Santori. G. S. Solomon. M. Pelton, and Y Yamamoto. Phys. Rev. B 65. 07331(1 (2002).
759. E. Waks. K. Inoue. C. Santori. D. Fattal. J. Vuekovic, G. S. Solomon, and Y. Yamamoto, Nature 420, 6917 

(2002).
160. M. II. Baier. L. Pclucchi. L. Kapon. S. Varoutsis. M. Gallart. I. Robert-Philip, and I. Abram. .4pp7. Phys. Leu. 

84, 648 (21X14).
161. Z. Yuan. B. E. Kardynal. R. M. Stevenson. A. J. Shields. C. .1. Lobo. K. Cooper. N. S. Beattie. D. A. Ritchie, 

and M. Pepper. Science 295, 102 (2002).
162. O, Benson, C. Santori. M. Pelton, and Y. Yamamoto, Phys. Rev. Leu. 84, 2513 (2000).
163. D. V. Regelman, U. Mizrahi, D. Gershoni. E. Fhrcnfreund. W. V. Schoenfeld, and P. M. Pctroff. Phys, Rev. 

Leu. 87, 257401 (2001).
164. E. Moreau. I. Robert. L, Manin. V. Thierry-Mieg. J. M. Gerard, and I. Abram. Phys. Rev. Lett. 87. 18.3601 

(2001).
165. O. Gywat. G. Burkard, and D. Loss. Phys. Rev B 65. 205329 (2002).
166. T M. Stacc. G. .1. Milburn, ami C. II. W. Barnes. Phvs. Rev. B 67. 085317 (2003).
167. C. Sifel and li. I lohenestcr, Appt. Phvs. Lett. 8.3, 153 (2003).
168. U. Bockelmann and G. Bastard. Phys. Rev. B 42. 8947 (1990).
169. II. Bcnisty, C. M. Sotomayor-Torres, and C. Weisbuch. Phvs. Rev. B 44. 10945 (1991).
170. (J. Bockelmann. Phys. Rev. B 48, 176.37 (1993).
777. IL Bockelmann, Phys. Rev. B 50, 17271 (1994).
772. B. Ohncsorge. M. Albrecht. J. Oshinowo. A. Forchcl. and Y. Arakawa. Phys. Rev. B 54. 115.32 (1996).
173. R, Heitz. M. Veit, N. N. Ledentsov, A. Hoffmann. D, Bimberg. V. M. Ustinov. P. S. Kopev. and Zh. I. Alferov. 

Phvs Rev. B 56. 10435 (1997).
174. S. Grosse. J. 11. Sandmann. G. von Plessen. J. Feldmann. H. Lipsanen. M. Sopanen. J. Tulkki, t.nd J. Ahopclto, 

Phys. Rev. B 55. 447.3 (1997).
775. C. B. Duke and D. Mahan, Phys. Rev. 139, A1965 (1965).
176. I.. Jacak. P. Machnikowski. J. Kransnyj. and P. Zoller, Eur. Phys. J. I) 22. 319 (2003).
177. C. Uchiyama and M. Aihara. Phys. Rev. /I 66. 0.32.313 (2002).
178. A. Yu. Smirnov. Phvs. Rev. B 67, 155104 (2003).
779. A. Vagov. V. M. Axt. and T. Kuhn. Phys. Rev. B 67. 115338 ( 2003).
180. K. Kral and Z. Khas. Phvs. Rev. B 57. 2061 (1998).
7.S7, T, Stauber. R. Zimmermann, and 11. Castell;.. Phys. Rev B 62, 73.36 (2000).
182. A. Vagov. V. M. Axt. and T. Kuhn. Phys. Rev. B 66. 165312 (2002).
183. U. llohenester and G. Stadler. Phys. Rev. Leu. 92. 196801 (21X14).
184. M. Bonitz. ‘Quantum Kinetic Theory." Teubner. Stuttgart, 1998.
185. R. Balescu. "Statistical Mechanics of Charged Particles." Interscience. New York. 1963.
186. A. V. Uskov. A. P. lattho. B. Iromborg. J. Mork. and R Lang. Phvs 7<ct. Leu. 85. 1516 (2000).
187. S. Hamcau. Y. Guldncr, O. Vcrzclen. R. Ferreira, G. Bastard, J. Zeman. A. Lemaitre, and J. M. Gerard, Phys. 

Rev Lett. 83. 4152 (1999).
188. K. Oshiro. K. Akai, and M. Matsura. Phys. Rev. B 59. 10 850 (1999).



460 Optical Properties of Semiconductor Nanostructures

189. M. Bissiri, G. Baldassarri Unger von Hogcrslhal. A. S. Bhatti. M. Capzzi, A. Frova. P. Frigcri. and S. Franchi. 
Phys. Rev. B 62, 4642 (2000).

190. R. Ferreira and G Bastard. Appl. Phys leu. 74. 2818 (1999).
191. (). Verzelen. R. Ferreira. and G. Bastard. Phvs. Rev. B 62. R4809 (2000).
192. O. Verzelen. R. Ferreira, and G. Bastard. Phvs. Rev Lett. 8X, 146803 (2002).
193. O. Verzelen. G. Bastard, and R. Ferreira. Phvs. Rev. B 66. 081308 (2002).
194. L. Jacak. J. Krasnyj, D. Jacak. and P. Machinowski. Phys. Rev. B 65. 113305 (2002).
195. R. Heitz. H. Born. F. Guffarth. O, Stier. A. Schliwa. A. Hoffmann, and D. Bimberg. Phys. Rev. B 64. 241305

(2001).
196. J. Urayama. T. B. Norris. J. Singh, and P. Bhattacharya. Phys. Rev. Lett. 86. 4930 (2001).
197. R Zanardi and E Rossi. Phys. Rev. Lett. 81. 4752 (1998).
/<M P. Zanardi and F. Rossi. Phys. Rev. B 59, 8170 (1999).
199. II Kamada. II. Gotoh. II. Ando, .1. Temmyo. and 1 Tamamttra. Phvs. Rev. R 60. 5791 11999).
200. S. Cortez. O. Krebs. S. Laurent, M. Senes, X. Marie. P Voisin, R. Ferreira, G. Bastard, .I M. Gerard, and 

T. Amand. Phvs. Rev. Lett. 89. 207401 (2002).
201. r\. V. Khaetskii and Y. V. Nazarov. Phvs. Rev. R 61. 12 639 (2000).
202. W. Polz and W. A. Schroeder (Eds.). “Coherent Control in Atoms, Molecules, and Semiconductors." Kluwer. 

Dordrecht. 1999
203. H. Rabitz, R. de Vivie-Ricdlc. M. Motzkus, and K. Kompka, Science 288. 824 (2000).
204. A. R Heberle. J. J. Baumberg. and K. Kohler. Phys. Rev. Lett. 75. 259X (1995).
205. K. Bergmann. H. Thcuer. and B W Shore. Rev Mod. Phys. 70. 1003 11998).
206. I1. Hohenester. I. Troiani. E. Molinari. G. Panzarini. and C. Macchiavello, Appl. Phys. Lett. 77. 1864 (2000).
207. M. Lindberg and R. Binder. Phvs. Rev. Lett. 75, 1403 (1995).
208. W. Pdtz. Phys. Rev. Lett. 79, 3262 (1997).
209. R Binder and M. Lindberg. Phvs. Rev. Lett. 81. 1477 (1998).
210. M. Artoni. G. C. La Rocca, and F. Bassani, Europhy.s. Leu. 49, 445 (2.100).
211 T. Brandes and F. Renzon . Phys. Rev. Lett. 85, 4148 ( 2000).
212. T. Brandes, E Rcnzoni. and R. H. Blick, Phv.s. Rev. R 64, 035319 (2001).
213. F. Troiani. E. Molinari, and U. Hohenester, Phys. Rev. Lett. 90. 206802 ( 2003).
214. C. R Slichtcr, “Principles of Magnetic Resonance." 3rd Edn. Springer, Berlin, 3, 1996.
215. M. 11. Levitt, "Spin Dynamics. Basics of Nuclear Magnetic Resonance.” Wiley. Chichester. 2003.
2/6. R Chen. C. Pierniaroeehi. and L. .1. Sham. Phys. Rev. Lett. 87. 067401 (2001).
2/7. C. Pierniaroeehi. P. Chen, Y. 8. Dale, and I.. J. Sham. Phys. Rev H 65. 075307 (2002).
2/8. Pochung Chen, C. Pierniaroeehi. L. J. Sham. D. Gammon, and D. G. Steel. P/tp. Rev. B 69, 075320 (21X14),
219. A. P. Peirce, M. A. Dahleh, and H. Rabitz. Phys. Rev. A 31. 4950 (1988).
220. A. Borzi. G. Stadler, ami U. Hohenester. Phys. Rev. A 66. 053811 (201)2).
22/. D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, Phys. Rev. .4 64, 023420 (2001).
222. G. Chen. T. II. Sticvater, E. T. Balteh, X. Li. D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham. 

Phvs Rev Lett 88. 117901 (2002).
223. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. 

Rev. Lett. 83, 4204 (1999).
224. E. Pazy, E. Biolatti, T. Calarco. I. D’Amico. P. Zanardi. F. Rossi, and P. Zoller. Europhys. Lett. 62. 175 (2003).
225. U. Hohenester, F. Troiani, and E. Molinari, in “Radiation-Matter Interaction in Confined Systems” 

(L. C. Andreani. G. Bencdek, and E. Molinari, Eds.), p. 25. Society Italiana di F'isica. Bologna. 2002.
226. F. Troiani, U. Hohenester. and E. Molinari. Phy.s. Rev. R 62. R2263 ( 2000).
227. E. Pazy. I. D’Amico, P. Zanardi. and F. Rossi, Phys. Rev. B 64. 19532(1 (2001).
228. U. Boscain, G. Chariot. J.-P. Gauthier. S. Guerin, and H.-R. Jauslin.Z Muth. Phys. 43. 2107 (2002).
229. Z. Kis and S. Stenholm, J. Mod. Opt. 49. Ill (2002).
230. K. G. Kim and M. D. Girardeau, Phvs. Rev. A 52, R89I (1995),
23L R. S. Judson and IL Rabitz, Phy.s. Rev. Lett. 68. 1500 (1992).
?.?? W H Press. S. A. Teukolsky. W. T. Vetterling. and B. P. Flannery. "Numerical Recipes in C+ + ' The Art of 

Scientific Computing," 2nd Edn. Cambridge University Press. Cambridge, UK, 2002.
233. L. C. Andreani, G. Panzarini. A. V. Kavokin. and M. R. Vladimirova, Phys. Rev. B 57. 4670 (1998).
234. S. L. McCall and E. I.. Hahn. Phys. Rev. Lett. 18. 908 (1967).
235. S. L. McCall and E. L. Hahn, Phy.s. Rev. 183. 457 (1969).
236 II. M. Gibbs and R E. Slasher, zlpp/./’/ry.i Lett. 18.505 (1971).
237. R. E. Slusher and 11. M. Gibbs. J’hvs. Rev. A 5, 1634 (1972).
238. L. Allen and .1. H. Eberly, “Optical Resonance and Iwo-tevcl Atoms.' Wiley. New York. 1975.
239. G. Panzarini. U. Hohenester. and E. Molinari. Phvs. Rev R 65. 165322 (2002).
240. U. Hohenester. Phys. Rev. B 66. 245323 (2002).
241. S. Schneider. P. Borri. W. l.angbein. U. Woggon, .1. Fdrstner. A. Knorr. R L. Sellin. D. Ouyang. and 

D. Bimberg, Appl. Phv.s. Lett. S3. 3668 (2003).
242 P. Shor, in "Proceedings of the 35th Annual Symposium on Foundations of C ompnter Science (S Goldwasser. 

Ed.), p. 124. IEEE Computer Society, Los Alamitos, 1994.
243. R. Laflamme. C. Miquel. J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 77. 198 (1996).
244. [). P. DiVincenzo. Eortschritte der Physik 48. 771 (20(MI).
245. D. P. DiVincenzo. D. Bacon. J. Kempe. G. Burkard, and K. B. Whaley. Mitiirc 408. 339 (2000).



Optical Properties of Semiconductor Nanostructure 461

’46. I. L Chuang. I. VI. K. Vandcrsypen. X. Zhou. D W. Leung, and S. Lloyd, Suture 393. 143 (1998).
'47 .1, I, Cirac and I’. Zoller. Phys. Rev. Lett. 74. 4091 (1995).
’4A". \ Barenco. D. Deutsch. A. Ekerl. and R Josza. Phvs. Rev Lett. 74.40X3 (1995).
’49. I Biolatli. R. C. lotti, P. Zanardi. and F. Rossi. Phys. Rev. Lett. 85. 5647 (2000).
’50. E. Biolatli. I. D’Amico. P. Zanardi. and E Rossi. Phys. Rev. B 65, 075306 ( 2002).
’5/. P. Bianucei. A. Muller. C. K. Shih. Q. Q. Wang. Q. K, Xue. and C. Piermarocchi, Phvs. Rev. B 69. 161303 

(2004).
’52. S. De Rinaldis. I D Amico. E. Biolalti. R. Rinaldi. R. Cingolani. and F. Rossi. Phvs Rev. B 65. 0X1309 (2002).
’53. S. De Rinaldis. I. D'Amico, and F. Rossi. .4/>p/. Phys. Lett. SI. 4236 (2002).
’54. L. Quiroga and N. E Johnson. Phys. Rev. Le<t. S3. 2270 (1999).
’55. B. W. Lovett. J. II. Reina. A. Nazir, and G. A. D. Briggs. Phys. Rev. B 68. 205319 (2003).
’56. S. Sangu, K. Kobayashi. A. Shojiguchi. and M. Ohtsu. /’/ns Rev. B W. 115334 (2<K»4).
’57. D. Loss and D. P. DiVincenzo. Phys. Rev. .4 57. 120 (1998).
’5,S'. M. S. Sherwin. A. Imamoglu. and T. Montrny. Phys. Rev. A 60. 3508 (1999).
59. M. Feng. I. D'Amico. P. Zanardi. and I. Rossi. Phys. Rev. .4 67. 014306 (2003).

’60 C. Piermarocchi. P. Chen. L J. Sham, and D. G. Steel, Phys. Rev Lett X9. 167402 (20O2i.
6/. I. Calarco, A. Datta, P. Fedichcv, E. Pazy. aid P. Zoller, Phvs Rev, A 68. OI23IO (2003),
62. E Troiani. Solid State Commun. 128, 147 ( 2003).

’63. R. G. Linanyan. N. V. Vilanov, and K. Bergmann. Phvs. Rev. Lett. 87. 137902 (2001).
64. Z. Kis and E Renzoni. Phys. Rev. .4 65. 032318 (2002).

’65. P Zhang. C. K. Chan. Q.-K. Xue. and X.-G. Zhao. Phvs. Rev. .4 67. 012312 (2003).
66. C. M. Tesch and R. de Vivie-Riedle. Phys. Rev. Lett. 89. 157901 (2002).
67. L. P. Kadanoff and G. Bayni, "Quantum Statistical Mechanics." Benjamin. New York. 1962.
6,8. A. I. letter and J. D. Walccka. "Quantum Theory of Many-Particle Systems." McGraw-Hill. New York. 1971.
69 H. Haug and A. P. Jauho. •‘Quantum Kinetics in Transport and Optics of Semiconductors." Springer. Berlin. 

1996.
70. V M. Axl ami S Mukamel. Rev. Mod. Phvs. 70. 145 (1998).
7L I . Hohenestcr. Phys. Rev. B 64, 205305 (20111)
72. R. McWeeny. "Methods of Molecular Quantum Mechanics." Academic. London. 1992.
73. M. Brasken. M. Lindberg. D. Sundholm. and J. Olsen. Phys. Rev. B 61, 7652 (2000).
74. S. Corni. M. Brasken. M. L indberg, J. Olsen, and D. Sundholm. Phvs. Rev. B 67. 085314 (2003).
75 s. M. Barnett and P. M. Radmore. "Methods in Theoretical Quantum Optics." Clarendon. Oxford. 1997





CHAPTER 8

Nanometer-Scale Electromagnetic 
Field Fluctuations

C. Henkel
Institut fur Physik, Universitat Potsdam, Potsdam, Germany

CONTENTS

1. Introduction................................................................................... 463
1.1. Fields and Matter on the Nanometer Scale......................463
1.2. Quantum Electrodynamics of Mesoscopic Media...........464
1.3. Domains of Relevance........................................................465

2. Mesoscopic Model for Field Fluctuations ................................... 466
2.1. Macroscopic Maxwell Equations........................................466
2.2. Material Response Functions............................................467
2.3. Properties of the Macroscopic Equations..........................469
2.4. Field Fluctuation Spectra................................................... 472
2.5. Example: Planar Surface ................................................... 480

3. Ncar-Ficld Vacuum Fluctuations .........................................  485
3.1. Molecular Fluorescence Dynamics ...................................486
3.2. Spontaneous Decay Close to Nanostructures...................490

4. Atom Chips and Thermal Near-Ficld Noise .............................. 493
4.1. Atom-Field Coupling.......................................................... 494
4.2. Dissipation and Decoherence............................................ 494

5. Mechanical Effects on Nanoparticles .......................................... 497
6. Conclusion.......................................................................  498

References.....................................................  499

1. INTRODUCTION
1.1. Fields and Matter on the Nanometer Scale
The electromagnetic field is the basic medium that induces interactions between charged 
particles. At distances on the order of the atomic size, the interactions are dominated by lhe 
instantaneous Coulomb interaction and give rise to atomic orbitals, chemical bonding, and 
the formation of solid matter. Retardation becomes important on the wavelength scale and 
determines the power emitted via electromagnetic radiation.
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464 Nanometer-Scale Electromagnetic Field Fluctuations

In this chapter, we focus on intermediate spatial scales of at least a few nanometers. On 
this scale, solid matter can. with increasing accuracy, be described by continuum theory. 
We consider, in addition, globally neutral systems like atoms or molecules that probe solid 
nanostructures via the nearby electromagnetic field. To the lowest nonvanishing order in 
a multipole expansion, the coupling to the field is provided by the electric and magnetic 
dipole moments of the corresponding atomic and molecular charge and current densities. 
The overlap of electron wave functions is negligible on the nanometer scale, with the latter 
being much larger than the extension of atomic and molecular orbitals. The electromagnetic 
interactions are often dominated by resonant processes in the visible frequency range, where 
typical electronic transitions for atoms and molecules occur. The corresponding wavelengths 
are hundreds of nanometers.

On the nanoscale, electromagnetic interactions thus occur via the near field, the properties 
of which are distinct from the propagating plane waves that prevail at distances beyond the 
transition wavelength (in the far field). The fact that retardation is negligible does not mean, 
however, that the near field is free from dynamical processes. We show, on the contrary', that 
it fluctuates at a level that can be enhanced orders of magnitude above the far-lield level at 
which the Planck formula for blackbody radiation applies.

In fact, the near field is also determined by evanescent or nonpropagating fields that are 
bound to the solid structures. The field fluctuations contain both a quantum and a ther
mal component, depending on the ratio between frequency and temperature. They induce 
transitions and loss processes in atoms or molecules that are brought into the near field.

Typical examples we focus on in this contribution occur in near-field optics and integrated- 
atom optics. In near-field optics, atomic or molecular particles provide a local probe of 
a nanostructured substrate with an exquisite spatial resolution. In integrated-atom optics, 
ultracold matter waves are trapped and manipulated in (sub)micrometer potentials close to 
nanostructured substrates. Field fluctuations perturb these traps and determine their stability 
and coherence time.

1.2. Quantum Electrodynamics of Mesoscopic Media

In this chapter, we review the electromagnetic interactions between atomic or molecular 
dipoles and a nanostructured material. Adopting a description on the superatomic scale, 
the material is modelled in terms of a locally homogeneous medium characterized by a 
permittivity e and a permeability ju. This assumes a linear response of the material to an 
external field, which is valid for sufficiently weak fields. A nonlocal or anisotropic response 
is not excluded, however, and can be taken into account by material response functions that 
are wave-vector dependent or tensors.

This material description is sufficient to describe the dynamics of the electromagnetic field 
on the nanoscale, starting from the so-called macroscopic Maxwell equations [1]. Even for 
the quantization of this field theory, no additional material data are required; the natural 
assumption suffices that the dielectric and magnetic susceptibilities are causal. This also 
covers the realistic, but theoretically challenging, case of materials with a nonzero absorption. 
The quantum theory of these lossy systems becomes consistent when a reservoir is allowed 
into which the energy is dissipated. An effective model for this reservoir can be constructed 
from the imaginary part of the material's response functions [2].

In many situations, however, the reservoir is not explicitly needed because the relevant 
statistical information about the quantum and thermal fluctuations of the electromagnetic 
field can be formulated from the field equations themselves, using equilibrium thermody
namics. This is achieved by means of the fluctuation-dissipation theorem, which relates the 
correlation function to the Green function of the field [3. 4], As an alternative description, 
one can enlarge the theory' to include a more detailed model for the current densities in the 
material. Dissipation then occurs as a result of coupling to a phonon reservoir, for example 
[5],

Although matter can be adequately described by a continuum theory on the nanometer 
scale, atoms or molecules arc small on this scale and can be modeled in terms of pointlike 
electric or magnetic dipole moments [6], Their interaction with the electromagnetic field. 
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lor example, via lhe scattered radiation power, thus provides local information about the 
field. This idea has fostered the development of single-molecule probes in ncar-licld optics 
that potentially offer a very high spatial resolution compared to solid lips, l he fluorescence 
ol single molecules allows us to extract information about the local density states (LDOS) 
if the molecule is scanned in a controlled way through the near field of a nanostructured 
sample |7|.

We give here a basic introduction to the dynamics of fluorescent emission and show that 
the LDOS gives access to properties of lhe sample itself. The spatial resolution is limited only 
by the distance of the scanning particle. Integrated-atom optics provides our second appli
cation |S-111. We describe miniaturized electromagnetic traps lor ultracold atomic gases, 
where the atomic magnetic dipoles realize a sensitive magnetometer for ncar-licld fluctua
tions. These fluctuations determine the lifetime and coherence time of the trapped atoms.

1.3. Domains of Relevance
1.3.1. Subwavelength Optical Microscopy
As mentioned above, electromagnetic field fluctuations on the nanometer scale play an 
important role for scanning near-field optical microscopy (SNOM) with single-molecule 
probes |7|. In lhe optical frequency range and at room temperature, these fluctuations 
are dominated by quantum or vacuum noise, and quantum electrodynamics is required. 
A generic example is the calculation of the spontaneous decay rate of a two-level 
molecule | 12—14|. For many applications, however, the problem can be reduced to a classical 
calculation using arguments from equilibrium thermodynamics. Il then suffices to know the 
total radiation emitted by a pointlike oscillating dipole source 115|.

I his docs not mean, however, that lhe position dependence of the fluorescence signal in 
a given experimental context allows us to recover in a simple way information about a nano
structured substrate. Indeed, if the molecule is optically excited, lhe intensity distribution of 
the excitation light shows spatial variations in addition to the spatially modulated decay rate 
that involves lhe LDOS |16|. Another difficulty is that close to an absorbing nanostructure, 
a molecule has separate radiative and nonradialive decay channels that have to be disen
tangled using different experimental signals. We review the conditions and observables that 
allow for a simple signal processing and outline analytical arguments that provide a link 
between the LDOS and the local optical properties of the substrate on the nanometer scale.

1.3.2. Integrated-Atom Optics
The field of atom optics has emerged in the last two decades [17]. It transposes basic con
cepts of light optics (beamsplitters, mirrors, diffraction gratings, interferometers, and lasers) 
to atomic matter or de Broglie waves. A twofold motivation continues to drive the rapid evo
lution of the field: the exploration of fundamental wave mechanics, and the demonstration 
of devices in which atoms perform better to photons or other particles. Atom interferome
ters. for example, are sensitive to rotations and gravitational forces. They give phase shifts 
that are larger by a factor //» l()l,m|amu]A1 |/>m| compared to light interferometers 
with the same enclosed area. The accuracy achieved in current experiments indicates that 
liny relativistic corrections or the gravitational constant (» can be measured in the near 
futuie | IS],

As in light optics, a major step toward practical applications is integration: Miniaturize the 
device and combine it with source and detection system in a single, preferably solid setup. 
A natural solution, inspired by electromagnetic optics, is to replace free space with a wave
guide for the propagation ol an atomic beam. In matter wave optics, this corresponds to a 
confining potential and can be implemented easily with electromagnetic fields |8-l(l. 19, 20]. 
One type of atom guide that is particularlv relevant for miniaturization below the micron 
scale is based on the magnetic field minimum formed when lhe azimuthal field from a 
current filament is superimposed on a homogeneous field, as put forward by Frisch and 
Segre [2I]. A whole network of integrated waveguides can be realized, with static magnetic 
fields generated by nanostructures written onto a solid substrate. This concept offers strong 
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confinement and highly versatile structure design and is potentially scalable when using 
nanofabrication technologies. For a review, sec Refs. [9-111.

Electromagnetic fluctuations arise in these devices from thermal charge and current fluc
tuations inside lhe nanostructures. They perturb the cold trapped matter waves by inducing 
spin flip transitions and transitions between stationary trap eigenstates, which leads to heat
ing and a loss of matter wave coherence. Building on the relevant electromagnetic noise 
spectra, we summarize here methods to compute the spin flip and heating timescales in 
typical integrated-atom traps near nanostructured surfaces.

1.3.3. Other Scanning Probe Techniques
Finally, electromagnetic field fluctuations are present in other areas of probe microscopy at 
the nanometer scale. They have been discussed as being an explanation ot viscous forces 
observed in tunnelling and atomic force microscopy. Quantum fluctuations have been known 
for a long time to lead to conservative, attractive forces of the Van der Waals and Casimir 
type [22]. The transfer of heat on the nanoscale is an associated issue that is of significant 
technological interest for submicron information storage [23. 24]. Magnetic noise determines 
the signal-to-noise ratio and the ultimate resolution in magnetic resonance microscopy, which 
is essentially a local version of nuclear magnetic resonance imaging that strives towards the 
observation of single molecules; for example, in biological samples [25]. Wc briefly discuss 
issues related to mechanical forces on the nanoscale in Section 5.

2. MESOSCOPIC MODEL FOR FIELD FLUCTUATIONS
2.1. Macroscopic Maxwell Equations
Given a continuous description of matter, the electromagnetic field dynamics arc governed 
by the macroscopic Maxwell equations. In terms of the electric field E, the magnetic flux 
density B, the electric displacement field D, and the magnetic field H. these equations read
in the time domain (and in SI units) |1|

V D = p (1)

VxH-5,D=j (2)

V B = 0 (3)

VxE + a,B = 0 (4)

The sources of the field arc the density of free electric charges p and the free current 
density j. They are distinct from the bound charge and current densities inside the material, 
which are described by the fields I) and H. We focus in this contribution on materials that 
respond linearly to the field.

In this case, one has the material equations

D(x./) = £„/ drv(x. t)E(x, f - r) (5)

H(x.r) d-Y.ufx.rJBlx.t - r) (6)

where and p.^, arc the vacuum permittivity and permeability (with = I) and ^(x. r), 
^ni(x, t) denote the electric and magnetic susceptibilities [equal to (5(r) in vacuum!. The 
time convolution is a generic feature in a dispersive material. In the frequency domain using 
(he convention

E(x./)=/"'l-"’E(x;W)e (7)
V 277
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D(x: id) = r,,e:(x; «;)E(x: o>)

B(x; <u) H(x;w) = —\—4

(X)

where r(x; w) and g(x; w) are the relative dielectric function (permittivity) and the per
meability. respectively. In free space, £ = /z = 1. For non-inagnctic materials, p. — I. In an 
inhomogeneous material, one has to include the position dependence of the dielectric func
tion. Wc recall that the material F.qs. (S) and (9) are actually valid only on sufficiently large 
spatial scales, where a nonlocal dielectric or magnetic response can be neglected. Wc discuss 
the mote general case below, where examples for the dielectric function are also given.

In frequency space, the Maxwell Eqs. (I)—(4) can be written in the form

£tlV cE = -VP

V x ——|- ia>£u£E = — iwP + V x M

V B = 0

V X E - iwB = 0

We have assumed that the sources of the Held are globally neutral systems whose charge and 
current densities can be characterized by polarization and magnetization fields I’ and M. 
These fields have two distinct contributions. For the poinllike electric (<1) and magnetic (/1) 
dipole moments of atoms and molecules, we have

I’cM(x./) = d(/)<S(x r)

McM(x. /) = /x(/)6(x - r)

(14)

where r is the position ot the atom, l he thermal excitations in the material can be modeled 
as random fields or as operators Plt and Mn. The existence of these fluctuations is essential to 
establish thermal equilibrium between the material and the field. Their fluctuation spectrum 
can be expressed in terms of the material response functions with the help of the fluctuation
dissipation theorem, sec Sections 2.2 and 2.4.3.

In the following text, wc restrict ourselves to nonmagnetic materials and put /z = 1.

2.2. Material Response Functions
In this section, we give typical models for the dielectric function e = e(x; w) that arc widely 
used for some classes of materials. It has to be noted that these forms arc often approxima
tions that are valid only in a limited range of frequencies.

At optical frequencies, the permittivity is related to the index of refraction by

£ = n’ = «'* — k~ + 2b; k (16)

where if and k are the real and imaginary parts of the index, respectively. Both typically 
depend on frequency. In a homogeneous medium, the Maxwell equations can be solved by 
plane waves with a dispersion relation

(17)

so that Rc(c//t) is the phase velocity of light in the medium and (w/c)lmn = is the 
absorption coefficient.
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The dielectric function fur a metal can often by described by an electron plasma model. 
In terms ol the electron density ;V_. the plasma frequency is given bv fl" = e 
and one has the Drude model

fl" w + fl; . tr(w)
e(6») = 1 - ------ — = - ——— 'ii —

Oj(<L> + 11 .) IO~ + I
(IS)

where Fc is the damping rale of electron motion and the conductivity is <r((u) = e, T.fl-/ 
(or + Tj). I he current density induced by an electric field inside the material is then given by 
the Ohm law jllld = rrE. Only for w > flp is the permittivity bq. (IS) positive and the metal 
transparent; this typically occurs in the ultraviolet. At lower frequencies, e is complex with a 
negative real pari so lhal the refractive index is essentially imaginary: The electromagnetic 
field is strongly damped inside the metal and cannot enter it. As a consequence, metals 
are good reflectors for light in the visible range. At frequencies well below the damping 
rate, the permittivity is essentially imaginary, and one often uses the approximation e(w) = 
I + i<r/(Eow) with the direct current conductivity tr = i’,/l'c.

Metals also provide an example of a material with a nonlocal dielectric function. Only 
on a sufficiently large spatial scale can one consider that the motion of the electrons is 
instantaneously damped so lhal the dielectric response becomes local again. On a scale 
comparable to the mean free path or lower, however, the electron plasma reacts ballistically, 
and hence in a nonlocal way. lo an applied electric field. The material Eq. (X) is then 
generalized to

I)(x; «>) = «() /<I v k(x, x x ; w)E(x ; w) (19)

This is the most general relationship allowed lor linear materials. Note the dependence on 
both x and x - x': this can describe different materials as x varies.

If we focus for the moment on the dependence on x —x. a spatial Fourier transformation 
leads to

l>( k. w) = r(k. <o)E(k. to) (2(1)

featuring a k-dependent dielectric function (spatial dispersion). A simple diffusion model 
involves the mean free path /m( and the Fermi velocity = (h./ni(.)(3N(./tr?)1 ' via the 
diffusion coefficient Dc = vf7„,|/3

e(k. w) = 1 + (21)to T i A ~

For an inhomogeneous sample, one can allow for a position-dependent e(x; k. <u); this is the 
Fourier transform of s(x. x — x': to) in Eq. (19) with respect to x - x . Because mean free path 
and damping rate are related by /mfre ~ the wave-vector-dependent term in Eq. (21) is a 
small correction compared to to, provided (A/n,()’ w/I'L.. At typical frequencies (w < Fk);
this occurs on a spatial scale much larger than the mean free path. Note that the mean 
free path for typical metals is in the range of a few nanometers; it can be much larger in 
high-quality semiconductor samples. More details on the dielectric function of metals can 
be found in the review paper by Ford and Weber [26].

For nonmetallic. crystalline materials with oppositely charged ions in the unit cell, the 
dielectric function shows a resonance near the frequency of a lattice vibration where positive 
and negative ions move with opposite velocities (an “optical phonon”). This is described by 
the Lorentz-Drude model

£ (It)) — E, ,pt T (22)
ji^„ -W(<u + ii;j

that shows a Lorcntzian absorption resonance in Im e(w). centered al and with a 
width r,k.s. In Eq. (22). the strength flp ol the resonance is analogous lo the plasma fre
quency, and eO|1I gives the permittivity at frequencies well above the resonance (typically, in 
the visible). Optical phonon resonances mainly occur in the infrared region, where Eq. (22) 
is a good approximation.
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2.3. Properties of the Macroscopic Equations
2.3.1. Energy Conservation
From the Maxwell Eqs. (!())-(13). one obtains, by multiplication with the complex conjugate 
fields E" and H and by simple manipulations, lhe energy conservation law

2wlm|P- E] + 2Re|(V x M ) E]

= 2V Re|E’ x H| + 2w(£11(lm£)E‘- E + H] (23)

l he left-hand side gives the mechanical work per unit time and unit volume done by the 
electric field on the polarization and magnetization currents. On the right-hand side, lhe first 
term contains the Poynting vector averaged over one oscillation period. S = 2Re|E’ x H|. 
which describes the energy emitted per unit time and unit area; lhe second term involves 
the imaginary parts of the material response functions and gives the energy dissipated per 
unit lime and unit volume in the material.

The relation F.q. (23) thus characterizes quantitatively how energy is not conserved, but 
transferred between different subsystems, and is eventually lost in lhe absorbing material. 
It is clear that such a theory cannot be formulated in a straightforward way in terms of a 
Hamiltonian. In addition, we note that the theory is consistent with equilibrium thermody
namics only if the loss of energy in lhe material is compensated for by an energy flux radiated 
by the medium. We shall show below that the material fluctuations Pu and MtI provide this 
energy flux in a straightforward way.

Io illustrate the conversion of energy in macroscopic electrodynamics, consider the exam
ple of an oscillating electric dipole moment al position r. Integrating Eq. (23) over all space, 
one gets

2a>lm[d’.E(r)] = PL,m + P,hs (24)

/’inl = / d?a.S (25)

- 2io I dTjcjlm t)E’ ■ E I /lz0(Iihjti)<■ H| (26)

l he imaginary part of the local electric field (i.c., evaluated at the position of the dipole) 
determines the total rate of emitted energy, lhe flux of the Poynting vector through a 
closed surface (with surface element da) provides the radiation power emitted into the 
far lield. l he integral over the volume occupied by the material gives the rate of energy 
absorption. This separation also applies in quantum theory, as we shall see below, and allows 
us to compute the radiative and nonradiative decay rates of a two-level system.

2.3.2. Reciprocity
Another property of the macroscopic Maxwell equations is their symmetry under the 
exchange ol source and detector. This symmetry is also known as Onsager’s reciprocity rela
tions |27|. In optics, it corresponds to the reversal of the light path [I, 28]. It holds as long 
as permittivity and permeability are symmetric tensors, which is lhe case for isotropic media. 
An exception are Faraday-active media in a static magnetic field, which show polarization 
rotation.

Consider two monochromatic polarization sources P, and P that are bounded in space 
and that generate the fields E, and Hs (v = 1.2). We assume that lhe sources and fields cor
respond to the same surroundings [i.c., the same medium response functions c(x) and /z(x) 
arc used]. For simplicity, we assume that no magnetization sources are present. Simple 
manipulations starting from the Maxwell Eqs. (11) and (13) in frequency space then lead to

— i<u®o(E| • rE. - E, ■ cE,) — i(t?pH(lll juH, — H, ■ /zH,) + V (E, x H, — E x II,)

= i<u(P, - E, - P, - E,) (27)



470 Nanometer-Scale Electromagnetic Field Fluctuations

The first line vanishes provided e and /z are symmetric. One can show as well that lhe space 
integral of the remaining terms on the left-hand side vanishes: integrate both sides over 
a large spherical volume enclosing the polarization sources and the dielectric material. By 
Gauss' theorem, the integral reduces to a surface integral with outward unit normal x, say. 
Now take into account that in the far lield. the electric and magnetic fields are mutually 
perpendicular and perpendicular to the observation direction: xxE,= c/zH/zlI, (s = 1.2). 
Using again the symmetry of /z. we find that the integrand of the surface integral (x x E,) ■ 
H? - (x x E.) • H| vanishes. The reciprocity principle finally takes the form

0= / dlz(P, E. - P, • E,) (28)

Note that no complex conjugation is required here, in contrast to the energy conversion 
law (26). A useful special case is provided by dipole sources d, located at positions r,. The 
volume integral Eq. (28) then reduces to

d,.E1(r,) = dI.E,(r1) (29)

The Field radiated by a source dipole d, observed at a position r;, Ej(r2), is thus identical 
to lhe tield Ejr,). such that a “reciprocal" dipole located al the observation point would 
create at lhe position r, of the source dipole. For example, the field emitted by a dipole into 
the far field can be computed by putting a fictitious source into the far field and calculating 
the field it would create al the dipole. Sometimes one of these two calculations is easier to 
perform, and reciprocity thus reduces the computational effort.

2.3.3. Green Tensor
A widespread technique to solve the macroscopic Maxwell equations for an arbitrary polar
ization source is based on lhe Giecn function. Because the Maxwell equations are linear in 
the source fields, the radiated lield can be written as the integral (we have again put M = (I 
here)

E(x; w) = fd3x' x; at) P(x; w) (30)

In general, the Green function '6 is a tensor and depends separately on the source and 
observation points x-, x. By construction, we can interpret S(x, x': w) • d as the electric field 
created at the position x by a monochromatic point dipole source d located at x'. The Green 
tensor must therefore satisfy the same boundary conditions as any physical solution of the 
wave equations: It reduces at infinity lo an outgoing spherical wave. We shall peruse the 
same shorthand notation as before and suppress the frequency argument w whenever no 
confusion is possible.

lhe reciprocity theorem Eq. (29) implies that the Green tensor is symmetric. In terms of 
cartesian components, we have

T'S.yfx, x ) = .<.;,(x , x) (31)

In the time domain, the Green tensor provides a linear response function that connects the 
dipole moment, a real quantity, to the real electric field (for this reason, some authors call 
it the field susceptibility). In the frequency domain, it is therefore constrained to satisfy the 
relation

| .G„(x, x ; <o)|* = '.„(x, x ; -w’) (32)

where ’ means complex conjugation and wc have allowed for complex oj.
Finally, consider again an oscillating electric point dipole at position x and express lhe 

local lield E(x) in lhe energy conversion law Eq. (24) in terms of the Green tensor. Flu sum 
of emitted and absorbed power can then he written as

+ /’,i„ = 2w Im |d" • ',(x. x; w) d| (33) 
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Taking a linearly polarized dipole along the x, coordinate, we thus observe that 
to Ini (x. x: a;) > 0. We can also normalize the power lost by the dipole by the energy 
quantum fiw and introduce a rale of photon emission. Equation (33) then becomes very 
similar o Fermi’s golden rule for the spontaneous decay rale of a two-level atom with dipole 
matrix element d (see Section 3.1 for a detailed discussion), and this motivates the following 
definition for the projected LDOS (PLDOS) of the electro-magnetic field

PLDOS = C Im |tT ■ 6(x, x; to) ■ u] (34)

w'here he unit vector u specifies the polarization of the photon states (complex u corre
sponds to circular polarization) and C is a normalization constant. The local density of states 
I.DOS md the global DOS (per unit volume) are then given by

LDOS = C Im tr 6(x. x; to) (35)

DOS = — I d’.v Im tr',(x. x; w) (36)
F 71

where tr denotes the trace and I7 is the volume of the sample. We give these definitions 
here because they arc widely used.

Sonic subtle points are related to the fact that even in a dielectric without absorption, 
the Green tensor solves a wave equation with a nonhermitcan differential operator, are 
discussed by Sprik, van Tiggelen, and Lagendijk [29] and by Sakoda [30]. Note also that 
the definition [Eq. (36)| of the DOS gives the electric field a distinguished role relative to 
the magnetic field. In free space, this does not lead to inconsistencies because the elec
tric and magnetic energy densities are the same. (The magnetic Green tensor leads to the 
same DOS.) A different behavior occurs in the near field of a metallic structure, where the 
spectrum of the electromagnetic energy density is dominantly magnetic for some range of 
subwavelength distances (see Joulain ct al. (31 ] and Section 2.5).

Let us illustrate the above properties with the aid of the Green tensor in free space. From 
the Maxwell equations, we find that it solves the wave equation

V x V x 6(x, x'; to)----- — A =------- -<5(x - x )
c- f^c-

(37)

w’here 1 is the unit tensor. As a result of translation symmetry in free space, the Green 
tensor can only depend on r = x —x'. The solution that asymptotically reduces to an outgoing 
spherical wave is given by 

S(r; to) = —5(r) +
3e(l

to2 e’“”'/c
47T£i(C2

(38)

where r is the unit vector along r, r = |r|, and rr denotes a tensor product.
We observe that this particular Green tensor is symmetric [Eq. (31)] and changes into its 

complex conjugate when the sign of the (real) frequency to is flipped [Eq. (32)]. To compute 
the local density of states [Eq. (34)], one has to be careful when taking the limit r 0. De 
Vries, van Coevordcn, and Lagendijk discuss a regularization of the Green tensor in terms 
of cutoffs in momentum space [32|. A simpler procedure, used, for example, by Tomas and 
Lenac [33], uses angular averaging. Rotational symmetry means that we expect 6(r —> 0) not 
to depend on the direction of r. Performing an angular average of Eq. (38), wc observe that 
rr averages to so that the singular 1/r2 and 1/r' terms drop out. Taking the imaginary 
part, the 5 singularity drops out as well Expanding the spherical wave e'"r/t to first order in 
(or/c, we finally get [32, 33]

... to2 IIInn Im 6(r; «>) =------- - (39)
r -d 6tt£()c’

This LDOS does not depend on the observation point, of course. Compared to the 
well-known DOS in free space to2/(7r2e1), we can thus fix the normalization factor in 
Eqs. (34)-(36) to C = 2«(l/(77to). Note that different normalizations occur in the literature, 
depending on the convention used for the prefactor of the source term in the wave Eq. (37).
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2.3.4. Heisenberg Uncertainty Relations
Spatial resolution is a key question lor electrodynamics on the subwavelength scale. and 
its fundamental limits are given by the uncertainty relations. The standard diffractior limit 
applies to fields formed by propagating plane waves, which is a consequence of the well- 
known relation

AxAA - 1 (40)

between the resolution A.i and lhe width AA of the field in reciprocal space. Because AA < 
277/t/A for plane waves in a homogeneous medium with refractive index n. Eq. (40) inplies 
a resolution Av on the order of the medium wavelength A/n [28].

Near-ticld optics break the diffraction limit by using subwavelcngrh detectors or scaitcrers 
that are sensitive to evanescent waves as well [34]. For example, the field

E(x: cd) — e cxp(iA,.v - z/i ) (41)

with A; - 1.' — and e • (A Met + i/. *e. > = 0 is a solution to the Maxwell cquitions 
in (he vacuum half space z > 0 that is bound to a solid structure located in z <. (. The 
wavevector A, is not limited by 2-tt/A. and a field formed by evanescent waves (4 ) can 
therefore contain spatial information on much finer scales. For example, at a nanostrutfured 
interface, the boundary conditions can only be satisfied by including evanescent wives in 
the field. Because of their exponential decay with distance z, however, the subwaveength 
information they carry is lost as the detector is withdrawn from the near field of the stricture, 
and the standard diffraction limit is recovered.

The relation Eq. (40) corresponds to the Heisenberg uncertainty relations between the 
noncommuting observables position and momentum in quantum mechanics. For the elec
tromagnetic field in second quantization, another uncertainty relation involves the eectric 
and magnetic fields or, given a single field mode, two orthogonal field quadratures [12, 14], 
The commutator between the electric and magnetic field operators is given by (sumnation 
over A is understood)

[£,(x, t). By(x',/)] = -—(42) 
fi0 ^xk

so that electric and magnetic fields cannot be measured simultaneously. This commutator 
applies also to the macroscopic Maxwell equations, irrespective of the gauge chosen for 
the quantization procedure [2]. In the visible frequency range, however, one is actualy not 
sensitive to the field components that occur in Eq. (42). Depending on the type of detedor or 
scatterer used, the relevant observables are rather the time-averaged intensities E-, B2of the 
electric or magnetic field in some finite frequency band and smeared out over some patial 
region. For these, an estimate based on Eq. (42) yields a fundamental limit that corresponds 
to about one photon energy per spatially resolved volume when the field intensities are 
expressed in units of energy densities. This reflects the detection of the quantized ield in 
terms of discrete energy packets.

2.4. Field Fluctuation Spectra
The fluctuations of the electromagnetic fields can be characterized by statistical eectro- 
dynamics, which result from the application of equilibrium thermodynamics and quintum 
theory' to the macroscopic Maxwell equations [35], We introduce in this section the base def
initions for the field fluctuation spectra and review how they can be calculated. A key result 
in this context is the fluctuation dissipation theorem derived by Callen and Welton 141, vhose 
proof is sketched here. We conclude with some remarks on how to handle nonequilbrium 
situations.
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2.4.1. Basic Definition
We shrll assume that at thermodynamic equilibrium al temperature T. the field and the 
solid medium can be described by a Gibbs ensemble: each state with energy L is weighted 
with the Boltzmann factor exp(—E/A/(7 ) = e 111. In the quantized version of the theory, 
these states are stationary states: they are eigenstates with energy L of the corresponding 
Hamilton operator //. We shall work in the Heisenberg picture where the field variables 
(called ibservables) evolve in lime while the state of the system is fixed. The Gibbs ensemble 
is then characterized by the density operator

cxp(-/7/Aft7)
Peq = ---- -- -----1 ! (43)

Tr cxp(-///AB7')

4 his is an operator on the Hilbert space of the system that can be represented by a (infinite
dimensional) matrix, the density matrix. The trace of the operator-valued Boltzmann factor 
is Tr cxp(-///A:ft7'); it is also called the partition function [3|.

With respect to this equilibrium ensemble, we can define average values for the observ
ables of interest. This average combines the quantum expectation value in a given stationary 
state with the corresponding statistical ensemble weights. The average electric field, for 
example, is given hy

(E(x. /)) = Tr[E(x. r)pCiJ = Tr|pcqE(x, t)] (44)

where we have made use of the cyclic permutation under the trace. The time-dependence 
of the field is generated by the Hamilton operator, so that we have

(E(x, /)) = Tr|exp(i/7z//?)E(x) cxp( —i/7///r)peq] = Tr[E(x)pcq] (45) 

where E(x) is the electric field operator at time zero and we have used the fact that the Gibbs 
density operator (43) is invariant under time evolution. The average can now be computed in 
the Schrodinger picture and is found to vanish al equilibrium. In (he classical theory', this is 
because the phase of the field is uniformly distributed. In the quantum theory, the stationary 
states for each mode of the field (labelled by k) are eigenstates of the photon number 
operator <i'KdK. The field observable is a linear combination of the annihilation and creation 
operators ciK and ti* that lower or raise the photon number: Their quantum expectation 
values thus vanish in a photon number eigenstate. More details can be found in Section 2.4.2 
and in the textbooks by Loudon |12] and Mandel and Wolf 114],

The relevant information about the field fluctuations is thus encoded in the correlation 
function

(E(x, r)E(x', /')) = Tr|E(x, r)E(x'. /')pj = (E(x,0)E(x, /' - /)) (46)

In the second step, w'e have shifted the time arguments, using the fact that the time evo
lution commutes with the equilibrium density operator |Eq. (43)]. As expected from sta- 
tionarity. this correlation function only depends on the time difference r = /’ — z. In the 
limit |r| —» oo. one expects the fields E(x, /) and E(x', /') to decorrelate and the correlation 
function (Eq. (46)] to vanish. The timescale on which this happens gives the correlation or 
coherence time of the field.

The spectrum of the field fluctuations can be defined by the Fourier expansion of the 
correlat i on fu nct ion

(E(x,/)E(x'.r)) = / " ^e iwU (x. x ; «>) (47)

I his relation is also known as the Wiencr-Khintchine theorem 114|. The spectrum is actually 
a tensor use: the cross-spectral density tensor. For x = x', its components specify the local 
polarization state of the field. As a function of x - x . it characterizes the field's spatial 
coherence (i.e.. the contrast of interference fringes in a double-slit experiment with slits 
placed by x and x : see. e.g.. the textbooks by Mandel and Wolf 114] and by Goodman [36]). 
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As a function of the frequency w, the spectrum specifies the strength of the field fluctuations. 
This can be seen from the equivalent relation for the Fourier transforms of the field

(E(x. <o)E(x , w')) = 2tt<S((o w ) / (x. x'; w ) = (|E(x. w)| E(x', w )) (48)

In the last step, we have made use of the reality of the electric field that leads to the 
analog of Eq. (32). This way of writing also shows that the diagonal elements of <* (x. x; w) 
are positive. More generally. (I < u • /(x. x: w) u for any complex vector u. We note that 
the Fourier transforms of lhe fields strictly speaking do not exist as ordinary functions, 
l he Fourier calculus nevertheless applies symbolically for the corresponding operator-valued 
distributions.

The fluctuation spectrum of the electric field plays a key role for spontaneous and stim
ulated decay on the electric dipole transitions of an atom or molecule. The corresponding 
spectrum for the magnetic field characterizes the perturbation the field exerts on an atomic 
magnetic moment or spin. This is discussed in detail in Sections 3 and 4.

2.4.2. Blackbody Fluctuations
Let us illustrate the correlation function introduced above with the example of the blackbody 
raditttion field in free space, l he electric field operator can. in that case, be expanded in 
plane wave modes [12, 14|

E(x./) = /^^[uK(/)eexp(ik x) + HC| (49)
K V “E<> V

where the mode label k = (k, «) combines the wave vector k and the polarization vector 
elk. and V is the quantization volume. Wc assume periodic boundary conditions so that 
the allowed wave vectors arc discrete, l he mode frequency is given by w(A) = ck = cv^k2. 
The term HC denotes the hermitean conjugate operator, so that the electric field is globally 
hermitean. In the absence of any sources, the annihilation and creation operators evolve 
according to

aK(t) = uK exp|-i«>(A )t| ««(0 = a[ cxp[i<o(A)/| (50)

l he Schrodinger operators aK and </’ satisfy the bosonic commutation relations

[uK, «’,] = - a'KaK = a 8k ,kA.K' (51)

The equilibrium expectation value of products of the mode operators decorrelates for differ
ent modes because the density operator factorizes into a product over all modes. Therefore, 
the expectation value (a'K aK) vanishes for k / k'.

For a given mode k, one gets from the Gibbs ensemble the Bose-Einstein occupation 
number [with /3 = l/(ABT)|

(<«.) = = (52)

<«.«» = I + «!•><*» = (53)

whereas lhe products aKaK and have zero average. To prove Eq. (52), we evaluate the 
trace in the eigenbasis |n,) of the photon number operator for the given mode. The 
energy eigenvalue of |//6) is hu>(k)[nK 4 '). and the summation over the Boltzmann weights 
gives

("X) =

I

f)

= ^k’g(l £ i

I _  I
(54)
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Using this information, a straightforward calculation in the continuum limit \\ 
F /'d’1-/12 77)-' leads to

h<o'n( w)
' (x.x-r; w) = —------ —

27TK„C3

sin( ior/e)( rr)-----------
ti)r/c

cos(wr/c)
(wr/c)-

sin(wr/r)
(wr/c)’ (55)

which only depends on the difference vector r = x - x, as expected. This expression is very 
similar to the Green tensor [Eq. (38)], which is not a coincidence, but a special case of lhe 
fluctuation-dissipation (FD) theorem introduced in Section 2.4,3.

In the limit r —> 0, one can check that (x. x: <u) is proportional to the unit tensor and 
positive. Taking the trace, one gets, up to a factor k0/2. the spectrum of the electric energy 
density zr (<t»). Summing the contributions of positive and negative frequencies, lhe electric 
energy density is given by the Planck formula

dw
y-"bh.e(w)

T I) fiw / I
"hi. e(w) =------------------ ,--------— = 2ttDOS(w)— n(w) 4- -

TTC' ’ \

(56)

(57)

In the last expression, we have made use of the free space DOS = or/tt'c' This result has 
an intuitive explanation: The electric energy density is the density of modes per unit volume 
DOS(u»)dw multiplied by one half of the average equilibrium energy ft<o(/i(w) 4- ') of a 
harmonic oscillator (the other half contributes to the magnetic energy).

At zero temperature, the electric plus magnetic energy per mode is given by the ground
slate oscillator energy hoi/2, which leads to a divergent integral in the UV. From this diver
gent zero-point energy, one can extract a Unite, measurable energy difference, called the 
Casimir energy, when the mode functions are changed by the boundary conditions imposed 
by material structures. See Section 5 and the textbook by Mostcpanenko and Trunov |22| 
for more details. The energy measured by a photodetector does not diverge because it is 
piopotlional to average of the photon number operator («*.«„) = n(w(A)) [12, 14], II lhe 
creation and annihilation operators are ordered in this way. lhe divergent contribution of the 
zero-point energy disappears, l he blackbody spectrum then shows an exponential decrease 
beyond the thermal wavelength Alh = 27r/u/(ZcB/) (the Wien displacement law ), and the 
frequency integral [Eq. (56)] becomes convergent.

2.4.3. Fluctuation-Dissipation Theorem
The previous example indicates that there is a relation between the field fluctuation spectrum 
and the Green function. With the previously introduced notation, we have

z (x. x': co} = ] Im ;'(x, x: co} (58)

where the Green tensor is defined by Eq. (30) and the fluctuation spectrum by Eq. (47). 
Equation (58) is actually true under more general conditions and is known as a fluctuation
dissipation (FD) theorem |4|. It holds for linear systems and their fluctuations around the 
thermal equilibrium state. The dissipation is encoded in lhe imaginary part of the response 
function that characterizes the linear response of the system to an external perturbation. 
I he FD theorem is of the form given here provided the Green tensor satisfies the symmetry 
condition specified in Eq. (31).

lhe FD theorem will be our basic tool to compute field fluctuation spectra in the near 
field of nanostructures. We give in this section an introduction for linear systems and sum
marize a general proof in the context of statistical electrodynamics. A generalization to 
nonequilibrium situations is discussed in Section 2.4.4.
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2.4.3.1. Johnson-Nyquist Noise in Metals Consider a resistance at temperature 7. One 
observes a thermal fluctuation of the current through the resistance, called Johnson noise, 
whose variance in a given bandwidth Sf = Aw/(2tf) is given by (he Nyquist formula

Aw 4k nT
2tt R(w) (59)

Wc now show that this formula can be related to a fluctuation dissipation theorem for the 
current density j(x) of the resistance. Consider first the z-component of the current density 
and a small volume element AC = AzA/1. From the current noise along the z-dircction. one 
then has

,, .7. Aw 4kuT Aw 4Ah/<r(w) 
( JiW = 2^ R((t))^A2 = 4- (Ml)

where <r(w) = Az/| R( w)A/t] is the conductivity (the inverse of the specific resistance). In the 
low-frequency range where the Nyquist formula is valid, the conductivity can be expressed 
via the dielectric function of the resistance £(Ie(w) = en + i<r/w.

The result |Eq. (60)] can thus be obtained by averaging the following relation over the 
volume element

Aw
(6j(x)<5j(x'))A1„ = —4A|t7wlImetle(x; w)fi(x - x )

J.7T
(61)

We have assumed that neighboring volume elements have uncorrclatcd current noise: hence 
the spatial delta function. We use here the convention that the current noise [Eq. (61 )| is 
given by the integral of the noise spectrum /(x. x': w) over intervals Aw/(2tt) centered at 
positive and negative frequencies ±w. Because wlni£(x;w) is an even function of w. the 
noise spectrum is given by

J(x, x ; w) = 2Au7 w II Imeu£(x; w)6(x - x) (62)

This result already has the structure of the FD theorem [Eq. (58)|. Because the dielectric 
function gives the polarization induced by an electric field, a more natural formulation is in 
terms of the polarization noise spectrum [writing j(w) = —iwl‘(a»)|

2 k T
y(x, x'; w) =------- 1 Im £oe(x; w)£(x - x‘)

w
(63)

The temperature-dependent prefactor is the low-frequency limit of 2ft/(e'""A,,/ - 1) occur
ring in Eq. (58). The spatial ^-function applies to a local dielectric response. The general
ization to a nonlocal medium is immediate: the fluctuations are then correlated on some 
characteristic scale (typically the mean free path).

We thus find that the strength of the thermal Johnson noise at a given frequency in an 
absorbing material is related to the amount of dissipation, as encoded in the imaginary 
part lme(w). This permits us to characterize the thermal polarization and magnetization 
fluctuations that appear in the macroscopic Maxwell Eqs. (!())—(13). The noise spectrum of 
the polarization noise Pfl(x; w) is given by the Johnson-Nyquist formula [Eq. (63)]. with 
the factor At)7 replaced by ftw/(e<,A“' I) to be valid at all frequencies. If the material is 
magnetic with a (local) permeability /t(x; w), it contains magnetization fluctuations .Mt,(x; w) 
with a spectrum

,//(x, x; w) = 2ft 11 , IIm----- -------6(x - x )e“*“ _ | /z(,/i(x; w)
(64)

The fluctuating material polarization radiates an electromagnetic field that, in thermody
namic equilibrium, compensates for the loss of electromagnetic energy inside the material. 
Only in this way is it possible to enforce the equipartition law of thermal equilibrium, with 
even degree of freedom (here the polarization field) carrying an energy k/tT/2.
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Consider ihe average of the energy conservation law |Eq. (23)] for a system without 
external polarization sources. On the left hand side, we get

io lm(l,l)(x: w) • E(x; w )) = 277<a<5(w w ) / d'.v (x. x : w) Im '>„(x. x : w)

i 2/fw
= 2tto(<i) - m ) —----- - Ini fi|te(x; a») Im Ir',(x. x:w) (65)

0pA<u __ |

We have taken into account that only the part of the field radiated by the polarization 
fluctuation is correlated with this fluctuation and have expressed that field in terms of the 
Green tensor [Eq. (30)]. A similar result holds for the magnetic contribution. On the right
hand side, the average over the electric losses leads to the same expression

co Im|«of:(x: w)](ET(x; w) • E(x; u>'))

- 2tt8(w io ) Im|£(lE(x; w)]
2luo

- i Im Tr '/(x. x; ai) (66)

using the FI) theorem [Eq. (58)|. As a result, the energy the polarization emits into the field 
[Eq.(6.5)] is exactly compensated for by the field energy lost by absorption. Eq. (66). This 
also implies that the average I’oynting vector (E > II) vanishes, as there is no net energy 
transfer between medium and field.

We shall sec that in the quantized theory, the polarization fluctuations ol the material also 
contribute to the quantum fluctuations of the field. Otherwise, the dissipation present in the 
macroscopic Maxwell equations would force the lield operators to decay to zero, including 
their commutators. These are preserved because of the quantum fluctuations of the material 
polarization. This picture indicates as well the existence of an ID theorem: the material loss 
that forces the fields to decay must be balanced by the fluctuations inside the material.
2.4.3.2. Properties of Quantum Field Fluctuations Before giving a general proof of the 
FD theorem |Eq. (5S)|. let us summarize some of the properties it implies for the equilibrium 
fluctuations of quantized fields.

Ihe FD theorem allows us to compute the quantum anil thermal fluctuations of the 
electromagnetic field once the Green tensor is known. This quantity can be computed by 
solving the macroscopic Maxwell equations with pointlike dipole sources. As long as the 
medium responds linearly to the field, the classical version of the theory is sufficient, and 
quantum and thermal fluctuations arc handled self-consistently using the theorem.

The noise spectrum of a quantized field is not symmetric. It is proportional to the Bose- 
Einstein occupation number for positive frequencies and decays to zero for luu )$> kuT. 
At negative frequencies, one finds, given that Im 6(w) is an odd function [see Eq. (32)], 
that the spectrum is proportional to I -I- n(|w|). The zero-point fluctuations appear here. 
The asymmetric frequency spectrum of zero-point or vacuum fluctuations can be understood 
qualitatively by noting that in the ground state, a system can only fluctuate via a virtual tran
sition toward a state with higher energy. The corresponding Bohr frequencies are all positive. 
{That this leads to a spectral weight at negative w is related to our—conventional—choice 
of the exponential factor in the noise spectrum [Eq. (47)|.} In the high-temperature limit or. 
equivalently, for classical systems, upward and downward transitions occur with equal prob
ability. and the fluctuation spectrum is symmetric: ii(m) fi(|w|)+ 1 kaT/hw » 1. For 
intermediate temperatures, we show below that the principle of detailed balance is satisfied, 
with upward and downward transition rates differing by a factor

At positive frequencies. Eq. (47) shows that the spectrum *(x.x:w) picks out that part 
E*1 ’(x , t ) of the electric field operator that evolves like e . By analogy to time-dependent 
wave functions in quantum mechanics, this part is called the positive frequency part of the 
field. In the mode expansion [Eq. (49)], it corresponds to the sum over the annihilation 
operators [sec also Eq. (50)|. Similarly, only the negative frequency part E1 *(x./) = 
[E1 (x, /)| of the lield operator contributes in the first factor of Eq. (47). It follows that in 
the vacuum state, the expectation value

Tr| E' ’(x. r)E‘ ’ ’(x . / )/>v-h ] = If (67)
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vanishes because the annihilation operators, by definition, give zero when acting on the vac
uum state. This operator order (annihilation operators acting first) is usually called “normal" 
order. A typical example is the intensity measured by a photodetector 112. 14]. A nonzero 
vacuum expectation value occurs with the reverse operator order (creation operators acting 
first). This antinormal order is picked out for negative frequencies in the fluctuation spec
trum > (x. x'; w). It gives nonzero results even in the vacuum state (at zero temperature), as 
we have seen in Eq. (53) and in the FD theorem [Eq. (58)].

2.4.3.3. Proof of the FD Theorem with Linear Response Theory As mentioned in 
Section 2.4.3.1, the macroscopic Maxwell equations in an absorbing medium have to be 
supplemented by material fluctuations to be consistent with thermodynamics and quantum 
theory. We thus split lhe polarization and magnetization operators into

P(x, /) t—♦ Pn(x. /) + Pcxl(x, /)

M(x. I) >- Mrt(x, /) -F McM(x. i) (68)

where the terms with the subscript II describe lhe fluctuations in the material, and with the 
subscript ext fluctuations in all other sources, like the dipole moments of atoms or molecules. 
In thermal equilibrium, the fluctuations average to zero, as we found after Eq. (45). In the 
following, more explicit information about the polarization noise is not needed. We shall 
assume that a Hamilton operator II exists that generates the macroscopic Maxwell equations 
as the I leisenberg equations of motion for the electric and magnetic field operators. (We are 
actually adopting a quantum Langevin picture; sec Mandel and Wolf 114] and Gardiner [37].) 
A similar demonstration has been given by Wylie and Sipe [38].

The field fluctuation spectrum, from Eq. (47), is given by the expectation value

<£(x.x ; w) =/ dr e'"7 (E(x, ())E(x. r)> (69)

We assume thermal equilibrium without external sources and have used the stationarity of 
the correlation function. We now connect this spectrum to the linear response of the field 
to an external dipole oscillator, following Callen and Welton [4],

The solution for the electric field operator in the presence of a polarization source can 
be represented in terms of the Green tensor in the quantum theory as well because the 
substitution [Eq. (68)] preserves the linearity of the macroscopic Maxwell equations. We thus 
get Eq. (30) with an operator-valued source term, plus a term describing the free evolution 
of the field

E(x, t) = Efrec(x. /) + / d\'5(x.x'; w) • [Pn(x'; w)-FP„,(x ; w)] (70)
J 2tt Jy

There is a similar contribution from the magnetization that we do not need for the present 
discussion. In equilibrium, the free field operator has zero average, and we get the expecta
tion value

(E(x. r)> = f ^e-“" / d’x'S(x.x; w) ■ (Pen(x'; <a)) (71)
J 2 IT Jy

l he Green tensor can thus be identified with the linear response of lhe average field to a 
classical external polarization source (where PCXI(x; w) is c-number valued).

The linear response of the field can also be calculated directly from the Heisenberg equa
tions. This provides us with an alternative expression for the Green tensor, where equilib
rium correlations will become apparent. For simplicity, in the following text we focus on the 
response to an electric point dipole al the position x'. l he coupling of the field to the dipole 
is described by adding to the Hamiltonian the term

//„„(/) =-d(t) E(x . i) (72)
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and tile Heisenberg equation reads

^-E(x, I) = ~|E(x, i). Il \ + ^-|E(x, /), £ (x . / )|d,(i] (73)
dt n n

where summation over j is understood in the last term. The first term generates the free 
evolution of the field.

Solving to first order in d and taking the average, we identify the field response function 
in the time domain as

A'„(X, X 7) =

drxy(x. x, -r) (74)

^<[£,(x,/). £,(x . / - 7)|)

0

for 7 > (I

for r < 0
(75)

where the time dependence of the field operators is that of the evolution under //. The 
response function is thus itself a correlation function of the field. Because of the stationarity 
of equilibrium. Eq. (75) does not depend on /. It can he checked directly that ^(x. x', t) is 
real as in the classical theory.

Taking the Fourier transform of we thus get an expression for the Green tensor in 
terms of a field correlation spectrum

S.(x, x'; <o) = 7 f dre'"'!’(|E1(x, r), £,(x'. ())]) (76)
Zi -to

By causality, the time integral is running over one half of the real axis only. We can make 
an integral over all r appear, as it occurs in the fluctuation spectrum [Eq. (69)), by forming 
the combination

— { (x\ x; o>)-[ \,(x. x ; w)]*} =-^ I d7c'"T([£,(x. 0). E,(x'. r)]) (77)

The following relation allows us to permute operators occurring in equilibrium correlation 
functions

j = e^'"" J d7ei‘,,T(B(())/4(7)) (78)

In the classical theory, h = () and operator ordering is irrelevant. Using this identity in the 
second term of the commutator in Eq. (77), we find the FD theorem

, . , . 2h 6 (x',x:w)-|A (x,x';w)]-
^x’x:w) = ^7TI---------------- -2i“ (79)

The form from Eq. (58) is recovered when the Green tensor satisfies the symmetry relation 
of Eq. (31). This requires the additional assumption that permittivity and permeability arc 
symmetric, an assumption that we shall make in this contribution.

Equation (78) can be proved using the Gibbs density operator from Eq. (43) and the 
solution for the Heisenberg operator .4(r) [see also Eq. (45)]

•l(T)tf(())) = e'-TrLcxP(i/7 T/Z|) -21 cxp( ~' 7/ CXP( - > 1

Tr cxp(-/?//)
(80)
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One shifts the integration path in the complex r-planc to the line -oo — i/qB ■ • • 4- oc — ift/B 
and assumes that for |r| -» oo, the correlation function vanishes (otherwise this limiting 
value can be subtracted). Along the shifted path. Eq. (80) becomes

c^<..cwt Tr[exp(/3Z?) exp( iHt/H) A cxp( - i Pr/fi) exp( - 0/7 exp( -gP) |
Trexp(-0p)

_ ^„^luirTr[Bexp(ipT/ft)/lexp(-ipT/fi)exp(-)3p)|
Tr exp(-/3P)

= c^e'wr(/?(()).4(-)) (81)

using cyclic permutation under the trace. The r-integral now yields the right-hand side of 
Eq. (78).

2.4.4. Nonequilibrium Situations
A typical nonequilibrium situation that occurs in physics on the nanometer scale is a tem
perature gradient inside a nanostructure. In thermal scanning probe microscopy, to quote 
another example, structures are held al different temperatures, as they are in contact with 
different reservoirs. These kinds of settings can be described by a slight generalization of 
the present theory, provided one assumes that each volume clement of the solid structure is 
locally in thermal equilibrium at temperature 7(x).

In this case, we can write down the fluctuation dissipation theorem for the thermal polar
ization field by generalizing Eq. (63)

3f(x, x’; w) =
2fiElm eoe(x; w) 

cxp[hto/AHT(x)] - 1
3(x — x') (82)

We have assumed a local dielectric response for simplicity. The corresponding field fluctua
tion spectrum can be computed from the field operator [Eq. (70)]. where the freely evolving 
field (with material damping, but without material fluctuations) and the Green tensor appear. 
Without external sources, one gets

«„(x. x'; «,) = 4"»(x. x"; .) + ( d>r[C,.,(x, r, r. (83)

See Henry and Kazarinov for a similar approach [39]. The first term is nonzero for a bounded 
material surrounded by a nonabsorbing dielectric (like free space) and describes the photons 
incident from infinity toward the observation points x, x'. It accounts for all of the field 
fluctuations when there is no material absorption at all. If the field in the surrounding 
medium as assumed to be at zero temperature (as in the visible frequency range), this term 
is zero for w > (). Even at finite temperature, however, this term is typically negligible at 
subwavelength distances from an absorbing structure. Under these conditions, the second 
one dominates [i.c.. the radiation resulting from the polarization noise from Eq. (82)]. We 
summarize explicit examples above planar substrates in the next section.

2.5. Example: Planar Surface
Wc review here results for the electric and magnetic field fluctuations al nanometer distances 
from a solid surface. Wc first outline the corresponding Green tensors and then discuss the 
electromagnetic noise spectra.
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2.5.1. Electric and Magnetic Green Tensors
Consider a nonmagnetic solid with permittivity r and permeability p I that tills the half
space - ■_ 0. We shall be interested in the fluctuation spectrum of the electromagnetic field in 
the vacuum half-space, in particular for subwavelength distances (I < z < A = 2ttc/w. Up to 
hundreds of nanometers from the surface, this regime is relevant even at optical frequencies.

For the Green tensor '>(x. x : w). we can make the imsatz, provided both x and x are 
located outside the solid

9(x. x'; w) = ’(x. x'; <u) + f/,ub(x. x : m) (84)

where is the vacuum Green tensor [Eq. (38)]. ',"dh describes the electric field reflected 
from the solid and is determined from the boundary conditions for the electric and magnetic 
fields at z = (I. The decomposition |Eq. (84)] is convenient to compute the field fluctuation 
spectra via the FI) theorem [Eq. (58)| because it exhibits clearly the additional contribution 
resulting from the scattering from the surface [38. 4(l|. This statement remains true for scat
tered of arbitrary' shape, with more a complicated expression for the reflected or scattered 
field, of course.

Above a planar solid, the so-called Weyl expansion or angular spectrum representation 
provides a natural plane-wave basis lor the incident and reflected fields (see the textbook by 
Nieto-Vcsperinas |4l |). The vv plane naturally plays a distinguished role here. Introducing 
two-dimensional in-plane wave vectors Q = (</,. </v). we shall use the notation

q(±) = Q±n</; (85)

where n is the unit normal. One then has the following Fourier expansion for the reflected 
Green tensor [38|

, iar’ r d’(? c"*'"' "" *' „

where the integral runs over all in-plane wave vectors (J. The wave vectors for downward and 
upward waves (both propagating and evanescent) are given by q( —) and q( + ). respectively.

The disc |Q < to/c corresponds to propagating waves where

</ = v («>/(')-’ - (?’ Im > 0 (87)

is real, and |Q| > iu/c describes evanescent waves that decay or increase exponentially with 
distance. Evanescent waves are required in the Green tensor to describe correctly the near 
field ol a point dipole. For the reflected field, they provide the dominant contribution at 
subwavelength distances from the solid. All elementary plane waves satisfy the vacuum dis
persion relation |q(±)| = (w/c)‘. Their polarization vectors are given by

e,(±) = Q x n

.,(±) = =
w/c m/c

where Q is the unit vector along Q. We have normalized the polarization vectors in Eq. (XX) 
such that (±) = I; note that no complex conjugation is involved, although the vectors are 
complex in general. The conventional polarizations ,v and p are also called TE and TM in 
the literature (TE = electric field transverse to the plane of incidence spanned by n and Q).

I’he reflection from the solid mixes downward with upward waves and is characterized by 
the Fresnel reflection coefficients |l. 2X|

</. - ,/'£(w)(w/r): (?’, - v M z !---- r . (89)
(/ + y/Q2

r _ y £((»>)(cu/c)- - Q2 - £(tt>)q- )
v E(w)(w/f)2 - (2: +e(ur)q.
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Note that the permittivity of the solid only enters via the Fresnel coefficients. As long as the 
planar symmetry is not broken. Eq. (86) can also be used above a multilayer medium |42. 43]. 
Note that sign conventions differ for the Fresnel coefficients and polarization vectors; only 
the product of r and the polarization vectors appearing under the sum in Eq. (86) has an 
unambiguous meaning.

We define the magnetic Green tensor by analogy to Eq. (3(1) as the magnetic induction 
field radiated by a point magnetic moment

<ti) = #,,(x. x; <o)/z, (91)

From the Maxwell Eq. (13) we find that in terms of its electric counterpart, the magnetic 
Green tensor in the vacuum above the solid is given by the double curl

1 d d// (x. x; w) = — — 6(„(x. x : w) (92)
(,h d.xm

For lhe free space Green tensor, this leads to an expression similar to Eq. (38). For the 
reflected field, as given by the Green tensor in Eq. (86). we observe that the curl exchanges 
the polarization vectors from Eq. (88) according to

q x c\ = —ep q x ep = —ye, (93)

because q. e,. and ep form an orthogonal Dreibein. Hence, up to a factor of I/<••’. we obtain 
the magnetic Field reflected from lhe solid by exchanging the reflection coefficients /; rp 
in Eq. (86).

2.5.2. Short-Distance Expansions
To illustrate the behavior of the field al short distances, we review here asymptotic expansions 
for the electric and magnetic Green tensors.

2.5.2.1. Electric Field As a first step, we show that in the near field, the reflected part 
|Eq. (86)] of the electric Green tensor lakes a simple, electrostatic form. Fhc integral over 
the wave vector Q involves the factor e“'•’ ’. which provides a natural cutoff for large (J
as soon as q. becomes imaginary with |</.| > l/(z + z') » w/c. Analyzing the integrand, we 
notice that it peaks around the cutoff value. We thus get lhe leading order asymptotics by 
using an expansion for (2, |</_.| much larger than w/c under the integral.

Let us first assume the more stringent condition () |ye|w/c, which corresponds to a 
distance much shorter than the medium wavelength z «; A/| v/e|. The reflection coefficients 
and polarization vectors then behave like

ar — —
rse,( + )e,( —) «= (e - !)■ ,(n x Q)(n x Q)

r e ( + )e (-) ~ r—j-(n - iQ)(n f- iQ)h 1 1 £ + 1 <U-

(94)

(95)

where n is the surface normal, l he polarizations behave very differently, with the p-polarizcd 
part dominating for large (J by a factor (C?c/w)4. The reflection coefficient rp tends toward 
the electrostatic value r,l4l = (r — l)/(e 4- I) and becomes independent of (Z This means 
that the reflection from the surface is nondispersive ami can be modeled in terms of image 
theory (l|: l he reflected field corresponds to the well-known field of an image dipole d = 
(-</,. located at the position X — z'n below the surface. Performing the integrals
over Q. we indeed find the short-distance asymptotics

'/rcfl'(X' + R.z. X'.z': w)
£(6>) - 1 (/?-’ + z')l - 3RR + (z2 - 2/?’)nn + 3z (Rn - nR) 
c(li>) + 1 477ell(/?2 + z-)’2

(96)
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where; = zrz' and (R -Fz2)1"’ is the distance between the observation point and the image 
dipole This expression depends on frequency only via the electrostatic reflection coefficient. 
Note also the broken isotropy of the correlation tensor where the coordinates that are 
parallel and perpendicular to the surface appear in nonequivalent ways. Nevertheless, the 
symmetry relations from Eqs. (31) and (32) are satisfied.

In a similar way. an asymptotic expression for distances larger than can be worked 
out. This is particularly interesting above metallic surfaces, where g irr/e0<u can be very' 
large. In this case, the expansion [Eq. (96)] is valid for z <K 8(d, where the skin depth

= i2W2
V aio

(97)

can be much smaller than the wavelength (typically, at frequencies below the infrared). For 
the complementary range 8(„ << z, one finds, when repeating the analysis leading to the 
asymptotics in Eqs. (94) and (95) (see Ref. [44])

Im 6(X, z, X z; w) w23,,I
327te(Ic-z:

(98)

For simplicity we give only the imaginary' part of the tensor with coinciding positions. Note 
the different power law with distance z and also the isotropic noise strength regarding the 
field polarization.

To summarize, the electric field fluctuation spectrum derived from the Green tensor from 
Eq. (96) using the FD theorem from Eq. (58) is

1 + nn
3 for z « 5(d

,, , ft(w8ld/c)2f (x. x; w) = ---------- —------— ■
I67reo(e^““ - 1)

for « z « (5WA)‘2 (99)
'V'
lbw II . _ i ■>_ for (o A) ■ < z

It is only at distances z > (8,dA)' 2 that the blackbody spectrum, originating from the free- 
spaee contribution 6'*lrcv’, becomes the dominant contribution. Closer to the surface, the 
electric field fluctuations have a noise spectrum that can exceed the Planck formula by 
several orders of magnitude. Note also that the low-frequency limit is given by a constant 
spectrum <x /(az'). The electric field fluctuations thus behave like white noise on the 
nanometer scale.

2.5.2.2. Magnetic Field Analogous calculations give for the Green tensor of lhe magnetic 
field at distances below the skin depth, z, z' « <S(U

.A,rv"’(X 4-R.z, X .z':w)« ^2 I E(-W) ~J [rB - RR/(r + z) + inn + (Rn - nR)[ 
4tt<- [ 4r(r + z)

s(w) - I zl + RR/(r + z) - znn
s(w) + 1 r(r + z)

where r = (R- + z2)1 2. From the FD theorem, we get the fluctuation spectrum of the 
magnetic field. We give here also the regimes of larger distances

(100)

If + nn
for z « 8id

______
SttcS-(e^w - I)Iff X

8;],(I + nn)
3p

882 w2’ 1
3^ "

for 8,„ « z « (M’)1'4

for (M’)1 4 < z

(101)
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Note the different exponents for the power laws with distance compared to the electric field 
and the larger cross-over distance to the blackbody radiation spectrum. The low-frequency 
limit of the magnetic noise spectrum is ex. it is frequency independent as well.
Similar expressions have been derived in Refs. [25, 44, 45].

2.5.3. Discussion
2.5.3.1. Electromagnetic Energy Density Some of the results summarized above have 
been discussed by Joulain, Carminati, Mulet, and Greffet in a recent paper on the definition 
and measurement of the I.DOS close to planar surfaces |3l]. These authors analyze the 
spectrum of the electric and magnetic energy densities ue(c; w), um(z: w) as a function of 
distance and point out that the definition from Eq. (35) of the LDOS should be taken with 
care given the noncquivalent role played by the electric and magnetic fields in the near field. 
To illustrate this, we plot in Fig. I the ratio un)(z; o>)/mc(z; to). Notice the strong dominance 
of the magnetic energy throughout the near field range up to z ~~ A for a metallic surface, l he 
asymptotic formulas (99), (101) provide good agreement with a numerical calculation based 
on the exact plane wave expansion (86) for the electric Green functions and its magnetic 
equivalent.

For a dielectric surface with an essentially real permittivity, the near field energy is dom
inantly electric, as shown in Fig. 1 (right). This behavior is not covered by the asymptotics 
from Eqs, (99) and (101) because the assumption |e| 1 breaks down but can be found
from Eq. (96) and its magnetic counterpart. At distances comparable to the wavelength, 
oscillations appear for both metallic and dielectric surfaces that correspond to the stand
ing waves formed by the partial reflection of the field. In the far field regime z » A. lhe 
symmetry between electric and magnetic energy is restored, as expected from the Planck 
formula.

2.5.3.2. Macroscopic Field Quantization The thermodynamical approach to field fluc
tuations that we followed here is based on the fluctuation electrodynamics pioneered by 
Rylov and co-workers [35], also called source theory by Schwinger and coworkers (sec, e.g.. 
Ref. [46]). Applications to quantum optical problems can be found in the series of papers 
by Agarwal [40, 47-49] and by Wylie and Sipe [38, 50]. The quantization of the macroscopic 
Maxwell equations has been performed by Barnett and coworkers [51-53], who studied a 
quantum model for the medium excitations; see Ref. [54] for a review. Polarization and 
magnetization fluctuation operators have been introduced by Knoll, Welsch, and cowork
ers [55-58] and by Tip [59, 60], A review is given in Ref. |2], and the equivalence of both 
approaches is proven in [61]. A formalism similar to that followed here, where quantum and 
thermal field fluctuations are treated on an equal footing, has been developed in the review 
of Henry and Kazarinov [39],

Figure 1. Ratio of magnetic to electric energy density versus distance from a medium-filled half-space, normal
ized to the wavelength A. Left panel: metal with e — I + XOOi (skin depth 6 = O.O(WA). Right panel: dielec
tric (e = 2.3 + 0.1 i, 15 > A). The dashed and dotted lines correspond to the asymptotic expansion from Eqs. (*)9) 
and (101).
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2.5.3.3. Layered Media The Green tensor tor planar multilayer structures has been exten
sively studied in the context ol dielectric mirrors (or Bragg mirrors) [42], Formulas similar to 
those reviewed here have been derived to study fluorescence from dye molecules or atoms, 
either placed in a layer on top of a planar structure or embedded inside (see. e.g.. Kefs. 
[15. 43. 62. 63]). (We give an introduction to fluorescence dynamics in Section 3.) As men
tioned above, (he expression from Eq. (86) describes the Green tensor above a multilayer 
structure as well, provided the correct reflection coefficients arc used. Perturbative tech
niques. combined with a statistical description, have been developed to describe the reflec
tion from layer structures with interface roughness [64-68], In the field of surface physics, 
it is of great interest to calculate reflection coefficients with an emphasis on a microscopic 
description of the excitations in the solid (see, e.g.. Refs. [69, 7(1] and the review papers 
by Fcibclman [71] and Eord and Weber [26)). On short scales, this requires us to take into 
account the nonlocal character of the permittivity [see Eq. (20)]. The most versatile con
cept generalizing the reflection coefficients is that of a surface impedance: it applies even 
to superconductors, where the concept of a permittivity breaks down because the field does 
not penetrate into the solid.

The reflection coefficients show poles when the multilayer supports a guided mode. This 
can be a waveguide mode in a high-index layer [42] or a surface plasmon polariton on a pla
nar metallic surface |72], In the near-field asymptotics [Eq. (96)]. for example, a pole occurs 
for k(u>) = -1. which corresponds to the large wave vector limit of the surface plasmon 
dispersion relation, l he surface polariton mode typically gives a significant contribution to 
the electromagnetic energy spectrum in a narrow frequency range. T his leads to a dramatic 
change in the frequency spectrum of thermal radiation as one approaches a metallic surface 
at finite temperature, as shown by Greffet and coworkers [73, 74], Such a situation is most 
naturally modeled by lhe nonequilibrium approach outlined in Section 2.4.4: The surface is 
supposed to be held at some temperature /' and radiates into the cold vacuum above. The 
fluorescent emission of molecules is also drained in narrow frequency bands by polariton 
and guided modes (see, e.g.. Refs. [33. 63, 75] and the review’ by Barnes [76]).

2.5.3.4. Near-Field Coherence Finally, we point out that the electromagnetic near field 
shows unusual properties regarding polarization and its spatial coherence. We have already 
noted (he breakdown of the isotropy of the polarization fluctuations in Eq. (99). The usual 
Jones vector formalism for partially polarized beams [14. 28| has been systematically gen
eralized by the group of Friberg: While in a beam, only field components transverse to (he 
wave vector occur; all three components have to be taken into account in the near field 
[77. 78|. l he broken isotropy entails a nonzero degree of polarization, which can reach quite 
high values in the regime where thermally excited surface plasmon polaritons dominate the 
field energy (i.c.. observation distance comparable to the wavelength).

I he spatial coherence length /u,h ol the field can be defined by analogy to the coherence 
time as the scale on which lhe correlation spectrum <* (x. x"; (>>) decays to zero as the distance 
x - x increases. Carminati and Greffet 173| have pointed out that in the near field. /Vt,h in 
general depends on the observation distance and the frequency. If /e,,h is measured in a plane 
parallel to a radiating surface, it is determined at short distances z A by the observation 
distance itself, as has been shown by Henkel et al. [79] using asymptotic expansions similar 
to Eqs. (96) and (10(1). The thermal near field is thus spatially much less coherent than the 
blackbody field where ~ A. A very different behavior is found at distances z — A from 
surfaces that support plasmon polariton modes. These modes can have very weak damping 
and create long-range coherence /Vllh A, that is determined by the attenuation length of 
the polariton mode (related to the imaginary part of the wave vector).

3. NEAR-FIELD VACUUM FLUCTUATIONS
In this section, we review the theory of spontaneous emission for atoms or molecules at 
distances of at least a few nanometers from solid structures. We restrict ourselves to elec
tromagnetic interactions and neglect the tunnelling of the atomic or molecular electrons 
into lhe solid. We also put for simplicity the quantum efficiency of the transition to unity. 
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assuming that the electronic excitation can only be lost via radiative decay (conversion into 
photons that propagate into the far field) or nonradiativc decay (field absorbed in lhe solid). 
In this section, we primarily deal with electromagnetic fields in the visible. Excluding very 
high temperatures (7‘ « It)4 K), we can safely assume that the field is in the vacuum state.

3.1. Molecular Fluorescence Dynamics
Consider the three-level system shown in Fig. 2. It captures many of the features of real 
molecules, where an optical field excites first the level |a). This level then decays rapidly, 
on the picosecond scale or faster, toward the level |e) from which only radiative decay is 
possible in free space, with a characteristic timescale of nanoseconds. In the following text, 
wc summarize the equations of motion for the two levels |e), |g).

3.1.1. Optical Bloch Equations
Because of the coupling to the electromagnetic vacuum field, lhe three-level system is actu
ally open, and its dynamics do not reduce to a simple Schrodinger equation. When the 
vacuum field fluctuations arc averaged over, one gets an effective description in terms of 
correlation functions of the system's probability amplitudes cv u(/). These correlations are 
the level populations

and the coherence or average dipole moment

d(Z) = (d<;(t)ce(/)) + CC= (d(r(/)4 d’rr+(/)) (103)

where d = (g|d|e) is the matrix element of the electric dipole operator between the two levels 
and CC denotes the complex conjugate term. In the second equality, we have introduced the 
annihilation and creation operators a and tr4 for the two-level system. In the Schrodinger 
picture, a = |g)(e| is the lowering operator and <r* the raising operator. Note that a2 = 
(<r1)’ = (), which is characteristic for two-level systems.

For the level populations, one has the pair of rate equations [13, 14]

A --?/<■ + ^g+ ^[d*-E'ln(0(o-t>-<« E;-)(r)(fr)] (104)

Ps = +yPc - Rp. - K[d* ’ - d ■ E’l ^Xo-)] (105)

Figure 2. Three-level model for excitation of a molecule. Spontaneous emission is analyzed for the c — |g) 
transition, which is also probed by a near-resonant laser field E. The molecule is pumped to (he excited state 
|e) via (he short-lived state |a). y. spontaneous decay rate for transition |e) — |g): R. effective excitation rate
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where the excitation rate R and the spontaneous decay rate y describe the transitions shown 
in Fig. 2. We give their expressions in terms of the field in Eqs. (1(17) and (108). below. The 
average dipole operator evolves according to the optical Bloch equation

— (o’) = -i(w - iy/2)(<r) + yd‘ ■ E{'‘(r)(pu - pc) (106)
(J I h

where fiwcs, = E. — EK is the Bohr frequency of the transition. Wc have allowed in Eqs. 
(104)—(106). for later use. the interaction with a coherent laser field EL(r) = E( e + CC = 
Ej* (/) + Ej *(i) with the slowly varying, complex amplitude E, = E, (r) at the molecule 
position. Note that the Bloch equations that describe the dissipative dynamics of the two- 
level system are analogous to the macroscopic Maxwell equations when the polarization 
fluctuations of the material are averaged over.

For the excitation and spontaneous emission rates, a simple calculation starting from 
Fermi's Golden Rule leads to

^.x(r; wl(!)|2
(107)

where dua is the dipole moment for the |g) «-» |a) transition. Ee,(r; wli;) is the corresponding 
complex electric field amplitude, and T is the relaxation rate between the excited states. 
The excitation rale R is thus proportional lo lhe local excitation intensity. The spontaneous 
decay rate y is determined by the field correlation spectrum at the negative Bohr frequency:

y = • >(r. r; • d = ~<F . jnl <,(r r; w^) (| (10K)

With our sign conventions, it is thus nonzero at zero temperature as expected for sponta
neous decay. The fluctuation dissipation theorem (58) provides the link to the imaginary 
part of the Green tensor, viz., the LDOS of Eq. (35). In free space, we get from Eqs. (39) 
and (108) the well-known Einstein A coefficient y = |d|2ur'l,/(377Eu<-’).

Both rates from Eqs. (11)7) and (108) show that the atom or molecule is sensitive to the 
field at its position r and can thus measure the excitation intensity or vacuum fluctuation 
spectrum with high spatial resolution. This observation provides one of the motivations 
for combining near-ficld scanning optical microscopy with single-molecule spectroscopy |7|. 
The molecule realizes a detector with dimensions that can be much smaller than typical 
probe tips. In addition, it is a passive probe because the field dynamic is not significantly 
perturbed by lhe presence of a single dipole. We can thus use the field equilibrium fluctuation 
spectrum to compute the decay rate and get the excitation rate from the local field intensity 
in the absence of the molecule. (The scanning tip holding the molecule may provide some 
perturbation, of course.)

The spontaneous decay rate y can be measured quite directly with pulsed excitation. 
After the rapid relaxation from the state |a), this prepares the molecule in the excited 
state |e). The temporal evolution of the subsequently emitted fluorescence light provides y. If 
single-photon pulses are detected, their time delay 7d after the excitation pulse is distributed 
according to yexp(—yrd). This assumes that the photon escape time from the sample is 
negligibly small, or at least constant. For a discussion of the emitted fluorescence power in 
a stationary situation, see Section 3.1.3.

3.1.2. Properties of the Bloch Equations
In the rate Eqs. (104) and (105). we observe that the laser field drives the populations on 
the transition |g) «-> |e) with a rate given by the out-of-phase quadrature Im[(<rT(f))d' • 
E,*(f )J of the dipole moment with respect to the laser. This is as expected, because only 
this quadrature is associated with mechanical energy dissipation, as wc already saw in the 
energy conservation law in Eq. (23).
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From Eq. (106), the average dipole moment induced by the laser field depends on the 
population inversion —/?g. In the stationary state, its positive frequency part can be written 
in terms of the polarizability tensor

d(<r)sl = (cr(w)) • ELe

(«(«>)) =
h(a> — id — iy/2)

(109)

The small-signal absorption turns into gain (Ima < 0) when the level populations are 
inverted, pc > /?„. In this case, stimulated emission dominates over absorption. When the 
laser field on the |g) |e) transition is weak, the stationary populations are determined by
the “incoherent" excitation rate R and the decay rate y [Eqs. (107) and (1()8)|

R
R + y(pJh == HVy (HO)

For a large laser power, the stationary populations also depend on E, (saturation). These 
populations are sometimes modeled by an effective temperature defined by e _ 
0<.)sl/(pt.)sl, which becomes negative in the case of inversion [39],

The rate Eqs. (104) and (105) imply the constant of motion p + pe = 1, as they should, 
because otherwise the total probability would not be conserved. Note that this is similar to 
energy conservation in the macroscopic Maxwell equations when the thermal radiation by 
the medium fluctuations is taken into account.

We recall that the Bloch equations (104)—(106) arc valid only on time scales much longer 
than the optical period [14]. The dynamics indeed happens on the timescale l/y l/weg 
for spontaneous decay. The exponential decay implicit in Eq. (104) is a good approximation 
when the vacuum fluctuation spectrum does not show any strong frequency dependence on 
the scale y around the transition frequency wt.g. Otherwise, the vacuum field has to repre
sented as a reservoir with a finite memory time (non-Markovian bath). The Bloch equations 
are then replaced by integro-differential equations (see Van Kampcn’s textbook [80] and the 
review by Lambropoulos, Nikolopoulos, Nielsen, and Bay [81]).

Finally, we have assumed here that the decay rates of the population pe and of the 
dipole (<r) (also denoted by 1/7] and 1/7]) only differ by a factor 1/2. This it true as long as 
the coupling to the radiation field provides the only decay mechanism, which is the case for 
isolated atoms in vacuum [13], In particular, for molecules embedded in a solid matrix, the 
dipole (a) relaxes faster because vibrations of the surroundings randomly shift the transition 
frequency. This leads to a much smaller dephasing time T2: Superpositions of the states |g) 
and |e) are then more fragile than these states themselves.

3.1.3. Emitted Fluorescence Spectrum
We consider now the light emitted by the molecule in a steady-state situation. As mentioned 
before, we assume that the excited state |e) is populated incoherently via the third level |a). 
Excluding the case of “resonance fluorescence” [14], we put the laser field Et (f) near- 
resonant with the |g) |e) transition to zero.

For this incoherent excitation scheme. Eq. (106) implies that the average dipole moment 
vanishes in the stationary' state. This does not mean, however, that the molecule docs not 
emit at all. because the dipole has a nonzero fluctuation spectrum

,(w)=/ dre''"7(d(/)d(/+ r))M (HD

To gel the power fed by the molecule into radiation in the emission band around w . we 
start from the energy conservation law in F.q. (23). The local electric field operator is found 
from the macroscopic Maxwell equations, using the Heisenberg operator from Eq. (103) for 
the molecular dipole as source term. One takes the average of the lost power 2w Iin|P E] in 
the stationary state of the two-level system with the populations [Eq. (110)]. The spectrum 
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of the total dissipated power, containing both emitted radiation and ncnradiative loss, is 
then given [see Eq. (65)] by

Pl(„(r: w) = Im 6„(r. r: w) (112)

I d\/(x) [ 6(/(x. r: w)]'6,Jx. r; w)'/M(w) (113)

The radiation emitted into the far lield has a spectrum given by the Poynting vector. Using 
the tar lield behavior of the electric and magnetic fields, the emission can be represented bv 
the (keen tensor as well

/-’....(r; w) = -7-
where the integration variable x runs over a sphere in the far field with surface element 
d-<r(x). (We assume the system to be completely surrounded by vacuum.) Finally, the spec
trum of the absorbed power is

Pj.Jr: w) = 2w j dT’{E„Im e(x; w)| 6,,(x. r; w)]‘ 6,t(x. r; w) /M(w) 4- (Im/u term)} (114) 

and involves (he overlap between the dipole emission spectrum and the medium absorption 
bands. The magnetic absorption is proportional to the square of the magnetic field, see 
Eq. (23). which can be written as the curl of the electric Green tensor.

We compute the dipole fluctuation spectrum from Eq. (Ill) from the fluctuation dissipa
tion theorem |cf. Eq. (79)]

A, “> = -Tk------ 7 —---------- T--- ---------- 1 b

where the effective temperature l/£Jvll is defined after Eq. (110). The polarizability in the 
stationary state. Eq. (109). shows that the spectrum is a narrow' Lorentzian centered at 
with a width y <£ we„. We can thus replace the Boltzmann factor by its value R/y at 
resonance and get

'/(m) =
dd y

(to - weg)- + y-/4
(116)

This expression shows that the spontaneous decay rate y determines the width of the flu
orescence spectrum, provided the Green function in Eq. (113) does not present a strong 
frequency dependence on the scale y around wc„. Recall that we had to assume this when 
using the Bloch equations in the present form for the dynamics of the two-level system.

The total power dissipated by the molecule can be computed from the frequency integral 
of Eq. (112). Using the same approximation of a narrow-band emission,

C,Jr) = Im \,(r, r: weg) (117)

Using the fluctuation dissipation theorem for the field Eq. (58) and Eq. (108) for the spon
taneous decay rate y. this can also be written in the intuitive form

= 0uM«>cgy (118)

showing that the dissipated power, in units of the photon energy is given by the steady
state probability to find the molecule in the excited state times the spontaneous decay rate y. 
The comparison between Eqs. (117) and (1 18) shows that the spontaneous decay rate can be 
computed classically: The imaginary' part of the Green tensor gives the total power dissipated 
by a classical dipole with frequency wco and amplitude d, and y equals this power when 
normalized to the photon energy 115. 33].

To the same approximation, the power emitted as far-field radiation can be written as

C,n(r) = < / <J;«(x)|'6(x. r: wtl!) -dp (119)
/?(r)+y(r)7
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and the radiative decay rate is given by

In Eq. (119). we have made explicit that the excited state population generally depends on 
the molecule position via both the excitation rate and the decay rate. The dependence of 
the emitted radiation power on r is thus quite intricate because it involves both the spatial 
profile of the excitation field and, via the Green tensor, the emission efficiency as a function 
of the dipole source position. All these dependencies, however, can be calculated with the 
classical macroscopic Maxwell equations. To the order of perturbation theory we consider 
here, the exciting field and the Green tensor are those of the dielectric surroundings and 
do not involve the backaction of the molecule. We note that the physical quantity with 
the simplest position dependence is the width y(r) of the fluorescence spectrum given by 
Eq. (108). It provides a passive probe of the LDOS, as defined in Eq. (35).

A similar simplification occurs for the emitted power [Eq. (119)] when lhe excited state 
shows a fast nonradiative decay (low quantum efficiency). This corresponds to a large, 
position-independent rate y » R\v) so that Pcm(r) ex /?(r). which is proportional to the 
excitation intensity (see, e.g., Refs. [82]). However, the integral involving the Green tensor 
will still contribute an additional dependence on r.

To summarize, we have outlined the quantum theory of molecule fluorescence in arbitrary 
dielectric surroundings. The total and radiative decay rates have been connected to a clas
sical electrodynamics problem, whose solution is encoded in the Green tensor for lhe given 
material geometry. l he molecular decay gives access to the LDOS or. more precisely, to the 
spectrum of electric vacuum fluctuations at the position of the molecule and its transition 
frequency. For weak excitation strength, the decay rate is independent of the local excita
tion intensity, so that the position dependence is only determined by the LDOS. It can be 
measured either with pulsed excitation or from the width of the emission spectrum. The 
power emitted into the far field yields the radiative contribution to the decay rate. It also 
depends on the local intensity of the excitation field, this linear dependence being for weak 
excitation.

3.2. Spontaneous Decay Close to Nanostructures
We review in this section calculations showing that the spontaneous decay rate of a molecule 
can be used as a local probe for a nanostructured substrate. It is clear from the above dis
cussion that y(r) is determined by the fluctuation spectrum of the electromagnetic vacuum 
field. The link to the properties of the substrate thus remains to be investigated. It is of par
ticular interest to analyze the spatial resolution with which the properties of a nanostructure 
arc mapped to the near field above.

3.2.1. Weakly Corrugated Structures
Let us focus first on dielectric structures with vanishing or small absorption and Re £(<oeg) > I. 
The spontaneous decay rate in the near field of objects with simple shapes has been able to be 
calculated since the 1970s (see. e.g.. Ref. [15]). More complicated shapes require numerical 
methods that became available with increased computer power in the 1990s [83. 84], Insight 
into the resolution limit, however, is provided by analytical treatments as well.

Henkel and Sandoghdar [85] have reported a perturbative calculation of the strength of 
the vacuum fluctuations as a function of the molecule position and the orientation of its 
transition dipole moment. The price to pay for the analytical approach is the requirement of 
an essentially planar substrate, whose corrugation amplitude is small compared to both the 
wavelength and the molecular distance. The field scattered from the nanoscale corrugation is 
then calculated perturbatively to first order in the corrugation, using the so-called Rayleigh 
expansion [86]. Similar approaches have been reported for scattering problems from rough 
surfaces [65, 87-89], One finds a position-dependent correction to the decay rate whose 
spatial Fourier transform is proportional to lhe corrugation spectrum of the substrate. This 
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correction answers the question of resolution, as the wavenumber-dependent ratio between 
the decay rate and the corrugation provides, in the language of optical imaging, the transfer 
function of the imaging process. Its knowledge allows us to deconvolve the spatial modu
lations of the fluorescence rate and to retrieve the surface profile. We note that a spatially 
varying refractive index is indistinguishable, in this approach, from a corrugated topogra
phy [90]. Topographic information, however, is routinely accessible in scanning ncar-ficld 
devices from the feedback loop that monitors the probe-sample distance |7J. Henkel and 
Sandoghdar have found simple asymptotic formulas for the limit of small-scale corrugations 
that allow them to show analytically that the resolution is only limited by the molecule
substrate distance. Introducing the wavenumber Ao = wvi!/c of the fluorescence light and the 
spectrum ,v(Q) of the surface corrugation, the modulation of the decay rate can be written 
as [851

Sy(R.£) 4L^c^Ai,.y(Q)E|c/,|-A-(Q;z)
(2r)- “

T,(Q:z) for £) » -2
c

where the substrate permittivity t: is to be taken at the transition frequency a>ce. and the 
exponents are a, = I for a dipole component d, parallel to e. or Q and a, = 0 for d||(e. x Q). 
The dimensionless functions /](At,z;«) are given in Eqs. (30-32) of Ref. [85], The main 
feature of Eq. (122) is the exponential cutoff for large wave vectors Q » 1/z. According 
to the uncertainty relation (40). this width in reciprocal space implies that one can retrieve 
features of the substrate with a lateral resolution on the order of the scanning height ; by 
measuring the spatial modulation of the fluorescence rate.

Van Labekc's group proposed a similar approach [91, 92) and computed two-dimensional 
fluorescence images that demonstrate numerically a subwavclength resolution, de Fornel s 
group has developed numerical calculations including scattering to all orders to demonstrate 
the validity of this way of imaging a nanostructure [93. 941. The concept of a transfer function 
has been discussed by Greffet and coworkers for the images obtained by a SNOM (Refs. 
[95, 96|, see [34] for a review). The physics is very similar in both cases, with the difference 
coming only from the illuminating field used in a SNOM. A direct comparison of Eqs. (121) 
and (122) lo experiments in which the fluorescence lifetime is measured as a function of 
molecule position is not straightforward because of the influence of the nearby probe tip (sec 
Ref. [84| and the review' by Dunn [7]). Promising results with single molecules as pointlike 
detectors or sources have been achieved by Sandoghdar's group |97. 98],

3.2.2. Fluorescence Near Nano-objects
I he fluorescence decay rate at nanometer distance from regularly shaped objects like ellip
soids has been recently studied analytically in the electrostatic approximation [99. 100]. 
A review is given by Klimov and co-workers in Ref. [101]. On this small scale, retardation 
is negligible, and the lield scattered by the object acquires an imaginary' part (leading to 
nonradiativc damping) only because of the complex object permittivity. Elliptical metallic 
objects, for example, allow us to study the coupling to plasmon resonances whose dispersion 
relation depends on the object curvature. Eor a sphere, the resonance occurs at e(w) = —2, 
and this condition shifts to e(w) = — I for a cylinder or a plane [72. ItH],

The characterization of fluorescent decay near objects of arbitrary shape requires the 
numerical solution of the Maxwell equations that have been developed in recent years follow
ing different techniques. Popular approaches use a finite element discretization of the wave 
equations, a reformulation as a volume integral equation [83, 1(12], or a direct integration in 
the lime domain (FDTD. finite-difference time-domain [103|). Wc focus this discussion on 
a scmianalytical method, the multiple multipole expansion (MMP) that has been developed 
by Hafner [104] and applied to near-field optics by Hecht. Novotny. Pohl, and coworkers 
|84. |()5|. The main idea is io expand the electromagnetic field in multipoles centered at dif
ferent positions in the dielectric structure. The multipole coefficients arc determined by an 
optimal matching of the fields at the boundaries between otherwise homogeneous dielectric 
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objects. The method also covers metallic objects and its convergence is sped up when the 
multipoles are centered at high-symmetry positions in lhe structure. The dipole moment 
of an excited molecule is naturally included by fixing the corresponding coefficient in the 
multipole expansion. A planar substrate can be taken into account by adding the appropri
ate reflected part to the multipolar basis fields. Once the expansion coefficients are found 
numerically from a least squares algorithm, the field can be computed everywhere. More 
details about the MMP approach are given by Hafner [104].

An example of fluorescence decay rates computed with this method is illustrated by Fig. 3, 
reproduced from a paper by Novotny [84]. A single molecule is placed on a planar substrate, 
and a cylindrical object is scanned above it. This models a typical situation in SNOM. The 
radiative lifetime of the molecule shows the largest reduction when the object is metallic and 
the distance is in the range of a few nanometers. At slightly larger scanning distances, non- 
radiative decay becomes less effective and the lifetime can even be larger than in free space. 
A strong dependence on the orientation of the dipole is observed as well, with a behav
ior qualitatively similar to that observed above a planar metallic surface [15]. A dielectric 
object gives less dramatic changes of the lifetime, but a strong polarization dependence as 

Figure 3. Lifetime l/y(x) of a molecule on a dielectric surface as a nanometer-sized object is scanned above it. 
The lifetime is normalized lo its vacuum value. A quantum yield of unity is assumed (no intrinsic decay channel). 
Emission wavelength A = 48.$ nm. dipole orientation as indicated by the symbols. The object is cylindrical and 
11(1 nm in diameter and with a 40-nm height. The vertical lines indicate the lateral size of the object, (a c): 
aluminum object (e — —34.5 + i 8.5); (d-f): dielectric object (s = 3). The different curves correspond to different 
scanning heights: 5 nm (solid curves). 10 nm (dashed curves), 20 nm (dotted curves), and 40 nm (dash-dotted 
curves). Reprinted with permission from |84|. L. Novotny. Appl. Phys, l.ett. 69 380ft (1990). T 1996 American 
Institute of Physics.
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will From the viewpoint of SNOM, the sharp features around the borders of the object are 
interesting because they may lead to enhancements in image contrast and spatial resolution.

1 angular distribution of the fluorescent emission is changed as well when tin object 
apjt niches lhe molecule at a subwavclcnglh distance, as predicted by Novotny |84| and 
as observed experimentally by Van Hulst’s group [106. 107], One observes the somewhat 
cojrterintuitive behavior that emission directions pointing toward a metallic object tend to 
be Evorcd.

a final example, wc quote the work by Barnes. Sambles, and coworkers on fluorescence 
cksi to a patterned metallic substrate, where a two-dimensional band structure for the 
suk.ee plasmon resonances is created. Al distances comparable to the wavelength, an excited 
nn kcule predominantly emits into these surface resonances. If a surface plasmon band gap 
co n.idcs with the molecular emission frequency, the emission is inhibited and one observes 
an ircreased lifetime 1108. 109],

3.2.3. Molecules Embedded in Nanostructures
W< have restricted the discussion so far to a molecule located in vacuum and outside the solid 
strjiture. This simplifies the analysis because the finite distance provides a natural limit for 
nouadiative decay. In an absorbing matrix, however, the Green tensor for the homogeneous 
dielectric that generalizes the vacuum part in Eq. (84) has a singular imaginary part at its 
origin. This divergence can be regularized by introducing a small empty cavity around the 
m< kcule. but the result depends sensitively on the cavity size [33. 110. 11 1| and also changes 
with the cavity shape [112. 113], Inside a solid, one also has to take into account local field 
incurs that link the field described by the macroscopic Maxwell equations to the excitation 
lied at the site of the molecule. This correction is well-known for lhe model of a spherical 
easily filled with dielectric material that is supposed to be small compared to the wavelength, 
so that lhe local field can be computed in the electrostatic approximation |1|. A different 
value tor the local field is obtained with the model of an empty, spherical cavity 1114|.

It has been argued that for the power emitted into the far field, the local field correc
tion is equivalent to a suitably renormalized dipole moment [33, 115]. In practice, one can 
thus avoid the explicit calculation of the local field correction by normalizing the radiation 
powci emitted in a finite nanostructure to the power emitted in a homogeneous dielec
tric. Il has been shown both experimentally and theoretically that a (nonabsorbing) nano- 
parl.de reduces the spontaneous decay rale of an embedded molecule compared to its hulk 
value 1116-1 18|. Even metallic nanoparticles can enhance the fluorescence scattering cross 
section if plasmon or cavity resonances amplify the local excitation intensity and ovcrcom- 
pcnsale for the nonradiative loss [82, 119].

For the frequency shift of the molecular transition, similar regularization procedures arc 
required. Even in free space, this shift is formally infinite and must be renormalized by 
replacing a bare transition frequency with the physically observed one [6|. This divergence 
also occurs close to a solid structure, but it can be disposed of using the same renormalization 
argument. It turns out that only the reflected or scattered part of the Green tensor in 
Eq. (84) provides the interesting shift of the transition frequency as a result of the solid 
environment. At a finite distance from lhe solid, the scattered Green tensor does not show 
any divergence, and finite results are directly obtained [50).

4. ATOM CHIPS AND THERMAL NEAR-FIELD NOISE
In this section, wc consider cold atoms trapped in tightly confining electromagnetic fields a 
few micrometers above a nanostructured substrate (an “atom chip" 110, 11|). As has become 
clear from the previous sections, the electromagnetic field shows enhanced fluctuations in 
the tear field. Wc outline here the loss and decoherence mechanisms these fluctuations 
imply. They are particularly important to estimate when atoms in microtraps arc used as an 
implementation of a register of qubits in a quantum computer. We focus on the coupling 
between the field and the permanent magnetic dipole moment that many atoms with nonzero 
spin possess.

parl.de
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4.1. Atom-Field Coupling
4.1.1. Zeeman Interaction
For weak magnetic fields, the interaction between the magnetic dipole moment p of an atom 
and the magnetic field is given by the Zeeman potential

r = B(r./) (123)

where r is the atomic position. The magnetic moment is linked to the (dimensionless) total 
atomic spin operator J by the Bohr magneton and the Lande factor

/i = gHg/iJ (124)

A typical electromagnetic trap above a structured substrate is based on a static magnetic 
quadrupole field created by the superposition of fields generated by wires deposited on the 
substrate, and possibly by an external homogeneous field 110. 19|. Pure quadrupole fields are 
actually avoided in atomic microtraps because in the vicinity of the field zero, the magnetic 
moment easily flips its direction with respect to the local field, leading to trap losses.

The magnetic field in Eq. (123) contains a static part B()( r) that describes the quadrupole 
trap, in addition to a time-dependent part when quantum or thermal fluctuations arc allowed 
for. The relevant frequency scale is sei by lhe energy splitting = )Liug/i|B()(r,)| at the trap 
center r,. Typical values for the Larmor frequency w, /(2?r) are in the range of 1 ... 100 Ml Iz, 
corresponding to vacuum wavelengths on the order of meters. From Section 2.5, it is clear 
that near-held fluctuations dominate in these traps over the blackbody field. In addition, 
the field fluctuations are essentially thermal because the high-temperature limit kBT » /iw 
applies in this frequency range unless the solid substrate is cooled to very low temperature.

4.1.2. Magnetic Trapping Potential
The depth of typical magnetic quadrupole traps is of the order of I mK, so that laser cooling 
is required to load them with cold atoms. If the atoms move sufficiently slowly in the mag
netic field, their magnetic moment adiabatically follows the locally changing field direction. 
The magnetic quantum number irij is conserved, and we can introduce lhe effective trapping 
potential

W
%(r) = -MBJ?/i'”JBl)(r)| % const. + — £ ~ xu) (125)

Z 1=1.2,3

We have assumed that gnij < 0 so that a magnetic field minimum provides a potential well 
(weak-field seekers). This well is harmonic for the lowest states with (generally different) 
oscillation frequencies 11,; M is the atomic mass. In micrometer-sized magnetic traps, one 
can reach typical values 11,/(2tt) % 1 kHz. .. 1 MHz. The spatial extension of a sample of 
trapped cold atoms is typically in the micrometer range. For more details, see the review 
papers by Rcichel et al. [10] and Folman et al. [11].

4.2. Dissipation and Decoherence
4.2.1. Spin Flip Rate in Broad Band Fields
When broad hand magnetic field fluctuations couple to the trapped atom, they induce pro
cesses like spin relaxation and decoherence. The transitions induced between magnetic sub
levels \nij) [defined with respect to the static trapping field B0(r)] are called “spin flips." They 
lead to trap loss from a magnetic trap because typically only the weak-field-seeking sublevels 
with gmi < 0 are trapped. Consider for simplicity a ./ = 1/2 spin, l he state with quantum 
number m, = —|sgng can be trapped in the adiabatic potential [Eq. (125)]. As soon as a 
transition to the state with mt = +1 sgn g occurs, the adiabatic potential changes sign, and the 
atom is expelled from lhe trap center. We can identify the spin flip rate with a trap loss rate 
when the spin flip rale is small compared to the characteristic frequencies in the magnetic 
trap (i.c.. the oscillation frequencies 11,); this has to be checked after the calculation.
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I he trap loss rate resulting from spin Hips y(I is analogous to the two-level system decay 
rate y introduced in Eq. (108). (Observe that the weak-field-secking state has a higher 
energy ) II we denote by in,, tn, the magnetic quantum numbers before and after the trails) 
lion, one can show from Fermi's Golden Rule that the spin Hip rate is given by an expression 
similar to Eq. (108)

Yttip = ' ^(r,. r,; -wL) j*,. (126)
where pt„ = is the magnetic transition moment, ./t is the magnetic fluctuation
spectrum, and w, is the Larmor frequency at the trap center r,. Regarding the field, this rate 
is averaged over the initial slates with the corresponding Boltzmann weight and summed 
over the final states (see Refs. [38] and [120]).

The atom is actually treated as a point particle in Eq. (126). ignoring the position spread 
of its wave function. If the atomic center-of-mass motion is quantized as well, one has 
to average the noise tensor over the position distribution of the trap eigenstates and has 
to incorporate the trap eigen energies in the transition frequency: sec Eq. (134) below. 
Deviations from adiabaticity resulting from the motion of the atom in the trap can induce 
spin Hips in a similar way. The corresponding flip rates can be made exponentially small by 
operating the trap in the adiabatic limit |w, | fl, [121-124], In this regime, thermal field 
fluctuations and collisions between atoms become the dominant source of trap loss.

From the result (Eq. (101)] for the magnetic noise spectrum, we can estimate the spin Hip 
rate above a metallic substrate [44]

_ (p„Pug)-’AB/<r 
?nip_ Ifur 1

— for z, « <5l

a (127)71 for 6, «z,3z.
where <r is the substrate conductivity and <*>, = , the skin depth in the metal at the
Larmor frequency. The dimensionless matrix element A/ir depends on the orientation of the 
field B,,(r,) al lhe (rap center relative to the surface normal, and is given cxplicity in | I4|. 
An expression that covers the intermediate range z, ~ in the form of an integral for the 
magnetic Green tensor can also be found there.

To quote an estimate, for a trap distance zt in the micron range and typical metallic 
conductivities, the loss rate is on the order of I s 1 or larger. This is much slower than 
lhe oscillatory motion in a microtrap, but still within reach of experiments with ultracold 
atom samples. Equation (127) and its intermediate-range generalization could indeed be 
quantitatively confirmed by the groups of Hinds [125]. Cornell |I26|, and Vuletic [127].

4.2.2. Spin Dephasing
lhe simultaneous trapping of different spin states is very interesting for applications in 
quantum information processing. A quantum bit of information (qbit) can be encoded in 
two orthogonal spin states of an atom, anil two qbits can be coupled by controlled collisions 
between the atoms [128. 129|. Any unitary transformation in the joint Hilbert space of 
two (or more) qbits can be generated by combining single-atom and atom-pair operations. 
Quantum information processing with long qbit registers is expected to outperform classical 
processors because, thanks to the superposition principle, calculations can be performed in a 
massively parallel way. For a review, see the textbook by Alber. Beth, and Horodecki [130).

It is clear that in this context, a basic requirement is to maintain the coherence of the 
superposition state of a qbit. For trapped atoms as physical implementations of the qbit. 
we estimate here the corresponding timescale resulting from the coupling to magnetic lield 
fluctuations. The coherence of a qbit state can be quantified from the correlation function 
Pm = of the probability amplitudes in a typical superposition slate |i//> = <„[()) + <||I). 
l he average is taken over the fluctuations of the magnetic field, or more generally over the 
environment with which the qbit interacts with. The quantity plU is in fact an off-diagonal
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element (called a coherence) of the 2x2 reduced-density matrix p(/) of the two-state system. 
The expectation values of any observable .7 is encoded in the density matrix via the rule

(.7) = tr| 7p(/)] (128)

dp

The coupling to the environment leads to the following non-l lamiltoman dynamics for the 
density matrix, making the Born and Markov approximations |I3. 8()|

= -i lim I dr<(//in,(r). |//in,(r — r). p(O|J> (129)
fl- .'ll

where is the interaction Hamiltonian between the system and the environment. Ils 
time-dependence corresponds to the free or uncoupled evolution (interaction picture). I’hc 
average is taken in the equilibrium state for the environment. The correlation time T,.„rr 
of the environment fluctuations is supposed to be smaller than the timescale Az for the 
system s evolution (Markov approximation). Equation (129) generates what is called the 
master equation for the system density matrix. For a two-state atom coupled to the electric or 
magnetic field, it yields the rate Eqs. (104) and (105) and the Bloch Eq. (106). or alternatively 
the spin flip rate from Eq. (126). We apply Eq. (129) here to estimate the decoherence rate 
of a qbit superposition state.

In a magnetic trap with static trapping field B„(rt). the qbit stales arc two eigenstates of 
the component p, of the magnetic dipole operator that is parallel to the direction B.XrJ 
of the trapping field. The interaction Hamiltonian with magnetic field fluctuations is of the 
form

Hinl(/) = -/M0 BJ/j-p^z) (130)

where the subscripts ±, || denote the components perpendicular and parallel to the static 
trapping field. All fields arc evaluated here at the trap center for simplicity. The opcialoi 
p. commutes with the operator for the static trap potential, — n Bo, and therefore, it docs 
not evolve with time in the interaction picture.

The perpendicular field fluctuations in Eq. (130) lead to spin flips with the rate from 
Eq. (126). One half of this rate contributes also to the decay of the coherence p0H as we 
have seen in the Bloch Eq. (106). The decay of pll( is accelerated by coupling to the parallel 
field fluctuations in Eq. (130). It is clear that these fluctuations do not induce any transitions 
between the qbit states. However, off-diagonal elements of the density matrix are affected 
because the fluctuations randomly shift the energy difference, and hence the relative phase, 
between the states |0) and 11). This leads to a process commonly called dephasing. The 
dephasing contribution to the master equation resulting from Eq. (129) reads

Sfi|i(r,;0)
=----- yrr—(MjiP + PM;-- (131)

deph ~n

0) = B(,(r,) • lim gg(r„ r,; w) • B„(r,) (132)
<!)->()

dp 
dz

where the magnetic correlation spectrum projected onto the static trapping field appears, 
taken at zero frequency. The off-diagonal element of the density matrix thus decays like 

dp..i
dz deph

/i,(r,;())
26- (M||| ~ M I )‘Pm (133)

where ptll and p(J are the eigenvalues of p in the two qbit states. If these values differ, 
the coherence of the qbit superposition state thus decays with a rate proportional to the 
magnetic noise spectrum at zero frequency. We have seen in Eq. (1(11) that above a metallic 
substrate, the noise spectrum is approximately flat. In this case, the dephasing timescale is 
comparable to the lifetime with respect to spin flip processes 112()|.

A much longer coherence time is achieved with qbit states that have the same magnetic 
moment p „ = pi(. Such states exist to a good approximation in the hyperfine manifolds of 
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I lie alkali atoms, lor example. I he slates have ihe same orientation til ihe electron spin, but 
<apposite orientations of (he nuclear spin, the magnetic moment of the latter being much 
smaller than /jb Long spin coherence limes between these states have been observed in 
atom-chip experiments performed bv Rcichcl and co-workers 11311.

4.2.3. Vibrational Decoherence
Finally, we summarize the decohcrence rates for the center of mass motion in a magnetic 
trap. The center of the mass coordinate is quantized, and the basic quantity characterizing 
the coherence of the atomic wave function is the correlation function O0(x •/)). Il 
is the generalization of Ihc density matrix to observables with a continuous spectrum. In a 
trap, the density matrix can be expanded onto a complete set of stationary wave functions

Magnetic noise drives transitions between these states at a late

-« = / d’.vd'.v'A/,,, (x)B„(x) 7i(x. x : -w„„ ) B„(x) (x ) (134)

'^(x) = (135)

where = F.„ — L„ is the Bohr transition frequency. Wc have allowed for a spatially 
changing direction of the static trapping field B0(x). In tightly confined traps, we can expand 
the magnetic correlation function with respect to the deviations x — r, from the trap center. 
This expansion allows us to define the noise correlation length /u.„rr from

(136)
L c««f i J

For n n . only the second term gives a nonzero contribution to the transition rate y„ . 
This is intuitively dear because the magnetic field has to show some spatial gradient to 
couple different trap eigenstates.

In a harmonic trap, one finds, using the expansion (136). the selection rules for dipole tran
sitions (exchange of a single vibrational quantum). The transition rate scales like (<i,//t,„r)' 
compared to the spin flip rate, where «, = |A/(2.Wi2f)|* is the size of the ground state 
along the v, coordinate [ 111. A short correlation length (i.e.. a "rough" noise potential) 
excites the atomic motion more efficiently. If the atom is cooled to the ground state |(f) of 
the trapping potential, a qbit can be encoded in |(J) and the first excited vibrational state |l). 
The rate y„ ., gives the limit to the inverse lifetime of the ground state because of magnetic 
fluctuations. The energy per atom and unit time fed into the trap in the form of vibrational 
quanta is proportional to as well. Finally, this rate also specifies the decoherence of a 
superposition of the lowest trap states |(l) and |l), a figure of much interest for quantum 
information storage. More generally. Ihe off-diagonal matrix clement p„„ decays with a rate 
comparable to y„ . Further details can be found in Refs. [120. 132| and in the review by 
Folman et al. 1111.

Wc mentioned in Section 2.5.3.4 that the correlation length of thermal magnetic noise 
is on the order of the observation distance to the surface in the near-held regime (wave
length much larger than distance). This implies that /VOII ~ z( for atom-chip traps. The factor 

i'1 fhe heating and decohcrence rates for the center of mass motion thus 
leads to a scaling with different power laws compared to the spin flip and spin dephasing 
rates. Because the ground-state size in tightly confining traps is much smaller than the 
trap distance, heating and decoherence also happen more slowly.

5. MECHANICAL EFFECTS ON NANOPARTICLES
In this section, wc briefly summarize recent developments regarding mechanical forces al 
nanometer distances from a solid surface, where electromagnetic field fluctuations have been 
invoked to play a role. Our selection is motivated by challenges that appear to be still open 
for theorists in the domain.

The best known mechanical effect is probably the Casimir force |133|: Ihe attraction 
between two parallel, perfectly conducting plates that arises from the boundary conditions 
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imposed by the plates on the quantum fluctuations of lhe field. Casimir's paper triggered 
enormous theoretical activity (see the bibliographic resource paper by Lamorcaux [I34| for 
an overview). Recent experiments have been able to test the theoretical predictions to better 
10% [135-138], putting theorists on the road toward a precise evaluation of the effect of 
finite temperature, finite material conductivity, nonplanar shape, surface roughness, and so 
forth [22, 46. 139—148]. In the context of nanomechanical systems, lhe Casimir attraction 
is of particular interest because it can spoil the proper operation of the system by sticking 
together components separated by a few nanometers [149].

Electromagnetic fields have also been put forward to explain the friction force on a probe 
particle like a scanning tip that moves at nanometer distance above a solid surface [150-153], 
One of the motivations is identifying a microscopic mechanism for the shear forces observed 
in scanning probe microscopy [154. 155]. It is still controversial whether electromagnetic 
fields can provide a sufficiently large effect. If the shear force derives from the electromag- 
netically induced friction between solids, however, then the system has to be at nonzero 
temperature [153, 156]. in contrast to the Casimir force that persists even at zero temper
ature. The substrate below a metallic coating also appears to play a significant role [156], 
The friction force to linear order in the velocity vanishes at zero temperature, but nonzero 
higher-order contributions have been found for atoms approaching a metallic surface 1157].

Finally, wc mention that radiation-induced forces provide a promising route for the non
destructive, controlled manipulation of nanoparticles and even biological objects like cells, 
bacteria, or cell subunits. One typical example is the optical tweezer in which a nanoparticle 
is attracted toward the maximum of the light intensity and can be dragged along with a 
focused light beam. A proper theoretical model is based on either the self-consistent eval
uation of the Maxwell stress tensor at the particle surface or on an approximate multipole 
expansion for subwavclength particles. In addition to the laser-induced force, vacuum and 
thermal fluctuations of the field also give a contribution similar to the Casimir or the Van der 
Waals force. This contribution can. in particular, become significant at nanometer distances 
from a solid structure [136, 137. 158],

6. CONCLUSION
Fhe near field of nanostructures reveals valuable information when it is detected with sub
micrometer probes. Optical properties like the local refractive index can be retrieved from 
single-molecule spectroscopy, using the fluorescence dynamics on electric dipole transitions. 
Spatial resolution on the nanometer scale can be achieved because lhe standard diffraction 
limit does not apply to the nonpropagating modes that dominate the electromagnetic near 
field. Magnetic field fluctuations on the micrometer scale can be detected with high sensitivity 
using cold atoms trapped in electromagnetic potentials above micro- or nanostructured sub
strates called atom chips. These fluctuations determine the timescales for stable and coherent 
trapping and establish practical limits for quantum information processing with atom chips.

One of the main recent results is that on the subwavclength scale, the near field behaves 
differently from blackbody radiation. It is characterized by an enhanced spectral density 
resulting from the contribution of nonpropagating modes. The material properties of the 
nearby nanostructure shape the features of the spectrum, with electromagnetic surface reso
nances giving significant peaks. The spatial behavior of the field is dictated by the geometry' 
of the nanostructure and the detection setup, as retardation plays no role in the subwave
length domain. The same is true for the field's spatial coherence, as characterized by the 
two-point correlation function. The typical scales that emerge arc related to the validity of 
local material susceptibilities, to the nanostructure corrugation, and to the attenuation of 
resonant surface modes, in addition to the distance of the molecular probe. The skin depth 
of the material defines a crossover distance for the electric and magnetic near-held energy 
densities: qualitatively, the nanostructure resembles a half-space (a layer) on distances much 
smaller (much larger) than the skin depth, respectively.

The thermal and quantum fluctuations of the field are characterized by the macroscopic 
Maxwell equations under quite general circumstances under which the fluctuation dissipation 
theorem applies. The electric and magnetic Green tensors encode the relevant information. 
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with the reflection or scattering from the solid structure providing the modification with 
respect to the far field. Nonequilibrium situations can be handled with the assumption 
that the nanostructure be in local thermodynamic equilibrium. Electromagnetic noise is 
then determined by the fluctuations of the material polarization and magnetization, whose 
strength is fixed by the local temperature and the absorption spectrum. At lhe quantum 
level (equivalently, for zero temperature), these material fluctuations are al the origin of the 
nonradiative decay of a molecule probing the near field.
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1. INTRODUCTION
Simple magnetic devices, like loudspeakers or refrigerator magnets, that one uses every 
day are often based on magnetic alloys. Other applications like magnetic tapes make use 
of nonconductive magnetic oxides. Portable devices and cell phones demand an increasing 
amount of storage capacity for music, pictures, and movies, so that further structural minia
turization of memory devices will be required in the future. Moreover, the use of more 
sophisticated effects, for instance, combining the action of magnetism and light, that arc 
already used in magnetooptical read/wrile devices may open a path to new applications. 
Magnetic materials play a very important role in the current information technology: The 
storage density of magnetic hard drives doubles every year and reached 100 GBit/iir in 200,3. 
Such storage density corresponds to an area of 80 x 80 nm to store a single bit. The price 
to store I MByte of data on a hard drive is now lower than what it costs to write it down on 
paper [ I ].

One possible road toward increasing the capacity for information storage is decreasing 
the system size of the storage devices. This suggests the eventual need for a transition from 
bulk matter to nanoscale molecules and clusters. To achieve that goal, one needs the ability 
to assemble these structures with the required electronic and magnetic properties in a con
trolled way. To a large extent, this explains the enduring interest in molecular nanomagnets. 
The effects of quantum physics become pronounced at the nanometer scale. It seems to be 
fair to say that the current research in this field still deals almost exclusively with funda
mental basic understanding, rather than with applications. The understanding of how' these 
materials at the nanoscale react to external parameters such as temperature, light, or elec
tromagnetic fields is a basic prerequisite for their possible application in the future. The path 
to success will depend on our detailed knowledge of the nature of the interactions between 
the molecules and the properties of the molecules itself.

Following the late Olivier Kahn, who is considered by many as one of the founders of this 
research topic, “Molecular magnetism deals with magnetic properties of isolated molecules 
and/or assemblies of molecules” [2], This definition is quite general, and recently there has 
been more emphasis on the aspect of the rational design of molecular magnetic properties 
in the field [3]. Therefore, molecular magnetism is seen “as a discipline which conceives, 
realizes, studies, and uses new molecular materials bearing new but predictable magnetic 
(and other) physical property” [4], At present, it conveniently joins many different activities 
involving methods of physical characterization of matter (optical. X-ray. Mossbaucr and 
neutron spectroscopies, scanning microscopies) and physical models of different degrees 
of sophistication and abstraction. The progress in the field is clearly driven by advances 
in chemical synthesis of the materials and experiments. However, the combined efforts of 
physicists and materials scientists, and particularly theorists, inspire confidence that such 
efforts may one day become useful not only for explaining but also for guiding the synthesis 
of new. promising materials. As for now. the theory dealing with first-principles calculations 
tries to keep pace with experiment, still trying to reproduce rather than to lead.

Nevertheless, there has been a notable progress in the prediction of exchange interactions 
and magnetic anisotropy energies from density-functional theory during the last few years. In 
contrast to cases in which magnetic exchange interactions follow the famous Goodenough- 
Kanamori rules [5-7], we still have to await similarly clear general insights derived from 
theory in the case of magnetic anisotropy, which is another crucial property of molecular 
magnets, which could revolutionize the rational design of molecular nanomagnets.

In general, the properties of a nanoscale system of coupled spins depend directly on 
the strength of the exchange coupling and of the spin-orbit coupling. When the exchange 
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interactions arc large enough, lhe lowest-energy magnetic excitations in a many-spin system 
occur, in fact, as a result ol collective changes in the spin-orbit coupling energy. The involved 
energy scale is known as the magnetic anisotropy energy |X| l he ability to accurately predict 
and modify the magnetic anisotropy energy is a key property one has to understand, because 
it determines the temperature range up to which a system will retain its magnetic orientation.

This field of research is very' attractive for first-principles microscopic simulations, because 
the crystal structure of new molecular magnets is well defined and reproducible and is made 
available rapidly. This is in sharp contrast to the situation in nanoparticle materials or in 
surface studies, where the structure data are usually more ambiguous. Synthetic chemists and 
theorists performing ub initio simulation-, despite different skills already speak a common 
language when discussing chemical bonding or magnetic interactions.

Whereas the actual execution of first-principles calculations did not require any special 
development of basically new numerical schemes, certain difficulties in performing calcu
lations specific to this type of materials provide interesting challenges to computational 
methods. In general, the computational task involves a large number of atoms (often several 
hundreds) in the unit cell, a practical absence of useful crystalline symmetry, and a very 
inhomogeneous spatial distribution of charge density, with “very dense” and “almost empty” 
regions. The progress on the methodological side of atomistic first-principle calculations 
include more efficient basis sets and new order-N algorithms, along with general augmenta
tion of computational power, which helps address molecular magnets at the atomistic level. 
This task would have been too complicated to perform a decade ago.

l he number of materials brought into discussion as molecular magnets is considerable, and 
some systematics might be appropriate to define better lhe subject of our present discussion. 
In general, all materials containing organic building parts and spins associated with unpaired 
electrons fall into one or another category of molecular magnets. Possible classifications 
may depend on the origin of the unpaired electrons, the resulting character of the magnetic 
moment (localized or itinerant), the type of interaction between individual moments, or their 
spatial organization (weakly coupled molecular fragments; one-, two- or three- dimensional 
connected structures). A well-structured general overview of different classes of molecular 
magnetic materials can be found in a special issue of the Materials Research Society on 
molecule-based magnets |9|.

Magnetic molecules contain one or more transition metal centers or rare-earth ions, or 
just organic radicals that are locked at their lattice sites by a careful chemistry of surrounding 
organic fragments. We will not discuss purely organic magnets, where spins are carried by 
free radicals, although such systems clearly belong to the topic of molecular magnetism 
and ferromagnetic ordering with Tt of 35.5 K [10] has been demonstrated in them. In the 
following text, we restrict ourselves to systems in which the spins reside in 3d shells of 
transition metal ions.

In particular, we will concentrate on the so-called single-molecule magnets (SMM) [11]. 
which are often also called molecular nanomagneis. Such materials can often be crystallized, 
but interactions between the molecular entities remain weak, so that the magnetic behav
ior probed by experiments is often dominated by intramolecular effects. The discovery 
of a molecule containing 12 manganese ions MnrOp(CII-,COO)1(1(II.O)4 with a magnetic 
ground state of .S’ — 10 showing a magnetic hysteresis [I l| because of the properties of the 
single MnP- molecule has boosted interest in the field enormously. The observed hystere
sis in molecular magnets is not caused by remagnetization of domains, as in conventional 
ferromagnets, but instead, it is an intrinsic molecular property that results from the mag
netic anisotropy. This process can only be observed because the relaxation time is very large 
compared to the measurement time. The relaxation of the magnetization becomes very slow 
indeed at low temperatures (on the order of several months at 2 K). Therefore, by applying 
a magnetic field, the material can be magnetized and will keep this magnetization for a long 
time if it is at very' low temperatures, l he observed steps in the hysteresis curve reflect the 
“magnetization tunneling" [12| between quantum states of different in, -S < in < S. of the 
total spin .S’ of the molecule, as the external magnetic field realigns the degeneracies of dif
ferent states. The measurements of the relaxation time of the magnetization as a function 
of an external magnetic field reveal much faster relaxation at certain field values, al which 
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one also observes the steps in lhe hysteresis curves [13]. We will return in more detail to 
this exciting experimental observation, which has been a cornerstone in the research in the 
field of molecular magnetism.

A single molecule behaves like a single magnetic domain and is relatively indepencent of 
the magnetization of its neighboring molecules. The broadly used term “nanomagnet” may 
be somewhat misleading in this case, in which magnetism is not caused by extended colcctivc 
interactions, like in bulk magnets, and the fundamentally different nature of hysteresis has 
been already mentioned above. To be correct, one should keep these differences in mind 
when the term “magnet” is used.

One of the biggest advantages of SMM materials for observing quantum effects is the 
well-defined, and identical, size of molecular building blocks, because any size distribution 
would smear out these effects. This makes SMM materials also very interesting for possible 
application in nanotechnology, because the molecules have all the same size, shape, and 
magnetic properties, and they will be nearly perfectly ordered in the molecular crystal. This 
circumvents technological problems like the need to control the size distribution >r the 
distances between clusters in a nanomatcrial.

What is the present state of art, “figures of merit.” perspectives, and so forth in th; field 
of molecular magnets? The field is becoming rapidly too large to cover all aspects in a 
compact introduction. There are several recent good reviews by Verdaguer [3], Barbara and 
Gunther [14], Gatteschi and Sessoli [15], along with special issues of journals and conference 
proceedings [4, 9], which help to access the situation. Here we single out several promising 
directions.

The first one is using single-molecule units as “bits” for magnetic storage. The size of the 
molecules of interest is about one order of magnitude smaller than that of presently accessi
ble domains in magnetic layers, and further miniaturization of conventional domains vill be 
prevented at some point by approaching the superparamagnetic limit. This problem dees not 
arise for magnetic molecules, because the intramolecular magnetic order is set by the chem
istry of a single molecule in question, and not a result of achieving a certain critical site or a 
certain amount of magnetic atoms. To become practicable, this application needs moecules 
with a net total magnetic moment. This implies ferromagnetic or ferrimagnetic intrarrolecu- 
lar ordering of sufficient strength to achieve a high spin ground state 5. The jntramoecular 
magnetic interactions have to be strong enough to prevent decoupling of the spins within 
the molecule by thermal fluctuations, so the single molecule effectively behaves like ai atom 
with a giant spin 5. Moreover, a high magnetic anisotropy is required to prevent sponta
neous reorientation of the magnetization of the molecular unit i.e., to increase its bbeking 
temperature. The intrinsic magnetic anisotropy becomes the temperature-determiningfigure 
of merit. The weakness of interactions between adjacent molecules, a prerequisite far writ
ing magnetic bits independently in each molecule, is usually taken for granted in the case of 
single-molecule magnets. Potential candidates for such applications, albeit with properties 
not yet sufficient enough for any real application, are represented by Mn,,-acetate aid Fes 
molecules, both with S = 10, to be discussed below.

The second one is using working units for quantum computation. This requires a scheme 
to populate and manipulate excited states of a molecular magnet in a controllabb way. 
Leuenberger and Loss [16] and Leuenberger et al. [17] proposed a seemingly feasible scheme 
of imposing a prepared electron spin resonance impulse towrite in. transform, and read out 
the information on a quantum state in the multilevel system. In particular, they considered 
such a system with the global spin S — 10. explicitly referring to the two above mertioned 
SMMs, Mnl2-acetate and FeR. A promising technique may make use of the above meitioned 
magnetization tunneling 112].

The third one is using room-temperature molecule-based permanent magnets, very dif
ferent in some aspects (solubility in various solvents, biocompatibility) from “convenionai” 
(e.g., intermetallic-compounds) magnets, and possessing the additional advantage of exhibit
ing interesting combined magnetooptical and electro-optical properties. Many such s'stems 
are based on Prussian blue analogues [18-20]. Curie temperatures as large as 4? [21], 
53° [18], and 103°C [22] have been achieved with V, Cr-based Prussian blue anaogues. 
Although such systems can be investigated by first principles calculations without major 
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problems (see, e.g., Kef. [23]). and despite the fact that they are generally recognized as 
molecular magnets, we leave them beyond the current discussion, because they are formed of 
extended metallorganic patterns. Such three-dimensional connectivity is, of course, essential 
for obtaining substantial values of T,.

Finally, we have systems that exhibit novel collective phenomena such as magnetism 
switching by light, temperature, pressure, or other physical interactions. Molecules that 
exhibit spin-crossover behavior would, for instance, fall into that class. Many such systems are 
among Fe-binuclear complexes [24, 25], The spin-crossover effects (switching between high- 
spin and low-spin states in different combinations at two Fe centers) arc usually discussed 
in terms of interplay between intramolecular and intermolecular magnetic interactions, with 
the latter being smaller hut not negligible.

After this general introduction into the field of molecular magnets, we proceed with 
a more specific discussion of their most important representative species, single-molecule 
magnets incorporating transition metal ions, in Section 2. Section 3 discusses the interest
ing and unusual properties, such as the quantum tunneling of magnetization, that make 
research in the field of molecular magnetism so exciting. In Section 4. we overview tradi
tional model approaches for the phenomenological description of such systems and outline 
some ways used to extract parameters of the corresponding models from experiment and 
from first-principle calculations. The term “first-principle calculation" here is used either 
for multideterminantal quantum chemical schemes or for those based on density functional 
theory. In particular, we discuss Heisenberg exchange parameters and magnetic anisotropy 
constants. As a practical example, an introduction into the problems and properties of 
some single-molecule magnets that gained a great deal attention within last years, namely. 
Mn)2-acetate, FcH, and VL, systems, is given. This introduction is followed in Section 5 bv 
a critical comparison of calculation schemes, based on density-functional theory', that ;ue 
particularly well suited for the study of molecular magnets. For the above systems, we select 
some benchmark results obtained by different methods. Finally, in Section 6, we outline 
recent progress in the study of other single-molecule magnets, including six-membered "fer
ric wheels," “ferric stars." and “Ni4" molecules, which were studied with the use of first- 
principles methods.

2. EXAMPLES OF TYPICAL SINGLE-MOLECULE MAGNETS
To make first contact with the materials we are discussing, wc will now review the 
basic structural properties of some examples of the most intensely investigated SMM. 
From here on we will use Mn12-ac as a shorthand for the complete chemical formula 
[Mn12Oi:(CFI1COO)|„(II2O)4 • 2CH,COOH • 4H2O], There are now several modifications 
of Mn12-ac that are known, with different crystal structures, solvent molecules, and water 
coordination (see Gallcschi and Sessoli [15] for more information). Basically, the inner 
structure of the molecule is always the same, and we will uniformly refer to all these species 
as Mn12-ac. The Mnl2-ac was the first SMM that showed the slow magnetization relaxation 
characteristic for a SMM. This compound is probably the most investigated SMM and, along 
with the oxo-nuclear iron compound Fes, has shown so far many manifestations of interesting 
magnetic behavior that keep the research in the field growing. We will discuss the structure 
and magnetic properties of these two magnetic molecules in more detail, because one can 
regard them as a kind of test cases that the theory was able to explain. For a concise and 
basic introduction into the field of SMMs. we refer the reader to Barbara and Gunther [ 14],

2.1. Mn12-ac Magnet

Mn,2-acwas synthesized and reported in I980 by Lis [26]. The molecular crystal has tetrag
onal symmetry with space group /4 . and a single Mn)?-ac cluster in the crystal possesses 
S4 symmetry. Figure I shows a ball-and-stick model of the molecular structure, including 
only some organic ligands. No water of crystallization or acetic acid molecules are included, 
although they may play an important role—in particular for the process of the tunneling 
of the magnetization. The manganese atoms are sixfold coordinated but show significant
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Figure 1. I he hall and stick model ol Mn,.-ac. Lett panel: entire molecule, with methyl groups replaced lot clarity 
hy hydrogen atoms (small, light spheres). The large spheres represent Mn atoms and the dark ones oxygen. Right 
panel: magnetic core Mn ,O, , The eight outer Mn ions have spins x = 2 ordered in parallel, and the lout inner 
s = 3 2 are antiparallel to them, resulting in a ferrimagnetic structure with total spin 5 = It).

Jahn-Teller-induced local O/, symmetry lowering because of partially filled e,. shells on the 
outer sites. The right panel of Fig. I shows only the magnetic core, for better clarity. The 
inner four Mn atoms that are in the charge state Mn4 (s = 3/2) form, together with four C) 
atoms, a (slightly distorted) cube. The eight outer Mn atoms arc in the Mn’* (s 2) charge 
state. The inner Mn ions are coupled antiferromagnetically to the outer ones, yielding a 
ferrimagnetic groundstate with a total spin 5 = 8 x 2 — 4 x 3/2 = III.

Evidence of the .S' = 1(1 ground state has been obtained from high field magnetization 
studies by Caneschi et al. [27] and was later confirmed by different experimental techniques, 
such as high field electron paramagnetic resonance (EPR) [28], high field magnetic torque 
measurements |29], or neutron scattering [30, 31],

The (outer) Mn1, ions are distinguishable from manganese atoms in a different charge 
state by the elongated structure of the oxygen atom coordination octahedra or by the 
corresponding oxygen-manganese bond lengths that are typical for the Jahn-Teller dis
tortions known in many Mn(lll)-systems. This seems to be important for the magnetic 
anisotropy of the SMM [15).

A surprising feature of the MnL, clusters is that they remain intact in solution, This has 
been demonstrated by nuclear magnetic resonance (NMR) measurements on several deriva
tives of the material [32]. This remarkable finding clearly indicates that the observed mag
netic properties have indeed an intramolecular origin. This is further supported by specific 
heat measurements that found no evidence for long-range order in the material [33], Each 
magnetic molecule in the crystal is well separated from its neighbors by water and acetic acid 
molecules; Barbara and Gunther [14] estimate the volume fraction of molecules in crystal to 
be merely 5%. The critical energy scale for the magnetic behavior is the magnetic anisotropy 
energy-, which is on the order of 60 K. The dipole-dipole interaction between molecules is 
of about 0.03 meV. or 0.35 K. so that one can safely discard it for practical reasons and for 
setting up calculations.

2.2. Fe8 Magnet
The octanuclear iron(lll) molecular magnet of the chemical formula [FesO.(OH)|2- 
(tacn ),,]*". with tacn = 1.4, 7-triaza-cyclononanc (ChNJIty), is often referred to as the Fee
cluster. The structure of the Fes-molecular crystal, first synthesized by Wicghardt et al. |34|, 
is shown in Fig. 2. Il is acentric /’I. with a — 10.52. b = 14.05. and c - 15.00 A and o = 89.90, 

= 109.65, and y = 109.27 degrees.
The approximate D symmetry observed in the molecule |34| is formally broken by the 

presence of halide atoms and by waters of crystallization. The iron atoms form a structure 
that is often described as a butterfly. The central iron atoms arc connected hy oxo-hydroxo 
bridges to the four outer ones I'hc large spheres show the iron atoms, which arc I c(lll) ions
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Figure 2. Repealed unit cells ol the I e, molecular crystal Large balls represent Fe.

with a </? electron configuration, l he two inner Fe(Ill) atoms arc coordinated octahedrally 
to oxygen and the bridging hydroxy ligands. The outer iron atoms are also in octahedral 
coordination with the corresponding oxy and hydroxy ligands and nitrogen atoms of the 
lacn-rings. The organic lacn-rings are very important lor stabilizing the magnetic core of 
the molecule because the three pairs of nitrogen dangling bonds complete a quasi-sixfold 
environment for the Fc atoms. Two of the Fc(lll) atoms have anliparallel spin projections 
lo lhe other six. so that the ferrimagnetic coupling of all eight results in the .V = It) spin 
ground state, as was directly proven by polarized neutron scattering measurements [35).

I lie lacn-iings separate the Fcs-cluslcts in the crystal, icsulting in negligible inlet moleculai 
dipole fields that are typically on the order of 0.05 T |36|. The resulting formal charge 
states arc nominally Fe’ . (OH) 1 O . and lacn°, leading to a molecule with an overall 
formal charge stale of +<S. which must be compensated lor by negatively charged halide ions. 
Because of its lower symmetry, as compared to Mnl2-ae. the Fes-cluster is allowed lo have 
a transverse magnetic anisotropy, which is required to observe the quantum tunneling of 
the magnetization (QTM). This is because the transversal anisotropy is able lo couple states 
with different /»,. which is a basic condition for “real” tunneling processes. In contrast, the 
tunneling in Mn12-ac is often described as thermal, or phonon assisted, with dipolar and 
hyperline interactions playing an important role |15|.

One of the peculiar features of the Fcs-clustcr that make it particularly interesting is that 
its magnetic relaxation becomes temperature independent below 0.36 K, showing for the 
first lime a pure QTM [36. 37J. Further, the topological quenching of the tunnel splitting 
predicted by Garg |3S| has been observed in the form of a periodic dependence of the tunnel 
splitting on the magnetic field along the hard axis [37|.

2.3. V15 Spin System
lhe KJV^As.CTqH.O)| SH.O molecular crystal was first synthesized by Muller and 
Din ing [39], The V,, molecule comprises spins v — 1/2 al all vanadium atoms, which couple 
together lo form a molecule with a total spin .S’ — 1/2 ground state. The weakly anisotropic 
V|S demonstrates quantum behavior, such as tunneling splitting of low-lying spir stales, and 
is an attractive model system for the study of the mesoscopic quantum coherence and (he 
processes that destroy it. An understanding of such processes may be of interest for lhe held 
ol quantum computing. has a crystallographically imposed trigonal symmetry with three 
sets of inequivalent vanadium atoms |40|. They form two warped hexagons, separated by an
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Figure 3. The top view (along the threefold axis, left panel) and the side view (right panel, note the sandwiched 
structure) of the ball-and-stick model of lhe V15 spin system. The large balls represent the 15 vanadium atoms. 
They all contain a single electron in the (/-shell and couple in complicated ways to yield a total spin ground-state 
configuration of 5 = 1/2.

intermediate layer in the form of a large triangle. The vanadium atoms are hold in place by 
oxygens and arsenic atoms so that the complete cluster forms a ball- or cagelike structure 
(see Fig. 3). The empty space inside the cavity is often filled by a randomly oriented water 
molecule that, strictly speaking, would formally break the trigonal symmetry.

The unit cell contains two V)5 clusters and is large enough so that dipolar interactions 
between them are negligible. Between 20 and 100 K, the effective paramagnetic moment 
is 3 as for three independent spins, and below 0.5 K it changes to the 5 = 1/2 ground 
state. The experimental results were interpreted with antiferromagnetic interactions between 
all vanadium atoms [40], To explain the magnetic behavior, a complicated spin Hamiltonian 
with at least five different exchange parameters Jlf is required [41]. Figure 4 shows only 
the V-O cage (left panel) and the V-V couplings, labeled according to notations of Kortus 
et al. [411.

Because of the layered structure and the trigonal axis, one expects that the V,5 cluster will 
show interesting magnetic properties, such as a canted noncollinear magnetic ground state. 
Calculations on such correlated systems present a challenge to mean-field frameworks such

Figure 4. Left panel: V-O cage of the V„ molecule. Right panel: scheme of exchange couplings ./. ./’. J". J\. and 
,/2 needed for the description of the magnetic behavior of this compound. The spin configuration shown has a total 
spin S' = 1/2. corresponding to the lowesl-energy density-functional theory [sing spin configuration. Different gray 
scale indicates structurally inequivalent atoms.
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as density-functional theory because often it is not possible to construct a single collinear 
reference state that preserves the inherent symmetry of the system and that has the correct 
spin quantum numbers.

3. UNUSUAL AND INTERESTING PROPERTIES
Molecular magnets may potentially offer other, and different, applications, which would 
make use of their transparency, low density, and low conductivity. Small size and controllable 
structural perfection of “functional units" open the door to observe manifestations of quan
tum effects—so far demonstrated at extremely low temperatures only. The studies now 
underway serve two major goals: better basic understanding of these quantum effects, and 
learning how to manipulate microscopic properties of molecular entities with magnetic field, 
temperature, and light. In particular, the quantum phenomena resulting from the interplay 
between light and magnetism are responsible for interesting behavior in molecular magnets, 
which may be not less fascinating than the long-known Faraday and Kerr effects.

In this section, we outline several selected properties specific to SMM systems that make 
research in this field so interesting. In particular, the possibility of studying basic quantum 
effects on macroscopic samples is very exciting.

3.1. Quantum Tunneling of the Magnetization
The magnetization in MnL,-ac at sufficiently low temperatures, below the so-called blocking 
temperature, exhibits a magnetic hysteresis—a property well known for bulk magnets. This 
effect was first reported by Sessoli et al. [42|. Figure 5 reproduces experimental data from a 
later work by Thomas et al. [ I3|. I he magnetic lield was applied along the easy magnetization 
axis. The precision in the sample orientation was checked by comparing the low-temperature 
remanent magnetization with the saturation magnetization, in which the former reached 
more than 99% of the latter. Before measurements, the sample was cooled from above the 
blocking temperature with an applied field of 5 T, so that all the magnetic moments were 
well aligned along the direction of the external lield. reaching the saturation magnetization 
Aft, The field was then reduced in steps to the next measurement point over a time of 10 s. 
Then, after a break of 400 s. which was included to allow lor stabilization, the magnetization 
was measured. The magnetization decreased in a scries of steps. At lower temperatures, 
clear plateaus between the steps were visible, producing a “staircase" hysteresis loop. The 
relaxation times in the Hat parts were much larger than the time window of about 600 s of 
the measurement.

What may be not immediately clear is that this hysteresis is not caused by long-range 
interactions and expansion of domains, as in classical magnets, but is of purely intramolecular

Figure 5. Magnetic hysteresis loop of a Mn,,-ac single crystal at different temperatures below the blocking 
temperature of about 3 K measured with a SOO ID magnetometer. Reproduced with permission from [13], 
I.. Thomas et al.. Nature 383, 145 (1946). <0 |99(>. Nature Publishing Group.
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origin. This has been demonstrated by NMR measurements ol single-molecule magnets in 
solution without long-range order on several derivatives of the material |32|.

Because of their similarity to bulk magnets, these materials are often called molecular 
nanomagnets. It should be kept in mind, however, that only below the blocking temper
ature, which is about 3 K for Mn,;-ac, do these materials behave like magnets. Above this 
temperature, the magnetic moment fluctuates rapidly—an effect that is known as super
paramagnetism.

Magnetic hysteresis appears if there is a barrier that the magnetization has to overcome. 
In a SMM. this role is played by a magnetic anisotropy barrier. The magnetic anisotropy 
energy (MAE) is defined as the difference between lhe ground state energies resulting from 
lhe rotation of the direction of magnetization. This harrier has its origin primarily in the 
spin-orbit coupling [8], which is a mechanism that explicitly couples the spin degrees of 
freedom with the spatial coordinate system defined by the molecular orbitals.

Strong spin-orbit coupling would try to align the spins of electrons in the magnetic (/-shell 
with the magnetic field. In a chemical environment, the (/-shell experiences a crystal field 
splitting because of the electric field of the neighboring atoms. The energy cost or gain of 
aligning the electron spins in an external magnetic field will then depend on the spatial 
arrangement of the d shell. In two special cases, however, the magnetic anisotropy can 
be suppressed. If the crystal field splitting (i.e.. anisotropic interaction with the ligands) is 
small, the spins in the d shell may freely rotate and will follow the external magnetic field 
without much loss in energy. However, if the crystal field splitting is much larger than the 
spin-orbit coupling, the system (TM ion + ligands) prefers a configuration with zero (i.e., 
quenched) orbital moment and no magnetic anisotropy. In a semiclassical picture, this orbital 
quenching can be interpreted as the orbital momentum precessing in the crystal field, so 
that its magnitude remains unchanged but all its components average to zero. However, 
the spin-orbit coupling can not be completely ignored and will mix in states with nonzero 
orbital momentum. This is responsible for the deviation of lhe g-factor from the pure spin 
value of 2.

Therefore, the height of the MAE barrier emerges by a quite subtle interplay between 
the strength of the spin-orbit coupling and the interaction with the crystal field resulting 
from the ligands. The temperature up to which a magnetic device will retain its preferential 
magnetic orientation is therefore determined by the MAE; hence, high MAE is one of the 
major priorities in the design of useful SMM devices. Theoretical details concerning the 
calculation of the MAE within the DFT arc discussed in Section 4.4, and numerical values 
for a number of SMM are presented in Section 6.3.

Another feature that makes the hysteresis curves in molecular magnets peculiar, other 
than the blocking temperature, is the presence of steps. This is essentially a quantum effect, 
a manifestation of QTM (see Thomas et al. [13], Wernsdorfer et al. [36], Wernsdorfer and 
Sessoli [37], Gunther and Barbara [43], Friedman ct al. [44], and Barra et al. [45]). The 
observed steps correspond to sudden changes of magnetization as a function of magnetic 
field. QTM was theoretically discussed already by Gunther [46], The observed transition 
from classical to quantum behavior is fascinating for fundamental research, but moreover, 
it is a challenge for applied nanotechnology, which tries to operate in that regime and to 
make use of these effects. Earlier experimental attempts to detect QTM were limited by 
difficulties in preparing sets of identical nanometer-sized magnets, because the tunneling 
amplitude varies exponentially with size, so that a large size distribution makes it impossible 
to detect the discrete character of quantum effects. A great advantage of SMMs like Mnr-ac 
is the possibility of their growing single crystals of identical magnetic clusters, which are 
perfectly suited for measurements using highly sensitive magnetometers like superconducting 
quantum interference devices (SQUID).

The origin of steps in the hysteresis curve (Fig. 5) can be further clarified from Fig. 6, in 
which the relaxation time of the magnetization is plotted as a sequence of constant external 
magnetic field values. In each point of the hysteresis curve, the relaxation time 7 has been 
obtained by repealed measurements of the magnetization over a timescale from 300 to 
600 s. with subsequent fitting of the time dependence of the magnetization to a linearized 
exponential form: M(t) = I r/r) - M,. The relaxation times r have been carefully
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Figurv (». I he magnetic relaxation time of Mn, al temperature 2.1 K as a function of magnetic field obtained from 
repeated measurements lor a given magnetic field and temperature on the hysteresis loop the arrows show the 
fields at which jumps of the magnetization are expected as a result of the alignment ol levels as explained in the 
text Reproduced with permission from 1131. I l liomas et al.. Nature 3K3. 145 (1996). ‘ 1996. Nature Publishing 
Group.

verified by measurements over a longer limeseale. 20-50 h. al the various temperatures and 
field st lengths from which the filled symbols have been obtained. For certain magnitudes of 
(he magnetic field, which arc nearly equidistant!} spaced, the relaxation ot the magnetization 
becomes much faster. These arc the magnetic field values al which I he steps in the hysteresis 
curve arc observed (i.e., al which sudden changes of the magnetization take place).

I he simplest model to describe the observed magnetic behavior treats the resulting spin 
5 = It) ol Miip-ac like a giant spin of a single atom, neglecting its composition from the 
spins of individual Mn ions. In a magnetic field, the 25 4-1 = 21 degenerate m-levels would 
split. (A spin Hip from in = III to the in = 1(1 slate would microscopically mean a concerted 
spin Hip on all magnetic ions in the Miq.-ac molecule.) Using the model of a giant spin 
loi the SMM, the simplest Ilamillonian including the magnetic anisotiopy and a Zeeman 
term is

H = DS': 4- f (5; - Sf) 4- (I)

Differing from the later-given, more general form of Eq. (7), we introduce here two 
anisotropy constants, D and E. In uniaxial systems like the Mnl2-ac, E = 0 and the magnetic 
behavior is determined by the constant D. The term D has to be negative in a SMM, so that 
the magnetization will align along the easy axis. Without a magnetic field, the eigenvalues of 
Eq. (I) arc = Dm'. As D < 0. the ground-state energy is degenerate and corresponds to 
in = -t.S. meaning that the magnetization will point along the easy axis up or down. Applying 
a magnetic field removes the degeneracy and shifts the energy levels. If the magnetic field 
B is aligned along the easy axis of SMM. and then the energy levels arc shifted by
(i.e.. some shift up and others down, depending on the sign of in). For certain values of 
/?. the energies of two levels with different in may accidentally match. This is called a level 
crossing. Il is easy to see that such level crossings are equally spaced in and happen by 
steps = /)/g/zK I = (,.48 T for Mnt2-ac). Such equal spacing is indeed very close to 
what is experimentally observed; small deviations are likely to be caused by higher-order 
terms in the anisotropy, like the fourth-order terms in the spin operator 5 . The jumps in 
the relaxation times can now be interpreted as being caused by a largely enhanced transition 
rale between two levels at a level crossing, which is also accompanied by a jump in the 
hysteresis curve.

However, this picture cannot account for the lull truth, because a prerequisite of tunneling 
is the mixing of states with different m. Without such mixing, all m-slalcs are eigenstates ot 
S and arc hence orthogonal. Because of the tetragonal crystal symmetry, the lowest-order 
term in the spin operator that is allowed to mix will be proportional to 5, and 5j. 
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I his would couple only slates |w) and |m ± 4), in contrast to the experiment in which nearly 
all Sni = ±1 have been observed [13].

Fhe tunneling in Mn[2-ac is believed to be a thermally assisted resonant tunneling [ 14. 47- 
50], although this determination was also debated (511. The tunneling rate has a maximum 
for the m = ±3 levels without a magnetic field and is experimentally observable only for 
level crossings close to the top of the barrier. This indicates that thermal activation caused 
by phonons plays a role. The spin is climbing the Dur ladder with the help of phonons, 
and close to the top it can take a shortcut by tunneling, allowing an enhanced relaxation of 
the magnetization. This general picture has been confirmed by EPR measurements, which 
detect transitions between the spin levels with high accuracy [28, 52-57] and high-frequency 
magnetic spectroscopy [58],

Applying a magnetic field along the hard axis (for systems with E (I) will change the 
tunneling rates. This causes another interesting effect: the oscillations of the tunnel splitting 
as a function of the magnetic field along the hard axis. The period of oscillation has been 
given by Garg [38] as

2k _____  —
Mi = + D) (2)

Mb

The tunnel splittings for a model system with total S = 10 and magnetic anisotropy param
eters D = —0.53 K. and E = 0.054 K for three transitions N ++ -N as a function of mag
netic field along the hard axis arc displayed in Figure 7. One can sec in this figure a clear 
period of about 0.4 T. It is noteworthy that fourth- and higher-order contributions to the 
spin Hamiltonian become very important, so that the tunnel splitting cannot be described 
by the simple formula in Eq. (2) anymore. This may have possible implications for applica
tions in nanotechnology, because it allows us to control the tunneling process (relaxation of 
magnetization) by applying a magnetic field along the hard axis. This might be crucial, for 
instance, magnetic memory devices based on molecular nanomagnets.

The coupling of the magnetic cluster to the environment is a vast playground for theories 
explaining the mixing of the spin states via magnetic noise, incoherent phonons [59], dipolar 
[60-63] or hyperfine couplings to nuclear spins [64-68], dislocations in single crystals [69, 70], 
or coupling between the magnetic clusters (spin-spin relaxation, Wernsdorfer et al. [71. 72|). 
In the case of Mn12-ac, angle-dependent single-crystal EPR data [73] gave clear evidence of

Figure 7. Tunnel splittings for three different transitions ,W( = -.V — N for a model system with 5 = 1(1 and the 
I) and f as indicated in the figure. The magnetic field //, is applied along the hard axis of the system.
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a disorder resulting from crystallization of acetic acid |74|. which induced a locally varying 
quadratic (rhombic) transverse anisotropy E(.S'; — 5;).

Magnetic molecular clusters such as Mn12-ac [26, 42. 75] oi fex [34, 45] arc probably the 
most widely studied materials for which QI M has been observed. The clarification of these 
fundamental details of the tunneling mechanism belongs to the hottest research topics in 
the field of molecular magnetism. A recent review on this broad area of research was given 
by Gatteschi and Sessoli [15].

Quite recently it has been theoretically shown that crystals of molecular nanomagnets can 
exhibit giant magnetic relaxation because of the Dicke super-radiance of electromagnetic 
waves [76]. Experimentally, it has been found that crystals of molecular nanomagnets exhibit 
enhanced magnetic relaxation when placed inside a resonant cavity. i\ strong dependence of 
the magnetization curve on the geometry of lhe cavity has been observed, providing indirect 
evidence of the coherent microwave radiation by the crystals [77],

3.2. Antiferromagnetic Rings
The molecular nanomagnets Mnr-ac or Fc\ show thermally activated QTM. as discussed 
before. This tunneling process is an incoherent tunneling of the magnetization. In contrast, 
antiferromagnetic molecular magnets such as ferric wheels, in which an even number of ions 
is coupled antiferromagnetically in a ring structure [78, 79], belong to the most promising 
systems for the observation of coherent quantum tunneling.

In coherent Q I M. the spins tunnel back and forth between energetically degenerate states. 
The detection of lhe coherent tunneling will be challenging but possible with current exper
imental means.

An AFM coupling among nearest neighbors in an even-member ring with nearest-neighbor 
interaction results in an antiferromagnetic ground state (.$ = ()). Obviously there arc two 
degenerate classical spin configurations for such a ring, related by an inversion of spins on 
all atoms, as schematically shown in Figure 8. One example of a hexa-nuclear ferric wheel 
is discussed in detail in Section 6.1.

Two degenerate ground states are, however, separated by an energy barrier because of 
the single-ion anisotropy. The coherent tunneling is a simultaneous tunneling of all .V spins 
through this anisotropy barrier, back and forth. This process is also called tunneling of the 
Neel vector.

An additional interest in AFM ring structures comes from theoretical interest in finite 
Heisenberg systems, for which these wheels are experimental realizations. This allows us 
to test theoretical knowledge against experimental data. In particular, it is interesting to 
understand the low-lying excitations in these systems, which can be measured by torque 
magnetometry', for example ]80],

The Heisenberg model has a long research history that is probably more focused on one
dimensional chains and on lhe thermodynamic limit with the number of centers going to 
infinity [81]. The effort of exact numerical diagonalization rapidly becomes prohibitively 
large with the increase of .S’ and the number ofcenters. The molecular wheels, because of the

Figure 8. Schematic coupling of the magnetic centers in antiferromagnetic ring systems, the ground stale is 5 - 0 
with two degenerate classical spin configurations as shown in (a) and (b).
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limited number of spins and magnetic couplings, often allow for an exact numerical solution. 
The expectation values of physical observables can then be calculated from the spectrum ol 
eigenvalues as indicated, for example, in Eqs. (9) and (II). This area of research evolves 
rapidly, to a large extent because of progress in our computational means, which allow for 
the exact numerical solution, but also because of progress in the theory for finding exact 
bounds for the solutions.

The effect of a small anisotropy, as already included in Eq. (7), became crucial for the 
qualitative and quantitative understanding of the experimental data obtained from the anti
ferromagnetic wheel structures. Schnack and Luban [82] presented numerical evidence for 
the existence of a rotational band in systems of quantum spins interacting with nearest- 
neighbor antiferromagnetic Heisenberg exchange. In contrast to earlier results, which noted 
this behavior for rings with an even number of spin sites, the authors find that it also applies 
to rings with an odd number of sites, as well as for a number of other configurations (tetra
hedron. cube, octahedron, icosahedron, triangular prism, and axially truncated icosahedron). 
Further, they demonstrated how to predict in many cases the rotational band levels, using 
the underlying sublattice structure of the spin array. The characteristics of the rotational 
band can provide estimates for the low-temperature magnetic susceptibility.

Waldmann [83] numerically investigated the spin pair-correlation function of finite bipar
tite antiferromagnetic Heisenberg rings by means of exact diagonalization techniques. The 
spin pair correlation function consists of few characteristic peaks al low temperatures and 
contains a broad featureless signal at high temperatures for large spins. This arises as the 
energy spectrum exhibits a set of parallel rotational bands at low energies emerging into 
a quasi-continuum of states, with transitions from the lowest rotational band to the quasi
continuum being highly suppressed. The energies of the rotational bands can be accurately 
described by a generalized dispersion relation that depends on the total spin quantum num
ber and on the shift quantum number. These regularities become more pronounced for 
larger spins and smaller ring sizes. All these features arc associated with the underlying 
sublatticc structure of the spin rings, and it is argued that they arc valid for a more general 
class of finite Heisenberg systems than rings.

Meier and L.oss [84] theoretically studied the thermodynamic properties and spin dynamics 
of modified AFM rings, in which one of the Fe (Ill) ions has been replaced by a dopant ion 
to create an excess spin. Using a coherent-state spin path integral formalism, they derived an 
effective action for the system in the presence of a magnetic field. Further, they calculated the 
functional dependence of the magnetization and tunnel splitting on the magnetic field and 
showed that the parameters of the spin Hamiltonian can be inferred from the magnetization 
curve. From the spin dynamics in these systems, the authors infer that quantum tunneling 
of the Neel vector also results in tunneling of the total magnetization. Hence, the spin 
correlation function shows a signature of Neel vector tunneling, and electron spin resonance 
techniques or ac susceptibility measurements should be able to measure both the tunneling 
and the dccohcrcncc rate.

The molecular six-membered ferric wheel discussed below (Section 6.1) shows an 
interesting cooling behavior under the influence of a magnetic field. The process of adiabatic 
cooling, which means cooling by demagnetization, is well known. Waldmann et al. |85| have 
demonstrated the opposite effect—cooling the molecules by increasing the strength of the 
applied field—the possibility of which has been discussed earlier for other materials [86-88].

3.3. Quantum Computing with Molecular Magnets
This will not be a review on quantum computing, and we refer the interested reader to 
numerous accounts at http://arxiv.org, to review papers on that topic [89] or to recent books 
|90, 9|] for more information.

Our primary interest is that SMM systems are often mentioned as possible brick stones 
lor the realization of quantum computers; therefore, we will give a very short introduction to 
explain the underlying physics of this suggestion. In this, we will mostly follow the excellent 
review by Stcanc [89].

The broad field of quantum informatics merges ideas from classical information theory, 
computer science, and quantum physics. The idea of information as a basic concept in physics 

http://arxiv.org
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is used here and is supported by a strict mathematical treatment of information and infor
mation processing, Among several interesting directions of research in this field, we would 
like to mention:

• quantum states used for secure transmission of classical information (quantum 
cryptography)

• quantum entanglement used for reliable transmission of quantum slates (teleportation)
• preservation of quantum coherence in the presence of irreversible noise (quantum error 

correction)
• use of the inherent parallelism in quantum entanglement as a computational resource 

(quantum computing).

The elementary unit of quantum information is lhe qubit, which can be represented in form 
of a two-state system (e.g.. a spin 1/2. or any 2-level system). A quantum system contains n 
qubits if its I lilbcrt space has 2" dimensions so that one has 2'' mutually orthogonal quantum 
states available. If one writes two orthogonal states of a qubit as {[()). 11)}, then two qubits 
result in lour states {|(M>). |()l). I1(1), 111)}. Simple unitary operation on qubits correspond 
to quantum logical gates. The NOT operation would simply be expressed as

Other logical operations can be realized in a similar manner, although their realization may 
require further qubits. For example, the AND operation can be realized using three qubits. 
Combinations of such gates can be used to perform elementary arithmetical operations such 
as binary addition and multiplication.

So far we have not demonstrated anything special that would make lhe construction of 
a quantum computer interesting. Obviously, a classical computer can calculate lhe behavior 
of a quantum system, and as long as we can write down our theories in the form of equa
tions that can be coded on a computer, there are no problems a classical computer cannot 
solve—in principle. Most likely, quantum computers will not extend the set of problems that 
are solvable in principle, although there may be tasks for which classical computers are loo 
slow, but that may become solvable by quantum computers.

l he most straightforward application of a quantum computer is a simulation of some other 
quantum system. To store a quantum mechanical stale in a 2"-dimensional Hilbert space, a 
classical computer needs 2" complex numbers, whereas a quantum computer requires only 
n qubits. To be fair, it is worth noting that both types of computers will be inefficient in 
simulating the evolution of the quantum slate. For the matrix vector operations, a classical 
computer must manipulate matrices of lhe order 2“ x 2", involving many multiplications and 
additions, which requires a number of operations exponentially large in n. The quantum 
computer must build unitary transformations in the 2"-dimensional Hilbert space requiring 
an exponentially large number of elementary quantum logic gates. There is no guarantee 
that a quantum computer is able to simulate every physical system efficiently. I lowevcr. there 
is a large class of systems for which no efficient classical algorithms exist (e.g.. many-body 
systems with local interactions) but that can be simulated by a quantum computer.

One of the problems for which a quantum computer can hopefully show its full strength 
is the search of the period t of a function /(.v) = / (.v + r). This problem is closely related 
to prime factorization, which is very important in cryptography. Assume that there is no 
analytic possibility to deduce lhe period and that all we know is that N/2 < t < N for some 
N. Using a classical computer, we have to calculate /(.v) for about jV/2 values of .v to find 
when the function repeats itself. The task can be solved efficiently on a quantum computer 
by a method coming from Shor [92], The two main components of the algorithm are modular 
exponentiation (computation of «' modfV) and the inverse quantum Fourier transform. The 
advantage of the algorithm comes from calculating the value of f(x) for 2" values of a in 
parallel (imagine having 2" classical computers in parallel). For details of the algorithm see 
Stcane [89] and Shor [92],

To build a quantum computer that can be programmed universally, like today’s desktop 
computers, is well beyond the abilities of current technology. However, lhe development 



518 Molecular Nanoniagnets

of algorithms for quantum computation is already progressing, and several principles have 
already been demonstrated to work. As an example, a “quantum computer’’ realized on 
seven spin-1/2 nuclei in a molecule, hence 7 qubits, and using nuclear magnetic resonance 
techniques to manipulate them successfully factorized the number 15 using Shor's algo
rithm [93].

Another problem of high practical interest involves the search of an unstructured list for 
an item (e.g., finding a name corresponding to a known telephone number from a telephone 
directory). A classical algorithm can only make a plain search through the list. For a list 
of N items, it will require an average of N/2 steps to find the item. The task will still be 
computationally demanding on a quantum computer, but Grover [94] presented an algorithm 
that requires only sA'V steps. Bennett et al. [951 proved an interesting point: that Grover's 
algorithm is optimal, and no quantum algorithm can do better. In the following text, we 
will try to give a brief outline of Grover’s algorithm because Leuenberger and Loss [16] 
proposed an implementation using molecular magnets.

Assume that each item of the list has a label / and that we need a unitary operator U, that 
is able to test whether a given item z is equal to the entry j we are looking for. T his operator 
could have the form t/Jz> = |z) for i / j, or Uj\j) = -|/) for the special entry The method 
begins by preparing an equally weighted superposition of all states, which means that each 
state has the same amplitude (I/s/TV). Next, one has to execute vCv times the following 
loop: operate with Uj on the state, and then apply Grover's diffusion operator.

The diffusion operator corresponds to a reflection of all the amplitudes about their mean. 
As a result, the amplitude of the state in question increases (decreases) by the same amount 
it was below (or above) the average over all amplitudes. If the number of states A is large, 
the average amplitude is close to I so that only the state j that had negative amplitude 
will change. Because the sign of the amplitude we want has been reversed, this operation 
enhances this amplitude at the expense of the others. In Figure 9, we illustrate how this 
works for the case of N = 6. If one finally carries out a classical measurement, one will 
measure with high probability the state |j), which has the largest probability amplitude.

Grover [96] then showed in a following paper that the algorithm can be used to search an 
arbitrarily large database by a single query if it were possible to query the quantum computer 
about multiple items. As shown by Leuenberger and Loss [16], this can be implemented in 
terms of a unitary transformation applied to the single spin of a molecular magnet like Mn,?- 
ac or Fcx-cluster. The required superposition of states could eventually be prepared through 
the use of multifrequency coherent magnetic radiation in the microwave and radiofrequency 
range. As shown theoretically, in principle it should be possible to coherently populate and 
manipulate many spin states simultaneously by using advanced electron spin resonance tech
niques. A single pulse of a magnetic field can then create a nonlinear response of the SMM 
through multiphoton absorption processes involving particular sequences of a and 77 pho-

Figure 9. Schematic representation of the amplitudes and operators involved in Grover's algorithm for V — 6 bit. 
The second bit should be lhe special item looked for. The staring state (a) is a superposition of all states with equal 
amplitudes. The steps (b) and (c) will be iterated in a loop -/N times, so that the amplitude of that special state 
becomes large and a final classical measurement will deliver that one with high probability. This is achieved by 
changing lhe phase of the special state by tr by an unitary' operator in (b). The amplitude of that state is enhanced 
at cost of the other amplitudes by an inversion about average.
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state by pulsed ESR techniques is based on the nonequidistancc of the energy levels typical 
lor molecular magnets.

4. MAGNETIC INTERACTIONS
A rather complicated and subtle subject that often appears in the discussion of experiments 
and theory', and not only of molecular magnets, is that of interatomic magnetic interactions 
and related exchange parameters. We begin by introducing a consistent conceptual frame
work for the following discussion, after which we overview some basic knowledge related to 
the physics of magnetic interactions and introduce parameterized spin Hamiltonian models. 
Later on. we discuss how the parameters of these models can be accessed from experi
ment and first-principles calculations. Section 6 will contain numerical estimations of model 
parameters for certain SMMs.

It should be noted that the only truly magnetic interaction is the magnetic dipolar interac
tion (e.g. between two remote spins), which is mediated by the magnetic field and is effective 
also in empty space: strictly speaking, higher-order magnetic interactions like quadrupole 
interaction are possible, but because of their weakness and short-range character, they will 
be neglected in the following discussion. The dipolar interaction is weak and decreases 
as the inverse of the cube of the distance. In chemical systems, it may play a noticeable 
role in special cases; for instance, in governing the arrangement of spins of different mag
netic molecules, which arc well separated in a molecular crystal. Much stronger and more 
important are interactions through chemical bonds, which are, however, electrostatic in their 
nature. The mutual arrangement of spins occurs as a result of an interplay between Coulomb 
interaction and Pauli exclusion principle, in what is referred to as exchange interaction. It is 
crucial for understanding the short-range (and also long-range) magnetic order.

The attraction by atomic nuclei and repulsion by other electrons governs the arrangement 
of electronic states in molecular orbitals, whereby the Pauli principle demands that only two 
electrons with opposite spin may share the same orbital, l he simple case of two electrons 
helps us to understand why this interaction is called exchange. It also demonstrates that 
quantum mechanics is the foundation of magnetic ordering in solids. Given two noninteract
ing electrons at r, and r> with their respective wave functions (r,) and <p2(r^), we can try 
to construct the two-electron wave function from products of the latter. As the electrons are 
indistinguishable, the probability density should remain unaffected if we exchange them. This 
leaves us. as allowed possibilities for the normalized two-electron wave function, the sym
metric (S) and the antisymmetric (AS) combinations of the products of two single-electron 
wave functions

'As(ri, rj = — |<p|(r,)<^r(r2) + <P)(r,)<f2(rl)|

<Aas(«*h r?) = - SPi(r2)sP2(ri)1

So far we have considered only the spatial component of the wave function, but the 
electrons are also characterized by a spin. As the complete wave function for electrons 
t/z(r,. o’,; r,. <r,), including spatial and spin components, must be antisymmetric, we have two 
possibilities: an antisymmetric spin singlet state S (S — (!) together with a spatial symmetric 
state, or symmetric spin triplet T (S = I) with an antisymmetric spatial part

(3)

The energy difference between the singlet £s and the triplet E, states allows to define the 
exchange constant ./ between the spins

(4)
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A positive value of J(ES > ) favors the triplet state with .S’ — 1 and a negative J—the
singlet one.

Where does the difference between the energies of singlet and triplet stales conic from? 
Obviously it is determined only by the spatial shape of and t/rAS- Some general ideas about 
the sign of J. with the use of kinetic energy and Coulomb repulsion arguments, have been 
given by Anderson |97|. Let us assume that there are two electrons on the same atom. The 
spatially antisymmetric wave function minimizes the Coulomb repulsion, because rhe two 
electrons are spatially separated. Hence the spin triplet state is lower in energy, ./ is positive, 
and the resulting ferromagnetic-like interaction between the spins is consistent with Hund's 
first rule. Another enlightening example is represented by two electrons on neighboring 
atoms, so that they can form bonds. The corresponding molecular orbitals can be spatially 
symmetric (bonding) or antisymmetric (antibonding), as outlined above. The antibonding 
orbital has larger kinetic energy (larger curvature, on the average), which implies that it 
is energetically more expensive. This favors the spin-antisymmetric singlet state with the 
spatially symmetric bonding molecular orbital, and hence the exchange constant is negative, 
resulting in an antiferromagnetic-like interaction.

Although this concept is straightforward for two electrons, the extension lo many electrons 
becomes complicated. Still, it provides a useful starting point for further qualitative discus
sion of exchange in many-electron systems.

As a further refinement, when discussing exchange interactions through chemical bonds, 
one has to distinguish between direct exchange (resulting from an immediate overlap of 
atomic states of magnetic atoms) or indirect exchange, occurring via an intermediate atom 
or group of atoms (diamagnetic groups), which form an exchange path of coupled chemical 
bonds. The direct exchange is typical for transition metals (TMS) and is responsible for 
ferromagnetism in Fe, Co, and Ni, or for the more complex magnetic structures of C’r and 
Mn. The indirect exchange again splits into several variations, but the variety of its possible 
chemical realizations might make classification by chemical bonds ambiguous. Nevertheless, 
a number of fundamental works coined the definition of several types of indirect exchange, 
which are by now well established and routinely referred to.

Zener [98] introduced the concept of double exchange, having in mind particularly 
perovskite-type manganites with mixed valence of Mn, (La(_ v/4v)MnO3. with A — Ca, Sr, 
or Ba. These compounds are both conducting and ferromagnetic at intermediate doping 
0.2 < x < 0.4, being neither at x = 0 and 1. The double exchange enforces FM (ferromag
netic) orientation of spins at two TM ions, having different nominal valencies (Mn’’ and 
Mn4" in Zener’s original work). The exchange is realized by borrowing and refunding an 
electron from or to the closed O'* shell of an intermediate ligand. The back-and-forth 
process flips the charge states of the involved Mn ions and accounts for the observed conduc
tivity. which is blocked if all Mn valencies become uniform. The physics of double exchange 
were further elaborated by Anderson and Hasegawa [99], who proposed the appropriate 
(semiclassical) model Hamiltonian. The studies on manganites were essential to put foun
dations of the Goodenough-Kanamori rules [5-7], at which we will immediately arrive. 
The interplay between magnetic order and conductivity in manganites stimulated persistent 
interest in these systems up to this time, which lead to the discovery of “colossal magne 
toresistence” and a remarkable number of publications sec, e.g., Coey et al. [100] for a 
review.

Anderson [101] qualitatively solved the problem of indirect exchange, or “superex
change.” in insulating TM oxides, showing how the “kinetic” exchange resulting from the 
virtual transfer of electrons may become dominant in magnetic insulators and how it leads, 
in most cases, to a net AFM coupling. The starting point of Anderson’s analysis is the 
introduction of localized magnetic orbitals, related to a certain TM ion but including also 
some electron states of a diamagnetic ligand. Different magnetic orbitals may therefore 
share a common ligand and cither experience an overlap there or be orthogonal. I he simple 
argument of Anderson is "that antiparallcl electrons can gain energy by spreading into non- 
orthogonal overlapping orbitals, where parallel electrons cannot" (Ref. [101], p. 2). This is 
generalized in the form of the Goodenough-Kanamori (-Anderson) rules, stating that if two 
electrons are in orbitals that directly overlap, their exchange (i.c„ the 180 degree exchange) 
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is strong and ot an AI M type, whereas tor the (interacting) orbitals that arc orthogonal, the 
(90 degree) if exchange is weak and of the FM type. The real world sometimes deviates from 
these rules. Wcihe and Gudel 1102j critically assessed the ordci-of-magnitude estimations ol 
Anderson (101] and demonstrated that in some materials, the FM contribution in the kinetic 
exchange may dominate the AFM one. In general, however, one must note that in cases in 
which magnetic interactions are mediated by diamagnetic ligands, as is exactly the case in 
typical SMMs. the AFM arrangement seems to be the rule and the FM one a relatively rare 
exception. This is why Kollmar and Kahn | 103] considered molecular ferromagnetism as a 
challenge and outlined several strategies for enforcing the dominance of the FM coupling 
in special chemical environments.

The formalization of the above-cited physical mechanisms, and hence the estimates of 
whether FM or AFM coupling ultimately wins in different systems, proceeds in terms of 
basic parameters like the Coulomb integral, the overlap of different orbitals, and transfer 
probabilities. Their order of magnitude can be reasonably guessed, but these parameters 
are difficult to evaluate precisely because of ambiguities in their definition—which wave 
functions to use. how to account for screening effects, and so forth. The direct numerical 
evaluation of such “internal" parameters of models proved to be relatively worthless, because 
subsequent predictions of actual exchange couplings (e.g.. energy differences between FM 
and AFM configurations) come out usually far from reality. More promising is the strategy 
that focuses not on the "internal'' parameters of one model or another but on those models 
that allow a "low-lever' parameterization of the interaction energy in terms of few basic 
observables. A good example is the Heisenberg model, which casts the interaction of two 
(presumably well-defined) spins into a simple analytical form, incorporating all underlying 
physics in a single isotropic interaction parameter. An advantage of introducing such param
eters (of interaction between nominal spins) is that they are better accessible in experiment: 
for example, the Heisenberg exchange parameter straightforwardly recovers the coefficients 
in the Curie-Weiss behavior of magnetic susceptibility. Therefore, a reasonable mutual verifi
cation of calculations (at different levels of microscopic complexity) and experiment becomes 
possible. The disadvantage is that the physics remains somehow hidden. This disadvantage is 
not so strong with respect to the uh initio calculations, because the microscopic interactions 
leading to the final result are, of course, accounted for in the calculation, and they therefore 
can be analyzed in detail. For example, the issues of hybridization, localization, and charge 
transfer are typical ingredients of a quantum chemical analysis, and normally they do give 
insight into the origin of a particular magnetic ordering. If we understand them, we may 
hope to find possibilities to ‘’design," or at least to influence, the magnetic properties.

For the subsequent quantitative discussion of magnetic interactions, we must therefore 
always refer to a particular physical model that, in general, does not explain but, rather, 
describes mathematical relations between observables, It is convenient to keep such models 
simple and the number of required parameters small, However, the deviations of "reality” 
(either experiments or first-principles calculations) from the predictions of a simple model 
may demand the introduction of sophistications that bring in additional parameters. The 
values of the model parameters can be extracted from both experiment and ah initio cal
culation. Observables like temperature or held dependency of magnetization or magnetic 
susceptibility may be fitted more or less satisfactorily to the predictions of a certain model, 
yielding lhe values of interaction parameters (in the sense of this particular model only). 
The first-principles calculations provide the spectrum of eigenvalues or compare total energy 
in different magnetic configurations and derive estimates of interaction parameters from 
fitting these data, again, to a particular physical model. Therefore, one should be careful 
in comparing "measured” and "calculated" interaction parameters: They arc accessed indi
rectly and from different starting points: hence, their agreement may be accidental and the 
source ot disagreement not immediately obvious.

4.1. Spin Hamiltonians
The model Spin Hamiltonians neglect the true chemical environment and bonding and 
reduce all interactions to just a few model parameters. One is dependent on experimental 
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input to estimate these parameters, and the accuracy of quantitative predictions depends on 
the parameters chosen. Even more problematic, it is not a priori clear which interactions are 
important and should be included in the model and which are negligible. Because the inter
actions (e.g.. in the Heisenberg model) are reduced to effective interaction between spins 
only, all microscopic information about different exchange paths is lost, which is a limitation 
if one wants to optimize magnetic properties by changes of structure or bonding.

Even considering these limitations, the theoretical techniques based on Heisenberg or 
Ising Spin Hamillonions belong to the most powerful approaches to simulate and understand 
the magnetic behavior of materials. The parameterization of a magnetic interaction normally 
includes, as the presumably leading term, the Heisenberg Hamiltonian

* = -’£Z,S,S, (5)
f>y

with the summation indicating that each pair of spins S,, S. is counted only once (though 
the definition of sign and prefactor may vary between publications). As only the relative 
orientation of both spins matters, this interaction is isotropic.

The dependence on absolute spin orientation (i.e., with respect to the crystal lattice) can 
he brought in via a modification of the Heisenberg model, taking anisotropy into account:

* --2£y„[s;s; + y(s;s; + s- s;')] (6)
This form of interaction recovers the conventional Heisenberg model in the case of y = I 
and reduces to the Ising model for y = 0, or to the two-dimensional interaction for y I. 
Surprisingly, even in the case of the seemingly simple Ising model, so far analytic solutions 
are known only for one-dimensional and two-dimensional lattices [104],

Further on, the single-spin anisotropy can be included and the Zeeman term added, 
yielding

= -2 E W + D E(e,S,)2 + g/zB E BS, (7)
i>j i i

with the Lande g-factor being normally close to 2, and being the Bohr magneton. 
The single-spin anisotropy term may lack some of the true physics. It is scaled with its 
corresponding constant D and depends on the orientation of each spin S, relative to a rea
sonably chosen fixed direction in space e,; the Zeeman term scales with the external magnetic 
field B for the chosen value of the g factor.

Such model spin Hamiltonian can be further sophisticated by introducing additional 
parameters; that is, distinguishing between random (varying from site to site) and constant 
(global) magnetic anisotropy, yielding the appearance of distinct D parameters in Eq. (7). 
Moreover, higher-order terms in isotropic interaction (biquadratic exchange, etc.), as well 
as from antisymmetric Dzyaloshinsky-Moriya spin exchange [105. 106],

^dm = E^[S,xS/] (8)

can be introduced. This might be necessary to grasp essential physics, but it makes the 
extraction of parameters, usually from a limited set of experimental data, more ambiguous, 
leading to a problem of overparameterization.

It should be noted that the definition of the Heisenberg Hamiltonian in different publica
tions differs sometimes in the sign and in the presence of prefactor 2, which must be taken 
into account when comparing different sets of extracted parameters. The notation as above 
corresponds to J > () for the FM ferromagnetic coupling.

Although these Hamiltonians look very simple, they describe an enormously rich mag
netic behavior, particularly in what regards phase transitions and excitations. Once the ./„ 
arc known (or chosen), one needs “only” to diagonalize the Hamiltonian to get the parti
tion function and to calculate all desired thermodynamic properties (see Section 4.2). The 
problem is often a technical one. because the dimension of the Heisenberg Hamiltonian 
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grows very Iasi with the number of involved spins, /V, and their .S value, namely (25 4 I)' x 
(2S 4- I)'. For example, l e, (eight l e ions with .S’ = 5/2) gives (2.S t l)s = 1679616. so the 
allocation of 4 bytes for each matrix clement of the Hamiltonian would require 10509 Gbyte 
of memory' just for the storage of the Hamilton matrix. However, most of the matrix ele- 
ments would be zero and, making use of existing symmetries and special diagonalization 
techniques, such as the Lanczos algorithm, it could still be possible to deal with systems of 
this size. Clearly, one reaches very' fast the limits of current (and eventually future) computer 
technology.

In the following text, we discuss the relations of model (spin) Hamiltonians to exper
iments and to first-principles calculations. I he introduction of microscopic concepts, like 
orbitals, permit us to link the exchange constants with the real chemical structure and 
bonding. Depending on the character of the slates involved in the exchange mechanism, 
one can distinguish between them and quantify the above-mentioned concepts like direct 
exchange, superexchange (indirect exchange) in insulators, itinerant exchange (RKKY inter
action) in metals, and double exchange in some oxides or anisotropic (Dzyaloshinsky- 
Moriya) exchange. More details were given by Anderson [97] and Blundell [107].

The advantage of ub initio approaches in the extraction of interaction parameters is that 
certain mechanisms of interaction can be switched on and off in a fully controllable way. 
Thus, all anisotropy terms may only have an effect if the spin-orbit interaction is explicitly 
present in the calculation. The noncollinear orientation of individual spins can sometimes be 
arbitrarily chosen, or at least different settings of “up" and “down" configurations of spins 
with respect to a global quantization axis arc available in a calculation scheme, so that angles 
between spins become, in one wav or another, directly accessible.

The experiment does not allow such grade of control on the microscopic level: 'ihe 
magnetic field and temperature are eventually the only tunable parameters, and the availabil
ity of good-quality oriented monocrystallinc samples is not a rule. Experimental microscopic- 
techniques include only a few spectroscopic studies and (exclusively for Fe-bascd magnets) 
Mossbauer effect measurements, which are able, to some extent, to probe charge and spin 
state of an ion in question.

4.2. Relation to Experiment
Probably the most commonly available characteristics of magnetic materials arc their bulk 
(molar) magnetization and magnetic susceptibility, as functions of the magnetic held and 
temperature. These properties can be directly derived from the spin Hamiltonian, so that 
the general applicability of the underlying model can be verified and the numerical values of 
the involved parameters can be tuned. Other, microscopic techniques like nuclear magnetic 
resonance. EPR. Mossbauer effect, or optical or X-ray spectroscopy allow to probe certain 
parameters of a model Hamiltonian selectively.

Once the spin Hamiltonian is agreed on, it can be. at least in principle, diagonalized, and 
its eigenvalues E„ can determine the partition function and all thermodynamic properties 
with their dependency on magnetic field B and temperature. Specifically, the molar magne
tization is

,, _ v 'E.^EJUB exp(-EjkT)
“ 1 E„ exp(-£„/*T)

where Nis the Avogadro number. The zero-field molar magnetic susceptibility, taking into 
account the dependence of the eigenvalues E„ on the homogeneous magnetic field B. up to 
the second order

e„ = it;, + + ’’ + ••• (10)

yields

Afmol I

E„[(T - 2IF-2’]exp( -IV^/kT)

E.exp(-B?'"7A7)
(H)



524 Molecular Nanomagncis

The evaluation of the values of the parameters in the spin Hamiltonian proceeds by tilting 
the calculated temperature (or magnetic field) dependencies to the measured data. The 
practical difficulty lies in the diagonalization of the Hamiltonian, whose dimension grows 
very rapidly with the number of spins and their S values.

A common conceptual difficulty is the necessity to choose between several sets of param
eters that yield an equally reasonable fit. An example cf such ambiguity is given by 
Katsnelson et al. [108] in fitting a model eight-spin Hamiltonian for Mn12-ac to the neutron 
scattering data.

4.2.1. Mbssbauer Spectroscopy
Mbssbauer spectroscopy, based on the effect discovered by Mbssbauer [109. 111)], uses in 
most cases iron in its application and icquircs the em iclmicnl of samples with the 'Ft 
isotope. It probes the transition between the excited 7 = 3/2 and 7 = 1/2 states of the ' Fc 
nuclei. The 7 = 1/2 ground state is reached by emission of a gamma quant with 14.4 keV. This 
gamma quant is able to excite transitions in the investigated sample so that the sample can 
be probed by its resonant absorption properties. Foundations of the Mbssbauer spectroscopy 
are described, for example, in the textbooks by Greenwood and Gibb [111] and Vertes 
et al. [112], A broad review of applications is given in Gonscr [113], including a chapter on 
applications in chemistry that are closely related to our subject (see Ref. [114]).

Basic pieces of information from the Mbssbauer spectra are the isomer shift; quadrupole 
splitting, and magnetic hyperfine splitting. The transition energy between nuclear energy 
levels of the sample (probed by a resonant absorption of y-quanta) may differ from the 
reference one (recoil-free emission of the y-quanta by the Mbssbauer source) as a result of 
different electric fields at the probed nucleus and the emitting nucleus in the source. Such an 
isomer shift <5 reflects the contact electron density (at the nucleus, because of s-electrons), 
in which the 4s contribution is screened by the more localized 3r7 states. This allows us 
to discriminate the charge/spin state of iron (with some ambiguities) by the value of the 
observed isomer shift

5 = ^Ze2^)[|^(0)soun.c|2 - |<M0WI2] (12)

where 8R = Ri^i/2 — Ri-in is the difference in the '7Fe nuclear radii in the excited and the 
ground state, and R is their average value. Both constants in Eq. (12), 8R/R and i//( (())„,urcc- 
arc fundamental properties of the Mbssbauer source, albeit being dependent on tempera
ture.

The quadrupole splitting Eq arises because of the “nonsphericities” of both the nucleus 
and the ambient electric field. The 7 = 3/2 state possesses an electric quadrupole moment

eQ = £d3r p(r)r2(3cos2 0-1) (13)

where p(r) is the spatial density distribution in the nucleus (Q > 0 corresponds to a prolate 
nucleus and Q < 0 to an oblate one), and hence the 7 = 3/2 energy level splits by an external 
electric quadrupole field into*W; = ±3/2 and m, = ±1/2 levels, yielding a doublet in the 
detected spectrum. The effect of an external electric field E can be comprehended by its 
electric field gradient (EFG) tensor at the nucleus site

where x„, xp arc Cartesian coordinates, which can be transformed to principal axes chosen 
such that | KJ > |b’v,.| > Moreover, as the Laplace equation requires this tensor to
be traceless, it is fully specified by just two parameters, K. and = (K,, — F', )/K., 0 5 
17 < I. The EFG tensor reflects the asymmetry of the near environment, hecaise of the 
shell structure of the Fe atom, and to the ligand field. The Hamiltonian of the quadrupole 
interaction—see Vertes et al. [112] or Giitlich (114] for details—allows an exact solution 
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for 7 = 3/2. according to which this nuclear state splits by

I n-
= i + y

The EFG can be directly calculated by high-precision ab initio methods, as demonstrated 
by Jena [115] and then by Blaha et al. [ 116], More details on practical calculation of EFG, 
and more results for different systems, were given by Petrilli et al. 1117|. Such studies provide 
good benchmarks for testing the accuracy of calculations, but they also help to decipher 
experimental results, as the value of Q cannot be in practice calculated according to Eq. (13). 
and earlier literature (see. e.g., Ref. 11 I 11) re fleets a certain controversy on this subject. A 
first-principles calculation of EFG in a number of binary Fe compounds [ 118| proposed to 
set the hitherto disputable (J value for ' Fe at 0.16 barn. Later, first-principles calculations 
using this number resulted in good agreement between calculated quadrupole splittings and 
measured values for Fe-based molecular magnets 1119],

Finally, the degeneracy of both 7 = 1/2 and I = 3/2 states in may be lifted in an 
external magnetic field 7? as a result of the nuclear Zeeman effect

7? (14)

where g is the nuclear Lande factor and the nuclear Bohr magneton; that
is, the magnetic hyperfine splitting. Taken together with the selection rule Am, = 0. ±1. this 
leads to a sextet in the Mossbauer spectrum.

Mossbauer spectroscopy (with varying temperature or magnetic held) allows us to probe 
electronic properties; that is. essentially the parameters of spin Hamiltonians resulting from 
the relative independency of nucleus-related parameters (like (?) in the above formulae 
on the chemical environment. A recent review of applications to biomolecules was given 
by Schiinemann and Winkler [120]. In the domain of molecular magnets. Mossbauer spec
troscopy became a standard tool for a primary characterization of newly synthesized Fe-based 
compounds. Taft et al. [1211 reported (among other properties) the isomer shift and hyper
fine field parameters of the circular "ferric wheel" molecule, [Fe(OMe);(O?CCI I 2CI)]10. 
Gorun et al. [122] performed a study on the Fe,,O„(OH)(1(O,CPh)|S. For these two systems, 
the isomer shift and quadrupole splitting were later calculated from first principles by Zeng 
et al. [123, 124], correspondingly. Bottyan et al. [125] studied two-dimensional molecular 
ferrimagnets with a Fe( 11)—F'e(111) crossover. Coronado et al. |I26| reported a series of 
hybrid layered molecular magnets in which Fe enters different crystallographic positions and 
appears in different spin configurations. In di nuclear spin-crossover Fc(II) compounds, the 
changes of Mossbauer spectra with temperature [127] and magnetic field, combined with 
light irradiation [128], have been reported.

4.2.2. Magnetic Resonance Techniques for Electron and Nuclear Spins
A reorientable magnetic moment M put in tin external magnetic field B = (0. (), 77.) at a 
general angle starts, according to classical electrodynamics, a precession with a frequency 
o> ~ MBZ. The precession occurs at no energy cost, but feeding in some energy to the 
rotating moment [i.e. via applying a small alternating magnetic field in the (,v. y) plane] 
leads to a resonance behavior: As the frequency of the (small) alternating field approaches 
cu, the system starts to absorb, and the rotating moment sets itself at a different (higher 
energetic) angle to B. In quantum systems, instead of precession, one speaks of splitting 
of energy levels in the external magnetic field, accounted for by the Zeeman term in the 
Hamiltonian—see Eq. (7) for spin systems—that lifts the degeneracy in

= gXt/<"'s7* (I-s)

If the rotating magnetic moment is that of a nucleus, the energy splitting is given by Eq. (14). 
The alternating field at frequency w = 277/’ may then induce transitions between the split 
levels, either within a spin doublet />/<, = or—in case of nuclear spin t—between
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nil — (—/....... /) levels, compatible with the selection rules Sm, = ±1 for the perturbing
matrix elements {in t\i ^nt',}. The resonance condition is

= <>6)

for or jtiN are Bohr magneton or nuclear magneton, and g is corresponding (spin or 
nuclear) Lande factor.

Although the physical foundation is the same (sec. e.g., Ret. [129] for an introduction to 
the subject), the relation between the applied magnetic field /?. and the resonance frequency 
is very different for cases in which either electron spin or nuclear spin experience transitions 
between Zeeman levels. This gives rise to two different experimental techniques: electron 
spin resonance (ESR) and NMR. The resonance line can be scanned either by varying B 
at fixed probing frequency (which is a more common practice), or by tuning the frequency 
in the fixed field. Current NMR spectrometers have magnets with 12-15 T and operate in a 
radiofrequency range of 500-650 MI Iz; for ESR, because of smaller electron mass, and hence 
P-b /u.N, the characteristic frequency/field relation fJ.R/h = 13.99624 GHz/T is larger (e.g.. 
typical spectrometer parameters could be 0.34 T at 9.5 GHz; there are different "bands'" for 
microwave generation, which use different element base and cover, with gaps, the frequency 
range I to ~ 35 GHz). This is, therefore, the microwave range, which requires quite 
different element base than the radiofrequency domain of NMR. The sample is placed in a 
cavity with a very high quality factor that is designed to enhance the microwave absorption 
The latter requirement is one reason why it is much more convenient to sweep the external 
magnetic field and to keep the microwave radiation fixed. However, the frequency-domain 
magnetic resonance spectroscopy has its advantages, as is discussed below.

The ESR is also called EPR (sec, e.g., 130), because its realization needs the presence 
of unpaired electron spins in partially occupied shells (i.e., paramagnetic centers in the 
sample). These spins can be TM ions or purely organic free radicals. TM ions may possess 
higher spin than 5 = 1/2; correspondingly, the structure of levels in magnetic field, and of 
the transitions between them, may become more complicated, as is illustrated by Fig. 10.

Figure 10. Schematic illustration of ESR absorption spectra for 5 = 5/2 without zero-held splitting (a) and with 
zero-field splitting (b) together with corresponding energy levels as function of magnetic field. The zero-field split
ting is introduced by adding a term with /)„ < 0 to the spin Hamiltonian that results in multiple ESR 
absorption lines.
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The case of S = 5/2 chosen there corresponds to. for example the Mif' ion. Figure l()a 
corresponds to the Zeemar splitting and live allowed equidistant transitions at any B value. 
Figure 10b is complicated ly adding zero-field splitting—the term in the right side of ol 
Eq. (7)—which lifts the degeneracy of levels in mA and scales as z?t(. In place of a single 
resonance value of B., oik gets multiple ESR lines. (Note that not all allowed transitions 
are shown in Fig. 10b). On: can expect that the intensities of these lines will change as the 
temperature decreases, so hat the transitions involving the energetically lowest state will 
ultimately dominate. This cm be either lhe low-held or the high-held line, depending on the 
sign of D.

The NMR (see, e.g., Rcf.[ 131. 132], for an introduction to the subject) can be detected on 
nuclei that possess a spin rroment; there are many isotopes that fulfill this requirement, but 
as the concentration of isotipe must be sufficiently high, there are essentially 'H, 2H(= ’D). 
and 13C, which come into discussion for the study of molecular magnets (other possible 
candidates are l5N and ”1). Goto et al. 1133] reported, however, a "Mn NMR study on 
Mn(I-ac and discussed the results for the transverse relaxation rate in terms of thermal 
fluctuations of the 5 = 10 cuantum state.

The importance of magnetic resonance techniques for chemical studies is a result of the 
fact that the exact positioi of the resonance line, its shape, and possible fine structure 
depends on the chemical environment of the probing spin. Il can be both an advantage 
and a disadvantage for extacting the information from the spectra that the detected res
onance signal is accumulat'd over many individual spins, which may experience different 
environments.

Probably the most impertant characteristic for chemical characterization by means of 
NMR spectroscopy is the hemical shift. Il means that as a result of shielding effects by 
orbital electron motion, anl also because of variations in the spatial spin density, the local 
magnetic field at various trystallographic positions of chemically identical probing nuclei 
may differ, and these tiny -ariations on top of the large external field B. (on the relative 
order of 10 (’) can still be resolved in NMR because of its high sensitivity (fractions of Hz. in 
the frequency domain). Tht amount of shielding for a given chemical environment is often 
known empirically, or it cat be calculated from first principles (see, e.g., Sebastiani [134]). 
Tile clienllciil Shift filliSl in jiinciple be ptcscnl in the ESR spectra, but il is usually discussed 
in terms of effective g partmeter. It incorporates the variations of the effective magnetic 
field at the position of the sample, some of which scale with the external field (because of 
the magnetic polarization cf the medium), and others remain constant, as they are caused 
by dipole fields of the electon system and nuclei.

Another issue responsible for additional features in spectra is the hyperfine interaction. 
From the point of view of E>R, this is the splitting of zzts spin levels resulting from interaction 
with nuclear spins in the neighborhood.

Typical for the ESR practice is the incorporation of essentially all details related to the 
fulfillment of the resonanci condition (i.c., the relation between B and S) into the g factor. 
The observed resonance frequency, and hence the Zeeman splitting, can be anisotropic and 
is not well described by E|. (15). lhe origin of this anisotropy is the contribution of the 
electron’s orbital moment l> the interaction with the magnetic field. The orbital moment is. 
of course, coupled to the beal coordinate system at the paramagnetic center and depends 
on the chemical environmuit. Whereas one can formally consider a Zeeman effect for the 
orbital moment and the s>in-orbit coupling, experimentally the orbital moment remains 
inaccessible to ESR. This i. the reason why the spin Hamiltonian in ESR is formulated in 
terms of controllable effeetve vector variables, B and S, with effective parameters in tensor 
form. Specifically, the singl- site part of Eq. (7) could be typically modified as

X = S f) S + g S - In - S An I* (17)

including the hyperfine interaction with the nucleus and the nuclear Zeeman effect. The 
single-site anisotropy is als< represented by a tensor, the main components of which, as with 
those of g. can be obtainet from fitting the experimental spectrum to the spin Hamiltonian.
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Applications of ESR to molecular magnets by now have become quite numerous; appar
ently the majority of them deal with Mni:-ac. Hill et al. [52] performed measurements on a 
single crystal at different orientations and temperature values. Among recent publications. 
Rakvin et al. [135] probed the magnetic fields and magnetic field gradients near the sur
face of crystalline Mn^-ac. Bill et al. |136| illustrated the complementarity of ESR with 
Mdssbauer spectroscopy for the study of a dimeric complex containing Fc(lll) in high-spin 
state.

As mentioned above, the scanning of the ESR resonance signal is typically done by varying 
the magnetic field at fixed frequency. However, the technically more demanding frequency 
domain studies promise certain big advantages. For one thing, they allow to probe transitions 
between states with different not only split by the magnetic field but also subject to zero
field splitting (as indicated in Fig. 10, right panel). Either by doing measurements at zero field 
or by observing the variations of resonant frequencies with Li. one can effectively eliminate 
the Zeeman term from the spin Hamiltonian, thus reducing the number of parameters to 
be determined from fitting the data. The removal of all ambiguities related to the g-tensor 
allows us to concentrate on extracting the magnetic anisotropy parameters £), E from zero
field splittings and to estimate them with high precision. The ESR is indeed one of the 
most powerful experimental tools for accessing the zero-field splitting parameters, which are 
directly related to the magnetic anisotropy barrier of the SMM.

Working at low magnetic fields (including zero field) minimizes distortions of the line 
shape and allows us to extract additional information from lhe latter. An example of cal
culating the ESR linewidth on the basis of assumed values of spin Hamiltonian parameters 
(for Fes and Mnt2-ac molecular magnets) has been given by Park cl al. [137, 138],

Another group of allowed ESR transitions in molecular magnets, related neither to the 
Zeeman effect nor to zero-field anisotropy, are transitions between excited states of the 
total spin 5 of a molecule. Taking for example Mn12-ac, these are transitions between ms — 
±10 (ground state) and ms = ±9. but as the temperature grows (from about 3-15 K; see 
Ref. [139]), the higher states with smaller |m$| are populated, and more transitions become 
observable. The energy difference between ms = ±10 and nis = ±9 is about 10 cm 1 in 
Mnl2-ac, which corresponds in terms of frequency to 300 GHz. Such transitions were indeed 
detected by Parks et al. [139], using time-domain terahertz spectroscopy.

A review on the frequency-domain ESR techniques, including many applications to molec
ular magnets, has been recently provided by van Slagercn et al. [140],

4.3. Relation to First-Principles Calculations
By first-principles calculations, we mean those that attempt to solve the most general 
quantum-mechanical equations; i.e., either Schrodinger or Dirac equations, for a system 
of either fixed or movable point-charge nuclei, accommodating many electrons. The exact 
analytic solution for the distribution of electrons is not possible for cases more complex 
than a hydrogen-like (one-electron) ion. The necessary approximations can be divided into 
conceptual and technical ones; but important for both types of approximations is that the 
approximation should be of general type and not ad hoc for the particular system under 
investigation. In other words, we speak about methods that do not include adjustable param
eters specific to the system of our interest and that would need tuning to agree with external 
(experimental) information, in contrast to empirical or semiempirical methods. The mere 
chemical composition and, at most, the assumption of the crystal structure should be fully 
sufficient to perform the simulation and to calculate the electronic and magnetic properties. 
From the ability to calculate total energies and forces, it becomes further possible to investi
gate the relative stability of crystal structures and to predict elastic, vibrational, or transport 
properties.

The conceptual approximations are those that make the problem technically solvable, l he 
approximation with the largest effect historically is the mean field approximation, which 
reduces the many-body problem to a single-particle one. This approximation laid the foun
dations of the Hartree-Fock (HF) method and was one way that lead to density-functional 
theory. The basic assumption in the HF method is that the .V-clectron wavefunction
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i/dr, r...... rv) is represented by a single Slater determinant

<Pv<r\)

(IS)

constructed from one-electron wavefunctions tf„(r). Such functions can be obtained varia- 
tionally from solving a set of coupled integro-differential HF equations in a fixed external 
potential (e.g.. Coulomb field of fixed nuclei) U(r)

«p;(r )<;,('•)■
|r-r-| .

<p;(r )sC,(r)</>(1(r )
|r - r'|

(19)dr = etl?„(r)

The HF method as such does not provide chemical accuracy: that is, a quantitative satisfac
tory attribution of total energies to ingredients and products of a typical chemical reaction. 
However, a systematic improvement can be obtained by allowing additional contributions of 
the type of Eq. (18), or different electronic configurations, to the many-body wave function. 
The construction of such mullidcterminantal wave functions ultimately provides sufficient 
variational freedom to adjust the expectation values of the total energy in different electronic 
configurations of the chemical constituents to reach chemical accuracy, making the method 
interesting for practical predictions. First-principles calculations with the use of multide- 
terminantal wave functions constitute the domain of quantum chemistry (QC). Apart from 
details of implementation [how to mix different configurations, how to express one-electron 
functions y„(r) in Slater determinants numerically], the HF method and its multiconfigu- 
rational generalization do not have any parameters whatsoever. They can therefore often 
serve as clear-cut benchmarks, and the notion of Hartree-Fock limit in a certain calculation 
makes sense as an ultimate result, if the errors of the technical (numerical) realization arc 
sufficiently suppressed.

The situation is somehow different when we consider methods based on density-functional 
theory. Leaving aside the variety of ways one has introduced, or justified, the theory (see 
Dreizler and Gross [ 1411 and Eschrig [142] for reviews), its central message is the removal 
of the many-clectron wave function from the picture entirely, putting in its place the one- 
electron density

p(r) = I i/F(r.r......... rv )t//(r, r...........r,v )c/r,... </rv

as subject to variation in the search for the total energy of the ground state. This is sufficient 
for applications that just aim at the density p(r) and the total energy, but not at the struc
ture of the wave function, and such applications indeed comprise a large class of relevant 
numerical studies for practical purposes, whereas the applicability to the ground state only is 
a certain limitation. In practice, it is important that the variational search occurs near a well- 
isolated local minimum on a total energy hypersurface, with respect to variation parameters. 
For example, different magnetic configurations might be typically treated without problem, 
and their respective "ground-state energies” reasonably compared.

The cornerstone of DFT is the Hohenbcrg-Kohn theorem [143] that the total energy 
E in the ground state is a functional of the charge density p(r) only. As this functional 
E[p(r)] remains (yet) unknown, however, several working approximate schemes have been 
developed. Following Kohn and Sham [ 144|. the total energy can be split into several clearly 
defined parts (kinetic energy of noninteracting quasiparticles, electrostatic interaction of 
electron density with itself and with external fields) and a parameterized rest (the exchange— 
correlation energy. E’X( |p]). An important difference to semiempirieal methods is that this 
parameterization is not supposed to vary «</ hoc from system to system but. rather, attempts 
to reflect certain basic and universal features of the underlying electronic system one deals 
with. In particular, one hopes that it describes exchange and correlation effects of the inho
mogeneous electron liquid adequately. Using perturbation expansions within the many-body 
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theory, or high-precision numerical simulations of the model system with the quantum Monte 
Carlo technique [145, 146], it has been possible to obtain some estimates of the exchange 
and correlation energy for various densities. This information has been used to derive a 
parameterized description of the exchange-correlation energy. This allows us to include the 
effect of electronic correlations (i.e., mutual avoidance of electrons beyond the simplest 
mean-field approximation) that remains out of the HF scheme by its construction. However, 
the extent to which the correlations are included remains unclear, and different prescrip
tions to treat exchange-correlation have been developed over the last decades lo give rise to 
numerous “families” of exchange-correlation potentials beyond the earliest and simplest one, 
the local density approximation (LDA). In particular, emphasizing different aspects of the 
inhomogeneous electron density resulted in gradient corrected approximations [147. 148|. 
weighted density approximation [149. 150], self-interaction corrected schemes [151. 152], and 
special schemes for treating strongly correlated systems, like LDA + U [153]. Such flexibility 
considerably improved the numerical precision, meeting the chemists’ aspirations of chemi
cal accuracy, and paved the way to broad use of density-functional methods in computational 
chemistry as a reliable and computationally less expensive alternative to quantum-chemical 
methods [154-156], On the other side, as some recipes tend to work well for certain systems 
and not for others, one has to accept the not so pleasant reality that essentially all prescrip
tions for exchange-correlation contain explicit or hidden assumptions and parameterizations, 
the domain of validity of which is not always obvious.

Even as the concept of wave function is pushed to the background in the density-functional 
theory formalism, it often reemerges for the sake of chemical transparency and analysis of 
results. It is difficult to discuss bonding and antibonding states having access only to the 
charge density. Although a density-functional theory calculation for a N-electron system 
can in principle be realized by referring to the density p(r) only, it turns out IO be very 
convenient, as was proposed by Kohn and Sham [144], to express the density p(r) (searched 
for) via fictitious functions </f,(r), which are postulated to be wavefunctions of noninteracting 
quasiparticles without apparent physical meaning, but possessing the same density as the 
true physical system:

p(r) = E|<Mr)|2 (20)
0=1

The primary advantage of this construction is the simplicity in calculating the kinetic energy, 
which otherwise has no obvious form as a functional of p(r), and the possibility of formu
lating a set of (Kohn-Sham) equations for i/>,(r) that arc conceptually similar to the HF 
equations in Eq. 19

2m J |r - r'| op(r) Mr) = (21)

This brings in a convenient quantum-chemical environment in the sense that one may dis
cuss hybride orbitals, positions of energy levels, and density of states distribution, even as 
all this has no solid foundation and. strictly speaking, no physical meaning in the frame
work of the Kohn-Sham formalism. Only the total energy and the electron density can be 
meaningfully discussed. Even as some amount of interelecironic correlation may be taken 
into account by the choice of exchange-correlation functional, the resulting charge density 
still has a one-determinantal character because its construction in the Kohn-Sham method. 
This imposes certain limitations on the interpretation of DFT results, which must be treated 
differently from their QC counterparts for the extraction of magnetic interaction parameters 
from calculation, as discussed below.

The reintroduction of the many-body wave function beyond its single-determinanlal rep
resentation, however, faces no principal obstacles in the framework of density-functional 
theory. Capelie [157] proposed a way in which to perform the variational search over several 
determinants of Kohn-Sham functions that is similar but not identical to allowing for config
uration mixing in quantum chemical schemes. This should result in a systematic lowering of 
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the estimated ground-slate energies and improve the accuracy in representing charge density 
distributions in more complex systems.

After discussing the conceptual limitations, we note brielly th.it am Inst principles scheme 
also contains approximations of technical, or numerical, character. I hcy deal with organizing 
the solution of either HF or Kohn-Sham equations, the choice of appropriate basis set. 
performing spatial integrations, and so forth. Some discussion on this subject, in view of the 
applications to SMM. is given in Section 5.

Turning now* to the problem of evaluating the parameters of spin Hamiltonians from first 
principles, we note that in executing the calculation, one has the freedom to impose certain 
constraints (fix the magnitude or orientation of magnetization, modify the potential felt by 
certain electronic states, switch the relativistic effects on or off) and inspect the effect of 
these constraints on the total energy Moreover, one-electron eigenvalues and corresponding 
(Kohn-Sham or HF) eigenfunctions arc also available from a self-consistent calculation. 
There are certain subtleties related to the extraction of exchange parameters from QC and 
DFT calculations that one should be aware of.

In QC. one deals w'ith a multiconligurational scheme that allows us to mix different spin 
configurations and to classify energy eigenvalues according to different total spin values. For 
two interacting spins S, , S? summing up to S = St + S2. one gets

2SrS, = S- -Sj -S;

with eigenvalues [5(5 + 1) - .S',(,S, + I) 5\(5? + I )|. For a textbook example 5, = 4. 5, = ' 
this yields singlet (S' — (I) and triplet (.S’ = I) states. The corresponding eigenvalues of the 
Heisenberg Hamiltonian must then be 3/2J and 1/2./. correspondingly.

Indeed, the basis functions in an nb inilio calculation are normally pure spin stales. On the 
basis of spin functions |/nSi/ns.), for the case S( = i. 5, = '. the Heisenberg Hamiltonian 
takes the form:

The diagonalization of Eq. (22) is achieved by a basis transformation that mixes different 
nrs values:

(singlet) 5 = 0 /.=

(23)
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In a QC (muhidetcrminantal) calculation, the eigenvalues of singlet and triplet states. Es 
and E,. are immediately accessible. This allows the (formal yet unambiguous) mapping of a 
first-principles result onto the Heisenberg model:

Es - E, = 2./ (24)

compared to the model case of two electrons in Eq. (4). The case .S', j corresponds to. 
for example, two interacting Cu’* ions. Other ions from the 3t/ row yield richer systems 
of eigenvalues; for instance. 5, 2 = I (two Ni?" ions) produces a quintet level E,, beyond 
singlet and triplet, with lhe energy separation

ES-EO = (J (25)

Whether both Eqs. (24) and (25) can be satisfied by the same ./ is a measure of validity of 
the Heisenberg model.

In density-functional theory, lhe search for the “true” wave function is avoided (see 
Capelie [157] for an attempt lo address this problem) and is substituted for the variational 
search for the charge density and total energy. As the eigenvalues of multidetcrminantal 
states are not available, one must rely either on lhe Kohn-Sham eigenvectors or on total 
energies in specially prepared symmetry-breaking metastable states, subject to different con 
straints with respect to the spin stales ol a system. In practice, one can try FM or antifer
romagnetic (AFM) configurations of two spins, or impose the fixed spin moment (FSM) 
scheme, first introduced by Schwarz and Mohn [158]. The total energy in different spin con
figurations does not relate to the eigenvectors but to diagonal elements of, for example, the 
Hamiltonian H of Eq. (22)

and hence

Eaim — £fm = (27)

for the above case of .Sj 2 = This is a valid representation for J provided the Heisenberg 
model itself remains valid throughout the path from FM to AFM state. The latter formula 
can be approximated using the concept of a magnetic transition state [159], In general, 
according to Slater, the shift in the density-functional theory total energy AE resulting from 
a whatever change An, in the occupation of certain orbitals is

AE-£AW,< + ft(An3) (28)
i

where e* are Kohn-Sham eigenvalues obtained self-consistently with occupation numbers 
midway between initial and final states. For the flip from FM to AFM configuration.

EKm - Eafm - E<".1 ~ )«. “ 
t

where (nJ — n;1 ) is the magnetic moment (which gets inverted) in the orbital i. The latter 
bracket is the spin splitting (in energy) of the same orbital, calculated in the configuration 
with zero spin on atom A (transition state); that is. induced fully via the interaction with 
the second spin. Although being approximative, the magnetic transition slate scheme might 
have a certain advantage of numerical stability over explicit comparison of large total energy 
values. Moreover, the result is available from a single calculation and offers a microscopical 
insight into how different orbitals arc affected by magnetic interaction—information that 
remains hidden in the total energy numbers. As it has been of use a number of times in the 
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past (primarily lor magnetic oxides), the method has recently Keen applied to the analysis 
of exchange parameters in MnL,-ac |I24|.

The validity of either the finite difference" scheme of Eq. (27), or ‘differential'" proce
dure of Eq. (29) presumes that the mapping onto the Heisenberg model makes sense in the 
first place. However, with just two interacting spins, we have no immediate criterion about 
whether this is true. The applicability of the Heisenberg model would mean that the func
tional part of the interaction comes from the scalar product of two spin operators, with the 
parameter./, being independent on S, and S . The mapping on the Heisenberg model may 
be less ambiguous if it is done as a limiting case of small deviations from a certain station
ary state, fhe meaning of such deviations in the density-functional theory might be some 
admixture to pure spin states (in the sense of local spin density functional); that is, the non
diagonal (in the spin space) form of density matrices. It allows a transparent quasi-classical 
interpretation in terms of noncollinear magnetic density varying from point to point in space 
(see Sandratskii (160] for a review ). If a pair of local magnetic moments can be reasonably 
identified in the calculation, and their small variations from the global magnetization axis 
are allowed, the counterparts in the Heisenberg model will be deviations of local exchange 
fields at two corresponding sites. Matching the leading terms in the angular dependence of 
interaction energy in the density-functional theory and in the Heisenberg model leads to the 
desired mapping. This line of arguing goes back to at least Oguchi et al. [ 161 ], who extracted 
interaction parameters in simple 3r/ oxides from DFI calculations. Liechtenstein cl al. 
[ 162. 163] and Antropov el al. [164] worked out closed expression forin a form consistent 
with spin-fluctuation theories (with magnitude of spin varying and attributed to .S’) in terms 
of the elements of the Green’s function [Note, therefore, the difference in the definition of 
7,f between these papers and that in Eq. (5)|. When using the final formulae, one should 
be careful to check whether it was not implicitly assumed that .S’ = 1/2. and also examine 
the prefactor and sign of the exchange parameter that may be introduced differently. The 
following line of argument leads to a formula that has been used in a number of calculations. 
If the total interaction energy of two quasi-classical spins is

E = Z,S,S, (3(1)

its variation caused by the change of the angles of the spins fig;. fi(g( reads

8ZE = JliS:8ip,H<Ft (31)

In the attempt to cast a variation of density-functional theory total energy in a comparable 
form, one can profit from Andersen's local force theorem, which works here because we 
are interested in infinitesimal deviations from the ground state. An explicit derivation of the 
local force theorem in the desired form is given in an Appendix of the paper by Liechtenstein 
ct al. 1163], In terms of the Green’s function 6 and Kohn-Sham Hamiltonian 7/‘, the lirst 
variation of the total energy reads

5E =—f ’ r/e Im Tr (fi*',) (32)

(which can be shown to be zero), and the second variation is

, I F'fi'E =---- / </e Im Tr (fi*77 + fi/z <,<577 6) (33)
71 J

The variation of the Kohn-Sham Hamiltonian can be explicitly related to rotations in spin 
space as

fi 77 — - fi<p,17z. <r ] (34)

with the Hamiltonian composed of a spin-dependent part at the site z. with A, = L’/ — I'/ 
[a potential, in general, nondiagonal in (/. zn)j and the rest 7/1(:
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This yields for the variation of it

',) + j8<pvA, (i (') (36)

Extracting from Eq. (33) the terms bilinear in recovering site and spin indexes in the 
elements of the Green's function G[f and implying the summation in (/. m) yields

4 = "2^lm,f' + a,g?a,g;) (3?)

This is the final formula for lhe interaction between isolated spins in an otherwise infinite 
and unperturbed environment. If one is interested in the interaction between two sublattices 
of periodically repeated atom types z and /, lhe Green function follows explicitly in terms of 
Kohn-Sham eigenfunctions and eigenvalues

(38)

(39)

(40)

Using lhe following relation for the product of Green’s functions

1 _ 1 / I _ 1_
(e-e„)(e-c„ ) \ e — e„ < - e„.

the integration in energy over occupied states yields

J = V A' y" A7if / - min Arnm'm 'm " i/rm'" 

w

in terms of a nonlocal susceptibility, which depends on (he Kohn-Sham occupation numbers

Xmm’m'm"' ~ v'likl V'nkjV'nkl
knn' fc"M tn’kJ

which is a formula probably first given by Liechtenstein et al. [165] and used in a number 
of publications, notably by Boukhvalov et al. (166] for Mn12-ac. It should be understood 
that this formula describes the interaction between two sublattices rather than two spins, 
and hence may give numbers very different from those. The above derivation relates to 
S = 1/2, and therefore the values reported for had to be rescaled according to the values 
of the actual interacting spins (e.g., Mn atoms), a fact not always clearly stated in publica
tions. Such scaling in Ref. [166] has been performed using the LDA (fractional) calculated 
values of magnetic moments, rather than nominal (integer) values (D. Boukhvalov, private 
communication).

4.4. Spin-Orbit Coupling and Magnetic Anisotropy Energy

Even for cubic bulk crystals like Fe, Co. or Ni, it has been found that along certain crys
tallographic directions it is easy to magnetize the crystal, and along others it is harder (see. 
e.g.. Blundell [107]). In a general case, there will be a magnetic easy, medium, and hard axis. 
The anisotropy leads to an additional energy dependence on the direction of magnetization 
that is caused by spin-orbit coupling and partial quenching of the orbital momentum by the 
crystal field.

A special case is uniaxial anisotropy in which the energy depends only on the angle with 
respect to a single axis. Two of the axes have the same energy, and one axis is different (this 
is fully analog to the definition of uniaxial crystals). If the lowest energy corresponds to the 
single axis, that means that the magnetization would prefer to align along that axis, and 
the system is called "easy axis". In the case in which the magnetization would be favored n 
the plane spanned by the other two axes, lhe system is called “easy plane.”
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The magnetic anisotropy energy is quite small—usually between several meV to /zeV 
per magnetic atom. Please note that in cubic systems, the second-order contributions to 
the anisotropy energy vanish by symmetry, so that like in bulk Fe, Co, or Ni, there will 
be only fourth-order contributions that are very' small. The molecular nanoinagnels we are 
interested in are mostly interesting because of their large magnetic anisotropy. All the single
molecule magnets that generated interest in the past have a relatively low symmetry, so that 
the second-order contributions, which are orders of magnitude larger than the fourth-order 
contributions in bulk crystals, do not vanish. If one wants to design a molecular nanomagnet, 
one has to stay away from cubic symmetry but should try to make it an easy axis system.

An additional but completely different form of anisotropy is shape anisotropy, which is 
caused by the demagnetization energy associated with the sample shape. In thin films, for 
example, the shape anisotropy may lead to a preferential in plane magnetization. We will 
not deal with this kind of anisotropy here, although one should remember that experimental 
results may have to be corrected for that contribution. In the remainder of the text, wc will 
refer to the magnetocrystalline anisotropy as the magnetic anisotropy only, neglecting the 
shape anisotropy completely.

As early as 1937, van Vlcck pointed out that the MAE arises mainly because of spin-orbit 
coupling and other relativistic terms in the Hamiltonian. Calculations of MAE in solids, 
layered structures, and films have been carried out for many years using density-functional 
theory' [167-171]. Several problems associated with the accurate density-functional-based 
determination of MAE in the solid state have been identified. For example, the role of 
incomplete orbital polarization has been shown to be one issue related to inaccuracies in 
the solid; others may be related to correlation effects beyond the mean-field treatment of 
correlations in the DEE

Recently. Pederson and Khanna [172. 173] have developed a method for accounting for 
second-order anisotropy energies. This method relies on a simple albeit exact method for 
spin-orbit coupling and a second-order perturbative treatment of the spin Hamiltonian to 
determine the dependence of the total energy on spin projection. It makes use of the Carte
sian representation of the spin-orbit term, which is exact and is also more adaptable for 
mullicenter systems

t/(r.p.S) = --^S p x V<l>(r) (42)
2c-

Using single-particle wavefunctions expressed in terms of a basis set

(43)
J. <r

where the (r) are the spatial functions and y arc spin functions, the matrix elements can 
be expressed as

(44)

(45)

where the operator F, is defined as

dy /
<b

dy dz
(46)

In the above, 4»(r) is the Coulomb potential. Thus, this treatment uses matrix elements of 
the Coulomb potential with partial derivatives of the basis functions, thereby avoiding the 
time-consuming task of calculating the gradient of the Coulomb potential directly.

Here we generalize some of the derivations from uniaxial symmetry to an arbitrary one. 
The same definitions and lettering of the symbols is used as by Pederson and Khanna [173]. 
In the absence of a magnetic field, the second-order perturbative change to the total energy 
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of a system with arbitrary symmetry can be expressed as

(47)
era' ij

which is the generalization of Eq. (19) of Pederson and Khanna |173|. In the above expres
sion. a sums over the spin degrees of freedom and z, / sums over all the coordinate labels. 
.V, v. z. respectively. I'he matrix elements S'"' ~ / implicitly depend on the axis of
quantization. The matrix elements M'™ are given by

= y IKI<M (4S)
77 el" ~ Eka

where </•>,„ are occupied and are unoccupied states and e is lhe energy of the corre
sponding states.

The above equation can be rewritten in a part diagonal in the spin index plus the nondi
agonal remainder according to:

V = E E + E E E,r H9)
ij </ ij

Using the following relation for the expectation value of a spin operator in a closed shell 
molecule with excess majority spin electrons A.V

(S'(1|S(-|1> = -(2|$,[2> = ^- (50)

the first term of Eq. (49) can be expressed as

<W

With the help of

<l|SJ2><2|5y|l> = <l|S,.Sy|l>-<l|SJl)<l|Sy|l>

=<ii-v,ii>-~7 <52>

and similar relation for (2|SJ1)(1|SJ2); with a bit of algebra, the second term of Eq. (49) 
becomes

E-(< + + 7 E(-'V,y + O (53)

Therefore, the total second order shift A: together from Eq. (51), and Eq. (53) becomes

*2 = 7£« + A<') + E(^'? + < - (W" - (54)

As it can be easily verified, lhe last equation gives the same result for uniaxial symmetry 
as Eq. (21) of Pederson and Khanna [173], where the Cartesian off-diagonal matrices 
vanish and M™ = M1'". For the derivation of the above expression of A,. we did not assume 
any particular symmetry: therefore, the resulting expression is general.

In lhe following, we overview the record of first-principles calculations on some SMM. 
outline a few typical problems, and discuss the achieved results and remaining difficulties.
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5. OVERVIEW OF DENSITY-FUNCTIONAL THEORY 
COMPUTATIONAL SCHEMES

Beyond the conceptual approximations adopted for solving the any-electron problem, as dis
cussed in Section 4.3 (e.g., HF approximation. QC multideterminantal approach, or Kohn- 
Sham equations), one has to choose means by which to solve the corresponding equations 
numerically. This involves additional approximations, which are of purely technical character 
but demand a fair amount of physical insight and programming sophistication to combine 
accuracy with feasibility of the calculations. In virtually all cases, one has lo decide lirst on an 
appropriate set of basis functions K,(r) used to expand the sought-for one-electron orbitals 
«A„(r). which enter the Kohn-Sham equations Eq. (21):

e
'/'Jr) = E Ct/.3r(r) (55)

This expansion is always finite, but the dimension of the basis Q must be reasonably larger 
than the number of occupied electronic states .V for providing sufficient flexibility in the 
variational search for the solution of either Kohn-Sham, or HF equations. The two most 
common choices of ^;,(r) are plane wavesand atom-centered localized functions. The former 
are defined as

A<;(r) = -7=<’,<:r (-56)
v Si

(i.e.. labeled by vectors G of lhe reciprocal lattice, which corresponds to a periodic unit 
cell of volume SI). (We skip the k-dcpendcncc in our discussion, as the energy dispersion 
in the Brillouin zone is almost negligible for the weakly interacting SMM.) Such a periodic 
cell (simulation box) must always be introduced for calculations with planewave basis sets, 
even if the simulated system is in reality not periodic (e.g.. a single molecule). The number 
of planewave basis functions needed for sufficient accuracy grows rapidly with the size of 
the simulation box. independent of the actual number of atoms contained in the box. l he 
planewave basis (see, e.g.. Ref. [ 174|, for more details) has the advantage of becoming 
ultimately complete under the variation of a single cutoff parameter, as it includes all 
planewaves with |G| < The planewave cutoff energy can be kept reasonably low by 
using, instead of true (deep near the nuclei) Coulomb potentials, screened pseudopotentials 
and correspondingly smoothed pseudofunctions for electrons in valence shells, thus excluding 
the core states from lhe calculation.

The atom-centered functions, in contrast arc better suited for describing strong spatial 
fluctuations of the one-electron functions within atoms, and hence allow much smaller (and 
even almost minimal. Q > N) basis sizes. However, they face problems, or at least ambigu
ities, in a consistent generation of efficient basis sets and in performing spatial integrations. 
The atom-centered functions can be further divided into numerical and analytical ones, 
energy dependent or not. fixed or adjustable in the course of iterating the Kohn-Sham equa
tions to self-consistency. A common workable choice among fixed analytical basis functions 
are Gaussian-type orbitals (see e.g.. Ref. [175], for a review).

Recently, there has been a notable increase in the number of calculations that solve the 
underlying equations on a real-space grid [ 176. 177], with finite differences or finite elements 
technique 1178. 179|. Yet this is equivalent to the use of piecewise linear or polynomial func
tions. localized at grid points, as a basis. Attempts to combine the advantages of planewave 
and localized-basis techniques resulted in a number of high-precision calculation schemes, 
like the full-potential linearized augmented plane wave (FLAPW 1174. 18l)|) or the projected 
augmenlcd-wave 1181. 182] methods, in essentially all calculation schemes, the introduction 
of the basis expansion Eq. (55) reduces the system of coupled integro-differential Eq. (19) 
or (21) to a generalized eigenvalue problem

E C.ir[ / A'J-v)/z Yj-' J/v - I Yj-v)Yj-' )‘/v] = 0 (57) 
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where it is the operator acting at the function <p„(r) or <//„(r) on the left side of Eq. (19) or 
(21). correspondingly. With small technical variations (e.g., resulting from the energy depen
dence of basis functions in linearized schemes [183, 184]) the remaining technical problem 
reduces to the evaluation of matrix elements of the Hamiltonian }( and of the overlap and 
the diagonalization. The problem cannot be reduced to a single diagonalization if basis func
tions depend on energy, as, for example, in the Korringa-Kohn-Rostoker method. After 
solving the matrix equations, one can calculate the electron density, as in Eq. (20). and the 
total energy, which are the basic characteristics of the ground state. A number of other 
properties (spin density, forces on atoms, and vibrational frequencies) may be calculated 
as well.

The physical questions that arc of interest in the study of molecular magnets are not 
intrinsically different from those encountered in the study of magnetism and electronic struc
ture of, say. bulk solids, surfaces, of clusters from first principles in the density-functional 
theory. One is interested in a description of the ground-state electronic structure and, as 
far as possible, of the lowest excitations, in terms of Kohn-Sham eigenvalues and the corre
sponding charge and spin density. It is advantageous to have access to sufficiently accurate 
total energies for comparing different competing charge or spin configurations; moreover, 
forces could be needed to perform conjugate-gradient structure optimization or simulation 
of vibrations. These requirements are quite common in the practice of DFT calculations. 
The simulation of molecular magnets presents, however, certain technical difficulties that are 
not necessarily typical for all DFT applications and impose limitations both on the choice 
of the computational code for an efficient use and on the number of systems addressed so 
far in a first-principle simulations. These difficulties are

1. Large number of atoms, up to several hundreds of atoms per repeated structural unit
2. Low space group (or, point group) symmetry—or none at all—that docs not allow 

methods that use (/, m) expansions in spherical harmonics (e.g., FLAPW) to profit 
from efficient block diagonalization

3. Typically, a large size of a simulation box and, on the average, low density of atoms, 
which makes planewave methods with a global basis set cutoff inefficient

4. The presence of transition metal, or even rare earth, atoms with deep core states and 
sometimes important scmicore states, together with the rest of predominantly light 
organic atoms. This may create difficulties for the use of norm-conserving pseudopo
tentials

5. In tight-binding methods with fixed basis sets, specific problems may arise as a result 
of the need to tune and optimize the basis, as charge configurations and spatial dis
tribution of density in molecular magnets may differ from those with which one is 
acquainted in crystalline compounds

6. The lack of energy dispersion (resulting from very week coupling between molecular 
units) and quite commonly a dense spectrum of nearly degenerate discrete slates in the 
vicinity of HOMO-LUMO gap, which makes the self-consistency slowly convergent or 
even unstable.

Retrospectively, it seems understandable that a large number of calculations done so 
far employed one or another scheme using flexible tight-binding bases. Pseudopotential 
planewave calculations are not much represented, although one may expect an increase of 
their fraction, particularly with the use of ultrasoft pseudopotentials, in the future. Other 
all-electron methods (FLAPW) were used only for benchmark calculations on simplified sys
tems. One can also anticipate a certain impact of basis-free, purely numerical approaches in 
the future.

In the following text, we critically compare several families of methods that played, or 
that are expected to play, an important role in DFT calculations on molecular magnets, and 
emphasize several representative results.

5.1. Tight-Binding Linear Muffin-Tin Orbital Methods
The tight-binding linear muffin-tin orbitals (TBLMTO) [184-186| method has been used by 
the Ekaterinburg group for calculations of electronic structure and interaction parameters 
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of Mn^-ac 166| and Vl5 1187|. The computational method used in these works was indeed 
TB-LMTO. and not the LMTO method in the less accurate “orthogonal approximation" 
1188], as erroneously claimed in these publications (D. Boukhvalov, private communication). 
This calculation used the real crystal structure of molecular crystal and periodic boundary 
conditions. The interatomic exchange parameters./ were estimated along Eqs. (41)) and (41).

Having the advantage of a compact and flexible (numerical and adjustable in the course 
of calculation) basis set. the LMTO method faces difficulties in the treatment of loosely 
packed structures, as it employs space filling by atomic spheres or "empty spheres," which in 
crystals with large and low-symmetric cavities is a cumbersome and ambiguous procedure. 
There are further drawbacks of LMTO for the treatment of molecular magnets. First, the 
method always employs periodic boundary' conditions, so that molecular units must be posed 
either in their true (and very diffuse) crystalline arrangement or. to simulate them as isolated 
entities, with substantially enlarged lattice parameters. Second, the method has limitation of 
only one principal quantum number per I value in the basis set (i.c.. 3p and 4/? states cannot 
be simultaneously present in the valence band). These deficiencies are known to degrade 
the delicate results of calculation, such as the placement of some bands, or their dispersion 
in solids. Therefore, one should access the quantitative results of these LMTO calculations 
with care. Possible indications of inferior numerical accuracy are the total magnetic moment 
of the Mn)2-ac system, which is 19/zfl in the LDA, at variance with experiment and other 
calculations [124. 172, 173. 189], yielding 2()/z„, as well as the absence of HOMO-LUMO 
gap in both Mnl?-ac and V)5 . again in variance with calculations by different methods. One 
should note, however, that the overall shape of local DOS is consistent with results of other 
calculations.

Boukhvalov et al. [166. 187] emphasize the importance of intraatomic correlation in the 
description of magnetic interactions and excitation spectra of Mn,2-ac and VLS . This might 
well make sense, as evidenced by rich experience on this subject from manganites and 
vanadates, where the local coordination of transition metal ions and electronic structure is 
somehow similar to that in molecular magnets. The intraatomic correlation may be brought 
into the calculation by means of the LDA 4- U approach [153], depending on the ad hoc 
choice of an average Coulomb parameter U. There are certain arguments for the choice of 
this parameter in Ihe papers given, C - 4 eV for Vl5 and P = 8 eV for MnL-ac. Not less 
important than the actual results with these parameter values are the trends with varying (J, 
which have been reported for Mnl2-ac. One finds that as U changes from 4 to 6 to 8 eV, 
the exchange interaction parameters between the four inner Mn atoms of the cubane core 
vary from 37 to 33 to 3(1 K, respectively (other Mn-Mn interaction constants, on the same 
order of magnitude, change in a similar manner). Moreover, the local magnetic moments 
on all Mn atoms become slightly enhanced, and the band gap increases from 1.35 to 1.78 to 
2.01 eV. These trends follow from the qualitatively transparent fact that higher U values shift 
the occupied 3</ states down in energy and lift up the unoccupied ones, thus increasing the 
band gap. As spin-flip excitations across the gap become more difficult, and they contribute 
to the nonlocal susceptibilities [the denominator in Eq. (41) increases], this has the effect of 
reducing the interatomic exchange interaction. This mechanism will further be discussed in 
Section 6.

5.2. Gaussian-Type Orbital Methods: Naval Research
Laboratory Molecular Orbital Library

Methods based on the linear combination of atomic orbitals with a basis of Gaussian-type 
orbitals, have often been used, and there are several “flavors" that are known.

This approach is a “full-potential" one in the sense that no muffin-tin or atomic sphere 
geometry is imposed, and the spatial form of the potential is general. In particular, the 
version implemented in the Naval Research Laboratory' Molecular Orbital Library (NRL- 
MOL) code [190-192] has been frequently used in calculations on molecular magnets.

The NRLMOL program package developed by Pederson. Jackson, and Porezag is an all
electron Gaussian-type orbital implementation of DET 1190. 191, 193-200], and it has been 
applied successfully to calculate the electronic and magnetic properties of several molecular 
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nanomagnets [41, 172, 189, 20l-212|. By including the spin-orbit coupling, it is possible to 
calculate the magnetic anisotropy energy, which is a crucial parameter for understanding 
the magnetic behavior of SMMs. l he agreement between experiment and the result from 
the first-principles calculation is in many cases surprisingly good. Therefore, it seems to be 
suitable to give some details on this particular numerical implementation.

The molecular orbitals are expanded as linear combinations of Gaussian functions cen
tered at the atomic sites: multicenter integrals are evaluated numerically on a specially gen
erated variational integration mesh (see Pederson and Jackson [190] for details). An efficient 
parallelization 1200] makes all-electron calculations with more than hundred atoms feasible 
in affordable time, a prerequisite for useful applications in the domain of SMMs. The prob
lem of basis optimization, a severe and common problem in all methods employing localized 
and fixed basis functions, is solved in NRLMOL by tuning to the solutions ot self-consistent 
isolated atoms [199],

The self-consistent potentials, obtained numerically, are least-square fitted to the sum 
of bare spherical Gaussians or Gaussian-screened l/r potentials to facilitate multiccnter 
integrations.

Given the basis sets and the Gaussian-reprcscnlalion of the atomic potentials, it is possible 
to obtain very good insight into the class of multiccnter integrands that need to be integrated, 
and this information is used to generate a numerical variational integration mesh [190] that 
allows to precisely determine integrals required for calculation of secular matrices, total 
energies, and derivatives according to

/=/drC(r) = ^Q(r,)Q( (58)
i

where 11, is the volume associated with point r,. Errors arising from the numerical integration 
can easily be checked and controlled by adjusting a few parameters that control the mesh 
construction. It should be emphasized that the Gaussian-screened potentials are only used 
to optimize the numerical quadrature schemes used for mesh generation.

Once self-consistency is achieved, the forces acting on each atom are determined from 
the Hellmann-Feynman-Pulay theorem [213-215]. After obtaining all the forces acting on 
all the atoms, a conjugate-gradient method, or other force-based algorithms, can be used 
to carry out geometry' optimizations. Once the equilibrium geometry and the Kohn-Sham 
wavefunctions are obtained, the properties available for the analysis include (beyond the 
standard set provided by any DFI’ package) polarizabilities, vibrational frequencies, infrared 
and Raman spectra, and magnetic anisotropy energies.

For the [Mn4O,Cl4(O2CCH;CH?,),(NC5H5)3] system, containing as its core a Mn3+ 
Mn4+ pyramid and possessing a magnetic moment of 9/z3 per unit (Mn3+ spins are anti
ferromagnetically coupled to Mn4+), Park, Pederson, and Hellberg [216] calculated lhe prop
erties related to dimerization. The Mn4 units were presumed to couple antiferromagnetically, 
based on their unusual quantum tunneling properties [71], which was now confirmed in a cal
culation by NRLMOL [217], A fit to the Ising model yields intraatomic exchange parameters 
of 44 K (ferromagnetic: Mn3+—Mn3+) and - 152 K (antiferromagnetic; Mn^-Mn4’)—both 
of which are overestimated by roughly a factor of two in comparison with experiment-derived 
values. The intermolecular coupling of merely - 0.24 K is also twice as large as the experi
mental fit value. In addition to structure relaxation. Park et al. [217] performed a calculation 
of vibrational spectra with infrared and Raman intensities—the data not yet available from 
experiment but extremely important for identification and further characterization of this 
molecular magnet.

5.3. Numerical Atom-Centered Basis Functions: Siesta
The Siesta method and computational code |2I8. 2I9| also uses compact atom-centered basis 
functions, but (differently to NRLMOL) it employs numerical ones with strict spatial con
finement as the most frequent choice. (Gaussian-type orbitals, or other fixed functions at the 
user's convenience, are equally available for the basis set). Because of the strict confinement 
of the basis functions, the program can make a clean distinction between cases of an isolated 
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fragment (molecule or cluster), "chain." "slab." or "crystal" (with periodic boundary condi
tions in one. two. or three dimensions, correspondingly). and correctly construct Madelung 
terms according to each case. Keeping track of the local neighborhood in the calculation of 
matrix elements, in combination with ordcr-/V facilities (sec. e.g„ [22(1, 221]). makes Siesta 
a great method for treating large, low-coordination, low-symmetry structures, as molecu
lar magnets are. In contrast to NRLMOL. which determines the Coulomb and exchange
correlation potentials analytically from the Gaussian representation of the wavefunctions. 
Siesta employs fast Fourier transform of lhe residual charge density (after subtraction the 
dominant atom-centered contributions) lor the solution of the Poisson equation, which also 
yields high (and controllable) accuracy, needed especially in lhe calculation of forces and 
optimization of structure. Moreover, for periodic systems (as molecular magnets generally 
are, in a crystalline state) the components of the stress tensor are calculated and can be 
used for simultaneous optimization of lattice parameters and internal coordinates subject 
to target pressure. Particularly important for magnetic systems is the option of treating the 
noncollincar (i.c.. not diagonal in the spin space) density matrix, that allows us to simulate 
deviations of local magnetic moments from lhe global magnetic axis (for a recent application, 
see Postnikov et al. [222]). Different from the two above-discussed methods. Siesta is not an 
all-electron method but employs norm-conserving pscudopotentials (Ref. 1223]. among other 
choices) and allows us to apply the core correction after Louie et al. |224J. As the basis set 
consists of localized functions and not plancwaves. the use of hard pseudopotentials, such as 
those for transition metals (also "small core." with semicore states attributed to the valence 
band) or oxygen, is not problematic. Siesta was designed in view of large distorted systems 
and dynamical simulations therein, so that properties of space group (er point group) sym
metry are essentially lost. Therefore, no special treatment of symmetrized molecular orbitals 
is provided.

As with other pseudopotential methods. Siesta in its present version requires some care 
in choosing and testing pscudopotentials before calculation and moreover, in choosing basis 
orbitals. A certain freedom in the tuning of the latter is more a matter of experience than 
of consistent control in the variational procedure (as it is the case with planewave cutoff). 
Although being, as a rule, reasonably workable, such settings are difficult to improve con
sistently. More insight into the problem of basis sets was provided by Sanchez-Portal et al. 
[225] and Junquera et al. |226],

l he application of Siesta to molecular magnets is relatively new. We outline some recent 
results below.

5.4. Discrete Variational Method
The discrete variational method (DVM) [227. 228], one of the earliest density-functional 
theory schemes to find applications in chemistry, seems to be potentially very well suited 
for the studies of molecular magnets. The method is an all-electron one. it uses basis of 
numerical atomic orbitals, and the three-dimensional integration over lhe space outside the 
spheres circumscribing core regions of each atom is done on a pseudorandom numerical 
grid. DVM was used quite early for first-principles calculations of the electronic structure of 
a large molecular magnet such as the Id-member "ferric wheel" albeit in a simplified form, 
excluding II and Cl atoms; sec Ref. [123]. l he method was also applied in one of the first 
ub initio studies of the Mnp-acetate 1124]. Apart from discussing charge states, magnetic 
moments, and local DOS of the three distinct groups of Mn and O atoms in the molecule, 
which largely remained uncontestcd by subsequent calculations. Zeng et al. 1124] estimated 
Heisenberg exchange parameters in the magnetic transition state scheme 1159|. an extension 
of Slater's original transition state ansntz, through a procedure outlined in Section 4. Flipping 
the spin ut one atom and delecting the shift of the 3<l energy level at another one as result of 
induced magnetic polarization helps us to arrive at a system of equations in which different 
interatomic exchange parameters are coupled. For the sake ol simplicitv and the clearness ol 
analysis, only collective (non-symmetry-breaking) spin Hips on all atoms belonging to each set 
of Mn atoms-—Mn( I) in lhe inner cube and, Mn(2) and Mn(3) in the peripheral region (see 
Fig. I)—were allowed in the analysis of Zeng et al. [124] This means that four spins within
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Table I. Electronic structure parameters (magnetic moments and Heisenberg exchange 
parameters) of Mn, .-ac from tirsl-principles calculations.

Method

Magnetic moments (/cB)
Exchange 

parameters (K)

Mn(l) Mn(2) Mn(3)

DVM“ 3.056 3.889 -4.039 -136 -72 102
NRLMO1." 2.57 - 3.63 -3.58 -57 -41 -8
LMTO , U=4 eV 2.72 -3.44 -3.65 -53 -47 - 19
LMTO-. U=8eV 2.92 -3.52 -3.84 -47 -26 -7

'| 124]; I DA
'■| 173]; GGA; moments within a sphere of 2.5 Bohr. 1 values by Park el al. |2lb|.
11166|: I.DA + I?; moments within spheres ot 2.7/2.8 Bohr (inner,'outer Mn atoms)

each group always remained rigidly ferromagnetically coupled. This resulted in a system of 
three equations, from which the values of ,/r, J2J, and ,/p could have been determined. The 
density-functional theory results were explicitly fitted to the Heisenberg Hamiltonian of the 
form in Eq. (5). However, the parameters J,, and so on. representing the coupling within 
each group, did not appear in the fit because the spin excitations necessary to probe them, 
which would break the symmetry' of the molecule, were not allowed. Their inclusion in an 
otherwise executed calculation could result in a renormalization of exchange parameters.

The values of Jl2, ./23, and ,/13 are given in Table 1: they are all negative (i.e.. they indicate 
an AFM coupling, as could be expected because of a more-than-90 degree superexchange 
pathway through bridging oxygens), and hence cause frustration when accommodating the 
three spin subsets.

5.5. Planwave Methods
The use of planewave basis for calculation on molecules is, as already mentioned, com
putationally inefficient, but technically feasible and. with sufficiently high cutoff, also ulti
mately accurate. Massobrio and Ruiz [229] compared recently straightforward (from the 
total energy difference in low-spin and high-spin configuration) estimates of Heisenberg- 
model exchange parameters J for several Cu-based binuclear molecules: Cu2(CH,COO)4, 
|Cu,(/z-OH)2(bipyrimidine)2](NO3)2 • 4H2O. and [(Jpr)C’u (g-CI)2Cu(rfpt)]CI2(</p/ = dipro
pylenetriamine), using identical norm-conserving pseudopotentials and an exchange
correlation scheme (among other, differing options) with Gaussian-type basis functions. The 
largest system consisted of 62 atoms, a moderate number by the standards of a calcula
tion with localized basis functions. For the computational load with the planewave basis, 
however, it is the size of the simulation box that primarily matters. Here its linear size of 
18.5 A resulted in about 2.4 x IO6 plane waves for the expansion of the charge density 
and demanded hours of CPU on parallel computers. The small values of J obtained in the 
planewave calculation ( -518, - 95, and +61 cm-1, correspondingly) were of correct sign 
and order of magnitude in all cases, although deviations in absolute value, from experimental 
estimates and between different exchange-correlation flavors, were up to 50%.

6. DISCUSSION OF SELECTED SYSTEMS
OF CURRENT INTEREST

In the following text we outline some recent results on relatively “new” molecular magnets 
(i.e., systems that have only become available during the last few years). For the study of 
their electronic characteristics, several questions arose that our calculations attempted to 
clarify'. “Ferric wheels” gained interest, and not in the last place, because of their “esthet- 
ically rewarding" [230] shape. Two examples discussed below have an AFM ground state; 
as a consequence, they might find applications related to quantum tunneling and quan
tum computing. Other structurally similar (although chemically different) examples include 
3 c/ ions (notably Mn) at larger distances, with magnetic interactions mediated by organic 
radical groups that lead to strong antiferromagnetic couplings of Mn ions. An example 
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is the molecule | Mn( hfac),(NITPh)|(,(hlac=hexafiuoroacctylacctonaie, NITPh=2-phenyl- 
4,4,5,5-tetramethyl-4,5-dihydro-l//-imidazol-l-oxy-3-oxide) (see Gattcschi and Pardi [23O|). 
with a net spin of S' — 12. “Ferric stars include a central 3t/ ion to which peripheric ions 
couple antiferromagnetically, resulting in a net spin value in the ground state. Because of 
their non-negligible magnetic anisotropy, these systems look like possible prototypes for 
magnetic storage. The molecule Ni4 is a seemingly simple magnetic molecule for which a fit 
of experimental data of magnetization versus magnetic field to the Heisenberg model fails 
quite dramatically, and possible reasons for deviation have been studied with the help of 
first-principles calculations. Finally, we consider a two-nuclei model system with the aim of 
studying the effect of intraatomic correlation (“Hubbard 17") on the electronic structure and 
interatomic magnetic interactions in a more numerically accurate calculation than has yet 
been accomplished (for Mn,. by TB-LMTO. see Boukhvalov et al. [166]). In the most recent 
case, the calculations have been performed with the FLAPW method [231], for other sys
tems, by methods using atom-centered localized basis functions, they have been performed 
with either Siesta or NRLMOL.

6.1. Ferric Wheels
Hexanuclear ferric wheels A/Fc(,[N(CI LCI LO)-]„Cl (Af = Li, Na: see Fig. 11), the systems 
to be discussed below, were synthesized at the Institul fiir Organische Chemie in Erlangen 
[78] and labeled as substances 4 and 3 in later publication. There exist a large family of ferric 
wheels with a different even number (/V = 6. 8. l(), 12, IS) of iron atoms [78-80, 121, 232- 
238]. In addition to the ferric ones, there have been reports on wheels with other transition 
metal ions such as an eight-membered Cr(IIl) wheel |239|. a Cu(II) [240, 241], a Co(ll) 
[242], a Mn(ll) [243], and a 24-membered Ni(II) wheel [244], The latter structure contains 
the largest number of transition metal ions in a wheel-like structure so far. The synthesis of 
odd-numbered magnetic wheels or necklaces appears to be a nontrivial task.

Fe atoms in these compounds are connected by oxo-bridges that are reminiscent of the 
90 degree coupling of magnetic atoms in TM oxides. The nearest coordination of the Fe atom 
is octahedral—two pairs of O ions form bridges to the neighboring Fe atoms on both sides— 
and the fifth oxygen (referred to below* as “apical’') and the nitrogen ion are connected by 
the C,H4 group. The octahedra are slightly distorted to accommodate the stiffness of oxo- 
bridges with the curvature of the molecular backbone. Although the Fe-O-Fc angles differ 
slightly in the Li-centered and Na-centered wheels (101.1 and 103.3 degrees, respectively), 
the structure of the two molecules is almost identical.

Figure 11. Structure and spin density distribution in ferric wheel molecules. Left panel: two views of the Li-centered 
molecule. The l.i ion is in the middle of the ring: the distant Cl ion included in the simulation is not shown; the 
rest of (electrically neutral) solvent is neglected Right panel: iso-surfaces correspond to rO.UIc.A', according to 
NRLMOL calculation [245], Although most of the magnetic moment is localized at the Fe atoms, there is still some 
spin polarization on O and N.
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According to magnetization and torque measurements by Waldmann et al. [79], these sys
tems are characterized by 5 = 5/2 on the Fe site, thus implying a highly ionized Fe(III) 
state. Moreover, a fit to the spin Hamiltonian of the Heisenberg model in Eq. (5) yields the 
J values of —18 to —20 K for the Li-whcel (depending on sample and method) and —22.5 
to —25 K for the Na-whccl, thus implying an AFM ground state |79], X-ray photoelectron 
and x-ray emission spectroscopy studies [245J allowed for probing of the electronic structure 
in the valence band and on the Fe site, albeit without resolution in spin. Whereas the mag
netic measurements data are by now well established, the spatially resolved distribution of 
magnetization was not yet accessed before the present calculation. Specifically, we compare 
the results of electronic structure calculations by two different methods within the DFT. 
Siesta, and NRLMOL (see the discussion on the methods in Section 5). In both cases, we 
used the generalized gradient approximation after Pcrdew, Burke, and Ernzerhof [148], We 
emphasize that the most important difference between the two methods, with regard to this 
study, is that Siesta uses norm-conserving pseudopotentials, whereas NRLMOL implements 
an all-electron method. For an cib initio pseudopotential code such as Siesta, benchmark cal
culations. based on the very accurate NRLMOL suite of codes, help to assess the accuracy 
of pseudo-potential-based methods in some critical cases or for new' systems.

We outline below the results obtained by Siesta for the Li-centered molecule and by 
NRLMOL for the Na-centered one, as presented in more detail by Postnikov cl al. [246]. 
The NRLMOL treatment was restricted to the ground-state AFM configuration (alternat
ing orientations of Fe magnetic moments over the ring); the Siesta calculation addressed, 
in addition, different magnetic configurations, which allowed for the extraction of density
functional theory-based exchange parameters.

Figure 12 displays the partial densities of states (DOS) on Fe and its several neighbors 
in the AFM configuration, as calculated by both methods. The discrete levels of the energy 
spectra are weighted (with the charge density integrated over atom-centered spheres in 
NRLMOL, or according to Mulliken population analysis in Siesta) and broadened for pre
sentational purposes with the broadening parameter of 0.15 eV (Siesta) and 0.14 eV (NRL
MOL). Ihe local moments corresponding to integrating such partial DOS over occupied 
states are given in Table 2. Both calculations give a consistent description of state densities 
at Fe and O sites, even though this property is rather loosely defined (and its calculation 
differently implemented in Siesta and NRLMOL).

Notably, both methods find the local magnetic moments on Fe sites very close to 4 p.B 
and not to 5 as is generally assumed, based on the above-mentioned magnetization data. 
The maximal magnetization 5 = 5/2 of the Fe atom corresponds to a Fe(III)-ion with in 
Idld*, configuration. Our first-principles calculations indicate a somewhat different picture: 
the minority-spin DOS has a nonzero occupation because of the hybridization (chemical 
bonding) of Fe3</ with O2p states. However, the magnetic polarization caused by Fe in the 
organic ligand that provides the octahedral coordination for the iron atoms is substantial, 
with the most pronounced effect being on the apical oxygen atom (which is not participating 
in the bonding to the next Fe neighbor). Taken together with the (smaller) polarization of 
the bridging oxygen atoms and magnetization at the nitrogen site, the distributed magnetic 
moment per Fe atom yields 5 /zB, recovering the agreement with the magnetization results.

A clear visualization of the above-discussed delocalized (or, rather, distributed) magnetic 
moment associated with the Fe atom comes from the map of spin density, obtained from the 
NRLMOL calculation (Fig. 11. right panel). One should take into account that the volume 
enclosed by the iso-surfaces is not directly correlated to the total moment at the site. One 
secs, moreover, an absence of magnetization on carbon and hydrogen sites. The fact that 
the magnetization is noticeable and changes its sign when passing through bridge oxygen 
atoms emphasizes the failure of methods depending the spherical averaging of atom-eentered 
potentials.

An important consequence is that the charge state of iron is not Fe(HI) but closer to 
Fe(ll), according to our calculations. Moreover, the distributed magnetic moment behaves 
like a rigid one, in the sense that it can be inverted, following a spin flip on a Fe site. This is 
illustrated by the analysis of other magnetic configurations, done with Siesta [246]. The local 
DOS does not change considerably when switching from AFM to FM configuration—only
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panel) and lor Na-centered molecule h\ NRLMOL (right panel). The DOS at the Fe site is scaled down by a factor 
of two relative to other constituents. Thu numbering of atoms that arc neighbors to the I e atom is shown in the
inset. Sec text for details on the calculation.

the HOMO/LUMO gap becomes less pronounced, and a slight FM shift appears between 
the two spin bands.

For the sake of improving both the stability of convergence with Siesta and for pin
ning down a particular spin configuration (FM, or with one or more Fe magnetic moments 
inverted), we applied the FSM scheme [158] in the calculation. Imposing an (integer) spin 
moment per molecule fixes the number of electrons in the two spin channels and removes the 
possibility of spin Hips, which are a major source of numerical instability, as there arc many 
nearly degenerate states in the vicinity of the Fermi level in the molecule (and no symmetry' 
constraints on these states in Siesta). The FSM procedure would normally split the common 
chemical potential into two separate ones, for majority- and minority-spin channels, which

Table 2. Local magnetic moments A/ al Fe and its neighbors.

Atom Rta.u.) W(Mh)- NRLMOL ■W(piH). Siesta

Fe 2.19 3.85 3.91
0 (apical 1 1.25 <i.2l» tut)
O (bridge I 1.25 i ti.ttl ±0.112
N 1.32 (1.(17 0.09

Wife NRI MOI results correspond to ^pin densin integrated over sphere ol 
radius K centered al corresponding .uoni; Siesta values result litini Mulliken popu
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corresponds to an effective external magnetic field, and hence to an additional (Zeeman) 
term in the total energy, in analogy with Eq. (7). Because molecular magnets possess a 
HOMO-I.UMO gap. the latter correction must only be considered if such gaps in two spin 
channels do not overlap.

Figure 13 shows the total energy' values and energy gaps for FSM values of 30 /zB (FM 
case), 20 and 10 (one and two local moments inverted, correspondingly), and 0 (alternate
spin AFM case). A linear change of the total energy while inverting one and then two 
local moments from the FM configuration is what would be expected from the Heisenberg 
model with “rigid” magnetic moments (in the sense that their 5 values do not depend on 
the total spin of the system), assuming moreover that only nearest-neighbors interactions 
between spins are important. An additional justification of the validity of the Heisenberg 
model comes from the observation that the magnitudes of local magnetic moments on the 
Fe atoms always remain close (within several percent) to 4 ju.B, and the partial DOS on Fe 
sites remains largely unaffected by the actual magnetic ordering. Similarly unaffected is a 
pattern of local magnetic moments at O and N neighbors of a particular Fe atom, always 
getting inverted as the latter experiences a spin flip. Keeping this in mind, and assuming 
Heisenberg-model spin Hamiltonian as in Section I with the .S’ value of 5/2 (i.e., for the 
total spin that gets inverted), we arrive at the estimate for —./ of around 8(1 K (over both 
30 —>■ 20 and 20 -* 10 flips). This is qualitatively correct (i.e., it indicates a preference 
toward AFM coupling) and even of the correct order of magnitude.

However, two observations can he made here. First, the "true'' AFM configuration (with 
half of magnetic moments inverted on the ring) does not follow the linear trend (see Fig. 13) 
and lies actually higher in energy than the configuration with two spins inverted. 'Hie origin 
of this deviation is not yet clear to us at the moment. There are several possibilities: the zero- 
FSM configuration is, technically, the most difficult to converge, so some numerical instability 
can still play a role. In contrast, a true (mixed) quantum-mechanical ground state of a system 
with six coupled S = 5/2 spins may win over both our density-functional theory solutions that 
correspond to selected values 5. = 0 or .S'. = 5 of the total spin. Moreover, the necessity to 
include magnetic interactions beyond first neighbors, not considered at the moment, might 
further complicate the situation. The second observation concerns the magnitude of the 
exchange parameter J and the fact that it is probably overestimated by a factor of ~ 4 in 
our calculation. The origin of this overestimation lies most probably in on-site correlations, 
which, if treated accurately beyond the standard schemes of the DFT, would primarily affect 
localized Fe 3r/ states, shifting the bulk of occupied states downward in energy, and the 
bulk of unoccupied states upward, expanding the energy gap, and—whatever scheme is used 
for estimating exchange parameters—substantially reducing their magnitude. This has been

total energy of a molecule (eV) 
relative to the FM state

Figure 13. total energy per molecule (left panel) and HOMO LL’MO gap in two spin channels (right panel: shaded 
area=majontv spin, thick lincs=minoritv spin) from fixed spin moment calculations.
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recently shown for another molecular magnet (Mn,?) by Boukhvalov et al. [ 166] (see the 
earlier discussion on Mni; above and our following analysis of a model binuclear system).

Summarizing our analysis of the electronic structure of Li- and Na-centered ferric wheels, 
one can conclude that the local magnetic moments on Fe sites seem to be 4 /zB. rather 
than 5 /xB, as is often assumed. This implies a valence state closer to Fe(II) than to Fe(III), 
with a substantial covalent part in the Fe-O bonding. The local spin of .S’ = 5/2 per iron 
site consistent with magnetization measurements is, however, recovered if one lakes the 
magnetization of neighboring atoms into account. The ability to calculate Wannier functions 
in such systems may provide much more reliable estimates of projected moments than are 
currently offered by either Mulliken methods or methods based on moments within a sphere. 
The largest moment is on the apical oxygen atom, followed by smaller moments on nitrogen 
and the bridging oxygen atoms. This picture is well confirmed by a spatial distribution of 
spin density.

With respect to its magnetic interactions, this system can be mapped reasonably well onto 
the Heisenberg model; hence, we deal with rigid magnetic moments that are nevertheless 
delocalized—an interesting counterexample to the common belief that the Heisenberg model 
primarily applies to localized spins.

6.2. Ni4

“Ni4 ” is a shorthand notation for a molecular crystal |MopO,l)(^.1-OH)|(lH>{Ni(H,O),}4| 
14H2O, synthesized and characterized by Muller et al. [247J. This material crystallizes in a 
structure containing two formula units (shown in Fig. 14), related by the 180-degree rotation 
around an edge of the Ni4 tetrahedron. The Ni-Ni distance is 6.6-6.7 A, and magnetic 
interactions are mediated by a longer path than in the systems discussed above.

Magnetic properties are caused by Ni(ll) ions in lhe 3z/'s configuration (s = I); the ground 
state is antiferromagnetic. An intriguing aspect of this compound is that the measured zero
field magnetic susceptibility can be very well mapped onto the Heisenberg model, whereas 
the measurements of magnetization cannot. The inclusion of different anisotropy terms in 
the Heisenberg model to improve the description of experiment had only limited success 
[248], First-principles calculations have been performed using the Siesta method to access 
lhe electronic structure and estimate lhe magnitudes of magnetic interaction parameters.

Similar to the case of the ferric-wheel system discussed above, the FSM scheme was used 
for probing different spin configurations and comparing their total energies. The local DOS 
is practically indistinguishable for the cases of zero total moment (the AFM structure, which 
has indeed, in agreement with experiment, the lowest total energy) and for configurations 
with local magnetic moments inverted at one or two Ni atoms (yielding, in the last case, 
the FM configuration). The local moment per atom in these cases agrees with the .« = I 
estimation derived from magnetization measurements. As it was discussed above for other 
magnetic molecules, the magnetic moment is not fully localized on the Ni ion; small but 
nonnegligible magnetization is induced on neighboring oxygen atoms, and even on more 
distant Mo atoms (Fig. 15, left panel). As the Ni-Ni interaction path is much longer than 
in other, earlier-discussed magnetic molecules (see inset in Fig. 15), the energy differences

vto,2 cage + Ni4 tetrahdron Mo -Ni are bonded 
via oxygen bridges

full molecular unit

Figure 14. Buildup of the "Ni," molecular unit
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Heisenberg model
CtHp 6j 
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DFT total energies

— FSM - 8 pB

60 meV

I 6 meV
------L FSM = 4 pB

------- - FSM = 0

Figure 15. Left panel: local DOS of atoms al the Ni-Ni magnetic path. Right panel: a scheme ol energy levels in 
different spin configurations of "Ni4" according to the Heisenberg model and from first-principles calculations.

between configurations with FSM values of 0, 4, and 8 /xB are small. These solutions are 
separated by other magnetic configurations that can be converged (2 and 6 /xB) and cor
respond to a nonmagnetic configuration of one Ni atom, with unchanged and differently 
coupled s = 1 at three others (as schematically shown in Fig. 16, left panel). The energies 
of these intermediate configurations arc substantially higher, and HOMO-LUMO gaps in 
two spin channels move apart, indicating the necessity for an external magnetic field (hence 
additional Zeeman energy) for stabilizing these artificial configurations. On the contrary, the 
three lowest-energy configurations have HOMO-LUMO gaps common for both spin direc
tions (Fig. 16, right panel); therefore, the mapping to the Heisenberg model can be done 
directly without considering the Zeeman term.

Figure 16. Total energy (left panel) and IIOMO-LL'MO gap (right panel) from FSM calculations ot Si,.

0 2 4 6 8 10
Fixed spin moment (pB)
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An attempt if such mapping is schematically shown in the right panel of Fig. 15; obvi
ously, the sequnce ol energies ol the configurations with one or two spins inverted (starting 
from the FM stlulioti) is only in qualitative agreement with the Heisenberg model, but lhe 
numerical enegy differences do not allow for the evaluation of a unique value of J, in con
trast to the cate of ferric wheel discussed above. At best, one can make a rough estimate of 
the order of magnitude of ./ that yields 30-90 K.

This failure ndicatcs that the magnetic interactions in “Ni4” are strongly anisotropic. I low- 
ever, an adeqiatc mapping of first-principles results onto models including the anisotropy 
would require the inclusion of spin-orbit interaction in the calculation, and this is not yet 
available in Siesta. This feature is, however, included in NRL.MOL. and some of the progress 
along these lin.s is outlined below.

6.3. Magnetc Anisotropy in Single-Molecule Magnets
As a modificaion of Eq. (7), which introduced the anisotropy in the simplest form, we 
distinguish in tie following between axial and transverse anisotropy, with their correspond
ing parameter D and E. They enter the magnetic spin Hamiltonian (only second-order 
terms) as

» = DS: + £(,S; - $;) (59)

The values of lie axial anisotropy D are available from a number of experiments for different 
SIMMs, and foi several SMMs first-principle calculations have been carried out with the use 
of the NRLMOL code. These results are summarized in Table 3.

In all the cases presented here, the calculated spin ordering is in agreement with experi
ment. lhe calculated D parameters for Mnt.. Mn,0, Mn<b and the ferric star Fe4. molecular 
magnets are in excellent agreement with experimental values. The only remarkable discrep
ancy is found t n Fes. a system that seems to pose complications for the density-functional 
theory treatment. Apparently the density-functional theory may be unable to predict the 
ground-state density accurately enough because of important electronic correlations beyond 
the mean-field treatment or missing Madelung stabilization (absent in the isolated system).

The SMMs isted in Table 3 are in general characterized by a high-spin ground-state. 
IkiWever, a high spin state docs not necessarily correlate with a high anisotropy barrier. 
The prefactor 5> is also very' important. To increase the barrier, one has to understand and 
control D, which will be the main goal of future research in this area. In all cases in which 
lhe E parameter is not zero by symmetry', it has been predicted with similar accuracy as D 
(see Refs. [249—254] and others, listed in Table 3).

The results obtained build confidence in the predictive power of the formalism. It has 
been already mentioned that a microscopic understanding (based on the electronic structure 
of SMMs) of lhe magnetic anisotropy parameters is crucial for the rational design of single
molecule magnets.

Table 3. Comparison of the calculated by NRLMOL and experimental magnetic aniso- 
trop' parameter /> for the single molecule magnets.

Molecule S

/>( A )

Theory Experiment

Mn, O, (O.CH)|„ (11.0),
]Fe„ ) (OH),

HI —11.56“ -0.56'1
III -0.53' -0.301'

|Mn.,O,(2.2’-biplrcnoxide)..Brl |4 la -0.1)6' -0.05'
Co,CH CHA),(CHOllljAcL ft -0.64-' -0.7---- 0.0"
Fc,( )( II ),.(('.II ON) 5 0.56' -0.57'
CrJbtSilClljj |. 1.15' -2.66*
Mn, ),,( ,-NJI.. 17,'2 0.33 -0.32*
Ni,( ,01611,,, 4 0.385 0.40'
Mn, I CI,(O.CCILC II ).|M II,) . 4/2 0.5X"' -0.72“

A r< See llieorx rclercnccs lor compimmon.il details
"| 72. 1S9| |2s. 24«>|. |2O4|. -'|5K| ■ |?N] '|25(»|. |21(l|. "|25l| |2I2| |252|. "|253|. '[254| 

"|2|-|. "|7l|.

compimmon.il
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In the following text, we will discuss some selected recent results of the not-so-wcll-known 
single-molecule magnets.

6.3.1. C04 Magnet
A new Co-based ferromagnetic SMM with the complete chemical formula 
Co4 (/imp)4(CH,OH)4CL(/i/np is the deprotonated hydroxymethylpyridine), has achieved 
great interest because of the high anisotropy energy. A simulation by Baruah and Pederson 
[210] resulted in the prediction of two new. energetically non competitive structural 
conformations with even higher anisotropy. Specifically, the magnetic anisotropy energy per 
Co atom was estimated from the experiment to be 25-50 K [255]. More recent experiments 
on a similar Co4-clustcr have found significantly smaller total anisotropy energies of about 
29 K [251], in belter agreement with the calculated values of 23, 160. and 50 K lot the 
lowest-encrgy and for the two higher-energy phases found in the calculation. As already 
mentioned above, a large magnetic anisotropy is a prerequisite for potential applications 
of molecular magnets as “microdomains” for magnetic storage. An additional requirement, 
the existence of a net spin moment, is also satisfied here, with .5 = 6 per molecular unit 
in the parallel (high-spin) configuration, in all three isomers. Especially given that the 
earlier calculated results of Baruah and Pederson (210] compare more favorably with the 
more recent experimental results, a first-principle calculation might guide and stimulate 
practically relevant experimental research on this promising family of molecular magnets.

6.3.2. Fe^-Star
This material (of which several analogs with different central atoms are known by now) real
izes a net spin moment in a relatively compact and highly symmetric molecule as a result 
of AFM coupling of the peripheric Fe atoms to the central one. The structure of the Fe4 
ferric star is shown in Fig. 17. All iron atoms arc in the Fe,+ state, and the resulting ferri
magnetic arrangement has total 5 = 5. Similar to the other molecular magnets, only those 
states within an energy window of about 5 eV around the Fermi level contribute to the 
magnetic anisotropy. The symmetry' of the cluster allows for a rhombohedral E contribution 
to the spin Hamiltonian. The theoretical value (|E| = 0.1)64 K) obtained using the experi
mental geometry [252] as a starting point is in good agreement with the experimental one 
(|E| = 0.056 K) (the sign of E depends on the definition of the axis). This agreement is 
relatively stable with respect to geometry changes. Total anisotropy barriers change normally 
only by a few degrees K at most, although in some cases the agreement between theory and

Figure 17. The molecular structure of the Fe,-star. I he be atoms are shown by large spheres.
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experiment becomes worse by optimizing the molecular geometry in the calculations. This 
can be understood because the geometry optimization is done for a single isolated molecule, 
hence neglecting crystal packing effects and interactions in the molecular crystal, which arc 
indeed important for the real molecular geometry.

6.3.3. Mnw Cluster
In this system, 10 Mn atoms form a tetrahedron-like structure with Mn atoms at the corners 
and at the middle of the tetrahedron edges, all bridged by oxygen ions [250]. Two of the 
Mn atoms are coupled antiferromagnetically to all the rest. The calculation by Kortus et al. 
[209] indicates an ionic picture in which the first Mn has an Mn3' (S = 2) state, whereas 
the other two are Mir' (S = 5/2). Because of the symmetry of the cluster, the two types of 
majority spin Mn atoms have a multiplicity of 4. whereas the minority spin Mn atom has a 
multiplicity of 2, resulting in the .V = 4 x 2 + 4 x 5/2 — 2 x 5/2 = 13 magnetic ground state. 
This magnetic core is further stabilized by organic rings that are also connected to the oxygen 
atoms. This molecular unit with the chemical formula [Mn|ll04(2,2'-biphenoxide)4Br|2|‘,_ is 
charged and compensated by another molecular cluster containing a single manganese atom, 
[(CH,CH,)., N H |. | Mn(CH ,CN )4( H ,O), |.

The calculation confirms the experimental suggestion that the magnetic anisotropy is only 
a result of the functional unit containing 10 Mn atoms. The compensating cluster behaves 
paramagnetically with the Mn atom in +2 charge state and spin s = 5/2. As shown by Kortus 
et al. [209], the single Mn complex exhibits the easy-plane behavior with an energy' well 
of only 0.1 K. The majority-spin gap in Mnh) is much smaller than the minority-spin one. 
Those matrix elements of Eq. (48) related to the occupied majority-spin states contribute in 
favor of an easy axis behavior, whereas the matrix elements from the occupied minority-spin 
channel favor easy plane. These tendencies compete and cancel each other to a large extent. 
Only as a result of the larger contribution from the occupied majority-spin channel does the 
complete Mntl| cluster end up as an easy-axis system (see Table 4). Therefore, in spite of 
the fact that Mnhl possesses a high-spin state (.S' is larger than in Mnt2-ac), the anisotropy 
barrier in this system is small.

Kortus et al. |209] found that the removal of subsets of the Br ions will change the 
magnetic anisotropy drastically because ol large perturbations of the electronic structure. 
However, neutralizing the electric field resulting from Br ions by an external potential in the 
calculations changed the anisotropy barrier by less than I K. Therefore, one can conclude 
that the electric fields created by the Br ions do not have any significant effect on the 
magnetic properties of the molecule, in contrast to chemical interactions.

One of the advantages of the first-principles approach is the possibility of controling in 
detail the interactions and states that are important for a certain physical property to gain 
a microscopic understanding. Equation (48) shows that the barrier is related to matrix ele
ments between occupied and unoccupied orbitals in the majority and minority spin channels. 
In addition to the discrimination associated with spin pairing, we can analyze which elec
tronic states mostly contribute to the matrix elements M'’" . In Fig. 18, we display plots of 
the square of the wavefunctions of the occupied majority state and the unoccupied minority 
state that contribute to the matrix element M",r with the largest absolute value. (Flease note

Table 4. The contributions of the different spin channels (see 
Lq. 48) to the magnetic anisotropy parameter D and the mag
netic anisotropy energy DS~.

Occupied Unoccupied P(K)

Majority Majority 0.039 -6.6
Majority Minority 0.106 -17.0
Minority Majority 0.(134 5.7
Minority Minority 0.055 9,3
All All -0.056 -9.5

Adapted from |209|.
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(bi

Figure IS. Isosurface (dark) at 0.005 <?/«„ of the square of the wavefunctions that contribute most to the matrix 
elements M’’" of Eq. (48). (a) occupied majority state: (b) unoccupied minority state for the MnIM duster. It is 
dearly visible that the matrix element connects majority and minority (/-states at the same Mn atom.

that the value of the magnetic anisotropy energy is not determined by a single dominant 
contribution but results from the sum of many contributions with different signs.) It is clearly 
visible that the states of interest are (/-states localized on the same Mn atom. In this case, 
the states are localized on the minority spin Mn atoms.

6.4. Some Results on the V15 Spin System
As already mentioned, the V15 system remains of great interest for studies on quantum 
coherence and relaxation phenomena, despite not having any sizeable magnetic anisotropy 
barrier [40, 41, 256, 257]. The dynamics of the magnetization relaxation depend on the 
spin-phonon interaction at finite temperatures, and an intrinsic phonon-bottleneck with a 
characteristic “butterfly" hysteresis has been demonstrated by Chiorescu et al. [256]. Because 
of several very recent experimental studies on this system, it became possible to check the 
quality of the electronic structure calculations. In a joint theoretical and experimental study 
by Boukhvalov ct al. [187], the system has been investigated using the LSDA+t/ band struc
ture calculations (the same computational method as referred to above, for calculations 
by the same group on Mn|,-ac [166]) and measured x-ray photoelcctron and fluorescence 
spectra. Comparing experimental data with the results of electronic structure calculations, 
the authors conclude that the LMTO LSDA+C method provides a good description of the 
electronic structure of V15.

Choi et al. [258] report the reflectance and optical conductivity of solid V15 over a wide 
energy range. The band centered at 1.2 eV is assigned as a V dd transition, and other 
features at 3.7. 4.3, and 5.6 eV are attributed to Op-Vd charge transfer excitations. The 
comparison of the results to recent electronic structure calculations [41, 187. 204] shows 
good agreement with all these calculations without clearly favoring any U value.

Chaboussant et al. [257] report an Inelastic Neutron Scattering study of the fully deuter
ated molecular compound. They deliver direct confirmation that the essential physics at 
low temperature is determined by three weakly coupled spin-( 1/2) on a triangle. Interest
ingly. the experiment allowed us to determine the effective exchange coupling of 0.211 meV 
within the triangle and the gap between the two spin-( 1/2) doublets of the ground state. 
This direct interaction had been predicted earlier by Kortus et al. [41], with a value of 
0.55 meV.

The work by Kortus et al. [41] used an efficient coupled multilevel analysis that relied 
on fitting density-functional energies to mean-field Heisenberg or Ising energies to deter
mine the exchange parameters. The approximate exchange parameters gleaned from the 
first N Ising configurations were used to find the next lowest energy Ising configuration ami. 
subsequently, to improve the parameterization of the exchange parameters. The “self con
sistency" criterion in this approach was the check as to whether the predicted Ising levels 
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remain unchanged under the addition of data from new Ising configurations. This mapping 
of density-functional theory' results on a classical Ising model allowed for the determination 
of the exchange parameters by considering only several spin configurations.

The data used to determine the exchange parameters from a least square fit to the mean
field solution of the Heisenberg Hamiltonian (Eq. 5) are displayed in Table 5. The fit is 
very good (with errors ranging from 0.1 to 1.55 meV) and leads to exchange parameters 
(in the notations of Fig. 4) of ./ = 290.3 meV, ./’ = -22.7 mcV. ./" = 15.9 meV. ./I = 
13.8 meV. ./2 — 23.4 meV. and J 3 — 0.55 mcV. where positive numbers correspond to AFM 
and negative numbers to FM interactions. The FM interaction ./’ is a surprising result and 
deserves further discussion because it is qualitatively different from earlier assumptions 
based on entirely AFM interactions |40. 25b|. A FM coupling is possible without polarizing 
the oxygens through a fourth-order process similar to super-exchange. In super-exchange, 
the intermediate state has the lowest (/-orbital on the lz atom doubly occupied with up 
and down electrons. However, electrons can also hop to higher-energy (/-orbitals. In this 
Case, both parallel and antiparallel spins are allowed without violating the Pauli exclusion 
principle, and consistently, with the Hund s first rule, the parallel spin alignment is preferred. 
The super-exchange (within the same (/-orbital) completely excludes electrons of the same 
spin, whereas the ferromagnetic process (different participating (/-orbitals) merely favors 
FM alignment. Thus, a FM coupling is obtained if the V-O hopping matrix elements into 
the higher (/-orbital arc significantly larger than the matrix elements for the hopping of O 
electrons into the lowcst-encrgy (/-orbital. I he occurrence of such interactions is possible 
in a low-symmetry system such as Vl5. Even with this FM interaction, the spin Hamiltonian 
yields a .S =■ 1/2 ground state composed largely of Ising configurations similar to the one 
depicted in Fig. 4. This Ising configuration was predicted from the ,/s from the earlier fits 
to density-functional theory energies and corresponds to the ground-state density-functional 
theory configuration (1).

Comparing the calculated susceptibility with experiment [256], one finds the that low- 
temperature behavior is not well reproduced and that the doublet-quadruplet gap A % 10 K is 
significantly larger than the experimental value of A 3.7 K. whereas the high-temperature 
behavior shows that calculated value of J is too large.

Both ol these discrepancies can be explained almost entirely by a J that is too large 
within the dcnsity-functional-bascd treatment. The large value of./ can be attributed to both 
exchange processes through the oxygens and to direct exchange between the E. If direct 
exchange is important, the value of./ will be influenced greatly by the overlap between the 
V atoms. Electronic correlations included in form of LDA + 1/ may help to improve the 
agreement with experiment, because the overlap between the (/-orbitals of the vanadium 
at mis will be decreased by shifting the occupied (/-orbitals down in energy by U. Similarly.

Table 5. DFT energies (/: in meV) of calculated Ising configurations, energies obtained from the 
lit, and 4(5/5/) along each of the six bonds.

£■ fit J r II ,/2 J3 Spin Label <5 (K)

78.37 - 78.44 -6 fl 6 1 1/2 1 l}.8
7.3.39 73.63 -ft 3 _2 4 -4 1 1/2 H
35.48 35.(18 -6 _ ■» T 4 ■ 4 1 1/2 III

-34.89 34 5 3 -6 3 4 —4 1 3/2 IV
(MM) -0.79 6 ■6 6 6 -ft 3 3/2 V 1.5
8.38 8.28 (i -6 6 3 - J 1'2 VI 1.3

28.14 28.08 6 f-i 6 -6 fl 3 3/2 VI1
126.32 126.14 4 - 4 b 4 —6 3 1/2 Vlll
129.17 128.88 - 4 -4 3 6 -4 3 5/2 IX
278.35 278.50 _ “1- ■ 6 2 4 4 3 3/2 X
434.22 435,78 I) (1 ft fi (1 3 9/2 XI 1.6
76(1.75 760.76 h (» (I -6 -6 3 9 2 XII 1.6
873.11 X72.3? ft (> t) 6 6 3 15/2 XIII 1.8

\uh Also included is the anisotropy shift 4 for Ihe W, = A Mate ot each Ising configuration. A least square 
til of Uns data leads to exchange parameters ol J 290.3. J' = -22.7. 7 = 15.9. 7 I = 13.8. 72 = 23-1 and 

055 meV Adapted from |4!|
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self-interaction correction (SIC) [151, 152] will lower the magnitude of ./ because they will 
localize the F {/-orbitals more, reducing lhe overlap of the wavefunctions.

Without including a direct exchange interaction between the vanadium atoms in the inner 
triangle (./3 — ()), reducing J to 70 meV and slightly reducing the difference between J 1 
and J2 yields the experimentally observed effective moment, although another set of only 
antiferromagnetic interactions [40] also fits the experimental results well. In fad, any set of 
parameters with the correct values of J and A given by simple perturbation theory

3 (J2 - J " - J') 3
4 J- 2

(60)

will tit the experimental effective moment well. The already-mentioned problem ol the 
parameter dependence on the assumed mode! arises here.

By including a possible direct interaction between the triangle vanadium atoms (73) in 
the spin Hamiltonian, the agreement with experiment can be achieved by dividing all ,/s by 
a constant factor of 2.9. Scaling J3 down by a factor of 2.9 gives a value of 0.19 meV, in 
surprisingly good agreement with the corresponding value obtained from inelastic neutron 
scattering [257] of 0.221 meV. One possibility for deciding between different models could 
be the measurement of the spin ordering and the spin-spin correlation functions by. for 
example, neutron scattering.

6.5. Model Fe-Binuclear System
Binuclear metal-organic systems form a large, and very simple, group among molecular 
magnets. Even if their magnetic characteristics like ordering temperature and bulk magneti
zation are not necessarily outstanding, they help to grasp important physics of 3d-3d mag
netic interaction mediated by an organic ligand, and thus offer a convenient model system. 
Moreover, an interesting effect of spin-crossover has been observed in some such systems, 
for instance, in |Fe(bt)(NCS)J,-bpym (bt = 2, 2'-bithiazoline, bpym = 2, 2'-bipyrimidinc): 
a switch from LS-LS to LS-HS to HS-HS configuration (LS: low spin; HS; high spin) at 
the increase of temperature, where the intermediate LS-HS state gets stabilized near 170 K 
because of an interplay between intermolccular and intramolecular magnetic interactions 
[25, 128, 259). The possibility of optical switching between different magnetic states was 
demonstrated [260] and brought into discussion the prospects of using such systems as active 
elements in memory devices.

Our interest in binuclear systems is primarily that for model molecular magnets, to he 
treated with a method of recognized accuracy, and with the aim of looking at the effect 
of intraatomic correlation effects (“Hubbard (7”). Starting from the real structure of 
[Fc(bt)(NCS)2]2-bpym (see Fig. 19, left panel), we “streamlined” it somehow to fit it into 
a compact unit cell for an accurate calculation by a band structure method with periodic 
boundary conditions (Fig. 19, right panel). This transformation preserved the bipyrimidine 
part between two Fe centers but “shortcut” the distant parts of ligands to make a connected 
structure. The calculation has been done with the FLEUR code [231], a realization of full
potential augmented plane wave technique. One can see that, in contrast to ferric wheels, 
the Fe atom is now octahedrally coordinated by nitrogen ions. A formal valence state in 
these compounds is routinely referred to as Fe(ll). The HS and LS states were discussed as 
being represented by the r! e* and configurations, correspondingly [128], Our calculation 
did not yet include the orbital transition of this type; we initialized only HS configurations 
and brought them into self-consistency in FM and AFM settings. The resulting partial DOS 
are shown in Fig. 20.

Certain similarities can be found with the Fe local DOS in ferric wheels—clear splitting 
into t,g-likc and e^-like states in a nearly octahedral ligand field, full occupation of majority
spin Fc3d states, and one electron per Fe atom trapped in the Fe3z/-N2p hybridized band 
of minority spin. The values of magnetic moments (total per Fe atom in the FM case, along 
with the local moment, integrated over the muffin-tin sphere) are listed in Table 6. The 
interatomic exchange parameters have been estimated from total energy differences between 
FM and AFM cases.
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Figure 19. Two views of the |Fe(bt)(NCS).|.-bpvm molecule (left panel) and a simplified periodic Fc-binuclear 
sy tein used in the FLEUR calculation (right panel).

Because the magnetic moment is largely localized al the Fe site, the inclusion ol 
intraalomic correlations beyond the "conventional" density-functional theory might be 
important. The exchange parameters ./ depend on the spatial overlap of the </-orbitals on 
different Fe sites. It is well known that the </-orbitals within density-functional theory are

Fe2 - model system, +U - 4 eV. J = 0Fe2 • model system

Energy (eV) Energy (eV)

F»ure 20. Densities of stales in FM and AI M cases as calculated by FLEUR for the model Fe-binuclcar system, 
it the OFF and in the I DA a (•’ approach Fe local DOS arc shown as shaded areas.
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Table 6. Magnetic moments and interaction parameters as estimated for 
a model Fe-binuclear system (Fig. 19) from calculat ons by FI FUR with 
and without Hubbard U.

M(Fe) W.Fe A£ J (.5 =5/2)

U = 0 FM .162 4.10 — —
AFM 3.61 — 102.5 mcV -190 K

(7=4 eV FM 3.93 4.94 — —
AFM 3.92 — 76.8 ineV - 143 K

not localized enough compared to experiment, and as a consequence, the ./ values will he 
overestimated. There are two main reasons tor this shortcoming. First, possible on-site cor
relations as known from atomic physics are underestimated in the case of "conventional ' 
density-functional theory. Second, density-functional theory is not free from spurious self
interactions resulting from the replacement of the point-like electrons by corresponding 
densities. Bringing in the atomic physics in the form of LDA + LI (and adding a local 
orbital dependent atomic Coulomb interaction parameter U to DFT [153] or SIC |I5I. 152]) 
improve the results by lowering the </-orbitals in energy and therefore localizing them 
stronger. SIC only affects occupied states, whereas LDA + U plunges the occupied r/-states 
and shifts the unoccupied ones to higher energies. By increasing, on average, the magnetic 
excitation energy across the spin majority-minority gap, both mechanisms help to effectively 
reduce the magnitude of J. To our knowledge, SIC have not yet been applied in calcula
tions on molecular magnets (nor are we aware of any practical implementation of SIC’ in 
a full-potential code; i.e., beyond the muffin-tin or atomic sphere approximation. Pederson 
et al. (private communication) are actively working toward a practical implementation of 
SIC within the NRLMOL suite of codes. The LDA + U scheme is implemented in the 
FLELJR code (as in many others). This ansatz has, however, the disadvantage of not being 
truly first-principles one: It remains on the user to single out certain orbitals as localized 
and to choose an appropriate value for the "Hubbard U" parameter. For the Fe-binuclear 
system we have chosen an empirically reasonable value U = 4 eV; in principle, we were 
more interested in studying qualitative trends, as they deal with a model system anyway. 
One observes front Table 6 that the inclusion of intraatomic correlation somehow enhances 
the local magnetic moment at the Fe site and, to a much smaller extent, the total magnetic 
moment (in the FM configuration). Much more important, the J parameter is noticeably 
reduced as a result of the inclusion of correlation. These observations agree with what 
was earlier reported by Boukhvalov et al. [166] for the “Mn12” system from the LDA + U 
calculation.

7. CONCLUSION
We attempted to give a broad overview of physical questions and technical problems one 
encounters in modern first-principles simulations in the rapidly growing held of molecular 
magnets. Our own presented results largely correspond to work still in progress, and they 
might be far from providing a definitive answer for particular systems. On the contrary, 
these results are likely to be refined and extended by subsequent studies. Our current results 
make us very confident in the predictive power of the presented methods. To explore lhe 
range of systems in which the presented first-principles methods give reliable results, further 
studies on more systems are required. A large number of calculations are being performed 
by other groups on many other systems, which we might have failed to name in this limited 
contribution. However, it is our hope that it may help the newcomers in the field to access the 
problems, the difficulties experienced, and the possibilities offered by different methods and 
practical schemes of first-principles calculation. Many additional calculations are required to 
obtain a complete understanding of the idealized behaviors of molecular magnets, and both 
new theoretical and new computational tools will be required to understand the real world 
that will define the operating environments in application of such systems.
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1. INTRODUCTION
The discovery of af-(antiferromagnetically) coupled Fe/Cr-films by Griinberg [1], the giant 
magnetic resistance (GMR) effect by Feri [2j, and oscillatory exchange coupling by Parkin 131 
has triggered immense research activities in the area of thin magnetic films. The oscillations 
in the coupling constants can be interpreted by the RKKY (Ruderman-Kittel-Kasuya-Yosida) 
theory, based on the interaction between two magnetic sheets embedded in a nearly free 
electron gas [4, 5].

GMR and spin valve (SP) elements consist of many af-coupled magnetic layers (e.g., 
Permalloy, Py: Fe19Ni81), which are separated from each other by nonmagnetic spacers 
(e.g., Cu).

Magnetic tunnel junctions (MT'J) or tunnelling magnetoresistance (TMR) devices consist 
of three magnetic layers: soft (layer 1; Py) and hard (layer 2; e.g., Co) magnetic layer, af 
layer (layer 3; e.g., Mnlr). The direction of the magnetic moments in the hard magnetic 
layer is fixed by magnetically coupling to the af layer. The soft magnetic layer is separated 
by an insulator layer (e.g., A12O3) from the Co layer, but it is coupled to the Co layer by the 
demagnetizing fields.

The TMR/GMR/SP devices opened up a number of applications, including magnetic ran
dom access memory (MRAM), magnetoresistive sensors, single-molecule detection, read 
heads for storage devices, and new magnetic recording media for storage densities beyond 
100 Gb/in2.

There are numerous theoretical approaches to ab initio calculations of the GMR using 
realistic band structures [6-9]. These methods can provide understanding of the physical ori
gin of the GMR and material parameters influencing the GMR. Phenomenological methods 
have been very successful too, because they allow a direct comparison with experimental 
results AR/R(Hexl). In Co/Cu multilayers the hysteresis and the irreversible decrease of the 
maximum GMR value has been studied [10) by phenomenologic methods. Micromagnetics 
has supplied many valuable contributions to the understanding of the magnetic behavior of 
such complex devices.

2. MICROMAGNETICS
W. F. Brown, Jr. established the principles of micromagnetism [11] and especially coined 
the term micromagnetics. Micromagnetic papers based on his ideas still appear more than 
40 years later. He was a highly respectable scientist in the magnetic community, and a special 
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issue of IEEE Transactions on Magnetics was devoted to his honor for his 75th birthday 1121. 
A short biography |I3] with it photograph is included in that issue. He was active until he 
turned SO years old: his last paper was published posthumously [ 14).

First numerical methods have been applied by Brown and LaBonte [133. 134). Holz 1135— 
137] and Hubert 1138, 139|. Holz and Hubert used the Ritz method, minimizing the magnetic 
Gibb's tree energy with respect to the free parameters of a functional ansatz for the distri
bution of the magnetization. This technique however does not allow a correct treatment of 
the stray fields.

Most numerical micromagnetic simulations rely on the finite difference method (FD). 
Finite element (FE) codes can treat more effectively the shape of the magnetic layers and 
their grain structure. Scientific activities concentrate nowadays on such areas as how to incor
porate thermally activated magnetization reversal in the framework of the micromagnetic 
concept, how to expand the theory for the simulation of the influence of complex microstruc
tures and large-scale systems (MRAM devices, sensors), and how to develop hybrid micro- 
magnetic models including Monte Carlo approaches [15].

2.1. Energy Terms and Effective Field Contributions
All energy terms but the stray field energy depend only locally on the magnetization. There 
are several contributions to the effective field: external field (W,.u) and magnetocrystalline 
(//„„) or surface ) anisotropy at the grid point, the exchange energy (A/rl), and addi
tionally. af coupling between two adjacent magnetic layers on both sides of the nonmagnetic 
spacer layer (/•/„,).

=-./,(Hl.u m)

e.( = /|(Vm)’

G« = A„|l - (k ■ mp]

- (n in)'|

G/ = “W * (mi m) - ZJI - (/"/ • "02]

* dem -j

= + t,v + e“"+ + +‘is

The micromagnetic quantities include all three components of the magnetization M or the 
magnetic polarization J. ./,. Af, arc the corresponding saturation values, in = M/Ms is the 
unit vector of M or J. in, the unit vector of M, in the nearest neighbor cell of the adjacent 
layer, A the exchange stiffness constant, A„ the anisotropy constant, and k the anisotropy 
direction The terms (./,. ./ ) are the linear and biquadratic interlayer af coupling constants: 
negative values J < ()) would refer to the ferromagnetic coupling case.

The volume and surface anisotropy defined here arc uniaxial, directed along the easy 
d ruction A and the normal n to the boundary' surface. Positive values of A,„ make the normal 
surface an easy axis, and negative values make the surface an easy plane. The constants 
(/ „sz +■ A\„ + 7/ + ./,,) can be neglected in the energy equation (r/F = dSsz), because they 
are irrelevant in the search for the energy minimum and do not enter into the magnetic 
field contributions co is used here in place of ex. an. su. af. These values because of 
tie different energy terms eV(<. can be calculated all by the first equation H,,,^,,) and lead 
u the following results:

H»= z? ?■""" =
A.V. XV
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H,„ = y(kni)k

Hsu = (n-m)n

Haf = - — [J,+ 27</(ml m)]ml

Herr = He»t + Hw + Hail + Hsu + H,r + Hdeni (2)

The exchange field H,, is only determined by the nearest-neighbor cells NN (e.g.. 6). Some
times coupling constants A,. Atl [16] are used, referring to the stiffness constant A in HlX 
instead of the above introduced Jz. Jlf for the description of the linear and biquadratic 
coupling between adjacent layers. The relationship between these two differently defined 
parameter pairs is /I, = —Z (/az/2, as the comparison between the fields Hex and II.lf in 
Eq. (2) shows. Section 3 deals in more detail with the calculation of the demagnetizing field 
Hdcm.

2.2. Dynamics of Micromagnetics—LLG
The LLG (Landau-Lifshitz-Gilbert) equation describes a precession motion of the magne
tization around the effective field [first term in Eq. (3)]; [140-147] y is the gyromagnetic 
ratio. The angle between magnetization and field would never change without consideration 
of losses or damping [second term in Eq. (3)].

dm I'yl ay-v-=-?^i(mxHctT)-—5-[mx(mxHeff)] (3)
al 1 + a- I -T a-

Thc gyromagnetic ratio y and the damping constant a are those constants formerly used 
for the Gilbert equation (yG, -* ?!«). a is introduced to describe dissipative phenomena, 
like the relaxation of magnetic impurities or the scattering of spin waves on lattice defects 
[17]. At first, Eq. (3) describes the damped precession motion of a single spin at one definite 
grid cell /, but generally it represents a system of many coupled partial differential equations, 
because all the spins of the whole simulation volume can enter into the field Hclt at that 
picked up grid cell i. In this sense, Eq. (3) describes the damped precession motion of the 
whole spin ensemble.

Because a controls the time scale for the magnetization approach to the effective field 
direction, it governs how quickly a solution converges. Real materials can have values of 
a in the 0.01 range. However, choosing much larger values (a = 1) can provide the same 
final solution to problems (as et — 0.01 solutions) in a fraction of the computation time; this 
statement has been extensively tested for domain wall systems [142].

2.3. Solving Methods in Micromagnetics
All spins point into the direction of the effective field Hc(r | Eq. (2)]. when the minimum of the 
magnetic Gibb’s free energy £,(„ has been obtained, the spin system is in equilibrium. The 
method to get the hysteresis curve in micromagnetic calculations is therefore lhe repeated 
search for the equilibrium state. Starting from the preceding field step, a small change in the 
external field Htxl alters the energy surface slightly, and the system is a little away from the 
equilibrium state. An effective minimization method, or only the angle difference between 
the magnetic moment m, at a grid point i and the effective field Heff „ gives the direction 
to come to the new equilibrium state.

2.3.1. Effective Field—Successive Overrelaxation
The method is to calculate the effective field Hell according to Eq. (2) at a grid point (/, j. k) 
and set the corresponding spin angles (ip, i7) into that direction; the angles of HcfT supply 
the new spin directions: , k, d, ( k [18], Initially, this is only the condition for a local 
minimum; therefore, the procedure has to be repealed until the average or the maximum of
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all the magnetization changes Ain, , k drop below a preset limit (e.g.. ID '’). The number of 
iterations can be reduced considerably by using successive overrclaxation with cj parameters 
(u> = 1.97) close to the stability limit of m — 2 |19, 20).

a stands here for the angles </?. i) in the polar coordinate system describing the vector tn.

2.3.2. Angle Update by the LLG Equation
The LLG equation is often used in micromagnetics not only for simulating the dynamics 
of small magnetic particles during magnetization reversal (small a calculation) but also for 
the static case, in which M points into the direction of 11^ in the equilibrium ease (/ —» 
oo, m x Ht(r = 0 -» </m = 0). A large value of the damping constant a is useful to get more 
quickly to the searched energy minimum. The right side of Eq. (3) directly provides the 
update of the angles tp, i). The suitable choice of a time step dt is still essential: It must 
happen on account of the stability criterion for the explicit difference formula of the partial 
differential equation (I.LG) considered up to now. Because of this criterion, the largest 
possible time step is proportional to the square of the spatial step size (dx. dy, dz), with 
bitter consequences for the micromagnctic simulation—it is a very time consuming job. In 
the last few years, great efforts have been made to find a set of implicit difference equations 
to overcome this limit (21—23).

2.3.3. Energy Minimization
The method is the repeated minimization of L,„ for decreasing and increasing the applied 
field Ht.M. An effective minimization method has to find the path to a new minimum; w'hen 
all the spins point again to the new' effective field Hc(r. the system has obtained a new 
equilibrium state. The conjugate gradient method has been proven to be a very successful 
procedure; the derivatives of the energy function to the angles (tp. 0) are only necessary in 
addition to the energy value itself. These derivatives can be calculated analytically, and they 
are also necessary in the FE method (see Eq. (7) in Section 2.3.4). The subroutines frprmn, 
bieill, milbrak, linmin from Ptcss cl al. |24] can be used fot this minimization procedure.

A more advanced method reacts with different step sizes to the slope (small) and the 
bottom of the energy valley (large). The algorithm is prepared to adapt to these different 
regions of the energy function by switching between minimization of the energy and the 
square of its gradient (modified steepest descent and relaxation method MSDR |25|).

2.3.4. Finite Element Technique
The FE method has become a well-established method in many fields of computer-aided 
engineering, such as structural analysis, fluid dynamics, and electromagnetic field computa
tion. The FE technique was introduced into micromagnetics by Frcdkin and Koehler [26- 
35], Early acquisitions of the FE technique to micromagnetics go back to Schrefl, Fidler, 
and Kronmiiller |36 40). There are three main steps during the solution, according to this 
method:

1. First, the domain of solution is discretized into finite elements. Depending on the 
dimension of the problem these can be triangles, squares, or rectangles in two dimen
sions, or tetrahedrons, cubes, or hexahedra for three-dimensional problems. This sub
division process is usually called triangulation.

2. The solution is approximated by piecewise continuous polynomials and the micromag- 
netie equations are discretized and split into a finite number of algebraic equations. 
This process shall be illustrated by the interpolation, using a linear function on a tri
angular finite element consisting of the nodes I..3. The polarization ,J(r) within the 
element is the weighted average of the magnetization at the nodal points.

J(r) = </>,('•) 0)
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The so-called shape function </>,(r) equals 1 on node i and decreases linearly to (I on 
all other nodes of the element.

3

Thus, the three coefficients (u,b.c) of i/q are determined by the geometry of the 
triangular finite element (three nodes); the same applies to the shape functions dy.
The four coefficients (a,b,c.il) of a square finite clement |rt*(LI(.v, r) = a, 4- />,.v 4- 
c,y 4- are also determined by the geometry (four nodes), and so on.

. The aim is now to determine the still-unknown coefficients m, of the polynomials in 
Eq. (4). Altogether there are A’ coefficients m,, where N is the total number of nodal 
points.
Micromagnetic FE calculations start from the discretization of the total magnetic 
Gibb's free energy [Eq. (I)]. Polar coordinates if,, ip, for the polarization at node i 
are introduced to satisfy the constraint (|J,-| — /,), such that

= A
1 sin if; cos ip, 

sin if, simp,
y cos if,

The principle of the FE method involves transforming the energy equations into an 
energy functional E|J]:

E(J] = y'e(J)r/F

The functional has a numerical value at each point and is an integral representation 
throughout the entire volume of the variables that are functions of the geometry, 
material properties, the potential solution, and its derivatives.

The FE mesh is used to integrate the total magnetic Gibb’s free energy [Eq. (I)] 
over the entire magnetic system. The energy integral is then replaced by a sum over 
cells (finite elements), and Eq. (4) is applied to perform the integration of the energy 
over each cell. When J(r) is approximated by piecewise polynomial functions on the 
FE mesh, the energy functional reduces to an energy function with the nodal values 
of the directions (if,, ip,) of the unit vector m as unknowns. The total energy may be 
written as

£, = = E,(if|,<p|, tf:, <p:,... ifA, <p,v) (6)

The minimization of Eq. (6) with respect to the 2/V variables tf,. <p, provides an equi
librium distribution of the polarization J. The necessary condition for the minimum 
leads to exactly 2/V equations HE,/HO, = HEJHtp, — 0 for the IN unknowns. The 
minimization may be effectively performed using a conjugate gradient method that 
requires the gradients of the energy to select the search directions:

A. <7)
Hv, 4 if, dip, dip,

where F, is the volume of a box surrounding the nodal point i |41|. Equation (5) is 
used to supply the derivatives with respect to the angles.

2.4. Some General Aspects of Modeling
Physical modeling of magnetic materials should give insights into Ihe basic processes involved 
and should be able lo extrapolate results to new situations that the models were not 
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necessarily intended to solve [ 12]. Thus, lor example, if a model is designed to describe a 
static magnetization curve (minimization of the magnetic Gibb's free energy; Section 2.3.3). 
it should also be able to describe aspects ol magnetization dynamics (Section 2.2). Another 
aspect is. if the parameter set is adjusted Io a curve of a better-understood large device (e.g.. 
a TMR sensor 1 * I gm-), the model should be able to describe the change in the charac
teristic for smaller dimensions. We could show that lhe experimentally observed shift and 
anisotropy of the characteristic in the smallest TMR devices at lhe moment (50*50 nm2) 
[42] could be understood in this sense with the parameter set lilted to the larger devices. 
The much larger strav fields of the smaller layers are responsible for both the observed shift 
and the asymmetry [43] of the TMR characteristic.

2.5. Access to Micromagnetic Programs
Three micromagnetic programs of the FI) type [44—40] have been available for our investi
gations in addition to our own code. No free accessible FE program exists at the moment, 
hill there are several research groups using proprietary' codes [47-50].

3. DEMAGNETIZING FIELD
The magnetostatic field is a long-range interaction: the magnetic moments of the whole 
emulation volume enter into its calculation. Il is still the most time-consuming part of the 
micromagnetic simulation, despite the applying tricks such as FFT (Section 3.1).

3.1. Convolution Procedure—FFT
Tie resulting magnetic field at the grid point i depends on the spins of all /.v cells, where 
v denotes the number of grid points in lhe discretization of the whole simulation volume.

Hi(ri) = EHut — -47rAfsN(ri - r ) ■ raj (8)

A„ N.-A

N = A,., zV,. (9)

1 A(J . /

The sum procedure [Eq. (8) | has to be done for each grid point z; therefore, the direct 
imputation of the demagnetizing lick! from lhe magnetic volume and surface charges scales 
vith /; in storage and computation time. The demagnetizing tensor N in Eq. (9) contains 
hree rows and three columns. It is not necessary to recalculate all tensor elements N(rt — r() 
or every' new field The tensor elements depend on Eq. (8) only from the spatial
lifference - ty, that is, for a two-dimensional grid (indices: zv, z\), the same demagnetizing 
actor/V(x, v) = /V(3,2) enters into the calculation of. for example, 77, , — Hz 5 from the 
ell (5.7), as for H} b from (7,8), because ax = 3 = 5 - 2 = 7 - 4 or ay = 2 — 7 - 5 = 

t - 6. Therefore, the computation time can be already drastically reduced, if initially the A 
omponents are calculated and stored in a data array of fourfold (22) the number of grid 
toints in the two-dimensional case, or eightfold (2’) the number of grid points in the Ihrce- 
limensional case. The factor for the extension of the required array size is really a little 
mailer for the two-dimensional square case (number of grid points z2 ). 4 * (I - l/2z.v )2 = 
>.75 (z'v = 16) to be precise.

Neglecting the term j — i in Eq. (8) is only necessary for the dipole approximation 
Section 3.2). which in this case becomes /■ = 0 in Eq. (1(1) and A —► oo. The term can be 
ncluded for the more advanced methods described in Section 3.3. The enormous effort of 
he convolution step [Eq. (8)] can be drastically reduced by the fast Fourier transformation 
FFT) |51, 52], A brief outline of this extremely successful method in micromagnetics shall 
»e presented here as follows. The convolution of two functions in Eq. (8). at first restricted 
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to one dimension, denoted N * /», is delined by
j.\

/V * n; = ^2 N(x, — ) dx. <=> N(«;) * in(w;)
;=i

The convolution theorem says that the Fourier transform of the convolution is just the 
product of the individual Fourier transforms.

The convolution theorem is also valid in the three-dimensional case of Eq. (8). Therefore, 
the following three steps are necessary for calculating the demagnetizing fields making use 
of the convolution theorem:

1. The Fourier transforms of N and m have io be calculated. N fortunately only once at 
the beginning of a simulation project, m always after each update [c.g., after applying 
dm in Eq. (3) in the whole simulation volume].

2. I’he product N * m of the Fourier transforms N (stored initially) and m (calculated 
again and again) has to be determined.

3. The product N*m must be replaced by its inverse Fourier transform, which leads 
directly to the demagnetizing fields H| disregarding prefactors.

The subroutines rlft3, fourn from Press et al. [24] can be used for the three-dimensional 
convolution process which has to be done after each update of the spin distribution (new 
ni) The scaling rule for Eq. (8) is then In instead of FFT is already faster if 
the simulation lattice exceeds a very small 7*7 mesh (/\, = 49) [20], FFT is an extremely 
successful method and has enabled to simulate interesting sensor devices. Unfortunately, 
the algorithm is restricted to a regular lattice, and it cannot be applied to a mesh with a 
different step size or the unstructured mesh of the FE algorithm.

3.2. Dipole Approximation
The influence of the demagnetizing fields can be calculated by the dipole approximation, in 
which each cell is replaced by a dipole of strength at its center [53. 54],

(10)

The term F',. is the cell volume and ax its length, with its width xy, and its thickness xz. This 
is a tensor matrix symmetrical with respect to the diagonal. All the tensor components can be 
deduced from only the first two elements of the first column. First, the third element of the 
first column can be obtained by the relation Ntz(x, y, z) = Nx (x, z, y). The elements of the 
second column can be derived from the first on account of the valid relations: /Vlt(x, r, z) = 
/Vvv(a, y, z), Nyy(x, y, z) = Nxx(y, x, z), /Vv.(x, y, z) = Nx.(y, x, z), and so on.

Equations (8) and (10) can also be applied to get the field outside of a microsphere r > R. 
uniformly magnetized along the x-direction, R is the sphere radius [54, Section 6.1.2). Only 
the dipole volume must he replaced by the sphere volume F,. = 4ttR^/3. We return to some 
interesting results of Eq. (10) in Section 12.

3.3. Analytical Approach by Advanced Methods
The calculation of the elements of the demagnetizing tensor N can be done in the FD algo
rithm by advanced methods based on the analytic solution for a homogeneously magnetized 
rectangular prism (grid cell) [53, 55-60], The demagnetizing fields in these methods are 
much more precise in comparison with the dipole approximation (Section 3.2).

3.3.1. Magnetic Potential and Surface Charges
The method of calculation of the demagnetizing tensor elements in the case of a ferro
magnetic rectangular prism homogeneously magnetized in the x-direction is outlined below.



Computer Simulation of Magnetic Nanolayer Systems 571

The origin of a Cartesian coordinate system is defined at the center of this prism. More 
specifically, it is assumed, as in Kef. |56|. that the prism extends over the volume —a v <z, 
—h < y < b, and -c < z < < (see Fig. I). If this prism is saturated along a. a surface charge 
is created on its faces a = ±«. The potential resulting from this charge can be calculated by 
integrals on these surfaces, and the magnetic field is lhe gradient of that potential.

(H)

r(x. y', z') = ,/(.v + a)2 + (y - V')2 + (z - z')2
(12) 

y, z) — — Vt^r — -4ir.WK N m

where t/z is the magnetic potential [Eq. (11)], lhe components of the demagnetizing field arc 
produced by Eq. (12); N\ corresponds to the first column of the demagnetizing tensor N 
[Eq. (9)].

(y+b)(z+c)
/(.v.y.z) = arctan

(.v -f-a)y' (x + </)2 + (y + />)- + (z + < )*

g(.v.y.z) = In
v (xTdj2 + (y+/>)- + (z 4-c)- + z+c

v'(.r + «)- + (y + />)-

477 N(l (.v.y.z) = /(—v.y.z)+ /(.v,y,—z) + /(-t ,y,—z)+/(.v,y, z)-t-/(.v,—y,z)

+/(-.v. —y.z) I- / (v, -y,-z)+/(-.v,-y,-z)

4 77 (.v.y, z) = g( -x, y, z) + g( -.v.y, -z) + g (.v. -y, z) + y(x, -y,-z)

-y (x,y,z) — y (x, y, - z) - g (- v, -y. z) - g (-x, -y, - z)

/V(.(x,y,c = /Vn.(x.z.y,«,c./j)

Hv(.r,y.z) =-477M,/Vl(. //1(v.y.z) = -47rA/,/V<,. //.(.v,y.z) = -47r.T/s.V, (14)

Figure I. Sketch of a TMR device with the coordinate system. H.,, points into the t direction, coordinate axes (.v, v) 
in the layer (length /. width w). axis ; in the direction of the layer stack (thicknesses z,). Dimensions (2a. 2b. 2< ) for 
the calculation of the demagnetizing field of the sensor layer (Pv) according to Eqs. (13) and (14). The magnetic 
behavior of the sensor layer three is determined nol only by its own stray held bril also by lhe foreign stray fields 
(doited field lines) of the AAF flayers I. 21
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The tensor component Nv results from Eq. (13) as a sum over eighth terms. The represen
tation g(x,y, z) is easier for the programming code, and the arctan-function was used here 
[43] instead of G'(r|«. />. c) = ln[v/(m - x)2 + (b - y)2 + (c - z)2 + b — y], and the arccot
function in the original paper [56]. The z-component in Eq. (13) A\ did not have to be 
recalculated, as it could he reduced to (he already calculated element jViv by permuting the 
variables and cell dimensions. The still remaining tensor components for the magnetization 
in the y- and z-dircction [second and third column in Eq. (9)] can be obtained in a simi
lar way; for example. /Vvv(x, y, z, a. b, c ) — A\v( v, x. z, b, a, c). We will come back to some 
interesting results of Eqs. (13) and (14) for TMR devices in Section 11.

It can be concluded from the In-terms in Eq. (13) that the magnetic stray field components 
(//,, H.) have a logarithmic singularity at each corner of the rectangular prism, and the 
cnoimous increase of the stray field 77, al the four corners is shown in Fig. 4 (left diagram). 
Naturally, this singularity is a consequence of the micromagnetic continuum approach, and it 
would be avoided when considering discrete atomic moments. As a result of the singularity, 
the magnetization at the corner is oriented parallel to the diagonal of a square grid cell.

It should be still remarked that Eq. (13) also can simply be used to calculate directly 
the own stray field within a magnetic layer; in this case the dimensions of the grid cell 
(2a.2b,2c) must only be identified with the layer dimensions (/. w, f) (see Fig. I for the 
explanation of the dimensions). This simple calculation is not possible for the more advanced 
methods [53, 57) described in Section 3.3.2. The corresponding demagnetizing factors cannot 
be used directly within the cell because of the additional average process. Therefore, the 
time-consuming convolution process [Eq. (8)] is absolutely necessary in this case to calculate 
the own stray field of a magnetic layer.

3.3.2. Spatial Average of Stray Fields
The so-calculated magnetic field caused by a source cell j in Eq. (8) still depends on the 
position within the target cell i. Newell and Schabes et al. [53, 55. 57] have introduced, 
therefore, an additional average of the stray field over the target cell. The typical fourfold 
integrals show the following equations for the tensor elements Nl(, A7» v:

4rrl<.A/„ = 2/(A", Y, Z) - f(X + 2u, T. Z) - f(X - 2a, Y, Z); J< = axiyxz = Habc

47rE<./Vl.v. = g(X - a.Y +b.Z)_g(X + a,Y + b, Z) - g(X - a. Y - b, Z)

-g(X + a, Y - b,Z)
.Z+c rY+'j rc .h dy' dz' dy dz

Z+c dy' dz' dx dz

The equations correspond to the case of a ferromagnetic rectangular prism homogeneously 
magnetized and saturated in the x-direction. The first equation reduces the integration over 
two faces with different x coordinates to only one integrand function; y', z' are the coordi
nates at the cell faces, and the integration considers the integration over the magnetic sur
face charges in the source cell. The field component H, resulting only from this integration 
|(Eq. 13)] would still depend on the coordinates y. z of the target cell; therefore, an addi
tional integration over y, z has been introduced by Schabes and Aharoni [57], Unfortunately, 
their results are restricted to the case of cubes as grid cells. The formula [Eq. (15)] for the 
noncubic case, including different edge lengths, has been represented later by Newell and 
coworkers [53].

v , , . v z , , z
f(x. v. z) = -(z* — X") arsinh—- - ■■■ q—( v~ - x*) arsinh— ■

Vx2+z2 - v'x2 + y2

vz , , , Zv2 4- z- .v’ If ,
-xvz arctan -- - (2x* - 2')-----------+ -H----- (2.r _x/i 6 3 6
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_ , , v .v- + V- V , . . V z , . . z
—(2x* — v)-------- :---- 1- -r arsinh— 4- x arsinh

6 2 x 2 a

z v , , . , x y1 . , ag(x. v, z ) = xvz arsinh ■■■ 4- -(3z* — w) arsinh— 4- — arsinh-
Jx2 + y2 b ’ /y2 4- z2 b X

z? jy zy2 A"2 zx2 yz xv /—■;----- t
---- arctan ----------arctan —---------- — arctan ; 4- -z-v x- + v-6 zR 2 yR 2 xR 3

—t-R----- arsinh—I—(3z2 — v2) arsinh
3 6 x 6 y/.v- 4- z2

477^ A’,,(,v. y. z) = 8/(x, y, z) - 4/‘(x - ax, y. z) - 41 (x + ax, y, z) - 4f(x, y - av, z)

—4/(x, y. z — az) 4- 2f(x, y - ay. z — az) - 4f(x, y 4- ay, z)

4-2/(x. y + av, z — az) 4- 2f(x. y — av, z 4- az) - 4/'(x. y, z 4- az)

+2f(x. y 4- av, z 4- az ) 4- 2/(x 4- aa, y - av. z)

—/ (x 4- ax. y - av, z - az) 4- 2/’(x 4- ax. y, z - az)

4-2/(x 4- ax. y 4- av. z) - /'(.v 4- ax. y 4- av. z - az)

4-2/(x 4- ax. y, z 4- az) — f(x 4- ax. y - av, z 4- az)

- / (x 4- ax, y 4- Ay, z 4- az) 4- 2/(x - ax. v - av, z)

4-2/(x ax. y, z - az) - / (x - ax. y - av, z - az)

4-2/(x — ax, y 4- Ay, z) - f(x - ax, y -I- av. z - az)

—/'(.v - ax, y - av. z + az) + 2/(x - ax. y, z 4- az)

— I (.v — ax, y + ay, z 4- az)

477-r, JVn(x. y, z) - 2g(x - ax, y, z - az) - g(x ax. y 4- Ay, z - az)

—y(x — ax, v — av, z — az) — g(x 4- ax. v — av, z 4- az) 

4-2g(x 4- ax. y. z 4- az) - 4g(x 4- ax, y, z) - 4g(x, y, z 4- az)

4-8g(x. y, z) 4- 2g(x 4- ax, y - av. z) 4- 2g(x. y - av, z 4- az) 

-4y(x, y - av, z) 4- 2#(x 4- ax. y, z - az) - 4y(x. y, z - az) 

-j?(x 4- AX.y - AV, z - AZ) 4- 2^(x, y - Ay, z - az)

4-2g(x - ax, y, z 4- az) 4g(x - ax. y, z) - g(x - ax. y - a v, z 4- az)

4-2,g(x — ax, y — av. z) — ,g(.v 4- ax, y 4- av, z 4- az)

4-2y(x 4- ax, y 4- av. z) 4- 2#(x, y 4- av. z 4- az) - 4g(x. y 4- a v, z )

-g(x 4- ax. y 4- av, z az) 4- 2y(x. y 4- a v, z - az)

-g(x - AX, V 4- AV. z 4- AZ) 4- 2g(x - AX, V 4- AV. z)

A representation of Newells formulas was used here more effectively lor the programming 
code [Eq. (15)] instead of the complicated fivefold nested representation in the original 
paper |53j. Good agreement with the FE methods has been achieved using Newells formula 
[Eqs. (15)| |44|; other programs [45] apply proprietary formulae based on an extension of 
the Schabes and Aharoni paper |57|. The formula in the original paper of Joseph et al. 
[56] use for each field component //,. //, |Eq. (I3)| eight elementary functions (arctan.In). 
Newells's more advanced formula [Eqs. (15)| needs for the same task at least 27 calls of the 
indefinite integral function consisting of each of 10 (8 —• 10*27 = 270) elementary functions 
(arsinh.arctan.ln); the effort of the Schabes and Aharoni paper [57] is approximately the 
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same. Fortunately, these quantities must be calculated only once, at the beginning of a 
micromagnetic simulation session.

The above remarks on the remaining tensor components (second and third column in 
[Eq. (9)| are also valid in this case; they can be obtained by permuting the correspond
ing variables: Arv,(x, y, z, ax, ay, sz) = NVI(y, x, z, ay, ax, az) or /V, .(x, y, z, ax. av, az) — 
At,(y, x, z, Ay, ax, az).

3.3.3. Comparison with the Dipole Approximation
It is interesting to ask how the more exact treatment of the interaction energy [Eqs. (13) and 
(15)] between uniformly magnetized cubes compares to the dipole approximation (Section 
3.2). Two rectangular prisms arc considered for simplicity; one at the origin (/ = (I), the other 
one displaced in the x direction by i lattice constants (x = zax). ax is the length of the grid 
cell in the x direction, and the dimensions in the other directions arc av and az. Equation 
(10) gives for r — x -> x2 — r2/3 = 2x2/3 with a field Hlh = 2Myc/xi to be compared 
with Hrc = AftNJX(x, 0,0)/K( in Eqs. (13) and (15). Equation (16) contains the necessary 
geometry factors for the calculation of the ratio Hdi/Hit must still be extended by a 
factor Vc if the right sides of Eq. (15) (Ft.Ati) are directly entered in Eq. (16):

2 K _ Ay AZ
Hre ' ax3 z‘3A„(fax, 0, 0)' AX3 AX2

Some numerical results of Eq. (16) are listed in Table I, which show's the ratio Hdi/Hr, 
versus the displacement index i. The dipole approximation obviously overestimates the field 
in the cube case; the error is biggest for direct neighboring grid cells (7=1) and decreases 
rapidly with the cell distance - it already falls below 0.3% for the third grid cell (z = 3). 
The maximum amount of 18.1% (first line) agrees well with the value of 17.9% (second line) 
determined by Eq. (15) [53], and the values in line 2 agree exactly with those given in the 
paper of Schabes and Aharoni [57]. The deviations from the dipole approximation are much 
larger when the thickness of the grid cell is larger (third line) or smaller (lines 4, 5). The 
dipole approximation obviously underestimates the field in the rectangular case: When the 
thickness of the grid cell is smaller than its length and width (lines 4,5), the deviations are just 
especially large in the case of very thin layers, that is the very interesting case for applications. 
That means that the dipole approximation really should not be applied in such'cases.

3.3.4. Comparison at Large Distances
At large distances (r = ^x2 -E y2 4- z2 » a, b, c), the demagnetizing field must agree with 
the field of a dipole at the center of the grid cell, and the cell volume Vc — &abc enters the 
dipole strength fic = MSVC. Equation (10) can be useful to check the asymptotic behavior 
of Eq. (13). This shall be proved in the case of y = z = 0, x -* oo. In this limit, r goes in 
Eq. (10) to x, and 4irNxx -> —2E(./x3. The study of the asymptotic behavior of Eq. (13) is a 
little more complicated. For a <<c x, the arguments of the eight arctan-functions in Eq. (13) 
are entirely Cl, there are four contributions to Eq. (13) almost cancelling out [sum in

Table 1. Comparison of the field components //, or the interaction energy densities between two grid cells, as 
calculated from the dipole approximation [II,,,. Eq. (10)| and the more realistic models of a rectangular prism 
homogeneously magnetized in the x-direction (W, ).

line az/ax i = 1 2 3 4 5 6 7

I 1 1.18083 1.01303 1.00264 1.1X1084 1.00035 1.00017 1.00009
7 i 1.17878 1.02435 I.IXI521 I.(X)I68 1.01X169 1.00034 1.1)0018

3> 2.13914 1.35198 1.16291 1.09278 1.05966 1.04152 1.1)3054
4 0.5 0.73074 0.91919 0.96106 0.97744 0.98536 0.98976 0.99244
5 t)_2 0.45852 0.88645 0.94826 0.97053 0.98102 0.98677 0.99026

Table numbers correspond to lhe ratio Z/j./ZZ,, |Eq. (I6)|. lhe displacement ol the two prisms is rat. and II,, resulting front 
Eq. (13) (line I) and lhe formulae in [Eq. (15)] (|53|. lines 2-5). Parameter: Equal length and width values (av = av) of the grid 
cell; its thickness ac is larger in line 3 and smaller in lines 4. 5.
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the brackets of Eq. (17)). and the result confirms (he already discussed approximation of 
Eq. (10):

3.3.5. Numerical Aspects
The arctan functions in Eq. (13) have been expanded in a power series (Section 3.3.4) 
to analyze the behavior at large distances: the equation shows also that the values of the 
tensor components (V,,. /Vl(, (VU. are much smaller than the contributing integral terms f.g. 
Therefore, the numerical values of the demagnetizing fields depend critically on the precision 
to which the functions f.g are obtained.

These remarks arc all the more valid on the more advanced methods described in Section 
3.3.2 and Eq. (15). The values of the tensor components arc many orders of magnitude smaller 
than the contributing integral terms. This is the result of a very delicate cancellation of the 
terms involved to yield the A'(1. A,, integrals. Therefore, the different functions have to be 
calculated to sufficient accuracy. A way out of this dilemma is to use the advanced methods 
only up to a displacement of. say. 2(1 grid cells. Beyond it the dipole approximation supplies 
better results; there are no such cancellation problems with Eq. (10). Table I in Section 3.3.3 
has shown that the dipole results can be achieved for a displacement of already 7 grid cells.

3.4. Boundary Element Method (BEM)
The boundary element method (BEM) introduced by Fredkin and Koehler [28| can be used 
in a more general case; for example, in FD with varying step size, and mainly in FE |61, 62|;

A./* =
4~V M inside

outside (18)

(19)

0

= */'.. Is < lim ,vi// = 0

4tt <//,(x) = I </q(.r') - ' ---------- -rfS' + <A|(a)
A |x - x | (20)

H</,m = -v<A

The magnetic scalar potential 'V is split for each magnetic layer into two parts 'I', + 'K 
| Eq. (I8)|: 'Pj is only valid inside the magnetic layer, and it is obtained by solving the Poisson 
equation with the Neumann boundary condition [Eq. (19)]. using the Galerkin method, 
which yields a sparse symmetric system of linear equations that can be solved numerically 
with the biconjugate gradient method. The term 'I', is a solution of the Laplace equation 
with the Dirichlet boundary condition a the surface 5 of the magnetic layer. 'K is deter
mined from 'Ll by means of an integral over the surface [Eq. (20)| considering the limiting 
conditions at large distances (x —» oc). n(x) is the unit normal at the surface directed out of 
the magnetic layer, and ll(x) is the solid angle subtended by 5 al x. This method has the 
advantage that it is unnecessary to discretize the area between the magnetic layers.

3.5. Dynamic Alternating Direction Implicit Method DADI
In the meantime, special methods have been presented, allowing the integration of the Poiss
on equation even faster than FFT, as the authors [ 16) argue. Other experts in the field have re
ported that this statement cannot be accepted generally, in accordance with their experience.
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The used dynamic alternating direction implicit method (DADI) is an iterative, operator
splitting technique in which a fictitious time step | Eq. (21)] is added to the Poisson equation 
[Eq. (18)]:

dil/
= A<//-4ttV • M (21)

The authors introduced a stable implicit difference scheme to solve the elliptical equation, 
enlarged with the partial derivation with respect to time. Their formulation relaxes stability 
constraints, which usually limit the size of the time step. The authors found that only one 
iteration of DADI is needed for each time step of the LEG equation [Eq. (3)).

4. RECENT PAPERS IN MICROMAGNETICS
A new book [63] and a recent review [64] are very recommendable for people who are 
interested in this matter in more detail. The standard book of Hubert and Schafer [17] is 
also very useful as an introduction to many aspects of domains in magnetic layers. Some 
recent papers are reported on here to enable access by the reader to the newest literature 
in this rapidly developing research field.

The switching of small particles, thin-film elements, and nanowires are increasingly impor
tant in magnetic storage and magnctoelectronic devices. Recording data densities larger than 
10 Gbits/in’ is possible when the media have thermally stable, magnetically decoupled grains 
with grain sizes less than 10 nm. To increase data storage density (i.e., to decrease the bit size 
and to increase the signal-to-noise ratio), higher-symmetry textures and narrow grain size 
distributions are necessary. Fidler et al. |65| studied the magnetization reversal processes 
using a three-dimensional hybrid finite element/boundary element micromagnetic model. 
Typical examples for numerical micromagnetic simulations are shown, in which the role cf 
a granular microstructure precipitates on hysteresis properties, such as in FePt nanocrys
tals. granular CoCrPtX thin films for longitudinal magnetic recording, and modern bulk 
rare earth permanent magnets. In nanostructured materials, the coercive field, remanence, 
and switching properties can be tailored by controlling grain size, texture, shape, defects, 
and intergranular coupling. Numerical micromagnetic simulations are used to fully under
stand new magnetic switching phenomena observed in nanosized magnetic particles, granular 
films, and structures, and for the design of future magnetic recording devices with storaging 
densities beyond l()() Gb/in’.

Arrays of magnetic nanowires are possible candidates for patterned magnetic storage 
media. For these nanowires, and also for other future magnctoelectronic devices, the under
standing of domain wall motion and mobility is important for the controlled switching of the 
nanostructure. Wieser et al. investigated numerically the motion of domain walls in ferro
magnetic, cylindrical nanowires by solving the Landau-Lifshitz-Gilbert equation. The typical 
micromagnetic field terms must be completed by the driving magnetic field [66], Depending 
on the nanowire diameter, either transverse domain walls or vortex walls are found. The trans
verse domain wall is observed for diameters smaller than the exchange length. For low damp
ing, the domain wall mobility decreases with a decreasing damping constant. With increasing 
diameter, a crossover to a vortex wall enhances the domain wall mobility drastically. The main 
difference is the dependence on damping: For a vortex wall the domain wall mobility can be 
drastically increased for small values of the damping constant, up to a factor of 1/tr. Porter 
and Donahue [67] analyzed domain wall motion in thin, narrow strips by micromagnetic sim
ulations. Their result leads to a simplified analytical model. The model accurately predicts 
the same domain wall velocity as full micromagnetic calculations, including dependence on 
strip width, thickness, and magnitude of applied field pulse. Domain wall momentum and 
retrograde domain wall motion are both observed and explained by the analytical model.

Magnetization reversal :n a cylindrical ferromagnetic particle seems to be a simple text
book problem in magnetism. However, at a closer look, the magnetization reversal dynamics 
in a cylinder are far from being trivial. The difficulty arises from the central axis, where 
the magnetization switches in a discontinuous fashion. Micromagnetic computer simula
tions allow for a detailed description of the evolution of the magnetic structure on the 
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subnanosecond time settle. The switching process involves the injection of it magnetic point 
singularity (Bloch point) into the cylinder [68]. Further point singularities may be generated 
and annihilated periodically during the reversal process. This results in the temporary forma
tion of micromagnetic drops (i.c.. isolated, nonreversed regions). This surprising feature in 
dynamic microinagnetism is the result of different mobilities of domain wall and Bloch point.

Thiaville et al. |69] study how micromagnetic calculations can be applied to processes that 
involve a singularity of the magnetization field (Bloch point). Permalloy thin-film disks sup
porting a vortex magnetic configuration were considered, to allow a comparison with recent 
experiments. The structure of the Bloch point at rest in the middle of the core of the vortex 
is studied first, comparing the evolution of the calculation results under decreasing mesh size 
to analytical results. The reversal of the core of the vortex under a held applied perpendic
ularly to the disk plane is then investigated. The researchers apply two different procedures 
to evaluate switching Helds and processes: direct micromagnetic time-dependent calculation, 
and the evaluation of the energy barrier that separates the two orientations of the vortex 
core in the configuration space, using a path method. Both methods show the occurrence 
of Bloch points during reversal. Special attention is paid to the extrapolation toward zero 
mesh size of the numerical results. The calculations arc compared to MFM (magnetic force 
microscopy ) experiments [70]. The authors conclude that detects and thermal agitation arc 
likely to assist Bloch-point injection, hence lowering the switching fields.

5. STONER-WOHLFARTH MODEL
5.1. Energy Equations
There arc no spatial dependencies (no domains) within a layer neglecting the demagnetizing 
field. That means, all the spins point into the same direction, and the directions vary only 
from one layer to the next. In this case, the integration over the volume in Eq. (1) reduces 
simply to a multiplication with the layer volume (St); thereby, .S' is the layer area, and t is 
the layer thickness. The energy per unit area of layer i is then given by

/ , I "
~ ■ "hV - • "»<) + + ■ >"l)' +

The term is the stray field from the layer j into the layer i. The model is basically 
ar extension of the Stoner-Wohlfarth's model [71] in the single-domain limit, including 
biquadratic coupling and allowing different values both of the directions of the spins as well 
as of the anisotropy constants in each layer. The external field and the easy axis of the 
mignetization are in the film plane. For convenience, we chose = 0 if the related magne
tization points into the direction of The energy per unit area of a multilayer structure, 
consisting of ;V layers, then is given by

jTT ,¥ /V .¥ -1

y = - E'A.cos2(^ - - Ec^iP, + E 4cos<^ - sp,_i)
A r—I i=l

+ E ) -f- | EA^Eh^’coMip,-^) (22)
1=1 2 r=l >-l

wiere Jt is the linear exchange constant and Jt/ the quadratic term, k„, is the uniform 
atisotropy constant, the easy direction, and /, the thickness of layer /. This is already a 
vtry realistic consideration of the situation in complex multilayered structures. The angles 

for each individual magnetic layer i are allowed to have different values. Equation (22) 
alows a large number of degrees of freedom. The conjugate gradient method can be used 
t< minimize this energy equation. The subroutines frprmn, brent, mnbrak, linmin from Press 
e> a). [24] can be used for this minimization procedure. For every new field H,.u, the previous 
atgles <p, shall be used as a new initial distribution, that still can be corrected by the method 
o largest descent.
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If the angles in a multilayer stack are known, the magnetization curve and also
the GMR or TMR characteristic (Section 6) result. The magnetization M is given by a 
simple sum over the angles <p,:

v(A/l,l(^) = E^rcos :̂ /, = £,, (23)

The M value in Eq. (23) is dependent on the preset easy direction £. Therefore, an average 
of Af over £ has still to be done in an outer loop. (e.g.. within the region 0 < £ < 77).

5.2. Fast-Solving Algorithm
Often the foreign stray field term in Eq. (22) is neglected. A system ol equations of lhe 
special tridiagonal form results from the energy Eq. (22) by derivation with respect to the 
unknown tingles:

fl £
7— = d = sm + 2k„,t, sinfsc, - £,)cos(?, - £,) + v - A,
Wi (24)
A, = sin(<p,+l - ip,)[Jh + 2J(/,cos(^,, - <^)|

The /th equation contains two sin-terms except for the two edge equations (/ =■ 1. N), 
as every layer i is coupled to the preceding (/ - I) and the following (/ + 1) sheet. Mathe
matically, the derivation of every cos-term in the energy equation causes two contributions. 
The equations are strongly coupled, as a positive term in equation / is followed by a nega
tive contribution in equation / T 1. The nonlinear system of equations f(</5) = (I was solved 
according to an iterative procedure.

f'Alf = -f

P/+I = <P, + € = £|a</7,| >
/=1

II)'7

/*4 dJ\ \

/ Pi \ Z/i f'p5
^2 ^2 -V2 <>.l2

<p =
*r2

1 f =
J 2

; r = difi d<p2 f)^3 #<Pn

\Pv/ 9fN dfN

\ 3(pt t)(p2
HA,B. = ---- = - Jlt cos(y +i - P,) + 2J„([2cosz(v7(+| - <p,) - l|

(25)

5,-tli>i ; = /■-I
df, = Hex,Jsit, cos+ 2kuit, cos[2(<p, - £,)] - B,|„ - ZJ,_! I,.! j = i

~ / = /+1

0 otherwise

The Jacobian-matrix f consists of A rows, with each row having at most three elements. 
It has the special tridiagonal form with nonzero elements only on the diagonal plus or minus 
one column, The two edge equations (/ = 1. A') have only two elements. The equations can 
be solved with regard to the special tridiagonal form, using the fast Crout-algorithm [72].

For every iteration step, the system of Eqs. (24) and (25) for lhe determination of the 
sip, values is solved: 50 equations with 50 layers. After this, the angles must be updated 
according to Eq. (25). with w = I. In the first three steps, the w value was reduced to 0.1 to
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avoid slipping in secondary minima. I hc iterative loop is continued until the sum r over the 
absolute angle changes | drops below a default limit in the corresponding iteration step.

A crucial point in the minimization of the energy according to Eq. (25) is the choice 
of the start values for i£,|(=1 ,v. It turns out that the simple analytic approach outlined in 
Section 10.2 can provide start values for the angles that lead to a fast and reliable detection 
of the minimum energy'. For every new field the previous distribution for the spins 
was used as a new initial distribution which still was corrected by the method of largest 
descent [Eq. (26)].

<Pni = £, - yTE/ip); VE, =?,(</>) (26)

This method is an iterative procedure too. It was stopped if the energy' from one iteration 
step to the other declines no more but increases again. I he value of y was chosen in such 
a way that the program spent about 10 steps in this loop. The introduction of this step has 
reduced the sensitivity of the program to the initial values considerably [72],

6. RESISTANCE MODELS FOR TMR AND GMR DEVICES
Using micromagnetic calculations for the spin distribution is only the first step in the simu
lation of magnetoresistance curves. The second one is a model for the GMR/TMR contri
bution to the conductance in dependence of the spin angles if,.

6.1. Double-Layer Models
6.1.1. TMR
Tie conductance G, of the current path at the position i of the element area is proportional to 
the angle difference ±<f, on both sides of the insulator interface (AEO,) in the simplest case.

G, = Ku( • + P,» cos sif,); p,„ = ptp2

This equation goes back already to Ref. [73]; pt, p. correspond to the effective spin 
polarization for the tunneling electrons in the magnetic layers on both sides of the insulator. 
Tie total conductance results from a sum over all grid cells i.

(27)

Tie parameter p,„ depends directly on the TMR maximum t,„.

TMR =
(I

P,„ = (28)

The TMR characteristic can be calculated with Eqs. (27) and (28). with tltl as a parameter 
gven by experiments. The neglect of the denominator of Eq. (27) ends up in the following 
sinpler equation, which will be commented on in Section 6.1.2.

AR __
P,„- /«, « 1 = T( 1 ~ C^) (29)

61.2. GMR/SP
b these devices the magnetoresistive effect is based on different scattering processes of 
tie spin-up and spin-down electrons on both sides of the nonmagnetic interface (e.g.. Cu). 
Ticrefore. the conductance is proportional to the angle difference (yifK/, = <p,.a(1 — <£,.*) of 
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the spins in adjacent magnetic layers in the simplest ease:

, ■> A<g, \G( = (>n + G,J 1 + g,„ cos' — I

The conductance G,, of the nonmagnetic layer is constant because of the conductivity <r„. 
The conductance G, of the magnetic layer contains two parts: a constant one (Gfll) and 
another one dependent on the difference of the magnetization directions of adjacent layers 
as cos2(a<^/2). We have shown that this approach leads to the following equation [72]:

The GMR characteristic can be calculated with Eq. (30), with the GMR maximum g,„ as 
a parameter given by experiments:

0 - 1 0
77 *10 [g,

The angle dependence corresponds to the af-order parameter pul = [I — cos(a<p,)]/2 used 
from Holloway [10] for the GMR-contribution of the cell i.

= I - cos -(I -cosa<p,)

The sum of p„7 over all cells leads to the following simpler equation:

SR e 1 JL
<<C 1 7T =V(1 ~c^ = K"‘P‘'f' 52(1 -^’SA<p,) (31)

This often-used equation [10. 74] corresponds directly to Eq. (29) in the TMR case. Both 
equations result from the neglect of the denominators in Eqs. (27) and (30) and are only 
valid in the limit of small « I) values. Actual i,„ values of 19% (r,„) or 30% (g„() can 
be achieved easily with the present technology and are obviously not <3C 1; therefore, today’s 
application of these simpler equations, Eqs. (29) and (31), is in question.

6.2. GMR Multilayers
Mixed multilayers simultaneously containing the first and lhe second maximum of the af 
coupling have been investigated experimentally [75, 76] and have been well understood 
through Stoner-Wohlfarth calculations [72], A formula for the GMR valid in such complex 
multilayer systems can be derived compatible with the previous Section 6.1.2. The result shall 
only be reported here, for the detailed derivation is referred to our previous paper [72]:

I — /«SR _
K'"K' ~ 1 +

— = 1
(V _ ]

g,„ = K,A'=/?

The layer index i is here used as in Section 5. The factor g, accounts for the amplitude 
of the conductivity variation or the relative change of the resistance of one double layer 
between zero field and saturation: g,.g, represents the GMR maximum obtained with that af 

SR
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coupling amplitude g,, and g„g, should be adapted to experimental observed values. In our 
calculations, we used, for example, 20% for the first (s) and 10% for the second <»/’) max
imum of the RK.KY coupling in agreement with experimental results |75|: g,„ is the GMR 
maximum lor the mixed multilayer.

In the special case of alternating signs of the angles <£, and, additionally, neglecting the 
denominator in Eq. (32). the mean value gj/g equals the square of the mean value c” of 
cos ip.

, gj , A/? , / M \:
- = -2^ - y = c; = 1 - c- = 1 - I - I (33) 

<S Stu X t /
In this case, the GMR ratio can be simply expressed by the relative magnetization V//M,. 

However, this often-used [75, 77-79] Eq. (33) is no more valid in general (gj/g C„), 
particularly if the conditions (alternating signs of lhe angles neglect of the denominator) 
are not valid.

6.3. GMR—Quantum Statistical Treatment

Me have shown [SO. 81] that a combined theoretical approach to the GMR effect in magnetic 
multilayers is able to provide good agreement with experimentally obtained GMR character
istics. as well as for the GMR maximum gm. This approach is first based on the quantum sta
tistical theory and the transport properties within the Kubo linear response formalism, where 
a difficult but necessary task is to find the correct Green function matching al the inter
faces. Second, numerical calculations have been performed to explore the magnetic reversal 
process of each individual magnetic layer of these multilayers on the basis of an extended 
Stoner-Wohlfarth model |71 ] in lhe single domain limit [72], The Stoner-Wohlfarth model 
[minimization of the energy |Eq. (22)] by the fast-solving algorithm [Eq. (25)] described in 
Section 5.2] in addition to the GMR model [Eq. (30)] has been used to fit all simulation 
ptramefers to lhe experimental curves. Thus, the field dependence of the angles between 
acjacent magnetization vectors is known and can directly be used as input for the quantum 
statistical calculation of the GMR versus field characteristics. In summary, it could be shown 
that a quantum statistical treatment, together with lhe numerically determined orientation 
of magnetic moments, is a very powerful tool to reliably predict the GMR characteristics 
even of complex multilayered structures. The calculations can agree perfectly with the exper
imental curves.

7 AIM OF SIMULATIONS—MAGNETIC
SENSOR AND BEAD DESIGN

Micromagnetic modeling is a well-established and useful tool to gain information about the 
in.'chanisms ruling the hysteretic properties of technologically interesting magnetic systems, 
lie calculations can help to optimize the molecule design of the beads and the sensor 
devices |19, 72, 82, S3] and can contribute to answering the essential question of what is 
gting on magnetically. Micromagnetic modeling is best suited to analyzing, objects with 
dinensions that range from a few micrometers down to the nanometer scale.

lhe modeling algorithm combines essentially two steps: first, either micromagnetics 
(Section 2) or more simple, an extended Stoner-Wohlfarth model (Section 5). and second 
a jMR/TMR model (Section 6) coupling the magnetoresistance to the angles of the mag
netic moments. Modeling magnetic systems is a very interesting tool in understanding what 
is going on in complex magnetic systems. That is the important condition to changing the 
sensor stack and achieving the wanted magnetic characteristic.

The next logical step is to include the signal source. In particular, we have presented some 
in cresting results for the system bead sensor, which is very important for single-molecule 
detection |83|. Now it is time to have the courage to simulate the signals in a more complex 
seisor chain, consisting of. for example eight sensors; this will be done in the next future. 
Stch systems are essential candidates for controlling the movement of molecules in small 
clannels.
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Another very promising application field of micromagnetics could be the bead 
design [84. 85]. In an on-chip laboratory, beads with different magnetic characteristics are 
necessary for the different assignments, especially the process of detection and manipulation 
or movement of biologically interesting molecules. The magnetic behavior is mostly influ
enced by the magnetic shell; there are a lot of open questions that must be answered for 
the new bead generation. Interesting magnetic materials for the bead shells could be Fe2O?. 
Co, FeCo, and FeCoPt, besides the nowadays mainly used magnetite Fe;O4.

8. SINGLE-LAYER ELEMENTS
8.1. Stray Fields of Magnetic Platelets
Stray fields of magnetic layers play an important role in the design of the characteristics 
of magnetic devices. Figs. 2, 3, 4. and 5 show the stray field of a Py platelet, magnetized 
and saturated in the .v-dircction. In Fig. 2 the length of the arrows is set constant (left); it 
represents the magnitude (|//,/(,„,|) of the field (right). The right figure shows (hat the stray 
field is concentrated in a small strip at the left and right edges of the layer. This statement 
is confirmed in the three-dimensional view of 77, in Fig. 3.

Figure 3 shows a three-dimensional view of the H( component of the stray field of the Py 
platelet concentrated al the left and right edges. The left diagram shows the own stray field 
(z = ()); the right one slows the fields at a distance (z = /) of the layer thickness t, which 
are penetrating into the adjacent layers (foreign stray field). The right drawing demonstrates 
the field decrease with distance.

Figure 4 show's a three-dimensional-view of the //,. and H. components of the stray field 
of the Py platelet at a distance (z = /) of the layer thickness /. which are penetrating into 
the adjacent layers (foreign stray field). The left figure shows the large stray field values of 
//, at the four corners of the rectangular prism; the simpler formula Eq. (I3) shows at the 
corners logarithmic singularities. The right drawing shows that the component //. is also 
concentrated at the left and right edges and is penetrating there as Hx in narrow stripes into 
the adjacent layers. It shall still be mentioned that H. = 0 for z = ().

Figure 5 shows the component of the stray field from a Py platelet. The stray field 
component //, is concentrated at the left and right edges (see drawings in Figs. 2 and 3). 
The small strip of high field values increases with decreasing layer lengths, as the comparison 
between the broken (/ = w = 200 nm) and solid (/ = w = 50 nm) curve demonstrates. The 
comparison between the solid curve [Eqs. (13)] and the Newell formula [Eqs. (15)] ([53], 
marked with squares, lattice 50* 50) shows that these different formulas [Eqs. (13), (15)] 
agree very well in the central region of the magnetic layer; the jump is smeared out in the 
Newell formula |Eq. (15)] because of the additional average over the target cell. The heights

Figure 2. Own stray field according to Eq. (15) of a Py platelet, magnetized, and saturated in the v-direction. The 
length of the arrows is set constant (left); it represents the magnitude (’H.,,,,,1) of the field (right). The right figure 
shows that the stray field is concentrated at the left and right edges. Parameters; 37 — 8(10 emu cm'. / = «• = 5<l nm. 
i — 3 nm. z — (I. lattice 32 *32.
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Figure 3. 313-vicw ol the It component of the stray lield of a Py platelet according to Eq. (15), magnetized and 
saturated in ihe .v-direction. I he stray field component concentrated at the left and right edges is penetrating into 
the next layer. The graphs are calculated at a distance r - (I (left) and z = / = 3 nm (right), r is the layer thickness. 
Parameters: I/, — 800 emuem'. I = u- = 20(1 nm. lattice 32 ♦ 32.

Fgure 4. 3D-view ol the //, (left) and II (right) components of the stray tiled al a distance z — All. the other 
dilti as in Fig. 3.

bgure 5. //.(.Cl I component of the stray lield al ihe layer center v - ; = (I. Py platelet, magnetized and saturated 
i the .(-direction. The stray field component //, is concentrated at the left and right edges, the region of high held 
v lues decreases with increasing layer lengths (comparison between solid and broken curve). The jump in the curve 
( eight 477.1/,) at the position v — //2 is a result of the surface charge at the edge faces; sec Eq. (19). Calculation 
r Eq. (13) (/ - tr = 50 nm: solid. 1 - ii' — 2011 nm; broken) and Eq. (15) (marked with squares. / = «> = 50 nm, 
Ittice 50 ♦ 50). Constant parameters: A/, = 800 emu.enP. layer thickness t — 3 nm
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4tt of the jump of the curve //V/A7, at the positions x = ±</. correspond to the surface 
charges at the edge faces, see Eq. (19). One arctan function reproduces at the position 
x = —a. a jump of tt — 2 * ir/2 because of the factor (x + fl) in the denominator of /, 
in Eq. (13); there are four such contributions with the negative sign of ,v in the equation 
for /Vn..

8.2. Landau and Diamond Configurations
Thin-film nanoscale elements with a curling magnetic structure (vortex) are a promising 
candidate for future nonvolatile data storage devices. The magnetic ground state of such 
devices can be a vortex in dependence on the lateral and vertical size. The magnetization 
continuously curls around the particle center in such devices, drastically reducing the stray 
field energy and avoiding domain wall energy. The magnetization in the vortex core turns 
into lhe surface normal. Their properties arc strongly influenced by the spin structure in 
the vortex core. The dimensions of the particles are too large to form a single-domain state 
because it would cost a relatively high stray field energy. However, they are also too small 
to form domains like those found in macroscopic pieces of magnetic material because the 
additional cost of domain wall energy cannot be compensated for by the reduction of stray 
field energy.

8.2.1. Bloch Line Width, Comparison with Experiments
The Landau configuration existing out of four domains occurs in not-too-thin square platelets. 
In the center of the square the spins must turn into the z-direction because of energetic rea
sons in a very small core region. Wachowiak et al. [86] used spin-polarized scanning tunneling 
microscopy on nanoscale iron islands to probe for the first time the internal spin structure 
of magnetic vortex cores. Using tips coated with a layer of antiferromagnetic chromium, the 
researchers obtained images of the curling in-plane magnetization around and of the out- 
of-plane magnetization inside the core region. Okuno et al. [70] have also confirmed the 
existence of perpendicular magnetization spots by MFM; they were able to visualize the 
direction of the magnetization, up or down in permalloy dots in the diameter range 0.11 gm.

Figure 6 shows a pronounced four-domain structure with spins parallel to the x- and y-axes 
in the outer regions with 90° walls between them. In the center region the spins formed 
into centered circles turn certainly into a vortex (left spin pattern in Figure 6), but they are 
still aligned in plane (M. = 0). In the center core domain, the spins turn into the out-of
plane direction (z-direction perpendicular to the figure plane), and the in-plane component 
vanishes, Af\. = 0 (Fig. 7).

Figure 6. Landau configuration (lour domains) of a Py platelet in the plane (a — v — 100 nm, ; — 10 nm), area 
presented in the left figure is seven times enlarged (edge length shown 28.6 nm) Parameters: thickness 20 rm 
(z-axis perpendicular to the square layer plane), v-axis lo the right (length 200 nm). v-axis upward (width 200 nn). 
layer grid 255 * 255. Material parameters (Py): \t. — X00 emu cm'. A,, = 10' erg cm '. d =■ 1.05 /terg/afi. I ncrgi.s: 
F: = 100.4 perg. = 63.1 perg. = 36.8 perg. = 0.4 perg.
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Fhgure 7. Magnetization components A/,(x) (dotted). ,M (x) (solid). M (.v) — 0. — 0. extent A — 13.5 nm ol
thie inner domain in the square eenter (v = 100 nm). defined with the slope of the in-plane component M,. The 
cxttcni by this definition is a little smaller compared to the hall-width of the out-of-planc component A/..

8 .2.2. Theoretical Approach
The first theoretical work was done by Fcldtkcllcr and Thomas |87|. who used a simple 
function A/.(p) to find the extent of lhe cylindrical domain.

/n.(p) = exp

Hubert and Schafer 117] used at fust the generalized ansatz [Section 3.65(C). pp. 263-267) 
mislead of only the first term [87]. The stray field and total energy can be impressed with 
the ansatz The open parameters (/>,, c,; e.g., = 6) were determined by minimizing
the total energy (Rayleigh-Ritz method).

E„r = jKjX(l-e-)(E^' "M
O -'(> \ j_| /

.Another improvement is lo take into account the two-dimensional model including the 
z-dependence, which allows the Bloch line to get wider in the bulk and stay narrow at the 
surfaces. The exchange energy needs a two-dimensional integration in this case, whereas 
the stray field energy can be calculated as before.

I TT-, Aj — —Z—

A = 2k A

(34)

(35)

The prefactor 2 considers the diameter instead of the radius. There is additionally a 
dependence of lhe layer thickness t (here 2(1 nm) compared to the exchange length or Bloch 
line width A,., = 5.1 nm. There are two limits for the prefactor: k = 1.32 |87| for a small and 
k = 1.5 [ 17| for a large layer thickness /. The first value has been confirmed by the newer 
calculations 117]. The simpler ansatz of the first paper overestimates the dependence of the 
layer thickness t. Their value k — 2.13 [87] for t ~ 4A,.K is much too large.

The improved ansatz also shows a z-dependence of the extent A, which is larger in the 
center z = //2 compared with the surface. It shows also the reverse magnetization in the 
outer region, seen in Fig. 7. This feature compensates a part of the flux welling up from 
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the core: it could not be described with the original function employed in Ref. [87]. The 
micromagnetic parameters give the following value for the extent A of the inner domain 
A = 1.05 gerg/cm. = 800 G, k = 1.32 -» A = 13.5 nm. which agrees very well with the 
result (13.5 nm) of the micromagnetic calculation (Fig. 7). The results confirm the earlier 
theoretical predictions that the size and the shape of the vortex core as well as its magnetic 
field dependence arc governed by only two material parameters, the exchange stiffness A and 
the saturation magnetization A/,, which determines the stray field energy.

8.2.3. Bloch Line Types in a Square Platelet
All spin patterns were from the circular Bloch line type (Fig. 6) until now. That type is not 
the only possible configuration showing a vortex core in the center. Figure 8 shows a sketch 
of the main features of the two possible structures, with the circular Bloch line type in the left 
diagram (Fig. 8a). There also exists another structure, with similar behavior, from the cross 
Bloch line type, as sketched in Fig. 8(b); Fig. 9 shows the corresponding spin pattern. There 
are practically no differences for the exchange energy (63.1 «-* 56.6) but large differences 
(36.8 <-» 280.7) in the demagnetizing field shown in Fig. 10, in which the arrows represent 
the magnitude (length) and direction (angle) of Hdem. The density of the demagnetizing field 
is concentrated at the four edges (left drawing) in the circular Bloch line type, whereas in 
the cross Bloch line type the two axes through the center (right drawing) are also regions of 
large demagnetizing field values, which is the reason for the three times larger total energy. 
The energy density is largest in the center domain in both cases.

Table 2 summarizes the results for a square Py platelet 200 * 200 * 20 nm’. There are 
large differences (>3) in the energy for the two Bloch line vortex states, which is really 
conspicuous—normally the low-remanence states should lie next to each other. There are 
only insignificant differences in the high-remanence states between C and S (7%), and the 
flower state shows again the largest energy.

8.2.4. Diamond and Cross-Tie States in a Rectangular Platelet
Figure 11 shows the spin patterns for the diamond (seven domains) and cross-tie (four 
domains) states, and Fig. 12 for the high-remanence states (three domains) of a rectangular 
Py platelet of the size 2000 * 1000 nm2 with their different demagnetizing fields. Table 3 
summarizes the corresponding energy values.

In this case there are only small differences (10%) in the energy values of the two 
low-remanence vortex states (diamond-state, cross-tie), in contrast to Table 2. The high- 
remanence states (C, S, flower) occur in the same sequence as in Table 2.

8.2.5. Limit Between Vortex and Single Domain State
Patterned arrays of magnetic materials are of interest for MRAM and magnetic recording. 
They have been increasingly investigated because the results arc fundamental for the devel
opment of thin-film elements. Various states of magnetization at remanence have been dis
cussed in the literature. The remanent state of magnetization depends on the geometry of

Figure 8. Sketch of a four-domain structure in thin films with a circular la) and cross (b) Bloch line tn the center.
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edge length shown 200 run edge length show n 2X.6 nm

Figure 9. Landau configuration (lour domains) of the same Py platelet as in Fig. 6 from the cross Bloch line type, 
area in lhe lower figure is seven times enlarged. Energies: I. — 337.8 perg. - 56.6 perg, — 2X0.7 perg,

= ”-4 perg..

the nanodot, given by lhe width w and length I, the height (thickness) t, and the aspect ratios. 
The exchange length A,.( [Eq. (34)] can be used to normalize the geometric dimensions.

Goll et al. used three-dimensional micromagnetic EE modeling to simulate and ener
getically compare zero-held magnetization patterns of ferromagnetic thin-film elements of 
square shape. The geometry of the sample (edge length a. thickness /) and its intrinsic 
material parameters are systematically varied. On the basis of the results, the corresponding 
phase diagram is set up that identities a quasihomogencous single-domain phase (C, S, and 
flower slates) and a vortex phase (Landau state). For the transition between the two phases 
a material- and cdgc-length-dcpendcnt critical film thickness is found. The numerical results 
can be confirmed qualitatively, using a simple analytical model calculation. They have set 
up phase diagrams for a square ferromagnetic ihin platelet, depending on both thickness 
and edge length and thickness and magnetic hardness by means of micromagnetic numerical 
FEM calculations identifying a multidomain phase and a single-domain phase. The critical 
layer thickness for which the phase transition between the two phases takes place is shitted 
to significantly larger values when the hardness Q increases, whereas an increasing edge 
length a of the platelet reduces the critical layer thickness [8X],

circular Bloch line ty pe. L,(,.,„=36.X perg cross Bloch line type. 2X0.7 perg

Figire 10. Demagnetizing fields in the Landau configuration (four domains) of the same Py platelet as in Fig. 6; 
the arrows represent lhe magnitude (length) ami direction (angle) of /7. Parameter: Bloch line type.



5«S Computer Simulation of Magnetic Nanolaycr Systems

Table 2. Energies for a square Py platelet 2011*21)0*20 nm'. micromagnctic parameters as in Fig. 6. //. ~ I).

Slate

Energies in |perg]

State: circular Bloch line type 100.4 63.1 36.8 0.4
C-slale 214.0 28.8 184.7 0.4
S-statc 229.8 27.3 201.9 0.5
Flower-state 254.6 1 y 5 230.5 0.7
State: cross Bloch line type 337.8 56.6 280.7 0.4

Cross-tie-state

Figure 11. Diamond (seven domains) and Cross-tic-slates (four domains) of a rectangular Py platelet in the plane 
(c = 7.5 nm), 2000 * 1000 nnr. layer grid 512 * 256 * 4. Simulation parameters as in Table 3.

Hoffmann and Stcinbauer present an analytical approximation for calculating the magnetic 
energy in circular nanostructures for the vortex phase (closed magnetic flux) and the single
domain phase [89], Comparing these energies in remanent state leads to a magnetic phase 
boundary between the single-domain phase and the vortex phase, given by a critical thickness.

C-state

Figure 12. High-remanence states (three domains) of a rectangular Py platelet in the plane (c — 5 nm). 
200(1* 1000 nm2, layer grid 256* 128*2. Simulation parameters as in Table 3.
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and 12 (high-rcmuncnce stalest.

Table 3. Remanence m, XI. XI anil energies. lot a rectangular Py platelet 2000» 10(H)* 20 nm . H . - 0.

Slate A/./.W,

1 netgies in |pcrg|

£«•» ^un

Diuniond-siatc -11,0037 588.1 271.7 296.1 20.3
( ri)ss-(iC“\talc 0.0007 655.0 292.2 348.3 14.5
Csiute 0.8570 1347.3 87.4 1251.8 8.1
S-st ate 0.8573 1348.6 87.9 1252.6 8.1
Flower-state 0.9336 1583.5 82.1 1-3)7.5 3 0

Simulation paritmcicrs: V/5 KIMI emu cm'. 1<P erg cm \ 1 = 11.0? /icrgcm. ihe data agree approximately with
the pMAG standard problem I (A.,, 5 U)’ erg-on'. 1 = 1.3 /u erg.-cm). Spin patterns in Figs. 11 (low-remanence stalest

which depends on the radius of the circular nanostructure. Furthermore, the researchers 
compared the analytical results with micromagnetic simulations using OOMMF |44] and 
experimental data and verified their analytical results.

Figure 13 shows for a square Py platelet of edge length a — 200 nm the total energy 
for the Landau-state and C-statc as a function of thickness /. The graph shows only a small 
part of the energy curves, and the different gradients of these states attract our attention. 
The intersection between the two curves leads to the critical thickness / = 5.14 nm: the spin 
system will take the C state to the left of this value and the Landau state to the oppo
site side. This critical thickness t = 5.14 nm is one point in the phase boundary graph in 
Fig. 14. Figure 14 can be arranged by repeating the described procedure for several edge 
lengths a (marked with squares). The following equation fits our data: (1.185717687341 18 + 
1252.3078786307/// - 47535.731070258///- + 2041814.1004943///'. The dotted curve as com
parison corresponds to a result from Hoffmann et al. |Eq. (26) in Ref. |89]|. derived analyt
ically for a very flat circular cylinder with uniaxial anisotropy A„. The radius R has been set 
lo z//2.

4/1
V " CXP 2AJ.MJV

__

2.4JJ/,

8.3. Dependencies on the Edge Shape and Grain Structure
The hysteresis curves depend not only on the material parameters and the geometry (width, 
length, thickness) of the layer but also on the grain structure and the shape and roughness

Figure 13. Total energy versus thickness t fir the Landau slate and C state, square Py platelet of edge length 
//= 2011 nm. critical thickness t between vortex stale and single domain state: t — 5.14 nm.
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Figure 14. Critical thickness I of a square Py platelet of edge length a (solid), calculated points marked with 
squares. The figure shows the regions where vortex state and single domain state are dominant. The dotted curve 
.is comparison corresponds to .in analytical result derived from Hoffmann et al. [Eq. (26) in Ret. |89|| tor a very Hal 
circular cylinder with uniaxial anisotropy Simulation parameters: ,-1 = 1.05 gcrg/cm. a„ = 0.3 nm. W, SOO G. 
ku = 10' ergem’, y = 0.577216).

Figure 15. Left branch of a hysteresis curve M(H) for a Py platelet initially magnetized in the C stale with different 
shapes modeled by the shape parameter n [Eq. (36)]; dotted curve corresponds to a rectangular platelet (aspect 
ratio u>fl = 2) as comparison. The different shapes start with the triangle (n = 1, base line 401) nm, height 200 nm) 
across a semicircle (rr = 2. radius 200 nm) up to the rectangle (length 400 nm. width 200 nm). layouts of some 
elements (n = 1, 1.3. 2, 2.5. 6) arc shown in the inset. Simulation parameters: ,r„ = 4tK) nm. v„ = 200 nm. t = 3 nm.
M, = 900 erg/cm'. .4 = 1.05 /zergfem. ku = 100 erg/cm’, grain size 35 nm. randomly distributed easy axes.

Figure 16. Spin patterns for the triangle shape, zero field // , = 0 anil just before magnetization reversal 
(// „ = -210 Oe). initial state H , - 250 Oe. Simulation parameters as in Fig. 15.
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Figure 17. Spin patterns tor the semicircle shape, zero field A/,,, = 0 and just before magnetization reversal 
(A/..,, = —I5(t Oe), initial state U= 250 Oc. Simulation parameters as in Fig. 15.

Hcst= !5()Oe

of the edge. The shape was modeled by the following equation for the upper edge (y > ()) 
of the laver.

(36)

This equation was used by Scheinfein and Arrott to describe the curvature of MRAM ele
ments in the form of a trapezoidally distorted generalized ellipse (/t = 2.7). They introduced 
the “path method” to use results of a few dynamical micromagnetic calculations to predict 
the switching astroids that are very important for MRAMs [90]. Different upper edges of a 
platelet can be modeled simply by this just one equation, starting with the triangle (it = 1 —» 
base line 2.v(l, height y„) across half of an ellipsis (>i = 2 —► half axes ,v(). y(l) up to the 
rectangle (/i» 1 -> length 2.vir width yq).

Figure 15 shows the results obtained for elements with different shapes modeled by the 
shape parameter n [Eq. (36)); the C slate is the initial magnetization in all cases. An ideal 
hysteresis curve for a MRAM dot distinguishes itself by large remanence and coercivity 
values. The triangle shape is the best and the rectangle is the worst from this point of 
view. The corresponding spin patterns for zero field Htxl = 0 and just before magnetization 
reversal are shown in Figs. 16 and 17 for the triangle and semicircle case. The element was 
initially magnetized with //.,, = 25(1 Oe. All elements have a distinct C state, independent 
of their shape. The magnetization reversal takes place by changing the 90° domain wall al 
the saturation fields into 180° domain walls in the center of the element, which are squeezed 
after the coercive field is reached, al the same time 90" closure domain walls occur at the 
upper edge. This magnetization configuration turns out to be quite stable. There has been 
brisk research activity in the last years in the search of the right shape [91-93].

9. MAGNETIC NANODOT ARRAYS
Applications of magnetic nanodot arrays include magnetic random access memory, high- 
density magnetic recording media, and magnetic sensors. Interest in the magnetic properties 
of small ferromagnetic particles has increased steadily with the improvement of the fabri
cation techniques. Advances in lithographic patterning (c.g., interference technique of two 
laser beams) allow us to produce magnetic particles with dimensions of lt)() nm and smaller. 
Co. Ni. CoR CoNi [94, 95]. CoPt, and FePt have been investigated as promising material can
didates. the latter arc characterized by the high magnetic anisotropy LIU ordered structure 
[96. 97]. These materials arc of crucial importance in modern technologies such as extremely 
high-density data storage, spin electronics, memory' devices, and high-performance magnetic 
materials. High magnetocrystalline anisotropy is needed to create a barrier to thermally 
activated switching of the magnetization.

The aim of the enormous research activity is to find out the conditions for nanomagnets 
with minimum dimensions, which, however, carry a spatially and temporally stable magne
tization. The behavior of nanodot arrays depends on the dot dimensions (height /i, base 
diameter b, aspect ratio R = h/b. shape) and also the period of the pattern or the dis
tance between the dots. Micromagnetic models [98] can help to study and understand the 
fundamental properties.
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9.1. Small Nanodots Magnetized Horizontally
Exploiting techniques of self-assembling and the above-reported advances in lithographic 
patterning allows powerful tools in designing the magnetic behavior of absolutely new devices 
with the design of patterning as an additional method besides the choice of material and 
geometry. Deposition onto appropriate substrates allows lhe self-assembling of isolated 
magnetic particles, separated by the organic ligand shell, into monolayered superlattices |84. 
85]. Hence, the magnetic properties of these superlattices arc determined by the magne
tization and effective anisotropy of the underlying nanocrystal size distribution and by the 
resulting dipolar interactions between neighboring nanocrystals.

One application of these modern techniques is as nanodot clusters of small dots mag
netized in-plane. Some interessant results for new magnetization curves arc represented in 
Fig. 18. In usual magnetic devices all the spins are linked by the strong exchange coupling, 
and the characteristic is determined by magnetic domains and walls between them. Nanodot 
clusters are only dominated by the much weaker coupling of the demagnetizing fields of 
the involved dots and therefore allow regions of uniform magnetization much smaller as 
usual domains. Figure 19 shows the spin patterns accompanying with the hysteresis curve in 
Fig. 18. Dot clusters play an important role in the magnetization reversal process.

9.2. Nanopillars Magnetized Vertically
The simulation starts with a Co cluster magnetized out-of-plane with the dimensions = 
50 nm high, base diameter bit = 75 nm) in line 1 of Table 4; the dot axis is simultaneously 
the easy axis. The nanodot cluster can be characterized by the aspect ratio R = hj/btt — 2/3, 
and the coverage ratio k = b,t/dtl = 2/3, where tlj is the dot distance. The question is now 
what will happen with increasing k, line 2 gives an answer. Complex multidomain structures 
in the whole volume occur instead of the simple flower or vortex state restricted to the 
top and bottom cross sections of the dots. Dots with alternating sign appear in the cluster 
additionally with vanishing axial remanence (line 2); these states are completely useless for 
vertical data storage.

One possibility for improving the situation would be designing higher dots. At first this 
leads to increasing demagnetizing factors according to Eq. (13) and, as a consequence, to 
higher axial remanence [Eq. (12)j. Line 3 in Table 4 shows the successful results. The other 
solution can be enlarging the anisotropy—the Co value is too low for retaining the vertical 
magnetization (line 2), and it had to be slightly increased from 4 to 5.1 [IO5 crg/'cm'J (line 4). 
Much larger anisotropy constants up to 7 107 erg/cm3 have already been found for the 
equiatomic ordered Ll(l phase of CoPt and FePt alloys [96],

1.5-1

-0.5

Hex,[Oe)

1 001

Figure 18. for an 5 * 5-nanodot cluster magnetized in-plane. Simulation parameters: A/, — 800 emu cm1.
A = 1.05 gcrg/cm. k„ = 1000 erg'em'. simulation volume 500»50(i*5 nm'. grid 128* 128* I.

-1.0 +
-100
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|| Nl| >,

•••••••••••••••
H„t=••••• •••••••••••••••

lllM= <>5l)c

Figure 19. Spin patterns ol a 5 + 5-nanodot cluster magnetized in-plane, initially positively saturated, initial state 
//, ,, — Hit’ tie Simulation parameters as in Fig. IX.

••••••••••••••••••••
ll,.M= 7<Kk

Figure 20 shows the spin patterns for the data of the nanodot duster in 'Fable 4, line 3. 
The lop (z = 0) and bottom (z = h:l) plane are presented in Fig. 20—a typical vortex 
state. Cross sections through the duster center at a constant x value are drawn in Fig. 21. 
The magnetization points into the z-direction are in the pillar center, as shown in Fig. 21: 
presented is the cross section through the center dot (x = 150 nm. /, = 32). The spin patterns 
for the other cross sections (/, — 9, 56 or /,. = 9,56) look quite similar. The spin directions 
turn into the xv-planc to the pillar lop (z — hlt) and bottom (z — 0) and form a vortex state. 
The vortex centers in the Fig. 20 would coincide with the circle centers without interaction 
between the dots, that is the case for large dot distances (b(/ dlt). This behavior still only 
shows the dot in the center in Fig. 20. The vortex centers of the surrounding dots arc shifted 
to the dot edge according to the interaction between the dots by the demagnetizing fields. 
A Hower state can also occur, as shown in Fig. 22; the patterns arc calculated with the 
parameters of Table 4. line 4. The anisotropy energy £„,( is smaller in spite of the larger 
anisotropy value /<„ because the flower state is more favorable in account of the easy axis. 
The transition from the vortex state to the Hower state occurs for higher anisotropy.

Table 4. Remanence Af, and energies for a 3 * 3 nanodot array.

Line
ilj 

|tim|
Ratio 

k = hj/dj
Aspect ratio energies in |nerg]
R -h Jb , / (erg/'cnt'l £...

1 50 0.6666 <1.6666 8 4 10" 0.9523 11.498 0.407 10.321 0.77(1
50 0.7X27 0.5926 4 10" -0.101 13.647 0.X04 11.136 1.706

3 13(1 0.7X27 1.5407 57 4 10" 0.9509 2X.4X7 0.599 25.365 2.523
4 50 0.7X27 0.5926 8 5.1 HI" 0.9501 16.826 0.4X1 15.039 1.307

Vertical magnetization becomes unstable with increasing base diameter (lint 2). stability can be recovered hy cithci a larger dot 
height hit I line 3) or a material with larger anisotropy (sec line 4). Simulation parameters: M. = 1414 emu cm’. -I 3.(15 jucTgcm, 
simulation volume 30(1 * 300 nm- * hit. grid 64 * 64 * / .
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Figure 20. Spin patterns in the basis area of the cylinder for the remanent case, spin distributions for the upper (left) 
and lower (right) .vv-plane of the 3 * 3-nanodot cluster, axial remanence and energies in Table 4. line 3. Simulation 
parameters: Af, = 1414 emu,'cm'. A = 3.05 /zerg/cm. /<„ — 4 x 10" erg'em'. simulation volume 300 * 300 * nm* * /t1(. 
grid 04 + 64 * 32, dot height h,, = 130 nm, dot diameter />, = 84.38 nm — aspect ratio R — h^Jbj - 1.5407

Figure 21. Spin patterns in the yc-plane of the cylinder for the remanent state, cross section through the nano
dot cluster center: i, - 32. The other interessant cross sections (iA. i, =0, 56) really look quite similar, further 
representations therefore could be renounced. Simulation parameters as in Fig. 20.

figure 22. Spin patterns in the basis area of the cylinder for the remanent case, spin distributions lor the upper 
(left) and lower (right) rv-plane of the 3 * 3-nanodot cluster, axial remanence and energies in Table 4, line 4. The 
spin patterns in the yr-plane look quite similar to Fig. 21. Simulation parameters: k.: = 8 x 10" erg'em'. simulation 
volume 300 * 300 ■ 50 nm'. grid 64 * 64 * 8. The other parameters as in Fig, 20.



Computer Simulation ol Magnetic Nanolayei Systems 595

10. GMR DEVICES
A detailed discussion ol GMR curves resulting from the anisotropy-term in the limits ol a 
simple model lias been presented earlier [99, ]()()], and the complex influence of the cubic 
anisotropy constants on lhe hysteresis loops of single-domain particles has been studied with 
a Monte-Carlo algorithm recently [IO I].

For sensor applications, the dependence of the resistance on the external field should be 
mostly linear. Additional requirements concerning amplitude and saturation field depend 
strongly on the type of application. GMR systems, in which these characteristics can be 
modified in a relatively simple way would be therefore highly desirable. It has been shown 
experimentally 175] that multilayers containing two types of af-coupling are good candidates 
for this purpose. In this work, we discuss the results of a phenomenological numeric algo
rithm developed for the simulation of the magnetization and the GMR of such complex 
multilayered structures. The calculations are compared with experimental results. Within this 
work we focus on lhe calculation of magnetization curves and GMR characteristics of cop- 
per'permalloy multilayers combining cells of the first and second antiferromagnetic exchange 
interaction. We show that analytical considerations combined with phenomenological sim
ulations can provide a good description of the measured AR/R versus II dependence and 
can lead to predictions of new shapes of such GMR curves.

In the simplest case the layers alternate between being weakly or strongly (./„) af cou
pled, a typical layer sequence is (vm)m (•'" strong, u>: weak), consisting of 20 layers or more. 
The strengths of coupling can be adjusted by lhe layer thickness (r< „) of the nonmagnetic 
spacer.

10.1, Simulation Model
In this calculation the external field and the easy axis of the magnetization are in the film 
plane. Because no hysteresis has been observed in the (Cu/Py) multilayers, no anisotropy 
term in the energy equation is considered. The model is basically an extension of lhe Stoner- 
Wohlfarth’s model 171 ] in the single-domain limit including biquadratic coupling and allowing 
both different values of the directions of the spins in each layer, as well as of the coupling 
constants.

10.2. Multilayer Model with Equal Thicknesses of Magnetic Layers
The arrangement of the layers, the magnetization directions, and the related angles 
between the external field and the magnetizations are sketched in Fig. 23. For convenience, 
we chose <p, = 0 if the related magnetization points in the direction of Hexl. In a simple

Figir« 23. The simplest mixed multilayer (trv).ti1. layer thickness t and conductivity <r in the nonmagnetic 
and ( <r | in the magnetic layers, three-dimensional view of the magnetic field and spin directions, direction of 
thec.'icrnal field II... (broken line) and projection of lhe spins, <p, >. iip. |<f,e.l 51 2e.
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approach Heil aligns the spins in all the layers to the angles ±<p(A/i(,); only the sign of the 
angle changes from one layer to the next 1101)]. Therefore, the coupling term in the energy
equation depends on 2<p. For the simplest arrangement (i.c., N being even and the sequence 
weak/strong/... /strong/weak). the minimum of the energy

£ = -NH,.vlJj„,cos<p +

gives an implicit relation between and H,.a:

M = cos 7V7„, + (N - 2)./j( 1 + 2^ cos2<r

Because of the choice of the coordinates, the magnetization is given by

— cos<p

(37)

(3N)

and M and Hifl can be simply calculated, if we choose a certain value of within the range 
0 < ^ < rr/2. The saturation lield strength Hs is defined by the condition = (I.

= H, v/((» = +(N-2)./j[l +2^1 (39)
® \ J, )

This simple analytic approach, of course, does not deliver new results. As shown in
Section 5.2. however, il can provide reasonable start values for a numeric simulation proce
dure. Equation (39) can be simplified in the symmetrical case (J„1(, = J1Z = ./J to

_4^1 — ^^(-A + 2/,;) (40)

10.3. Pseudo Spin Valve
The general case with different thicknesses shall be considered in this section. First, the 
derivation shall be restricted to the case of two magnetic layers: it is an extension of a model 
earlier used by Zhang [102].

£ s
j cos «Pj - HexlJx2t2 cos <p2 + J, cos(<lc1 - <p2) + Jq COS2(<P, - sp:) (41)

where 1 indicates the layer with the smaller and 2 with the larger thickness (/, < £). A system 
of two equations results from this energy by derivation with respect to the unknown angles:

OE
= 0 = sin <P, - sin(<p, - <p2)\Jt £ 2J1/cos(<p1 - y2)]

<■'/£
— = () = Hex,Js2t2 sin <p2 + sin((p1 - <p2)[.// -I- 2Jt/ cos(<p, - y>,)]

Adding the equations gives an relation between the two angles:

<p2 = — arcsin •AiC - (42)

In a simple approach. Hcsl aligns the spins in all the layers to the angles ±<p( A/,.v(). only 
the sign of the angle changes from one layer to the next [72. 103], This is not valid in general 
but only in the case of equal thicknesses /, = as Eq. (42) shows. The minimum of the 
energy gives an implicit relation between and

H,v' = ^Tsin^*7' + 27'/cos(<p| " (43)
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Because ol the choice ot the coordinates. the magnetization is given by

... ni A^/.cosyp, + Af.u.cos^, .W(sF|. sp?) =------------
'I + '2

(44)

Now we can choose ip| within the range (I < < tt. and <p- can then simply be calculated
in Eq. (42); if2 starts increasing with <£,. but it always slays smaller, reaching a maximum 
value -<p; = arcsin(/|/r:) < tt/2 and droping down again to zero. The maximum value is. 
lor example. 30° lor /, — 2/,. and // ,, and A/ can then be calculated according to Eqs. (43) 
and (44). The saturation field strength //, is defined by the condition <p, ; = (). but in Eq. 
(43) the relationship between the two angles must also be considered: — iptl Jt: in the
limit I.

This equation is responsible lor the variation of the saturation field in a large value range 
by simply varying the thickness of one Co-layer. But that is not yet the whole story'. In the 
limit >ft=.7T and = 0. Eq. (43) gives another limit value H,,. To get it. in Eq. (43) the 
relationship between the two angles in the limit tp:. 7T — = e I must also be considered:

sin <£| = e; — —; sin(^) -(£,) = e( I - /,//.) 
i.

(4b)

In the region I) < //, „ < H.t the angles and the related spin-dependent resistance remain 
constant: if, = 7T. = (J. and SR/^,„/R(H,) = 1. This implies that a plateau in the GMR
curves occurs around zero field. For the detailed behavior al zero field, the anisotropy A.J( 
plays a crucial role. For ktl = 0. the two magnetizations w ill rotate at = (> simultaneously, 
keeping if. — 7T (see Fig. 24). For large A„. the directions of A/, and Af. will remain 
constant even if the field is reversed. This behavior already was discussed by van den Berg 
Cl al. 1104|.

HeJOe|

Figure 24. Dependence of the GXtR(// ,,) on the external licit! (left axis) lor f, = A nm. r, - 6 nm: — Hr — X.57 
tie |lq. (46)|. Calculation ol 11 ..(ej and g-.(c I according to Eqs. (43). and (42). (iMR(//,.| [solid. Eq. (30)|. 
Eq. (50) and minimization ol Lq. (22) (marked with circles), lattice model (marked xsttlt squares) ||M|, Addition, 
the two magnetization angles <;,(// .,) (dotted) and <■(//. ,) [dash-dot. Eq. (42)| are shown, both curves belong 
Io lhe right axis. r, =,. = 4/r»r. — H,, - II |t q (46)|. the plateau disappears. GMR <//,.,) [dashed. Eq. (3O)|. 
( insianl parameters for all curves: W X40 G; .1 = 7.210 erg cm-; 7, 7, =0.2. II - W) <>c |Eq. (45)|.
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In the region 0 < //fJ, < the angles remain constant. — it, <p2 — 0. and therefore 
also lhe GMR, AR/gm/R(Hexl) = 1. In this region. Eq. (44) gives a net moment, which 
depends on the thickness ratio:

4/ =

E + fi
A/,, = M,, = M, (47)

The net moment is M„ = ±MJ2 for Z2/Z, = 1.5. It should be still pointed out that Eq. (43) 
gives only //„, values in the region Hp < Hexl < Hs.

Similar considerations lead to the following equation, valid for three magnetic layers:

H,J, 111/111 1
J, 4- 2Jq 2tt + t2 + 2/3 + y 4/[ + Z; + 4Z2 2z,z, (48)

Applying Eq. (48) for the case Z, = z2 = z5 = i gives the result HSJJ = 3(Jt 4- 2JJ. The 
same result can also be obtained by applying Eq. (45) with the symmetry condition (z, = /, 
z2 = z/2). There is a very interesting application of Eq. (45). The saturation field //, can be 
precisely adjusted in a large region for tt = t3 > t2 only by varying lhe thickness z2 of the 
inner magnetic layer. The other method would be varying the RKKY interlayer coupling 
constants J/;. but these material parameters (dependent on the interface space r/magne tic 
layer) can only be changed in very rough steps.

10.4. Symmetrical Multilayer
The multilayer (PyCo^CuCo^CutPyCo),, consists of three magnetic layers, but it is a sym
metrical system, as the first and third layer are coupled lo lhe second inner one in such 
a way that the effective fields in these layers are absolutely the same: -*<£,= In this 
case, the energy Eq. (48) can be split into two identical pans with the thicknesses z,. z,/2. 
Therefore, this system can be modeled by the simpler system with n = 2. Calculations with 
n = 3 have confirmed this assumption.

The normal assumption of alternating signs of the angles ip, [72, 103] leads in simple 
models [Eq. (40) in Section 10.2) to the following Equation:

A = Hv/Js/(J/ + 2J,)/2 = 2(l-I/zz) (49)

Equation (49) just shows the correct values in the cases of one double layer (A = 1 for 
n = 2) and the limiting case of a lot of layers (h — 2 for n —> oo); in this case each magnetic 
layer is af coupled to two neighboring layers, and H, achieves twice the value of one double 
layer. The correct saturation fields H, can be deduced analytically for up to nine magnetic 
layers, quite similar to Section 10.3 for a multilayer with equal thicknesses t — tj. The neces
sary calculation is presented here in the case of five magnetic layers. We get for the energy 
per unit area

£
5 = -HsJst(COS <P| -I- COS + COS (Pi + cos <p4 -|- cos <p5) 4- J, cos(<c, - <p2) + -6 cos(<p2 —

4- J, cos(<p, - <p4) 4- J, cos(</>4 - <p,)

It is possible to halve the effort with the valid symmetry relations = ip5; — </>4. It is 
only necessary to calculate three angles instead of five. That can be done by deriving lhe 
energy dE/dip, for i = I .. .3.

(I = 2/7,./,z sin - 2J/sin(^| - <p2)

0 = 2//,7jsin <p2 4- 27, sin(^, - <p2) — 2Jt sin(<p, - </;,)

0 = //,7SZ sin <p} 4- 27, sin(<p2 - <£,)
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In the saturation region the angles arc very small: therefore, sin^>, in the preceding equa
tions can he replaced by the argument sin yr, ~ tp,. This consideration results in a quadratic 
equation for //,.//:

(I = (HJj)2 - + 5./f -> H,Jyt = -----

Such simple analytical results exist for up to nine magnetic layers (Table 5). In the gen
eral case, n > 9. and the further enlargement of H, can only be calculated numerically with 
Stoner-Wohlfarth programs as used in Ref. [72]; the results are shown in Fig. 25. The calcu
lated points are marked with squares, and the result of Eq. (40) is dotted as comparison.

Figure 25 gives an answer fo the interesting question ol how many layers are really neces
sary to get to the infinite limit. In that limit, each layer is al coupled to two adjacent layers. 
Therefore, the coupling constants in Eq. (40) must be doubled, as with then increases the 
saturation value //, to the doubled value compared to in a double layer. In the case of nine 
magnetic layers, the saturation value Hy has come up to only 3% below the infinite limit. 
This means that only nine magnetic layers are necessary to achieve the infinite limit within 
an error bar of 3%, or only five within 10%.

The two limiting cases (N = 2, N —> x) arc already correctly described by Eq. (40) (dotted 
line in Fig. 25). That is not valid for the whole curve. We get a prefactor of 1.5 instead of 
1.3 [Eq. (40)] for N — 3 magnetic layers; in the case of N = 4, the prefactor values arc 
(1 + l/s/2 = 1.707) instead of 1.5 [Eq. (40)]. As mentioned earlier, the case /V = 3 can 
correctly be described with only two layers with the thicknesses z( = /,/,= f/2: Eq. (45) 
produces the correct pre-factor 1.5 (Table 5) for this case.

The maximum GMR value also will be compared as a function of the layer number. The 
following equation is valid in the limits of the derivation given in Section 6.2; all layers 
(thickness conductivity (r,„) are af coupled only in one af maximum (thickness of the 
nonmagnetic layers r„ =comv); a buffer layer (thickness ih) was introduced as well, and g is 
the GMR effect amplitude:

g =------------------------ --------------------------- (50)
N/(/V - I)+ /„/(/,,,(N 1)) F

The GMR maximum is also plotted in Fig. 25. The curve increases nearly linearly 
until the infinite limit (I//V - 0, g„„,s = 1.73) and shows a completely different behavior 
compared to the saturation field //, in Fig. 25. The GMR maximum is obviously achieved 
later than the saturation field.

10.5. Numeric Solutions in a Multilayer Stack

10.5.1. Infinite Multilayer Stack
In the last section the question was discussed of how many layers are really necessary to 
get to the infinite limit where each layer is af coupled to two adjacent layers. The previous

A' h = + 2J,l)/2

Table 5. Saturation field //,(A’) versus the number of magnetic 
layers in the case of weak anisotropy.

2
3

I
3/2

1
1.5

4 I + l/s/2 1.7(17
s (5 + 75)/4 I.S09
f> I + s/3/2 1.866
7 (7 + 2v'/7sin|arct:m( \/3/9)/3||/(> 1.901

8 I -f-y (I -t l//2j,'2 1.924
9 I 4-1 v 37r/IN) 1 sin( 77/lX)J/2 1.94 II

■j 1
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Figure 25. Saturation field //,(IX).7/,(solid) and GMR maximum #„,„,( A') according to Eq. (51)) (dashed), where 
A' is the number of layers. //, 1Z = /f,(0.5) corresponds to the double layer ease. Calculated points [Table 5. 
energy minimization of Eq. (25)| arc marked with squares; they arc titled by the equation //,(A)//7, ,, = 1.9987 + 
0.0761/A — 5.8173/A- + 3.3385/A'. Result of Eq. (4(1) (straight line) is dotted as comparison. A) (dashed) 
according to Eq. (50). Parameters: lh = 2 nm. l,„ = 1.6 nm. r„ — I nm, /„ = I nm. <r„/rr,„ = 5,

considerations are restricted to the case of neglecting anisotropy. Figure 26 shows for the 
case of strong anisotropy the development of the GMR curve versus the number N of 
magnetic layers. The family of curves approaches the curve of the infinite stack (doubled 
values of ,/J with increasing N; this limit is already nearly obtained with eight layers. There 
are much larger literature values according to the necessary number of bilayers for the system 
CoCu (e.g., >20) [Fig. 5 in Ref. |10|, simulation! or 50 [Fig. 2 in Ref. [105), experimental!. 
Figure 26 can be directly compared to Fig. 5 in Ref. [10|, as the same model parameters are 
used. More than 20 bilayers seem to be necessary in this paper, which contradicts Fig. 26. 
The difference may be caused by the more advanced minimization algorithm (Downhill- 
Simplex method of Nelder and Mead, [24]) used in our calculation compared to the simpler 
modified method of deepest descent in Ref. [10]. The GMR maximum is obviously achieved

Figure 26. GMR characteristic AR/R (//,,.) of a CoCu multilayer for the case of a strong anisotropy. Computer 
simulation by minimization of lhe energy equation [Eq. (22)| with the number A (2..8) of magnetic layers as 
parameter; A — 2 corresponds to the bilaycr (solid), the dotted curve as comparison to lhe infinite stack (simulated 
with doubled value). Simulation parameters: 37, — 131)0 emu/cm', ./, = 6 mergem-'. 7 = 0. = 2 HE erg cm .
r,„ = 2 nm.
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later than the saturation field. This statement is completely confirmed by Fig. 26. in which 
the halt width ol the GMR curve is already achieved with lour magnetic layers.

10.5.2. Thickness Influence in the Case of Three Magnetic Layers
The experimental curves are obtained for the symmetrical system (PyCo), SpCo(.Sp( PyCo);|. 
with Sp is in place of the spacer material. I he thickness of the spacer layers has been 
adjusted to the first af-maximum of the RK.KY theory; The anisotropy is reduced by the 
Py-layer in the bottom and top layers (6 — 1.3 | IO4 erg/cm'|). The coupling constants result 
from fitting the phenomenological numerical results to the experimental curves.

Experimental and theoretical results arc obtained for the spacer Sp=(us; Agp.Att in 
Fig. 27. a small quadratic coupling term (./ = (1.17 ,/J seems to be obviously typical lor this 
spacer. The plateau is strongly pronounced in agreement with Eq, (46). This is very inter
esting for the preparation of an AAF (artificial anliferromagnet): the biquadratic coupling 
has to be minimized for this application. The agreement between the experimental (dotted) 
and theoretical curves (solid) is very good.

The characteristics in Fig. 28 with Cu as spacer material look quite different. In this case 
a large quadratic coupling term (,/; — 0.427,) was found by fitting the numerical to the 
experimental results. According to the theoretical prediction in Eq. (46). the plateau must 
vanish in this case (./, = ./,/2 • H - 0). independent of the thickness ratio.

In general, the agreement between the experimental anti theoretical curves is very good: 
both the plateau width // as well as the varying saturation field //, arc reasonably repro
duced by the calculations. For finite anisotropy, however, the GMR does not show a real 
plateau in the region 0 < //,,, H.,. as is shown in Fig. 27. I his was already mentioned 1104]
and is because of the additional energy terms that modify the condition gq ~ and 
give rise to small deviations of the angles from (I and r. Numerically, unequal probability for 
the paths of the system in energy space at the different easy directions is responsible for that 
effect. As already mentioned, the two magnetizations will keep the condition gy — gq % () 
but not if, = 7F and =0 if a strong uniaxial anisotropy is introduced, although this is not 
directly visible in the GMR.

Analytical [Eq. (46)], numerical, and experimental results (Figs. 27 and 28) have been 
shown lot the magnetization and the GMR of multilayer systems with varying layer thickness, 
material, and coupling within the layer stack. The general features of the dependence of the 
GMR on the external Held can be reproduced very well by analytical calculations without 
anisotropy. Both the dependence of the saturation field as well as that of the plateau width

Figure 27. GMR versus H tor the multilayer (PyCo), Cu^Agn.AUiGv.Cu^Agm Arid PyCo )(|. i he experimental 
curve (dotted line) is compared with thcoretic.il results |Eq. (3(1) and minimization ol Eq. (22). solid line |. Saturation 
field H — 500 Oe |Eq. (45)]: plateau 1! — 364.4 Oe (Eq. 46). Constant parameters: ./, = 18.8 1(1 ' erg'em .

=11.17. A.i = 1.3 10' ergern'. A, = 6 HP ergern . r, — 4.5 A. q = 30 A. The inner curves (broken line) show 
theoretical results of bus. (30) and (22) for <. - 15 A(/7 = 30(1 Oe. U -88 Oe).

thcoretic.il
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Figure 28. GMR AR/(g,„/f)(//,.,,) versus for the multilayer (PyCo^CuCo^CufPyCo),'. Experimental results 
(dotted line) compared with theoretical curves |Eq. (30) and minimization of Eq. (22). solid line|. Simulation 
parameters: J,=7x It) ' erg/enr. J /J, — 0.42. <c, =5 x 10' crg/cm'. A, = 2 x IOJ ergem'. I = 5 A. q = 36 A->- 
II - 394 Oc |Eq. (45)|. //,, = 30 Oc | Eq. (46)|. The dotted inner curves show theoretical results of Fqs. (30) and 
(22) with /, = 15 A(//, = 148 Oe. //,, = 8 Oc).

on the layer composition can he predicted by analytical results, which is very helpful in 
designing "good" artificial antiferromagnets. In our calculations, we included the biquadratic 
coupling, which turned out to play a destructive role in the performance of the AAF. The 
numerical calculations including small anisotropy terms showed, that the general behavior 
of the layer system is not strongly affected; that is, both the saturation and the plateau width 
remain nearly constant.

10.5.3. Magnetization Behavior in a Multilayer Stack
A typical stack in this section consists of up to 50 magnetic layers. An abbreviation 
to designate a multilayer stack shall be introduced. In the layer Pvh /[(Cu, XliniPy, ).,/ 
(Cu(|t>nmA’yCn)4]5, alternate three weakly coupled with four strongly coupled double layers. 
The strengths of coupling can be adjusted by the layer thickness (fCu) of the nonmagnetic 
spacer. The abbreviating designation (103.5^)5 is used for the whole stack; .v stands for the first 
(0.9 nm spacer layer) and w for the second (1.8 nm spacer layer) maximum of the RKKY 
coupling. The stack always starts with a Py buffer layer (th = 1.9 nm), and all the other Py 
layers have the same thickness l,„ — 1.6 nm.

Figure 29 shows the magnetization directions of two stacks of mixed multilayers for an 
external field Hexl = 300 Oe; the field was adjusted to get an angle of % ±45°. The energy 
minimization led to the angles represented by arrows in Fig. 29. The angular deviations 
in comparison to the analytical solution arc small in the central region (±0.3°). For the 
edge spins the angle discrepancies to the simple model are relatively large, particularly for 
the layer sequence (ws)u,w (+42.0°). If one carries out the same calculation for 6 layers 
|(u’.s),m], the discrepancies turn out to be even larger in the central region (±1.2°). Other
wise the edge differences are considerably smaller (±4.2°) if the layer sequence starts with 
the strong coupling [(sw)|Os],

Figure 30 shows for the example of the sequence (w?jS,),w, how the spin distribution 
develops in 22 layers, depending on the field strength //lU. One clearly recognizes the sepa
rate behavior in the parcels, consisting of three layers with homogeneous coupling. Already.

(ws),0»
1 2 34 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(sw)ios

Figure 29. Spin distribution for the sequences (w».v) and (.oc)ll(s for an external field //,- 300 Oe -sc--- 345 .
Simulation parameters: V, = 836 ernu.cin’, — 1.6 rm. — 27 merg/enr. JJ =21. ,Z;/./, — 0.33.



Computer Simulation ol Magnetic Nanolaver Systems 603
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Figure 31). Development of the angle distribution of the spins in the multilayer lor the sequence (»/>,>, Ipi', (even 
number of layers) as a function of the external Held //,, Simulation parameters as in Fig. 2l>.

at a fractional part of the saturation field ~ HJ\6, the adjustment of the spins with weak 
coupling is completed. After this the turn of the spins with strong coupling occurs very much 
slower. In the layers with strong coupling, both spins in the center of the region form a 
pair with the known behavior that the spin angles only change the sign from one layer to 
the other. The spins I and 4 form a further pair with such a behavior but with different 
angles. This change in the arrangement of the spins leads to large deviations from the ana
lytical calculation. It becomes clear in Fig. 30 that a simulation program must hold open 
the degrees of freedom for all magnetizations. The result of the calculation of the inverse 
sequence (.v,m,)vy, shows a similar behavior.

For zero field, the spins arc aligned to ip, = ±tt/2. and the magnetization is exactly zero 
[A/(0) — (l|. In the case of odd number of magnetic layers |/V = 21. (mvs,),us|, another 
configuration was obtained (sP, = 0, tt), as is shown in Fig. 31. In the case = (I, the energy 
depends only on the differences of the angles according to Eq. (22), therefore, the same 
energy value belongs to this possible configuration. The magnetization, however, according 
to Eq. (23) is quite different | A/(0) = 1/21 0|.

10.5.4. GMR Characteristic in a Multilayer Stack
Figure .32 shows two curves for the different stacks—(it's),, and (ussy)-,-—the experimental 
curves [75] are marked with squares, and the simulated curves have been adjusted to the 
experiments with the extended Stoner-Wohlfarth model according to Eq. (22). In the simplest 
case, the layers alternate, being are weakly (./„,,.) and strongly (?„) af-coupled, and the layer 
sequence of the first curve is (w.s)h, consisting of 12 magnetic layers. In the second stack two 
strongly coupled layers follow two weakly coupled layers, and the sequence is (uxsy)v The 
GMR characteristics look very different in these cases, as Fig. 32 shows. The parameters 
necessary to fit the experimental and theoretical curves are almost the same. Only the ratios 
J /J/ are slightly different (0.27 «-* 0.33) to achieve the hest fit between experimental and 
simulated curves.

The comparison with the simple multilayer model is now interesting; Eq. (39) yields with 
the parameters of Fig. 32 a saturation field H, = 548 Oe for both sequences, in fact, because 
the number of weak and strong coupled layers is the same. This value agrees approximately 
with the result of the Stoner-Wohlfarth model in Fig. 32 for the sequence (w.s)(, (650 Oe)

Hext[Oe] 1 2 3 4 5 6 7 8 9 10111213141516171819 20 21

Figure 31. Development of the angle distribution of the spins in the multilayer lor the sequence (ussjjr. (odd 
number ot layers) .is a function ol the external lield Simulation parameters as in 1 ig. 29,
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Figure 32. GMR characteristic AR/R (//, l() at mixed multilayer, containing simultaneously the first and the second 
maximum of af coupling, computer simulation by minimization of the energy equation [Eq, (22)]. comparison 
between experimental (marked with squares) and theoretical curves (solid). Simulation parameters: Af, = ^36 G. 
J„ = 27 tnerg/cnr, J,= 21. = 1.9 nm. = 1.6 nm.

but is absolutely wrong for the sequence (umss)} (1000 Oe). The relatively small deviation 
for the sequence (u>s)b can be understood only partially as the difference between the solid 
and dotted curve in Fig. 25 (563 Oe). The simple model Eq. 39 cannot display the behavior 
of the sequence (wjS2)3 at all. The profound reason for the discussed deviations lies in the 
fact that the analytical calculation does not allow angular deviations within the stack at all. 
Therefore, it is very essential to fit the experimental data with a complete Stoner-Wohlfarth 
model to extract right numbers for the coupling constants Jh J,r

Figure 33 shows four curves for the completely different stacks: u>40, (w4.v4)s, (u;.s)20, and 
s4(i. The experimental curves [75] are marked with squares, and the simulated curves have 
been adjusted to the experiments with the extended Stoner-Wohlfarth model according to 
Eq. (22). In the interesting case of the sequence with alternating coupling (?oa)20, the overall 
shape of the experimental curve and the approximate saturation field are reproduced very 
well by the numeric calculations in Fig. 33. The saturation Held achieves approximately half 
the value of the stack s4() with only strongly coupled layers. This result is already confirmed 
by the simple multilayer model in Eq. (39).

Figure 33. GMR-measurctncnis (marked with squares) and simulations (solid) SR/R(H , ) at mixed multilayer 
structures. each sequence built on lhe buffer layer r, = I 9 nm. r„, - 1.6 nm. Simulation (solid) with the 
parameters: .Af, = 836 emu em'. - 1.6 nm. ./,, = 25 merg/enr. = 15. = 0.35 [.w,,, m4,„ (» v)j,,|, 11.5
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The family ot curves in Fig. 33 could be realized by almost the same parameter set. Only 
the ratio ./,//, must be different (0.35 0.5) for the sequence (o>4.v,.), to achieve the best
lit between experimental .aid simulated curves.

The agreement between experimental and theoretical curves is very' good: as the compar
ison between the solid curves and measurements (marked with squares) in Figs. 32 and 33 
shows, deviations remain in the saturation region. The gradual approximation to the satura
tion value is obviously not included in the extended Stoner-Wohlfarth model [Eq. (22)): the 
grain (lost spins) and domain structure within the layer are responsible for this effect and 
can only be studied by a micromagnetic simulation.

The behavior of the mixed multilayers with the sequences (ttsss)? (Fig. 32) and (m4.v4), 
(Fig. 33) deviates completely from the other ones |s4u, w4((, (ws)Jh (ws),,|: At first the curve 
decreases fast and then turns extremely slowly into the saturation field. The characteristic 
behavior with two different gradients is also confirmed experimentally.

10.6. Micromagnetic Results for a GMR Device
Micromagnetic calculations allow us to have a look into the complex spin distributions ot 
the two layers forming a GMR device. The results arc summarized in Figs. 34 and 35. The 
simulation starts with the initial state W, „ = 2(10 Oe: an S-slale spin pattern as in Fig. 34 
with three domains is typical for this situation (upper drawings). The spin pattern in the 
layer is dominated by a large domain, in which all spins arc aligned to the external field 

in addition, there arc two thin-edge domains at (v = ± a: see Fig. I). Differences 
in the edge domains arc remarkably between the two layers. The spins show angles only 
different in sign: ±<£(//,,). We got to know this well-known behavior from af-coupled layers

Hexl= ?IMK k

Figure 34. S-slate spin conligur.it ion (three domains) in .i GMR dcrici II 200 Oc (at the top). II <>0 Oc 
(K inn. Simulation parameters 0.9 » <1.9 gm . W - ‘MHI emu cm I I /icrgcm. A = to etgent . I -3 nm. 
/. = 2 nm.

conligur.it
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Figure35. S-siaie spin configuration (three domains) in a GMR device. = 0 Oe (at the top). = 4(1 Oe 
(below). Simulation parameters as in Fig. 34

in Section 10.2 or the sketch in Fig. 23. l he reason for this behavior is here, of course, the 
af coupling between the two layers according to their mutual demagnetizing fields.

These edge domains expand with decreasing external fields and show a four-domain struc
ture (lower drawing of Fig. 34) at = 60 Oe. The large inner domain already disappeared, 
and two domains with field-aligned spins have survived at the (y = ±b) edges. The upper 
drawing in Fig. 35 shows that the spins arc aligned perpendicular (±tt/2) to the initial H,x, 
direction at zero lield that is the main domain in this state. This behavior already
has been predicted in Section 10.2: tp = ±ir/2 —> Hl.x,=0 in Eq. (37). Two edge domains exist 
additionally at (_y = ±6), again with spins only different in sign because of the af-couplcd 
layers. Another spin distribution with five domains with spin angles different in sign shows 
the drawing Heil = -40 Oe.

11. STRAY FIELDS IN TMR DEVICES
Magnetic tunnel junctions (MTJs) are key devices for the development in magnetoelec
tronics [I06] both for application as sensors or nonvolatile memory (MRAM) devices 
[107]. Although large values of the tunneling magnetoresistance (TMR) were demonstrated 
1107-109], the influence of the geometry of lhe tunneling elements on the TMR is not 
yet understood. This is because of the complex interplay between magnetic anisotropies, 
domain splitting in the layers, new coupling effects across the tunneling barrier |l 10], and 
edge [ I 111 or surface effects. One of the most interesting points is the magnetic and related 
TMR behavior of MTJs with tunneling areas well below I g. Micromagnclic simulations 
with parameters adapted to the measurements can help in answering the open questions.
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C'oFe (l.5)/Ru (0.9),CoE’e (2.2)/AI.()t (1.5)/NiFc (6) form the magnetic effective part ot a 
multilayer [42, 104. 112. 113|. The Hints similar to those discussed earlier 11 14] arc deposited 
by de magnetron sputtering on a Ta/( u buffer, and lhe slack covered by a Ta(5 nm) Au(3(l nm) 
top layer to prevent oxidation. The film stack (thickness dimensions in nanometers) was 
patterned by e-beam lithography and Ar ion etching to rectangular junctions with different 
sizes and aspect 'alios. Using secondary ion mass spectroscopy, the etching was stopped 
shortly after the Al signal vanished. Thus the patterned part of the films probably exists from 
the top down until the second layer of the AAF [CoFe (2.2 nm)|, whereas the remaining films 
(Ru (0.9 nm)/Ci)Fe (1.5 nm)| were still continuous. The etch stop turned out to be one of 
the crucial points of the preparation routine. The junctions were first magnetically saturated 
to have a well-defined magnetization of the hard layer stack. Then they were transferred 
to a customized conducting atomic force microscope (C-AFM). which allows topographic 
imaging and contacting the top electrode with a conducting diamond lip.

An overview of the tunnel magnetic resistance effect is given by Moodera and Malhon 
11* 16]. Recently the domain structures in an MTJ clement were calculated in a micromagnclic 
simulation using a hybrid finite element/boundary clement method |II5|. The equilibrium 
spin distribution was obtained from the solution of the Gilbert equation, and the anisotropy 
term in the effective field was neglected. The free layer (500 * 5<K) nm’. t = III nm) was 
placed in the middle of the pinned layer (1*1 junr. / = 3 nm): therefore, no stray fields of 
the aaf can penetrate into lhe free layer. The numerical calculations show that the energy of 
different remanent states ((’ and S state) is rather similar. For a ferromagnet in contact with 
an antiferromagnet (AI M), a shift of lhe hysteresis loop along the magnetic field axis can 
occur, called and exchange bias. Monte Carlo simulations 1116] with a heat-bath algorithm 
and single-spin Hip methods for the simulation were used. The calculations show a strong 
dependence of lhe exchange bias on lhe degree of dilution and the thickness of the AI M 
layer in agreement with experimental observations.

l he stray field [//,/,„, in Eq. (14)] component //, at the layer center ( v = y = z = II) can 
be considerably simplified in the case of thin layers (z,. t, u»,. /,):

//,((». 0.0)/ A/. X/,u>,
/,v +1;

for i/>, = /, (51)

Equation (51) shows that the field increases approximately inversely proportional to the 
lateral dimensions (c.g., for a square layer the field increases from 2.26% to 21.53% if the 
edge length decreases from 500 to 50 nm while layer thickness t — 2 nm and the distance 
z = 5 nm from lhe layer center were remaining constant). Equation (51) shows also that 
the field is approximately independent on the distance z: the field increases, for example, 
only in the worst case from 21.53% to 22.33% (according to Eq. (14)] for half lhe distance 
z (5 —> 2.5 nm). l he deviations of Eq. (51) (line 1) are less than 1.3% (column 50*50) and 
remain much smaller for the larger devices. There are insignificant deviations to Newells 
formula Eq. 15 (line 4. grid 64 * 64. respectively. 64 * 32).

It is remarkable that devices with a larger dimension in the external field direction (aspect 
ratio l/w — 2. 100*50. 7.05% ) have smaller stray field values as lhe quadratic devices (//w = 
I. 10(1 * 100. 11.17% ) and could enable higher storage densities from this point of view.

l he field of Eq. (51) is only strictly valid above or below the center of the layer: it increases 
strongly toward the edge faces, as was shown in Figs. 3-5. Therefore, the mean field value 
//, was introduced instead of //,(.v. 0. 0); lhe deviations can be quite big. particularly for 
the larger devices.

H,(z„,) = f I fl Hx(x.y,zm-z)dxdydz (52)
tWl J-uJ-hJ <

II, according to Eq. (52) decreases with increasing distance </,, between the layers, especially 
for the smaller elements.

The phenomenological model of energy minimization includes three layers |aaf (CoFe/ 
Ru CoFe). sensor Py] and af coupling (linear ami quadratic) between the af-couplcd layers 
1-2 (sec Fig. 36 lor the geometry). lhe center line of the hysteresis has been shifted by
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Figure 36. Sketch of the MTJ element, coordinate system. AAF layer I + 2. sensor layer 3. grid indices i. j. k 
and direction of external held //., Direction of the stray held lines (dashed) of the .AAF for the minor loop, 
corresponding foreign stray held //,, unchanged by the minor loop, own stray held h of layer three. Initial slate M 
for the spins in the sensor layer (a), spin direction after magnetization reversal ol the sensor layer 3 (bi. transition 
case (c).

10 Oe corresponding to a Neel-type I coupling between layers 2 and 3 in agreement with 
measurements at the large devices (600 *300 nnr). The other model parameters (anisotropy 
constants) were adjusted to the observed major and minor loops of the 600*300 nm device.

The hysteresis curves (minor loops) have been calculated with Eqs. (13). (14). and (22) 
by the method of energy minimization, including all stray field energies between the three 
layers: infinity means neglecting dipole coupling. The results in Fig. 37 show that the shift 
in the minor loop is most pronounced in the case of the smallest device (50 * 50 nm'). 
The shift decreases continuously toward the larger devices, which can be well understood 
by the stray field prefactor in Eq. (51) (Table 6). The stray fields in devices with dimensions 
larger than I /z are too small for shift values of 50 Oe. which have been reported earlier as 
results from micromagnetic calculations [74]. The results on minor loops have shown |43] 
that a significant improvement of the MRAM cell is attainable if the thickness of the sensor 
layer 3 is reduced. The appearance of domains will further decrease the stray field influence, 
particularly for the larger devices.

Figures 38 and 39, show some results for a very small TMR device. Figure 38 contains 
the micromagnetic parameters; the distance between AAF and soft layer consists of half 
the extension of the AAF (1.5 + 0.9 + 2.2) and the thickness of the insulator layer (2).

Figure 37. Hysteresis curves .!/(// , , | tor diltcrcnl values of length / .md width ir. calculated by energy minimization 
resulting from I q, (22). Curve 7 represents the case without stray Helds. Reprinted with permission Irani |43|. 
W. Schepper et al. in "Analysis ot the disturbing influence of stray Helds in very small MRAM cells by computer 
simulation" (D. Shi, B Aktas. L. Fust. and t. Mikailov. Eds.). Vo). 25V3. p 75. Nanostructured Magnetic Materials 
and Their Applications Springer l ecture Notes in Phvsics. Springer Berlin. 2IHI2. 2IMI2. Springer
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Fable 6. Stray fields |IHl • II (l». 0. -» 1/ ol a cu’e hi a distance : according to Eq. (14) (lines 2 3).
Eq. (511 (line I I. and Sewells iorinula Eq (|si (hue 4. grid (>4 *64. respectively. (>4 < 32)

/ • m|nm | ?U ♦ 5ii 70 ♦ 70 0HI * 100 100 * 50 2(H) • 200 200* loo 6011 + 31 KI

; — (1 nm Eqs. (51) 22.63 16.16 11.31 7.16 5.66 3.58 1.19
2.5 (13). (14) 22.33 16.06 1I.2X 7.13 5.65 3.57 1.10
5 (13). (14) 21.53 15.75 11.17 7.06 5.64 3.57 l.|9
5 (15) 21.52 15.75 11.17 7.05 5.64 3.57 1.19

Const.ml parameter i = 2 nm

Figure 38. IMR curve (left) and initial stale (light) at W,,, — 240 Oe of a very small TMR device (50*50 nm). 
hysteresis width: 02 5 Oe and shift: Ils Oe. Simulation parameters: grid 32*32. space between AAF and soft 
layer: 4.3 nm. Layer parameters I’y: M, — .SOO emu cm1. .1 — I p erg/cm. A„ = 310' erg,'em', i — b nm. CoFe: 
M, = |9<Hkinu cm'. .1 = 3 /icrgcm. A„ I x 10' erg,cm1, r = 6 A. pinning field II. = 3 x 10' Oe.

Figure 39. Spin patterns in a I MR device (5o • 50 nm ) just before (left) and alter (right) magnetization reversal 
Simulation parameters as in Fie. 3s

Figure 3<S shows the expected exchange bias shill of the hysteresis loop along the magnetic 
lield axis because of the demagnetizing fields of the AAE Ihe dimension of the device is 
small in comparison tit the domain wall width: therefore, the characteristic shows no domain 
structures at all. Instead ol the otherwise pronounced domains, only a slightly bending of the 
magnetic moments lakes place: particularly al the edges, the layer behaves approximately as 
a single domain particle. I he first magnetization reversal transition occurs at 70 —» 65 Oe. 
The characteristics are dominated mainly by the two competing energy terms: external lield.

t l,K) (>5( k-
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Figure 40. TMR device (1.6 * 1.6 gnf) with a pronounced asymmetry in the characteristic SR/R. simulation with 
two layers, grid 64 • 64. Layer parameters |’\: A/ = SIX) emu cm', I = I jiergcm. k = 500 erg,cm . / 5 nm. 
CoFc: M, = I'ttKt emivem'. .4 = 3 /xerg/cm. A„ = 4 x 10' erg cm . t = 2 nm. pinning field Hr = 500 Oc

demagnetizing field. A portion of approximately 10% remains for the exchange energy, and 
the anisotropy energy can be neglected completely.

Some experimental TMR curves show a significant asymmetry between both branches of 
the characteristic. This behavior is confirmed by the micromagnetic calculations shown in 
Fig. 40. I he I’MR values just before the jump are 0.226 (at 15 Oc in the left branch) and 
0.924 (at 20 Oc in the right branch). The difference between saturation and the TMR values 
just before the jump is 3 [= 0.226/( I - 0.924)| times larger in the left branch in comparison 
with the right one (case b in Fig. 36).

In the right branch the spins M, are still aligned in the negative x-direction just before 
the transition; M( is negative. This alignment is supported by the negative demagnetizing 
fields H„f from the AF; therefore. M, and Har are both negative (case b in Fig. 36). The 
magnetization is very large (M3 = —0.888). In the left branch the spins are still aligned in 
the positive x-dircction just before the transition; therefore, M, and Ha. point into opposite 
directions (case a in Fig. 36). The positive magnetization (Mx = 0.421) is much smaller 
(compared to 0.888). The spin pattern Fig. 41 (left drawing) shows quite enormous deviations 
from the positive direction particularly in both edge domains x ± a. where the magnitudes

Figure 41. Spin patterns in a TMR device (1.6. I 6 gm I just before magnetization reversal in the left deli drawing) 
and right (right drawing) branch of the hvstcrcsis curve (see Fig. 40). after transition .it 5 Oc the magnetic moments 
just point into the opposite direction. Simulation parameters as in Fig. 411
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of both stray lields in layer three (own stray field h:l and foreign stray held //r4) arc very 
large: consequently, there must be very large spin bending in this region 120°). This 
asymmetry occurs in the micromagnetic calculation only if the contribution of the own stray 
held of layer three (see //,, tn Fig. 36) is taken into account: therefore, this effect cannot 
occur in the Stoner-Wohlfarth result in Fig. 37.

12. MOLECULE DETECTION WITH BEADS
In the last few years, magnetoresistive sensors have also been used as detection compo
nents in biological devices such as high-sensitivity biosensors based on a magnetic labeling 
technology [117-123]. The control of the movement of magnetically labeled biomolecules by 
on-chip currents and the use of SP sensors to detect lhe magnetic labels have been introdu
ced recently and are further advances in the development ol biochips 1124. I25|. A conductor 
pair has been placed on both sides of the sensor with the possibility of parallel or series 
connection. This connector setup makes it possible first to magnetize the beads perpendic
ular (Fig. 42a) to or in (Fig. 42b) the plane of lhe sensor [126. 127] and. secondly, to move 
the beads over the sensor to one of the two conductors, where the bead motion causes the 
detection signal. This new scheme of combined movement and detection is the first but very 
essential step on the way to an on-chip laboratory.

/X (IM R sensor can detect a single paramagnetic bead of any size as long as some size condi
tions are met. Furthermore, the signal-to-noise ratio has been found to be greater than 5000:1. 
using reasonable assumptions about the GMR detector and bead properties 11281. A numeri
cal model based on the assumptions of the equivalent average field of magnetic nanoparticles 
and lhe coherent magnetization rotation of the free layer in a SV sensor has been presented. 
Satisfactory signal linearity al low particle number also has been found |I29. I3<)|.

The microspheres are produced in a wide diameter range from several micrometers down 
to the nanometer scale. They provide a vehicle for the placement, detection, and study of 
other biomolecules and other biomolecular interactions; in particular, single DNA molecule 
interactions. The particles can behave superparamagnetically or ferromagnetically [84. 85] 
in dependence on the active volume size of the magnetic material. The beads can serve as 
markers to control the movement of molecules or as vehicles guided bv external magnetic 
lields to drag the molecule chain. In this case a microarray of sensors is positioned along lhe 
channel in which the molecules are driven. A wide range of biotechnological applications 
has been opened, including miniaturized high-sensitivity biosensors and biochip devices. The 
sensors can be arranged in microarrays and can significantly improve the throughput, sensi
tivity, and accuracy of DNA sequencing and of biochemical analysis in general.

Micromagnetic calculations have been done for the sensor types: GMR and I'.MR. The 
sensor behavior for the detection of beads is very differen: in important points: some typical 
characteristics shall be cleared up in the next sections. As mentioned earlier, it has been 

Figure 42. Head field perpendicular to (a) or in (b) the plane of the sersor (GMR/SVTMR). measuring held H 
fur the sensor signal, aligning held //,. tor lhe induced dipole momcit "" *’• the’ head material (c.g..
magnetite l e ()4). b.ad diainctci bead radius Rt, = d 2. bead height
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shown 1126. 127] that it is nowadays already possible to magnetize super paramagnetic beads 
perpendicular (Fig. 42a) to or in (Fig. 42b) the plane ot the sensor, using a conductor pair 
placed on both sides of the sensor, and to detect the beads on their movement to one of 
the conductors. Therefore, it is not necessary to wait for ferromagnetic beads of the next 
bead generation. I'he in-plane calculations could already be realized by measurements with 
the present technology. That is the reason to simulate the behavior of an in-plane magnetic 
configuration.

Figure 43 shows the bead stray fields: the arrow lengths and angles correspond to the 
field strengths and directions at the arrow position. Figure 43 represents the fingerprints of 
the beads, which are very different in the two configurations a and b discussed earlier (sec
Fig. 42). The completely different field profiles in the out-of-plane (a) and in-plane (b) case 
were calculated as the magnetic field of a sphere (54) in the sensor area. There is a field with 
central symmetry in the out-of-plane case (a). In the other case, that of in-plane beads, the 
fields arc in the opposite direction to the aligned bead within a small rectangular area (b). 
Therefore, averaging the bead fields over the sensor layer supplies a field shift in the 
opposite direction to Ht.„.

Single molecules (c.g., in biological experiments) can be detected by labeling them with 
magnetic beads instead of the otherwise-used dyes anil by analyzing the influence of the 
beads on a GMR or TMR multilayer. The development of suitable sensors has been studied 
experimentally as well as theoretically by computer simulation to optimize the sensor param
eters. A micromagnetic model with the dipole fields of the beads as additional contributions 
to the effective field already has been used in the simulations very successfully. The 
bead fields produce vortex-like arrangements within the spin ensemble of a magnetic layer 
and change the spin relaxation process, and as a result also the GMR/TMR characteristic.

12.1. GMR Sensors
Figure 44 shows some AR/R(Hetl) characteristics for a GMR sensor (see Fig. 45 tor the 
geometry of the heads). The comparison to the dotted curve (without beads) shows the 
different behavior when the beads are aligned out of plane (solid) or in plane (broken) of 
the sensor layers. The geometry of the sensor and the beads (radius, height, number) and 
all the micromagnetic parameters are the same in both cases.

The broken curve for the out-of-plane case shows that the bead fields decrease mainly the 
GMR value at zero field. The calculated curve agrees qualitatively with the experimental 
one [83, 131], as the comparison between Figs. 45 and 46 demonstrates. That relates to the 
pronounced decrease of GMR at zero field as well as the slight increase at the interme
diate region (70 Oe). The half-width of the experimental curve is smaller because of the

figure 43. fingerprints of the bead fields in the area of the sensor layer, the arrow lengths correspond to the Held 
strengths. lire completely different field profiles in the out-of-plane (a) and in-plane lb) case were calculated ;s 
the magnetic livid of a sphere |54] in the sensor area
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Figure 44. Sketch of the bead and the GMR sensor, 3D*view (left) and sectional view with the most essential 
dimensions (right), bead: diameter radius height sensor thickness of magnetic layer r,„ and spacer layer 
l . These are the significant values for the micromagnetic calculations as referenced tn Figs. 45. 47.

Figure 45. GMR A A' /< (II l in the case without (dotted) and with beads. heads aligned out ol plane (solid, 
labeled with op) and in plane (broken, labeled with ip) of the sensor layers, sensor area: 'MIO *00(1 nm Simulation 
parameters: at stack: .W, = N3(> emu cm . = 3 mcrg'cni . 7Z = I). .4 = 1 /rergem. beads in a square 4 » 4 array,
bead: radius /?,. = 4(1 nm. height //,, - 150 nm.

Figure 46. AA’ R(ll I experimental GMR curves lor the oul-ol-planc case with (solid) md without (dotted) bead 
exposure. Reprinted with permission from |S3|. \\ Scheppet et al.../. Htoiedinol. I 12. .35 (2004). < 20(14. I Jsevicr.
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inhomogeneous aligning field Hut [131], and apart from that, the special geometry of the 
sensor (1-gm-wide lines with a total length of about 2 mm wound into spirals) must still be 
taken into account in the simulation.

I he calculations show for the in-plane case the expected enlargement of sensitivity and 
also the corresponding change of the GMR curve: a shift into the H u direction. This sur
prising offset must agree with the bead field component H, [54], averaged over the whole 
sensor area (4#b):

H^a'h(x, y, z) = r = J x- + ,y- + z-

" fh ,, > , , hrnM.RlSHetl(hh) = - — / / //,(x, v./tjr/xr/v =--------------- 16 (53)

where r(x, y) is the distance between the center of the bead sphere and a lattice cell within 
the sensor layer, R is the bead radius, and hh is its height. The integral will give the same 
result for different bead positions, if the bead fields decrease rapidly enough with distance. 
A/7(U is therefore directly proportional to the bead number n. Eq. (53) produces a shift of 

= 24.4 Oe with the parameters in Fig. 45 (n = 16). which agrees very well with the 
micromagnctic simulation (Fig. 45. broken curve) [132],

Figure 47 shows for the in-plane case a family of curves that shows the dependence on the 
bead exposure. The already-discussed parallel shift is very pronounced, which means there 
are no unsensitive parts in the GMR characteristic at all in this case.

It must still be pointed out that in the usual measuring scheme, at constant //tl, the 
resistance SR first arises with bead concentration, passes through a maximum value, and 
then decreases again. The parallel shift, however, seems to be linear up to large values of 
bead exposure. Therefore, the signal must be derived from the field change SHrxl at constant 
resistance SR, which can be done by modifying the usual measuring scheme improved by 
an additional control unit. Therefore, this result establishes a sensor for the head detection, 
having an excellent linear characteristic.

The characteristic of an ideal detection system should be linear up to large values of bead 
exposure. A very interesting question is, can this be ensured in all eases in a real system; 
the answer has not been clarified completely. Il is clear that all sensors w'ork linear for small 
values of bead exposure, but what happens beyond. GMR sensors show in the out-of-plane 
case sensitive and unsensitive parts in the GMR characteristic. Moreover, the bead stray 
fields tend to wipe out within the sensor area, which effect prevents linearity. This can be

H„, [Oe)

Figure47. GMR XR/R in the case without (totted) and with heads, beads aligned in plane. The curve 
parameter is the size of the square bead array h * n: 2 * 2 (dash-dot), 3 * 3 (broken). 4*4 (solid). Simulation 
parameters as in Fig. 45. Reprinted with permission from |83|. W. Scheppcr et al.../. Riotechnol. 112. 35 (2004). 
© 2004. Elsevier.
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deduced immediately from the fingerprint in the left part of Fig. 43, two heads arc positioned 
next to each other and lhe drawn field contributions are superimposed. This effect docs not 
occur in the in-planc configuration, as a superposition with the field contribution of Fig. 43b 
shows. In contrast. TMR and SP sensors can show jumps in the detection characteristic. 
This can occur if the sensors work in lhe neighborhood of transition reversal to achieve a 
large sensitivity. We already have shown this effect in calculations in good agreement with 
measurements: this cannot happen with GMR sensors. Both sensors are complementary, 
and large values of sensitiveness can be obtained with the TMR sensor in the neighborhood 
of transition reversal; the advantage of the GMR sensor is the larger linearity region.

12.2. TMR Sensors

GMR. TMR. and SP devices have been used experimentally as sensors to delect molecules. 
Some features of the sensor characteristics for the molecule detection as linearity and sen
sitivity will be different. Therefore, it is necessary to analyze these three different sensor 
devices to find the best choice.

The special in this section is that lhe micromagnetic calculations (in plane) are used to 
look into the bead and sensor areas and to observe what is going on magnetically as a result 
of the possible interaction between the domains in the magnetic layers, lhe beads and the 
sensor arc considered as a whole magnetic ensemble, lhe beads were simply simulated as 
square or rectangular platelets: there are three active magnetic layers: bead (Py). sensor 
(Py), and hard magnet (CoF'c). The results arc shown in the dashed (8*8 beads) and dotted 
(8*6 beads) curve of Fig. 46. compared with the solid curve (without beads: sec Fig. 48 for 
the geometry of the beads).

All the curves in Fig. 49 are shifted in lhe direction of external field 77,,, because of the 
stray field of the hard magnet: this is a well-known effect. The curves in Fig. 49 can be 
compared with experimental results in Fig. 50, even though the experimental curves belong 
to the out-of-plane case. This comparison may appear strange. TMR calculations for lhe 
oul-of-plane case certainly are possible—they look quite similar to Fig. 49. but they do not 
permit a look at the internal spin structure of the beads at the moment. In contrast, there 
have been no measurements for the in-plane case until now.

Both families of curves in Figs. 49 and 50 agree qualitatively; the cases without beads 
show the distinct sharp transition during the magnetization reversal from a positive to a 
negative field direction (see Fig. 40). and a smooth one in reverse order [43]. In addition, 
the transition is smoothed out by the bead fields. The half-width of the experimental curve 
is much smaller because of lhe inhomogeneous aligning field Hat [131].

The difference between the curves with and without beads is more pronounced in the case 
of the dotted curve (8 * 6 rectangular beads) in comparison with the dashed (8*8 square 
beads) curve, in spite of lhe smaller number of beads (48 —► 64).

That is lhe influence of the larger shape anisotropy originating from magnetostatic prop
erties. Figures 51 shows the corresponding spin patterns. The spins of almost all the beads

Figure 4X. Sketch of lhe head and the TMR sensor with the most essential dimensions: bead thickness t„. bead 
height thickness ot soft magnetic layer l.. hard magnetic layer /,, and insulator r,. These are the sigmlicant values 
for the calculations as referenced in Tig. 4'>.
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Figure 49. I'MR A/<- R (//,,) calculation (in plane) without (solid) and with N»S (short dash), respectively. K « 6 
beads (dotted), beads (one layer) and the sensor (two magnetic layers) arc considered as a whole magnetic ensem
ble. Simulation parameters: 1.6+ 1,6 /± bead/sensor layer, 1(X) + |l)() nnf bead area, th = /, = 5 nm. r,. = 10 nm. 
h„ — 12.5 nm. pinning field //(„ — 500 Oc. Material parameters Py: A/, = 800 emu,cm'. .4 = I /zergem. CoFe 
A/ — 1900 cmu/cm'. .4 = 3 /zcrg/cm. Reprinted with permission from |83], W. Schcppcr et al . J Rimechnil 112. 
35 (2004). ' > 2004, Elsevier.

still point to the right (initial direction of external field) in the 6*8 case (lower drawings) 
in spite of a vanishing external field (//..,, = 0). The larger anisotropy is responsible for the 
effect that the beads remain longer in the initial saturation state duiing transition to the 
oticr side of the hysteresis curve —> —oc). Otherwise, the upper drawings show spin 
down — -90° or spin up ip = 90° areas (8*8) instead of areas with the spins aligned to the 
external field = 0 (lower drawings. 6 *8). Because of the smaller shape anisotropy (upper 
drawings) the spins have been turned already by ±90".

The influence of the magnetostatic properties requires two edge domains at the left and 
right side in Fig. 51. The graph also looks very similar in the saturation state = 250 Oe. 
No change would be expected in a complete layer without division in smaller bead areas, as 
far as only this feature is concerned.

Figure 5(1. Experimental TMR SR.R {H ,,) curses for the out of plane case with (he perpendicular tield H 
(Fig. 42) as parameter. Reprinted with permission from [83|. W. Schcppcr cl al.../. Hintechnol. 112. 35 <2004). 
£) 2004. Elsevier.
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Figure 51. Spin patterns ol the bead area lor the dashed (betid area X+ 8) and dotted curve (bead area 6 * 8) in
Fig. 49; initial state //,.„ = 250 C)e. Reprinted with permission from |83|. W. Schepper et al.../. Hiolcchnol. 112, 35 
(2004). <f? 2004. Elsevier.

The spin pattern in Fig. 52 shows the sensor area at !i,,xl = 60 Oe lor the dotted curve 
in Fig. 49: the fingerprints of the beads in the sensor area are to be recognized clearly. 
Fhe stripes perpendicular to the external field are a direct consequence of the rectangular 
field contribution in Fig. 43b. In comparison, the spin pattern in Figs. 52 shows three clearly 
structured domains in the so-called S- state. It is understandable that such a difference 

with beads without beads

Figure 52. Spin patterns of the sensor area lor the dotted (with beads) and solid curve (without beads) in f ig. 49 at 
II , 60 Oe still before magnetization reversal, initial state II = 250 Oc. Reprinted with permission from |83|.
W. Schepper et rd.. I Uhili'i lifiiil 112. 35 <20041. < 2004. Elsevier
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between the spin distributions (Fig. 52) will give rise to corresponding modifications in the 
TMR characteristic (Fig. 49).

13. CONCLUSION
13.1. Sensor Design
We have shown that both magnetization as well as GMR can be numerically modeled tor 
complex layer sequences, where different types of coupling are present within one film sys
tem. The numeric simulations can produce reliable results, as compared with experimental 
GMR-curvcs. Moreover, it is possible to tailor numerically the dependence of the resistance 
on the magnetic field by constructing film stacks with different sequences of strong and weak 
coupling. This procedure can be therefore very useful for the understanding of the magnetic 
and GMR properties of such a complex film system and in designing optimized sensors.

13.2. Magnetic Molecule Detection
The micromagnetic calculations show for the in-plane case the expected enlargement of sen
sitivity, and also the corresponding change of the GMR curve: a shift into the direction. 
This surprising offset must agree with the bead field component in the direction, aver
aged over the whole sensor area. The term is proportional to the bead volume and 
saturation magnetization Af,, and therefore to the bead surface concentration nh. The inte
gral will give the same result for different bead positions if the bead fields decrease rapidly 
enough with distance. Therefore, this result establishes an ideal sensor for the bead detec
tion on account of the linearity of the detection characteristic. To achieve this advantage the 
signal must be derived from the field change A/71V, at constant resistance A/?. That can be 
done by modifying the usual measuring scheme improved by an additional control unit.

In addition, we have shown the results of the magnetization behavior of GMR/TMR 
sensors, considering also the interaction between the domains in the magnetic layers of the 
sensor and the bead area. The calculations show a pronounced domain structure also in 
the bead area and suggest that the bead particles (signal source) and the magnetic layers 
(sensor device) should be considered as a whole magnetic ensemble in further micromagnetic 
calculations. Therefore, it is not sufficient to study only the sensor under the influence of 
the bead fields.
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1. INTRODUCTION
The effects of magnetism and magnetic materials have been exploited since the invention of 
the magnetic compass for navigation in the 10th century in China. Micromagnetics is a phe
nomenological theory and its concept is based on the work of Landau and Lifshitz 11 ] as well 
as Brown [2. 3|. It is a continuum theory, which means that the discretized magnetic moments 
at the positions of the atoms are replaced by the continuum function of the magnetization. 
Therefore this theory is a suitable framework to investigate the magnetic phenomena in 
the nanometer regime. Computational micromagnetics leads to a deeper understanding of 
hysteresis effects at an intermediate length scale between magnetic domains and atomic dis
tances by visualization of the magnetization reversal process of hard magnets, soft magnets, 
ami materials for magnetic recording. At present, many processes accomplished in sensor 
technology (e.g.. automotive technology) or data storage (hard disk drives) are based on 
discoveries of novel properties of magnetic films, multilayers, and micro- or nanostructures. 
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All these results arc in the field of nanomagnelism and spin electronics composed ot 
ferromagnetic, antiferromagnetic, and nonmagnetic, either metallic or insulating regions. 
Nanofabrication and the trend toward nanocrystalline magnetic materials open new oppor
tunities for engineering innovative magnetic materials. The need for a better understanding 
of the magnetization reversal processes and the improved availability of large-scale computer 
power are the main reasons micromagnetic modeling has been developing extremely rapidly.

In 1956 IBM introduced the 305 RAMAC (random access method for accounting and 
control) with a capacity of 5 MB. It was the first magnetic storage device, which stored digital 
information by writing magnetization patterns on a ‘"hard disk" using a thin film of granular 
magnetic material instead of magnetic tapes. One of the major advantages was that any posi
tion on the disk could be directly accessed by the read-write heads and it was not necessary 
to wind a tape any more. Since then many new discoveries and developments have improved 
computer hard disks. The areal density determines the amount of information, that can he 
stored on a given area of a hard disk. This figure of merit measures the performance of 
hard disk media in a similar way such as the energy density product for permanent magnetic 
materials. And it has shown a similar development during the past 20 years. In 1985 the typ
ical areal density in mass production was 20 Mbits/in2. The industry trend showed a typical 
increase of about 27% per year. In 1992 it exceeded 100 Mbits/in2 and the annual growth 
rate jumped to approximately 50% per year. Starting with the introduction of giant mag
netoresistive read-write heads in 1997, the areal density has been doubling every year [4|. 
Present-day drives have an areal density of about 30 Mbits/in2. and read-write heads based 
on the extraordinary magnetoresistance effect will allow data densities beyond 100 Mbits/in2 
[5, 6], As an alternative to these thin-film granular magnetic storage media, ferromagnetic 
nanostructures arc considered for the basic information storage elements in magnetic ran
dom access memories (MRAM), high-density magnetic storage media, and magnetic sensors. 
These structures can be produced using well-established techniques for semiconductors, but 
they have several advantages over today's semiconductor-based materials, including non
volatility, nondestructive readout, radiation hardness, low voltage, and unlimited read and 
write endurance [7, 8], The magnetic properties, switching behavior, and switching dynam
ics of magnetic nanostructures (i.e., of individual grains and particles, thin films, and bulk 
nanocrystalline materials) arc of great interest, and the results of numerical micromagnetic 
simulations are presented in Section 3.1-3.5.

The progress in the field of permanent magnets is very well illustrated by the maximum 
energy density product (BH)max. By the end of the 19th century, magnetic steels with a 
(BH)mux % 2 kJ/m3 were available. AlNiCo precipitation hardened magnets, which were dis
covered by Mishima in 1931, led to energy density products as high as 90 kJ/m3 by 1955. 
In the late 1940s, hardferrites (ceramic oxides) were developed, and they arc still com
monly used because of the great abundance of their raw materials and low price. A major 
breakthrough was the discovery of magnetocrystalline anisotropy in rare-earth intermetallic 
compounds in the 1960s. Strnat and coworkers [9| found that the combination of the high- 
magnetic moment of iron and cobalt together with the high-magnetocrystalline anisotropy 
caused by rare-earth elements gives permanent magnetic materials with excellent properties 
and energy density products of greater than 90 kJ/m3. The highest energy density' products so 
far have been obtained with rare-earth iron-based permanent magnets. In 1984 Sagawa et al. 
[10], Croat et al. [II], and Hadjipanayis 112] exceeded energy density products of 300 kJ/m3 
for a material based on Nd2FeuB. In the following years, continuing improvement of the 
production route has resulted in energy density products in excess of 420 kJ/m3 [13-15], 
Especially SmCo-based materials retain a high magnetic-ordering temperature, which makes 
them suitable for high-temperature applications. For the development and optimization of 
permanent magnetic materials for application temperatures of up to 500 °C, concentrated 
on SmCo-based precipitation hardened materials. The nucleation of reversed domains at 
grain boundaries and defects and the expansion of domains and their interaction with var
ious phases determine the coercivity of modern rare-earth permanent magnets. Micromag
netic simulations have been carried out, and the results of the interaction between magnetic 
domain walls and a complex precipitation structure determine the coercivity of the magnet 
material [16].
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Both research areas, permanent magnets and magnetic storage media, have made tremen
dous progress during the past decades, and thev have become key technologies in today's 
information society. In ordet lo keep the pace ol these developments and push the lim
its. many research projects arc carried out worldwide. The properties of modern magnetic 
materials are strongly influenced by their microstructure. The continuing improvement of 
the properties of SmCo-bascd magnets has been made possible by additives like Cu and Zr 
and a refined processing route and heal treatment, which has a great impact on the resulting 
cellular precipitation structure [17], The typical size of the cells is in the order of 100 nm 
with an intercellular phase of around 10 nm. The particle size in magnetic recording tapes is 
of the same order of magnitude. The typical grain size in current hard-disk storage media is 
about 8 nm with a Cr-enriched intergranular region of about 2 nm for exchange decoupling 
of the grains. These structures arc so small that quantum mechanical effects-like exchange 
have to be taken into account. However, they are too large for a pure quantum mechanical 
description, which would exceed the capabilities of today’s ab-initio computational models. 
On this intermediate level between the macroscopic world and a description with atomic 
resolution, micromagnclic models have proved to be a useful tool 118], These computational 
models provide great freedom in the choice of experiment conditions and in the variation of 
material parameters. In addition to measurements of the remanent magnetization and the 
coercive field, it is possible lo study the details of the magnetization distribution and the 
magnetization reversal processes, which are difficult to investigate experimentally.

Computational micromagnetics leads to a deeper understanding of hysteresis effects at an 
intermediate length scale between magnetic domains and atomic distances by visualization 
of the magnetization reversal process. By the switching of small particles, thin-lilm elements, 
and nanowires become increasingly important in magnetic storage and magnctoclcctronic 
devices. The magnetization reversal processes arc studied using a three-dimensional hybrid 
finite clcmcnl/boundary clement micromagnclic model. Transient magnetization states dur
ing switching are investigated numerically in thin NiFc, Fc. and Co nanodements of var
ious shapes |llJ|. Switching dynamics arc calculated for different external field profiles 
and frequencies |2()|. lhe numerical solution of Brown's equations can be effectively per
formed using finite-clement and related methods that easily handle complex microstructures 
and take into account lhe long-range magnetostatic interactions and short-range exchange 
coupling between the grains in granular thin films. Dynamic finite-element simulations suc
cessfully predict the influence of microstructural features such as grain size, particle shape, 
intergranular phases, and surface irregularities on the magnetic properties. Theoretical lim
its for remanence, coercive field, switching behavior at a short lime scale of less than 
I ns. and other properties have successfully been calculated for a large number of materi
als. Topics of active research include the switching dynamics of patterned mesoscopic and 
nanoscopic elements, including the thermal activation process; the remanence enhancement 
in exchange-coupled, nanocrystalline magnets; the nucleation field of highest-energy-density 
Nd>FcuB magnets; and the domain wall pinning in SmCo?/Sm.Co)7-based magnets for high- 
temperature applications. The characteristic length scale, the domain wall width, is in the 
order of 5 lo 10 nm. l he size of lhe basic structural units of magnetic devices, such as 
sensor or storage elements, may extend toward micrometers. The time scale ranges from 
the subnanosecond regime for fast precessional switching to years for thermally activated 
magnetization reversal. I'he w ide range of time and length scales involved in micromagnclic 
simulations is a challenge for effective computational tools.

In this work, temperature-dependent effects have not been considered explicitly for sim
plicity, but they are included in the temperature-dependent material parameters. Also eddy 
current effects, which should be taken into account in materials with high conductivity and 
in high-speed switching experiments, arc only implicitly included in the Gilbert damping 
constant. In various fields of computer-aided engineering, such as structural analysis, fluid 
dynamics, and electromagnetic lield computation, as well as micromagnetics [211, the finite- 
element method has been successfully applied. Its flexibility in modeling arbitrary geometries 
especially has made it very popular. In the light of the importance of the microstructure 
of magnetic materials, the finite element method has been chosen for the implementation 
of a micromagnclic model. There are several commercial and open-source micromagnetics 
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packages available: however, all of them use the finite difference method:

Commercial Codes

• LLG Micromagnetics Simulator, developed by M. R. Scheinfein. . 
 available for MS Windows (dual CPU supported).

http://llgmicro.homc
mindspring.com/

• MagFEM3D. developed by K. Ramstdck.  available on Unix. 
MS Windows platforms.

http://www.ramstock.de/

• Magsimus. Euxinc lech nologics, , available for MS Windows 
platforms.

http://www.euxinc.com/

• MicroMagus, developed by D. V. Berkov, N. I.. Corn, h  avail
able for MS Windows platforms.

ttp.7/www.micromagus.de/

Free Open Source Codes

• PC Micromagnetic Simulator (SimulMag). developed by John Oti, http:  
oommf/contrib/simulmag/ available for MS Windows platforms.

math.nist.gov

• General Dynamic Micromagnetics (GDM2). developed by Bo Yang, . 
edu/~drf/pub/

http://physics.ucsd

• Object Oriented MicroMagnetic Framework (OOMMF). developed by Mike Donahue 
and Don Porter,  available on Unix. MS Windows platforms.http://math.nist.gov/oommf/

• Parallel Finite Element Micromagnetics Package MAGPAR. developed by Werner 
Scholz.  on Unix, MS Windows 
platforms.

http://magnet.atp.tuwien.ac.at/scholz/MAGPAR/availablc

In addition, the work on large systems required static energy minimization methods such as 
for the study of bulk SmCo permanent magnets as well as dynamic time integration methods 
for the investigation of the magnetization dynamics in magnetic nanoparticles. Therefore, 
a finite element micromagnetics package MAGPAR (http://magnet.atp.tuwien.ac.at/scholz 
magpar/) has been implemented that combines several unique features. It is

• entirely based on portable, free, open source software packages,
• highly portable to different hardware platforms, which range from simple PCs to mas

sively parallel supercomputers.
• highly optimized and scalable,
• well integrated, combining static energy minimization, dynamic time integration, and 

nudged elastic-band methods.

An introduction to the finite element method is given in Section 2.1. I he basic micro- 
magnetic equations and their discretization in the context of the finite element method are 
outlined in Section 2.2, while the appropriate solution methods are described in Section 2.3.

2. NUMERICAL FINITE ELEMENT MICROMAGNETIC TECHNIQUE
A parallel finite element micromagnetics package has been developed, which is highly scal
able. easily portable, and combines different solvers for the micromagnetic equations. The 
micromagnetic technique is based on the standard Galerkin discretization on tetrahedral 
meshes with linear basis functions. A static energy minimization, a dynamic time integration, 
and the nudged elastic-band method have been implemented. In the light of the importance 
of the granular microstructure of magnetic materials, the finite element method has been 
chosen. For the calculation of the demagnetizing field, a hybrid finite element/boundary 
element method is used.

The resolution of the finite element mesh—the maximum size of the finite elements—is 
determined by the smallest features that might occur in the solution of the partial differential 
equation (PDE). In the most general case, the maximum cell size of the finite clement mesh 
has to be smaller than the minimum of the three typical critical lengths [22|. such as the 
width of the Bloch-type magnetic domain wall (6htt ). typically found in hard bulk magnets, 
the width of Neel walls (6XW ). typically found in soft magnetic materials and thin films, and 

http://llgmicro.homc
mindspring.com/
http://www.ramstock.de/
http://www.euxinc.com/
ttp.7/www.micromagus.de/
math.nist.gov
http://physics.ucsd
http://math.nist.gov/oommf/
http://magnet.atp.tuwien.ac.at/scholz/MAGPAR/availablc
http://magnet.atp.tuwien.ac.at/scholz
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the thermal exchange length (/thv.J with the thermal field //lh [23):

• width of Bloch-type magnetic domain walls.

A
h<ex = ~r~' ^BW — 77 Ibex I I )

/I is the exchange constant and is the magnetocrystalline anisotropy constant.
• width of Neel walls.

3nw — 77 ■ /ntx (2)

J, is the saturation polarization, 
thermal exchange length (5lhcx)

A

The thermal field /7lh depends on the Gilbert damping constant a, the temperature T, the 
time step of the numerical time integration scheme At. the gyromagnetic ratio y. and the 
spatial correlation length /. which is equal to the cell size.

The thermal fluctuation field depends on the cell volume. The thermal exchange length 
depends on the fluctuation field and therefore it is cell-size dependent [23], In most cases, 
the finite clement size is in the order of 2-5 nm.

The total energy of a micromagnctic system is given by the Gibbs free energy, which 
depends on the magnetic polarization, the external field, and temperature-dependent mate
rial parameters. It includes macroscopic contributions, such as the Zeeman energy and the 
magnetostatic energy, as well as microscopic contributions, such its the magnetocrystalline 
anisotropy energy and the exchange energy. The minimization of the total energv yields an 
equilibrium magnetization distribution. However, the energy landscape of micromagnetic 
systems is comp ex and contains many local maxima, minima, and saddle points. Therefore, 
the choice of the initial magnetization distribution has a strong influence on the result. 
A more physical and realistic approach of the system to its equilibrium in a local minimum 
is provided by a dynamic description of the path through the energy landscape. The motion 
of a magnetic moment in a magnetic field is mainly governed by its Larmor precession 
around the local magnetic field. The damping of the precession causes the relaxation to 
equilibrium. There are many processes that contribute to the damping in a magnetic solid 
like magnon-magnon and magnon-phonon interactions, interactions between localized and 
itinerant electrons, and eddy currents, for example,

The Gilbert equation describes the precession of the magnetic polarization toward equi
librium and combines all damping effects in a phenomenological damping term with a single 
damping constant a [24]:

</7 . . 7 - O 7 f/7
- = -|T|7xH.,, + -Jx- (4)

At each time step, the effective field Hclt includes the applied field, the exchange field, 
the magnetocrystalline anisotropy field, and the demagnetizing field. To solve the Gilbert 
equation numerically, the magnetic volume is divided in finite elements.

2.1. The Finite Element Method
For the calculation of the demagnetizing field, a hybrid finite clement/boundary' element 
method is used, as explained in Section 7. This method requires the solution of a Poisson 
and a Laplace equation. Therefore the former is used in this chapter as an example for a 
short introduction to the finite element method |25].
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2.1.1. Poisson Problem
Wc want to calculate a numerical solution U, which approximates the true solution u of the 
Poisson (boundary value) problem (/’) in the solution domain 11 c R' with closed bound
ary I’. Dirichlet boundary conditions apply on I), c I'. and Neumann boundary conditions 
apply on 1 v := F\ro.

The Poisson problem (P) is defined as follows: Given f € L“(!2), hz, € /7'(il), and g € 
7?(l\). we are searching for the solution u e //'(If), which satisfies the Poisson equation

The weak formulation of the boundary value problem (P) is then obtained by the multipli
cation of Eq. (5) with w e ■- e //‘(fl)|w - 0 on I',,} and integration over 11:

-Au — f in fl (5)

with Dirichlet boundary conditions

u = itn on rn (6)

and Neumann boundary conditions

— = g on I ,v <71
(hi

2.1.2. The Weak Formulation

- I Au ■ wdv = I f.wdv (8)
•'ii -'ll

Integration by parts gives

I Vu ■ Vwdv - du ihi ■ wda — f' wdv (9)

and substitution of the boundary conditions and rearrangement leads to

I Vu ■ Vwdv = / f.wdv + / g.wda (10)
At At Ax

Now we incorporate the (possibly inhomogeneous) Dirichlet boundary conditions

Vu ■ Vwdv - Vu,, ■ Vwdv = J f ■ wdv + fg ■ wda - Vun ■ Vwdv (11) 

and substitute the homogeneous solution v 6 which is given by v = u — un and 
satisfies v = 0 on I},. This gives us the weak formulation of the Poisson problem P. which 
reads: Find v e such that

/ VvVwdv = I f.wdv 4- / g.wda — I Vu,, ■ Vwdv (12)
•'ll Ju A\. •>»

2.1.3. Galerkin Discretization
In order to solve the Poisson problem numerically, we have to discretize the weak formula
tion of the Poisson Eq. (12) and restrict the solution space of the numerical solution U to a 
finite dimensional subspace 5 of W’(fl). Accordingly. Un € St) := .S’ O //,, approximates a,, 
on ly. The discretized problem Ps can then be written as follows: Find I e SLt such that

/' VF ■ VHA/v = I f- Wdv + / g ■ Wda - / VU,, ■ VWdv (13)
At -Ai A\ A

with W € .S’p.
If we assume that (rj,...., tj-V) is a basis of the A-dimensional space .S’ and := .S' A Hf, 

an M-dimensional subspace, then we can rewrite Eq. (13) as

I W • Vr),dv = / /’• r],dv+ j g • 7], da - f VUt, (17, € .S',,) (14)
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If we now make a series expansion of I and in terms of ijk.

v v
1 ' = E va’/a (’ll t .S„) and t;, - E € 5) (15)

A-i $=i

then we obtain

/ /E 'i’/a '/( S''’J,~ , r E L’* ' V7?'Jl’ <16)
which can be rew ritten as

E 'a / <A’ = / I V, <lv + I ft V, ~ E / Vt>a ’ v’Ji<lv 1 ,7>
and finally, when simplified to a system of linear equations as

zl.v =/> (18)
where the "stiffness matrix" is given by

• Ia = / Vr]k dv (19)
and lhe right-hand side by

The stiffness matrix is sparse, symmetric, and positive definite. Thus, Eq. (IX) has exactly 
one solution, t e /?”. which gives the (ialerkin solution

f/ = + E = E + E ‘a i?a
1=1 A-t

(21)

2.1.4. Mesh Generation
The finite element method requires the discretization of the spatial domain fl with ‘finite 
elements"—a regular triangulation 7. For two-dimensional problems, triangles anil rectan
gles are used, and in three dimensions, tetrahedral (Fig. I) anil hexahedral elements are 

Figure I. Kuhn iriangulalion of a cube into six lelrahcdtal finite elements (exploded view).
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commonly used [26|. Also a mixture of different types of elements is possible, but after the 
evaluation of various other implementations and for simplicity, a tetrahedral discretization 
has been implemented.

As compared with finite difference methods [27|, the finite element mesh may be entirely 
unstructured, which makes the modeling of complicated geometries and irregular microstruc
tures more convenient, until, a "regular" triangulation of a three-dimensional body of arbi
trary shape with tetrahedral elements is required to meet several conditions, defined by 
Ciarlet [28]:

• The nodes of the mesh lie on the vert ccs of the tetrahedra.
• The elements of the triangulation do not overlap.
• No node lies on an edge of a tetrahedron.
• Each face on the surface of the body belongs either to I',, or l\ .
If we assume that the domain fi has a surface I’ of flat polygons it is possible to find a 

triangulation 7 with (tetrahedral) finite elements 7‘, which cover !1:

n=U7’ <22)
However, the creation of the geometrical model and its triangulation are still very demand

ing tasks, which require sophisticated (commercial) tools. PATRAN by MSC Software 
(http://www.mscsoftwarc.com/products/) and GID |29] are suitable software packages for this 
purpose.

As an example, the micrographs of Fig. 2 show a granular thin-film model consisting of 
420 randomly oriented, columnar grains with a grain size of 8 nm and a thickness of 15 nm 
before and after discretization into 15,412 triangular surface elements and 52,884 tetrahedral 
volume elements.

In the most general case, the maximum cell size of the finite element mesh has to he 
smaller than the minimum of the three lengths defined |30|. However, if the structure of 
the solution is roughly known, it is possible to use an “adapted" mesh for the simulations. 
Il has a high resolution (small elements) in areas with very small features (domain walls) 
and a low resolution (large elements) in other areas where the solution (magnetization) is 
very uniform. As a result, the number of nodes (and therefore the number of unknowns) is 
reduced, and the time required for the simulation can be greatly reduced.

For dynamic time-dependent problems a rigid adapted mesh is often not suitable because 
the solution changes over time and the smallest features of the solution move through the 
mesh. If they leave the high-resolution mesh and reach areas with larger finite elements, 
artificial pinning on the mesh will occur and give wrong results. Thus, an adaptive mesh 
refinement method is required, which changes the structure of the mesh during the simu
lation and adapts the resolution of the mesh to the solution. It can be shown that these 
methods lead to (almost) optimal complexity and give most accurate results with the smallest 
numerical (computational) effort [31]. Adaptive mesh refinement methods are still a very 
active research area, and they have been successfully applied also in numerical micromag
netics [32-36].

Figure 2. Finite clement model of a granular thin film consisting of 420 random!} oriented grains: (a) gram struc
ture: (b) after discretization into finite elements

http://www.mscsoftwarc.com/products/
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2.1.5. Stiffness Matrix and Right-Hand Side
When a regular triangulation T has been generated for the domain !L the space .S of the 
numerical solution U has to be defined. A common choice ol basis functions for the spline 
spaces S and S„ arc “hat functions" (Fig. 3). which arc defined for every node (.v,. v,. z,) of 
the finite element mesh as

= (/. A = |........,V) (23)

We are using isoparametric elements; that is. we use the same polynomials (linear basis 
functions) for the approximation of the geometry and the solution. If we define

SIt ■.= splm{T).\(xl,yl.:l) e I’,,} (24)

then

t o G .S’,,

and we can calculate the stiffness matrix .l,j (Eq. 119|) and the right-hand side />, (Eq. 12(>|) 
as a sum over all elements 7 and surface triangles /•.' on l\:

and

*, = E / f tlv + E / K Tl>tlu - E / v,l, V'h Jv (2b) 
i. iJl J‘l

It is most convenient to calculate the stiffness matrix on an elcmcnt-by-clemcnl basis 
(local or element matrices) and finally assemble the contributions from the local matrices to 
the global stiffness matrix.

If we assume that the four vertices of a tetrahedral element 7 are given by (.v,. y,. c,) 
with j — 1........ 4. then the volume |7'| of the element is given by

(27)

where the local numbering / = I, 2. 3, 4 is chosen in such a way. that the right-hand side of 
Eq. (23) is positive.

The corresponding basis functions are given by

*7,(-bo To-J = j.A = l........4

Figure 3. Hal function (linear basis function) tor a triangulation in two dimensions.
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Thus. r/; can also be written as

and

where all indices are understood modulo 4.
As a result, we can easily calculate the stiffness matrix entries:

7e/ ■ 7
(30)

For the right-hand side of Eq. (20). we need to evaluate • t/( dv. If we use the value 
of f in the center of gravity (xs, yv zs) of T, we can make the approximation

f f V, dv * ^/(xs, To z.s) (31)

The second term of the right-hand side (Eq. [20)) can be evaluated in a similar way. 
However, Neumann boundary conditions will not be required in the following.

Finally, the Dirichlet boundary conditions have to be incorporated. One straightforward 
and easy to implement method is to replace all rows of the stiffness matrix /lM. which corre
spond to Dirichlet boundary nodes, with zero and a single one in the main diagonal. On the 
right-hand side, the entries of the Dirichlet nodes arc replaced with their boundary values.

2.2. Finite Element Micromagnetics
The total energy of a micromagnctic system is given by the Gibbs free energy £’tol, which 
depends on the magnetic polarization, the external field, and some (temperature-dependent) 
material parameters. It includes macroscopic contributions, such as the Zeeman energy and 
the magnetostatic energy, as well as microscopic contributions, such as the magnetocrys
talline anisotropy energy and the exchange energy. This highlights the intermediate level of 
micromagnetics as a continuum theory again, which bridges the gap between the macroscopic 
world and microstructural and quantum mechanical effects.

I he external field is independent of the magnetization distribution and the exchange and 
anisotropy energy are short-range interactions that depend only on the local magnetization 
distribution. Thus, they can be computed very efficiently. However, the magnetostatic field is 
a long-range interaction, which is the most expensive part in terms of memory requirements 
and computation time. Its calculation is usually based on a magnetic vector |37] or scalar 
potential (cf. Section 2.2.7). In addition, it is an open boundary problem, for which various 
methods have been developed [38, 39], 

2.2.1. Gibbs Free Energy
Hie total Gibbs free energy is given by [3. 40|

ft.,l = / (’"cxch + w.«u + ’"ext + Wdemug)^1’

= I (/(((V/7,); + (V/iJ2 + (Vti )2)-l-KJ l-(J »)•’) - J (32)
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w here
,/(.v,/) = /,(.v) n(.r./), n| - I (33)

describes the magnetic polarization as a function of space and lime, T is the exchange 
constant. K, is the first magnetocrystalline anisotropy constant and a the unit vector parallel 
to the easy axis. /7CX1 the external field, and the demagnetizing field.

In thermodynamic equilibrium, a micromagnetic system tries to reach a state with min
imum total energy. The aim of micromagnetic theory is to find the magnetic polarization 
in equilibrium. Brown proposed a variational method |3], which is based on the calculation 
of the variational derivative of the total energy with respect to the magnetic polarization. 
In equilibrium (in an energy minimum), the coefficients of the linear term vanish lor any 
variation 8/7:

= 0
8//

(34)

This leads to Brown’s equations

» x (2.4A/7 + 2K,t7(t7 ■ <7) + /<v, + /7l)ci„.lg) - (I (35)

Thus, in equilibrium the magnetic polarization ./ is parallel to an "effective Held"

= y1'' + y2^'7 <7) + /ZiU + (36)
and the torque that acts on the polarization vanishes:

./ x = () (37)

Since any contribution parallel to the polarization ./ docs not add to the torque, it docs 
not make any difference if the magnetic field H or the magnetic induction A = /u.,,/7 + ./ is 
used lor the effective field.

2.2.2. Gilbert Equation of Motion
The minimization of Eq. (32) can find an equilibrium magnetization distribution. However, 
the energy landscape of micromagnetic systems is usually very' complicated and contains 
many local maxima, minima, and saddle points. Therefore, the choice of the initial magne
tization distribution has a strong influence on the result. A more physical approach to the 
problem and a more realistic approach of the system to its equilibrium in a local minimum 
is provided by a dynamic description of the path through the energy landscape.

The motion of a magnetic moment in a magnetic field is mainly governed by its Larmor 
precession around the local magnetic field. The damping of the precession causes the relax
ation to equilibrium. There are many processes that contribute to the damping in a magnetic 
solid, such as magnon-magnon and magnon-phonon interactions, interactions between local
ized and itinerant electrons, and eddy currents [41-43).

The Gilbert equation [24. 44| describes the precession and combines all damping effects 
in a phenomenological damping term with a single damping constant a:

dJ . . 7 a 7 d J
= -|y|J x 7/ + —/ x — (_>8)

di J, at

where y - 2.21(11735 x KF m/As is the gyromagnetic ratio.
This formulation is equivalent to the Landau-Lifshitz-Gilbert (I.LG) equation.

dJ - ay - - -
— = -y'J x H - -d-J x (.7 x H) (39)
dt

with

I + a:
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The intrinsic time scale is determined by the Larmor frequency w = yWVif, which is usu
ally in the order of gigahertz. Thus, the precession time is smaller than a nanosecond, which 
requires time steps in the order of picoseconds or even less. This limits the maximum simu
lated time to about 100 ns.

2.2.3. Discretization
In the following sections, we will discretize the contributions to the total energy with the 
finite clement method as shown in Section 2.1. For static energy minimization methods as 
well as for the calculation of the effective held Eq. (45). we have to calculate the derivative of 
the total energy with respect to the local magnetic polarization J. In the following sections, 
we will also derive these gradients.

First we have to define the discrete approximation of the magnetic polarization J(x) by

J(.v) % Jj.v) Y. TL % E A. A = E /
1 I I

(41)

where 77, denotes the basis function (hat function) at node z of the finite element mesh, l he 
material parameters A, K, and arc defined clement by element and they are assumed to 
be constant within each clement. However, the magnetic polarization that depends on the 
saturation polarization ./, is defined on the nodes. Thus, we have to introduce the node-based 
discrete approximation of the saturation polarization J,(.v) as

ft, dv
(42)

where F', denotes the volume that is assigned to node i of the mesh. It is given by

(43)

Since J is a vector with three Cartesian components, we have three times the number of 
nodes unknowns to calculate.

For a given basis r/,, the total energy can be expanded as

EWi = I

and we get for the effective field using the box scheme [45]

- 1 dElol ____ 1 dEM
'’cff V sJ A " K dj.

(44)

(45)

2.2.4. Exchange Energy
The exchange energy for one Cartesian component is given by

(46)

Fot the gradient, we obtain

, dt/.Vn,
(Vzz.T),)- = ;)ii

(47)

= -"5^ •
= 2zz,V7j, ■ V77, (4.X)
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Finally, the gradient of the exchange energy is given by

- 2.4 E»/V9,<>!!, hl , '
(49)

which can be written as a linear system of equations with the coefficient matrix

(50)

The gradient can then be simply calculated as

Kcxdt = “ (51)

lhe expressions for the .v. y, and z component are identical, and there are no mixed 
terms. This exchange energy matrix is proportional to the stiffness matrix of the Laplacian 
operator Eq. (19), which is also obvious from Brown’s equation Eq. (35) and the effective 
field Eq. (36).

2.2.5. Magnetocrystalline Anisotropy Energy
The magnetocrystalline anisotropy energy for uniaxial anisotropy is given by

The gradient is given by

= I E A'iT—( E \dv (53)
•, /Iv.v.O

T-- ( E ("A ■ "U’?,) =2 E ("a"/.a9,)‘ E («»AA„.9j
A / I

= 2 E («a ",.a9;) «;9, (54)
Jt

and we get the result

SpUL = I X E «a«,.a9, ■ 9,</” <55)
1,11i hi , k

This can be rewritten in matrix notation as

&.ni = <Z.n. ' » (56>

with
.. i-i. ■. o

I E <6 9, 9,</l’ <-S7>
A

2.2.6. Zeeman Energy
The Zeeman energy of a magnetic body ./ ( v) in an external field //cxl( v) is simply given by

(58)
A
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For the gradient, we find

Since wc know the external field explicitly, wc can just simply add it to the other contri
butions to the effective field.

2.2.7. Demagnetizing Field and Magnetostatic Energy
The demagnetizing field is a little more complicated to handle because it is an "open 
boundary problem" with one of its boundary conditions at infinity. To overcome this prob
lem. Fredkin and Koehler [21, 46, 47] proposed a hybrid finite clement/boundary element 
method, which requires no finite elements outside the magnetic domain 11.

Since we assume no free currents in our system, we can calculate the demagnetizing field 
using a magnetic scalar potential </>(x). It has to satisfy

A<p = V • Jlx) lor x e 11
(60) 

A<p = 0 for x & 11

with the boundary conditions at the boundary F of fl,

Div</> = 0 (61)

and

Div-^ = -n ■ J (62)
dn

In addition, it is required that —* 0 for |x| —► oo. The weak formulation of V J is simply 
given by

I V-Jdv = f E £ E E (63)
‘ “ 1/11 ( k i k

which can again be written in matrix-vector format as

d = D-u (64)

with
= f “j.kVkVi (65)

where k stands for the three Cartesian components {.v. y, ?}.
The main idea now is to split the magnetic scalar potential <p into and 1 hen the 

problem can be reformulated for these potentials as

= V - J (66)

with the boundary condition

In addition (.v> = (I for .v £ 11.
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As a result, we find for
A<p? = () (68)

with
Div<p, = (69)

and
Div^Z=() (70)

Un

It is required that —» 0 lor |.v| —» oo.
Potential theory tells us that

SPj.v) = I }<lu (71)
477 'i <9t(y)

where G’(.v, y) = l/|.v — v| is the Green function, and is easily be calculated using the 
standard finite element method.

I he (numerically expensive) evaluation of Eq. (71) in all 12 can be avoided by just calcu
lating the boundary values of <p? on T and then solving the Dirichlet problem Eq. (68) with 
the given boundary values. For v —> F. Eq. (71) is given by

^(.v) = — / 4»i(v)—+ (.V(.v)4tf - l)(P|(.v) (72)
4tt Jr *Bl(y)

where ,S(.v) denotes the solid angle subtended by I at Jr. Upon triangulation of the surface T 
of the domain fl with triangular elements (which we naturally get from a triangulation of fl 
with tetrahedral elements) and discretization ol tpi and we can rewrite Eq. (72) as

y?2 = (73)

with the boundary matrix /?, which is a dense matrix with a size of nh x nh elements, where 
nh is the number of nodes on the surface F.

The discretization of the scalar double-layer operator in Eq. (72) has been derived by 
Lindholm |48|:

I , (74)
J' fl,,(y) rrri

where f runs over all triangles on the surface I’ of the domain fl and i runs over the three 
nodes of each triangle.

In order to calculate the matrix entries of B element by element (rather triangle by trian
gle) we use the local coordinates defined in Fig. 4 [48],

(75)

Pi = r, - r (76)

s, = |p,«i “Ph (77)

B, = ' P, (78)

f = < • P, (79)

y„ = £-0 • < (80)
, p. + p,.i + .v

= In (81)
P, + P,+ i - \



638 Computational Micromagnetics

2

Figure 4. Local coordinate system and various vectors required for the discretization of the boundary integral 
Eq. (72).

|/|denotes the area of triangle t and S, the solid angle subtended by triangle t at the "obser
vation point” r, which is given by

S, = 2 ■ sgnW arccos ( - ^£^^±£^±£££££1 ) (82)

\ v 2(p p +P; -PMPiPi + P> Pi)(PiP: + Pr/>:)/

To calculate the demagnetizing field, we have to perform the following steps:
Initialization

• Discretize Eq. (66).
• Calculate the boundary matrix in Eq. (73).

Solation

• Solve Eq. (66) for a given magnetization distribution J using the standard finite element 
method.

• Calculate <p2 on the boundary I’ using Eq. (73) to get the values for the Dirichlet 
boundary conditions.

• Calculate in the whole domain fl using Eq. (68) with Dirichlet boundary values.
• Calculate Wdemag = —V(<p, + <p2).

2.2.8. Effective Field
Finally, we can collect all contributions to the effective field and calculate it by simple 
matrix-vector multiplications.

H'.rt % ~V~F^ = + ’ PJ-^^xch + <Anj) ' «), (83)

Since the matrices for the exchange and anisotropy energies depend only on the (time
independent) material parameters and the geometry, they need to be calculated only once 
at the beginning. In order to save time and memory, they can also be assembled into a single 
combined matrix, if the energies and fields are not required separately.

2.3. Solution of the Micromagnetic Equations

2.3.1. Energy Minimization
In Section 2.2, we introduced the Gibbs free energy of a micromagnetic system, dis
cretized various contributions to the total energy, and derived the matrix-vector formula
tion. Some complication was introduced by the demagnetizing field, but the hybrid finite 
element/boiindary element method provides an elegant way to solve the problem accurately 
with a finite element mesh, which is restricted to the magnetic bodies. This enables us to
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implement a simple energy minimization scheme to find the equilibrium magnetization dis
tribution. It the magnetic polarization ./ is defined in Cartesian coordinates.

7(v) =&£./, ,u,rj, = (S4)

one has to use a constrained solver, which ensures that the norm of./ is preserved: |J = J,. 
However, it has been shown |49. 5(>| that the use of spherical coordinates has several 
advantages:

• The number of unknowns is reduced by one-third, which speeds up the solver.
• The norm is automatically preserved, which allows the use of an unconstrained 

solver.
• Convergence problems with a Lagrange multiplier approach for the constraint |./1 = J, 

are avoided.

However, the direct calculation of the energy gradient in spherical coordinates causes 
various problems because of the periodicity of the polar and azimuth angles. There
fore, the magnetic polarization for the minimizer is given in spherical coordinates 
(W e [0; 7r(. <p e |(l: 2tt[ ):

sin H, cos >

sin W sin p,

cos I), )

arccosfn, )

arclanlu, Ju, ,)
(S5)

Then it is converted to Cartesian coordinates. The energy gradient is calculated in Carte
sian coordinates, converted back to spherical coordinates

/»/: d£' <>M, , d/:
r'W, du, , H9, Hu, , HO, du, HO,

HE

'Ka

d£
cosp costf. 4- — cos//, sm -------- sin H (86)

HE HE Hu, . HE Hu, v HE Hu, .
------- ~ + , ■■ ■H<p, du, . dip,

3E.
— ----- ( — sin H 

Hu, .
sm p, ) +----- sin 0 cos p

Hu, ,
(87)

and returned to the minimizer.
For the minimizer itself, the limited memory' variable metric (I.MVM) algorithm—a 

quasi-Newton method—of the TAO package |46. 47. 51. 52| has been selected because it 
requires only the function values and the gradient of the total energy. In replacement for the 
Hessian (which is not available due to the demagnetizing held), the second-order informa
tion is approximated by a limited history of previous points and gradients. A similar method 
has been used in |49| and showed better convergence rates than Newton or GauB-Seidel 
methods.

2.3.2. The Dynamic Equation
The Landau-Lifshitz-Gilbert equation (39) is a system of ordinary differential equations 
(ODEs) that can be written in a general form as

(XX)
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with the initial condition

y(U = y() (89)

The PVODE package [53, 54) is a general purpose solver for initial-value problems for 
stiff and non stiff ODEs of the form of Eq. (88). It is based on CVODE [55. 56| and uses 
MPI for parallelization and portability. Two methods arc available for the numerical solution 
of Eq. (88): The backward differentiation formula (BDF), which is recommended for stiff 
problems, and the Adams-Moulton formula for nonstiff problems, both of which feature a 
variable step size and variable order. Both formulas can be written as the linear multistep 
formula

A dv
V q„ ,v„_, + ii.,Ya„, '' = it (y<ii
. ,=o dl

The step size is /t„ = l„ — and the order is q. The Adams-Moulton formula is obtained 
with K| = 1 and K: = q — I with 1 < </ < 12. The BDF formula is represented by Eq. (90) 
with = q and K2 = 0 with 1 < q < 5. The numerical integration is started with q — I and 
then varied automatically and dynamically.

If we insert Eq. (88) in Eq. (90). we get an implicit nonlinear system of equations for y

G(y„) := y„ - y„) - a„ = o (91)

which has to be solved at each lime step. /3„ 0 and <7„ depend on the method, the integration 
order, and the previous time steps. An efficient method for nonstiff problems is functional 
iteration because it does not require the solution of a linear system of equations. However, 
for stiff problems it is better solved by Newton iteration, which does involve the solution of 
a linear system of equations. PVODE uses a Krylov subspace method—the iterative scaled 
preconditioned generalized minimal residual method (SPGMR) [57]. whose performance 
can be considerably improved with suitable preconditioners.

2.3.3. Preconditioning
Preconditioning of the system of linear equations involved in the Newton iteration of the 
Krylov subspace method can considerably speed up its solution [58]. In addition, this method 
leads to fewer function evaluations of the Landau-Lifshitz-Gilbert equation and allows larger 
time steps, which gives an excellent performance of the numerical time integration.

In order to find the root of Eq. (91), the New'ton method requires the calculation of the 
intermediate corrections Ay = y,„ - ym_,. which follow from

^Ay = -G(ym_!) (92)
dy

The matrix dG/dy in this linear system of equations is approximated by

The calculation of the Jacobian of /

d / - - ay - - \4 = —1-yJx//------— .Ix(JxH)] (94)
ty i)J \ J, /

requires the calculation of the Jacobian of the total energy with respect to the magnetization. 
We have derived the expressions for the gradient of the total energy in Section 2.2.3. Since 

the total energy is a simple sum of exchange, magnetocrystalline anisotropy, Zeeman, and 
magnetostatic energy, we have calculated their gradients individually. For the first two con
tributions. we found that the gradient of the energy is a linear function of magnetization and 
ended up with a matrix-vector formulation. The external field is explicitly given anyway, but
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the magnetostatic field had to be calculated with a hybrid finite elemenl/boundary clement 
method.

Now we can analyze then contributions to the Jacobian of the total energy. I hc external 
field does not contribute at all because it is independent of the magnetization and its first 
derivative with respect to the magnetization is zero. The first derivative of the demagnetizing 
field would contribute. However, it is not considered for the calculation of the Jacobian for 
two reasons. First, its calculation would be very expensive in terms of computational effort, 
and because of its long-range nature, it would lead to a full matrix for the Jacobian. This 
results in huge memory requirements and a lot of communication between the processors 
in a parallel program. Moreover, we do not need the exact Jacobian, but a sensible approxi
mation. which still speeds up the Newton iterations. Thus, it is sensible to consider only the 
contributions from the exchange and magnetocrystalline anisotropy energy.

The calculation of the Jacobian of these two energy terms is finally very easy. We have 
already calculated their gradient with respect to the magnetization in order to calculate their 
contributions to the local field. We found the energy gradients to be linear with respect to 
the magnetization and came up with a matrix-vector formulation. Because of this linearity, 
their Jacobians are just simply given by these matrices Eq. (49) and Eq. (57). and we just 
have to add them up to get the approximate Jacobian for the total energy.

Finally, instead of calculating Eq. (92) with Eq. (93) directly, the preconditioning technique 
is applied [59], The linear system

l.v = h (95)

is rewritten as

(AP ')(/<?) = /S (96)

and

zf.V = b (97)

with A' = AP~' and f' — Px. If P is a good approximation to A. then T is close to the 
identity matrix and Eq. (4.16) can be solved very efficiently.

2.3.4. The Nudged Elastic Band Method
To find possible paths of a micromagnetic system through its energy landscape to a local 
minimum of the total energy, we have implemented the static energy minimization method 
(cf. Section 2.3.1) and the time integration of the Landau-Lifshilz-Gilbert equation (cf. Sec
tion 2.3.2). We have applied it to nucleation of reversed domains and domain wall pinning 
problems as well as investigations of dynamic magnetization reversal processes. However, 
the investigation of thermal stability, which is an important topic especially in the area of 
magnetic storage devices, requires the calculation of transition rates between stable equilib
rium stales of the system. The transition rate between two stable equilibria is determined 
by the lowest energy barrier (saddle point), which separates them. Ilenkelnian and Jonsson 
proposed the nudged elastic-band method to calculate these minimum energy paths [60], 
This method has been successfully applied to complex micromagnetic systems [61, 62] and 
it is especially suitable fot parallelization.

The path is represented by a sequence of “images” (magnetization distributions) that con
nect the two given stable equilibrium states A/, and M,. These equilibria may be obtained 
using the static energy minimization method, for example. The initial path is given by the 
initial magnetization distribution A/, and the final magnetization distribution M, and a num
ber of images Af< in between, which can be obtained by simple linear interpolation. Then, an 
optimization algorithm is applied, which moves the “elastic band of images” through the 
energy landscape toward the optimal path, which is defined by

(98)(VE(AA)/)/ = VE(/WJ
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where V£’(AfA) denotes the gradient of the total energy at image Mk and / is the unit 
tangent vector along the path. In order to avoid kinks in the path the tangent is calculated 
using forward, backward, or second-order central differences. Equation (98) requires the 
component of the gradient parallel to the tangent to be equal to the gradient. In other 
words, the optimal path is characterized by the fact that the gradient of the total energy is 
parallel to the tangent for any image

Starting from the initial path an iterative optimization scheme is applied that moves the 
images Mk in a direction which is given by

= -(V£(.WJ - (VE(MJ • 7)0 (99)

The interpretation of this expression is obvious: The images are moved along the negative 
gradient of the total energy perpendicular to the tangent. The negative gradient determines 
the direction toward lower energy, while the distance between the images is preserved by tak
ing only the component perpendicular to the tangent. Thus, an ordinary' differential equation 
can be formulated

-^ = D(A/t) (100)

where t denotes some artificial time parameter, which is integrated using any ODE solver.
After the discussion of the static energy minimization method and the time integration, the 

Landau-Lifshitz-Gilbert equation, the implementation of the nudged elastic-band method 
has become very simple, because we can reuse parts of both of them. The static energy 
minimization provides us with the gradient of the total energy, and for the integration of 
Eq. (100). we can use the same methods explained in Section 2.3.2 by just replacing the 
right-hand side of Eq. (88) with Eq. (99).

The parallelization of this method can be done by distributing the images across the pro
cessors. Thus, every processors needs the full set of matrices (but only one copy independent 
of the number of images), which arc required for the calculation of the local fields (and 
gradients). However, there is no need to partition the finite element mesh anymore because 
every processor has to do the full calculation for the images. This has the advantage that no 
communication is required during the calculation of the gradient of the total energy. Only 
for the calculation of the tangents the magnetization of some images has to be copied to 
“neighboring” processors.

3. MAGNETIZATION REVERSAL IN NANOSTRUCTURED
MAGNETIC MATERIALS

Small magnetic structures play a crucial role in modern storage devices and sensors. 
Nanotechnology and nanoscience in modern magnetics also lead to an increased demand 
for the better understanding of the magnetic reversal or switching processes of magnetic 
nanoparticles, thin films, and even bulk magnetic materials with nanosized precipitates 
and intergranular regions. In the following, typical examples are shown, where numerical, 
three-dimensional micromagnctic simulations of granular materials have revealed magnetic 
hysteresis and switching properties in good agreement with experimental findings. Such 
examples are schematically shown in Fig. 5, where various types of nanostructured materials 
are built by assembling of individual grains in the order of several tens of nanometer (a) to 
rod-shaped wires, (b) layered-shaped thin films and multilayers, and equiaxed nanocrystalline 
bulk materials (d) and (e). In reality the simplified microstructures have to be extended to 
complex grain shapes and considering distributions of grain sizes and material parameters 
(Fig. 5[e]). For this reason, finite element micromagnctic models arc advantageous compared 
with finite difference models because of the possibility to take into account realistic granular 
microstructures.

In particular, the role of the physical microstructure on hysteresis properties will be 
discussed, and numerical techniques to treat microstructural effects will be proposed. 
Tremendous progress has been made in preparing nanosized magnetic particles and thin 
films for magnetic recording media. The reduction of grain sizes and film thickness to less
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FigtireS. Schematic classification of nanostruciurcil materials by assembling of individual grains in the order ol 
several tens ol nanometer (a) lo rod-shaped wires < h). to layered-shaped thin lihrs, and multilayers and equiaxcd 
nanocrystalline bulk materials (J) and (e).

than 10 nm lead lo the improvement of the magnetic storage data density to values larger 
than 100 Gbits/in |63|. Co/l’t. Fcl’t. and Col’d multilayers and small particles arc ol great 
interest for high-density storage magnetic recording associated with huge perpendicular mag
netocrystalline anisotropy.

3.1. Particles, Grains
3.1.1. Stoner-Wohlfarth Behavior
The magnetization reversal of a single-domain particle or grain is simply described by the 
Stoner-Wohlfarth model of magnetization reversal in which the switching lield is controlled 
by the precession of the magnetic polarization vector toward the effective or external field 
|64, 65]. A rigid magnetic moment is an approximation for a very small magnetic particle 
with strong exchange interaction. If it is small enough, the exchange interaction will keep 
the magnetization uniform, which leads to coherent rotation. In this reversal mode, the 
constituent spins rotate in unison, l he exchange interaction gives a constant contribution to 
the Landau free energy in this approximation and therefore docs not influence the motion of 
the polarization vector. These are the common assumptions in the Stoner-Wohlfarth model 
of magnetization reversal.

The equilibrium direction of the magnetic moment is determined by the magnetocrys
talline anisotropy axis and the direction of the external field. It can be readily obtained by 
considering the total free energy of the magnetic moment, which is in lhe case of uniaxial 
anisotropy given by

= -K| F cos’(H - d>) - JSVIcos </j (101)

A. i is the lirst magnetocrystalline anisotropy constant, I ' lhe volume of the magnetic parti
cle, J, its saturation polarization, and //vM lhe external lield. If an external field is applied at 
an angle W to the easy axis of the uniaxial anisotropy of the particle, the magnetization vector 
will reach its equilibrium position at an angle <b from the field direction, where the total free 
energy has a local minimum. Since there is not only one minimum, the equilibrium direction 
is also influenced by the history of the magnetization vector. This effect is called hysteresis.

It should be noted that the minimum switching field that differs from the value of the coer
cive field is obtained at an angle of 45 (Fig. 6). Another important aspect can be explained 
using the Stoner-Wohlfarth model—the difference between reversible and irreversible mag
netization processes. Reversible processes arc those in which the magnetization returns to 
its initial position after the perturbation has been removed again. For example, when a weak 
external bias field is applied, the magnetization will change slightly, but upon removal of 
the bias field, it returns to its initial position. However, if the bias field is strong enough, the
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Figure 6. Hysteresis curves of a spherical single domain particle for different angles H between anisotropy axis and 
external lield. Magnetization reversal is originated by rotational processes only.

magnetization can switch irreversibly and remain in a different energy minimum after the 
bias field has been switched off. Of course, this effect is used to switch the magnetization 
between different directions and store information thereby.

The undamped equation of motion (a = 0) describes the continuous precession of the 
polarization vector around the direction of the effective magnetic lield.

Cl J -
— = -|y|J x Heff (102)

where y — 2.2101735 x 105 ni/As is the gyromagnetic ratio.
However, changes of the magnetization are known from experiments to decay in finite 

time. Thus, damping is introduced by a phenomenological term. The commonly used Gilbert 
(38) or Landau-Lifshitz equation of motion (39) results in a spiraling movement of the 
polarization vector toward its equilibrium direction. The analytical solution [66]

<sech(ayA7r)cos(«y/7/) \

sech(ay//r) sin(ay///) (103)
y tanh(oy/7z) t

is given as a projection into the x-y plane in Fig. 7 for two different values of the damp
ing parameter. If the damping parameter is rather low (a = 0.1), the polarization vector 

Figure 7. Gyromagnetic precession and damping of the polarization vector during the magnetization reversal 
toward ihe effective field.

gyromagnetic 
precession
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precesses many titres before il reaches its equilibrium direction. If (a — I), the precession is 
critically damped, and the polarization turns directly into the direction of the effective field 
(Fig. 8).

Figure 9 shows how the switching time of a single polarization vector depends on the 
value of the damping parameter. Initially, the magnetization vector points in a direction 
opposite to the effective field. A small deflection starts the reversal process. We can mea
sure the switching time, which is the time until the component of the polarization parallel 
to the effective field has reached a certain value (e.g.. zero). For a < 1.0. the motion of 
the magnetization vector is undercritically damped. It makes many precessions around the 
direction of the effective field. On the contrary, for a > 1.0 the motion is overcritically 
damped. The minimum of the switching time is found for a = 1.0, which is the case of critical 
damping [67|. The damping parameters are in the range between 0.01 and 1.0 for magnetic 
materials that arc commonly used in magnetic recording media [66. 68]. These values arc 
obtained by ferromagnetic resonance experiments: A very strong external DC field keeps 
the magnetization of the sample homogeneous and parallel to its direction. A small AC field 
perpendicular to the DC field excites a periodic motion of the magnetization with a small 
amplitude. As the frequency of the AC field is varied, the absorbed energy varies, and at 
the resonance frequency it reaches a maximum. From the width of the absorption spectrum, 
the damping constant can be derived.

Finite element micromagnctic simulations of a Col’tCr particle with the materials param
eters of./, = 0.37 T. .-1 = I x 10 11 J/m, K, = 2 x IIP J/m’, and a = 0.02 reveal for a particle 
diameter of 16 nm a homogeneous precession toward the external field, whereas for 100 nm 
in diameter, the reversal process is dominated by the nucleation of reversed domains and 
by the expansion of domain walls. Figure 10 compares the transient magnetization states at 
/7CX) = //, for the particle diameters of 16 nm and 100 nm. The calculations were started 
after saturation. The field was reduced in steps of A// = 20 kA/m.

From the simulations, it is obvious that the switching Lime depends on the value of the 
damping parameter and how the external Held is applied (i.e., Held strength. Held profile, 
and sweep rate). Figure II shows the time evolution of the polarization during the mag
netization reversal of the CoCrl’t particle described in Fig. 10. The processional switching 
of the small particle (/) = 16 nm) leads to an oscillation of the total polarization parallel 
to the external field. The nucleation of domain at corners and the expansion of domain 
walls lead to a smooth decay of the total polarization and to a smaller switching time t at 
(A> = *’•

In summary, when a magnetic particle is small enough that any nonuniform distribution of 
its magnetization becomes energetically unfavorable, its magnetization reversal is expected 
to take place in a uniform way. This situation was described more than 50 years ago by 
Stoner and Wohlfarth and Neel [69] in a theory known as the uniform rotation model. The 
Stoner-Wohlfarth model has been extensively used for describing properties of assemblies of 
particles. Only in the past few years have experiments on individual nanoparticles become 
possible thanks to the development of new, very sensitive magnetometers 170-74],

Figure S. Trajectory ol the polarization vector ol a single polarization vector in the v-v plane
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Figure 9. Dependence of switching time of a single polarization vector on the damping constant.

3.1.2. Nucleation Processes in Fe-Pt Particles with Multiple Easy Axes
High-density magnetic storage media require tight control of the grain size, grain size dis
tribution, chemical composition, and microstructure to ensure the thermal stability of the 
bits and to keep the media noise low. However, as the areal density increases, the grain size 
and the magnetic switching volume decrease. In order to maintain the stability, materials 
with higher uniaxial anisotropy than the common CoCrPt alloys are required. FePt thin films 
and self-assembled nanoparticlcs are promising candidates for high-density magnetic storage 
media. Their magnetocrystalline anisotropy is 50-100 times larger than in CoPtCr media 
alloys that may allow areal densities in the Tbit/in2 regime [63],

Controlled self-assembly of magnetic nanocrystals has been widely used as fabrication 
technique to obtain regular deposition of magnetic particles in the form of superlattices with 
high symmetry |75|. In the case of FePt, the phase transformation from the disordered fee 
structure into the ordered Llu phase occurs at 530 °C. Among the magnetic nanoparticles, 
FePt or CoPt ordered alloy nanoparticles are taken as promising candidates. These alloys 
have a Llu-type ordered structure with K, as high as IO6 to 107 J/m\ In the case of FePt 
nanocrystals with an average size of 12 nm, a coercive field of about 3 kOe has been observed 
after a heat treatment above 600 °C. Transition electron microscope (TEM) investigations 
have revealed that the crystallographic three-variant domain structures of the tetragonal Ll0- 
FePt phase coexisted even in small nanoparticles or coalesce to form larger grains after the 
annealing [76], Both mechanisms drastically deteriorate the coercive field. The classical the
ory assuming a coherent magnetization rotation by a reversed external field and developed

Hext

AH=20 kA/m

D=16 nm D=100 nmy // easy direction

Figure 1(1. Transient magnetization states at //.„ - II, lor the particle diameters /) of 16 nm and 100 nm. respec
tively. obtained by 'quasistatic" finite element micromagnetic simulations.
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Figure II. lime evolution of the polarization during switching of a CoCrPt particle with J 0.37 T. I = I x 
10 " J m. K, = 2 x Itr J tn’, and a =0.02.

by Stoner and Wohlfarth for noninteracting, single-domain particles predicts a coercive field 
in the order of 10.8 MA/m (135 kOe). This discrepancy between experimental and theoreti
cal coercive field values can be explained by micromagnetic simulations. I he basic geometry 
of the FcPt nanocrystal with several regions with different anisotropy regions is shown in 
Fig. 12. Based on Fig. 12. the micromagnetic model has been developed assuming various 
regions, or grains, with different easy magnetization directions within one nanoparticle. I he 
hc.xahcdral particle is split into six parts of equal volume. In each part, the magnetocrys
talline anisotropy axis is uniform, but the axes in the different parts have been varied. Typical 
values for the material parameters of FePt (Lin) 'hi'1 films and nanoparticlcs have been 
measured and published in various papers |63. 77|.

The influence of a distribution of easy axes within the particle has been studied. I he easy 
axis in the six parts of our model has been varied, and the coercivity has been calculated for 
an external field applied parallel to the z-axis The following material parameters |63| have 
been used for the numerical simulations: = 1.43 T. A = 1.0 x 10 " J/m. A.', = 7.7 MJ/m\ 
<r = 0.1. The exchange length of FePt is about 1.2 nm and therefore the resulting classical 
domain wall width is about 3.5 nm. The results are summarized in Table I. I he left column 
indicates, how many of the six parts of our model have their easy axis parallel to the z-. 
y-, and x-axes, respectively. I he results show that the coercivity is decreased by a factor 
of three as compared with the nucleation field. However, the different distributions of easy

Figure 12. Geometrical model ot an FePt nanoparticlc used in the micromagnetic simulations I lie linitc clement 
mesh consists ol 111.340 nodes .mil 55.07(1 elements, which gives a discretization length of 1.2 nm. it the edge 
length is 30 nm. The model is split into six parts ot equal volume in which the anisotropy axis are varied (2:2:2 
configuration shown).
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Tabic I. Coercivity as a function of the easy axis distribution. The first, second, and third 
number of a triplet in the first column indicates in how mane of the six parts ol the finite 
element model the easy axes are parallel to the z-. a-. and v-axis. respectively.

a : y : z 5:1:0 4:2:0 4:1:1 3:3:0 3:2:1 2:2:2“

H |kA.'tn| 3330 3140 3310 360 3420 3430 2040

“Three pairs of neighbouring parts with eqral anisotropy axes 
'bach pair of neighbouring parts has perpe idicular easy axes

axes do not show any significant influence on the coercivity. This behavior indicates that the 
90° domain wall at the interface between two misaligned parts of the particle determines 
the coercivity. Thus, already a single misaligned part is sufficient to reduce the coercivity 
by a factor of three. Finally, we have reduced the size of the particles and studied their 
coercivity. The shape and aspect ratio remained the same: the model has just been rescaled 
to the desired size. As a result, the properties of very small particles arc modified because 
of the increasing importance of the exchange interactions. The results of our simulations are 
summarized in Fig. 13. We have used the (2:2: 2(b)) distribution of easy axes, where each 
pair of neighbouring parts in our model has perpendicular easy axes. For this dist ibulion. 
we find a further reduced coercivity of 204!) kA/m, which drops to 6(MI kA m. if the particle 
size is reduced to 3.75 nm.

As a result, the properties of very small particles are modified due to the increasing 
importance of the exchange interactions. The results of the micromagnctic simulations show 
that the coexistence of crystallographic three-variant domain structures are responsible for 
the drop in coercive field and that a minimum particle size of about 6 nm is necessary. I hc 
influence of the magnetostatic field has been shown to be negligible as compared with the 
anisotropy field |78] and has been omitted in all simulations, because the nucleation field 
(i.e., the coercive field of these particles) is reduced by less than 5%.

I hc magnetic properties of the surface of FePt nanoparticles can be altered by oxida
tion. FcjO4 and other oxidation states have been found by near edge X-ray absorption 
fine structure spectroscopy [79], which indicates oxide shells of about (1.4 nm around FePt 
nanoparticles measuring 4-6 nm in diameter. Therefore, the properties of y-Fe,O4 [8()| have 
been assumed for the surface shell surrounding the FePt core: = 0.011 MJ/m’. J, = 0.5 T. 
A = 13.2 pJ/m.

In addition to the micromagnctic model of Fig. 12, where the particle has been split 
into six different parts (according to its hexagonal shape) and in which the orientation of 
anisotropy axes has been varied, a surface shell of variable thickness surrounding the core 
of the particle has been defined to introduce surface anisotropy effects. Figure 14 shows an 
exploded view of the finite element micromagnctic model.

Figure 15 shows the coercive field of a uniaxial particle with s2 surface configuration (cf. 
Table 2) with in-plane anisotropy in each facet. The external field is applied at an angle of 
3° with respect to the anisotropy axis (which is parallel to the sixfold symmetry axis). As the

Figure 13. Coercivity us a function of the edge length of the nanoparticle The easy axis distribution is shown in 
the top figure for the (2:2: 2(b)) distribution, where all neighboring pairs have perpendicular easy axes.
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f igure 14. Lxplodcd xiew of lhe liniic clement model of a FePt naitopatliclc with hexagonal basis. six inner parts, 
and eight surface parts. The big arrows indicate the anisotropy axes of lhe inner parts in the "2 : 2 :2' configuration, 
and the smaller arrows indicate those for lhe surface shell (perpendicular to the surface). The roughness on the 
interior interfaces is caused by lhe structure of the finite clement mesh.

particle size is reduced, lhe thickness of the soft oxide shell is scaled down and its influence 
diminishes, which makes lhe coercivity converge to the Stoner-Wohlfarth limit. The oxide on 
lhe surface makes the nucleation process easier due lo its reduced anisotropy. As a result, 
the coercivity is considerably reduced as compared with lhe Stoner-Wohlfarth result. For very 
small particles, the surface shell is very thin, and it cannot support the nucleation process 
effectively.

As the size of the particle is scaled up, the thickness of its surface shell increases in our 
model, too. This makes the nucleation process easier and reduces the coercivity. If misaligned 
anisotropy axes are introduced as shown previously, the coercivity is strongly reduced. This is 
due lo the fact (hat lhe misaligned parts create 90° domain walls al their interfaces. Thus, the 
magnetization reversal mechanism changes from nucleation (for single crystals) to domain

diameter (nm)

Figure 15. Coercivity (in units of the anisotropy held H— 2A’T ./,) as tt function of particle diameter for a 
particle with a single anisotropy axis and reduced surface anisotropy (y-FcJ), material parameters with in-planc 
anisotropy). The anisotropy axes in all six core parts are parallel to lhe c-axis; "SW" indicates the switching held 
of a Stoner-Wohlfarth particle for an external field applied at 3 from the anisotropy axis: "s2"-"sX" stands lor the 
thickness of the surface shell a given in Table 2
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Table 2. Thickness /, and volume ot the surface shell I in comparison 
with the core volume I lor a particle diameter of Ml nm.

Symbol /, (nm) %... ('"11') 1 '.IkIi/Kw.

I S000 .3S.UI 10 0.21
s4 ■» 16.000 30.000 0.53
s8 4 29.000 I7.UM) 1.71

wall pinning. The oxide shell contributes to this effect and leads to a further reduction as 
shown in Fig. 16. In single crystals, the oxide shell provides the nucleation site, whereas in 
the case of multiple easy axes, it supports the domain wall depinning from the interlace. 
This gives rise Io the maximum ot the coercivity as a function of the particle size.

If we assume strong surface anisotropy for FePt nanoparticles [81|, effective anisotropy 
values as high as Kctt = Ks/l = 46.2 MJ/m' may arise in the surface shell, where i indicates 
its thickness. This corresponds to a ratio /Cvlf/K| = 6. As a result, we find a strongly disturbed 
magnetization distribution for a uniaxial FePt nanoparticle with a diameter of 45 nm and a 
surface layer thickness of 1.5 nm. The influence of the surface anisotropy on the coercivity 
of uniaxial FePt nanoparticles is shown in Fig. 17. For small particle sizes (but still large 
compared with the exchange length), the coercivity approaches the nucleation field because 
the thickness of the shell is of the order or below the domain wall thickness. As the particle 
size (and the shell thickness) increases, the coercivity is reduced by 50%. The disorder in the 
magnetization distribution on the surface of the particle facilitates the nucleation process 
and reduces the coercivity. For large particles the reduced coercity remains constant because 
the nucleation process docs not depend on the particle size when the thickness of the shell 
is larger than the domain wall size. For particles with a diameter of the order of a few 
nanometers. Monte-Carlo simulations have shown this competition between surface and bulk 
anisotropy, which leads to throttled and “hedgehog" spin structures [811.

Surface oxidation during the processing of FePt nanoparticles can lead to the formation 
of Fc-oxidcs with reduced magnetocrystalline anisotropy. The simulations show a reduction 
of the coercivity up to 75% depending on the particle size and thickness of the oxide shell. A 
similar effect is observed for "pure" FePt nanoparticles due to intrinsic surface anisotropy. 
Strong surface anisotropy perpendicular to the surface facilitates the nucleation and magne
tization reversal, which leads to a similar reduction of the coercivity.

3.2. Rod-Shaped Co-Nanowires (One-Dimensional Structures)
The knowledge of the switching process of interacting granular Co nanowires is of technical 
relevance and has been investigated using finite element micromagnetics [82]. Co nanowires 
are usually grown in highly ordered anodic aluminium templates using electrodeposition. 
This technique yields completely metal-filled aluminium membranes. The nanowircs are 
arranged in a hexagonal lattice. The numerical results clearly explain the influence of the 
microstructure on the magnetization reversal process. The nucleation and expansion of

Figure 16. Coercivity .is a function oi particle diameter lor different thicknesses ol the surface shell ("sit" give- 
the results without an oxide shell). A polycry stall inc particle with 2:2 2 configuration of the magnetocrystalline 
anisotropy axes has been assumed (cf. Fig 14)
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diameter (nm)

Hgurv 17. Coerciotv as a function of purtick diameter for an oxide shell with reduced anisolropv in comparison 
with strong surface amsotrops. A thin shell (s2) has been assumed.

reversed domains arc calculated by solving the Gilbert equation of motion for different 
damping constants using a moving mesh technique. The studied magnetic Co nanowire has 
a diameter ol about 55 nm and total length up to 100(1 nm. TEM investigations show two 
different types of hcp-slructured grains. For one the c-axis is randomly oriented in a plane 
perpendicular to the long axis of the wire and the other has the c-axis parallel to the long 
axis. Fhe typical length of these grains is 1(10-25(1 nm. Grains of the second type have a 
length of less than 100 nm and the c-axes arc parallel to the long axis. The first kind of 
grains has a total volume fraction of the Co nanowire of 70-90'/. Ihe materials parameters 
used for the simulations arc 7. = 1.76 T. .-I = 13 pJ in. and K( = 4.5 x 10' J/m' [83|. The 
simulations show that the results arc insensitive to a reduction of the exchange coupling 
between the grains. The nanowire has two stable magnetic stales: all magnetic moments 
are parallel to the long axis, pointing either in one direction or in the other. We apply an 
external field parallel to the long axis in the opposite direction of the magnetization. If the 
field is large enough, a reversed domain will be formed, a head-to-head domain wall will 
he built, and it will propagate through the whole nanowire, until it arrives at the other end. 
I here it is annihilated, leaving the system in the second possible stable stale. As a result 

ol the micromagnetic simulations it has been proved that the domain wall velocity and the 
structure of the domain wall strongly depend on the diameter d of the nanowire. Two types 
of domain walls can be formed during their motion through the nanowire as shown in Fig. 18 
184]: transverse walls and vortex walls.

As result of the simulations, it has been shown that the domain wall velocity depends on 
the domain wall structure (Fig. 19). In the first case, the magnetization in the center of the

figure IX. Magnetization distribution in a transverse wall lent plane parallel to the wire axis) and in a vortex wall 
<-.! plane perpendicular to the wire avis ihroui'h the vortex cord fhe wire diantelci il ~ 211 nm
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Figure 19. Domain wall veloci'.y for different diameters <1 of the Co nanow ire. The velocity depends on the domain 
wall structure. The simulations were made for a damping constant of one

wall points perpendicular to the long axis of the wire. As the wall moves, the transverse com
ponent of the magnetization circles around driven by gyromagnetic precession. In the second 
case, a vortex is formed in a plane normal to the long axis of the wire. The magnetization 
aligns parallel to the wire surface. Within the domain wall, the magnetization rotates around 
the long axis that leads to the formation of a Bloch point in the middle of the wire. The 
formation of the vortex decreases the magnetostatic energy at the expense of the exchange 
energy. For small diameters, it is energetically preferable to form a transverse wall that min
imizes the exchange energy because of the parallel alignment of the magnetization in the 
domain wall. However, there are no flux closure states in the wire and so the magnetostatic 
energy is not reduced. However, for small diameters, the exchange energy is the most domi
nant energy contribution to the total Gibbs free energy, and so its minimization determines 
the wall configuration. With increasing diameter, the magnetostatic energy becomes more 
important in the minimization process. Although the vortex wall increases the exchange 
energy, the minimization of the magnetostatic energy due to the lower demagnetizing field 
makes it energetically preferable. Since the difference in the total Gibbs free energy is less 
than 1% at a critical diameter of d = 20 nm. it is possible to obtain both domain wail struc
tures. For d < 20 nm. only transverse walls are observed, and for d > 20 nm only vortex 
walls are observed.

The dependence on the damping constant is not the same for both structures. For d = 
10 nm, just transverse walls are formed. With increasing damping constant, the velocity 
increases from 50 m/s for a damping constant of 0.05 to 520 m/s for a damping constant 
of 1 at an applied field of 500 kA/m. For higher damping constants, the domain wall velocity 
increases faster for higher external fields. In the transverse wall, gyromagnetic precession 
plays a major role during the wall motion. On the contrary, for the vortex walls, the domain 
wall velocity increases with decreasing damping constant, reaching 2000 m/s for d — 40. a 
damping constant of 0.05 and an applied field of 250 kA/m.

Fhe development of an adaptive mesh refinement algorithm helps to bridge the length 
scales used in micromagnetic simulations [351. The finite element mesh is dynamically 
adapted to the current magnetization distribution. The mesh is dynamically adapted to the 
current magnetization distribution. Finite elements arc introduced into regions where a high 
resolution is required. Afterward the mesh is coarsened again. Different attempts have been 
made in micromagnetics. Miltat and Labrune [851 analyzed two-dimensional Neel-type walls 
using a discretization of the sample into rectangular prisms of variable size having small 
elements in the center of the wall. Tako et al. [321 introduced a posteriori refinement that 
subdivides triangular elements with large errors into four smaller elements. Hertel and Kro- 
nmuller [33J applied an adaptive finite element method to calculate domain configurations 
and vortex motion in thin-film elements. In the following, the case is described in which 
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mesh refinement anil mesh coarsening is applied in order to obtain a high-density mesh that 
moves together with (he domain wall (Fig. 2(1).

Io solve the partial differential equations. we use the finite element method. I he magnetic 
wire is divided into tetrahedral finite elements. The space discretization leads to a system of 
coupled magnetic moments sitting al the nodes of the finite element mesh. The effective Held 
at the nodes follows from the derivative ol the Gibbs free energy with respect to the magnetic 
moment. I he Gilbert equation of motion has to be solved for each magnetic moment. I he 
equations arc coupled by the exchange and magnetostatic interactions between the magnetic 
moments. In order to resolve a magnetic domain wall, the element size has to he smaller 
than the characteristic length, given by the minimum of the exchange length parameters 
(Eqs. 11] and |2]). If the element size is too big a so-called domain wall collapse will occur: 
the magnetization becomes aligned antiparallel at neighboring nodes and the toiquc on the 
magnetization vanishes. A large number of finite elements is required for the study of wall 
motion in magnetic wires using a uniform fine grid with an clement size smaller than the 
critical exchange length. In order to keep the number of finite elements small and avoid the 
domain wall collapse |S6|, an adaptive refinement scheme can be applied.

I hc outline of adaptive algorithms is as follows. Starting from an initial finite element 
mesh 7(|. we produce a sequence of refuted grids until the estimated error is below a 
given tolerance f. Generally, we have to distinguish three refinement strategies |S7|. First 
there is the possibility of moving the nodes from positions with nearly uniform magnetization 
to the wall or vortices regions (r-refinement). Then there is the possibility of adding new 
nodes and elements into the elements having a big error indicator (h-refinement). I hc third 
way is to interpolate the direction cosines [3t. by polynomials of higher order instead of 
linear functions (p-relinement). The aim of an adaptive refinement algorithm is to get the 
'optimal'' mesh, where the number of nodes is as small as possible while keeping the error 
below a given tolerance. All strategics arc based on the idea ol an cquidistribulion of the 
local error indicator to all mesh elements. Babuska ami Rhcinboldt |SS| state that a mesh 
is almost optimal when the local errors arc approximately equal for all elements. Adaptive 
mesh algorithms have to identify the regions where a higher spatial resolution is required, 
therefore so-called error indicators arc computed from the current finite element solution. 
In inicioiiiagticiics a reliable cnoi indicate)! is based on the constraint condition lot the 
norm of the magnetization vector [34]. Strong deviations of the norm show regions with 
non-uniform magnetization [89].

Time

fiyure 2(1 Sequence ol meshes during the motion ol (he domain wall, file pictures give the triangular mesh on 
the surface of the wire. The mesh is dynamically adapted to the current magnetization distribution, finite elements 
a: iiti.J ..into regions where :• high resolution is required. Xfterw :r I the mesh is co:irsere<! again
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In the following, we outline the h-refinement scheme used in the micromagnetic simula
tions of domain wall motion. The finite element grid is adjusted to the current wall position 
during the solution of the Gilbert equation of motion. The mesh is refined in regions with 
nonuniform magnetization, whereas elements are taken out where the magnetization is uni
form. Thus the fine grid moves together with the wall because the mesh can be coarsened 
as soon as the wall has passed by. Figure 21 shows the flow' chart of the corresponding algo
rithm: We start with the initial mesh rn. initial magnetization Mo, and the starting time r„. 
A: each time step /, erode integrates the Gilbert equation of motion (Eq. [38]) and gives the 
new' values for the magnetization M, at time t,. Furthermore, the error indicator r)r for all 
elements T of the given mesh is calculated. We control the adaptive refinement method 
with (rt, <r, and a certain threshold value e. which represents the allowed error.

Through proper refinement and coarsening steps, we obtain a mesh with the error indicator 
r]r for all elements. First, we treat the question, if coarsening of the current mesh is possible: Is 
the percentage of elements that fulfills rj, < <r.. K higher than a given value (coarse criterion)? 
Then there are regions that just require a coarser mesh. So we can go back to the initial mesh 
7), < Tn and subsequently refine the mesh in regions with high-error indicators.

The other possibility is that we cannot coarsen our mesh. Then we must decide whether 
the mesh hits to be refined. The condition is if there arc elements with rj, > e. then a 
refinement process |9tf] is required. We reline all elements whose error indicator fulfills 
j]/ > a, • e with rr, € (0,1) [91], The algorithm leads to the new mesh T,„+|. If the directions 
of the magnetization differ very much between neighboring elements and more than one 
refinement step is required to reduce the error indicator in a significant number of elements, 
then the refinement steps are repeated. Because a system of coupled equations has to be 
solved in every iteration of this algorithm, the number of iterations should be as small as 
possible. Thus, the marking strategy should select not too few mesh elements for refinement 
in each cycle. Therefore not just elements with rj, < e are marked for refinement, but in 
addition all elements fulfilling r) f < <r, • e.

In both cases, the saved magnetization Mo<1 of the former time step is interpolated on the 
currently active mesh and the time is set to the former value roU, This means if the error is 
too large or if the mesh can be coarsened, the time step is rejected and the finite clement 
mesh is adjusted. Otherwise, if the mesh cannot be coarsened or docs not have to be refined, 
the time integration is continued on the given grid. Thus the simulation proceeds in time 
only if the space discretization error is below a certain threshold.

* Coarse Element: T|t < a.’.E

Figure 21. Flow chart of the adaptive mesh microinagnelic algorithm. The simulation proceeds in time only d the 
space discretization error is below a certain threshold r
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This algorithm guarantees that the simulation proceeds in time only it the space discretiza
tion error is below a certain threshold. Numerical studies showed that the moving mesh 
reduces the total CPU time by more than a factor of 4 (Fig. 22).

The simulation of an array of nanowircs would exceed the computational power of our 
workstations. Therefore, we just model three interacting nanowircs. The influence of the 
other nanowires due to the strayfield is taken into account by a demagnetization factor. 
In the simulation, the external field is applied parallel and perpendicular to the long axis. 
Initially, the Co nanowire is fully saturated parallel to the long axis. Then the external field 
is instantaneously applied with a strength of 140(1 kA/m. For each applied field value, wc 
integrate the Gilbert equation of motion until the equilibrium state is reached and then the 
external field is reduced by steps of 28 kA/m. After the simulation of the total hysteresis 
curves, we have to consider that wc just simulate three nanowircs. whereas the experimental 
measurement is the result of the interaction within a two-dimensional array of nanowires. 
We sec a good qualitative agreement with the experimental results. The nanowircs show 
just a small hystcretic behavior. The values for the coercive fields are by a factor 2 bigger 
than the experimental values. For the perpendicular case, the magnetization starts to rotate 
in the smaller grains, which have a magnetocrystalline easy direction parallel to the long 
axis. Because the external field is sufficiently decreased also, the magnetization in the bigger 
grains with a magnetocrystalline easy direction perpendicular to the long axis starts to rotate. 
Bui in these grains, the reversal is finished earlier because the external field has io be 
strong to rotate the magnetization out of the magnetocrystalline anisotropy direction in the 
smaller grains. To the contrary, in the parallel case, the reversal starts in the bigger grains. 
Wc also performed simulations neglecting the granular structure of the Co nanowire. This 
means that the nanowire is just one single crystal with uniaxial anisotropy either parallel 
or perpendicular to the long axis. When the field is applied perpendicular to the long axes 
of the nanowircs (Fig. 23), we see that the coercive field // is slightly increased with the 
increasing number of nanowircs because the magnetostatic interaction between them. In 
addition, the shape of the hysteresis curves changes with more nanowircs because, in the 
case of one nanowire, the arrangement of the granular structure in our finite clement model 
influences the shape of the curve. With increasing number of nanowires, the number of 
giaitis is increased also and therefore the curve becomes smoother.

The simulations clearly show that we have to take into account the granular structure to 
achieve a good qualitative agreement with the experiment.

3.3. Permalloy Nanodots
The recent advances in microfabrication techniques [92| have stimulated interest in the 
properties of submicron-sized patterned magnetic elements [104, 105], Promising applica
tions include magnetic random access memory, high-density magnetic recording media, and

Figure 22. Domain wall motion in a Co nanowire. I till lines: Comparison ol the magnetization using a very fine 
uniform mesh and an adaptive refined mesh. Dotted lines: The fine uniform mesh requires hv a factor ot 4 more 
(TV lime.
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Hgurt 23. Hysteresis curves tor different number of Co nanowircs. The field is applied perpendicular to the 
long axis.

magnetic sensors [93]. However, in order to exploit the special behavior of magnetic nanoele
ments. it is necessary to study and understand their fundamental properties. The static and 
dynamic magnetic switching properties of magnetic nanodots with curling in-plane magneti
zation distribution (vortex) have widely been studied experimentally as well as theoretically. 
As an example, the magnetization states of cylindrical permalloy nanodots of different sizes 
and aspect ratios with analytical models and numerical finite element simulations, especially 
magnetic vortex states, will be compared. Direct experimental evidence for Ihe existence of 
these magnetic vortex states has been found by the method of magnetic force microscopy. 
Shinjo and coworkers |94] have used magnetic force microscopy (MI'M) to characterize 
magnetic nanodots of permalloy (NiW)Fe^) with a thickness of 50 nm and a radius between 
300 nm and 1000 nm. for example. However, the lateral resolution is not high enough ,o 
estimate the diameter of the vortex core. In addition, the MFM tip is sensitive only to the 
out-of-planc component of the strayfield gradient, and the interaction between the magne
tization of the nanodot and the MFM tip plays an important role for ihe contrast. These 
problems can he overcome using spin-polarized scanning tunneling microscopy, and the 
direct observation of the magnetization distribution in nanoscale iron islands with magnetic 
vortex cores have been reported [95]. Lorentz TEM allows in situ magnetizing experiments 
with thin samples, and it has been used to characterize the magnetization distribution in indi
vidual circular and elliptical particles [96]. The hysteresis loops of magnetic nanodots have 
been measured by vibrating sample magnetometer |97| and magneto-optical methods [98. 
99], Single domain and vortex states have been successfully identified. Furthermore, these 
magnetic vortex states are an interesting object for high-frequency magnetization dynamics 
1100] experiments, which are important for high-density magnetic recording media, where 
high-frequency field pulses of the magnetic write head store the information by reversing 
the magnetization. Typical material parameters of permalloy (NiKI(Fe2(l), which arc used in 
micromagnctic simulations, are the following: J, = 1.(1 T. A - 13 pj/m, K, = 0, and a = 0.01.

The discretization of a cylindrical nanodot into finite elements is rather crucial in order 
to describe magnetization distributions close to the vortex core. Figure 24 shows different 
finite element meshes of a cylindrical nanodot with a radius of R = 100 nm and a height ol 
L = 20 nm. In order to investigate the influence of the finite element mesh on the results, 
three meshes with different mesh densities have been created (cf. Table 3). The first mesh 
is a uniform tetrahedral mesh with an average mesh size of 20 nm (Fig. 24[a|). Because the 
thickness of the nanodot is 20 nm, there is only one layer of elements. The second dot has 
an average mesh size of 6 nm, which resulted in four layers (Fig. 24[b]). The third mesh is an 
“adapted” mesh, with a very high density of nodes in the center, where the core of the vortex 
is found in zero external field (Fig. 24|c|). This is sensible because the vortex represents a 
singularity, which requires a very high numerical accuracy and therefore a lol of nodes. The 
outer regions arc meshed with larger finite elements because the magnetization distribution
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Figure 2-4. Finite element meshes of different mesh density for a circular nanodot; eoarse mesh (a), tine mesh (b). 
and adapted mesh (cl.

is rathei uniform. First, the static reversal properties of the permalloy nanodots are numer
ically simulated and compared with analytical calculations. The finite element simulations 
have been initialized with the magnetization distribution of the rigid vortex model and an 
approximate core radius of about I I nm.

Then the Landau-Lifshitz equation of motion lor the magnetization has been integrated 
with a damping constant cr = I in zero field, and the magnetization relaxed to its equilib
rium distribution, which minimizes the total Gibbs free energy. For the coarse mesh, the 
magnetization distribution given in Fig. 25(a) has been found. Obviously, the resolution of 
the mesh is too low to properly resolve the vortex. Thus. M is zero in the whole dot. The 
second mesh with a mesh size of 6 nm is line enough O resolve the core (Fig. 25|b|). The 
adapted mesh, which has a high resolution with many small elements in its center and a 
gradually decreasing resolution toward the circumference, resolves the core just as well as 
the line mesh (Fig. 25|c|). but its number of nodes and elements is comparable lo that of 
I he eoarse mesh

Therefore, it is very well suited for simulations, where the vortex core can be expected to 
be in the center of the nanodot. If the vortex core moves out of the center (e.g., due to an 
external field), it might reach a region with a low-resolution mesh. Then, the vortex core 
cannot be resolved properly anymore and the results became very unreliable. As a rcstill. it is 
necessary to use either a uniform high-resolution mesh or to apply adaptive mesh refinement, 
which increases the mesh density al run time as required and optimizes (minimizes) the 
number of nodes and elements in the finite element mush.

An analytical model for the magnetization distribution in zero field has been developed 
for a the rigid vortex state using a variational principle by Usov and coworkers 1101. 102].
I he rigid vortex model assumes a “rigid vortex.” which does not change its shape in an 
external field. Together with a certain magnetization distribution it gives an approximation 
for the magnetization distribution of a curling state (vortex state) in a fine cylindrical par
ticle. The core radius is obtained from the minimization of the total energy (exchange and 
magnetostatic energy). For permalloy with R - 10(1 nm and /. = 20 nm a core radius of
II nm is obtained.

The profile of M. along the .v-axis through the center of the dot for the different meshes 
is given in Fig. 2b. The coarse grid dearly fails to resolve the vortex. However, the fine and 
the adapted grid arc in excellent agreement. This emphasizes the importance of suitable 
meshing because the tine grid consists of more than four times more elements than the

I able 3. Details of the tinile element meshes with different mesh den
sity for a circular nanodot with a radius of R = 1 (Ml nm and a height of 
/ - 20 nm corresponding to t ig. 24(a)-24(c).

Mesh data Coarse inesh Fine n esh Adapted mesh

Mesh size 211 nm (> m t 2-40 nm
Nodes 1437 (>455 1397
Etc me tits 5.SI6 30.979 <1256
Surface triangles I75S s'» 139(1



658 Computational Micro magnetics

Figure 25. Magnetization distribution of the vortex stale on the (a) eoarse mesh, (b) tine mesh, and (e) adapted 
mesh, (u) The vortex core cannot be resolved, (b) the vortex coic is piopeily icsolved. and (c) the vortex core 
is nicely resolved, but the total number of elements and vertices is similar to that ot the coarse mesh. Dark gray 
corresponds to in-plane magnetization and bright color to out of plane component magnetization M .

adapted one. which leads to much longer computation times. However, if we define the 
vortex core radius as that radius, where M is zero, we find a value of approximately 25 nm, 
which is considerably larger than the value of 11 nm predicted by the rigid vortex model. M 
is also quite uniform across the thickness of the dot. Hie results show that the vortex core 
obtained from the numerical simulations is larger (18.5 nm) than assumed by the analytical 
rigid vortex model (11 nm) due to a "broadening" of the Af. distribution (if the core radius is 
defined by M. = 0). Furthermore, it is interesting to note that the finite element simulation 
shows that there is a region with M. > () outside the core. Thus, we find positive surface 
charges in the core of the vortex, which arc surrounded by negative surface charges Only 
outside of approximately half the radius (5(1 nm) almost all surface charges disappear. It has 
been verified that there is very little variation of the magnetization distribution across the 
thickness of the nanodot.

Figure 27 shows the hysteresis curve for a circular nanomagnet with in-plane external 
field. For very high external fields (applied in the plane of the nanodol), the magnetization 
is almost uniform and parallel to the external field (Fig. 28[a|). As the field decreases (solid 
line in Fig. 27), the magnetization distribution becomes more and more nonuniform. which 
is caused by the magnetostatic strayfield. Upon further decrease of the external field, the 
symmetry of the magnetization distribution breaks and a “C” state (Fig. 28[b]) develops. Al 
the nucleation field (about 5 kA/m for our example), a vortex nucleates on the circumference 
and quickly moves toward its equilibrium position (close to the center of the nanodot). 
As a result, we find a sudden drop in the average magnetization. When the external field is 
reduced to zero, the vortex moves into the center of the nanodot (Fig. 28|c]). If the external 
field is increased in the opposite direction, the vortex is forced out of the center of the dot. 
For about -70 kA/m. the vortex is pushed out of the nanodot (annihilation: Fig. 28[d|). and 
we find the second jump in the hysteresis curve to (almost) saturation.

This characteristic behavior has also been found experimentally using Hall-micromagnc- 
tometry by Hengstmann et al. 1103], who measured the strayfield of individual permalloy 
disks using a submicron Hall magnetometer. The hysteresis loops of arrays of Supermal- 
loy nanomagnets have been measured by Cowburn et al. [l)8] using the Kerr effect.

...... coarse grid 
...... Fine grid 
....... adapt grid

Figure 26. Profile of V/ along the _v-axis through the center of the nanodol lor different meshes.
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Figure 27. Hysteresis curve of a circular Permalloy nanodot with R Hwr nm. / 20 tint for an in-plane external
field. I he circles mark the position on the hysteresis curve at which the snapshots in I tg. 2S have been taken.

Their characteristic loop shape has then been used to identity the single-domain in-plane and 
the vortex phase. The rigid vortex model can describe very well the susceptibility, magnetiza
tion distribution, and vortex annihilation field for low fields as well as the vortex nucleation 
held for a wide range of dot sizes 1104—108]. The experimentally observed nucleation fields 
appear to be bigger than those predicted by the rigid vortex model |IO9|. This is probably 
because the simplest “C-shapc" nucleation is not always an appropriate approach to describe 
the magnetization reversal in circular dots. For very high Helds, we have an almost uniformly 
magnetized nanodot. For decreasing lield the total energy increases (almost) linearly. The 
dashed line for positive lield values indicates the total energy lor the vortex state. At the 
intersection of the solid and the dashed line (at a value of about 35 kA/m for the external 
lield), the vortex state and the uniform magnetization have equal energy. However, they are 
separated by an energy barrier that arises from the magnetostatic energy, which in turn is 
caused by the strayficld on the circumference of the nanodot as the vortex is pushed out of 
the center. Thus, the vortex state is a metastahlc state for external fields higher than 35 kA/m 
ami the uniform state is metastable lor external fields below 35 kA/m. I he exchange energy 
icniains approximately constant lot negative external fields until the annihilation lield is 
reached. Since all exchange energy is stored in the vortex core, this indicates that the vortex 
core remains undisturbed for even verv large vortex shifts. For a twice as large nanodot with 
R = 200 nm and I. = 40 nm. we find a nucleation field of 2X kA/m and an annihilation field 
of 84 kA/m. The corresponding hysteresis loop is given in Fig. 29. In general, the initial sus
ceptibility, the vortex nucleation, and the annihilation fields depend on the dot's saturation 
magnetization Af, and should scale universally as a function of the dimensionless dot-aspect 
ratio I. = R [105. 108],

The investigation and improved understanding of the dynamic processes in magnetic 
nanostructures become more ami more important because magnetic nanoparticles arc 
promising candidates for high-speed, high-density magnetic storage (e g., hard disks and 
MRAMs) and sensor devices [110. Ill|. Recent advances in nanometer scale fabrication

Figure 28. Typical magnetization distributions along the hysteresis loop. Ihe snapshots have been taken at the 
corresponding position on the hysteresis curse indicated in big. 27. (a) Almost homogeneous magnetization, (b) 
state before Ihe vortex nucleates, (et centered vortex m zero held, (d > magnetization distribution before annihilation 
of the vortex The external field is applied parallel lo the magnetization direction of pattern (a).
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Figure 29. Hysteresis curve of a nanodot with a radius of 201) nm and a thickness of 40 nm.

technology allow detailed experimental investigations on a nanometer length scale |07. 112]. 
In high-speed storage devices, magnetization reversal occurs by applying short-field pulses 
[113]. The characteristic switching time depends on the reversal mode and is usually in the 
nanosecond regime. The magnetization reversal excites many spin-excitation modes (spin 
waves), whose understanding is important to determine the field-dependent spin instability 
regions, where spontaneous or thermally assisted magnetization reversal might occur || 14]. 
I'he magnetization dynamics under short-held pulses have been investigated in saturated 
NiFe disks [115] and in closure domains in Co disks |1I6|. However, the magnetization 
dynamics of the magnetic vortex state in thin permalloy disks is markedly different from 
those in the uniformly magnetized state and also from the spin waves observed in thin 
magnetic hints. The dynamic behavior of the magnetic nanodots has been studied by instan
taneously applying an external held of 6.4 kA/m (<S0 Oe) in plane perpendicular to the dot 
axis (z-axis). Even though the experiment was started from the equilibrium magnetization 
distribution in zero Held. and A/v show a quite irregular behavior during the first 0.5 ns. 
During this time, the vortex core "adapts" to the applied external field and deforms while 
it already starts its precession toward equilibrium. A low damping constant of a = 0.05 has 
been used. The size of the finite elements is quite important. A coarser mesh leads to a 
bad approximation of the vortex core and an inaccurate result. The simulations using the 
uniform meshes give results that are in good agreement with experiments and analytical 
considerations. The precession frequency of 0.65 GHz is also confirmed by the results of 
Guslicnko and coworkers [117]. In addition it has been found that the magnetostatic energy 
oscillates in phase with M, or M,„ respectively. This has to be ascribed to variations in the 
surface charge density on the circumference. The time evolution of (MJ (the average of M, 
over the whole nanodot) for a dot with with an aspect ratio of L/R = 20 nm/100 nm = 0.2 
is shown in Fig. 30. The damped oscillation, which is caused by the spiral motion of the vor
tex core toward its equilibrium position, is observed. The corresponding Fourier spectrum 
reveals a sharp peak at a frequency of about 0.75 GHz.

Figure 31 shows the results of the translation mode eigenfrequencies of various nanodots 
with a radius R = 100 nm and a thickness between 10 nm and 40 nm. The results are in
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Figure 30. Simulation results of the oscillation ot A/,) as a function of lime for vortex precession in a nanodot 
with L, R = 2(1 nm/l()0 nm - 0.2 under applied in-plane field g,,//. = IHH T
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Figure 31. Translation mode eigenfrequencies versus aspect ratio I K for nanodots with R - HUI nm.

good agreement with the results of a finite difference model and the analytical •'two-vortices ' 
model presented in Ref. [117], The decreasing total energy (dissipation due to damping with 
it = 0.05 in the Landau-Lifshitz equation of motion) and the swapping between magneto
static and Zeeman energy (which shifted by 180°) are shown in Fig. 32. The exchange energy 
remains constant because the vortex core, which accounts for most of the exchange energy, 
precesses without changing its shape. This confirms the analytical description of the trans
lational mode suggested in Ref. 11 IK]. Direct experimental observation of this mode in an 
isolated vortex using time-resolved Kerr microscopy has recently been reported by Park el al. 
11 19], There is good qualitative agreement with the analytical and numerical models but still 
a few questions concerning the quantitative discrepancies and damping times remain open.

3.4. Layered-Shaped Granular Layers (Two-Dimensional Structures)
In common hard disk drives, the information is stored in the magnetization state ol a fer
romagnetic granular film. A granular film is a composition of grains that are regions with 
the same crystal structure favoring the magnetization to align parallel to one axis, called 
easy axes. Usually neighboring grains have the same crystal structure, but the easy axes are 
different, hi modern hard disk drives, the grain size diameter is less than 10 nm. In longi 
tudinal recording, the easy axes arc randomly oriented in the plane of the film. One bit is 
represented by the magnetization state of about 200 to 300 neighboring grains. Because of 
lhe in-plane anisotropy in longitudinal recording, lhe magnetization is parallel to the film 
plane. Small grains arc required because the minimum bit length, below which neighboring 
transitions become indistinguishable, is determined by the transition width, which in turn 
depends on the grain size of the film. Usually the grains are weakly exchange coupled to each 
other. For too strongly exchange coupled grains, the magnetization in neighboring grains 
aligns parallel, and effectively larger grains are formed. Thus, magnetic interaction increases 
the effective grain size. As a consequence, larger bit lengths would be required. However, 
completely decoupled grains arc thermally unstable because the thermal stability decreases 
with decreasing grain volume. Thus, an important task in longitudinal recording is to find 
the optimal exchange coupling strength between grains.

----- total
--- exchange
...... magnetostat.
------ Zeeman
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Figure 32. I nergs over time fnr .1 Joi with /. fl — 11 I and ft ,!l Hill f
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Thin films for conventional longitudinal magnetic recording are typically based on 
CoM (Cr|hM, alloys with additions of M = Pt. la. B [120], The phenomenon of Cr grain 
boundary segregation was also found experimentally by energy-filtered TEM imaging [121]. 
Recording data densities larger than 1(1 Gbits/in2 are possible when the media have ther
mally stable, magnetically decoupled grains with grain sizes less than 10 nm. To increase data 
storage density (i.e.. to decrease the bit size and to increase the signal to noise ratio), higher 
symmetry textures and narrow grain size distributions are necessary. In order to separate 
individual data bits, arrays of patterned thin-film elements are fabricated by lithographic 
and/or imprint techniques. As an example, the magnetization reversal dynamics of a longi
tudinal recording medium has been simulated for the granular mien,structure described in 
Fig. 2 consisting of 420 in-plane randomly oriented grains with about X nm grain size and 
15 nm film thickness. In order to simulate the write process in a 100 Gbits/in2 medium, a bit 
size of 50 x 130 nnr was assumed with a head speed of 20/ins corresponding to a trapezoidal 
external field profile with 2.5 ns bit writing time, including 0.1 ns rise and 0.1 ns decay time. 
The bit structure is shown in Fig. 33, and the maximum external field is about 1.3 H,.

The micromagnetic simulations start form the state of randomly magnetized grains and 
clearly show in Fig. 34(a) that a domain wall structure in the thin-film medium consisting of 
fully coupled grains after writing bit A (after 2.5 ns) is formed during the bit-writing process. 
However, in the case of fully decoupled grains (Fig. 34|b|). the simulations show individually 
switched grains after writing bit A and B (after 5 ns). Partially switched grains produce a 
large contribution to the media noise. The material parameters used for the simulations are 

= 0.37 T, A, - 0.2 MJ/nr\ A = 10 pj/m, a - 0.02. For the exact simulation of a real 
longitudinal medium, the reduced magnetic exchange in the intergranular region between 
the grains due to the Cr-segregation has to he known and taken into account.

In order to study the role of the variation of the intergranular exchange coupling between 
neighboring grains, we have studied the magnetization reversal processes of two and three 
grains, respectively, with a diameter of 16 nm and different in-plane orientations and con
sidering variable intergrain exchange constants values. Assuming perfectly coupled grains, 
we obtain a complex magnetization reversal process with the formation of domain walls as 
shown in Figs. 35(a) and 37(a). Fully exchange-decoupled grains lead to the individual rever
sal process within each grain (i.e.. a more or less homogeneous precessional rotation similar 
to the one of a single particle described in Fig. 10(a). The quasistatic demagnetization curves 
of Fig. 36 clearly show the “two-step” behavior in the case of two completely decoupled 
grains. According to the misorientation of the decoupled grains, different switching fields are 
obtained for both grains A and B. The switching is first observed in the misoriented grain 
B (Figs. 35[b| and 37[b]) and C (Fig. 37[bJ). In the case of exchange coupled grains, both 
grains switch simultaneously (Figs. 35[a] and 37[a]). Figure 38 shows the dependence of the 
switching time on the degree of intergrain exchange coupling between the three grains. The 
direct coupled grains show the shortest switching time of about 300 ps and the completely

Figure 33. Micro magnetic model ot 420 in-plane randomly oriented grains used lor the simulation ol the switching 
ot two hits A anil fi in a Co( rl’tX medium lor longitudimd recording.
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Figure 34. Micromagnctic simulations showing the difference of the switching of the grains alter writing single bits 
in a Crt'ot’t longitudinal medium, Fully coupled grains after 2.5 ns (a) and fully decoupled grains after 5 ns (h).

decoupled grains show the processional oscillation of the total polarization leading to a com
plete switching after about 1 ns. In reality an intergranular exchange in the order of about 
10%-30% of the bulk value seems io be sufficient to stabilize individual bits and to keep 
the switching time and magnetization oscillations small.

The idea of perpendicular recording is to represent bits with magnetization directions 
perpendicular to the film plane. A perpendicular orientation of the magnetization reduces 
the demagnetizing field in the high-density limit. Thus, opposite bits act as domains that 
reduce the stray-field. To achieve a perpendicularly magnetized configuration, textured films 
with easy axes perpendicular to the film plane are used. Another advantage of the aligned 
grains in perpendicular recording is a narrow switching field distribution. In conventional 
longitudinal media the grains are oriented randomly. Because the switching field depends on 
the angle between the easy axis and the external field, some grains may not switch, leading 
to a broadening of the transition between the bits.

In compaiison to the modeling of the bit writing in a longitudinal medium with 
100 Gbit/in2 areal storage density, the micromagnctic model of Fig. 33 was used to simulate 
the switching of individual grains in a (Co, Fe)(Pt, Pd) thin-film medium with perpendic
ular magnetocrystalline anisotropy. The material parameters used for the simulations are 
J( — 0.30 T, K, =0.1 MJ/m’. J — 10 p.l/m, <r = 0.02. A random misorientation of the grains 
up to ±5° is taken into account. Figure 39 shows a typical TEM image of a CoPd thin film 
with decoupled grains with an average grain size of about 10 nm. For the writing and sta
bilizing of individual bits, the intergranular exchange coupling becomes important as in the 
case of the longitudinal magnetic recording medium. It is obvious from the domain images 
of Fig. 40 obtained during the writing of hit A that the individual bit structure cannot be 
stabilized in a granular film consisting of completely coupled grains. Figure 41 shows the 
results of micromagnctic simulations that reveal a clear bit pattern after writing bit A and B

Figure 35. Magnetization reversal ol two grains, (a) A domain wall is formed near the grain boundary of direct 
coupled grains, (b) Individual homogeneous processional rotation of magnetization of decoupled grains. I hc mis 
•riented ui.iin B switches first.
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Figure 36. Quasistatic demagnetization curves of the “2 grain" model of Fig. 35 showing an individual switching of 
decoupled grains and simultaneous switching of fully exchange coupled grains.

(after 5 ns) considering fully decoupled grains. The jagged bit shape obviously results in a 
contribution to the media noise.

3.5. Nanocrystalline Composite Magnets

Nanocompositc permanent magnets have been widely studied experimentally and theoreti
cally during the past decade [122-132], These magnets consist of a mixture of magnetically 
hard and soft phases. Nanocomposite magnets show a high remanence and a reasonable 
large coercive field if both phases are sufficiently exchange coupled. Nanocompositc mag
nets with excellent hard magnetic properties were obtained for various different composi
tions. The soft magnetic phase is either a-Fe or Fc3B. As hard magnetic phase Nd2FeuB, 
SmCo5, Sm,Fe14Nv. and Pr,FeuB were used. Possible application of nanocomposite per
manent magnets are bonded magnets used in consumer electronic applications, where the 
miniaturization requires magnets that are easy to magnetize [132, 133], In addition, the 
reduction of the total rare-earth content may lead to a cost reduction. Whereas the enhanced 
remanence of nanocomposite magnets is an advantage as compared with isotropic, single
phase nanocrystalline NdFeB magnets, the coercive field obtained in two-phase systems is 
rather low. Thus recent studies investigated different ways to improve the coercive field 
of nanocompositc magnets. Kanekiyo and Hirosawa [129] showed that the hard magnetic 
properties of nanocomposite magnets can be significantly improved by modifying the alloy 
compositions. The substitution of Nd by Dy increases the hard-phase anisotropy, giving rise 
to an improved coercivity without a significant loss in remanence. Fukunaga and co-workers

Figure 37. Transient magnetization patterns during switching, (a) Fully exchange coupled grains switch simultane
ously. (b) Fully decoupled grains switch independently depending on the misorientation of the grains
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Figure 38. Switching time in dependence of the intergranular coupling according to the "3 grain" model of Fig. 37.
The shortest switching time is found for the direct coupled (1.0 ex) grains. Completely decoupled grains (0.0 ex) 
show a strong oscillation of the polarization during switching.

1126] proposed a two-phase microstructure consisting of NdFeB and a-Fe grains embedded 
within a residual amourphous phase in order to improve the coercive field of nanocomposite 
magnets. Such a nanocomposite system was realized by Hamano and co-workers [131] using 
a composition NdsFe7l,CosNb>B(, with a maximum Ht - 575 kA/m.

Finite element modeling treats magnetization processes within on a length scale ol sev
eral nanometers and thus give a quantitative correlation between the microstructure and the 
magnetic properties of nanocomposite magnets. The numerical solution of the Gilbert equa
tion of motion shows how reversed domains nucleate and expand. Magnetization reversal 
starts at the grain boundaries dissolving a strongly nonuniform magnetic state. I he intrinsic 
magnetic properties near the grain boundaries strongly influence the remanence and the 
coercive field of two phase, nanocrystalline magnets. The magnetic properties are assumed 
to decrease gradually from their bulk values in the intergranular phase. A linear reduction 
of the exchange constant to 2()% of its bulk increases the coercive held by up to 50% with
out a significant reduction ol the remanence in NdFcB/a-Fc magnets with a mean gram 
size of 1() nm. In order to explain the influence of intergrain exchange interactions, see 
Fig. 42.

Figure 42 schematically illustrates remanence enhancement and magnetization reversal in 
two-phase nanocrystalline permanent magnets. In order to explain the influence ot inter
grain exchange interactions Kneller [122] proposed a model where in the magnetization ol 
the different phases is connected by mechanical springs. At a high-external field, the mag
netization of all grains becomes oriented upward. As the field is gradually reduced to zero.

Figure 39. TF M image of the granular microstructure of a CoPil multilayer recording medium used for perpendie- 
ulnr rccordim*.



666 Computational Micromagnetics

Figure 40. Transient domain imuges dining the writing of bit A in the perpendicular (Co. Fe)(Pd. Pt) thin-film 
medium with fully coupled grains after (a) 1.5 ns and (b) 2.5 ns.

the magnetization of the hard magnetic grains rotate toward the direction of their local easy 
axes. The magnetization of the soft magnetic grains remains parallel to the saturation direc
tion. The springs of neighboring hard magnetic grains like to pull the magnetization into 
different directions. These competitive effects cancel and al zero applied field, the magneti
zation of the soft phase points parallel to the average magnetization direction of neighboring 
hard magnetic grains. Under the influence of a reversed external field, the magnetization 
of the soft phase rotates reversibly. If the field is removed, the magnetization of the soft 
grains will rotate back to its original direction that is the so-called exchange-spring effect. 
At higher opposing fields, the magnetization of the soft grains may even point downward. 
The connecting springs provide a high torque onto the neighboring hard magnetic magneti
zation, leading to the irreversible switching of the hard magnetic grains. A reduction of the 
stiffness constant reduces the torque onto the hard magnetization and thus shifts irreversible 
switching toward higher values of the opposing field. An appropriate choice of the exchange 
stiffness will keep remanence enhance and improve the coercive field. Thus, it is possible 
to tailor the magnetic properties of nanocomposite magnets, changing the amount and the 
intrinsic properties of an intergranular phase. An appropriate reduction of the intergrain 
exchange may improve the coercive field but still keep the effect of remanence enhance
ment. Inoue et al. [123] and Hamano et al. [124] successfully prepared a-Fe/Nd,FeuB mag
nets with a remaining amorphous phase. The amorphous intergranular phase is expected 
to reduce the exchange interactions between the hard and the soft grains, leading to an 
improved coercive field. A coercive field of Ht = 405 kA/m was obtained for nanocomposite 
magnets produced from a NdxFe7(1CosNb2B(, mcltspun alloy. The corresponding remanence 
and energy-density product were Jr = 1.16 T and = 147 kJ/m3 [124], Atom probe
characterization of NdKFe7<)5Co(<B6NblCuns show that intergranular phase is enriched with

Figure 41. Simulation of the bit writing in a perpendicular (Co. Fc)(Pd, Pt) thin-film with fully decoupled gra ns 
aher 5 ns.
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Figure 42. Schematics ol remanence enhancement and magnetization reversal in two-phase nanocrystalline per
manent magnets. The magnclocryslallinc anisotropy directions of the hard phase (dark) arc randomly oriented. 
At zero applied field, the magnetization of the soft phase (bright) points parallel to the average magnetization 
direction of neighboring hard magnetic grains. Al the critical livid, exchange interactions between the hard and the 
soft phase causes the irreversible switching of a neighboring hard magnetic grain.

Nb and B [1251. Mdssbauer studies suggest that the proposed intergranular phase is actually 
ferromagnetic with magnetic properties that gradually decrease toward the grain bound
ary. Recently, Fukunaga and co-workers [126] numerically investigated the effect of reduced 
strength of intergrain exchange interactions in a-Fe/NdjFe^B systems. Their results confirm 
the increase of coercivity owing to reduced inlergrain exchange interactions, provided that 
grain size is sufficiently small. The increase of coercive field without a significant loss of 
the remanence enhances the energy density product. A reduction of the intergrain exchange 
constant to 20*% of its bulk value increases from about 200 kA/m to 310 kA/m,
assuming a grain size of 8 nm. Previously, Fischer and Kronmiiller [127. 128] studied the 
influence of intergrain exchange interactions in single-phase and two-phase nanocrystalline 
NdFcB magnets, using micromagnetic finite element simulations. Partial decoupling of the 
grains increases the coercive field and decreases the remanence in single-phase, nanocrys
tallinc magnets. The reduction of the exchange constant in an intergranular phase with a 
thickness of 3 nm to 20% of its bulk value decreases the coercive field by a factor 1/2 for 
a mean grain size of 20 nm and a volume fraction of 50% o-Fe. This work uses dynamic 
micromagnetic finite element simulations to investigate the effects of intergranular phases 
on the magnetic properties of rr-Fe/Nd;Fe14B magnets. The exchange constant. A. is reduced 
gradually toward the grain boundaries in a simple model system consisting of single soft 
magnetic grain surrounded by hard magnetic neighbors. Both the width of the intergran
ular phase and the amount of reduction of A influence the coercive field, in addition to 
the grain size. The optimum parameters are derived from the numerical results and applied 
to large-scale simulations using a realistic microstructure. The simulations provide consid
erable insight into the mechanisms that determine the remanence and 'he coercive field 
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Particularly, the results show how intergrain exchange interactions trigger the nucleation and 
expansion of reversed domains.

3.5.1. Intergrain Exchange Interactions and Magnetization Reversal 
of Individual Grains

Figure 43 shows a simple finite element model of an individual grain within a two-phase 
nanocrystallinc magnet. A single a-Fe grain is surrounded by 20 Nd.FepB grains. The 
anisotropy directions of the hard magnetic grains are randomly oriented. The hard magnetic 
grains are truncated so that the volume fraction of the soft grains is .36%. The grains arc 
subdivided into tetrahedral finite elements. Ihe total number of elements of the individual 
grain is 34.000. The element size is approximately I nm. The grains are either in direct 
contact or are separated by an intergranular phase of width IF. Within this intermediate 
phase, the exchange constant varies as shown in Fig. 44. The exchange constant decreases 
linearly from its bulk value. /fbu|k, to r.4hU|k at the interface between two neighboring grains. 
I’he same procedure is used for both types of grain boundaries, hard/hard and sofl/hard 
interfaces. The gray scale plot of Fig. 43 gives the exchange constant at the surface of the 
structure. For numerical convenience, the Gilbert damping constant was set to a = I.

In addition to the width. IT, and the reduction, r. the grain diameter of the grain. I), was 
varied in the calculations. Thus the model system is characterized by the three parameters 
(IT. r. D). The intrinsic material parameters used for the calculations are shown in Table 4 
1122, 134]:

Figure 45 compares the numerically calculated demagnetization curves for a system with 
perfect exchange interactions between the grains A: (IT = 0, r = I, I) = It) nm), and for a 
system with an intergranular phase B: (IT = 2 nm, r = 0.2, I) = It) nm). In addition to the 
total magnetic polarization given by the solid line, the graphs give the contributions from 
the hard magnetic phase (dashed line) and the soft magnetic phase (dotted line). Whereas 
the intergranular phase has only a minor effect on the remanence, which changes from ./, = 
1.27 T to Jr = 1.24 T, the coercive field increases from //r = 440 kA/m to W, = 580 kA/m, 
as the intergrain exchange interactions arc reduced. Furthermore, the overall shape of the 
demagnetization curve remains the same for both simulations.

The curves denoting the contribution of Nd,FeuB and the contribution of u-Fe to the 
total magnetic polarization arc nearly parallel, which indicate that hard and soft phases

Figure 43. Finite clement model at the outer surface of an individual grain within a two-phase nanocrystallinc 
magnet, The variation of the exchange constant near the grain boundaries is shown in Ihe gray scale map, I hc 
strength ol the exchange interactions decreases linearly toward the grain boundaries (II =. .3.2 nm. r ~ I).2).
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Figure 44. Intrinsic properties of the intergranular phase. Within a region of thickness H’/2 the exchange constant 
decreases linearis from its bulk value lo r.l, .

switch together when the external field reaches a critical value. For small opposing fields, 
the magnetization of the soft grain rotates reversibly out of its equilibrium direction at zero 
applied field. During this process, the magnetization remains moderately uniform with the 
a-Fe particle. However, intergrain exchange interactions provide a torque onto the neigh
boring hard magnetic grains, causing the magnetization to rotate out of their local magne
tocrystalline anisotropy axes near the grain boundaries. Because both phases are exchange 
coupled, the deviations of the magnetization from the local anisotropy axes near the grain 
boundaries increase with increasing rotation of the magnetization within the a-Fe grain. This 
gives rise lo an increase of the magnetocrystalline anisotropy energy with decreasing external 
field. This process is more pronounced in system A where the grains are in direct contact. 
Owing to the perfect coupling, the anisotropy energy is considerably larger in system A 
than in system B. with reduced intergrain exchange interactions. Owing to the intergranular 
phase, the magnetization within the a-Fe grain may rotate without causing majoi deviations 
of the hard-phase magnetization from (he local easy axes. This process which finally initi
ates irreversible switching occurs at much higher opposing fields as compared with perfect 
coupling.

Figure 46 compares the magnetization distribution in the undcrcritical stale, just before 
irreversible switching is initialed, for the systems A. B, and C (IF = 3.2 nm. r — 0.2. L) — 
10 nm). With increasing width of the intergranular phase, the effective coupling between the 
grains decreases. The plots clearly show that the maximum possible rotation increases with 
decreasing intergrain exchange interactions. If the external field exceeds a critical value, the 
rotation of the magnetization within the soft grain becomes too large and the neighboring 
hard magnetic grain starts to reverse irreversibly. The irreversible switching is initiated at 
the interface between the different phases. The plots illustrate the nucleation and expansion 
of a reversed domain at — 440 kA/m for system A. The reversed nucleus is plotted at 
different times during irreversible switching. A similar process, w'hich will occur at higher 
opposing fields, is observed for systems B and C. The numerical results are summarized in 
Fig. 47, which gives the coercive field as a function of the exchange constant r-4hU|k next to 
the grain boundaries. The coercive field increases linearly with r for a grain diameter of the 
a-Fe grain of D = 10 nm. Increasing the width of the intergranular phase from 14' — 2 nm to 
IF = 3.2 nm shifts the line toward higher values of the coercive field. Finally, Fig. 48 gives the 
calculated demagnetization curves for different diameters of the a-Fe grain. While keeping 
IF — 3.2 and r — 0.2 constant. Z) was changed from 10 nm to 20 nm. The results clearly

Table 4. Intrinsic magnetic properties, t he spontaneous magnetic polarization, . 
the bulk value of the exchange constant. -I,. !k, and the anisotropy constants K and 
A

Phase Anisotropy (T) 1... k tp.l ml A, (MJ tn ) A'. (Mi ni')

Nd.l;C|4t< I niaxial
a-Fe Cubic

1.61 12.5 4.6 0.66
2.15 25 0,046 0.015
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Figure 45. Numerically calculated demagnetization curve for the model system of Fig, 43. The grain diameter of 
the a-Fe grain was 10 nm. (A) No intergranular phase, perfect exchange interactions between the grains. (B) 
Intergranular phase with width H' — 2 nm and reduction r = 0.2.

Figure 46. Magnetization distribution in the undercritical state just before irreversible switching is initiated. (A) No 
intergranular phase, perfect exchange interactions between the grains. (C) Intergranular phase with width IF = 
3.2 nm and reduction r = 0.2. The arrows give the projection of the magnetization onto a slice plane parallel to 
the ’xternal field.

Figure 47. Dependence of the coercive field on the width If of the intergranular phase with reduced exchange 
interactions. The plots give the coercive field as a function of the reduction r for a grain diameter /) = 10 nm.
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l-'igure 4X. I alculalcd demagnetization curves as a function of the grain size. Intergranular phase witlt width It 
3.2 nm and reduction r - (1.2

show a grain diameter D > 15 nm deteriorates the squareness of the demagnetization curve. 
The results confirm that an improvement of the magnetic properties due to a remaining 
amorphous phase is only possible for sufficiently small grain size.

3.5.2. Complex Grain Structure
Remanence enhancement and magnetization reversal were simulated for a realistic grain 
structure of a two-phase rr-Fc/Nd J-euB with remaining amorphous phase, using the opti
mum parameters IF = 3.2 nm. r = 0.2. and I) = 10 ntr. The grains arc obtained from a 
Voronoi construction [135. I36|. where the grains arc assumed to grow with constant veloc
ity from randomly located seed points. In order to avoid strongly irregular shaped grains, 
the magnet is first divided into cubic cells. Within each cell a seed point is chosen at ran
dom. Alter grain growth simulation, the intrinsic magnetic properties are assigned to the 
grains such that the volume fraction of cr-Fe is 50% and the magneto-crystalline anisotropy 
axes of Nd;FeuB are randomly oriented. Between the grains an intergranular region with 
reduced exchange constant is assumed in order lo mimic the remaining amorphous phase 
[I25|. Figure 49 shows the phase distribution and the intergranular phase at the surface of 
model magnet, consisting of 125 grains. The mean grain size was 10 nm. The average thick
ness of the intergranular with was 3.2 nm. The exchange constant of the intergranular phase 
was reduced to 2(1% of its bulk value. Now a step function was used lo model the decrease 
of the exchange constant, in contrast lo the previous calculations where the exchange con
stant was reduced linearly toward the interface. This assumption keeps the number of finite

Figure 49. Model of a nanocomposite <t-l e Nd Fe,4B magnet with residual amorphous phase, consisting of 125 
grains. The volume t'aetion of o-l-c is 50'//. The mean grain size is 10 nm. The thickness of the amorphous 
intergranular phase is 3.2 nm.
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elements small as compared with the number of elements required for a gradual change ot 
the intrinsic magnetic properties. The total number of finite elements used to dcscretize the 
model show in Fig. 49 is about 76.000.

Figure 50 shows the magnetization distribution in the remanent state and at applied fields 
of = -420 kA/m. The nearly uniform magnetic state for zero-applied fields gives rise 
to high remanence. The remanence is Jr = 1.37 T, giving a ratio of the remanent to salina
tion polarization, is = 0.73. which considerably exceeds the theoretical limit for the 
remanence of noninteracting grains. The remanence ratio depends on the crystal symmetry, 
the crystallographic orientation of the easy directions, and the volume fraction and the satu
ration polarization of the phases [137], The remanence ratio of a two-phase nanocomposite 
magnet is

1
— = —+ (I - vt)m2J,2} ( 104)
Aiil •'vat

where /»,. m2 denote the remanence ratio of phase 1 and phase 2 and u,. arc the volume 
fraction of the phases. Without any interactions, the remanence ratio of Nd2FewB (uniaxial 
anisotropy) and a-Fe (cubic anisotropy) is = 0.5 and m2 = 0.83 1138], respectively. For 
a volume fraction of 509/ a-Fe, is + J,2. With = 1.61 of Nd.Fe^B. = 2.15. the 
remanence ratio of noninteracting particle becomes = 0.68. The calculated remanence 
ratio Jr/JM = 0.73 exceeds this theoretical limit. This result clearly indicates that intergrain 
exchange interactions enhance the remanence of nanocomposite magnets, even so inter
grain exchange interactions arc considerably reduce due to the presence of the amorphous 
phase. The magnetic polarization J is nearly parallel to the anisotropy direction within the 
hard magnetic grains. Intergrain exchange interactions determine the direction of J within 
the a-Fe grains, where ./ is parallel to the average magnetization direction of all neighbor
ing Nd,FC|4B grains. This average direction corresponds to the saturation direction for an 
isotropic distribution of the hard phase easy axes. At an external field of HeU = —420 kA, in 
the magnetization distribution becomes strongly nonuniform, as the soft magnetic grains 
reverse reversibly. Owing to the reduction of the exchange constant at the interface between 
the different phases, soft grains may reverse while most of the hard magnetic grains remain 
unswitched. The total magnetic polarization at this Held is ./ = 0.48 T. This value is lower 
than the corresponding value of the simple-model system. Neighboring soft magnetic grains 
form continuous regions of soft magnetic phase that increase the effective soft magnetic 
feature size and deteriorates the loop shape.

Micromagnetic finite element simulations show that an intergranular phase with reduced 
exchange interactions improves the coercive Held of nanocrystalline a-Fe/Nd,FeuB magnets, 
provided that the grain size is sufficiently small. The coercive field increases from H, = 
440 kA/m to H, = 660 kA/m for a mean grain size of 10 nm, without a significant reduction 
of the remanence, if the grains separated by an intergranular phase with a thickness of 
3.2 nm. The minimum value of the exchange constant in the boundary phase was 209? of its 
bulk value.

Figure 50. Magnetization distribution al the remanent stale and under the influence of a reversed field. The arrows 
give the projection of the magnetization onto a slice-plane parallel to the external field <r-Tc may reverse without 
the switching of neighboring Nd.Fc .if grains.

=-420 kA/m
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1. INTRODUCTION
Magnetic nanostructures occupy a special place among all the other nanostructures because 
the spin angular momentum of electrons (holes) plays in them the role of a new degree ol 
freedom which can be exploited to design devices with novel quantum-mechanical functions. 
Thus a new area of condensed matter physics called spintronics was created some 15 years 
ago. When we talk in this review about magnetic nanostructures, we have in mind structures 
that may be macroscopic in two dimensions but their length in the third dimension is on 
a nanoscale. They arc often referred to as magnetic multilayers and a typical magnetic 
multilayer is shown schematically in Fig. I. Magnetic multilayers pose great challenge both 
to experiment and theory. Experimentally, ‘.hey have to be grown with atomic control over 
the thicknesses of individual layers and with interfaces between the layers so perfect that, 
ideally, the momentum of carriers parallel to the layers is conserved. This is now possible for 
metallic magnetic multilayers, which are the subject of this review. The restriction to metallic 
multilayers is for two reasons. First research into properties of metallic magnetic multilayers 
is by far most advanced but the second reason is that currently they are the only systems 
that can be used in spintronics. Multilayers based on magnetic semiconductors arc being 
studied extensively, but, at present, their low Curie temperature prevents their commercial 
application in spintronics.

Theoretically, magnetic multilayers are also challenging since they are inherently inho
mogeneous systems. However, for perfect epitaxial layers, the inhomogeneity is only in one 
dimension and we shall see that such a quasi-one-dimensional inhomogeneity, even when 
random, can be modeled quite realistically.

The key feature that distinguishes magnetic multilayers from conventional (macroscopic) 
magnets is the experimentally established fact that the transport of charge is mediated in 
them by carriers whose spin remains conserved across the whole thickness of the multilayer. 
In a conventional magnet, the spin of an individual charge carrier flips between its up and 
down projections over a characteristic distance (spin diffusion length), which is of the 
order of several tens of nanometers. This is much shorter than the dimensions of conven
tional electronics components. It follows that spin memory is lost in macroscopic samples 
and, therefore, the spin angular momentum plays no role in transport of charge. This is why 
for decades spin was ignored by conventional semiconductor electronics. However, when an 
ultrathin layer structure with a thickness smaller than llf is prepared the spin “remembers” 
its orientation across the whole thickness of the structure, which means that carriers with 
different spin orientations do not mix and flow independently as if in two separate wires 
connected in parallel [I J. If the multilayer contains magnetic components, then the two spin 
channels arc inequivalent. This is because the numbers of charge carriers with up and down 
spin are unequal in a ferromagnet, and, even more importantly, up- and down-spin carriers 
are scattered at different rates at nonmagnet/magnet interfaces. This has interesting and 
highly exploitable consequences. Because of different scattering rates for up- and down-spin 
carriers at nonmagnet/magnet interfaces, the total resistance of a magnetic nanostructure 
depends on the magnetic configuration of all its magnetic components. This in turn can be 
altered by an applied magnetic field and. therefore, the resistance of a magnetic nanostruc
ture can be changed by the applied field. The effect is known as the giant magnetoresistance 
(GMR) since the relative change of the resistance can be very large, of the order of 100%. 
When two magnetic electrodes are separated by an insulating tunneling barrier, a similar 
effect, called tunneling magnetoresistance (TMR). can occur. The GMR effect was discov
ered about 15 years ago [2], and a large TMR effect was first observed in 1995 |3|. With the 
discovery of the GMR effect, the era of spintronics had begun. Both GMR and TMR effects 
have been thoroughly explored over the past 10 years and have found many applications.

LEFT 
LEAD

RIGHT 
LEAD

Figure I. Schematic picture of a magnetic multilayer structure. M-magnelic layers; NM-nonmagnetic layers.
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For example, the GMR effect is used to read information stored on the computer hard 
disk and GMR reading heads (spin valves) arc now fitted to all modern computers The 
closely related I MR effect can be used to store information in a magnetic random access 
memory (MRAM) that is currently being developed. It is now, therefore, well established 
that by altering the magnetic configuration of a magnetic multilayer we can influence the 
charge current flowing in it. However, it was recognized only much more recently [4| that, 
conversely, by passing a strong charge current one can alter the magnetic state of a mag
netic multilayer. The structure in which this effect occurs consists of a left lead, a thick 
left magnetic layer (polarizing magnet), a nonmagnetic metallic spacer layer, a thin second 
magnet (switching magnet), and a semi-inliniie right lead. It was proposed by Slonczewski 
|4] that the current passing through the left magnetic layer becomes spin polarized, and 
therefore, the flow of charge from the left magnetic layer to the right magnetic layer is 
accompanied by a flow of spin. The flow of the spin angular momentum is called spin cur
rent. The spin current is conserved in the nonmagnetic parts of the structure, but the spin 
of a carrier entering a ferromagnet can change its orientation, provided such a spin flip is 
compensated by the corresponding change of the total spin of the magnet so that the total 
angular momentum of lhe whole system is conserved. It follows that spin current can be 
absorbed by the ferromagnet. lhe rate of change of the total spin, given by the difference 
between the spin current entering a magnet and that leaving the magnet, is equal to the 
torque exerted on the magnetic moment of the ferromagnet. If the charge current, and the 
associated spin current, is strong enough the spin-transfer torque can cause total reversal of 
the magnetization. This effect is called current-induced switching of magnetization. Quite 
apart from being fundamentally interesting in its own right, current-induced switching of 
magnetization has important potential applications since it is envisaged that it could be used 
to write information in MRAM [5].

Even in the absence of charge current (i.c., when the magnetic multilayer is in equilib
rium), there is a flow of spin current between two magnetic layers separated by a non
magnetic metallic spacer layer provided the magnetic moments of the two magnets are not 
colinear. This leads to a static torque being exerted by one magnet on lhe other and the 
effect is known as oscillatory exchange coupling |6] between the two magnets since the sign 
of the torque depends in an oscillatory manner on the thickness of the nonmagnetic spacer. 
I'he oscillatory exchange coupling was discovered at the same time as the GMR effect, but a 
close link between this effect and current-induced switching of magnetization was not made 
until very recently.

It can be seen that the lour effects that effectively define the new area of spintronics, that 
is. GMR. TMR. oscillatory exchange coupling, and current-induced switching of magnetiza
tion, all rely on the length of lhe magnetic structure in at least one direction being shorter 
than the spin diffusion length /(/. Since this is for most metals of the order of several tens 
of nanometers spintronics can only operate in nanoscale devices.

There is one feature that distinguishes the GMR from TMR. oscillatory exchange coupling 
and current induced switching of magnetization. The GMR is the only effect that is observed 
in two qualitatively different geometries. In lhe first case, the current flows perpendicular to 
the layers (CPP) geometry, l he second more usual geometry corresponds to the situation 
when the current (lows in plane of the layers (CIP). Since the lateral dimensions of the layer 
structure in the direction parallel to the layers arc macroscopic (often of lhe order of cen
timeters). the CIP GMR always takes place in the diffusive limit (the elastic mean free path 
is much shorter than the lateral dimensions of the layer structure). That means that semiclas- 
sical description of the CIP GMR based on the Boltzman equation is appropriate. On the 
other hand. CPP GMR. TM R. oscillatory exchange coupling and current induced switching of 
magnetization all take place in lhe CPP geometry. They are thus inherently quantum effects 
and. consequently, require quantum treatment of transport of charge and spin.

Yet another factor that distinguishes the CIP GMR from the rest is the role of impurities. 
As we shall see. the CIP GMR can only occur in the presence ol impurities or in the presence 
of roughness at the interfaces between magnetic and nonmagnetic layers. The CPP GMR. 
TMR, oscillatory' exchange coupling, and current-induced switching of magnetization can all 
operate in perfect samples (i.c.. in the ballistic limit). In fact, we shall argue that, while 
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imperfections are essential for the existence of CIP GMR. they are detrimental to all the 
other aforementioned effects.

On the basis of this observation, we shall begin this review with the discussion of the CIP 
GMR using a scmiclassical Bohzman equation approach. Then, prior to the discussion of 
the remaining effects that all lake place in the CPP geometry. we introduce the general 
nonequilibrium Keldysh formalism that allows us to calculate in a unified way the charge 
and spin currents in every part of an arbitrary magnetic multilayer structure. It is most 
convenient to formulate such a quantum treatment of CPP transport in terms of local one 
electron Green functions. Wc. therefore, describe briefly how the local Green functions are 
calculated in the layer geometry and discuss their general properties. Finally, the Keldysh 
formalism will be used to discuss and correlate the existing theories of the CPP GMR. TMR. 
oscillatory exchange coupling, and current-induced switching of magnetization.

2. GIANT MAGNETORESISTANCE
The era of spintronics begun with the discovery [7. 8] that the resistance of a multilayer 
consisting of a sequence of thin magnetic layers separated by equally thin nonmagnetic 
metallic layers is low when the magnetizations of the neighboring magnetic layers are par
allel [Fig. 2(a)| but becomes much higher when they are ordered antiparallel [Fig 2(b)]. 
I he most commonly used combinations of magnetic and nonmagnetic layers are cobalt
copper and iron-chromium. but multilayers based on permalloy as the magnetic component 
are also frequently used. The second key ingredient was the discovery by Stuart Parkin [9] 
that the relative orientation of the magnetic moments of two neighboring magnetic layers 
depends on the thickness of the intervening nonmagnetic spacer layer. In fact, he found that 
the orientation of the magnetic moment of the magnetic layers oscillates between parallel 
(ferromagnetic) and antiparallel (antiferromagnetic) as a function of the nonmagnetic layer 
thickness. This phenomenon is referred to as an oscillatory exchange coupling and will be 
discussed in Section 4.

Assuming that the thickness of the nonmagnetic spacer layer is chosen so that the spon
taneous orientation of the adjacent magnetic layers is antiparallcl, change of the magnetic 
configuration from antiferromagnetic to ferromagnetic can be effected by an applied mag
netic field. The relative change of the resistance can be larger than 200% and that is the 
reason why the effect is called giant magnetoresistance (GMR) The "optimistic" magnetore
sistance ratio, most commonly used, is defined by

AR _ R - - R-' 
~R~ R'' (1)

where R'1 and are the resistances of the magnetic multilayer in its antiparallel (zero 
field) and parallel (saturating field) magnetic configurations. The dependence of the GMR 
ratio of a Fe/Cr multilayer on the thickness of the nonmagnetic chromium layer, observed 
by Parkin in his original experiment [9[. is reproduced in Fig. 3. Oscillations of the GMR as 
a function of chromium thickness occur because the magnetoresistancc effect is measurable 
only for those thicknesses of chromium for which the interlayer exchange coupling aligns 
the magnetic moments of all the iron layers antiparallcl.

Figure 2. Ferromagnetic (a) and antiferromagnetic (b) configurations of a magnetic multilayer
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Figure 3. Dependence ol the GMR ratio of an I c ( r mullilayer on Cr thickness.

A typical niagnetoresistance curve [l(l| for an Fe/Cr multilayer of 50 repeats of an iron 
layer 0.45 nm thick and a chromium layer 1.2 nm thick is shown in Fig. 4 for two tempera
tures T — 1.5 K and 300 K. The gradual decrease of the resistance with increasing magnetic 
field, seen in Fig. 4. occurs because the magnetic field, which tends to align the moments 
of the magnetic layers parallel has to overcome the oscillatory exchange coupling which 
favors the antiparallel arrangement (for this particular thickness of chromium). Complete 
alignment is achieved only in a saturating field equal in magnitude to the exchange field.

We shall now clarify the physical origin of the GMR using a simple resistor model. There 
are two principal geometries of the GMR effect. They arc shown schematically in Fig. 5. 
In the first case | Fig. 5(a)]. the current flows perpendicular to the layers (CPP geometry). 
Figure 5(b) illustrates the more usual geometry when the current flows in plane of the layers 
(CIP). As wc shall see. the CPP geometry is easier to treat theoretically but much more 
difficult to realize experimentally. This is because the transverse dimensions of typical mul
tilayers are of the order of squared centimeters, w hereas their thickness is only of the order

Figure 4 Maenclnresislance curve nf an Fe Cr mullilayer
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I’igun- 5. Current perpendicular to plane (a) and current in plane (b) GMR geometries.

of a few nanometers. It follows that the resistance of the multilayer in the CPP geometry is 
extremely low and, therefore, very sophisticated experimental techniques |11| are required 
to measure accurately the very small voltage drop across the sample. However, since the 
underlying physical mechanism is the same in the CPP and CIP geometries, there is no need 
in the first introductory account to distinguish between them.

Consider a trilaycr with two magnetic layers separated by a nonmagnetic metallic spacer 
layer. As already discussed in Section 1. if the total thickness of the trilaycr is smaller than 
the spin diffusion length, we can assume that electric current in the trilaycr flows in two 
channels, one corresponding to carriers with spin projection f and the other to carriers with 
spin projection j. [1]. Since the J and j spin channels are independent (spin is conserved), 
they can be regarded as two wires connected in parallel.

The second essential ingredient is that carriers with spin projections parallel and antiparal
lel to the magnetization of the ferromagnetic layer are scattered at different rates when they 
enter the ferromagnet. This is called spin-dependent scattering. Let us assume that carriers 
with spin antiparallel to the magnetization arc scattered more strongly. We shall see later 
that this is the case for the Co/Cu combination, but the opposite is true for the Fe/Cr sys
tem. The GMR effect in a trilayer can be now explained qualitatively using a simple resistor 
model shown in Fig. 6. In the ferromagnetic configuration of the trilaycr. carriers with f spin 
are weakly scattered both in the first and second ferromagnet, whereas the | spin carriers 
are strongly scattered in both ferromagnetic layers. This is modeled by two small resistors in 
the j spin channel and by two large resistors in the I spin channel in the equivalent resistor 
network shown in Fig. 6(a). Since the | and f spin channels are connected in parallel, the 
total resistance of the trilaycr in its ferromagnetic configuration is determined by the low- 
resistance J spin channel, which shorts the high-resistance j, spin channel. It follows that 
the total resistance of the trilayer in its ferromagnetic configuration is low. However, J, spin 
carriers in the antiferromagnetic configuration are strongly scattered in the first ferromag
netic layer but weakly scattered in the second ferromagnetic layer. The f spin carriers are 
weakly scattered in the first ferromagnetic layer and strongly scattered in the second. This

Figure (>. Resistor model ot GMR. 
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is modeled in Fig. 6(b) by one large and one small resistor in each spin channel. There is 
no shorting now and the total resistance in the antiferromagnetic configuration is. therefore, 
much higher that in the ferromagnetic configuration.

This simple physical model of the GMR effect is believed to be qualitatively correct but 
needs to be converted into a quantitative theory' that can explain the differences between the 
CIP and CPP geometries, the observed dependence of the GMR on the layer thicknesses and 
also the material dependence of the effect. Moreover, we need lo understand the microscopic 
origin of the spin-dependent scattering and clarify under what conditions the f and 1 spin 
channels in magnetic multilayers can be treated as independent.

We begin with the discussion of different types of scattering carriers may experience in 
magnetic multilayers. In the calculation of the resistance, we are mainly concerned with elas
tic (energy conserving) scattering. In each scattering act. only the direction of propagation 
of carriers changes. It is essential to distinguish between spin-dependent scattering, which 
causes the GMR. and spin-flip scattering, which is detrimental lo the GMR. The two types 
of scattering are illustrated in Fig. 7. In the case of spin-dependent scattering, the orientation 
of the carrier spin is conserved in each scattering event, but the probabilities of scattering 
for carriers with f and j spin projections are different. However, when a carrier undergoes 
a spin-llip scattering, its spin orientation changes from f (.v. = fi/2) to | (v. = —h/2) or vice 
versa and. at the same time, the spin of the scattering centre changes by A = A so that the 
total spin is conserved.

There are several sources of spin-flip scattering. When magnetic multilayers arc prepared, 
some of the magnetic atoms may enter the nonmagnetic spacer layer to form magnetic 
impurities. When a carrier is scattered off a magnetic impurity the spins of the carrier and 
that of the impurity can interchange provided the impurity spin is free to rotate. This is the 
case when the impurity spin is not strongly coupled lo the spins of the ferromagnetic layers 
(i.e.. when the impurity is not near the ferromagnet spacer interface).

Carriers can also be scattered from spin waves in the ferromagnetic layers. Spin waves 
are quasiparticles with spin one. and, therefore, creation (annihilation) of a spin wave in 
a collision with a carrier leads to a flip of the carrier spin. Since creation (annihilation) of 
spin waves involves the spin wave energy, this is an inelastic process that is only important 
at elevated temperatures.

Finally, when impurities with a strong spin-orbit interaction, such as gold, arc present in 
the multilayer, the spin of a carrier incident on such an impurity may be reversed due to the 
spin-orbit interaction.

Since all these processes mix f and | spin channels, they are detrimental to the GMR. In 
what follows, we shall assume that spin Hip scattering is weak so that no mixing of the f and | 
spin channels takes place. This assumption may break down for relatively thick multilayers 
and the implications of spin-llip scattering for GMR arc discussed in detail in Ref. 112).

SPIN 01 I’l SI>1 si s< VI II RIM.

Figure 7 Different ivnes ol scailcrins in magnetic multilayers.
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We now turn to the spin-dependent scattering that conserves the carrier spin. I’he key 
feature here is that carriers with different spin orientations (f. 1) are scattered at different 
rates when they enter the ferromagnetic layers. Given that carriers obey the Pauli exclusion 
principle, a carrier can be scattered from an impurity only to quantum states that are not 
occupied by other carriers. At zero (low) temperatures, all the states with energies E below 
the Fermi energy E, are occupied and those with E > E, are empty. Since scattering from 
impurities is elastic, carriers at the Fermi level (which carry the current) can be scattered only 
to states in the immediate vicinity of the Fermi level. Il follows that the scattering probability 
is proportional to the number of states available for scattering at E, (i.e.. to the density of 
states £>(E, )). The densities of states of copper, cobalt, and iron for t (upper panel) and 
| (lower panel) spin orientations are shown in Fig. 8. The Fermi level in copper (and other 
noble metals) intersects only the conduction band whose density of states D(Ej ) is low. It 
follows that the scattering probability in copper is also low. which explains why copper is a 
very good conductor. However, the cl band in transition metals is only partially occupied; 
therefore, the Fermi level in these metals intersects not only the conduction but also the 
d bands. Moreover, since the atomic wave functions of cl levels are more localized than 
those of the outer s levels, they overlap much less, which means that the cl band is narrow 
and the corresponding density of states is high. This opens up a new very effective channel 
for scattering of carriers into the cl band. This new scattering mechanism (Mott scattering 
113|) explains why all transition metals are poor conductors compared with noble metals.

In the case of magnetic transition metals, we need to consider an additional crucial factor, 
namely, that cl bands for f and j spin carriers are split by the exchange interaction. This 
amounts to an almost rigid relative shift of the f and | spin cl bands, which is clearly seen 
for cobalt and iron in Fig. 8. The J spin cl band in cobalt is full, which means that D {E, ) 
is as low as in copper, but the Fermi level in the | spin band lies in the d band; therefore, 
/>•(£/ ) is much higher than D'(Et.). The situation for iron is somewhat different in that 
the density of states al £,. is higher for J spin carriers than for | spin carriers. Also the spin 
asymmetry in the density of states is not so large for iron as for cobalt. However, in either 
case, the spin asymmetry' of the density of stales results in different scattering rales for f and 
1 spin carriers, that is. spin-dependent scattering. Il should be noted that this mechanism 
operates even if the scattering potential itself is independent of the spin i.e.. nonmagnetic 
impurities, vacancies or stacking faults in a ferromagnetic metal all lead to spin-dependent 
scattering. Because the Mott scattering mechanism is effective in bulk ferromagnetic metals.

LNHRGY (eV)

figure S. Densities of states of copper, cobalt, and iron. Broken line denotes the position of the Fermi level.
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The relative shift of | and I spin bands is simply a consequence of the fact that the 
potentials seen by f and | carriers in a ferromagnetic metal arc different because of the 
exchange interaction. This provides anolhci mechanism ol spin-dependent scattering, which 
is specific to multilayers. In an infinite ferromagnet. this effect docs not. of course, lead to 
any spin asymmetry of the resistance since as long as the potentials seen by f and j carriers 
are periodic they do not result in any dissipation of the carrier momentum. However, carriers 
in a multilayer entering the ferromagnet from the nonmagnetic spacer sec a spin dependent 
potential barrier, which reflects differently carriers with f and j, spin orientations. In the 
CPP geometry, even perfect interfaces thus result in spin-dependent scattering (I4|. In the 
CIP geometry', carriers propagate mainly along interfaces and. therefore, this mechanism is 
effective only if the interfaces are rough (intermixing of magnetic and nonmagnetic atoms).

As opposed to the bulk Mott mechanism discussed earlier, spin-dependent scattering 
due to spin dependence of the scattering potentials takes place only at the ferromag
net nonmagnet interface and is. therefore, called interfacial spin-dependent scattering. To 
gain belter understanding of the interfacial spin-dependent scattering, it is instructive to 
examine the banc structures of the most common combinations of magnetic and nonmag
netic metals used in OMR multilayers. These are Co/Cu and Fe/Cr. and their band structures 
in the [(Kll| direction arc shown in Figs. 9 and 10. It can be seen from Fig. 9 that there is 
a very good match between the bands of Cu and the J (majority) spin band of Co. One 
can. therefore, conclude that f spin carriers crossing the Cu/Co interface experience only 
weak scattering, anil that remains true even if Cu and Co atoms arc intermixed at the inter
face. On the other hand, there is a large mismatch between the Cu and Co bands for the 
| (minority) spin carriers reflecting a large difference between the atomic potentials of the 
two elements. It follows that | spin carriers arc strongly scattered at the Cu/Co interfaces. 
On the other hand, matching of the Fe and Cr bands is almost perfect for 4 spin carriers 
but poor for the t spin carriers. The spin asymmetry of scattering at the Fe/Cr interface has. 
therefore, a sign opposite to that for Co/Cu interface.

The discussion of spin-dependent scattering based on the mismatch of bands of the mag
netic and nonmagnetic components of magnetic multilayers allows us also to understand 
which combinations of magnetic and nonmagnetic metals should lead Io optimum GMR. 
One dearly seeks as good a match as possible between the bands of the magnetic layers 
and those of the spacer layer in one spin channel and as large as possible mismatch in the 
other spin channel. It is clear from Figs. 9 and 10 that Co/Cu and Fe/Cr fulfil very well these 
requirements.

At a lowest level of the mathematical modeling of GMR. we only need to incorporate the 
effect of spin-dependent scattering into classical Boltzman equation to determine the resis
tances of a magnetic multilayer in its ferromagnetic and antiferromagnetic configurations.

Figure M. Band structures of cobalt and copper along the |<*>l| direction in the vicinity of one of the Cu I ermi 
surface necks Rrokei line denotes rhe position of the Fermi level
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Figure 10. Hand structures of iron and chromium in the |tlt)]| direction. Broken line denotes the position of the 
Fermi level

This was first done by Camley and Barnas 115] (see also Ref. ]12|). The results that follow 
from the classical Boltzman equations in the limit of a long spin-diffusion length can be 
obtained more simply by making the resistor model of the GMR quantitative. Since the 
resistor model is widely used, particularly in the interpretation of experimental results in the 
CPP geometry, we shall describe the arguments used in its derivation 116].

It follows from the Boltzman equation in the relaxation-time approximation [17] that the 
resistivity p of a bulk metal is given by

m
P = — (—)ne-r

where e is the electron charge, in is the mass, and n the density of carriers, and r is the elas
tic mean free time. The mean free time is inversely proportional to the scattering probability. 
The scattering probability is. in turn, determined by two factors. The first is the strength of 
the scattering potential and the second the density of states at £f available for scattering. As 
already discussed, the first factor leads to interfacial spin-dependent scattering in magnetic 
multilayers and the second is the Mott mechanism which results in spin-dependent bulk scat
tering. We first consider the effect of the bulk spin-dependent scattering. If follows from the 
above arguments that we can introduce a spin-dependent resistivity for each ferromagnetic 
metal by

_T -> Pfm . -» Pfm
Pfm_Z1+0’ p,m_“i /3 (3)

where pFM is the total resistivity of the bulk ferromagnetic metal. l/pFM = 1/pFm + l/pFM 
(assuming that the two spin channels remain independent). The parameter [i we have intro
duced will be referred to as the bulk-scattering asymmetry. Wc shall treat /3 as a phenomeno
logical parameter, but we expect from the discussion of the Mott scattering mechanism that 
p'/p* D'(Et )/Dl(EF). In particular, it follows from Fig. 8 that [3 < 0 for cobalt and 
0 > 0 for iron.

Similarly, we can introduce an intcrfacial scattering asymmetry' assuming that there is a 
thin intcrfacial layer whose resistance p'/_s is spin dependent due to the presence of a spin
dependent potential barrier at the ferromagnet/nomnagnet interface. We. therefore, deline 
an intcrfacial asymmetry' parameter y by

p-i . Pl VP/ v = 2 (4)
y

where pt s is the total resistivity of the intcrfacial layer. We can again deduce from Figs. 4 
and 10 that y < I) for cohalt and y > (I for iron. However, the actual magnitude ol y is 



Quantum Theory ol Spintronics in Magnetic Nanostructures 6S7

difficult to determine microscopically since it depends not only on the difference between the 
potentials seen by ] and j. spin carriers at the interface but also on the intcrfacial roughness 
and the thickness ot the intcrfacial layer lor which p'l_\ is introduced. Wc shall, therefore, 
treat y again as a phenomenological parameter.

Wc are now ready to calculate the GMR. The calculation will be described for bulk 
spin-dependent scattering and C lP geometry'. It is straightforward to include interfacial spin
dependent scattering and derive the resistor model in the CPP geometry.

Consider a periodic superlattice of alternating nonmagnetic and magnetic layers with spin
dependent scattering in the bulk of the ferromagnetic layers. Because the whole superlattice 
is made up of identical building blocks, superlattice unit cells, it is sufficient to calculate the 
resistances of a unit cell. In the antiferromagnetic configuration, the magnetic layers with 
amipaiallcl magnetizations arc inequivalent; therefore, the basic building block we have to 
consider (magnetic cell) consists of two magnetic layers containing M atomic planes each 
and two nonmagnetic layers of N atomic planes each. The geometry for which the GMR is 
going to be calculated and the definition of a magnetic cell are illustrated in Fig. 11. It follows 
from Lq. (4) that a carrier of a given spin traveling in a superlattice sees regions of different 
local resistivities The resistivity is high in those regions where there is a high density of 
stales at E, available for scattering. There are. therefore, three different local resistivities 
in the superlattice unit cell: the resistivity of the nonmagnetic spacer layer pNM, which is 
the same for both spin orientations, and the high ppM and low' p£M resistivities for the two 
different spin orientations in the ferromagnet. The low resistivity of the ferromagnet satisfies 
Pnm % Prst hoth for the Co/Cu and Fe/Cr systems. The distribution of such regions in a 
superlattice magnetic cell in its ferromagnetic and antiferromagnetic configurations is shown 
in Fig. 12. It is clear from Fig. 12 that the unit cell of a magnetic superlattice is equivalent 
to a system of eight resistors, with four resistors in each spin channel. To determine the 
magnetoresistancc. wc lirst need a rule for adding up the four resistors in the same spin 
channel. Once die total resistances in both spin channels are known, they can be simply 
added as resistors in parallel to give the total resistance of the magnetic unit cell. This needs 
to be done for the ferromagnetic (T T) and antiferromagnetic (f J.) configurations. Following 
this prescription, wc find that the resistances Rt, and Afl are given by

— = (2- + —) ; — = ( —+ —) (5)U. R.t \r, R)^

where Rir is the resistance of the unit cell in a spin channel <r.
It is now necessary to determine the rules for adding up the four resistors in the same spin 

channel. It is dear from Fig. 12 that for the ferromagnetic configuration the problem reduces 
to the calculation of the resistance of a two-component superlattice with alternating regions 
of thicknesses </ and b having resistances p“ and pft. For the antiferromagnetic configuration, 
a four-component superlattice needs to be considered. To clarify the underlying physics, it 
is sufficient to investigate the two-component superlattice. Because the current flows in the 
direction of the layers forming the superlattice, one might be tempted to conclude that the 
resistances of the layers should always be added up as for resistors connected in parallel. 
However, it is easy to demonstrate that, in general, that would be incorrect.

Hyurc H M-lunct*• -iilicc
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Figure 12. Distribution of local resistivities in a magnetic unit cell.

Let us assume for simplicity that the resistivity p" is higher than p1' because there is a 
higher density of scattcrers in the layer a. This is illustrated in Fig. 13. Consider first the 
simplest case when there is a "partition" between the layers a and />, which prevents carriers 
crossing the a/b interlace. Such a system is clearly equivalent to two independent resistors 
because carriers remain confined to their respective layers. In this case, the above argument 
applies; that is, the two layers behave as ordinary resistors in parallel. However, there are no 
impenetrable partitions between the neighboring regions in a superlattice. Carriers can cross 
easily the interface and undergo scattering in both layers. Il follows that the two layers cannot 
be regarded as independent, and. in general, the simple rules for a conventional network 
of resistors no longer apply. The reader might conclude that we can get no further without 
a detailed microscopic calculation. Fortunately this is not so, and there arc two physically 
important limits in which the total resistance of a superlattice can be easily evaluated.

Case A: The mean free path in each layer of a superlattice is much shorter than the 
thickness of the layer. Because the mean free path is so short, very few carriers starting in 
one layer reach the neighboring layer. It follows that carriers from different layers do not 
“mix" and flow in their respective separate resistor channels as if the layers were separated 
by “partitions." All resistors then behave as resistors in a conventional resistor network and 
should be added in parallel. Inspection of Fig. 12 shows that there arc exactly the same 
number of resistors of each type in the ferromagnetic and antiferromagnetic configurations, 
which means that R., = /?,t, and there is no magnetoresistance in this limit.

Figure 13. Magnetic superlattice.
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Case B: I hc mean tree path in each layer is much longer than the thickness ol the layer. 
I or a metallic superlattice with a small number of atomic planes in each layer, wc are always 
close to this limit since typical mean lice paths in metals are ol the order of tens 01 even 
hundreds of interatomic distances. Il is. therefore, the limit that is applicable to magnetic 
superlattices exhibiting the giant niagnetoresistance.

Carriers now sample equally layers with low and high resistivity and. therefore, experience 
an average resistivity. For a two-component superlattice this is given by

ap" + />/?' 
a + b

(6)

I hc generalization of Eq. (6) to a four-component superlattice is obvious.
The results for cases A and B obtained here from simple physical considerations can be 

derived as limits of a more general approach based on the Boltzmann equation [16]. In fact, 
such a microscopic calculation shows that the limit in which the simple averaging Eq. (6) 
applies is reached very rapidly and we are close to this limit already for a mean free path 
comparable with the thickness of the superlattice unit cell.

Applying Eq. (6) to ferromagnetic and antiferromagnetic unit cells shown in Fig. 12. it is 
ease to show that

(7)

(«)

Finally, using Eqs. (7) and (8), wc find that the optimistic niagnetoresistance ratio is given by

AR (I - /J)~________
R 4( I + N/AfpH/i + N/A/p) (9)

where is the bulk scattering asymmetry' and p = p{M/PsM.
Il is now easy to pinpoint the main factors that deteiininc the GMR. Clearly. \R/li is a 

function of two variables, [3 and Mfi/N. The most important requirement for large GMR 
is that the spin asymmetry ratio (3 should be large. For a given (3. the GMR increases with 
increasing Mfi/N but saturates for a large value of this parameter. As a function of the 
spacer layer thickness A', the GMR decreases monotonically and falls off as 1 / A'- for large 
A', which is as observed (see the broken line in Fig. 3). This can be viewed as “shunting" of 
the cooperative effect of the magnetic layers by an "inactive" spacer layer.

Experiments show (sec. e.g.. Ref. [IK]) that (IP GMR also decreases with increasing 
thickness of the magnetic layers. This is not reproduced by Eq. (9). The main reason for 
this failure is our neglect of interfacial spin dependent scattering. To illustrate its effect, we 
shall adopt the other extreme point of view, that is. assume that interfacial spin-dependent 
scattering is so strong that bulk scattering can be neglected ([3 = (I). We shall further assume 
that there are / intcrfacial atomic planes with p'/ s defined by Eq. (4). Finally, wc shall 
make a simplifying assumption pNM — p[M (a good approximation for Co/Cu and Fc/Cr 
multilayers). It is then easy to show that

AR = __________ (1 -y)2__________
R 4[1 + (A' + .W)/2//-||y + (.V + A/)/2/r| (HI)

where y is the intcrfacial scattering asymmetry' defined in Eq. (4) and v = Pf_v/PsM- Thc 
GMR now decreases both with increasing thicknesses N. M of the spacer and the ferromag
net. The physical interpretation is that the magnetic layer first grows as a rough interface with 
strong spin-dependent scattering and then turns into an “inactive" shunting layer. It might 
seem that the model with dominant interfacial scattering explains better the dependence 
of the GMR on the ferromagnet thickness. However, numerical solution of the Boltzmann 
equation with dominant bulk spin dependent scattering leads also to a GMR which decreases 
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with increasing thickness of the ferromagnetic layers, in good agreement with experiment 
118|. One must, therefore, conclude that by analyzing experimental data in the (IP geome
try. it is not possible to determine reliably the relative importance of bulk and interface spin 
dependent scattering. The situation is much clearer in the CPP geometry which will be now 
briefly discussed.

In applying the simple resistor model to the CPP OMR. we need to make an assumption 
that the mean free path for spin-flip scattering is longer than the total length of the multi
layer in the direction of the current. This is necessary for f and | spin channels to remain 
independent so that we can add up their total resistances R. and /? in parallel. We shall 
again introduce bulk scattering asymmetry using Eq. (3). but it is more convenient in the 
CPP geometry to characterise interfacial scattering by the total resistances of an interface 
for f and f spin channels: that is. we define high R'1 s and low K interfacial resistances. 
Naturally, they are related to the total interfacial resistance R, ,v and to the interfacial scat
tering asymmetry y via Eq. (4). Finally, we need to decide how to add up all the resistors 
in the same spin channel. This is simple in the CPP geometry since electrons move in the 
direction perpendicular to the layers and. therefore, sample individual layers one by one. 
All the layers thus behave as conventional resistors connected in series. We shall again con
sider a superlattice having .1/ atomic planes in each ferromagnetic layer and N planes in 
each nonmagnetic layer. To calculate the total resistances /?., and //. of the superlattice in 
its ferromagnetic and antiferromagnetic configurations, we need to introduce also the total 
number N1W( of magnetic unit cells. It is then straightforward to show that

(AR),, = + p"M) + 2pNM/V + 2/l(K" w + R't V)J (II)

where A is the cross-section area of the superlattice and the quantities p[M. p{/M have already 
been introduced in the C1P geometry.

Equation (11) can be used to test the validity of the scries resistor model. It implies 
that the total resistance in the antiferromagnetic configuration increases linearly with the 
thickness of the superlattice (AVf). It is found [19] that Eq. (II) is well obeyed for Co/Cu 
and Co/Ag multilayers.

One can easily obtain also the total resistance R.. of a magnetic superlattice tn its ferro
magnetic configuration and. hence, the GMR ratio AR/R. However, it turns out that it is 
more useful to examine a closely related quantity

((«u - /?If)/?Jl/2 = (12)

where p[.M = pFM/(I - /32), = Ri A/(l - y2) and [3, y are the bulk and interfacial
scattering asymmetries. If we plot the left-hand side of Eq. (12) as a function of the thickness 
M of the ferromagnetic layer keeping /VW( fixed, we obtain a straight line with a slope 
^mcPPvm anc* an intercept NMcyAR) ,v. The slope is thus determined entirely by bulk spin
dependent scattering and the intercept by interfacial spin dependent scattering. It follows 
that the two types of scattering can be separated in the CPP geometry. An analysis ot the 
CPP GMR experiments for Co/Ag and Co/Cu superlattices (14. 20] based on Eq. (12) shows 
that 13 «= 0.5 and y 0.6—0.8 for both these systems. Bulk and interface scattering are. 
therefore, comparable.

Hie equivalent resistor theory of the GMR provides a correct semiquantitalive explana
tion of the effect and is particularly useful for analyzing experiments in the CPP geometry 
114]. However, its main shortcomings are that the spin scattering asymmetries )3 and y arc 
introduced as phenomenological parameters and the differences between the banc struc
tures of the ferromagnetic and non-magnetic layers arc ignored. As wc shall sec. this second 
factor is particularly important for the CPP GMR and full quantum treatment is necessary 
to include the contribution to the resistance of multiple reflections of carriers from all the 
interfaces between magnetic and nonmagnetic layers.

We now briefly discuss how the Boltzmann equation approach, on which the resistor 
network model is based, can be improved. Early attempts at a more microscopic description 
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of the C IP GMR were based on the Kubo formula [211 but the electronic band structure ol 
the magnetic and nonmagnetic layers was approximated by a simple parabolic band common 
to the whole multilayer and spin dependent scattering was introduced phenomenologically. 
When these two assumptions arc made, the results obtained from the Boltzmann and Kubo 
formulations are essentially equivalent. A more recent refinement is to incorporate in the 
Boltzmann equation a fully realistic band structure [22]. The main advantage of this approach 
is that the spin dependent scattering is introduced from first principles and the dependence 
of the GMR on different magnet/non-magnet combinat ons can be thus discussed. Another 
in tcresting recent development is a calculation [23] of the GMR assuming the Mott scattering 
mechanism (bulk spin-dependent scattering) but using the Boltzmann equation in the layer 
geometry combined with a realistic tight-binding band structure. This approach provides a 
microscopic underpinning of the phenomenological resistor model described here.

However, despite all the attempts at a more realistic modeling of the CIP GMR. a fully 
predictive theory is still not available. The principal reason lor this failure is that the CIP 
GMR is determined largely by interfacial roughness, which is very difficult to model realis
tically. Moreover since the interfacial roughness depends on experimental growth methods, 
annealing, and other factors, its precise nature is usually not known and that makes mean
ingful comparison between theory and experiment virtually impossible. We shall see that 
a realistic modeling of the CPP GMR is much easier but. as has already been discussed, 
measurements in the CPP geometry arc much more difficult than in the CIP geometry.

3. NONEQUILIBRIUM KELDYSH FORMALISM
In this section, we show how to calculate the local charge and spin currents flowing in 
the direction perpendicular to the layers of an arbitrary magnetic layer structure. We shall 
assume that the magnetic layer structure is sandwiched between two reservoirs with a bias 
F'y, applied between them to produce a spin-polarized current. I he structure we consider is 
shown schematically in Fig. 14. Typically, the two reservoirs will be semi-infinite nonmagnetic 
leads and the magnetic structure consists of a left magnet separated from the right magnet 
by a nonmagnetic spacer layer. The spacer layer may be either a nonmagnetic metal or an 
insulator. Although this is the most common situation, an arbitrary finite number of other 
layers (magnetic or nonmagnetic) can be easily incorporated into the structure. The broken 
line in Fig. 14 represents a cleavage plane separating the system into two independent parts 
so that charge carriers cannot move between the two surface planes labeled n — I and n. 
Il will be seen that our ability to cleave the whole system in this way is essential for the 
implementation of the Keldysh formalism on which our method is based. This can be easily 
done within a tight-binding parameterization of the band structure by simply switching off 
the matrix of hopping integrals | between atomic orbitals i>. p localized in planes 
n — I and n. We shall, therefore, adopt the tight-binding description in this section bearing 
in mind that our approach applies, for example, also to LMTO tight-binding band structure 
implemented for a layer system [24]. Each layer in the structure is therefore described by 
a tight-binding model, in general multiorbital with s. p. and <7 orbitals whose one-electron

Figure 14. Schematic picture of a magnetic layer structure. All currents llou in the direction of the y axis which is 
perpendicular to the layers.
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parameters are fitted to first-principle hulk hand structure. The Hamiltonian is, therefore, 
of the form

H = H„ -I- W,nl + H,nis (13)

where the one-electron hopping term /7I( is given by

= E E Aj»r-<r (14)

where cf creates an electron in a Bloch state, with in-planc wave vector and spin <r. 
formed from a given atomic orbital /i in plane m. Hmt is an on-silc interaction between 
electrons in d orbitals, which leads to an exchange splitting of the bands in the ferromagnets 
and is neglected in the spacer and lead. Finally, 77anis contains effective fields corresponding 
to uniaxial Hu and easy-plane Hp anisotropies that will be needed in the calculation of the 
current-induced switching of magnetization discussed in Section 7. Wc do not require the 
actual form of /7.injs in the general formulation described in this section but will have 
to be specified explicitly in Section 7.

Using the equation of motion for the spin angular momentum operator, it is straightfor
ward to show within the tight-binding description (see. e.g., Ref. [25]) that the operator for 
spin angular momentum current between planes n — I and n is given by

jn I =~2 E +h,C (15)
Here, <r = (<rv, cr(, cr.), where the components are Pauli matrices. Equation (15) yields the 
charge current operator if ^cr is replaced by a unit matrix multiplied by the electronic 
charge e/h. where c is the electronic charge (negative). All currents How in the y direction, 
perpendicular to the layers, and the components of the vector j correspond to transport of 
a, y, and z components of spin.

To use the Keldysh formalism [26-28] to calculate the charge or spin currents flowing 
between the planes m - 1 and n, we consider an initial stale at time r = — <x> in which the 
hopping integral between planes n - 1 and n is switched off. Then both sides of 
the system are in equilibrium but with different chemical potentials /jl, on the left and 
on the right, where /j.l - /iR = eVh. The interplane hopping is then turned on adiabatically 
and the system evolves to a steady state. The cleavage plane, across which the hopping is 
initially switched off, may be taken in cither the spacer or in one of the magnets or in one 
of the leads. In principle, the Keldysh method is valid for arbitrary bias Vb but here we 
restrict ourselves to small bias corresponding to linear response. This is always reasonable 
for a metallic system since for larger bias electrons would be injected into the right part 
of the system far above the Fermi level and many-body processes neglected here would be 
important. Furthermore, in metallic systems the bias will never be large. For a system with 
an insulating spacer layer (tunneling junction), a larger bias across the insulating layer can be 
maintained but the discussion of the bias dependence of perpendicular transport is beyond 
the scope of the present review. We shall, therefore, always consider only the linear response 
limit.

Following Keldysh [26. 27], we define a two-time matrix 

^•'ri (u t )^r(t)) (16)

where R = (n, v.a ) and L = (n - l,/z,cr), and we suppress the Aj| label. The thermal 
average in Eq. (16) is calculated for the steady state of the coupled system. The matrix 
has dimensions 2m x 2m, where m is the number of orbitals on each atomic site and is 
written so that the m x m upper diagonal block contains matrix elements between j spin 
orbitals and the m x m lower diagonal block relates to j. spin. The 2m x 2m hopping matrices 
z1R and rR) arc written similarly and in this case only the diagonal blocks are nonzero. If we 
denote z( K by i. then ZRj = f. We also generalize the definition of <r so that its components
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are now dire.t products oi the 2x2 Pauli malt ices <r(, <i\. a and the in x in unit matrix. The 
thermal avenge of the spin current operator, given by Eq. ( 15). may now be expressed as

<J„-i) = 5 ETr IR'im <r- r>' * ’H l"| 
’ *t

(17)

Introducing he Fourier transform G (w) ol (> r ). which is a function of r r . we have

</„ i) = E / y-’,r IK'ri “ G't'i<('")/ |"| (18)
-

Again, the charge current is given by Eq. (IS) with |<r replaced by the unit matrix multiplied 
by e/h.

Similarly. he total spin angular momentum on atomic planes on cither side of the cleavage 
plane, in the nonequilibrium stale, is given by

^.,-l) = -''7(^/^Tr(G;;(<u)a| (19)

<.S’J = -5//1E / <2(l>

Following Keldysh |2<>. 27|. we now write

(> mfw) — 5(7'ih + G“IW (>' 1(l)

where the suffices .1 and H arc either R or I- Ul(co) is the Fourier transform of

r ) =-/(|c ifT). 4(r')| ) (22)

and G", G' ate the usual advanced and retarded Green functions |29j. Note that in Refs. |26| 
and [27] lhe definitions of G” and G' arc interchanged and that in the Green function matrix 
defined by these authors G‘ and G should be interchanged.

Charge and spin current and spin density are related by Eqs. (17)-(20) to the quantities 
G", G', and / lH. l he latter are calculated for the coupled system by starting with decoupled 
left and right systems, each in equilibrium, and turning on the hopping between planes /. 
and R as a perturbation. Hence, we express G". Gf, and Fttt in terms of retarded surface 
Green functions gK = gH/< for the decoupled equilibrium system. The surface
Green functions for the decoupled system arc determined by the method of adlayers that 
will be described later in this section. It is then straightforward to show that the spin current 
between planes n I and n can be written as the sum t) = (j„ |), 4- (j„ where lhe 
two contributions to the spin current (j„)| and nre given by

i>i = E / </«>ReTr](B- J)<r}[/(w-/z, )4-/(w-/zK)J (23)77 ''i
(j [/■(w-g,)-/(io-/x«)|

(24)

Here, A = 11 - gKi'gii\ *. R = |l - g'Kt'g'i /]“*. and /(w - /z) is the Fermi function with 
chemical potential /z and p.t - /iH = eVh. In the linear-response case of small bias, which 
we are considering, the Fermi functions in Eq. (24) are expanded to first order in I’A. Hence 
the energy integral is avoided, being equivalent to multiplying the integrand by el7;, and 
evaluating it al the common zero-bias chemical potential

Following the method outlined for obtaining Eqs. (23)-(24). similar expressions in terms 
of retarded surface Green functions may be obtained for the noncquilihrium spin angular
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momentum on atomic plane n. Writing again (S„) = (S,,), + (.S’„)3, we obtain

<S„)| = - /i, ) +
477 , J

1

(25)

-4 - - )ffXfdr - M/ ) - /(w - M«)l (26)

To obtain (S„ ,) defined by Eq. (19), we must interchange /. and R, and t and i . every
where in Eqs. (25)-(26). Equations (23)—(26) contain all the information about transport of 
spin and charge in the direction perpendicular to the layers of an arbitrary magnetic layer 
structuie. The application of this formalism to the oscillatory exchange coupling and to the 
current-induced switching of magnetization involves the calculation of the spin current in 
various parts of the layer structure and will be discussed in Sections 4 and 7.

When the Pauli matrix |<r in the expression for the spin current is replaced by a unit 
matrix multiplied by e/h, we obtain an expression for the charge current within the Keldysh 
formalism. We can now make a contact with the real space Kubo formula for perpendicular 
transport which was derived earlier [25] for a multiorbital tight-binding band structure from 
the two-particle Green function. First of all, we note that in the case of charge current, the 
contribution coming from Eq. (23), which is proportional to the sum of the Fermi functions 
/(w - /z,) + /(w - /zrt). vanishes and the only contribution to the charge current is that 
given by Eq. (24). Since we are working in the linear-response limit, the charge current is 
proportional to eVh. It follows that Eq. (24) yields the total conductance of the system. The 
real-space Kubo formula [25] applies to a trilaycr in which the magnetic moments of the 
two magnets separated by a nonmagnetic spacer are either parallel or antiparallel. In that 
case, the total conductance can be written as the sum of the conductances T" in the up- and 
down-spin spin channels cr. In this geometry, Eq. (24) simplifies and takes the form

r^^-ETrd^ImgZ] [7'Jlmg"]) (27)

where the matrices T„ and Tj are defined by

= (2«>

Here, I is a unit matrix in the orbital space and the Green functions g°. g^ are m x ni 
matrices corresponding to the upper (a = f) and lower (a = j.) diagonal blocks of the surface 
Green functions gL, gL defined earlier. Equation (27) has exactly the same form as the 
real-space Kubo formula derived in Ref. [25] and will be used to discuss the CPP GMR in 
Section 5 and the tunneling magnetoresistance in Section 6.

It is also useful to note that the real-space Kubo formula (27) is equivalent to the formula 
for the conductance derived by Landauer using methods of the scattering theory [30], We 
shall therefore frequently refer to Eq. (27) as the Kubo-Landauer formula.

It can be seen that Eqs. (23)—(27). which determine the spin and charge currents and the 
transport spin densities without any approximations, all depend on just two quantities, that 
is, the surface one-electron Green functions for a system cleaved between two neighboring 
atomic planes. Since these surface Green functions play such an important role, we shall 
now briefly discuss how they can be calculated.

3.1. Matrix Mobius Transformation and Its Application in the 
Calculation of Surface Green Functions

The bilinear, or Mobius, transformation ((z) = (az + b)(cz + </) 1 is a well-known con
formal transformation that transforms circles in the complex z plane into circles in the 
< plane. Umcrski [31] showed that a generalization of this transformation to the case where 
fl, b,c, d. z. are M x M (complex) matrices is very useful for the calculation of surface 
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Green functions in the light-binding theory of layered structures. We follow his discussion 
in this section. We define

l.c = (az + />)(<•; + <l) 1 (29)

where ,1 is the 2M x 2.47 partitioned matrix

(30)

It is straightforward to show that

d.(B.z) - MBU (31)

Suppose that a number of identical atomic planes arc deposited on a substrate whose local 
surface Green’s function (SGF) g(l is a (M x M) matrix. Typically M — 9 or 18 for tight- 
binding bands with v. />. <1 orbitals, depending on whether g represents carriers with a single 
spin projection, or both spin projections. Suppose that after N planes have been deposited 
the local Green function for the last layer is gv. as shown in Fig. 15. We now show that gA 
is related recursively to gA , by a Mobius transformation. The hopping matrix r = r(Aj) and 
the on-site energy matrix u = ti( ) for the deposited planes are both M x M. Using the 
Dyson equation, it can be shown that |32|

A’.v = («» - " 1 (32)

where u is the d.agonal matrix element of the total Hamiltonian defined by Eq. (13). We 
can write

/ (I I 1 \
gs = i '[(« - u)i 1 - r gA J 1 - A',gs where A' = I ) (33)

\ /' (w - »)/ 1 /

Wc note that in most cases of interest /(L) is nonsingular and that X is a 2M x 2M matrix. 
By iterating Eq. (33). and using Lq. (31), wc obtain the requited surface Green luitclion

JG = A'?g„ (34)

Wc proceed to find the eigenvalues A of X to diagonalize X and calculate .V'. In fact, some 
of the eigenvalues are related to the bulk band structure of the overlayer. The eigenvalues 
A satisfy det(A' - A/) = 0, where I is the unit matrix. It follows that

/ 1 0\ /-A/ I 1 \
|(.Y-A/) = (35)

\—A1/ I / \ (I A 'ft 1 + (o> - u)l 1 - A//

Hence
dct(A' A/) = (-1 )v dct(Ar 1) det(w - it - Ar - A '/’) (36) 

f igitn- 15 <\ schemjitic figure ilepiciine in nverlayer svMem with surface < ircen’s function if5 .
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and the eigenvalues satisfy

dcl(w — u - A/ - A-1/ ) = () (37)

where the determinant is ,Vf x M and w stands for w/. I being the M x M unit matrix. 
Furthermore, as A —» 0. we see from Eq. (36) that | det(X) = I. which means that there 
are no zero eigenvalues. We also note from Eq. (37). that if A is an eigenvalue, then (A) 
is also an eigenvalue. In general, there are 2(Af - P) eigenvalues with |A| I and 2/’ 
eigenvalues with |A| = I. lor some integer P (() < P < N). If |Aj = I. we write A = e'*. 7r < 
k < it. Equation (37) is then the equation determining the bulk overlayer band structure 
<u = E(k^.k ) with k — k. Hence, for a given E. k = are points on the constant 
energy surface of the bulk spacer with energy w. If there is only one such pair of points, 
then P = I, but for a constant energy surface with more than one sheet, we may have 
P > I. Thus eigenvalues A on the unit circle arc determined by the propagating states 
of the overlayer bulk band structure. Those with IA| / I relate to surface states that arc 
exponentially attenuated within the bulk.

The eigenvalues and eigenvectors of X must be determined numerically so that X may 
be diagonalized by a similarity transformation

/A, () \
OIA'O = A = (38)

\ 0 A,/

where the M eigenvalues in the diagonal M x M matrices A,. are ordered in ascending 
order of magnitude down the diagonal (i.e., |A,| < |A,| < ••• < |A?V|). Eigenvalues off the 
unit circle occur in pairs A = re'H, (A*) 1 = r le'v, one of the pair (with modulus less than I) 
appearing in A, and the other (with modulus greater than I) in A,. The eigenvalues on the 
unit circle also occur in pairs e±,k(k > 0), and we may put e‘k in A, and e ,k in A,; the 
precise order is not important at this stage but a natural way of doing this is discussed next.

It follows from Eqs. (34) and (38) that

gw = (OA"O ').&, (39)

We define /v = (7. 'gv so that

Zv = (A*P 'U = A;/, (40)

Hence, using the definition (29), we find that = A^A;' and

Sv = «./,v = «.(Af/;,A2-v) (41)

For large X only eigenvalues e±,k (i = 1.2,.../’) on the unit circle contribute; the other 
diagonal elements of A* and A*' tend to zero as X —> og. Thus g,v depends on N through 
quantities such as

,+k , an(j e'-iNk,, _ e2it<l,k:, (42)

with .V, = ••• = Nr =■ X. Hence gv, and any function of it. is periodic in the variables 
A/j(which can be considered as continuous) with periods 2ir/All,...,2?r/A r. 
respectively. Functions such as g^ are termed "quasi-periodic" functions of X.

For the case P = \. there is only one wave vector k , and gs is thus periodic in A' with 
period ir/k^ rather than lir/k ,. (NB: This can also happen for P > 1 )

To calculate gv from Eq. (41). we need /', = O^’go and therefore have to calculate the 
surface Green function g„ for a semi-infinite substrate. To do this, it is necessary to be more 
precise about how we order the eigenvalues on the unit circle. The trick is to include a small 
positive imaginary part <5 in the energy (o> —► <u + j<5) and to let X —♦ oc before <5 — 11. This 
shifts the pairs of eigenvalues on the unit circle in such a way that one moves just inside the
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circle and the other just outside. The former arc in \, and the latter in A>, so that and 
\? tend to zero as X — -v Hence, it we write

it follows from Eq. (41) that
A’o = A’x = = 'Tz'Ar ‘ (44)

Thus is determined by half the eigenvectors of A’. which form the columns of the right
hand half of ().

We now summarize the steps needed to determine the overlayer Green function X\- which 
is all that is required to solve all the CPP transport equations derived within the Keldysh 
formalism. To calculate for the overlayer system shown in Eig. 15. we proceed as follows. 
First wc create the matrix A’ defined in Eq. (33) using the substrate on-site potentials and 
hoppings. Wc diagonalize the matrix A' and obtain from Eq. (41) the surface Green function 
gd for the semi-inlinile substrate. Wc then create the new matrix A for the overlaycr. using 
the overlaycr on-site potentials and hoppings, diagonalize it. and use Eq. (41) to obtain 
The overlaycr surface Green function obtained in this way will be a continuous function 
of /V. and quasi-periodic in A', with periods given by 2ir/k: ,....... 2ir/k lor /’ > I. or
Tr/k for P = I.

4. OSCILLATORY EXCHANGE COUPLING
In 1986. Griinbcrg el al. [7| observed that Fe layers separated by a CT spacer layer were 
ordered antiferromagnetically. Subsequently. Parkin et al. |9| have made a careful study of 
the dependence of this effect on the thickness of the chromium spacer layer. Parkin el al. 
found by measuring the strength of the applied magnetic field, required to saturate the total 
moment, that, in fact, regions of an antiferromagnetic ordering alternate periodically with 
intervals of Cr thicknesses in which the moment saturates easily. They deduced from these 
measurements that llicrc is a magnetic coupling between lite Fe layers mediated by the non 
magnetic spacer whose sign changes periodically with the spacer layer thickness. The effect 
is known as the oscillator}' exchange coupling. Samples with Cr thicknesses corresponding to 
an antiferromagnetic coupling exhibited also the GMR effect discussed in Section 2. Oscil
lations of the GMR effect shown in Fig. 3 of Section 2 thus demonstrate at the same time 
the existence of an oscillatory exchange coupling. The saturation field experiment of Parkin 
et al. [9| gives directly the strength of the antiferromagnetic coupling (strength of the satu
ration field) but clearly cannot give any information about the ferromagnetic coupling. By 
using the Brillouin scattering of light. Demokritov et al. |33] were able to show directly that 
the oscillatory exchange coupling actually changes its sign. Their results for Fe/Cr system 
are reproduced in Fig. 16. T he oscillation period observed by Demokritov et al. |33] was 
very long %18 A. It was shown very convincingly by Unguris et al. [34] that in addition to 

Figure 16. Observed dependence <>t the oscillatory exchange coupiini’ in It < r I ctlNII I trilaver on Cr thickness |33|.
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the long period there is also a short oscillation period of two atomic planes for Fc/Cr(00l) 
system. Oscillatory exchange coupling was subsequently observed in many other magnetic 
multilayers and of those Co/Cu is perhaps the most typical and best investigated system 
135-43].

The physical origin of the oscillatory exchange coupling was explained by Edwards and 
Mathon |44| who pointed out that majority- and minority-spin carriers in a magnetic mul
tilayer see potential steps of unequal heights at magnet/nonmagnet interfaces. Their theory 
was based on the observation already discussed in Section 2 that there is an almost perfect 
match between the minority-spin band of Fe and the bands of Cr but a large mismatch 
for the majority-spin bands. A very similar picture holds for Co/Cu system but the roles of 
majority- and minority-spin bands are interchanged (see Section 2). Hence in the ferromag
netic (FM) configuration of the magnetic layers electrons of one spin orientation sec a deep 
potential well in the spacer layer region, whereas carriers of the opposite spin orientation 
move freely across all the interfaces. In the antiferromagnetic (AF) configuration, carriers of 
either spin see a potential step. It follows that in the FM configuration carriers of one spin 
orientation are trapped in a quantum well. As the thickness of the spacer layer varies, quan
tum well states crossing the Fermi surface cause oscillations of the thermodynamic potential 
of the system, which results in oscillations of the interlayer exchange coupling. Early theories 
of his type (45-47] were based on a single-orbital tight-binding model, but they were later 
generalized to a fully realistic band structure in the case of Co/Cu/Co((X)l) trilayer [4<S. 49|.

The quantum well (QW) theory of the oscillatory exchange coupling assumes that the 
perturbation to the system caused by potential steps at the magnet/nonmagnet interfaces is 
so strong that magnetic carriers may become completely confined in a quantum well. The 
QW theories must, therefore, be based on a nonperturbativc calculation of the total energy 
(thermodynamic potential). There is also an alternative point of view, which assumes that 
potential steps are only a weak perturbation to the system. In that case, the usual RKKY 
type theory [51], which describes an oscillatory exchange interaction between two magnetic 
impurities embedded in a nonmagnetic matrix can be easily adapted to a layer geometry. 
This was done by Bruno and Chappert (52]. The RKKY theory of Bruno and Chappert 
is very intuitive and gives the correct oscillation periods in terms of the spanning vectors 
of the spacer layer Fermi surface. However, because the interaction of carriers with the 
ferromagnetic interface is an adjustable parameter in such a theory it cannot predict the 
strength and other properties of the coupling.

A refinement of the RKKY second-order perturbation theory is to treat scattering of car
riers from interfaces more realistically by including in the perturbation series expansion of 
the total energy (thermodynamic potential) higher-order corrections (53, 54|. If corrections 
to all orders of perturbation theory are included, such a perturbative treatment becomes 
equivalent to the original quantum well theory (45-49]. Since it will be seen that the ther
modynamic potential of an arbitrary magnetic multilayer can be calculated quite rigorously 
without using perturbation theory, there is no advantage in the perturbative formulations 
(53. 54] except for their pedagogical merit.

The validity of the concept of quantum wells was confirmed by direct observation of 
QWs in photoemission and inverse photoemission experiments by Ortega et al. [55], Spin 
polarization of the QW states was observed by Garrison et al. [56].

All the theories we have discussed are based on the evaluation of the total energy differ
ence between the FM and AF configurations of the magnetic layers in a magnetic multilayer. 
Another very interesting approach, which appears to be quite different, was pioneered by 
Slonczewski [57]. He proposed to calculate the mutual interaction between two ferromagnets 
separated by an insulating barrier from the spin current, which flows in the barrier when 
the magnetizations of the two magnetic layers arc not colinear. His method was adapted to 
a metallic trilayer by Hathaway and Cullen |5X| and Erickson et al. [59] using a parabolic 
band model. The spin-current method was also reformulated in terms of one-electron Green 
functions using a single-orbital tight-binding model |6(J). We recall that, using the Keldysh 
nonequilibrium formalism, wc derived in Section 3 completely general formulas (23) and 
(24) for the spin current in an arbitrary magnetic layer structure. In the absence of an applied 
bias, the spin current in the nonmagnetic spacer, which is required in Slonczewski’s method. 
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is given by Eq. (23) of Section 3. We can, therefore, generalize the spin current method to 
a fully realistic band structure.

We begin by showing how to express the total energy difference between the EM and Al- 
configurations, that is. the interlayer exchange coupling, in terms of the local density of states 
and, ultimately, in terms of local one-electron Green functions. Next we derive from the 
Keldysh formula for the spin current in the nonmagnetic spacer (23) an alternative formula 
for the oscillatory exchange coupling. Wc then demonstrate analytically that the spin-current 
formula for the oscillatory exchange coupling is completely equivalent to the total energy 
difference formula used in the QW theories (see, e.g.. Ref. [49]). The application of this 
formalism is illustrated for Co/Cu/Co(()()l) trilayer. Finally, wc show that, by exploiting a 
periodic (quasiperiodic) dependence of all the Green functions on the spacer layer thickness 
(see Section 3), we can use asymptotic expansions to derive an analytic formula for the 
coupling. Such a formula, which is valid in the limit of a thick spacer, yields not only all the 
oscillation periods but also their amplitudes and decay rates in terms of the band structure 
parameters.

4.1. Equivalence of the Spin Current and Total Energy Calculations 
of the Oscillatory Exchange Coupling

For the sake of clarity, we confine our discussion in this section to a simple magnetic trilayer, 
which consists of two semi-infinite magnetic layers separated by a nonmagnetic metallic 
spacer of /V atomic planes. We also assume that the entire trilayer grows epitaxially. How
ever, our formulas and arguments arc valid for general multilayers and are readily extendible 
to nonepitaxial systems modeled by lateral supercells of arbitrary size and complexity. The 
only difficulty being the additional degree of computational effort required to perform such 
supercell calculations accurately.

There are two starting points lor a quantitative calculation of the exchange coupling. 
The first proceeds directly from the definition of the exchange coupling between two semi
infinite magnetic layers across a nonmagnetic spacer layer of A atomic planes. The exchange 
coupling J(N) per surface atom is defined as

/(A) = (Qfm(A)-Haf(A)) (45)

where lllM and HAF arc the thermodynamic potentials of the trilayer per unit cross-sectional 
area for the parallel (FM) and antiparallel (AF) configurations of the magnetic moments, 
respectively.

To evaluate Eq. (45). wc make two approximations. The first is the so-called force theo
rem that states that a good approximation to the total energy' difference between different 
structures (in this case magnetic) is obtained by comparing sums of one-electron energies 
using atomic potentials, which are independent of the magnetic configurations. The second 
approximation is to neglect the dependence of the local densities of states within the mag
netic layers on the magnetic configuration. This approximation can be checked and is found 
to be a good one. We can therefore write

7(A) = [(n1 (N) + 1P(A))FM - (ll’(/V) + I1‘(A))a11 (46)

where 11" is the thermodynamic potential for electrons of spin tr (a =f, f).
The thermodynamic potential per surface atom for a given magnetic configuration at 

temperature T is given by 

11" N) da) (47)

where A', is the number of points in the two-dimensional Brillouin zone, g is the chemical 
potential, and 'J" is the spectral density for particles of spin <r in the trilayer having that 
configuration. Because of the in-plane translational invariance, we label all the trilayer states 
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by the plane index i and by the wave vector parallel to the layers. The spectral density ryir 
is given by

7t'(w. *jp N) = -- hnTr 52G"(w, N) (48)

where G‘- is the diagonal matrix element of the tight-binding one-electron Green function, 
the trace is over all atomic orbitals, and the sum over i is over all atomic planes in the 
trilayer.

The problem now is to evaluate the spectral density, bearing in mind that we have an 
infinite number of atomic plane in our system. This is performed by choosing a pair of neigh
boring atomic planes in the spacer layer and setting the hopping / between them equal to 
zero, thereby separating the trilayer into two independent semi-infinite systems. For simplic
ity. we place such a cleavage plane between the TVth atomic plane in the spacer and the first 
atomic plane of the right hand ferromagnet. However, the results are independent of the 
location of the cleavage plane. The cleaved system shown in Fig. 17 then consists of the left 
ferromagnet with an overlayer of N atomic planes of the spacer and the right ferromagnet. 
We label the surface Green’s functions of these two surface systems by gz v and gw. and 
recall that these are matrices, whose indices range over ,v, /?, and d orbitals.

Using Dyson’s equation, it can be shown [491 that a closed-form expression for the sum 
in Eq. (48) can be obtained

7"(A/) = X + 7'' - - ImTrf-^- ln(/ - g"/+gj\/))
7T \ (th) )

where
»'(/) = -! Im Tr £ g",,. X = “ImTr £ g"(49) 

77 p»-«. 77 p=A + l

Here g'[ ' is the diagonal clement of the Green’s function in an atomic plane /? of the cleaved
system. The first two terms 7',' and 7% arc simply the spectral densities for the left and right 
surface systems. Since they refer to the cleaved system, they are clearly independent of the 
magnetic configuration, and hence, do not contribute to the coupling. The last term, on the 
other hand, gives the difference between the spectral densities of the connected and cleaved 
systems. It is, therefore, this term that determines the exchange coupling. We note that it 
depends only on the surface Green’s functions of the cleaved system and on the hopping 
matrix / connecting the left and right surfaces when the two cleaved systems are reconnected 
(Fig. 17 ). Substituting this expression in to Eq. (47) and integrating by parts over the energy 
gives

where F=± Im Indet(RjMraf ’)

(50) 

Figure 17. A schematic figure depicting the cleaved trilaycr system. the left and right hand surface Green s functions 
g, v and and (he flopping i of the connected system.
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I (i<> — g) is the Fermi function with chemical potential g. and the term R" — (/ g'/O 
is evaluated in the ferromagnetic (FM) or antiferromagnetic (AF) configurations. Finally, 
g/ and arc the surface Green's functions on cither side ol the cleavage plane.

The second method for calculating the exchange coupling is based on the expressions for 
the spin-current derived from the Keldysh formalism in Section 3. Consider a configuration 
of the trilaycr in which the magnetic moment of the right ferromagnet is rotated in the 
plane of the layers to make an angle tl with the moment of the left ferromagnet. We recall 
that all the layers arc parallel to the (,v. c)-planc of the system of coordinates in Fig. 14 
of Section 3. The corresponding thermodynamic potential of the trilaycr is £2( H). and the 
exchange coupling defined by Eq. (45) can be thus written

J(/V) = 0(0)-0(77)= ( (51)

.tn \ tiff /

where the integrand -</(!/dti is the torque exerted on one magnet by the other. Owing to 
exchange coupling, the left ferromagnet exerts a torque on the spins of the right ferromagnet. 
which causes them to precess. Their total rate of change of angular momentum is equal to 
the torque

(52)

where the right-hand side is the rate of change of the v component of the spin angular 
momentum summed over all the spins in the right ferromagnet. By continuity, this is equal 
to the rale of flow of the y component of the spin angular momentum across the spacer 
(spin current). I fence

iiii
<53|

where (/,) is the y component of the spin current. A general expression for the spin-current 
m the presence of an applied bias was obtained in Section 3 using the Keldysh formalism 
(see Eq. (23) and Eq. (24)). We arc here interested in the case when there is no bias applied 
to the trilaycr. In that case, the chemical potentials on the left and the right of the cleavage 
plane are identical (gz — /jlI( = /jl), and it follow's that the y component of the spin-current 
flowing across the cleavage plane is determined by Eq. (23). Using Eqs. (53) anil (23). we 
find that the exchange coupling J(N) is given by

J(.V) = \ I (Im I J0RcTr{(B /1)<r, }[(<<> — g) (54)
2 77 , ■'

*i

We recall that the quantities .4. R are defined by .4 = [ 1 - gzzFgz /] R = 11
For a single orbital tight-binding band, the integral with respect to 9 in Eq. (54) can be 

done analytically and it is then easy lo show that the total energy formula (50) and the spin 
current formula (54) for the coupling are identical. For a general multiorbital band structure, 
it is easier to generalize first the total energy formula (5(1) to an arbitrary angle between the 
magnetic moments H and then differentiate with respect to 0 to prove the equivalence of 
Eqs. (50) and (54).

The total energy formula for the exchange coupling (50) can be readily evaluated numer
ically either for a tight-binding parameterization of the ah initio band structure [48. 49| or 
by using LMTO tight-binding method [61-63|. The results of these two calculations are vir
tually identical and we show in Fig. 18 the coupling J(N) for Co/CuV/Co(001) obtained by 
the light-binding method of Ref. [49]. The tight-binding parameters used in Ref. [49] were 
obtained from fils to the ah initio band structure of Cu and fee Co [64. 65|. Special care has 
to be taken to ensure convergence of the sum over and of the energy integral. The latter 
was carried out in the complex energy plane and replaced by a sum over Matsubara fre
quencies corresponding to room temperature. The summation over Aj was performed using a 
dense mesh of 2775 points in the irreducible segment of the two-dimensional Brillouin zone. 
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The continuous line denotes the result of the numerical calculation al non-integer numbers 
of atomic Cu planes, obtained by using the analytic extension of the surface Green functions 
discussed in Section 3. The dashed line was obtained using the stationary phase approxima
tion which will be described next. We shall defer detailed discussion of the numerical results 
for the exchange coupling shown in Fig. 18 until the end of the section.

4.2. Stationary Phase Approximation Formula
for the Exchange Coupling

Il might seem from the numerical results presented above that the exchange coupling for 
Co/Cu/Co((M)l) oscillates with a single period of 2.6 atomic planes. However, the RK.KY 
theory [52] predicts two oscillation periods, one is the short period of 2.6 atomic planes but a 
long period of 5.7 atomic planes is also predicted. To understand why the long period oscil
lation seems to be missing in the realistic total energy calculation, we need some insight into 
the physics that lies behind such a calculation. This can only be provided by an analytical for
mula obtained by asymptotic expansions of the total energy expression (50). Such expansions 
using the stationary phase approximation (SPA) were first derived for the relatively simple 
case of a (fully solvable) single-orbital tight-binding model [45. 46], They were later gener
alized to a realistic band structure but remained restricted to the spacer with a single-sheet 
Fermi surface. This does, however, includes the important case of Co/Cu/Co(001) system 
[49], Only when the Mobius transformation method was developed [31], application of the 
SPA to the case of a multisheet Fermi surface could be made (sec. e.g., Ref. [31 ]). We shall 
now explain how such asymptotic expansions are obtained in this most general case.

In Section 3, we established that the Green function g,v(w. Ap at the surface of an overa- 
lyer of N atomic planes deposited on the left magnet depends on the overlayer thickness N. 
energy w. and in-plane momentum Aj. It was also shown in Section 3 that, for large N. the 
Green function is a quasi-periodic function of the continuous thickness N with periods 
given by {2ir/ktl,2ir/kL2, ...,2ir/k1P}. Here, {ktl, k12,..., k±P} are the values of the 
perpendicular wave vector A satisfying the bulk overlayer dispersion relations E(Aj. A±) = to 
for a given in-plane wave vector A, and energy a> (different values of Au correspond to 
different sheets of the spacer Fermi surface). It follows that the integrand /•'(&>. Aj|. N) in 
Eq. (50) for the exchange coupling is also a quasi-periodic function of N. It can, therefore, 
be expanded in a /’-dimensional Fourier series:

F(w, Aj,/V) = C;e,v<4', where <b:, = (stk + • • • + sPk1P) (55)

and S|, s2....... sP are integers.

Figure IX. Exchange coupling /( V) in Co/Cuv ('o((l()l) as a function of Cu thickness V determined numerically 
from Eq. (5(1).
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When the Fourier expansion of the function I(m. Aj. \ ) is substituted back in Eq. (5(1) 
it can be seen that for large ;V the imaginary exponential in the integrand oscillates rapidly 
as a function of Aj( and w. It follows that nonzero contributions to the integral come 
only from the neighborhood of points in Aj|-space at which <l>; is stationary. Similarly, all the 
contributions to the energy integral in Eq. (5(1) cancel except for those coming from the 
vicinity of a sharp cut off that occurs at an energy equal to the chemical potential p. It 
follows that we can expand the argument of the exponential function in powers of about 
the stationary point(s) and in powers of the energy w about the cut-off point m = p. Since 
the Fourier coefficient <\ is complex.

<;(w.Aj) = (56)

its phase must be included in the argument of the exponential function in Eq. (55). but we 
may assume that |c,| is a slowly varying function of A. and m and replace it by its value al (he 
stationary point [cut-off point). This is the essence of the stationary phase approximation. 
We therefore expand the function </>, in Eq. (55) and the phase of the Fourier coefficients 
i/r-. to first order in energy about the chemical potential p:

</>,(«) % (m) + (w - </'?(<*») % + (w - (-s7)

We also expand ’.he function </\ to second order in about its stationary points {Aj

</»,(A|) % <A.(Aj'') + ’ (k. - k"j ■ (a2<A.) • (k. - k" ) (58)

where (<*'</>, ) is the 2x2 Hessian matrix </»,),,./t = <*-’</>,/<Ui|(1<lA |;) evaluated al the station
ary point k'1 . Substituting these approximations in Eq. (5(1). we find that the A, integrals arc 
now Gaussian and can be easily evaluated analytically. Similarly, the energy integral can be 
evaluated analytically. We therefore obtain the following formula for the coupling, which is 
asymptotically exact in the limit of large spacer thickness (N -* oo)

____________rc<‘M____  ) (59) 
2NAh/ \ |det(^-'</>l-)|l 2sinh(7rA:fl7'[/V</>'i + i//J) / p k,.

Here Au/ is the area of the Brillouin zone and r = i when both second derivatives in the 
Hessian matrix are positive, t = — i when they are negative, and r = I when the derivatives 
have opposite signs.

All quantities in Eq. (59) are evaluated at the chemical potential of the spacer (i.e., w = p). 
We reiterate that the sum over {kjf} in Eq. (59) is simply a sum over the set of points in the 
two-dimensional Brillouin zone, at which </\(k) is stationary.

In the general case of a spacer layer Fermi surface (FS) with many sheets, the evaluation 
>f Eq. (59) is not easy. However for Co/Cu/Co(()()l). the problem is greatly simplified since 

the Cu FS has only one sheet in the direction perpendicular to the layers. In this case, 
the stationary points Aj" of </<(A^|) coincide with the extrema of the FS Ar(Aj|). The relevant 
cross section of the Cu Fermi surface in the direction perpendicular to the layers is shown 
in Fig. 19. It can be seen that there is a single extremum of k. (Ap at the belly of the Cu 
FS (the T point A^ = ()) and four extrema at the Cu FS necks l^a = (±2.53, ±2.53). where 
a = 3.6 A is the lattice constant of Cu. The corresponding oscillation periods are: p1' = 5.7 
atomic planes and p" — 2.6 atomic planes. The SPA formula for Co/Cu/Co(()()l) thus takes 
the form

where the sum over k" is taken over the belly and neck extrema and A = dk J (Im is the 
inverse FS velocity.
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We can now use the SPA formula (60) lo discuss the coupling ./(A') shown in f ig. IS. 
which was obtained numerically from Eq. (50). First of all. it can be seen from Eq. (60) 
that the coupling strength at low temperatures decreases approximately as ex 1/A'-, which 
is in good agreement with the dependence J(N) shown in Fig. IS. Deviations from the 
1/A'2 dependence occur because the derivative of the phase <//' of the Fourier coefficient 
is very large al the neck extrema (49]. The large value of i//' leads also to a much stronger 
temperature dependence of the coupling |50| than that predicted by early theories |44—47J.

The short oscillation period of 2.6 atomic planes visible in Fig. IS comes clearly from the 
neck extrema of the Cu FS. However, in agreement with the simple RKKY theory [52], 
the SPA formula (60) also predicts a long belly period of 5.7 atomic planes. To understand 
why this long period is not seen in Fig. 18. we need lo examine the amplitudes of both the 
oscillation periods. There are three factors that determine the amplitude: (I) the curvature 
of the Cu FS surface given by the Hessian matrix (<c</»,)„/} = <F<£,-/r>Alll<tA(2) the inverse 
FS velocity A = dk /dw: and (3) the magnitude of the Fourier coefficient c, at the belly 
(neck) extremum. The first two factors are just the property of the Cu FS. and these arc 
the only factors that determine the coupling strength in the simple RKKY theory [52]. It 
turns out [52] that the Cu FS curvature and the inverse FS velocity at the belly and necks 
are comparable. The RKKY theory thus predicts comparable amplitudes of the belly and 
necks oscillations. The numerical results are clearly incompatible with this prediction of the 
RKKY theory'. The correct explanation is that the magnitude of the Fourier coefficient c\ is 
the decisive factor, and we shall now demonstrate that | c, | is several orders of magnitude 
larger for the neck than for the belly extremum. Using the results for the matrix Mobius 
transformation derived in Section 3, we can plot the function F(/jl. k[', N) as a periodic 
function of the continuous variable N and thus determine easily its Fourier coefficients. The 
plots of F(fj.. k", N) as a function of N over its periodic interval arc shown in Fig. 20. Il can 
be seen that the amplitude of F(p.. k°, N) is almost three orders of magnitude larger al the 
neck than at the belly. The other qualitative difference is a discontinuity in F{/jl. k". A') at 
the neck extremum. The magnitude of F(fi. k". N) (of the Fourier coefficient) is determined 
by the “magnetic contrast" at the Co/Cu interface, i.e., by the degree of match/mismatch 
between the majority- and minority-spin bands of Co and Cu. This is illustrated in Fig. 21. 
It can be seen in Fig. 21(a) that the offset of the Cu and Co bands at the belly is small 
both for the majority- and minority-spin carriers. This is the reason why the amplitude of 
the belly oscillation period is small.

The most striking feature seen in Fig. 21(b) is that there is a hybridization gap in the 
minority-spin band structure of Co, which means that minority-spin carriers in the FM con
figuration are completely confined in the Cu spacer quantum well. On the other hand, 
majority-spin carriers are only weakly confined. The fact that there is a bound state at the 
neck is reflected in the discontinuity of F(p. k". N) seen in Fig. 20. As already discussed, it

Figure 19. Cross section of the Cu Fermi surface in iIk- direction perpendicular to the layers.
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Figure 20. (a) Integrand / < . p. X ) in I q. (50) al the Ixlly extremum A, (> plotted over the first period 0 X 
rr/A . (b) the same plot lot the neck extremum

is straightforward to Fourier analyze the function F(/z, k", N) and thus determine from the 
SPA formula (60) separately the contributions to the coupling coming from the belly and 
the four neck extrema. The results are shown in Fig. 22. As expected, the belly contribution 
to the coupling is more than two orders of magnitude smaller than that due to the four 
necks. Combining the neck and belly contributions, we obtain the total coupling in the sta
tionary phase approximation, which is denoted by broken line in Fig. IS. It can be seen that 
the agreement between the full numerical calculation and SPA is excellent for Cu thickness 
greater than %l() atomic planes.

It remains to compare the realistic calculations of the coupling for Co/Cti/Co((IOI) with the 
experimental results [35—43|. As already mentioned, the tight-binding calculations |4S. 49| 
are in excellent agreement with the LMTO light-binding calculations [61-63|. Both sets of 
calculations also agree with the Korringa-Kohn-Rostokcr (KKR) calculations |66. 67| for the 
same system. However, while the realistic calculations predict that the short (neck) period is 
dominant, virtually all experiments [35-43) show only the long belly period and hardly tiny 
sign of the short period. An exception is the experiment of Weber et al. |6K| in which the 
short period was clearly seen. However, the experimental method used by Webei cl al. docs 
not provide a quantitative estimate of the oscillation amplitudes.

I hc fact that the neck period is not clearly seen in the experiment is not surprising since 
any small interfacial roughness is likely to average out any short-period oscillation with a 
period of the order of the interatomic distance. This was initially also the case for Fe/Cr 
and only perfect samples grown on iron whiskers showed the short-period oscillation [34]. 
However, what is very surprising in the case of Co/Cu system is that the maximum observed 
strength of the long period belly oscillation is very large, of the order of one-third of the 
strength of the calculated neck oscillation. Superficially, one might be satisfied that the

Figure 21. Band structures oft u and ferromagnetic tec Co in the direction perpendicular to the layers al (a) the 
b.-llv and (b| the neck The Fermi energy p is denoted bv the dashed line.
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Figure 22. Contributions to the coupling from the belly (continuous line) and the four neck extrema (broken line) 
Note that the belly contribution is multiplied by a factor of 400.

overall magnitudes of the calculated and observed couplings are comparable but a closer 
examination reveals a serious problem. We recall that the calculated amplitude of the belly 
oscillation is more than two orders of magnitude weaker than that of the neck oscillation. 
While it is quite reasonable to argue that the neck period is suppressed by roughness, it 
is hard to see how any roughness could enhance the belly period calculated for perfect 
samples by a factor of the order of a hundred. This would be required to reproduce the 
observed amplitude of the long-period oscillation. To our knowledge, this problem remains 
unresolved. We can offer two speculative explanations. One clue might be the dependence 
of the coupling on the Co thickness. Most of the calculations referred to above were made 
for semi-infinite Co layers. One exception is the lirst KKR calculation of Lang et al. [66). 
which was made for two Co monolayers embedded in a Cu matrix. This shows that the belly 
oscillation is “revived” for Co monolayers and its amplitude becomes almost comparable with 
the amplitude of the neck oscillation. The same results were obtained in the tight-binding 
calculation of Mathon et al. |49|. However, experiments employ relatively thick Co layers 
and the observed dependence on Co thickness is very weak. It is therefore unlikely that this 
is the correct explanation of the large amplitude of the observed long-period oscillation.

An alternative explanation is based on the assumption that the short-period neck oscilla
tion is washed out by roughness. However, it is apparent from the Sl’A formula (60) that not 
only the fundamental but also higher harmonics contribute to the coupling. These are the 
terms with s > I in the sum in Eq. (60). When the coupling is considered as a function of 
the continuous thickness N, as is assumed in the Mobius transformation method, the period 
of the first harmonic of the neck oscillation is, of course, one half of the fundamental, that 
is. 1.3 atomic planes. However, when such a first harmonic oscillation is sampled only on dis
crete points N corresponding to the actual positions of Cu atomic planes, an oscillation with 
a period of almost exactly the same length as the belly period is obtained. This is illustrated 
in Fig. 23.

Assuming that this "long-period” oscillation is more stable with respect to interfacial 
roughness than the short fundamental neck period, the results shown in Fig. 23 could provide 
an explanation of the observed long-period ("pseudo-belly”) oscillation. The magnitude of 
the first peak in Fig. 23 is comparable with the maximum observed coupling strength. How
ever. we stress that this hypothesis is highly speculative and requires further investigation.

We have described methods for realistic calculations of the oscillatory exchange coupling 
with emphasis on applications to the archetypal Co/Cu system. Calculations for other sys
tems have been done but frequently the calculated coupling is much larger than observed. 
One reason for this discrepancy may be that virtually all calculations assume (sometimes 
implicitly) that electron interactions in the spacer arc negligible. This is obviously not the 
case for chromium which is known to have a spin density wave in the bulk. In the presence
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Figure 23. Calculated first harmonic of the neck oscillation sampled on atomic positions of the Cu planes

of a spin density wave, the calculations of the type described here arc clearly inappropriate. 
This may also be the case for other transition metal spacers even if they do not order spon
taneously in the bulk. However, a generalization of the exchange coupling calculations to 
fully self-consistent calculations tor the whole trilayer is numerically very difficult but would 
be very desirable.

5. BALLISTIC CURRENT-PERPENDICULAR-TO-PLANE 
MAGNETORESISTANCE

In Section 2. wc derived a resistor network model of the CPP GMR. This model is valid 
in the limit of an elastic mean free path shorter than the thicknesses of all the constituent 
layers forming a magnetic multilayer, that is. in the classical diffusive limit. However, this 
conventional point of view, which assumes that GMR arises entirely from interface and bulk 
impurity scattering, was challenged by Schep cl al. [69| who showed that a very large CPP 
GMR can be obtained in the ballistic limit without any impurity scattering. The classical 
Boltzmann equation or A-space Kubo formula, which is essentially equivalent to it. cannot be 
used to discuss the ballistic CPP GMR. This is because the A-space Kubo formula applies to 
a sample that is infinite in all three dimensions and is. therefore, necessarily in the diffusive 
limit. The correct treatment of the ballistic limit (the mean mean free path much longer than 
the whole sample) must be based on the Kubo-Landauer formula (27) of Section 3. which 
assumes from the outset that the sample is finite in the direction of transport of charge.

The original argument of Schep el al. was based on the Kubo-Landauer formula applied to 
an infinite superlattice of alternating magnetic anil nonmagnetic metallic layers. In this case, 
the transmission coefficient for each Aj. required in Eq. (27) of Section 3. is either I or (I. 
depending on whether the corresponding state at the Fermi energy lies in the allowed band 
of energies or not. One can thus use just the bulk-band structure of an infinite superlattice 
to apply this "counting" argument to evaluate the conductance. Schep el al. [69] found that 
the ballistic CPP GMR ratio for Co/Cu superlattices of various compositions is in excess 
of 100%, which is comparable to but somewhat lower than the highest observed values of 
the CPP GMR 170). One reason why the theoretical ballistic CPP GMR is somewhat lower 
than the observed values may be that the experimental CPP GMR contains a significant 
contribution due to scattering from imperfections in the bulk of the ferromagnetic layers 
which was discussed in Section 2. This effect is obviously missing in the ballistic treatment 
of CPP GMR.

The explanation of a high-ballistic TMR obtained by Schep et al. is simple. The bands 
of majority-spin carriers of Co at the Fermi surface are very similar to those of Cu since 
the d bands of majority-spin carriers lie below the Fermi surface (sec Fig. 9 of Section 2). 
It follows that the conductance of majority-spin carriers in the ferromagnetic configuration 
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is high since the corresponding bands in Co and Cu match very well and there is thus no 
scattering at (he interfaces. On the other hand, the Fermi level lies in the d band ol minority
spin carriers in Co and there arc no such states in Cu available for transport. In fact, we 
already showed in Section 4 that a large mismatch between the minority-spin bands in Co 
and those of cither spin in Cu (Fig. l) of Section 2) leads to the formation of quantum well 
states in Cu. Since these states arc localized in Cu they do not contribute to transport. The 
conductance in the minority-spin channel is thus low. Similarly, both majority- and minority
spin conductances in the antiferromagnetic configuration of the layers arc low. The shunting 
by the majority-spin channel in the ferromagnetic configuration, discussed in Section 2. then 
explains a large TMR.

The calculations of Schep et al. for an infinite superlattice were generalized in Ref. [25] 
to Co/Cu trilayers of finite thickness in the direction perpendicular to the layers. We show 
in Fig. 24 the dependence of the C PP GMR on the Cu thickness N (number of atomic 
planes) for a Co5/CuA./Co}(001) trilaycr sandwiched between two Cu semi-infinite leads. 
These results were obtained from Eq. (27) of Section 3 using the light-binding parameteri
zation of the Co/Cu band structure described in Section 4. The magnitude of the CPP GMR 
obtained for trilayers is very similar to that obtained by Schep et al. for an infinite superlat
tice but a new feature are oscillations of the CPP GMR as a function of Cu thickness. In 
contrast to the oscillatory exchange coupling discussed in Section 4. the CPP GMR oscilla
tions have a large constant bias equal to the asymptotic value of the GMR reached when 
the thickness of the Cu spacer layer becomes infinite.

In Fig. 25. we show the dependences of the partial conductances (transmission coefficients) 
r,r(Aj|) in the spin channel ct on Aj( in the ferromagnetic and antiferromagnetic configurations 
of a Co5/Cu8/Co5((M)l) trilaycr.

Figure 25 illustrates the band match/mismatch argument given above to explain a large 
CPP GMR for Co/Cu multilayers. The number of Aj channels contributing to the conduc
tance of majority-spin carriers in the ferromagnetic configuration (transmission coefficient 
%l) is clearly much larger than that in the minority-spin channel and also much larger that 
the number of open channels in the antiferromagnetic configuration.

The results for finite Co/Cu trilayers were further extended by Kudrnovsky et al. [71] to 
the situation when there is intermixing between Co and Cu atoms at the Co/Cu interfaces. 
They used tight-binding linear muffin-tin orbital method to evaluate the Landauer formula. 
Interdiffusion at the interfaces was treated using a lateral supercell with supercell dimen
sions of up to 7x7 atoms. In Fig. 26. we reproduce their results for Co5CuACo< trilayers 
sandwiched between Cu semi-infinite leads. It was assumed in the calculation of Kudrnovsky 
et al. that there is 15% interdiffusion of Co and Cu atoms at the interfaces.

Two interesting results can be deduced from Fig. 26. First of all, it is clear that the CPP 
GMR ratio is reduced significantly by the intermixing effect. This was already predicted by

Figure 24. Dependence of the magnetorcsistancc ratio of a Co, Cux ('o<(UO|) trilaycr on the Cu spacer layer 
thickness V.
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Figure 25. The A. dependences of die majority-spin I (Aj) (a) and minority-spin (b) conductances in 
the ferromagnetic configuration. and the A, dependence of the conductance I" • (A,) in the antiferromagnetic 
configuration (c).

Itoh et al. [72] using a single-orbital light-binding model and the real-space Kubo formula. 
They showed that the CPI’ GMR decreases with increasing disorder, whereas the CIP GMR 
(also calculated by Itoh et al.) increases with increasing disorder.

The second effect of intermixing is that the oscillations of CPP GMR seen in Fig. 24 and 
in Fig. 26 in the absence of intermixing, are suppressed by disorder. That is most likely the 
reason why such oscillations have not yet been observed. However, we shall see in Section 6 
that they arc observable in another CPP experiment (i.e.. tunneling niagnetoresistance). 
Since the origin of magnctorcsistanee oscillations is common to CPP GMR and tunneling 
MR, we shall now discuss the oscillations of the CPP GMR in some detail. We follow the 
argument of Ref. [73|. where the physical origin of such oscillations was explained using 
a sc single-orbital tight-binding model of a magnetic trilayer with ((Mil) layering and with a 
nearest-neighbor hopping /. A trilayer with two semi-infinite magnetic layers separated by a 
nonmagnetic layer of .V atomic planes was considered. It follows that carriers are scattered 
from a single potential well/barricr having different height for the majority- and minority
spin carriers. To model qualitatively the situation in C'o/Cu, it is assumed that there is perfect 
matching of bands between the ferromagnet and spacer in the majority-spin channel. There 
is therefore a potential well for minority-spin carriers in the spacer layer but no wells or 
barriers tor the majority-spin earners. Applying the Kubo-Landaucr formula to this model, it 
is easy to evaluate the CPP GMR. The computed |73] CPP GMR is shown in Fig. 27 for two 
qualitatively different situations. In the first case [Fig. 27(a)], the Fermi energy E, = 0.8 and 
the exchange splitting between the majority- and minority-spin bands A = 0.6 (all energies 
are measured in units of hopping /) were chosen so that lies close to the top of the

Figure 26. Comparison ol irilayers with I5f<-inlerdiffuscd interfaces with ideal Ct),/Cuv /Co, irilayers sandwiched 
between semi-infinite Cu leads as a function of the spacer thickness A': niagnetoresistance ratio lor ideal trilayer 
(diamonds); one of the inner interfaces inlerdiffuscd (up triangles): both inner interfaces inlerdiffuscd (empty up 
triangles): two inner and one outer interfaces inlerdiffuscd (down triangles): all tour interfaces inlerdiffuscd (empty 
down triangles)
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Figure 27. Dependence of the CPI’ GMR ratio on the nonmagnetic spacer layer thickness tor (a) /, — 0.8, A = (•.<>; 
(b) Ef - 0.8. A = 0.3.

spacer potential well in the minority-spin channel. In the second case [Fig. 27(b)], lies 
some distance above the top of the well (/:, = O.S. A = 0.3). In both cases, well-defined 
oscillations of GMR with spacer thickness N occur. The most remarkable feature seen in 
Fig. 27(a) arc beats which clearly demonstrate the presence of two periods in the case when 
E,, lies close to the top of the well. We recall that the exchange coupling evaluated for 
the same model oscillates with a single period determined by the spanning vector of the 
spacer layer Fermi surface (there is only one such spanning vector for the sc tight-binding 
model considered here). The presence of two periods indicates that there is a qualitatively 
different mechanism involved. The single-orbital tight-binding model used here allows us to 
identify it unambiguously since one can derive for this model a closed expression for the 
Kubo-Landauer formula [73]. The conductance in a spin channel a is given by

r.r = Is y__________________ sin^Ac^q) Imgg__________________

h | sin(AZ + l)At« - (g£ + g^) sin( AAxa) + sin(/V - l)Aja |2

where kx is the wave vector perpendicular to the layers, a is the lattice constant, g", g% arc 
the one-electron surface Green functions for the trilayer cut between the atomic planes L 
and R, and all energies are again measured in units of the hopping / (t = 1).

The key feature of the total conductance clearly seen in Eq. (61) is that all the partial 
conductances r',T(Aj|) in individual Ag channels are periodic functions of the spacer layer 
thickness N. It follows that the total conductances (and, therefore, GMR) must oscillate 
as a function of the spacer thickness. It should be noted that the periodic behavior of 
the conductance, seen explicitly in Eq. (61), is just a consequence of the general periodic 
(quasi-pcriodic) property of one-electron Green functions for a layer system discussed in 
Sections 3 and 4.

Since the conductance F"(Aj) is a periodic function of the spacer thickness it can be 
expanded in a Fourier series

F" = 5252cf(*i)exP(2,’r^J.(^’<62) 
*i '

where c''(Ag) is the Fourier coefficient of F,r(Aj). This allows us to isolate the oscillatory part 
of the conductance and apply to it asymptotic expansion methods valid for large spacer thick
ness. This approach was already explained in Section 4 in the case of oscillatory exchange 
coupling. It is based on the following argument. For large spacer thickness A', the imaginary 
exponential in Eq. (62) oscillates rapidly as a function of Ag and. therefore, the contributions 
to the sum in Eq. (62) from different Ag tend to cancel. There arc only two situations in 
which the cancellation docs not occur: (1) in the vicinity of a point Aj|" at which the phase of 
A (Aj|. E, ) is stationary: (2) in the vicinity of a boundary at which the sum over Aj, terminates 
abruptly. It follows that one needs to identify all the stationary points Ag" of A (Aij. E,) and
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all the cutoff points Aj, " at which I ’’) vanishes. All possible oscillation periods of the 
conductance (GMR) arc then given by - A (Aj". /•_, ) and tf/A (A^ / , ).

Case I requires no special discussion since the periods coming from the stationary points ot 
A (Aj|, Ef.) are exactly the same as the periods of the oscillatory exchange coupling obtained 
in Section 4. Case 2. however, is new and has no analog in the theory of oscillatory exchange 
coupling. It follows from Eq. (61) that the boundary' in the Aj, space at which F"( A^) vanishes 
is defined by

Img£ = 0 and/or lmgjj=() (63)

where "or" applies in the antiferromagnetic configuration. This has a simple physical inter
pretation. In the C PP geometry the conductance in a channel A, vanishes when carriers at 
Ef with that particular value of become totally reflected from either the left or right 
ferromagnet. That happens when the state (Et.. ) lies outside the band of the left (right) 
ferromagnet. in which case the corresponding spectral density Img)r(lmg)J) vanishes.

While it is straightforward to identify the oscillation periods, asymptotic expansions that 
give the amplitudes of the corresponding oscillations are more difficult for the cutoff periods. 
In the case of oscillations arising from stationary points of the spacer layer Fermi surface, 
the application of a stationary phase approximation proceeds along the same lines as that 
for the oscillatory exchange coupling (Section 4). The amplitude of such oscillations |73| is 
determined by the curvature ol the spacer Fermi surface and by the mismatch between the 
ferromagnet and spacer bands at the stationary point Aj". The oscillation amplitude decreases 
with the spacer layer thickness as od/JV. This is slower than for the oscillatory exchange 
coupling because, in the latter case, there is an additional factor \/N which arises from the 
energy integration. This is absent for GMR since transport takes place at the Fermi level.

Asymptotic expansions for the cutoff periods are much more difficult and have been done 
only for a parabolic band model of the magnetic trilayer |73|. They show that the period is 
determined by the depth of the spacer potential well in the minority-spin band, assuming 
again perfect matching in the majority-spin band, and the amplitude decays as od/A/1 ’.

Although oscillations of the CPP GMR have not yet been seen experimentally, they arc 
an important feature of perpendicular transport since their observation would be direct 
evidence for phase coherence ol the wave functions across the whole multilayer (i.e.. a clear 
test of the ballistic limit).

The conventional analysis of current CPI’ GMR experiments [70] seems to indicate that 
thev arc mostly in the diffusive regime to which the simple resistor model of Section 2 
applies. However, this conclusion is somewhat controversial. There is no doubt that quantum 
reflections from interfaces that can only be treated realistically by theories based on the 
Kubo-Landauer formula make an important, if not the most important, contribution to the 
CPP GMR. This is clear from the results of Itoh et al. [72] and Kudrnovsky et al. [71]. which 
show' that interfacial roughness (impurities) not only do not give rise to CPP GMR but, 
in fact, reduce the value of GMR due to reflections from perfect interfaces. However, the 
problem is that the contribution of reflections from perfect interfaces to the CPP GMR can 
also be modeled phenomenologically by a resistor model, provided phase coherence from 
one layer to the next is broken, which happens in the presence of an even quite weak disorder 
|74|. Therefore, the fact that a simple resistor model describes well most experimental results 
docs not mean that CPP GMR is governed by interfacial roughness, as is assumed in the 
classical treatment based on the Boltzmann equation. Detailed discussion of both theoretical 
and experimental results on CPP GMR is given in a comprehensive survey article by Ciijs 
and Bauer [ 14|.

6. TUNNELING MAGNETORESISTANCE
Tunneling from normal metals, including ferromagnets. to superconductors is a well- 
developed field and there is an excellent review given by Meservey and Tedrow [75] covering 
this subject. Tunneling between two ferromagnetic electrodes and its dependence on the 
relative orientation of the magnetizations of the left and right electrodes, i.e.. the tunneling 
magnctorcsistancc (TMR) was first observed bv Julliere [76] and Mackawa and Giifvcrt |77|. 
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Julliere was also first to estimate the magnitude of the tunneling magnetoresistance using 
the classical theory of tunneling which had been formalized earlier by Bardeen [78]. How
ever, these early experiments gave the TMR of only a few percent and were often not 
reproducible. Also the effect quickly disappeared with increasing temperature and under 
an applied bias higher than a few millivolts. Over the next twenty years no real progress 
has been made until 1995 when Moodcra et al. showed 179] that a large TMR over 10% 
could be obtained consistently and reproducibly at room temperature with junctions based 
on Al:(), barrier. Similar results were obtained by Miyazaki and Tezuka |80]. We show in 
Fig. 28 more recent results of Moodera et al. [811 for a Co/Al?O,/Ni,S0Fc,0 junction which 
give a TMR of some 27% at low temperature and 20% at room temperature. The results 
shown in Fig. 28 can be understood as follows. At high magnetic fields H the two ferromag
netic films have their magnetizations ,V (indicated by arrows) aligned in the direction of //. 
Upon reversing the field, AfNU.(. (with a lower coercive field) aligns itself in the new' field 
direction, whereas A/tl, (with a higher coercive field) remains magnetized in the original II 
direction, creating antiparallel arrangement of the two magnetic layer moments. As II is 
further increased. A/(>, also aligns in the new field direction, restoring parallel orientation 
of the two magnetic moments. It can be seen that the resistance of the junction is lower for 
the parallel configuration of the magnetic layer moments than for the antiparallel configu
ration and this gives rise to a TMR. Denoting the conductance of the tunneling junction in 
the antiparallel (antiferromagnetic) configuration by 1AP and the conductance in the parallel 
(ferromagnetic) configuration by ljM. we can define the “pessimistic” TMR ratio by

r 1 - r_1
TMR = Al~ (64)

The values of the TMR quoted above were obtained using this pessimistic definition. The 
optimistic magnetoresistance ratio, we defined in Section 2 for the GMR, is also used in the 
literature.

The reasons why all the earlier attempts at obtaining a high TMR were unsuccessful 
are essentially due to growth problems and are discussed in detail in a recent review [82|. 
Moodera’s demonstration of a reproducible high TMR was followed by a hectic experimen
tal activity (sec Ref. [82]) but. until very recently, virtually all experiments were made on 
junctions with an A1;O, barrier. In spite of this great effort only a very modest improve
ment in TMR has been achieved and the current record for junctions based on an A1,O, 
barrier stands at about 60-70% (optimistic TMR ratio). The TMR experiments can be quite 
successfuly interpreted using Julliere’s model and it is easy to understand within this model 
why there is an upper limit on the TMR of junctions based on allumina barriers. We shall,

Figure 28. Resistance of a magnetic tunneling junction as a function ot the applied magnetic field.
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therefore, first derive Julliere’s formula and then discuss its application to alumina-based 
junctions.

Consider tunneling between two normal nonmagnetic metals separated by a thin insulating 
barrier. In the absence of an applied voltage, the Fermi levels of the two electrodes must 
be equal (no current Hows). An applied voltage U(, shifts the energy levels in one of the 
electrodes relative to the other by cl),. This amounts to an energy shift cF,. between the two 
Fermi levels that gives rise to a tunneling current. Using the classical theory of tunneling 
[7<S|, one evaluates the current /(FA,w) flowing al a given energy w between the left (/.) 
and right (/?) electrodes from Fermi’s golden rule. This gives |75]

/(I)., w) oc| t(w) |’ D, (w —elj,)/)K(w)|/’(w - eF,,) - / (<o)|</w (65)

where I), (w). /)/zi w) are the densities of states of the left and right electrodes. l/J <t»)| is the 
square of the tunneling matrix element, and /(w) is the Fermi function. Strictly speaking. 
Eq. (65) applies only to a one-dimensional system [7<S], However, it is usually assumed |75. 
76| that />;(w), />A(w) are the total (three-dimensional) densities of states of the left and 
right electrodes. I. is further assumed (75] that the tunneling matrix element is independent 
of the energy over the relevant energy range ^<’FZ,. The total tunneling current is then 
obtained by integrating Eq. (65) with respect to the energy

/(I,,. w) <x| / | / I), (w - cF?,)/)k(w)|/’(w - eF,,) - (66)
* - X

In the low-bias regime, wc can divide Eq. (66) by el), and take the limit F,, —» (I. Because 
at low temperatures lim,.». ,(i|/(a> - eF,,) — /(<u)]/eF,, =6(<o E, ). where /:, is the Fermi 
energy, wc find

a|/|? /J, (/., )/)„(£,) (67)

where ill/dV',. — I is the zero-bias conductance of the tunneling junction. Il is clear from 
Eq. (67) that in the low-bias regime. / or F,,. that is. the junction displays an Ohmic behavior. 
Equation (67) was applied by Itillicrc [76| to discuss the magnitude of the observed tunneling 
magnetoresistancc. In the case of magnetic electrodes, the densities of states for carriers with 
spin parallel and antiparallel to the magnetization are different because the energy bands of 
up- and down-spin carriers are split by the exchange interaction. This is illustrated in Fig. 8 
of Section 2.

To take into account the dependence of the tunneling current on the relative orientation 
of the magnetic moments of the two electrodes. Jullicrc made an additional assumption that 
the spin of carriers is conserved in tunneling. As discussed in Section 2, spin-flip scattering 
is usually an inelastic process and. therefore, this is a good approximation at low tempera
tures. It then follows that tunneling of up- and down-spin carriers are two quite independent 
processes, i.e., the tunneling current flows in the up- and down-spin channels as if in two 
wires connected in parallel. We have already used such a two-current model in Section 2 
to interpret the closely related giant magnetoresistancc effect. Using Eq. (67). we then find 
that the conductance in the antiferromagnetic configuration l'.M a. D, D'H + Dj Dl(. and the 
conductance in the ferromagnetic configuration is given by 1 FM oc L)t l)H + D'lL)'k. Introduc
ing two parameters P, and P, characterizing the left aid right electrodes P, = |/),(£’,.) — 
/?;(£>)]/[/?;(?.; ) + /),•(£', )] and P, = [Z)K(EJ - />,;(£’, )|/|^(E) ) + D^E,. )|. we can 
rewrite the TMR ratio (64) in the form most commonly used to analyze experimental results 
(Julliere’s formula).

The parameters l\ and P? can be determined independently from measurements of the 
tunneling current in FM-I-S junctions, in which one of the electrodes is a ferromagnet and 
the other is a superconductor |75|. An analysis of such experiments based on Eq. (66) in 
which />,.('•>) is now the density of states of the superconductor viclds the values of l)f (Ef.). 
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D\(Et.) and. hence. P for each particular ferromagnet. Since it follows from Eq. (67) that 
the tunneling current of up-spin carriers in an FM-I-S junction is proportional to D^E?) 
and that of down-spin carriers is proportional to D/iE,). the parameter P can he interpreted 
as the relative spin polarization of carriers tunneling from a ferromagnet. Il is assumed here 
that D"(w) is approximately independent of energy and can be taken as /)"(£,.) outside 
the integral in Eq. (66). The measured values of P for Fe. Co. and Ni are |82| /*, v ~ 40%, 
PClt = 35%, and PNj = 23%. When these values of P are substituted in Eq. (68). they give 
a good estimate of the observed TMR in junctions based on Fe. Co, Ni with an allumina 
barrier. However, there is one serious problem with Julliere's formula. It gives a wrong 
sign of the spin polarization. Examination of the densities of states of Fe, Co. and Ni (sec 
Fig. 8 of Section 2 for Co, Fe) shows that the spin polarization for Co and Ni deduced front 
the density of states should have negative sign (the density of states of the minority-spin 
carriers at E, is higher than that of the majority-spin carriers). However, the observed spin 
polarizations deduced from measurements of the tunneling current in FM-l-S junctions are 
positive for Co and Ni (as well as for Fe). We shall return to this problem later.

It is easy to understand the apparent success of Julliere’s formula in predicting the right 
magnitude of TMR. It is entirely due to factoring of the tunneling current into a product 
of factors depending separately on the properties of the left and right electrodes. Because 
these properties remain the same for FM-I-S and FM-I-FM junctions employing the same 
insulating barriers, the polarizations obtained from FM-I-S junctions must be consistent with 
the TMR ratio for FM-I-FM junctions based on the same ferromagnets. The real reason why 
Julliere's formula is valid for junctions with allumina harriers (apart from the wrong sign of 
/’) is that all such barriers are amorphous and tunneling is thus incoherent, that is. the wave 
vector of carriers parallel to the layers is not conserved. It follows that there is no need 
to match the carrier wave functions across the whole junction and Julliere’s treatment of 
tunneling is thus adequate. Using Julliere's formula, it is easy to understand why only a very 
modest improvement of the TMR ratio has been achieved over the last It) years. The failure 
to improve the TMR ratio is due, entirely, to the fact that virtually all experiments were 
performed on junctions with amorphous allumina barriers. Since it follows from Julliere's 
formula that the TMR ratio for a given combination of the left and right ferromagnetic 
electrodes is determined completely by the spin polarizations of the two ferromagnets. there 
is an upper limit on the TMR determined by the densities of states of up- and down-spin 
carriers at the Fermi level. Since the densities of states are fixed for conventional transition 
metal ferromagnets, the scope for improving TMR in junctions with amorphous barriers is 
very limited. Similarly, realistic modeling of an amorphous barrier is virtually impossible and 
there is, therefore, very little that can be achieved theoretically for incoherent tunneling. On 
the other hand, for a perfectly ordered epitaxial junction, tunneling is determined by the 
matching of wave functions for each across the whole junction. This can be controlled 
predictively through the choice of materials for the electrodes and the barrier and also by the 
choice of crystal orientation of the junction. Epitaxial junctions with coherent tunneling arc. 
therefore, much more interesting. Moreover, we shall see that their TMR can be computed 
rigorously using a fully realistic band structure of all the components of the junction.

6.1. Simple Models of Coherent TMR

The need for matching the wave functions across the junction was first recognized by Slon
czewski [57|. He described the ferromagnet by two simple parabolic hands (one for up-spin, 
the other for down-spin) shifted rigidly with respect to one another by an amount A (the 
exchange splitting). Assuming that is conserved, he then solved the Schrodinger equa
tion for the wave functions of up- and down-spin carriers tunneling across a rectangular 
barrier and determined the current from the current operator. The principal result of Slon- 
czewski’s calculation is that the polarization P of tunneling carriers now depends on the 
height of the barrier U through an imaginary wave vector z’k in the barrier defined by 
hK = [2m(U - )]' 2

A1 -A-i K‘-k'k- 
k' + k- k- + k' k- W)
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Here. A’, k- are the Fermi wave vectors in the up- and down-spin bands. Using the result 
A x l> (I , ). A' "x I) (L, ). which holds for parabolic bands, it is easy to see that the first 
factor (A -A - )/(A' + A •) is the polarization obtained in the classical theory ol tunneling but 
the second factor A =Ak' — A’k-)/(x + A A-) is new. Since k ranges from I) (low barrier) 
to ex, (high barrier), we have - I < A < 1. It follows that, for a high barrier, the polarization 
P given by Eq. (69) reduces to Julliere’s result but P can even change sign when the barrier 
is low.

While Slonczewski's model treats the ferromagnet barrier interface more realistically than 
the classical theory of tunneling, the method of matching the wave functions is not easily 
generalizable beyond a simple parabolic band. It is for this reason that virtually all recent 
theories of TMR arc based on the general Kubo-Landauer formalism described in Section 3. 
We shall lirst illustrate its application to TMR for a single-orbital tight-binding Hamiltonian 
on a simple cubic lattice w ith nearest-neighbor hopping tl,ulk. Using a tight-binding descrip
tion, one has two options how to model a tunneling junction. Harrison proposed 117) to 
model tunneling by turning off the tight-binding hopping integral between two neighboring 
atomic planes. This is a good approximation to tunneling across a vacuum gap. The other 
option is to consider tunneling between two ferromagnetic electrodes through a barrier which 
consists of (V atomic planes of an insulator with an on-site potential Fin, chosen so that the 
Fermi level I., lies outside its band of allowed energies. We shall lirst discuss briefly TMR 
due to tunneling across a vacuum gap. Wc assume that the electrodes arc parallel to a ((MH) 
plane, and the surface atomic plane of the left electrode (atomic plane I.) is connected to 
the surface plane of the right electrode (plane R) by a nearest-neighbor hopping integral 
q R. Because the hopping integral /1R is determined by the overlap of the wave functions in 
the left (I.) and right (R) surface planes, we can model tunneling by decreasing qR gradually 
from tbulk (absence of vacuum gap) to zero (infinitely wide gap). Il follows from Eq. (27) of 
Section 3 that the total conductance in a spin channel tr takes the form

pr _ 4t'2/fR y . AP1»1Kk(/;/ , *|) 7|

where ££(£,. ,Aj) and a^(h.i.k^) arc the surface Green functions of the left- and tight 
isolated electrodes. To calculate the TMR ratio, it is necessary to determine from Eq. (70) 
the conductances E' and I’1 of up- and down-spin carriers in the ferromagnetic and antifer
romagnetic configurations of the magnetic electrodes.

Equation (70) has a simple physical interpretation. Since -(l/77)lm g/(. Aj) and 
(l/ir)ImXr(^-i' Aj|) are the one-dimensional surface densities of states (spectral densities) 

in a channel (tr. Aij) for the isolated left and right electrodes, the tunneling current in every 
channel (<r. ) is proportional to the product of the one-dimensional densities of states of 
the two electrodes, but the product is scaled by the denominator in Eq. (70). As in Slon
czewski's model, the denominator in Eq. (70) describes the mutual interaction of the two 
electrodes due Io an overlap of the carrier wave functions.

A close link between the rigorous Keldysh-Landauer theory and the conventional classical 
theory of tunneling is now obvious. When the vacuum gap is large q R % 0, the denom
inator in Eq. (7(1) can be set equal to unity. The conductance in each (rr.Aj) channel is 
then proportional to the product of the one-dimensional densities of states of the left and 
right electrodes. The total conductance is the convolution of the one-dimensional densities 
of states over Aj. This is the result of Bardeen’s theory of tunneling. Moreover, since the 
multiplicative factor q;R in the numerator of Eq. (70) cancels out in the TMR ratio, the tun
neling magneloresistance becomes independent of the gap width. This again is in agreement 
with the classical theory of tunneling. Wc stress, however, that Julliere’s formula is differ
ent because it involves three-dimensional densities of stales. We shall sec that to deduce 
the Julliere’s formula from the Kubo-Landauer formula one needs to consider the effect of 
disorder that breaks the conservation of A^.

We shall now discuss tunneling through an insulating barrier using the same single-orbital 
tight-binding Hamiltonian as for tunneling through vacuum gap. Such a model has been 
used to determine the dependences of the TMR on the height and width of the insulating 
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harrier [831 and also to investigate the effect on I MR of disorder at the ferromagnet/ insu
lator interface |84| and of impurities in the insulator [85].

In the case of coherent tunneling through a high harrier, the Keldysh-Landauer formula 
lakes the following simple form |83)

i - y_________ ___________________ (7i ,
\ ii ) |i+

where gffEy.Aj) and Aj|) are again the surface Green’s functions of the isolated 
left and right electrodes, k,, is the value of the imaginary wave vector k in the harrier 
averaged over the two-dimensional Brillouin zone, a is the lattice constant, and all energies 
are measured in units of the hulk hopping rbll|k, Equation (71) holds in the limit k(Iw » I. 
that is, when electrons in the harrier are strongly attenuated over distances of several lattice 
constants.

The structure of Eq. (71) is virtually identical to that of Eq. (70) for tunneling across a 
vacuum gap. The multiplicative factor e again cancels out from the TMR ratio and 
since the denominator in Eq. (71) tends to unity in the limit of a high barrier c I,
the TMR ratio approaches the same saturation value as for tunneling across a vacuum gap 
in the limit of a wide gap f|u/fbll,k « I. It can be seen from Eq. (71) that the I MR ratio in 
the high-barrier limit K„a 3> I becomes independent of the barrier height and width. Neither 
is true when the barrier is low. The dependence of of the optimistic ratio /?IMR on 
(B is the band width) determined numerically [83| from Eq. (71) is shown in Fig. 29 for 
three thicknesses of the insulating barrier N = I. 3, and 5 atomic planes. The values of the 
ferromagnet parameters were chosen to mimic a junction with Co electrodes which will be 
discussed later using a fully realistic band structure of Co. It can be seen from Fig. 29 that 
the KTMR increases with increasing barrier height and reaches a saturation value for barrier 
heights of the order of the band w idth (saturation is reached most rapidly for the narrow 
barrier N = I).

The dependence of the TMR ratio on the barrier width N (measured in atomic planes) 
is shown in Fig. 3() for three heights of the tunneling barrier: f/ll,s/W/ = 1.0, 2.0, and also 
for a very low barrier F^/IT = 0.58 (EA just outside the insulator band). As expected from 
Eq. (71). the dependence of TMR on /V is weak for a high potential barrier (E„„/1F = 
2.0) but the TMR ratio decreases rapidly with N when the insulating barrier is very low 
(Eins/1F' = 0.58).

6.2. Influence of the Electrode Band Structure on TMR
Although Julliere’s formula and Keldysh-Landauer theories based on a one-band model pro
vide useful insight they can predict neither the magnitude of TMR nor the correct sign of the

Figure 29. Dependence of the tunneling niagnetoresistance on the height I ot a barrier for barriers whose thick
nesses are one (triangles), three (squares), and live (circles) atomic planes Single-orbital light-binding bind with 
band width It .
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S

Figure 30. Dependence ot the tunneling ntagnetoresisiance <>n ihc nunbct ol atomic plane* in a harrier lor three 
heights of the barrier I . measured in units ol the band width H I II = 2.0 (squares); I II - 1.0 (circles). 
I ,,,/li — I.Il (triangles).

spin polarization. Key to this problem lies in the multiorbital band structure ot the ferromag
netic electrodes. It was pointed out by Stearns [86] long ago that it is conduction rather than 
</ electrons that lannel from transition metal ferromagnets. One should not. therefore, look 
al the total density of slates which is dominated by </ electrons but only al those portions 
of the Fermi surface that are of ,v-/> character. She then argued that such portions of the 
Fermi surface lead to the correct sign of the tunneling current. Numerical evaluation ol the 
Kubo-Landauer formula using fully realistic band structure of the ferromagnetic electrodes 
allows us to test this idea. There arc three such calculations dealing with tunneling between 
Co electrodes across a vacuum gap |83|. tunneling between Fe electrodes through a simple 
step barrier |87|. and tunneling from Fc and Co to an v-band through a barrier modelled by 
two v-bands separated by a gap |88|.

The calculation of tunneling between Co electrodes across a vacuum gap [83] is based on 
numerical evaluation of the Kubo-Landauer formula (27) of Section 3 using a tight-binding 
parameterization of Co bands fitted to an ab initio band structure |64|. As already discussed, 
one can model within the light-binding scheme tunneling across a vacuum gap by turning oil 
gradually the tight-binding hopping matrix between the Co electrodes |83|. The conductances 
I", F- of the majority- and minority-spin carriers in the ferromagnetic anil antiferromagnetic 
configurations of the CofOOl) junction were determined tn Ref. 1831 as functions of electron 
hopping across the vacuum gap. We have used these data to plot in Fig. 31 the dependence 
of the spin polarization of tunneling electrons /’ = (I” - I -)/(I’T + I’1) on the width of the 
vacuum gap. 1'hc width of the gap is characterized by the reciprocal of hopping t between 
v orbitals measured in units of bulk hopping in Co. For a small vacuum gap of the order 
of the lattice constant (I// % 1). the conductance is dominated by il electrons and /’ has 
the "wrong” sign /’ < 0 consistent with the total density of states argument of the classical 
theory of tunneling |76|. However, there is a rapid crossover to /’ > 0 as the width of the 
gap increases. It can be seen from Fig. 31 that the calculated /’ for C’o((M)l) junction not 
only has the correct sign in the tunneling regime I// » 1 but its magnitude 3(1—4(Kr is 
in excellent agreement with the observed [82] /* % 35%. The corresponding value of the 
calculated optimistic TMR ratio is ~65%, which is again in good agreement with experiment.

o 2 4 ., * t<>i /t

Figure 31. Dependence ot the spin polarization of electrons tunneling across a vacuum gap between two Co elec
trodes on th;- reciprocal of electron hopping ' between the electrodes (w idth of the gap)
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I he crossover from negative to positive P occurs because the overlap of </-orbitals decreases 
with increasing gap much faster than that of .v-orbitals and it is. therefore, ,v electrons that 
ultimately determine the conductance in the tunneling regime. The same pattern emerges 
from the tight-binding calculations [88] of the conductance of Co and Fe due to tunneling 
to an .v-band provided only sp bonding at the metal/insulator interface is included. The 
calculated values of P 35% and P 45'7 for Co and Fe are again in excellent agreement 
with the observed results [82]. One may. therefore, conclude that direct tunneling between 
(I orbitals of the ferromagnets through AEO, barrier must be weak. The calculation of 
tunneling between Fe electrodes through a simple step barrier [87], based on layer Korringa- 
Kohn-Rostoker method, also gives the correct sign of P. but the calculated values of P are 
much higher than observed.

6.3. Effect of Disorder on TMR—Toward a Generalized Julliere's Formula
All the theories discussed above assume coherent tunneling, that is, conservation of the 
momentum parallel to the junction. This is not satisfied for AI,O( barriers which arc 
amorphous. The theories of noncoherent tunneling fall into two categories. Either a simpli
fied treatment of disorder is combined with a realistic band structure or a simple (one-band) 
model is used but disorder is treated realistically. The simplest treatment of disorder in the 
barrier is provided by the Julliere’s formula, which assumes that tunneling from any occupied 
state of the left electrode to any unoccupied state in the right electrode is equally probable. 
This is a reasonable model of disorder but the problem with the Julliere’s formula is that 
it leads to an incorrect sign of the tunneling current. Il also fails to describe TMR in junc
tions with a nonmagnetic metallic interlayer. To find out how the Julliere’s formula can be 
corrected, it is necessary to examine the approximations that are made to derive it from the 
exact Kubo-Landaucr formula (27) of Section 3. There arc three approximations involved:

1. It is assumed that in the tunneling regime t % (I (electron hopping between the elec
trodes is weak), the Kcldysh-Landauer formula can he linearized, i.e., T,, = t(l -

g^t)"1 ‘
2. Only tunneling between the same orbitals is considered and assumed to be equally 

probable, i.e., the hopping matrix t is replaced by r(lI, where I is a unit matrix in the 
orbital space and l() is a single tunneling matrix element independent of £.

3. Complete loss of coherence across the barrier (vacuum gap) is imposed; that is, it is 
assumed that a state Aj| tunnels with an equal probability to any other state kJ.

With these approximations, the Kcldysh-Landauer formula takes the form

£jy-|'ol’ ETrlmgK(£f ETr,mS7(£F’*|') (72)

where /V] is the number of atoms in the plane of the junction. Since the expressions in the 
brackets are (up to a factor 1 /tt) the total densities of states of the right and left electrodes. 
Eq. (72) reduces to the usual expression for the conductance obtained in the classical theory' 
of tunneling [76],

It will be seen in the next section that the linearization (approximation (1)) of the Kubo 
formula is the reason for the failure of the Julliere’s formula to exclude from the tunneling 
current the spurious contribution of quantum well states that are formed in junctions with 
a nonmagnetic metallic interlayer.

The approximation (2) is responsible for the incorrect sign of the spin polarization P 
predicted by Eq. (72) for Fc, Co. and Ni. This is because the formula (72). based on the total 
DOS, allocates equal weights to tunneling via d states and v-p states. In reality, tunneling 
via s-p states dominates.

The approximation (3) is useful since it provides the simplest way of dealing with loss of 
coherence in tunneling (non-conscrvation of fc).

Based on this analysis, it is clear how the Julliere's formula should be corrected to elimi
nate the aforementioned problems. First of all. bound (quantum well) states, which do not 
contribute to transport of charge, must be omitted from the sum over and fc’ in Eq. (72).
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The second approximation cannot he made since it leads io an incorrect sign of the 
tunneling current It is. therefore, necessary' to keep the dependence of the hopping matrix 
on the orbital indices.

Finally, complete loss of coherence implies that hopping between the electrodes is a con
stant matrix (independent of the wave vector), which can be approximated by t(0). where 
t(0) is the value of the diagonal hopping matrix clement for fc, = (I. This is reasonable since 
the perpendicular tunneling with Ag = 0 is expected to dominate.

The generalization of the Julliere’s formula (72) incorporating all the corrections discussed 
above takes the form

till) hnG^E,. Aj) £ t (0) Im «/(/</, Aj,)
- -I L A,

(73)

where the prime indicates that all the quantum well states are excluded and the trace is 
again over all the orbital indices.

The structure of Eq. (73) is very similar to that of the Julliere’s formula. However, there 
are two important differences. All the nonpropagating (quantum well) states are removed 
from the DOSs of the left and right electrodes and the DOS of each electrode is multiplied 
by the hopping (tunneling) matrix t. The latter means that the trace over the orbital indices 
can no longer be factorized as in the original .lullicrc's formula (72). The generalized Jul- 
Here’s formula (73) provides the simplest physically plausible description of tunneling in the 
presence of disorder |89|.

Rigorous studies of the effect of disorder on tunneling, based on a single-orbital tight- 
binding model and the Kubo formula ]85|, show that, in addition to a mixing of fc channels, 
disorder also leads to resonant tunneling via localized electronic states which are formed in 
the barrier in the presence of impurities or defects [90-92]. Resonant tunneling results |85) in 
quasi-onc-dimcnsional high-conductance channels, which dominate tunneling when disorder 
is high and the barrier is thick. Il follows that the tunneling current is determined not only 
by the intrinsic properties of the ferroinagnet, such as DOS for a given spin, but also by the 
type and degree of disorder in the barrier. In spite of that, the numerical results of Ref. (85] 
indicate that the I MR ratio is approximately given by the Jullicic’s formula. Ulis suggests 
that, even in the presence of resonant tunneling, a generalized Julliere’s formula (73) should 
be a reasonable approximation.

6.4. TMR of a Junction with a Nonmagnetic Interlayer
The tunneling junction with a thin nonmagnetic metallic interlayer, such as Cu, Ag, or Au 
inserted between one of the ferromagnetic electrodes and the insulating barrier, is an inter
esting system because it allows us to decide unambiguously whether tunneling in a particular 
junction is coherent or incoherent. In the case of incoherent tunneling, the conventional 
Julliere’s formula, which applies to a totally disordered junction, predicts that there should 
be no TMR since the density of states of the nonmagnetic interlayer adjacent to the bar
rier is spin independent. However, early experiments [93] indicated a small nonzero TMR 
for a very thin interlayer but the observed TMR decayed rapidly to zero with increasing 
interlayer thickness. A nonzero TMR for coherent tunneling was predicted theoretically by 
Vcdyacv ct al. [94] and Zhang and Levy |95] using a simple parabolic band model. Mathon 
and Umcrski ]89] applied the Kubo-Landauer formula (27) of Section 3 to calculate the 
dependence of the TMR ratio on the thickness of the Cu interlayer in a Co junction with 
vacuum gap. Their results are reproduced in Fig. 32. It can be seen that TMR is nonzero 
and the optimistic TMR ratio oscillates as a function of the Cu interlayer about an average 
value of about 15%. For comparison, the results obtained from the generalized Julliere’s 
formula (73) are also shown in Fig. 32 (broken line). In order to understand why a nonzero 
TMR is obtained lor coherent tunneling in a Co/Cu vacuum /Co junction, it is instructive to 
examine the band structures of Co and Cu shown in Fig. 9 of Section 2. As already discussed 
in Section 2. there is a very’ good match between the majority-spin bands of Co and those 
of Cu. It follows that majority-spin carriers cross easily the Co/Cu interface anti participate
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Hkuit 32. Dependence of the TMR ratio of a Co/(’ux.vacuum Co junction on the thickness of the Cu interlayer.
Results denoted by a solid line were obtained from the Kubo-Landauer formula (3.15); broken line denote the 
results obtained front Eq. (73).

in tunneling as if there were no intervening Cu layer, that is. as far as majority-spin carriers 
arc concerned, the Co electrode extends effectively right up to vacuum gap. On the other 
hand, there is a poor match between the Cu hands and the minority-spin bands in Co, which 
results in formation of down-spin quantum well states in the Cu interlayer [48, 96|. These 
arc bound states fully localized in the Cu layer and, therefore, they do not contribute to 
transport of charge. Since quantum well states occur only in the down-spin channel and the 
up-spin channel is unaffected by the Cu interlayer, it is clear that there is a spin asymmetry 
in transport of charge (i.c.. nonzero TMR). Il is important to realize that, although there is 
a spin asymmetry in transport through the Cu interlayer, the Cu layer itself remains para
magnetic. This is because quantum well states contribute to the ordinary density of states, 
which means that the total numbers of up- and down-spin carriers in the Cu layer remain 
equal.

The origin of large-amplitude oscillations of TMR is the same as for CPF* (iMR that 
was already discussed in Section 5. The Cu interlayer represents an effective potential well 
for minority-spin carriers and those carriers that do not get trapped in the well undergo 
interference above the well which results in oscillations of the conductance. As in the case of 
CPP GMR. we expect two types of oscillation period. One originates from extremal points 
of the Cu Fermi surface and the other from cut off points of the conductance at the edge of 
the quantum well. All such oscillations combine to produce a rather complicated oscillatory 
behavior seen in Fig. 32.

The dependence of the TMR on the thickness of a Cu interlayer was studied experimen
tally by Yuasa et al. [97] for a Co/Cu/AI2O3Py junction. Their results, which are reproduced 
in Fig. 33. reveal well-defined oscillations of the TMR ratio about zero average with a sin
gle oscillation period corresponding to the spanning vector at the belly extremum of the 
Cu Fermi surface. The observation of quantum oscillations of TMR is very important since 
it demonstrates for the lirst time coherence in transport in a magnetic tunneling junction. 
However, there are two important aspects in which the experimental results differ from the 
theoretical predictions of Mathon and Umcrski [89], Firstly, only a single oscillation period 
is observed while there are several periods predicted for tunneling across a vacuum gap |89|. 
I'he second problem is that the observed TMR oscillates about zero average rather than 
about a finite background predicted theoretically.

Why only a single oscillation period is observed is simple to understand. In fact, there is a 
qualitative difference between tunneling across a vacuum gap and tunneling through an insu
lating barrier. In the tight-binding model of tunneling across a vacuum gap, turning off the 
tight-binding hopping integrals across the gap affects equally all the Aj; channels. It follows



Quantum Theory ol Spintronics in Magnetic Nanostructures 721

Figure 33. TMR ratio ol a (.'«>•(. u AI.O.IS junction as a function of Cu thickness.

that the contributions to oscillations ol the conductance from all the extrema of the Cu 
Fermi surface and from till the cut off points have approximately the same weight and multi
ple oscillation periods thus occur. However, in the case of an insulating barrier, carriers with 
Aj, ^(1 have a much higher tunneling probability since the corresponding perpendicular energy 
has the largest value. This explains why all the other oscillation periods that occur at /(I 
are strongly suppressed and tunneling with Aj % t) (Cu Fermi surface belly) dominates |98|.

The reason why the observed TMR oscillates about zero average is more subtle. The cal
culated results for tunneling across a vacuum gap |89| apply to a fully ordered junction with 
coherent tunneling. On the other hand, the junction studied experimentally |97| is only pai- 
tiallv ordered since the AI.O-, barrier is amorphous. The only part of the junction with phase 
coherence is the Co/Cu bilayer. Since the barrier (whether amorphous or not) represents a 
high potential step and the Co/Cu interface is another potential step for minority-spin car
riers. quantum interference of such carriers in the resulting quantum well must occur. This 
explains why oscillations of TMR are expected even for an amorphous barrier. However, to 
understand why oscillations of TMR arc about zero average, one has to consider explicitly 
the effect of disorder in the barrier. This was done by Itoh et al. |98| using a single-orbital 
tight-binding model and coherent potential approximation to treat disorder in the barrier. 
They found that indeed the disorder results in oscillations of TMR about zero average. Their 
results can be understood using a simple physical argument based on the relative sizes of the 
majority- and minority-spin Fermi surfaces. The CPA calculation of Itoh ct al. |98) shows 
that the average conductances of majority- and minority-spin carriers in the ferromagnetic 
configuration of the junction are virtually unaffected by disorder in the barrier. Similarly, the 
average tunneling conductance of minority-spin carriers in the antiferromagnetic configura
tion is also only very weakly influenced by the disorder. How ever, it is found that the average 
conductance of the majority-spin carriers in the antiferromagnetic configuration increases 
with disorder, and that results in zero average TMR. This can be understood as follows. 
In an ordered junction, conservation of means that only carriers tunneling from the por
tion of the larger majority Fermi surface which coincides with the smaller minority Fermi 
surface can tunnel. However, disorder in the barrier breaks the conservation of k. which 
has the consequence that carriers from the whole cross section of the larger majority Fermi 
surface can tunnel into the smaller minority Fermi surface of the right electrode. Hence the 
corresponding conductance increases.

Although growing a magnetic tunneling junction that is al least partially ordered is a 
significant progress, full understanding of spin-dependent tunneling is possible only tor a 



722 Quantum Theory of Spintronics in Magnetic Nanostructures

fully ordered junction with a crystalline barrier. More significantly, we can not only model 
fully ordered junction realistically but we can even design junctions with better performance 
through the appropriate choice of the electrode and harrier materials. This is the subject of 
the next section.

6.5. Fully Realistic Modeling of Epitaxial Magnetic Tunneling Junctions
Although planar junctions with a vacuum gap can be modeled realistically they cannot be 
realized experimentally. On the other hand, little theoretical progress has been made for 
junctions with an insulating barrier since systems for which tunneling could be regarded as 
coherent were lacking. The situation has changed radically with the recent demonstration 
[99. I()()| of tunneling in an epitaxial Fc MgO/Fe(t)01) junction. To the first approximation 
(neglecting defects), tunneling should be coherent and Fc/MgO/Fe(001) is. therefore, an 
ideal system to be studied theoretically. Soon after the experimental demonstration of an 
epitaxial growth of Fe/MgO/Fc(OOJ). two calculations were made of the coherent TMR in 
this system |1()1. 102]. The calculation of the Butler group [101] is based on direct matching 
of the wave functions across the whole junction whereas the calculation of Mathon and 
Umcrski [102] employs the Kubo-Landauer formula. Both calculations give very similar 
results but since the calculation of Mathon and Umcrski conforms to the Kubo-Landauer 
Green function formalism adopted in this review we shall describe their approach.

It is known experimentally [103] that thin epitaxial bee Fe(00l) films grow pscudomor- 
phically on rocksalt MgO(OOl) substrate so that the Fe atoms sit above the O ions. The Fe 
lattice is, therefore, rotated by 45° relative to the MgO lattice. LEED studies 1104] show 
that the Fe-O distance is almost exactly equal to the distance between the neighboring MgO 
atomic planes. This picture is confirmed by first-principle calculations of Li and Freeman 
[105], There is only a small lattice mismatch of about 3.5% between the Fe-Fe and 0-0 
in-plane distances. Li and Freeman 1105] further show that the electron population at the 
MgO interface plane is virtually the same as for the clean MgO surface and the Fe interface 
plane also behaves like a free Fe surface.

On the basis of these results, one can neglect the small lattice mismatch between Fe 
and MgO and assume that the whole Fe/MgO/Fc(()01) junction grows epitaxially. The band 
structure of the electrodes was described in [102] by tight-binding bands fitted to the ub initio 
band structure of bee Fe [64] and that of the barrier by tight-binding bands fitted to the hand 
structure of bulk MgO [106], The on-site potentials in the Fe interface plane were adjusted 
self-consistently to reproduce the correct surface moment of Fe [105]. No adjustments of 
the surface potentials of MgO were found to be necessary. Hoppings up to third nearest 
neighbors were used. The band gap for the band structure of bulk MgO used in [102] is 
7.6 eV, which is in a good agreement with the height of the tunneling barrier of 3.6 eV 
obtained by Wulfhekcl ct al. [99J. The fact that the observed tunneling barrier is about a half 
of the band gap suggests that the Fermi level of the junction lies close to the middle of the 
gap. This is in very good agreement with the calculated results of Li and Freeman [105] who 
place the Fermi level 3.5 eV above the top of the valence band of MgO. One can. therefore, 
use this value to align the tight-binding bands of Fe and MgO. Finally, the tight-binding 
hopping integrals between Fe and MgO were determined by Harrison's method [17],

Once the band structure of the Fc/MgO/Fe(()() 1) junction is determined, evaluation of 
the conductance proceeds using the general Kubo-Landauer formula Eq. (27) of Section 3. 
One only requires the surface one-electron Green functions at the two neighboring atomic 
planes, labelled L and R. separated by a cleavage plane. Equation (27) is the computationally 
most efficient way of calculating the conductance since only the diagonal (in the plane 
index i) elements of the left and right surface Green functions of the cut junction need to 
be evaluated. The surface Green functions g", g^ are determined from the surface Green's 
function g, of a semi-infinite Fe electrode using the Dyson equation, g, itself is calculated 
by the generalized Mobius transformation method described in Section 3. which allows us 
to determine g, quite accurately for an imaginary part of the energy e as small as HI Ry.

The numerical evaluation of Eq. (27) for a tunneling junction is not straightforward. The 
exact Green’s function in the MgO harrier should decay exponentially. However, a small 
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imaginary part e of the energy results in a propagating component, which leads to a spurious 
"metallic-like” ballistic conductance independent of the barrier thickness. For a thick barrier, 
this spurious contribution eventually becomes dominant for any nonzero e. This problem 
can be eliminated by reformulating Eq. (27) in terms of the off-diagonal elements of the 
Green’s function connecting the surfaces of the left and right electrodes |27|. However, it is 
computationally more demanding to calculate the off-diagonal components of the Green s 
function than the diagonal ones in Eq. (27).

The second problem is that the partial conductance I'" () exhibits very sharp peaks in 
certain regions of the two-dimensional Brillouin zone (2D BZ). Since such peaks make 
a significant contribution to the total conductance, an extremely line mesh of points is 
required. It turns out that up to MO” points in the irreducible segment of the 2D BZ are 
needed to achieve convergence. Motcovci. with a fine mesh of A, points one also needs a 
very small e for numerical stability.

Given the requirement of a very line mesh ol points, it is best to use the computationally 
most efficient Eq. (27). To minimize the effect of a finite t (10 12 Ry), the conductances 
were calculated by cutting the junction in the middle of the MgO barrier. The most stringent 
test that the error due to a finite e is negligible is to check that all the conductances decrease 
exponentially in the limit of a thick barrier. This was satisfied for MgO barriers as thick as 
20 atomic planes.

The dependence of the pessimistic TMR ratio on the thickness of the MgO barrier 
obtained in Ref. | IO2| is reproduced in big. 34(a). The majority-spin ljM and minority-spin 
lj*M conductances in the ferromagnetic configuration of the junction and the conductance 
l\|. of electrons ol cither spin in the antiferromagnetic configuration are plotted against the 
MgO thickness on a logarithmic scale in Fig. 34(b). The TMR ratio oscillates initially with 
MgO thickness but after about seven atomic planes of MgO stabilizes and increases only 
slowly reaching a very high value of (1.92 for 2(1 atomic planes of MgO. This corresponds to 
the optimistic rat o of some I2(M)O. The behavior of the individual conductances is more 
informative. Firstly, it is clear from Fig. 34(b) that the majority-spin conductance is always 
higher than the minority-spin conductance. It follows that the calculated spin polarization 
of the tunneling current is positive, as found experimentally for junctions based on AEO, 
bat tier. Il is also cleat that after some 1(1 atomic planes of MgO the junction reaches an 
asymptotic regime with all the conductances decreasing exponentially with MgO thickness. 
However, the slope of lj'M is somewhat smaller than that of IjJM and l’AF. This indicates that, 
even for 20 atomic planes of MgO. the decay of the conductances in these three channels is 
not controlled by the same exponential factor.

To clarify the rather unusual behavior of the Fe MgO/Fe junction, we show in Figs. 35 
and 36 the Aj-depenJence of the partial conductances lj"M(Aj) and FAI_(Aj|) in the 2D BZ. 
The results shown in Fig. 35 are for four atomic planes of MgO and those in Fig. 36 for

Figure 34. (a) Dependent ot the pessimistic TMR ratio /Esm of an I c MgO Fe((N)l) junction on MgO thickness, 
(b) Depcndencic'- <4 th*, ••l.il conductance l’1M I,.,. and l\, on MgO thirknes*.
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Figure 35. Distribution ol the partial conductances in the two-dimensional Brillouin zone lor an Ic MgO f c(tNH) 
junction with four atomic planes of MgO: (a) riM(Xt,>: (b) l'FM(Jip: (c) l\, (Aj).

1(1 planes. These thicknesses were chosen because they correspond to the transition from a 
prcasymptotic regime to the asymptotic regime.

The conductance lFM shown in Fig. 35(a) has the expected maximum at Aj = 0 but also 
lour subsidiary maxima along the A\ = A, lines in the 2D BZ. On the other hand. rFM 
(Fig. 35(b)] is virtually zero at the T point and most conduction goes through a 'ring’ well 
removed from = 0. Finally. IAF [Fig. 35(c)] has maxima along two concentric ‘rings’ in the 
2D BZ but a minimum at = 0. For a thicker MgO barrier (10 atomic planes), the junction 
moves closer to the expected asymptotic regime. The conductance Ffm [Fig. 36(a)] is now 
dominated by the F point. Similarly. I’A1 (Fig. 35(c)] and Ffm |Fig. 36(b)] arc determined 
by the inner “ring," which is also very close to the T point. However, both the conductances 
Faf and Ffm have a minimum at the I' point.

The calculated dependence of the TMR on the thickness of MgO can be understood 
qualitatively in terms of the surface spectral densities (-l/7r)lm G'sr(£’F, Aj|) of Fe(001) and 
the complex Fermi surface (FS) of MgO. They are reproduced in Fig. 37. We first show 
in Fig. 37(a) the smallest decay constant Im A_(Aj) for electrons in the MgO barrier (the 
lowest sheet of the complex MgO FS). Perpendicular tunneling A^ = 0 is clearly favored, but 
there arc four subsidiary minima of Im k J (Aj) along the A, = A, lines. These arc responsible 
for the four subsidiary maxima of Ffm seen in Fig. 35(a). The other factor contributing to 
the maxima is that the surface spectral density of the majority-spin electrons (Fig. 37(b)] 
is distributed over the whole two-dimensional BZ. On the other hand, the spectral density 
of the minority-spin electrons [Fig. 37(c)] is concentrated along the large ring seen already 
in Fig. 35(b) and there is hardly any density at the T point. This factor alone explains the 
behavior of r/M seen in Fig. 35. The behavior of fAF is determined by a superposition of 
the pictures for the f- and j-spin spectral densities. As the thickness of MgO increases, 
the contributions from the parts of the two-dimensional BZ further away from the T point 
are weakened and that explains the transition of the junction from the prcasymptotic to the 
asymptotic regime.

It remains to clarify why the MgO junction docs not reach the expected asymptotic 
regime in which all the conductances decay with the same Im A = 0) (perpendicu
lar tunneling). Figure 36 shows that there is virtually no tunneling at the I’ point in 
the minority-spin channel and that explains why rAF(Aj|) and FFM(Aj,) decay faster with

Figure 36. Distribution of the partial conductance* in the two-dimensional Brillouin zone tor an Ic MgO Fc(iMll) 
junction with eight atomic planes of MgO: (a) I ISI(£): (b) r,\,): (c) I1^1
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Figure 37. (a) The smallest decay constant Im A (A, I of electrons in the MgO barrier (the lowest sheet ol the 
complex MgO Fermi surface), (h) t he majority-spin surface spectral density ol l c(lll)l). (c) The minority spin 
surface spectral density of FcfltOl).

MgO thickness than l’FM. Neither the minority-spin spectral density nor the MgO complex 
FS can explain the presence of a ‘hole of the conductances l\F(Aj) and I ) al the 
T point.

The reason the conductance in the minority-spin channel is so low at the I’ point can be 
best understood using the approach of Butler et al. [ 101 ] which is based on direct matching 
of electron wave functions. Their results for the decay at the I' point of the local density 
of states of majority- and minority-spin electrons in the ferromagnetic configuration of the 
junction are reproduced in Fig. 38(a) (majority-spin electrons) and Fig. 38(b) (minority-spin 
electrons). It can be seen that there is a slowly decaying state of A , symmetry present in 
the majority-spin band but this state is absent in the minority-spin band. It follows that the 
conductance of majority-spin carriers decays much more slowly with MgO thickness than 
that of minority spin carriers and also than that of carriers of either spin orientation in the 
antiferromagnetic configuration.

Early attempts to verify experimentally the very high TMR ratio predicted theoretically 
were plagued by oxidation of the iron electrodes [107]. However, two groups ] 108, 109] 
succeeded recently in overcoming this problem and the measured optimistic TMR ratios 
x=250% are beginning to approach the theoretical values of IhOO'r. We reproduce in 
Fig. 39 the results of Yuasa et al. | IOS]. which show quite clearly that the observed I M R ratio 
for Fe/MgO/Fe(OOI) increases with increasing thickness of MgO. as predicted theoretically 
1101. 102], Small oscillations of the TMR ratio seen in Fig. 39 do not appear in the calculated 
TMR and their precise origin still needs to be clarified.

The observation of very high TMR ratios for Fe/MgO/Fc(OOI) system is very significant 
since it is the first convincing demonstration of coherrenl tunneling in a junction with metal
lic electrodes. It marks the beginning of a new era in spintronics. Not only junctions with such 
high TMR ratios are required for a new generation ol reading heads and in the development 
of MRAM, but they arc also fundamentally very important since a meaningful compari
son between experiment anil fully predictive theories of the type described above is now 
possible.

Figure 38. Dependence of the local density ol states ol majority-spin electrons (a) and minority spin electrons 
lb) in the ferromagnetic configuration on the alrmii layer number in the l-c MgO FetlXU) junction
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Figure .W. Dependence of the TMR ratio of Fc MgO/Fe((K)l > junction on MgO thickness (after Yuasa ct al. [ 1OJS|).

7. CURRENT-INDUCED SWITCHING OF MAGNETIZATION
As discussed in Section 2, it is now well established that by altering the magnetic configura
tion of a magnetic multilayer we can influence the charge current flowing in it. It was pointed 
out by Slonczewski [110) that, conversely, by passing a strong charge current one can alter 
the magnetic state of a magnetic multilayer. Early related theoretical work is due to Berger 
[111. The layer structure in which this effect is expected to occur is shown schematically in 
Fig. 40, where p and m are unit vectors in the direction of the magnetization. The structure 
consists of a thick (semi-infinite) left magnetic layer (polarizing magnet), a nonmagnetic 
metallic spacer layer, a thin second magnet (switching magnet) and a semi-infinite lead. It 
is assumed that the magnetization of the polarizing magnet is pinned (for example by a 
strong anisotropy field) in a particular direction W. Slonczewski argued that the left magnet 
will then spin polarize the current passing through it and the resultant spin current flowing 
through the spacer can be absorbed by the switching magnet. The rate of change of the 
total spin, given by the difference between the spin current entering the switching magnet 
and that leaving the magnet, is equal to the torque exerted on the magnetic moment of the 
switching magnet. If the charge current, and the associated spin current, is strong enough 
the spin-transfer torque can cause total reversal of the switching magnet moment. This effect 
is called current-induced switching of magnetization.

On the most elementary level, one can simply assume that the polarizing magnet produces 
a spin current that gets partially or fully absorbed by the switching magnet and explore the 
consequences of the resultant torque acting on the magnetization of the switching magnet. 
This can be done using a phenomenological Landau-Lifshitz (LL) equation with an appropri
ate spin-transfer torque term. To treat correctly the dynamics of current-induced switching of 
magnetization, it is also necessary to include in the LL equation the usual Gilbert damping 
term. We shall refer to the LL. equation with the Gilbert damping term as LLG equation and

current

Figure 40. Schematic picture «»f a magnetic layer stricture for current-induced switching (magnetic layers arc 
darker, nun-magnetic layers lighter).



Quantum Theory of Spintronics in Magnetic Nanostructures 727

begin our review of the current-induced switching of magnetization with this phenomenolog
ical treatment. We shall also use this phenomenological description Io discuss experiments 
on current-induced switching ol magnetization.

However, the phenomenological approach leaves many questions unanswered. In par
ticular. to understand and optimize the switching effect, we need to know the magnitude 
and direction of the spin-transfer torque for any specific combination of nonmagnetic and 
magnetic layer materials. Wc also require the dependences of the spin-transfer torque on 
the thicknesses of both the nonmagnetic and magnetic layers. Finally, to describe correctly 
the switching effect, we also need to know the detailed dependence of the spin-transfer 
torque on the angle between the magnetizations of the polarizing and switching magnets. To 
answer all these questions we need to calculate microscopically the spin current entering and 
leaving the switching magnet, that is. the torque acting on it. I he most direct microscopic 
approach is the original calculation of Slonczewski 11 IO| for a simple parabolic hand model 
of a magnetic multilayer, lie calculated the spin current (torque) from the one-electron wave 
functions assuming that the magnetizations of the polarizing and switching magnets are kept 
at a given fixed angle. This type of calculation corresponds to a scattering experiment. An 
incoming electron with a given spin orientation (determined by the polarizing magnet) is 
scattered oil an exchange field of the switching magnet which is not parallel to the spin ori
entation of the incident electron. Calculations based on this idea are designed to tell us how 
much of the spin angular momentum of the incident electron is absorbed by the switching 
magnet. Ihe reaction of the switching magnet to the absorbed spin angular momentum is 
ignored at this stage and is determined separately in a second independent calculation using 
the phenomenological l.l.G equation. In the way originally described by Slonczewski the 
method was applicable without any approximations only to fcrromagnels with a very large 
exchange splitting of up and down-spin bands. However, we shall show that this restriction 
can be relaxed using the transfer matrix method to match the electron wave functions across 
all the interfaces.

I'he principal limitation of this method is that it is not easily generalizable to a realis
tic band structure, On a more fundamental level, evaluating the spin current directly from 
one-electron wave functions requires some justification since one also has to link the cur
rent obtained from the spin current operator to an applied bias In the analogous prob
lem of charge transport this was done by Landauer 1112|. He showed quite rigorously that 
the conductance of a system sandwiched between two reservoirs is given by its total quan
tum mechanical transmission coefficient. It is quite straightforward to generalize l.andauer's 
method to transmission of spin | 113, 114], I lowever. care has to be taken when applying such 
a Landauer-like formula to a magnetic layer system. The Landauer formula for ordinary 
charge current gives us the conductance of the whole system. This is all that is needed since 
the charge current is conserved and. therefore, can be calculated anywhere in the structure. 
This is the reason why in the Landauer method one evaluates only the total transmission 
coefficient for the whole structure. However, in the case of a magnetic layer structure, the 
spin current is not conserved since it may get partially or even fully absorbed by the mag
netic layers. It follows that to calculate the spin-transfer torques acting on various parts of a 
layer structure, we require the local spin currents entering and leaving each magnetic layer. 
Rigorous justification of a generalized Landauer formula to such a situation is still lacking. 
However, wc shall show that the generalized Landauer formula gives results for local spin 
currents that are in complete agreement with the results obtained from the rigorous Keldysh 
formalism (Section 3).

Finally, we shall describe the application of the Keldysh formalism to current-induced 
switching of magnetization. In this approach, one no longer regards the calculation of the 
spin current as a scattering problem. One adopts instead the point of view that, for any given 
applied bias (charge current), the magnetization of the switching magnet will reach a steady 
state in which the spin-transfer torque acting on the switching magnet is exactly compen
sated by the torques due to anisotropy and applied magnetic fields. Hence wc set ourselves 
the task of calculating the local steady-state spin current. I he method for calculating such a 
steady-state current was developed by Keldysh [26, 27], It is assumed that, initially, the mul
tilayer is separated by a cleavage plane into two independent left-hand and right-hand parts 
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so that charge carriers cannot move between them. When a bias is applied to such a system 
no current Hows and the system remains in equilibrium but with unequal chemical poten
tials n, and Uh lor the left- and right-hand parts. Next, carrier hopping across the cleavage 
plane is adiabatically turned on and the system evolves toward a steady state in which both 
the charge and spin currents flow. The Keldysh method [26] described in Section 3 pro
vides a rigorous prescription for calculating all the steady-state properties of the connected 
nonequilibrium system from the known properties of the equilibrium cleaved system. In par
ticular. to calculate the spin-transfer torque, it is only necessary to pass the cleavage plane 
immediately before and after the switching magnet and the difference between the incoming 
and outgoing spin currents obtained by the Keldysh method is the required torque. It is 
straightforward to implement the method for a fully realistic band structure [115].

While the Keldysh method gives us all the possible steady states and the corresponding 
spin-transfer torques of a magnetic multilayer under an applied bias, there remains a ques
tion of the dynamical stability of the steady state. If one is merely using the Keldysh method 
to determine the spin-transfer torque for any particular orientation of the switching magnet 
magnetization, the stability of the corresponding steady state is immaterial. However, more 
generally, we can regard the current-induced switching of magnetization as a loss of stability 
of the steady state. One can argue that, when an applied bias (charge current) reaches a 
critical value, a steady state that the system has reached via a sequence of other steady states 
becomes unstable and the system seeks out a new steady slate in which the magnetization 
is switched to the opposite direction [115], The stability of steady states cannot be decided 
within the microscopic Keldysh formalism but this poses no problem since the stability of 
any particular state can be decided using the phenomenological LLG equation. Provided the 
microscopically determined spin-transfer torques are used as an input into the LLG equa
tion, this approach should yield an essentially first-principle modelling of current-induced 
switching of magnetization.

7.1. Phenomenological Treatment of Current-Induced Switching
of Magnetization

In this section, we explore the consequences of the spin-transfer torque acting on a switching 
magnet using a phenomenological Landau-Lifshitz equation with Gilbert damping (LLG 
equation). This is essentially a generalization of the approach used originally by Slonczewski 
11 IO] and Sun 1116], We assume that there is a polarizing magnet whose magnetization is 
pinned in the (,r, z)-plane in the direction of a unit vector p which is at a general fixed 
angle H to the z-axis, as shown in Fig. 40. The pinning of the magnetization of the polarizing 
magnet can be due to its large coercitivity (thick magnet) or a strong uniaxial anisotropy. 
The role of the polarizing magnet is to produce a stream of spin-polarized electrons, i.e., spin 
current that is going to exert a torque on the magnetization of the switching magnet whose 
magnetization lies in the general direction of a unit vector m. The orientation of the vector 
m is defined by the polar angles a, </> shown in Fig. 40. There is a thin nonmagnetic metallic 
layer inserted between the two magnets whose role is merely to separate magnetically the 
two magnetic layers and allow a strong charge current to pass. The total thickness of the 
whole trilayer sandwiched between two nonmagnetic leads must be smaller than the spin 
diffusion length l^ so that there are no spin flips due to impurities or spin-orbit coupling. A 
typical junction in which current-induced switching is studied experimentally [ 117] is shown 
schematically in Fig. 4I. The thickness of the polarizing magnet is 40 nm. that of the switching 
magnet 2.5 nm and the nonmagnetic spacer is 6 nm thick. The materials most commonly 
used for the two magnets and the spacer are cobalt and copper, respectively. I'he junction 
cross section is approximately oval-shaped and its diameter is only 130 nm. A small diameter 
is necessary so that the torque due to the Oersted field generated by a charge current of 
IO7 * A/cnr. required for current-induced switching, is much smaller than the spin-transfer 
torque we arc interested in.

Il is useful at this stage to review briefly the experimental set-up which is used to study the 
current-induced switching so that we can define the remit of the phenomenological treatment 
of the effect. The aim of most experiments is to determine the orientation of the switching
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Figure 41. Schematic picture <•! a (unction in which current-induced switching is studied experimentally

magnet moment as a function of the current (applied bias) in the junction. Discontinuities 
in such a dependence indicate sudden jumps of the magnetization direction (i.e.. current- 
induced switching). I he orientation of the switching magnet moment m relative to that of the 
polarizing magnet p. which is fixed, is determined by measuring the resistance of the junction. 
Because of the GMR effect, the resistance of the junction is higher when the magnetizations 
of the two magnets are antiparallel than when they are parallel. In other words, what is 
observed arc hysteresis limps of resistance versus current. A typical experimental hystersis 
loop of this type |IIS| is reproduced in Fig. 42. It can be seen from Fig. 42 that, for any 
given current, the switching magnet moment is stationary (the junction resistance has a well 
defined value); i.e., the system is in a steady state. This holds everywhere on the hystersis loop 
except for the two discontinuities where current-induced switching occurs. It follows that to 
interpret experiments that exhibit such hystcrctic behavior 11 17]. the first task of the theory' 
is to determine from the LLG equation all the possible steady states and then investigate 
their dynamical stability. At the point of instability, the system seeks out a new steady state, 
that is. discontinuous transition to a new steady slate with the switched magnetization occurs. 
We have tacitly assumed that there is always a stable steady state available for the system to 
jump to. There is now experimental evidence that this is not always the case. In the absence

ligule 42. RvsIM.iiw<. vcOlls cuireiu livsklisis loop (alter (i.ollicl et al |I IS’|k
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of any stable steady state the switching magnet moment must remain permanently in a time
dependent state. This interesting case is implicit in the phenomenological LLG treatment 
and we shall discuss it in detail later.

In describing the switching magnet by a unique unit vector m. we assume that i: remains 
uniformly magnetized during the switching process. This is only strictly true when the 
exchange stiffness of the switching magnet is infinitely large. It is generally a good approx
imation as long as the switching magnet can be regarded as small enough to remain single 
domain so that switching occurs purely by rotation of the magnetization as in the Stoner- 
Wohlfarth theory' [119] of field switching. This seems to be the case in many experiments 1117],

Before we can apply the LLG equation to study the time evolution of the unit vector 
in in the direction of the magnetization of the switching magnet, we need to determine 
all the contributions to the torque acting on the switching magnet. First, there is a torque 
due to the uniaxial and easy plane (shape) anisotropies. The shape anisotropy torque arises 
because the switching magnet is a thin layer typically only a few nanometers thick. The 
uniaxial anisotropy is believed to be due to a rather irregular cross section of the switching 
magnet [117], We take the uniaxial anisotropy axis of the switching magnet to be parallel to 
the z axis of the coordinate system shown in Fig. 40. Since the switching magnet lies in the 
(,r. z (-plane, we can write the total anisotropy field as

Ht=Hu+Hp (74)

where Hu and Hp are given by

Hu = HuU(m e.)e. (75)
Up = ey)ey (76)

Here, ex, ey, e. are unit vectors in the direction of the axes shown in Fig. 40. If we write 
the energy of the switching magnet in the anisotropy field as where (Slot) is the
total spin angular momentum of the switching magnet, then HM, which measure the 
strengths of the uniaxial and easy-plane anisotropies have dimensions of frequency. These 
quantities may be converted to a field in tesla by multiplying them by = 5.69 x 10

The next problem is to choose the correct phenomenological form of the spin-transfer 
torque T'~'. Without loss of generality, the total spin-transfer torque T'~' may be written 
as the sum of the two components in the directions of the vectors m x p and m x (p x m). 
where p is a unit vector in the direction of the magnetization of the polarizing magnet. Thus

7”-' = Tx + F, (77)

where

T1 = (£*’' x P) (78)
T| = X X (7<)>

14 is the applied bias and e is the electronic charge (a negative quantity). The bias
independent term in the perpendicular component of the torque corresponds to the 
usual zero-bias oscillatory exchange coupling of two magnetic layers separated by a non
magnetic spacer [115]. The amplitude of this oscillatory torque tends to zero with increasing 
thickness of the spacer layer (see Section 4), and, in what follows, we shall assume that the 
spacer is thick enough for this term to be negligible. We assume here implicitly that the 
terms proportional to the bias remain finite for an arbitrary thickness of the nonmagnetic 
spacer layer. This is confirmed by microscopic calculations [110. I15| in the ballistic limit. 
The spin-transfer torque depends only on the angle i/r between the magnetizations of the 
polarizing and switching magnets p. m but not on the orientations of p and m relative to the 
coordinate axes. It follows that the coefficients ,i> and we have introduced in Eqs. (78) 
and (79) are functions only of </'• The modulus of both vector products in F.qs. (78) and (79) 
is equal to sin i// and microscopic calculations 1110, 115] show that the sin i// factor accounts 
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(80)

(81)

lor most of the angular dependence ol 7'x and Tt. In fact, to a good approximation g and 
g may he regarded as constant parameters which fully determine the phenomenological 
spin-transfer torque.

We are now ready to study the time evolution of the unit vector nt in the direction of the 
switching magnet moment. The LLG equation takes the usual form

dni <hn—- + yni x —— = I 
ill dt

where the reduced total torque r acting on the switching magnet is given by

|(//( + //.M) x <s> + rx + rj
IWI

Here. //rtl is an external field, in the same frequency units as H t. and y is the Gilbert 
damping parameter. Following Sun [116], Eq. (80) may he written more conveniently as

( I + y }~T' = E - y/n x I’ (82)dl
Il is also useful to measure the strengths of all the torques in units of (he strength of the 
uniaxial anisotropy |l 16]. We shall, therefore, write the total reduced torque I in the form

I = //„(,{(!» e.}ni x e. —h (in et)m x e, + v (t/r)m x (p x in) + |r (i//) x p[ (83)

where the relative strength of the easy plane anisotropy /r = lllMt/H„ll and r («A) = ”g (*/*>. 
v (i//) — t’g (i//) measure the strengths of the torques and l\. T he reduced bias is defined 
by i» = < F/,/(|(.S’ll,l)|//,ll|) and has the opposite sign from the bias voltage since e is negative. 
Thus positive p implies a How of electrons from the polarizing to the switching magnet. 
The last contribution to the torque in Eq. (83) is due to the external field with /ivxl = 

Ihe external field is taken in the direction of the magnetization of the polarizing 
magnet, as is the case in most experimental situations.

It follows from Eq. (KG) that in a steady state I’ = 0. We shall defer the discussion ol 
how steady-state solutions ni = miu — (sin rr()cos </>„, sin ol(sin </>,,, cosrrn) of this equation are 
obtained in general. (The polar angles «, </> are defined in Fig. 40.) We shall first consider 
some cases of experimental importance where the steady-state solutions are trivial and the 
important physics is concerned entirely with their stability. To discuss stability, we linearize 
Eq. (82). using Eq. (83). about a steady state solution m — m„. Thus

m = -|- £e(, + r/e,(> (84)

where e(l, eltl are unit vectors in the direction m moves when o and </; are increased inde
pendently. The linearized equation may be written in the form

= zlf t Brj; + Dr) (85)
ar (It

Following Sun [116], we have introduced the natural dimensionless time variable t = 
I + y’). The conditions for the steady state to be stable are

F = A + D<(); G = AD- BC >1) (86)

excluding /•' = G = 0 1120]. For simplicity, we give these conditions explicitly only for the 
case i?'(t/Ai) = v. (i/Ai) = 0, with <A(I = cos '(pnit>), or = ±p. The case is very
common experimentally as is discussed below. The stability condition G > () may be written 

Q2v2 + (Qh + cos2a(,)(£J/i + cos' <r,,) + lip{Qh( I - 3sin’ </>usin a,,)

+ cos2tr,i( I — 2sin’ ansin’ </>„)} - /r*siiT a(lsin’ </>h( I 2sin* </>„sin’ a,,) > (I (87)

where v = »• («//,,). h = v (i/aJ + and Q = cosi/a,. The condition /•’ 5 0 takes the form

-2(t' + yA)(? — y(cos?rr, 4-cos’rr,.) — y/t( (I — 3sin" <fr.sin’<t(l) < 0 (88)
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We now discuss several interesting examples, the first of those relating to experiments ot 
Grollier et al. [ 11<S| and others. In these experiments, the magnetization of the polarizing 
magnet, the uniaxial anisotropy axis and the external tiled are all collinear (along the in-plane 
z axis in our convention). In this case, the equation I' = 0. with I' given by Eq. (83), shows 
immediately that possible steady states are given by m)( = ±p(«u = 0. <r). corresponding to 
the switching magnet moment along the z axis. These arc the only solutions when /iy, = 0. 
For hp 0 other steady-state solutions may exist but in the parameter regime which has 
been investigated they arc always unstable |! 15]. We shall assume this is always the case and 
concentrate on the solutions mt, = ±p. In the state of parallel magnetization (/’) = p.
we have v - ng (0). h = rg ((>) + /rtxI. a(I = (I and 0=1 The stability conditions (87) and 
(88) become

IgJtHl-V + (ng (0) + + I)2 + /»/(|»>g (()) + hCKt +

g, (<>>»’ + y t’g±(d) + + I +

(89)

(9(1)

In the state of antiparallel magnetization (AP) = p, we have vt| = vg|.( 7r). // = t!g[ (zr) I 
//vxl, = 7T and Q = —\. The stability conditions for the AP state are thus

[gu(rr)j2v2 + (-vg.(77) - Acxl + 1)? + hJ-ugjTr) - /rcxl + I] > 0 

g (zr)t' + y t’gjzr) + - I - -/i J < 0

(91)

(92)

In the regime of low external field (/»„, ~ I. i.c., //xW % //„<>) we have Hp /icxl (hf, ~ 100). 
Eqs. (89) and (91) may then be approximated by

v^(0)+ /»«. + 1 ><’ <tn)
VgL(7T) +/»eX| - I < 0 (94)

Equation (93) corresponds to P stability and (94) to AP stability. It is convenient to define 
scalar quantities 7\. 7'( by Tt = g («/z) sin i//. 7t = g (i//) sin ifi. these being scalar components 
of spin-transfer torque in units of eVb (cf. Eqs. (78) and (79)). Then g(0) = | » and
g(zrt = —[dT/di]r]^^„. Model calculations [115] show that both g± and g can be of either 
sign, although positive values are more common. Also there is no general rule about the 
relative magnitude of g,(0) and g,(zr).

We now illustrate the consequences of the above stability conditions by considering two 
limiting cases. We first consider the case g (t/z) = 0, gjt//) > 0, as assumed by Grollier et al. 
[ 118| in the analysis of their data. In Fig. 43, we plot the regions of P and AP stability, 
deduced from Eqs. (90). (92)—(94). in the v — /iexl plane. Grollier et al. plot current instead 
of bias, but this should not change the form of the figure. Theirs is rather more complicated, 
owing to a less transparent stability analysis with unnecessary' approximations. The only 
approximations made above, to obtain Eqs. (93) and (94). can easily be removed, which 
results in the critical field lines heM = ±1 acquiring a very slight curvature given by /iCJlI 
I + [vg|(rr)]2//^, and /icxt —I — (vg^O)]2/^. The critical biases in the figure are given by

Since the damping parameter y is small (y % 0.01) the downward slope of the critical bias 
lines is also small. From Fig. 43. we can deduce the behavior of resistance versus bias in the 
external field regimes |/ivxl| < I and |/icxl| > 1.

Consider first the case |/texl| < I. Suppose we start in the AP state with a bias v = 0. 
which is gradually increased to v u, At this point the AP state becomes unstable and 
the system switches to the P state as v increases further. On reducing v the hysteresis loop 
is completed via a switch back to the AP state at the negative bias u,. The hysteresis 
loop is shown in Fig. 44(a). The increase in resistance R between the P anil AP stales is
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Figure 43. Bias-lickl stability diagram for g (<//> = 0. g,(«/>) > •>.

the same as would be produced by varying the applied field in a GMR experiment. Now 
consider the case //exl < — 1. Starting again in the AP state at v — 0, we see from Fig. 43 
that, on increasing v to v the AP stale becomes unstable, but there is no stable P 
state to switch to. This point is marked by an asterisk in Fig. 44(b). For v > vAl, ,r. the 
moment of the switching magnet is in a persistently time-dependent state. However, it v is 
now decreased below vr . tl>. the system homes in on the stable AP state and the overall 
behavior is reversible (i.e.. no switching and no hysteresis occur). When /teM > I similar 
behavior, now involving the P state, occurs al negative bias, as shown in Fig. 44(b). lhe 
dashed curves in Fig. 44(b) show a hypothetical time-averaged resistance in the regions of 
time-dependent magnetization. As discussed later, time-resolved measurements of resistance 
suggest that several different types of dynamics can occur in these regions.

It is clear from Fig. 44(a) that the jump AP —» P always occurs for positive reduced bias 
n, which corresponds to flow of electrons from the polarizing to the switching magnet. This 
result depends on lhe assumption that g, > 0: if g, < (1 it is easy to see that the sense of the 
hysteresis loop is reversed and the jump P — AP occurs for positive v. To our knowledge, this 
reverse jump has never been observed, although g| < 0 can occur in principle and is predicted 
theoretically [115] for the Co/Cu/Co( 111) system with a switching magnet consisting of a 
single atomic plane of Co. Il follows from Eq. (95) that | u,/v u. .P |=| g|(7r)/gj(9) I 
in zero external field. Experimentally this ratio, essentially the same as the ratio of critical 
currents, may be considerably less than 1 (e.g., <0.5 [121]), greater than I (c.g., ~2 |122|), or 
close to I |118]. Usually the field dependence of the critical current is found to be stronger 
than that predicted by Eq. (95) Ref. ] 121. 1 IS],

We now discuss the reversible behavior shown in Fig. 44(b), which occurs for j /ieM |> I. 
The transition from hysterelic to reversible behavior at critical external field seems to have 
been first seen in pillar structures by Katine el al. [123], Curves similar to the lower one 
in Fig. 44(b) are reported with | vt.~ lf. | increasing with increasing /;csl, as expected from 
Fig. 43. Plots of the differential resistance dV/dl show a peak near the point of maximum

Hgurv 44. (a) Hysteresis loop of resistance versus bias for /riV| - I (b) Reversible behavior (no hysteresis) tor 
x, • I (upper curve) and - I (lower curve). The dashed lines represent hypothetical behavior ot average 

resistance in legion l ig 43 marked ’both unstable where no steads states exist.
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gradient of the dashed curve. Similar behavior has been reported by several groups [124— 
126], It is particularly clear in the work of Kiselev cl al. [I24| that the transition from 
hysteretic behavior (as in Fig. 44[aJ) to reversible behavior with peaks in dV/di occurs at 
the coercive field 600 Oe of the switching layer (/iext = 1). The important point about the 
peaks in dV/dl is that for a given sign of /icxl they only occur for one sign of the bias. 
This clearly show's that this effect is due to spin-transfer and not to Oersted fields. Myers 
et al. [127] show' a current-field stability diagram similar to the bias-field one of Fig. 43 with 
a critical field of 1500 Oe. They examine the time dependence of the resistance at room 
temperature with the field and current adjusted so that the system is in the “both unstable" 
region in the fourth quadrant of Fig. 43 but very close to its top left-hand corner. They 
observe telcgraph-noisc-typc switching between approximately P and AP states with slow 
switching times in the range 0.1-10 s. Similar telegraph noise with faster switching times 
was observed by Urazhdin et al. |125| at current and field close to a peak in dV/dl. In the 
region of P and AP instability, Kiselev et al. [124] and Puffal et al. [126] report various types 
of dynamics of processional type and random telegraph switching type in the microwave 
GHz regime. Kiselev et al. [124] propose that systems of the sort considered here might 
serve as nanoscalc microwave sources or oscillators, tunable by current and field over a wide 
frequency range.

We now return to the stability conditions (90), (92)-(94) and consider the case of g, («//) / 
0 but /tu.xl = 0. The conditions of stability of the P state may be written approximately, 
remembering that y « 1, hp » I. as

t’g1(0)>-l, vg„(0) > (96)

The conditions for stability of the AP state are

Vg_,(7T) < 1, Vg|(77) < (97)

In Fig. 45, we plot the regions of P and AP stability, assuming g±(0) = g±(tr) = g± and 
g||(0) = £||(f) = g|| for simplicity. We also put r = g±/g||. For r > 0, we find the normal 
hysteresis loop as in Fig. 44(a) if we plot R against vg| (valid for either sign of g|). In 
Fig. 46, we plot the hysteresis loops for the case rt. < r < 0 and r < rc, where r(. = -2/(yhp) 
is the value of r at the point x in Fig. 45. The points labeled by asterisks have the same 
significance as in Fig. 44(b). If in Fig. 46(a) we increase vg, beyond its value indicated by the 
right-hand asterisk, we move into “both unstable” region, where the magnetization direction 
of the switching magnet is perpetually in a time-dependent state. Thus negative r introduces

Figure 45. Stability diagram for /it„ = (>.
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Figure 46. Hysteresis loop for (a) r • r (I: (h> r < r

behavior in zero applied field, which is similar to that found when the applied field exceeds 
the coercive field of the switching magnet for r = I). This behavior was predicted by Edwards 
ct al. (115]. in particular for a Co/Cu/Co(l 11) system with the switching magnet consisting 
of a Co monolayer. Zimmler el al. [ 128] use methods similar to the ones described here to 
analyze their data on a Co/Cu/Co nanopillars and deduce that g > (), r = g /g -0.2. 
It would he interesting to carry out lime-resolved resistance measurements in this system at 
large current density (corresponding to < — I) and zero external Held.

So far we have considered the low-field regime (//cM coercive field of switching mag
net) with both magnetizations and the external field in-plane. There is another class of 
experiments in which a high field, greater than the demagnetizing field (>2T). is applied 
perpendicular to the plane of the layers. The magnetization of the polarizing magnet is then 
also perpendicular to the plane. This is the situation in the early experiments where a point 
contact was employed to inject high current densities into magnetic multilayers [127, 129. 
130]. In this high-field regime a peak in the differential resistance dV/d! at a critical cur
rent was interpreted as the onset of current-induced excitation of spin waves in which the 
spin-transfer torque leads to uniform precession of the magnetization [129-131], No hys- 
teretic magnetization reversal was observed and it seemed that the effect of spin-polarized 
current on the magnetization is quite different in the low- and high-field regimes. Recently, 
however. Ozyilnez et al. |132| have studied Co/Cu/Co nanopillars (^10(1 nm in diameter) 
at 7 = 4.2 K for large applied Helds perpendicular to the layers. They observe hysteretic 
magnetization reversal and interpret their results using the l.andau-1 ifshitz equation. We 
now give a similar discussion within the framework of this section.

Following Ozyilnez et al., we neglect the uniaxial anisotropy term in Eq. (83) for the 
reduced torque I’ while retaining as a scalar factor. Hence

I’ = WaUP’cw + ", (*/') - /t,,cosi//|wi X p + 1?! (i//)m X (p X /«)] (98)

where p is the unit vector perpendicular to the plane. When v (<//) II the only possible 
steady-state solutions of I’ = (I arc = ±p. On linearizing Eq. (82) about rn,, as before 
we find that the condition (7 > tl is always satisfied. The second stability condition /•' < I) 
becomes

{lM</'n) + y|Vj (<//„) + /'exl - /tpheos^, > (I (99)

where i//H = cos '(in^p). Applying this to the P state (i//u = 0) and the AP state (i//„ = 7r). we 
obtain the conditions

(100)

(101)

where the first condition applies to the P stability and the second to the AP stability. Here. 
g(i/>) = g (t//) -|- y g ((//). The corresponding stability diagram is shown in Fig. 47. where 
we have assumed g(rr) > g(0) > I) for definiteness. The boundary lines cross at /rCM = 
//,.. where /i, = /r;,|g(7r) -+- g(0)]/[g(7r) -g(0)|. This analysis is valid for Helds larger than 
the demagnetizing field (/>,., ■> h ) and we sec from the figure that for h > h hysteretic
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Figure 47. Bias-field stability diagram for large external field > A,.) perpendicular to the layers.

switching occurs. This takes place for only one sign of the bias (current) and the critical 
biases (currents) increase linearly with as does the width of the hysteresis loop | V/>^ —
v i,. |. This accords with the observations of Ozyilnez et al. The critical currents arc not
larger than those in the low-field or zero-field regimes (cf. Eqs. (100) and (101) with Eq. (95)) 
and yet the magnetization of the switching magnet can be switched against a very large 
external fields.

7.2. Microscopic Calculation of the Spin-Transfer Torque
To implement the discussion of the stability of steady states for a specific system, we need 
a method for calculating microscopically the spin-transfer torques T and 7 we have intro
duced phenomenologically. We first discuss briefly the microscopic basis for balancing spin
transfer torques with anisotropy torques to obtain a steady state in which the magnetization 
of the switching magnet is stationary.

We recall that the Hamiltonian of the layer structure depicted in Fig. 40 has the form

H = + + (102)

where /7n is the Hamiltonian of noninteracting electrons (the hopping term in our tight- 
binding description of Section 3), Hin{ is an on-site interaction between electrons that leads 
to an exchange splitting of the bands in the ferromagnets and is neglected in the spacer 
and lead, and H.mi> contains effective fields in the switching magnet corresponding to uni
axial Hu and easy-plane anisotropies defined by Eqs. (75) and (76). Although we shall 
assume in what follows such a tight-binding model, the arguments we give here hold for any 
Hamiltonian which can be written in a localized basis, for example, tight-binding LMTO [24].

If S„ is the spin angular momentum operator of the atomic plane n in the switching 
magnet, defined in Section 3, the rate of change of S„ is given by

ihS„ = [S„. 77.,] + [S„, 7/;inJ (103)

This result holds since the spin operator commutes with the interaction Hamiltonian H,n.. 
It is straightforward to show' that

IV"ol = 'MZ,-i-j,,) (104)

where j„_I is the operator for spin angular momentum current between planes n - 1 and ii 
defined by Eq. (15) of Section 3. and

I V "nJ = -'*(" I X .S'„) (105)

In a steady state, the magnetization is time independent so that (S„) = 0. Hence

<Z-l> ~ <A> = x (S„> (106) 
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I he left-hand side of I iq. (106) corresponds to the rate of transfer ol spin angular momentum 
to plane n in the steady state. Thus Eq. (106) shows explicitly how, in the steady slate, 
this spin-transfer torque is balanced by the torque due to anisotropy fields. Ihe concept of 
spin-transfer torque was first introduced by Slonczewski [ 11()|.

It should be noted that a rigorous self-consistent solution of Eq. (106) requires balancing 
the spin-transfer and anisotropy torques in every atomic plane of the switching magnet 1115], 
There are two problems that arise in the fully self-consistent formulation. Firstly, the local 
magnetization direction in a steady state need not be uniform; that is. the orientation of the 
switching magnet moment may vary from one atomic plane to another. To make contact with 
the L.LG phenomenological description, which assumes that the switching magnet moment 
is uniform, we need to show that the assumption of a uniform magnetization is a good 
approximation.

To clarify the argument (for detailed justification sec Ret. 1115]). let us first assume that 
instead of anisotropy fields we apply a weak external magnetic held to keep the switching 
magnet moment in any specified direction. It is clear that in the limit of an infinitesimal 
applied bias (liner-response limit) the spin-transfer torques in Eq. (106) are also infinitesi
mal. and we only need an infinitesimal applied field to balance them and thus stabilize the 
switching magnet moment in any assumed direction. Any deviations from uniformity due 
to spin-transfer torques acting on individual atomic planes of the switching magnet would 
result in strong torques of opposite sign due to the exchange stiffness of the magnet which 
lends Io keep the magnetization uniform. Since the exchange stiffness of a typical magnet 
such as Co is very large and the spin-transfer torques are infinitesimal, any deviations from 
uniformity are negligible in the limit I -» ().

I he second problem is that one should calculate the spin-transfer torques scll-consistenlly 
|II5|. which means that one needs to include the applied field (anisotropy fields) in the 
calculation of Ihe one-electron Green functions which determine the spin current given by 
Eq. (24) in the Keldysh formalism of Section 3. However, as discussed above, in the limit 
F',, —» 0 the applied magnetic field is negligibly weak compared with the exchange field; 
therefore, the total effective field, which enters in the calculation of the Green functions, is 
just the exchange field. Il follows that we can calculate the spin-transfer torques assuming 
that the switching magnet moment is uniform ami also neglecting the applied field in the 
one-electron Green functions. These two approximations become exact in the limit F,, —» (1. 
In practice, the anisotropy fields are much weaker than ^1G of the exchange field and. 
therefore, the aforementioned approximations are very well justified. We shall, therefore, 
adopt them in this review and discuss calculations of the spin-transfer torques assuming that 
the exchange fields of the polarizing and switching magnet arc at a fixed arbitrary angle 0. 
For convenience, we shall assume that the switching magnet moment is fixed in the direction 
of the r axis (o = </> = () in Fig. 40). It follows that ifi = 0, where H is the angle between the 
polarizing magnet moment and the z axis of the system of coordinates in Fig. 40.

Given that the switching magnet moment is assumed to be uniform, we can sum trivially 
in Eq. (106) over all planes // of the switching magnet, which yields

O’sp^-r): - = «! * £($„) ( 107)

where we have included only the contributions (j\paeer)2 and to the spin currents in 
the spacer and lead that are proportional to the applied bias (sec Section 3). The contri
bution (j|eaJ)| vanishes and the term Q\(,UC1)| determines the oscillatory' exchange coupling 
discussed in Section 4 that tends to zero in the limit of a thick spacer. The left-hand side 
of Eq. (107) is. therefore, the spin current absorbed by the switching magnet, that is. the 
total spin-transfer torque, which is required in the phenomenological ELG equation. The 
spin currents (>.-» and 0kad)2 determined in Section 3 are given by Eq. (24) and can be 
readily calculated from the one-electron Green functions of the system which is first cleaved 
between any two neighboring atomic planes in the spacer and then between any two neigh
boring planes in the lead. This is a very efficient way of calculating the spin-transfer torque, 
which can be implemented for a fully realistic band structure |II5|. However, the Keldysh 
method, which is formulated in terms of one-electron Green functions, is less transparent 



738 Quantum Theory of Spintronics in Magnetic Nanostructures

than the original calculation of Slonczewski [110] for a simple parabolic band. Although 
it would be difficult to generalize his calculation to a realistic band structure. Slonczewki s 
method, which relies on simple matching of electron wave functions across the layer struc
ture, is much more intuitive. We shall, therefore, first describe his original calculation and 
then generalize and reformulate his wave function method in the spirit of the Landauer 
scattering theory so that we can make direct contact with the Keldysh formalism of Section 3.

Slonczewski evaluated the spin current from one-electron wave functions. Writing a two- 
component wave function as <// = («//.«// )r. where <//t , arc the wave functions for f and f 
spin projections, we can derive an expression for the spin current by considering the rate 
of change of the spin angular momentum <//<7/(i/rT( 1/2)/irri//). Since the time derivative of 
the wave function is determined only by the kinetic energy operator, it is straightforward to 
show that the relevant components J and .1 of the spin current are given by

(I OX)

where || and ± correspond to the a and y components of the spin current, referring to the 
system of coordinates in Fig. 40 and prime denotes differentiation w ith respect to v.

Electrons in the spacer and in the leads see a spin-independent potential fz , but the 
Hartree-Fock potential in the ferromagnets has a spin-dependent component I p'\w given by

(109)

where sw is the exchange splitting between the majority- and minority-spin bands in the 
polarizing and switching magnets. To evaluate the spin current from Eq. (108). it is necessary 
to solve the Schrodinger equation by matching wave functions and their derivatives across all 
the interfaces. In general, this can only be done numerically. However, the problem can be 
solved analytically in the situation when the polarizing and switching magnets have infinitely 
large exchange splittings Ap sw —> <x> (half-metallic ferromagnet) and the potentials in the 
majority-spin bands and in the spacer and leads have the same value (perfect matching). 
This is the case considered first by Slonczewski in his original calculation [ 110]. He showed 
that the torque 71,, which is equal to the spin current Jti in the spacer since the corresponding 
current in the lead vanishes, is given by

-r h
T’ = 2|7|,iin x (charge current) (110)

It should be noted that the torque T goes to zero for — since the charge current for 
a halfmetallic magnet contains a factor I + cos0. It turns out that T is strictly zero. These 
results obtained by Slonczewski arc quite rigorous but are only valid for this rather special 
model. It will be seen that, in general. 7, is nonzero for ferromagnets with a finite exchange 
splitting and can be comparable in magnitude with 7],. The interesting result that 7' — 0 for 
this model may be traced to an effective reflection symmetry of the system about a plane at 
the center of the spacer. Although the system with ferromagnets having different thicknesses 
appears asymmetric, the infinite-exchange splitting makes it equivalent to a symmetric system 
with semi-infinite magnets. More generally, one can show 11151 that the ./ component of the 
spin current in the spacer always vanishes for a system with reflection symmetry. In general, 
however, the J spin current in the lead is nonzero so that 7 # 0 even lor a symmetric 
system. The result 7\ = 0 for the above model is, therefore, a very special one due to the 
artifact of a very large exchange splitting in the ferromagnets.

To determine the local spin current in the more realistic case of ferromagnets with a finite 
exchange splitting, it is necessary not only to match numerically the wave functions across 
all the interfaces but also to specify the correct boundary conditions in the left and right
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leads. In the analogous problem of charge tiansport this was done by Landauer 1112]. He 
showed quite rigorously that the conductance of a system sandwiched between two reservoirs 
is given by its total quantum mechanical transmission coefficient. Since the charge current is 
conserved everywhere the total transmission coefficient (conductance) gives us all the infor
mation about transport of charge. Similarly, if we are only interested in the spin current due 
to a single nonmagnet/magnet interface the concept of conductance remains valid and can 
be easily generalized to include spin dependent scattering from the local exchange potential. 
One then defines so called mixing conductance 1114|. However, since spin current is not 
conserved, we need to calculate it locally within the structure. In that case, the knowledge 
of the transmission coefficient for an isolated interface is not sufficient since we also need 
to lake into account all the internal multiple reflections of carriers from all the interfaces. 
Their contribution to the local spin current is essential.

lb determine the local spin current without any approximations, the Landauer method 
needs to be applied to the whole magnetic layer structure. This was done by in Ref. |I13]. 
To explain the method, we consider, in the spirit of Landauer, two magnets separated by a 
nonmagnetic spacer layer and assume that the whole structure is sandwiched between two 
semi-infinite nonmagnetic reservoirs (leads). An infinitesimal bias K,, is applied between the 
left and right reservoirs so that steady states in the reservoirs with electron distributions 
f(io — /I/ ) and f(io - Hr) are maintained. As in Section 3. p, ~ Pr — Since we assume 
that k), is infinitesimal, the one-electron states of the system can be calculated from the 
Schrodinger equation neglecting the effect of Vh. We take the global spin quantization axis 
to be the z axis and classify thus the electron spin projections as f or L

Electrons of cither spin orientation (f, |) are incident on the magnetic trilayer both from 
the left and right reservoirs. To determine the spin current from Eq. (ION), we therefore 
need to solve four independent one-electron scattering problems. First problem corresponds 
to an f-spin electron incident from the left, which is partially reflected both to the f-spin 
and f-spin channels in the left reservoir and partially transmitted to the f-spin and f-spin 
channels in the right reservoir. Similarly, a f-spin electron incident from the left reservoir 
is reflected and transmitted to both f- and f-spin channels in the left and right reser
voirs. respectively. Finally, both f- and f-spin electrons incident from the right reservoir 
arc similarly reflected and transmitted to both spin channels in the left and right reservoirs, 
respectively. If,/ / (<r. a>, A.) is the spin current component i (i =||, ±) due to an electron of 
spin a incident from the left reservoir with an energy to and parallel wave vector 1^, and 
)*(</•, w. fc) is the corresponding contribution due to an electron incident from the right 
reservoir, we can write the total spin current in any part of the structure by summing over 
the contributions from all the electrons incident on the magnetic structure

= I )[J/ (f.w.AjJ + J/ (f,to,Aj)]-F/(to-gK)[JIK( f.to.Afl) + J,"(f .to.*,)]}

(Hl) 
where JI,H> — j'lH'(dk /du)) was used to convert the sum over k into an energy integral. 
Using the identities /w = (I/2)|/« +/,.] + (1 /2)(/K | and f, - (l/2)[/rt + /, ] - (I/2)]/« -

|, where /, and JH denote the Fermi functions in the left and right reservoirs, we can 
finally write the total spin current as

■T = E / ^|[J/(m. to. *!) + /,«((/. to. *j)](/, +/«) + [J/ (<r. to. *()-./,V. to. *,)](/,-fK) 
,T

(112) 
The first term in Eq. (112). which is proportional to the sum of the two Fermi functions, 
is equivalent to the term given by Eq. (23) of Section 3. and the term proportional to the 
difference between the two Fermi functions is equivalent to Eq. (24) for the spin current 
derived in Section 3 using the general Keldysh formalism. It is straightforward to evaluate 
the spin current from Eq. (112) for the parabolic band model using, for example, the transfer 
matrix method to determine the electron wave functions. However, it would be difficult to 
implement such a calculation for a realistic band structure and. to our knowledge, no such 
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calculation has ever been attempted. Nevertheless, the Landauer formula (112) is very useful 
for discussing some general properties of the spin current.

In the absence of bias, only the terms proportional to the sum of the Fermi functions 
remain. It is clear on physical grounds that 7'1“ = 0 both in the spacer and in the leads. We 
also have J1'" = 0 in the leads but / 0 in the spacer. The term 7]°' in the spacer deter
mines the oscillatory exchange coupling between two ferromagnets discussed in Section 4. It 
is easy to verify that the results for the oscillatory exchange coupling obtained from Eq. (112) 
are in complete agreement with previous parabolic-band model calculations of this effect 
{58, 59], We note that the result J*"' = 0 in the leads in the absence of bias shows explicitly 
that the contribution of the spin current transmitted through the magnetic structure must 
be exactly compensated by the contribution due to electrons reflected from the structure. 
Direct numerical evaluation of Eq. (112) for a parabolic band model confirms this result.

Since the oscillatory exchange coupling lends to zero for a thick spacer layer, we shall now 
concentrate on the bias-induced term, which is proportional to the difference between the 
Fermi functions and remains nonzero [110, 115| even for an infinitely thick spacer (in the 
ballistic limit). This is indeed the term that determines the spin-transfer torques responsible 
for the current-induced switching of the magnetization discussed in the phenomenologi
cal section. In the linear-response limit we are considering, it follows from Eq. (112) that 
the spin current in any part of the structure is proportional to the bias lq,. Consequently, 
upon changing the direction of the bias (current), the spin-transfer torque vector changes its 
direction but not its magnitude. As already discussed in the phenomenological section, the 
proportionality of the torque to the bias (current) is reflected in the shape of the observed 
hysteresis loops which are approximately symmetric (in the absence of an external field). 
This test shows that a recent calculation of the spin-transfer torque [133], which claims that 
the torque is proportional to the square of the charge current, cannot be correct. Another 
property that is already implicit in the definition of the spin current (108) is that the spin 
current is a continuous function of the coordinates. This follows because the electron wave 
functions in the aforementioned scattering problem are obtained by matching the functions 
and their derivatives at all the interfaces. Stiles and Zangwill [134] argue in their calculation 
of the spin current across a nonmagnet/magnet interface that there is a discontinuity in the 
spin current at the interface. This conclusion is incorrect and the results that follow from 
such a calculation are thus suspect.

Although full implementation of the parabolic band model using Eq. (112) gives qualita
tively correct results, the model itself is too simple to predict the correct magnitudes, relative 
sign and angular dependencies of the spin transfer torques 7’,, for specific systems. We 
therefore conclude this section by giving examples of realistic calculations [115] of the spin
transfer torques for Co/Cu/Co( 111) system based on the Keldysh Green function formalism 
of Section 3.

Referring to Fig. 40, the system considered by Edwards et al. [115] consists of a semi
infinite slab of Co (polarizing magnet), the spacer of 20 atomic planes of Cu, the switching 
magnet containing M atomic planes of Co with M = 1 and 2, and the lead which is semi
infinite Cu. The spacer thickness of 20 atomic planes of Cu was chosen so that the contri
bution of the oscillatory exchange coupling term is so small that it can be neglected. The 
spin currents in the right lead and in the spacer were determined from Eq. (24) of Section 3 
using the same tight-binding parameterization of an ah initio band structure of Co and Cu 
that was discussed in Section 4. Figures 48(a) and 48(b) shows the angular dependences of 
Tp for the cases .W = 1, and M = 2. respectively. For the monolayer switching magnet, 

the torques 7\ and 7]| arc equal in magnitude and they have the opposite sign. However, 
for M — 2, the torques have the same sign and Tx is somewhat smaller than 7], A negative 
sign of the ratio of the two torque components has important and unexpected consequences 
for hysteresis loops as already discussed in the phenomenological section. It can be seen that 
the angular dependence of both T and 7j, is dominated by a sin 0 factor but distortions 
from this dependence are clearly visible. In particular, the slopes of the angular dependences 
of the torques T and at <// = 0 and th = tt are quite different. As pointed out in the 
phenomenological section, this may be important in the discussion of the stability of steady 
states.
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I-inner 48. Dependence of the spin-transfer torque / and 7 for Co'Cu.Co(l 11) on the angle </». The torques per 
surface atom an- in unis of el . (a) A/ I and (!') A/ = 2 monolayers of Co in the switching magnet.

In Fig. 49. we reproduce the dependence of T and 7^ on the thickness of the C'o 
switching magnet. It can be seen that the out-of-planc torque T becomes smaller than 
7j lor thicker switching magnets. This is the expected behavior since the polarizing magnet 

is semi-infinite Co. so that as the switching Co magnet becomes thicker we approach the 
limit ol a symmetric junction lor which the 7 component of the spin current vanishes and 
the corresponding component in the lead is usually small. However. 7 is by no means 
negligible (27T of T ) even lor a typical experimental thickness of the switching Co layer 
of II) atomic planes. Il is also interesting that beyond the monolayer thickness, the ratio of 
the two torques is positive with the exception of M = 4.

The microscopically calculated spin-transfer torques for Co/Cu/Co( 111) were used by 
Edwards et al. (115] as an input into the phenomenological LLG equation. The LLG equa
tion was first solved numerically to determine all the steady stales and then the stability 
discussion outlined in the phenomenological section was applied to determine the critical 
bias for which instabilities occur. Finally, the ballistic resistance of the structure was eval
uated from the real-space Kubo-Landaucr formula (27) of Section 3 at every point of the 
steady state path. Such a calculation for the realistic Co/Cu system then gives hysteresis 
loops ot the resistance versus bias which can be compared with the observed hystersis loops. 
I he LLG equation was solved including a strong easy-plane anisotropy with hr, = 100. If we 
take //„() = 1.86 x Ilf' sec 1 corresponding to an uniaxial anisotropy field of about 0.01 T, 
this value of h„ corresponds to the shape anisotropy for a magnetization of 1.6 x K)6 A/m, 
similar to that of Co [1I6|. Also a realistic value [116] of the Gilbert damping parameter

Figure 49. Dependence of the spin-transfer torque T and T for Co.‘Cu Cot 111) on the thickness of the switching 
magnet W for <A - t 1 The torques are in units of el
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y = 0.01 was used. Finally, referring to the geometry' of Fig. 40. two different values of the 
angle fl were employed in these calculations: (1 = 2 rad and fl = 3 rad. the latter value being 
close to the value of tt which is realized in most experiments.

We first reproduce in Fig. 50 the hysteresis loops for the case of Co switching magnet 
consisting of two atomic planes. We recall that the ratio r = 7’x/ 7X = 0.65 deduced from 
Fig. 48 is positive in this case. Figure 50(a) shows the hysteresis loop for fl = 2 rad and 
Fig. 50(b) that for fl = 3 rad. The hysteresis loop for fl = 3 rad showm in Fig. 50(b) is an 
illustration of the stability scenario with r > 0 discussed in the phenomenological section. It 
is rather interesting that the critical bias for switching is %0.2 mV both for fl = 2 and fl = 3 
radians. When this bias is converted to the current density using the calculated ballistic resis
tance of the junction, it is found |115] that the critical current for switching is ^10 A'cnr. 
which is in very' good agreement with experiment [117|.

The hysteresis loops for the case of the Co sw itching magnet consisting of a single atomic 
plane are reproduced in Fig. 51. The values of ht„ y. /7„l(, and fl are the same as in the 
previous example. However, the ratio r % — 1 is now negative and the hysteresis loops in 
Fig. 51 illustrate the interesting behavior discussed in the phenomenological section when 
the system subjected to a bias higher than a critical bias moves to the “both unstable" 
region shown in Fig. 45. As in Fig. 46. the points on the hysteresis loops shown in Fig. 51 
corresponding to the critical bias arc labeled by asterisks.

The calculations based on the Keldysh formalism of Section 3 (or on the equivalent 
generalized Landaucr formula (112]) we have described are truly microscopic and pro
vide rigorous steady-state spin-transfer torques in the ballistic limit. There arc also several 
semiphenomenological calculations of the spin-transfer torque (135, 136] and we shall now 
briefly discuss how they arc related to the steady-state Keldysh approach adopted here. 
Heide el al. [135] argued that spin-polarized electrons accumulate in the spacer at the spacer/ 
switching magnet interface. That means that there is a spin angular momentum in the spacer 
at an angle to the switching magnet moment. This results in an effective exchange interac
tion between the accumulated spin and the switching magnet moment. The argument here 
is quite analogous to that used in the derivation of the well-known RKKY interaction (see, 
e.g., Ref. (137]). The effective exchange interaction between two moments at an angle is 
clearly associated with a spin-transfer torque. Heide et al. argued that such an effect results 
only in a component T of the torque. The microscopic calculations [115] described here 
confirm that a spin accumulation in the spacer occurs and that an exchange interaction-type 
term TL exists. However, what is missing in the argument of Heide et al. is that the spin 
accumulated in the spacer has not only an in-plane component, which gives rise to TL, but 
also an out-of-plane component, which gives rise to the important 7 component of the 
spin-transfer torque. Moreover, Heide et al. [135] provide no prescription for calculating the 
magnitude of their TL microscopically.

Zhang et al. [ 136] argue that there is an accumulation of spin in the switching magnet with 
components perpendicular to the switching magnet moment. This would necessarily result 
in a precession of the accumulated spin about the exchange field in the switching magnet. 
Such a precession clearly cannot take place in a steady state since the total local torque

figure 50. Resistance of the Co/Cu Co( III) junction as a function of applied bias with 1/ = 2 monolayers <>t Co 
in the switching magnet, (a) is for fl - 2 radians and (h) is for fl = 3 radians.
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Bias lx It) 1 V)

Figure 51. Resistance of the Co. Cu Cot 111) junction as a function ol applied current, with \l — I monolayer of 
Co in the switching magnet (a) is for 0 = 2 radians and (b) is for 0 = .3 radians

Bias l x 10 * V)

acting on the local spin in each atomic plane of the switching magnet is zero (see Eq. [ I(I6|). 
We conclude that the concept of steady-state spin accumulation in the switching magnet 
is unphysical and the calculation of Zhang et al. thus cannot give the correct steady-state 
spin-transfer torque.

Spin accumulation in the switching magnet could be a valid concept when the system is 
not in a steady state. As discussed in the phenomenological section, the switching magnet 
is not in a steady state for a set of parameters corresponding to the "both unstable" region 
shown in Fig. 46. In that situation, the steady-state formalism for calculating the spin-transfer 
torque described here cannot be used. However, to discuss the time-dependent motion of the 
switching magnet moment quantitatively we need to know the time-dependent spin-transfer 
torques. This is clearly one of the important problems that needs to be addressed. Another 
interesting outstanding problem is the effect of impurities/inlcrlacial roughness on current- 
induced switching. In principle, imperfections could be included in the Keldysh formula (24) 
using the lateral supercell method but. to our knowledge, it has not been done.

We conclude that the current-induced switching of magnetization is one of the most topical 
and rapidly developing area of spintronics. In particular, there is rich new physics associated 
with the observed nonhysicrclic (time dependent) motion of the switching magnet moment. 
While the steady-state (hysterctic) regime can now be modeled by essentially first-principle 
calculations of the type described here, rigorous microscopic modeling of the nonhysicrclic 
regime is currently nonexistent, but is urgently required.
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Cartesian coordinate system, 293, 570
Cartesian grid. 272
Cartesian indices. 137 
Casimir force. 497-498
Casimir's paper. 498
< 'ax ily damping rate. 312
Cavity mode. 318-319
Cavity quantum electrodynamics (CQED). 311. 

317. 332
Cell volume. 570
Center-of-mass master equation. 387 
Ccntcr-ol-mass motion

of excitons. 405
Center-to-center distance. 280
Centrifugal potential. 43. 44

barrier. 21
Cesium atoms. 45
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Cjj fullerene, 151
amino-ethylene (ME)-suhstituted. 151 

Chemical modification of surface
deposition of metastablc atoms, 71

Chiral carbon nanotubes, 164
Chiral vector, 133-134
Chromatic aberrations, 67
Chromium atoms. 62. 7(1
Chromium lines, 62
Circularly polarized wave

distribution of the intensity. 65 
spatial distribution of the intensity. 66 

Classical information theory. 516 
Cluster structure. 235
Coaxial laser lens. 52
Co/Cu system, 705
Coherence time. 473
Coherent

NLO absorption. 177 
nonlinear optical spectroscopy. 421 
optical spectroscopy, 421. 438 
TMR. 714

Coherent anti-Stokes Raman spectroscopy 
(CARS), 155 
procedure. 155 
techniques, 155, 171
vibrational lineshape analysis, 171

Coherent control theory, 191
of nonlinear optics. 187

Coherent state
in phase space, 336

Coherent superposition, 358
Collective dipole excitations, 229
Collective dipole spectrum, 224
Collective oscillation, 212
Collective translational oscillations. 213 
Co4 magnet. 550
Complete neglect of differential overlap 

(CNDO). 145
approximation, 146, 148
calculations, 146 
method. 146

Complex dielectric constant 
frequency-dependent, 291

Complex grain structure. 671
Compute field fluctuation spectra, 475
Co-nanowires

rod-shaped. 650
Conditional density operators. 426
Conduction band electrons, 303
Conti gu rat ion in tc ract ion

method, 237
Confining potential. 465
Conical lens

focusing theory. 59
for atoms. 58
schematic diagram. 59

Conjugate gradient method. 577
Constant density contour plots. 242 
Constant-frequency dispersion curve. 304 

Constant-frequency dispersion surfaces. 297.
304

Continuum theory. 623
Contour map, 405
Contracted Gaussian type orbitals (CGTOs).

144
Control-field components. 446 
Controlled-not gate (CNOT). 352 
Convolution theorem. 570

three steps. 570
Correlation function. 473
Corrugation amplitude. 490
Cost functional. 441
Coulomb

blockade. 411
correlations. 403 
coupling. 412 
expansion, 255 
explosion. 252 
gauge. 412
renormalized carrier complex, 419

Coulomb interaction. 216, 463
effect, 166, 173-174
effective electron-electron. 93

Coulomb processes
Auger-type. 452

Coulomb repulsion. 138. 165
strength. 167

Counterintuitive order. 439
Counter-propagating laser beam, 211-212 
Coupled dots. 411
Coupling-matrix element. 220-221
Courant stability condition, 272
CPU time, 91-92, 273-274, 655

excited-state calculation, 92
Critical angle, 32
Cross-spectral density tensor, 473 
Crout-algorithm, 578
Crowned fulleropyrrolidine (Cl P), 153 
Cubanc dodecahedron. 130 
Cu Fermi surface, 703

cross section of, 704
Cumulant expansions. 436
Current-carrying wire, 22

guiding of atoms. 22
Current density, 476
Current-induced switching

of magnetization. 679. 728. 729 
Curvature-corrected resonance integrals. 146 
Cyclic permutation, 473 
y-Cyclodextrins. 186 
Cylindrical-core hollow fiber

diagram. 35
Cylindrically average pscudopotential (CAPS) 

model. 239 
potential. 239

Cylindrical waveguide
relative population ol the fundamental 

mode. 40
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D
Damping linear. 12
Damping rale, 4(»8
Dark spot laser beams (DSLB). 27. 3(1. 31 
de Broglie wavelength, 2-4. 37. 50. 55-57 
ile Broglie waves. 23
Debye frequency. 434
Decay rate

two-level system. 495
Decoherence. 385. 424

free subspaces. 386
Decoherence rate. 496
Defect cavity. 322
Detect waveguide. 307
Degenerate four-wave mixing (DFWM). 138.

155-160. 163-IM. 171-173
experiment. 138
measurement, 159, 161, 170 
optical processes. 169, 173 
signal, 155
techniques. 156. 161

Demagnetizing tensor. 571
Density-density correlation function. 219
Density functional theory (DEF). 210. 139, 141.

403. 533. 537
approach. 116. 119. 140
calculations, 81, I |(>, 139, 165
correlation, 142
energy eigenvalues. 257
exchange-eorrelalion potential. 215, 217 
first-principles. 116
Green s lunctions, 257
theory, 140
time-dependent. 116. 143-144. 148. 169.215

Density matrix, 422
excited stales. 102
formalism, 190 
ground-slate. 101-102
hierarchy. 435
off-diagonal element of. 497

Density of states (DOS), 84. 86-87. I IS, 471 
calculation. 2X9
free-space, 288
in free space. 471
iron. 684
of cobalt, 684
of copper, 684
one-electron. 91
operator. 91
photonic. 266. 288
plot. 288
spectrum. 97

Density operator. 422. 474
Dephasing contribution. 496
Dephasing parameter. 94. 97, 106-107
Dephasing time, 488
Deposited atomic stripes

characterization. 71
Deposition nanofahrication techniques. 72

Deposition of atoms
for physical modification of surface. 70

Diagonalization techniques, 516
Diagonal matrix element. 695
Diamond lattice. 288

photonic band structure of. 288
Diazonium agents. 81
Dielectric constant. 294
Dielectric function. 84 

k-dependent. 468
Dielectric response, 468
Dielectric response function, 294
Dielectric slab. 318
Dielectric waveguide

map of mode structure regime. 36
Diels-Alder reaction. 185. 193
Difference frequency generation (DFG). 137 

process. 137
Diffraction effects. 67
Diffusion coefficient. 29, 468
Dipolar plasma resonance energy. 214
Dipole 

approximation. 188, 244 
emission wavelength. 320 
fluctuation spectrum. 489 
induced excitations, 104 
interaction model, 149 
oscillator. 478 
oscillator strength, 212 
plasmon energies. 229 
polarizability, 236 
potential. 29 
strength I unction. 243. 245. 249 
surface collective inode. 214

Dipole approximation. 570 
comparison with. 574

Dipole force. 50
potential. 51

Dipole sources polarized
radiation rates of, 311

Dirac’s delta function. 415, 426
Direct current conductivity. 468
Direct diagonalization. 452
Direct numerical evaluation. 740
Dirichlet boundary' conditions. 632
Discrete variational method (DVM), 541
Dispersion diagram. 298
Dispersion surface. 297
Dispersive

forces, 348
limit. 343

Dissipation. 3X1
Divergent zero-point energy , 475
Domain wall systems. 566
Donor-acceptor model. 154
Donor-type modes. 310
Donut mode. 30. 31
Doped carbon nanotubes. 175
Doped extended Su-Sehrieffer-Heeger 

(DESSH), 174 
model. 175. I’M
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Doppler
broadening. 192
limit. 10. 15
mechanism. 16
shift, 8

Dot-phonon coupling
strength. 434
term, 434

Double excitation channels. 168 
Double-layer models. 578
Double walled carbon nanotubes (DWNT). 81. 

113-114
absviption spectrum of. 113-115
resemble. 115

Double zeta (DZ.) basis. 145
Double zeta plus polarization (DZP) basis, 145
Doubly degenerate mode, 322
Downhill-simplex method. 600
Dreibein

orthogonal, 482
Dressed atom. 343
Dressed states. 45. 46

eigen energies. 45
Drude model. 294. 468
Dynamical focusing. 19
Dynamical guiding. 20
Dynamical polarizability, 211-212. 243
Dynamic Alternating Direction Implicit

Method (DADI), 575
Dynamic equation. 639
Dynamic susceptibility. 211
Dyson-like

equation, 218
representation. 218

Dyson's equation. 700, 722
Dzyaloshinsky-Moriya spin, 522

E
Easy plane, 534
Effective cavity volume, 312
Effective potential, 29
Effective refractive index, 303
Ehrenfest theorem. 243
Ehrenfest time. 387
Eigenfunction expansion. 223
Eigenmodes. 269
Eigenstates. 428
Eigenvalue equation, 220. 276

matrix, 220
Eigenvector, 220
Eight-band model. 407
Einstein A coefficient, 311
Einstein-Podolski-Rosen (EPR)

paradox. 359
state. 384

Einstein's concern. 332
Einstein summation convention. 149
Elastic potential energies. 152

Electrical field
amplitude. 36
nonuniform. 6
strength, 35

Electrical interaction. 5
Electric dipole moment operator. 188
Electric dipole operator, 213
Electric energy density. 475. 484
Electric field fluctuation

spectrum. 483
Electric-tield-induced second-harmonic

generation (EFISUG). 156 
technique. 161

Electric-field intensity profile. 323
side view, 323

Electric field operator. 474, 477
Electric field profiles. 305. 316

in-plane, 316
Electric quadrupole (EO) 

contributions. 152 
moment. 524

Electrode band structure. 716
Electromagnetic energy density. 484
Electromagnetic energy spectrum. 485
Electromagnetic field

in optical hollow fiber. 34
Electromagnetic field near photon dot

spatial distribution of intensity. 69
Electromagnetic field near photon hole

spatial distribution of intensity, 69
Electromagnetic fluctuations, 466
Electromagnetic interactions. 464
Electron-accepting fullerene moiety. 172
Electron creation (annihilation) operaton, 152
Electron deficiency. 175
Electron-deficient metal ion, 171
Electron density. 167. 174. 234

contour plots of, 119
Electron detachment threshold. 227
Electron eigenstates, 167
Electron-electron correlations. 90
Electron-electron interactions. 138-139, 92, 

225, 248
Electron energy loss spectroscopy (EELS). 80. 

103. 215
Electron-hole

configuration, 418
exchange interaction. 408
excitations. 215
interaction. 192. 251
pairs. 95. 101, 104. 398

Electronic quantum Coulomb problem, 139
Electronic wavefunctions. 144
Electron optics, 2
Electro-optical (EO)

coefficient, 193
modulation. 193

Electro-optic effect. 178
Electron paramagnetic resonance (EPR) 508
Electron-phonon coupling constants. ,66
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1 lectron spin resonance (I SR). 526 
spectra, 527

Electrostatic lightning-rod effect. (>4
Electrostatic reflection coefficient. 4X3 
Elitism, 446
Elongation parameter. 322
Emission

factor. 264
frequency. 311
modification effect. 311
processes, 425
transfers. 46
wavelength. 264. 492

Emission coupling factor. 320 
spontaneous. 320

Emission enhancement effect. 3IS 
spontaneous. 3IX

Emitted fluorescence spectrum. 4XX 
Emitted radiation power. 490 
Energies red-shift. 101
Energy

conservation. 469
conservation law, 477 
dissipation. 315 
eigenfunctions. 1XX 
eigenstate. IXX 
eigenvalue. 474 
equations. 577 
splitting. 419

Energy level diagram. 344
Envelope-function. 450

approach, 403
Epitaxial junctions, 714
Equidensity plots, 240
Equilibrium correlation functions. 479
Equilibrium density operator. 473
Equilibrium expectation value. 474 
Error indicator (h-rcfincment). 653 
Escort laser. 41
Euler equation. 216
Euler's theorem, 94
Evanescent waves. 17. 32. 33. 39—44. 4X1 

as an atom mirror, 32 
experiments in hollow fiber. 41 
reflection of atoms, 33 
simple. 32 
surface plasmon-enhanced. 33

Exact-exchange kernel (EXX). 222 
functional. 250. 255 
potential. 250

Exchange correlation
kernel. 221
potential. 140. 143 

Exchange-correlation action. 143 
Exchange-correlation energies. 175 
Exchange correlation functionals. 249

for calculation of optical properties, 249 
Exchange coupling. 701
Exchange energy. 634
Exchange-epitaxial magnetic tunneling

junctions. 722

I veiled biexciton state. 419
I veiled stale absorption (ESA). 177
I xcilon

eigenstates. 415
polarization. 427

I xcilon exciton couplings, 449
intrinsic. 449

Excitonic transitions. 420
Excitons. 404. 450
I xtended Su-Schrieffer-Heegcr (ESSII) 

model. I6X. 173

F
I araday-active media. 469
Faraday effects, 511
I ar-tield limit. 412
l ast Fourier transformation (EFT). 569 
last multipole method (I MM) method. 91 
1.ist-solving algorithm. 57X
I c-binuclcar

complexes. 507
system, 554

Fc/('r multilayer, 6X1
magnetoresistance curve of, 6X1

I c\ magnet. 5(IX
1 c MgO/l c(00l) junction. 722
I enni energy (FE). X4. 6X4
Fermi functions. 239
I cimi level. 103
l ermi level energy. 117
Fermionic lick! operators, 406
l ermi s golden rule. 211, 400. 495, 713 
Ferric wheels. 543

spin density distribution. 543
structure, 543

Ferromagnct/nonmagnet interface. 6X6
Feshbach resonances. 349
Fe(-star. 550

molecular structure. 550
Few-particle

complexes. 410
states. 402

Field-effect transistor (FF.T). XO
Field fluctuations

mesoscopic model for. 466
perturb. 464
spectra, 472. 475
spectrum. 4X0

Field populations. 363
Field response function. 479
Finite difference (FD) method. 565
Finite-difference time-domain (FDTD). 274, 

491
algorithm. 273, 293
codes. 293
computation cell. 2X4
grid boundaries. 272
method. 271. 273-274. 2X4. 294. 306.
t|4_3|7 323
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photoluminescence spectra, 320
procedure, 272
scheme, 272, 314
simulations, 299, 304. 321-322
technique, 284. 307
time evolution. 317

Finite element (FE)
codes, 565
mesh, 568
method, 627
technique. 567

Finite field (IT)
calculations, 148
technique, 148

First-principle calculation. 507. 528
Fissioning clusters

optical response of, 239
Fixed spin moment (FSM), 532
Fluctuating material polarization. 476
Fluctuation-dissipation (FD) theorem, 414. 

464, 475-480. 483, 489
Fluctuation spectrum, 479
Fluorescence decay rate. 491
Fluorescence light. 491
Fluorescence line. 47
Fluorescence near nano-objects, 491 
Fluorescent emission, 485
FM-l-FM junctions, 714
FM-I-S junctions, 714
Focal distance, 60
Fock Hamiltonian, 149
Fock integral, 250
Fock matrix, 93
Fock states. 334
Focusing

electrical, 6
magnetic sextupole field, 6
properties, 5, 6

Forbidden gap width, 280
Force theorem. 699
Fourier

coefficients, 276, 703
components. 136, 211
expansion. 270, 473. 481
scries, 269-270, 702
transform. 218-219, 243. 270. 273, 294, 317. 

468. 474. 479, 489
transformed space, 266

Four-wire guides. 23
Fragmentation mechanism. 228
Franck-Condon principle. 435
Free-space decay rate. 312
Frequency-dependent dielectric constant. 293
Frequency-dependent response functions. 143 
Fresnel coefficients. 278. 482
Fresnel reflection coefficients. 481
Friction force, 13
Fullerenes. 130

chemical-modified. 171
metal nanocompositcs. 185 
optical limiting performance. 179

photoabsorption spectrum. 234
solution concentrations, 181
structures, 131

Full master equation, 439
Full-potential linearized augmented plane wave

(FLAPW), 537
Full quantum mechanical treatment, 312
Full width at half maximum (FWHM). 320

method. 320
value, 320

Fully microscopic quantum chemical, 229 
Functional power series. 218

G
GaAs/AlAs micropillar

photoluminescence spectrum for, 313 
structure, 312-313

Galerkin
discretization. 628
method, 575

Gap width-to-midgap frequency ratio. 292
Gaussian axially symmetric form. 55
Gaussian Cartesian functions. 149
Gaussian frequency response, 306
Gaussian functions, 241
Gaussian laser beam, 27, 28, 33, 52, 53

radiation pressure force. 10
Gaussian light beam, 10
Gaussian pulse, 273

excitation, 317
Gaussian system. 136, 138
Gaussian type orbital (GTO), 144, 537
Gauss' theorem, 470
Gedanken measurement, 430
Generalized gradient approximation (GGA),

244
energy eigenvalues, 251
potential. 249

Genetic algorithms. 445
Giant magnetic resistance (GMR), 564

devices, 595
micromagnctic results, 605
multilayers, 580
quantum statistical treatment, 581
resistor model, 682
sensor, 611, 612

Gibbs density operator, 473, 479
Gibbs ensemble, 473-474
Gibb's free energy. 568, 632
Gilbert equation

of motion, 633
GMR/SP, 579
Goodenough-Kanamori rules, 503
Gradient-corrected exchange functional. 142
Gradient-corrected functionals, 142
Gradient force, 6. 10. 12. 13. 53. 54

origin and properties, 11
polarization. 15



Index

Granular layers
aiyctcd-shaped. 661

Graphene sheet. 82. 83
'schematic plot. 82

Grazing angle. 4
Grazing incidence. 4

guiding, 41 
reflection ol atom, 4

Green fiourescent protein (GFP), 247 
anionic chromophores. 247 
neutral chromophores. 247 
samples, 247

Green functions, 55. 224. 428. 470. 475. 533 
electric. 484 
matrix. 693 
one-electron, 698

Green’s function method
self-consistent. 223

Green tensor. 47(1 471, 474-475. 478. 48(1. 4X3.
485. 489. 493. 495
electric. 481
field correlation spectrum. 479 
in free space. 471 
in quantum theory. 478 
magnetic. 471. 481. 482

Ground-state energy. 24
(■round-state wave function, 24
Grovers algorithm, 518 

schematic representation of the amplitudes 
and operators. 518

Grover's diffusion operator. 5 18
Guiding of atoms. IS. 42

by hollow liber. 43 
with electric fields. 18
with evanescent wave in solid glass fiber. 42 

< iuiding time
in a single potential well. 46

H
Hadamard transformation. 353
Half-metallic fcrromagnel, 738
Hamiltonian, 59. 93. 138-14(1. 152, 165 166. 

174, 188. 469. 478. 496 
diagonalization, 139 
rr-electron. 145 
interaction. 188 
matrix. 85, 146. 235 
models. 519 
nanotube. 86 
one-electron core. 14(1 
operator. 216. 478 
radiation-tree molecular, 187-189 
sclf-consistent-fickl solution of. 148

Hamiltonian field. 88
Hamilton operator. 417. 422. 473
Hankcl functions

spherical. 276
Harmonic generation ’’5'

Harmonic oscillator. 387. 425
kicked. 387
potential. 49

Harmonic potential. 6(1
Hartree equations 

lime-dependent. 215
Hartrce-Fock (HF) 

approximation. 141. 167. 174 
calculations. 140. 238
Hamiltonian. 147
level. 244
method. 140-141, 528
operator. 147
potential. 738 
procedure. 14(1

Hartrce-Fock molecular orbital (HFMO) 
representation. 92. 109

Hartrce-Fock theory. 142 
time-dependent. 144. 148, 213

Hartree potential, 250
time-dependent. 217

Hal function. 631
HCS method, 270-271
11c atoms. 4
1 Icaviside step function. 59
Heavy-hole band. 408
I ledin’s equations. 257
I Icisenberg equation. 417, 479 

of motion. 381
Heisenberg inequality, 8
Heisenberg limit. 71
Heisenberg operator. 479. 488
Heisenberg systems. 515
I Iciscitbcig uncertainly relations. 472
Hellmann-Feynman I’ulay theorem. 540
Hellmann-Feynman theorem. 243
Hermilcan conjugate operator, 474
Hermite-Gaussian modes. 30
Hermitian. 269-270, 275
Hessian matrix. 703

Cflll hexamalonic derivative nanocompositc 
(HDTCM1-Ag), 185

Highest occupied molecular orbitals (HOMO). 
94. 100. 103. 109. 173, 175

High-remanence states. 588
Hilbert space. 452. 473
I lill-Wheeler coordinates. 229
Hohenbcrg-Kohn

formalism. 216 
theorem. 217, 529

Hohenberg-Kohn Sham theory. 215
Hollow fiber. 36. 38. 41. 42 

diameter. 41 
horn shape. 38. 39

Hollow optical liber (HOF), 32
Hologram. 31. 72 

binary. 31 
computer-generated. 31

Hologram method
compu tcr-gene raled. 30

HOMO-l 1 'MO energy difference. KK-104
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HOMO-LU MO energy gaps, 103-104, 156, 
172,225,251.546

Hopping integral. 146. 152. 166
Hornfiber. 39
Hubbard approximation. 146
Huckel matrix. 145
Huckel matrix elements, 146
Huckel theory. 145-146
I fund's first rule. 553
Hund's rules. 403
Husimi

distribution. 370
function. 380

Hydrodynamical equations. 216
Hyperpolarizability. 136-137. 154. 160. 173. 189 

averaged second-order, 163-164. 166 
computational techniques for, 147 
dynamic. 148 
interference terms of. 195 
molecular. 153 
molecular second, 149 
nonlinear frequency-dependent. 149 
second-order. 167. 173. 191-192 
static second-order. 162. 169

Hysteresis. 643
Hysteresis loop

staircase, 511

Ideal detection system. 614
Inactive spacer layer. 689
Tn As quantum dots, 313
Incoherent excitation scheme. 488
Independent-particle susceptibility. 225
Index modulation, 302
Induced dipole moment. 211
Inertia tensor, 239
Infinite-exchange splitting, 738
InGaAs-based quantum dots, 427
Integral operator acting, 220
Integrand. 701
Integrated-atom optics, 465
Integro-diffcrential equations. 488
Intensity distribution

of monochromatic beam. 66 
three-dimensional, 57

Intensity transverse profile. 28
Interaction

between atoms, 5. 6
light field. 6
potential, 20

Interaction Hamiltonian, 339
Intcrfacial spin-dependent scattering. 685
Interference

pattern. 31
terms. 195

Intermediate neglect of differential overlap 
(INDO)

approximation, 147
configuration interaction. 154 
sumover-state (INDO/CI-SOS) approach. 

154. 165
sumoxer-slate (INDO/CI-SOS) method. 154 

173
Intersite electronphonon coupling, 152 
Intersystem crossing (ISC), 177
Inverted opal manufacturing process, 289 
Ionic structure, 230

approximate account of, 230
Ionic surface energy. 229
Ionization potential. 217
Ising model. 522
Isolated-pentagon rule isomers. 163
Isotope separation. 42-43
Isotropic noise strength. 483
Isotropic remission, 9

Jacobian-matrix. 578
Jahn-Teller distorted dodecahedron. 244
Jahn-Teller distortion, 139
Jahn-Teller-induced local O(1 symmetry, 508
Jahn-Teller splitting, 251
Jaynes-Cummings model, 340
Jellium model, 236
Jellium-on-jellium model, 232
Johnson noise, 476
Johnson-Nyquist formula, 476
Johnson-Nyquist noise

in metals, 476
Joint density of states (J DOS). 116
Jones vector formalism, 485
Julliere's formula. 713

K
Keldysh

Green function formalism. 740
formalism. 738
method. 692
principle, 692

Keldysh-Landauer theory. 715
Kelvin temperature. 3
Kcplcrian guiding. 22
Kerr effect, 155, 511
Kinetic energy contribution, 215
Kinetic energy operator. 216
Kohn-Korringa- Rostocker (KKR) 

calculations. 291. 704 
method, 276-277, 718

Kohn-Sham
calculation. 220
eigenstates. 248
eigenvalues. 217. 221, 238
energy eigenvalues. 217. 222
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equations. 217. 239
excitation energies, 221
local density approximation (I.DA). 257 
nonintcracting response, 2IX 
orbital energy differences. 22(1 
orbitals. 221-222. 243. 250
potential. 250
response. 2IS
scheme. 216-217
single-particle energy differences, 220 
system, 218 
transition energies. 221
wavefunctions. 243

Kohn-Sham equations. 141. 211
ground-stale. 243
time-dependent. 143. 242

Kohn-Sham potential. 244
time-dependent. 218

Kohn-Sha m suscept ibiI ily
independent-particle. 220

Kohn-Sham theory'
time-independent (ID). 143

Korringa Kohn-Rostokcr method. 53X 
Kramers-Kronig relations. 178 
Kubo formula. 219. (»94
Kubo-l.andauer formula. 707
Kubo linear response formalism. 5X1 
k-vector falls. 302-303

Landauci lot inula. 74(1
Landauer scattering theory. 73X
Landau-like damping. 252
Landau-Zener transition. 11
Laplace equation. 524
Laplacian, 37
Larmor frequency. 494-495. 634
Larmor precession frequency. 20
Laser beam

blue-detuned. 4(1
honeycomb-type structure. 62 
red-detuned. 40

Laser cooling. 494
Laser focusing. 61
Laser resonant interaction effects

laser control of atomic motion, 7
Laser wavelength, X
Level crossing, 514
Lifetime broadening factor. 16X
Lagrange multipliers. 441. 445
Lagrangian function. 441
Landau and diamond configurations, 5X4

theoretical approach. 5X5
Landau-Lifshitz (LI.) equation. 726
Landau-I ifshitz-Gilbert (Ll.(i) equation. 566,

639
angle update, 566

Lande factor. 4'M

Langumir-Blodgelt (LB) films. 151. 153
Laser-induced quantum coherence. 43X
Laser pulse. 424, 435
Layered-shaped granular layers. 661
Lead lanthanum zirconate titanate, 299
Light 

emission. 3IS 
field configuration. 17. IX. 5X 
Held intensity. 14 
flux. 3IX
frequency detuning. 47 
hole hand. 408
inasks. 72. 73
matter coupling. 412. 42(1
optics. 2 
propagating parallel. 3(11 
propagation direction, 301

I ighi beams
dark regions. 53 
light regions. 53

Light confinement 
rcfractivc-indcx difference for. 313

Light pressure
origin and properties. 9

Light pressure force. 9. 11
as a function of velocity projection. 12

I indblad
equation. 3X1. 429 
form. 426
operators. 426

Linear combination of atomic orbitals (LCAO). 
248

Linear density response, 219
Linear dipole moment. 1X9
Linear dynamical polarizability, 248
1 incarizcd augmented plane waves (LAPW) 

full-potential. 121 
method. 116

Linearly polarized radiation 
intense, 170

Linear response. 219 
function, 219 
limit. 740
theory. 221. 224. 47X

I .inear response theory 
application of, 222

Linear-scaling calculation. 91
Line-broadening mechanism. 241
Line fragmentation. 241
Lionville von-Neumann equation. 422. 423
Liquid crystal (I.C). 299 

filled holes. 299 
high-performance, 299 
index change. 299 
infiltrated Si slab. 299

Lithographic techniques. 22
Lithography process. 294
Li-wheel, 544
I ocal density approximation (LDA). 142. 214. 

530
approximation 244-245 ?5i| 
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calculations. 116, 226
effective potential. 223
exchange functional. 142 
first-principles, 116
Kohn-Sham eigenvalues, 258
Schrodinger-type equation, 223
spectrum, 238
time-dependent, 225
wavefunction, 257
XC potential, 222

Local density of states (LDOS), 465. 471. 484 
projected. 471

1 ocal dielectric response. 476, 480
Local electric field operator. 488
Local exchange-correlation potential, 215
Local exchange functional, 142
Localized-density-matrix (LDM), 119

absorption spectra of, 98, 121
approach. 91
calculation, 111, 120
method, 81. 90-92, 95-97, 104. 121
PM3 method. 92, 112, 120

Local orbitals, 248
Local oscillator. 337
Local pseudopotential, 230
Local-spectroscopy experiments, 419
Lorcntz-Drude model, 468
Lorcntzian absorption resonance, 468
Lorcntzian dependence, 9
Lorcntzian functions, 228. 241
Lorcntzian line shape function, 320
Lowest-order whispering gallery (LWG) 

electric-field directions, 323 
mode, 323

Lowest unoccupied molecular orbitals
(LUMO), 93, 100, 103, 109, 173

Luminescence, 416
features, 419

Luminescence spectra, 418
for multiexcitons, 418

M
Macroscopic equations

properties, 469
Macroscopic field quantization, 484
Madelung energy, 229
Magnetic

correlation spectrum, 496
dipole (MO) contributions, 152
dipole operator, 496
dipole response, 151
field fluctuations, 496
field intensity profile. 323
field operators. 472
fluctuation spectrum, 495
hysteresis loop. 511
noise spectrum. 484. 495
quantum number. 494-495

transition moment. 495
trapping potential. 494

Magnetic anisotropy energy (MAE). 512, 656
Magnetic contrast, 71)4
Magnetic interaction, 5
Magnetic layers. 595

simplest mixed multilayer. 595
thickness influence in case of three magnetic 

layers. 599
Magnetic layer structure. 691
Magnetic memory devices. 514
Magnetic mirror. 24, 25. 26

ferromagnetic mirror, 25
Magnetic multilayer

different types, 683
structure, 678

Magnetic nanodot arrays, 591
Magnetic potential and surface charges. 570
Magnetic random access memory (MRAM).

564, 624
Magnetic resonance techniques, 524

for electron and nuclear spins, 525
Magnetic stray field components, 572
Magnetic sublevels

hyperfine-structure, 21
Magnetic superlattice, 687
Magnetic tunnel junctions (MTJ), 564, 607 

resistance of, 712
sketch of, 608

Magnetic unit cell, 688
Magnetic waveguides, 20

one-dimensional. 21
Magnetization fluctuations, 476

operators, 484
Magnetization operators, 478
Magnetization tunneling, 505 
Magnetocrystalline anisotropy. 591

energy, 635
Magnetoelectronic devices, 576
Magneto-optical atom trap (MOT), 349 
Magneto-optical forces, 16
Magneto-optical trap (MOT), 22, 39 
Magnetostatic mirror, 24

schematic diagram. 24
Majorana transitions, 21
Markov approximations, 425, 496
Markovian time evolution, 441
Mass-selected carbon ion beam deposition 

(MSIBD)
method, 92

Material polarization, 447
Material response functions, 467
Matrix diagonalization techniques, 270
Matrix eigenvalue

equation. 269
method, 219

Matrix clement, 86
Matsubara frequencies, 701
Maxwell’s

curl equations, 271
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distribution. 38
divergence. 271
equations. 265, 26V. 271. 319, 472

Maxwell’s equations. 19, 68. 69. 272. 274. 447, 
467, 482, 484, 498 
discretized. 272
macroscopic. 464. 466. 469—470, 472. 

476-478, 488. 490. 493
Mean potential. 46
Measured effective refractive index, 296
Memory

function. 427
kernel. 427

Mesh generation. 626
Metal clusters. 250

application of, 224
photoabsorption cross section of, 212

Metal-dielectric composite colloidal particles,
294

Metal-dielectric interface, 33
Mel hanofullere ties

spiroannelated quinone-type, 154
Microchannel plate (MCP) detector, 72, 73 

reconstructed pattern of Nc atoms. 72
Microcollimation technique. 31 
Micromagnetics, 564 

dynamics of. 566 
model. 612 
programs, 569 
recent papers, 576 
solving methods, 566

Microspheres, 611
Millgap frequency ratio, 292
Mie

frequency. 214, 224 
plasmon couples, 253 
resonance, 224-225 
result. 224 
scattering solution, 276 
surface plasmon, 214 

Mie-Drudc theory, 238 
Mirror reflection, 4 
Missing electron, 408 
Mixed metal clusters, 232 
Mii|2-ac magnet. 507 
Mnh, cluster, 551 
Mobius transformation. 694

application. 694
method. 706

Modal volume. 314
Mode conversion method, 31)
Modeling magnetic systems, 581
Modified neglect of differential overlap 

(MNDO), 147 
parameterization, 147 
parametric method 3, 147

Modified steepest descent and relaxation
(MSUR) method, 567

Molecular
dipole moment operator, 93 
fluorescence dynamics, 486

(hyper) polarizabilities. 148, 189 
magnets. 516
mechanics. 147

Molecular polarizability. 190
interference terms of, 195

Molecule detection with beads. 611
Molecule-field coupling system. 136, 188-189
Moller-Plesset perturbation thcoiy. 148
Moller-Plesset second-order theory (MP2). 139 
Monochromatic beam. 66, 67

distribution of the intensity. 66 
Monochromatic point dipole source. 470 
Monotrimethylenediamine (MTMDA), 163 
Monte-Carlo

algorithm. 595
method. 51

Morse potential. 40
Mossbauer spectroscopy, 524
Mott scattering mechanism, 684
Muffin-tin orbital method. 708
Multicharged excitons, 411
Multicxcitons spectroscopy, 411
Multilayer stack. 599

GMR characteristic. 603
infinite multilayer stack. 599 
magnetization behavior. 602

Multilevel atom, 14
Multiorbital band structure. 701
Multiple multipole expansion (MMP).

491-492
Multiwalled carbon nanotubes (MWNT), 114, 

122. 132, 182. 184
absorption spectra of. 114
in chloroform, 183
in water, 183
optical limiting behaviors, 183 
optical limiting performance. 179 
third-order optical nonlinearities of. 164

Multiwalled graphitic carbon, 134

N
Nanoaperture, 65, 66
Nanocapsules. 132
Nanocrystalline composite magnets, 664
Nanodots

magnetized horizontally, 592 
Nanofabrication. 72

atomic-beam holography. 72. 73 
Nanomagnet, 5t)6
Nanooptics. 2

combination of photon nanooptics and atom 
nanooptics, 2

light field configurations, 16
Nanoparticles

mechanical effects on, 497
Nanopillars

magnetized vertically. 592
Nanoscienee. 128
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Nanostructures, 128
molecules embedded in, 493 
spontaneous decay close to, 4911

Nanotube junctions, 134
Nanotubes

armchair, 82
axis, 82
doped armchair, 169
doped zigzag, 169
metallic armchair, 89
separation, 81 
zigzag. 82

Narrow-band emission. 489
Nearest-neighbor directions. 267. 308
Nearest neighbor interaction. 83
Near-held coherence, 485
Near-held optics. 18

break. 472
Near he Ids, 64, 65

of gold tip. 65
of nanohole, 64
of nanotip, 64

Near-held scanning microscopy, 419
Near-held vacuum fluctuations, 485-493 
Neel vector, 515
Negative effective refractive indices, 304
Negative-refraction-like behavior. 303
Neglect of diatomic differential overlap

(NDDO), 147
Neutral atoms

idea of channeling, 17
Neutral chromophore, 248

optimized structure of, 248
Neutron optics. 3
Neutrons

ultracold, 2, 3
Newells formulas, 573
Newton’s equations, 243
N,N-diethylanilinc (DEA), 153
No-cloning theorem, 357
Noise correlation length, 497
Noise potential, 497
Noise spectrum, 476 

exponential factor in, 477
Nonadiabatic transitions, 38
Noncpitaxial systems, 699
Nonequilibrium Keldysh formalism, 691 
Non-Hamiltonian dynamics, 496 
Non-Hermitian Hamiltonian equation, 426
Non-Hermitian operator, 430
Nonlinear coherent-spectroscopy experiment,

429
Nonlinear light-matter interactions, 423
Nonlinear optical (NLO)

absorption, 177
building second-order, 155 
chromophore, 193 
contribution. I 70 
effects. 135
interaction, 137
materials. 135, 154-155, 177

measurement. 155
molecules, 172
nanostructures. 193 
off-resonant. 173 
phenomena. 135 
photoinduced second-order. 154 
polarizability. 193 
potential third-order. 155 
processes. 177 
properties, 129-197
response, 148. 150-151. 155-156. 161. 169.

172-173, 176. 192. 193 
signal. 159 
susceptibilities, 148. 151. 154. 159. 165 
transmittance, 182

Nonlinear optical interactions
theoretical tools. 135

Nonlinear processes. 252
Nonlinear refraction. 178

mechanism, 178
Nonlinear scattering, 178
Nonlinear system of equations, 578 
Nonmaterial mask, 72
Nonmonochromatic beam

distribution of the intensity. 67 
Nonpropagating fields. 464 
Nonradiative decay rates, 469 
Nonunitary time evolution. 426 
Nonzero fluctuation spectrum, 488 
Normal refractive index. 178 
Novel ground-state phases, 412 
Nuclear equilibrium configuration. 243 
Nucleus-nucleus interactions, 138 
Nudged elastic band method, 641 
Numerical atomic orbitals (NAOs), 248 
Nyquist formula, 476

o
Oblate (OE) isomers, 229 
Octopolar-cnhanced approach. 154 
OCTOPUS

code. 244, 246 
web page, 246

Odd-symmetry-guided bands, 307 
Oersted field, 728
Ohm law, 468
One-center repulsion integrals. 146
One electron orbital density, 103 
One-electron integral, 93
Onsager’s reciprocity relations, 469
On-site electron repulsion. 146 
Open-ended armchair tube 

optical absorption spectra of, 99
Optical absorption, 414
Optical absorption spectra, 86 

polarization-dependent, 105
Optical band gaps, 165
Optical dipole moments, 413. 451
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Optical emission peaks. 4110
()ptical libers. 27. 42

thin. 44
Optical fields, 63, 64

focusing of atoms. 48
Optical force

ve loci t v -de pe ndcnt. 52
Optical frequency, 136
Optical gap. 98. 109
Optical gradient force

potential, 50
Optical holography. 72
Optical Kerr effect (OKE), 155, 171

optically heterodyned. 155
technique, 155, 161. 171

Optical lattices. 348
Optical limiter devices, 176
Optical limiting

behaviors. 183-184. 186
performance. 181 
response. 181, 183 
system, 176

Optically heterodyned OKE (OHD-OKE). 155.
171

Optically induced phase change. 178
Optical ncar-ficld absorption spectra. 420
Optical nonlinearities, 155. 157. 159. 164 

enhanced third-order. 171
Optical parametric oscillator (OPO), 137
Optical phonon, 468

resonances. 468
Optical polarizability. 136

third-order nonlinear. 167
Optical potential, 2, 32, 44. 59
Optical pumping lime, 16
Optical response, 415
Optical selection rules. 416
Optical spectroscopy, 399, 412

schematic representation, 399
Optical susceptibility, 155

second-order nonlinear, 153
Optical transitions, 429
Optimal control, 440

schematic sketch of the numerical algorithm. 
441

Optimality system. 445
Optimistic magnetoresistance ratio, 680, 689
Optimized effective potential (OEP),

22'’—2^ 3
kernel. 222
potential, 222
values, 222

Orbital-dependent functional. 250
Ordinary differential equations (ODEs), 639
Oscillating electric dipole moment. 469 
Oscillator energy

groundstale, 475
Oscillator strengths. 415
Oscillatory exchange coupling. 697
Oscillatory regime, 312
Output light fluence IOI.F), 176

Oxo-hvdroxo bridges. 5(18

Parabolic-band model calculations, 740
Parallel plate cavity. 311
Parallel waveguides. 305
Paramagnetic current density operator. 216
Paraxial approximation. 50. 51
Paraxial beams, 55. 57
Partial differential equation (PDE). 626
Particle-hole excitation. 213. 225
Partition function, 473
Passive optical limiting

basic principles of. 177
Path method. 591
Pauli exclusion principle, 683
Pauli matrices. 422. 694
Pauli’s principle. 403
Pctircy distribution, 66
Perdew formulation, 142
Perfectly matched layer (PML). 272 

Bercngcr-type. 298 
boundary condition. 273, 298, 317 
region, 273

Permalloy nanodots, 655
Permutation operator 

intrinsic. 136
Perturbation

expansion. 136, 18X 
theory. 136, 189, 49(1, 554, 678 
time-dependent, 211

Perturbed system, 414
Perturbing potential. 218 

time-dependent. 210
Pessimistic TMR ratio, 712
Phase displacement operator, 334
Phonon-assisted

density matrix, 436
dephasing, 425, 444

Phonon bottleneck, 433
Phonon-induced decoherence, 433
Phonon scatterings, 433
Photoabsorption cross section, 211-213, 215, 

219. 224. 227. 230-231, 233. 235-236, 242
Photoabsorption spectrum. 225. 228
Photocurrent generation, 187
Photofragmentation cross sections. 212
Photographic emulsion, 30
Photo-induced transitions, 110-111 

compositions of, 110-111
Photolithography technique, 71
Photo-luminescencc-cxcitation spectroscopy. 

421
Phololuminescence spectrum. 312
Photon antibunching. 431
Photon-assisted density matrix, 417
Photon bunching, 432
Photon density. 3P
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fret-space, 311
Photon dots, 57, 7(1

geometry, 68
Photon energy. 484
Photon holes, 67-70

diameter, 68
geometry, 68
single hole, 70

Photonic hand gap (PBG), 263-265, 277-295 
based waveguides. 305
complete, 288
complete three-dimensional, 292
emergence of, 281
forces, 306
for guided modes, 306
for 1 M polarization, 314
guided mode approaches, 308 
matrix, 304
of two two-dimensional slab photonic 

crystals, 285
one-dimensional. 313
on the lattice types and scatterer shapes, 284 
three-dimensional, 287
wide three-dimensional, 290
width. 281-283, 286

Photonic band structure, 277-304, 306, 308
for fee lattices, 291
for triangular array, 281

Photonic crystal-based cavity
with resonant wavelength, 320

Photonic crystal-based nanocavities, 310, 319,
322
structure, 318

Photonic crystal cavity, 314, 321
Photonic crystals (PC)

GaAs-based two-dimensional slab, 286 
hexagonal two-dimensional. 302 
lattice, 269
light propagation, 302
liquid crystal-infiltrated two-dimensional 

slab, 300
matrix, 308, 313
metal-based. 290
metal-dielectric, 265. 293
modeling of, 263-324
model metallic. 291
periodicity of, 266
photonic devices based on, 304
quality factors. 316
robust three-dimensional, 290
slab, 304
structure, 284-285. 314. 319
superlattice two-dimensional. 299
theoretical background. 265 
triangular. 301,308 
two-dimensional. 280. 287, 297 
two-dimensional GaAs pillar hexagonal. 303 
two-dimensional slab. 285. 290. 306-307. 316 
waveguides, 304-305, 315

Photonic density. 289, 310
Photon number eigenstate. 47.3

Photon number operator, 473-475
Photons, 11. 12
Photon saddle, 68
Photon scatterings, 9, 427

rate. 9
Photon vacuum. 430 
Photorefraction, 177-178 
Pirrolydinofullerene derivative (FULP) 

doped sol-gel sample. 186 
optical limiting behavior of. 186

Planck formula. 475. 483
for blackbody radiation. 464

Plane traveling wave. 9 
Plane wave (PW). 274 

expansion, 270 
expansion coefficients, 291 
method. 269. 291. 297. 306. 315. 542

Plasma frequency. 468
Plasmon

dominated dynamics, 252 
excitation energy. 227 
pole models, 214 
wave, 33

PM3 Hamiltonian. 93-94. 103. 111. 121
Point dipole

radiation rate, 318
source, 317, 319

Pointer states, 332
Point magnetic moment, 482 
Poissonian distribution. 432 
Poisson problem, 628 
Polarizability tensor, 213, 488 
Polarization

fluctuation. 477
fluctuation operators, 484 
noise spectrum, 476 
operators. 478 
vectors, 482

Polaron, 433
Poly(methyl methacrylate) (PMMA), 179-180, 

186
film, 182 
matrix. 186 
polymer film, 186 

Poly(propionylethyleneimine) (PPEI)
polymer chloroform solution. 186 

Poly tetrahydrofurfuryl methacrylate
(PTHFMA), 172

Pople-style basis sets, 144-145 
Population inversion curve, 319 
Porous carbons, 132
Position-independent rate, 490 
Positive background density, 234 
Positive effective mass, 303 
Positive jellium background, 224 
Potential energy

gradient. 19
of atom. 5
of localized and nonlocalized atoms, 48
of neutral particle. 19
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Potential-energy (Coulomb repulsion) operator.
138

Potential energy surfaces. 229
Potential isolines. 58
Poynting vector. 314, 317 319. 323. 469. 4X9
PPP approximation. 145. 147
PPP Hamiltonian. 91
Predefined basis functions. 144
Primitive Gaussian type orbitals (PGTOs). 

144-145
Primitive lattice vectors. 266
Probability amplitude. 188-189
Probe solid nanostructures. 464
Projected I DOS (Pl.DOS). 471
Projection operators. 431)
Prolate (PE) isomers, 229
Propagation attenuation length, 29
Proper band structure. 293
Proton-accepting capability. 172
Proton-transfer capability, 172
Prototypical dot-level schemes. 438
Pseudo hand gap, 322
Pseudopotentials

norm-conserving, 245. 24X
Pseudo spin valve. 596
Pulse propagation, 446
Pump-probe photomodulation technique 

standard lime-resolved. 171
Purcell effect, 312
Purcell factor, 312-313, 317-318. 323
Pure dephasing, 434
Py platelet, 582

I andatt configuration, 584
Pyramidalization angle, 108 

averaged. 163. 166

Q
Qbit superposition state, 496
C factors, 313-317, 320, 323 

in-plane, 317, 321-324 
out-of-planc, 321-322

Quadrupole formula, 2
Quadrupole mass analyzer (QMA). 211-212
Quadrupole splitting, 524
Quantized electromagnetic field, 334
Quantum chemical

ah initio methods, 238
calculations, 166, 169
schemes. 217

Quantum chemistry', 437. 529
Quantum circuits, 379
Quantum coherence, 399, 422
Quantum computation. 448
Quantum confinement. 387
Quantum consistent force Held (QCFF/P1) 

method. 147
Quantum control. 401
Quantum ciyptography. 429

Quantum dot cellular automata. 412
Quantum dots, 155

GaAs-bascd, 427, 434
Quantum electrodynamics (QED), 42, 264. 464 

effect, 42
of mesoscopic media. 464

Quantum error correction. 385
Quantum field fluctuations

properties, 477
Quantum fluctuations. 466, 477
Quantum information processing, 495
Quantum-jump approach, 430, 431

primary quantities and equations, 431
Quantum jumps. 52. 397
Quantum mechanical

action integral, 216
equation, 216
operator. 216 
time evolution. 430 
transmission coefficient. 739

Quantum-mechanical molecular mechanics 
(OM-MM) 
method, 247

Quantum mechanics, 472
Quantum Monte Carlo (QMC). 244 

technique, 530
Quantum nondemolition (QND). 363

sequence, 365
Quantum optical

problems, 484 
techniques. 438

Quantum optics, 437
dccohvrcnce, 4?I
quantum coherence. 421

Quantum regression theorem. 428
Quantum statistical treatment. 581
Quantum theory, 343
Quantum tunneling of magnetization (QTM), 

509. 511
Quantum well

structure, 319
theory', 698

Quarter-wave stack. 280
Quasihomogcneous single-domain phase, 587
Quasi-pcriodic functions, 696
Quasi resonant. 6
Qubits. 350

R
Rabi-flopping. 428
Rabi frequency. 13. 34, 44-46. 51. 311-312,

342
vacuum. 340

Rabi oscillation, 312. 423
Rabi rotation, 423
Rabi-type oscillations, 427, 435
Radial potential. 52
Radiated enuigy. .'19
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Radiation forces. 7-9. 11
for manipulation of atoms. 7

Radiation loss, 308
Radiation rate

approaches, 311
calculations. 317

Radiative decay rate, 49(1
Radiative force, 34
Radon inverse transform. 365
Radon transform, 365
Raman adiabatic passage. 438 

stimulated, 438
Raman spectroscopy, 80, <81
Raman-type process. 439
Random phase approximation (RPA). 91.

160-162, 165-166. 213-214
formulas, 214
method, 165
moments, 213
screened Coulomb interaction, 258 
sum rules, 229
value, 213

Rare-earth ions. 505
Rayleigh expansion. 490 
Rayleigh range. 27 
Rayleigh-Ritz method, 585 
Realistic system

electronic structure of, 144
Real-space map, 420
Reciprocal lattice vector, 302 
Reciprocity. 469-470

principle, 470 
theorem, 470

Rectangular platelet, 586
diamond and cross-tie states, 586 

Recursive equation, 294 
Red-detuned light, 43 
Reduced-index-rod slab waveguide, 307

projected band structure for, 307 
Reduced-symmetry square lattice

gap map for, 282
Reflection coefficients, 276, 306, 482 
Refraction angle, 303
Refractive

index, 32, 44
index contrast, 303
index difference. 312-313

Regression theorem. 429
Relative dielectric function. 467
Relative oscillator strength. 99 
Remanence ,W, 593
Renormalization effects, 415 
Resonance-luminescence spectra, 423 
Resonant excitation. 428
Resonant interaction. 345

ideal two-level diagram. 9
Resonant mode profiles. 323
Reverse saturable absorption (RSA). 177 

mechanism, 177-178
model, 186
process, 181

Rigid-bicxciton approximation. 409
Rigid exciton. 450
Rolling vector, 133
Rotating frame. 454

transformation, 341
Rotating-wave approximation, 413
Rudcrman-Kiltel-Kasuya-Yosida (RKKY) 

theory. 564
Runge-Gross theorem. 250
Rydberg

atoms, 333
energy. 404

s
Scalar potential, 19
Scaled preconditioned generalized minimal 

residual method (SPGMR). 64(1
Scaling rule, 57(1
Scanning near-field optical microscopy 

(SNOM), 465. 492-493
Scanning probe techniques, 466
Schrodinger cat-like state. 360
Schrodinger equation. 5, 23. 36, 37. 50, 51. 59, 

139. 167, 265-267, 714, 738-739 
for 7T-electron, 174
for monochromatic noncoherent beams. 66 
many-body, 141
single-particle, 403 
stationary, 66 
time-independent. 187-188, 210. 215-216

Schrodinger operators, 474
Schrodinger-type equation, 223
Second-harmonic generation (SHG). 137 

activity, 150, 191 
intensities, 150-151
response, 151 
signals, 150-151, 153 
spectrum, 150, 152-153

Second-order 
hyperpolarizability, 191 
optical nonlinearities, 150 
optical polarizability', 190

Second quantization, 451
Self-assembly process, 288
Self-consistent equation. 167, 175
Self-consistent field (SCF), 105, 143
Self-consistent iteration. 167
Self-induced transparency, 423, 446
Self-interaction corrections (SIC’s), 227, 554 
Semiconductor

of higher dimension, 404 
quantum dots. 402. 404

Semiconductor quantum optics 
decoherence, 421 
quantum coherence. 421

Semi-infinite substrate, 696
Shape function. 568
Shell’s law. 32
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Short-distance expansions, 482
Si4 dusters

averaged photoabsorption cross section ot, 
237

Si,, clusters 
averaged photoabsorption cross section of, 

237
SIESTA code, 248
Siesta method, 54(1
Si-inverted opal structure, 289
Silanes, 251
Silicon wafer, 296
Simple square lattice 

gap map for. 282
Simulation model. 595
Single-atom refraction index. 347
Single current-carrying wire. 21
Single-dipole resonance, 213
Single-dot spectroscopy, 418
Single-layer elements. 582
Single-line defect. 308
Single-mode waveguide. 24
Single-molecule magnets (SMM), 505, 507
Single-orbital tight-binding model. 710
Single photon on demand. 429
Single-photon sources. 429
Single-point crossover, 446
Single-qubit rotations (unconditional gates). 

448
Single standing light wave. 60
Single-stranded DNA (ssDNA), 81
Singlet-triplet energy splittings, 147
Single-walled carbon nanotubes (SWNT),

80-84. 86, 87. 96-97. 11 l-l 12-113. 117. 1|9, 
121-122. 132-133. 169. 194
absorption spectra of. 90, 97, 108, 112, 115 
as quantum confinements of graphite. 82 
based materials, 104
chirality, 82 
cohesive energies of. 92 
conduction band. 88
DOS diverges. 88-89 
functionalized. 112
Hamiltonian field of. 88
high-energy peaks of, 115 
metallic, 112. 120. 164
non-armchair metallic, 90 
open-ended zigzag, 91 
optical absorption lineshapes, 120
optical absorption spectra, 92 
optical limiting behaviors. 183 
optical limiting performance, 179
optical limiting threshold. 183 
optical properties of. 115 
optical spectra of metallic. 112 
polarization-dependent optical absorption 

spectra of. 105
schematic model for. 133
solutions. 170
structure of. 112
suspensions. 18? 

third-order optical nonlinearities ot, 164 
transition dipoles of, 90
with dephasing parameter. 106-107 
zero-order band structure of. 91 
zigzag, 92. 108
zigzag semiconducting, 89

Singly and doubly excited configuration 
interaction (SDC'I), 148 
cigcnsolutions of, 148

Singly excited configuration interaction (SECI).
148
cigcnsolutions of, 148

Si ridge waveguide. 314
Slater type orbital (SEO), 144
Slonczewki’s method, 738
Sodium atomic beam, 56

spatial profile, 53
Soft-core pseudopotentials.

norm-conserving, 245
Space grid resolutions. 272
Spatial

average of stray fields, 572
delta function. 476
dispersion, 468

Spatial distribution
of probability density. 58

Specular reflection. 34
Spherical aberration, 51
Spherical dot model. 434
Spherical jellium model (SJM). 213-214.

224-225, 228, 230, 257
Spherically averaged pseudopotential model 

(SAPS). 230 
calculation. 231 
model. 231. 233
potential. 231

Spherically shaped carbon nanostructures 
experimental measurement. 150 
theoretical calculations, 151

Spherical shell approximation, 148
Spin angular momentum current. 692
Spin-Boson

coupling, 436
model, 433

Spin channel. 687
Spin-crossover effects, 507
Spin current, 679

formula, 701
Spin-dependent scattering. 682
Spin dephasing. 495
Spin flip processes, 496
Spin flip rate. 494—496

in broad band fields. 494
Spin-flip scattering. 683
Spin-forbidden excitation, 152
Spin Hamiltonians. 521
Spin-independent potential. 738
Spin pair-correlation function, 516 
Spin-pokirizcd current. 691
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Spin-polarized scanning tunneling microscopy.
584

Spin structure, 40b
of electron-hole states. 408

Spin-transfer Torque. 736
vector. 740

Spintronics. 678
Spin-up and spin-down electrons. 579
Split valence basis, 145 
sp" hybridization. 129-130 
Spontaneous-emission coupling factor, 36, 38.

319
Sputtering technique 

self-replicating, 264
Square grid cell. 572
Square lattice of square air-rod structures 

photonic band structures for, 283
Square lattice single-cell cavity. 323 

free-standing. 323 
resonant mode profiles of, 323

Square modulus, 409
real-space map. 420

Square platelet, 586
Bloch line types, 586
energies for. 588

S-statc. 617
Standard diffraction limit. 472
Standing light waves. 70. 71

combinations, 62
differing in frequency. 63

Standing spherical light wave, 48
Standing wave. 45—47

atom potential. 45
experiments, 47
laser, 17
of laser light. 45
plane, 11
schematic representation focusing of 

chromium, 62
Standing wave intensity

distribution, 14
Standing-wave lens

array, 61
large-period, 60, 61

State vectors. 426
Static electric fields, 5, 18
Static magnetic fields, 5
Static trapping field. 496-497
Static trap potential, 496
Stationary phase approximation (SPA) formula.

702
Steepest descent. 446
Step profile dielectric function, 271
Stiffness matrix, 631
Stimulated (retarded) force. 13
Stokes pulse, 439
Stoner-Wohlfarth

behavior. 643
calculations, 580
limit. 649
model. 577

Stone-Wales transformation. 244
Storage ring. 23
Stray fields of magnetic platelets, 582

3D-view of Hx component, 583
3D-view of Hy. 583
Hx(x/1) component. 583

Strict adiabatic limit, 427
Strong confinement. 405
Strong confinement regime. 406
Strong-field seeking state. 20
Suhmicrometer apertures. 415
Substrate permittivity, 491
Subwavelength detectors. 472
Subwavelength optical microscopy. 465 

domains of relevance. 465
Successive overrelaxation, 566
Sum-frequency generation (SFG2). 137
Sum-over-molecular-orbitals (SOMO) 

approach. 165
Sum-over-states (SOS)

approach. 147, 166-167
methods, 166

Sum rules, 213
Superconducting quantum interference devices 

(SQUID), 512
Superlattice photonic crystal structure, 300
Superlattice unit ceil, 689
Superparamagnetism, 511
Superprism effect, 299. 302
Surface anisotropy. 565
Surface corrugation, 491
Surface Green's function (SGF), 695
Surface plasma resonance, 212
Surface plasmon, 33, 211
Surface plasmon dispersion relation. 485
Surface plasmon polariton, 485
Su-Schrieffer-Heeger (SSH)

models, 151, 166, 173
Sweeping mechanism, 241
System-environment coupling, 424
System oscillator coupling constant, 425

Tacn-rings, 509
Talbot distance. 60, 63
Talbot effect. 63, 64

for atom focusing. 64 
uses. 63

Target qubit. 448
Taylor expansion. 136, 215
Teleportation experiment. 356
TEMOI mode. 31
TEM’( mode. 53-55. 57

beam trajectories and potential isolincs, 58 
distribution of intensity. 54
focusing, 54

Temperature-dependent prel'aclor. 476
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Tensor component, 571
Terahertz spectroscopy, 528
relracyanornethanoxymethano (TCNEO), 186

5, It), 15, 2O-tetrapheny-21H. 23H porphine 
(TPP), 153. 172

5,6. 11, 12-tctraphenylnaphthacene 
(rubrene) (TPN). 153. 172

Theoretical tubule diameter. 134
Thermal

beam. 56
distribution. 436
field. 480
field fluctuations, 484
lensing, 177
line broadening, 241
magnetic noise. 497 
motion, 241 
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