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PR E FA C E

T h e  purpose o f this book is to give a systematic account o f the general 
principles and concepts governing the non-relativistic quantum  mechanical 
motion o f a set o f N  elem entary particles under their mutual interaction, 
where by “elementary particle" is m eant one which can be neither created 
nor destroyed. (For m ost purposes in chemical physics the elem entary 
particles are electrons and atom ic nuclei.) The book is not strictly an in tro ­
duction, but is addressed ra ther to  the reader who, after a study o f  in troduc­
tory  topics,+ wishes to  see the whole subject treated systematically by deduc­
tion from  general principles. At the same time, it is largely self-contained 
and  efforts have been made to reduce m athem atical sophistication to a 
minimum. The only essential prerequisite is, in fact, a knowledge and under­
standing o f  elem entary quantum  mechanics as contained in earlier volumes 
o f  the present series. +

The book commences with a discussion o f the unperturbed and perturbed 
stationary states o f the system in C hapter 1, considers its time evolution in 
C hapter 2, discusses transition am plitudes and cross-sections in C hap ter 3, 
investigates the com plications which arise from  the possible identity o f  
elementary particles in C hapter 4, and finally gives some examples o f appli­
cations in C hapter 5. One or more exercises are set a t the end o f m ost 
sections these are in the main very simple, and should help the reader in 
following the argum ents in the text. The definition o f the scattering operator 
used is that o f R odberg and Thaler , 8 which seems to be the most suitable 
for the /V-particle system considered here.

Thanks are due to  Professor McWeeny and Pergamon Press for their 
kindness and help with the writing and production o f  this b o o k ; w ithout this, 
the task would have been much more difficult.

t For example J. E. G . Farina, Quantum Theory o f  Scattering Processes, Pergamon 
Press, Oxford (1973) (Volume 4 o f  Topic 2 in the present series).

t  In particular R. M cW eeny,Quantum Mechanics. Principles and Formalism , Pergamon 
Press, Oxford (1972) (Volume 1 o f  Topic 2).

§ L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory o f  Scattering, 
Academic Press, New York (1967).
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C H A PTER  1

T H E  C H A N N E L S  O F A N  /V-PARTICLE SY ST E M

1.1. NATURE O F TH E SYSTEM  TO  BE STUDIED

The purpose o f this book will be to describe the quantum  mechanical 
theory  o f  the dynamics o f an TV-particle system. In atom ic and molecular 
physics and chemistry these particles will almost always be electrons and 
atom ic  nuclei, and these will be regarded as our “fundam ental” particles. 
As such, we shall regard them as indestructible, and atom s and molecules will 
be regarded as composed o f these elementary particles. In nuclear physics 
the  elementary particles are neutrons and protons, and atom ic nuclei are 
regarded as made up o f these. The field o f high-energy physics is very much 
a t  the frontiers o f knowledge, and the nature o f the “elem entary” particles 
in this case is still a m atter o f controversy.

O ur system, therefore, consists o f  N  “elem entary” particles. We shall 
suppose the particles to move with non-relativistic velocities under their 
m utual interactions, and we shall not consider the effect o f  external agencies 
such as the electromagnetic field. There will therefore be no photons in our 
system , and processes involving the absorption or emission o f photons will 
not be considered. A lthough this rules out many reactions o f interest, it does 
not rule them all out by a long way. In many reactions in the gaseous state 
processes o f the form A  + B — C +  D , where A  and B  are com posite particles 
such as atom s, molecules, or ions, take place, and such reactions can be 
considered as distinct from any previous or subsequent emission or absorp­
tion o f radiation. Also of much interest are processes o f  the form A + B  — 
C* + D  where C* is an unstable com posite particle which subsequently dis­
integrates, so that a process o f the form  C* — D + E , for example, takes place 
w ithout the absorption or emission o f  radiation. It is the fundam ental theory 
o f such processes which will be studied in this book.

Let us first consider the configuration coordinates o f the system. If we 
label the particles 1 ,2 , . . . ,  N  the rth  particle is specified by its position 
vector Rr and spin sr. The vectors R i ,R 2, . . . , R V and num bers j] , 52 . - 
now specify the configuration o f the system.

W ith the vector Rr is associated a Laplacian operator v*. If the mass o f 
th e /th  particle is mr its kinetic energy operator is defined by Kr =  — 62v®/2/wr.

i



2 SCATTERING PROCESSES: GENERAL PRINCIPLES

In nonrelativistic quantum  mechanics the Ham iltonian H c of the system 
takes the form*

Hc =  £  Kr+ V . (1.1.1)
r =  1

The system can be decomposed into m  “clusters", the /th  cluster Aj 
containing n} elementary particles, say, so that «i +  «2 +  . .  • + nm = N. We
shall assume that the quantity V  can be expressed in the form

in
V = £ V ( A J ) + V ,  (1.1.2)

j  = 1

where V(A-) depends only on the coordinates o f the particles of the /th
cluster, while Vf tends to zero as the clusters are separated from  each other.
The suffix i denotes the particular decomposition, and V i represents the 
interaction potential between the clusters.

We can use (2) to put (1) in the form

m tij m
H c =  £  I  K, ( ; ) +  X  V {A j)+ V , (1.1.3)

j = 1  r =  1 = 1

where Kr(j)  is the kinetic energy operator for the / th particle o f Aj. If  we put 

hyc =  2  Kr(j)+ V (A j) ,  (1.1.4)
r = 1

so that hJG depends only on the coordinate o f the /th  cluster,! (3) becomes

m
H c =  £  hj c + V i .  (1 .1 .5)

j = i

We shall assume th a t V  and V, are invariant under translations o f the 
system as a whole, and tha t V(Aj) is invariant under a  translation o f  th e / th  
cluster as a whole. In other words, we assume that the TV-particle system is 
not affected by its environment.

E x a m p l e  1. If the elementary particles are electrons and atomic nuclei which 
interact through their Coulombic interactions V is just the sum o f  these interactions. In 
this case V(At) is the sum o f  the Coulombic interactions between particles within the /th  
cluster, while Vt is the sum o f  the interactions between particles in different clusters. The 
decomposition (2) is obvious in this case. Since the Coulomb potential depends only on the 
distance between the particles the translational invariance is also obvious here.

t W e use the symbol H0 for the Hamiltonian in the laboratory system as later we 
shall use H for the Hamiltonian after the motion o f  the centre o f  mass has been removed.

t  Again the suffix G denotes the Hamiltonian before removal o f  centre o f  mass 
motion.



THE CHANNELS OF AN A'-PARTICLE SYSTEM 3

E xam ple 2. The assumption remains valid if translational invariance holds and the 
effect on any one cluster o f  the others becomes negligible as the clusters separate. For 
then

m
H0 -  Y, v  (1.1.6)

i  -  l

where hjC is given by an expression o f the form (4). If we define V, by

m
Vi — H& — £  hjG (1.1.7)

j -  i

then (5) is obviously satisfied, and from (6) and (7) V, — 0 as the clusters separate from 
each other. If we substitute for bj0 from (4) into (5) we obtain (3). Hence H(; is given by 
(1) where K has the form (2).

1.2. SEPARATION O F TH E  CEN TRE O F M ASS M O TIO N

Let us first consider a system consisting o f two elementary particles I and 
2. W e shall denote the position vectors o f 1 and 2 by Ri and R 2, the position 
vector R !—R 2 of 1 relative to 2 by R |2, and the position vector (m ,R i+ h ;2R 2) 
/(/« i +  w 2) o f  the centre o f mass by R1+2. Associated with the vectors 
R i, R 2, Ri + 2 and R i 2 we have Laplacians which we denote by v f , V 2, V 1 + 2  

and  v ?2 respectively.
We can describe the positions o f the two particles by either R i and R 2, 

or by R l+ 2  and  R ]2. If we denote the com ponents o f  Ri relative to a set o f  
Cartesian axes O xyz  by (x i, y  1, zj), with a similar notation for the com po­
nents o f the other vectors, we can specify the configuration o f the system by 
either the six coordinates (x j, y z \ ,  x 2, y 2, z2) o r by the six coordinates 
( * 1  + 2, y i+ 2 , Z1+ 2,  X \ i ,  ^ 12 , 2 12 )- The reader may easily verify that the Jacobean 
o f the transform ation between them is unity.

The kinetic energy operators for the m otion o f 1 and 2 are

K . = - ^ - v ?  ( i = l , 2 ) .  (1.2.1)

Let us denote the reduced mass Wim2/(m i +  m 2) o f 1 and 2 by ^ i2, the kinetic 
energy operator for the m otion o f the centre o f  mass by Ki +2, and the kinetic 
energy operator for the motion o f  1 relative to 2 by K]2. In this notation
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The four Laplacians are, o f course, given by

0 2  0 2  0 2
V / = —~2 + -^-rr  +  "=pr (1 =  1 ,2 , 1 + 2 , 12). (1.2.4)

d x f  dyr dz f

The reader should have no difficulty in verifying from equations (1) to (4) 
that

K1 +  K2 =  Ki + 2 + K i2- (1.2.5)

The state of free motion o f a particle in which its m om entum  is ftk may be 
represented by a ket | k) whose wave function 9?k(r), or representative in 
configuration space (r | k) (D irac, 1958), is given by

<pk(R) =  (R | k> =  exp (/k .R ). (1.2.6)

It is easily verified that

(k | k ')  =  J (k  | r) (r | k ')  dr -  J  <pj(r) cpk (r) dr = 6 ( k - k ') .  (1.2.7)

The state of motion o f two particles 1 and 2 is now specified by the ket 
| k ik 2), where the mom enta are ftk, and hk>. At this stage we shall not con­
sider complications arising from  the Pauli principle, and so the wave function 
for the two particles is the product of the separate wave functions (R i | k L 
and (R 21 k 2). Hence

(R iR 21 k ,k 2> =  (R i | k,> <R2 1 k 2>, (1 -2 .8 )
and so

I kiks) =  | k t) | k 2>. (1.2.9)
It is easy to  verify that

< k [k '|k ,k 2> =  S ( k ( - k 1) 5 ( k 2 - k 2). ( 1 .2 . 1 0

The state of motion may also be specified by the ket | k i +2k i2) =  j ki + 2>|k12)
in which the centre o f mass moves with momentum ftkl+2, while 1 moves 
relative to 2 with wave vector k t2. The relative wave vector k i 2 is defined by

m 2k i - w i k 2
k i2 =  --------;-------- , ( 1 .2 . 1 1 )

m i + m-2

and since the centre o f mass moves with the total m om entum  ftki -f hY. > it 
follows that

k i + 2  =  ki + k 2. ( 1 .2 . 1 2 )

Now R i+ 2  =  (»JiRi-l-/K2R 2)/(w i +  m2) and R i2 =  Ri — R 2 so it is easy to
show from  (6 ), ( 1 1 ) and ( 1 2 ) that

< R i|k i> < R 2 | k 2> =  (R i + 21 k i+2> (R i2 1 k i2), (1.2.13)
hence

! k i)  | k 2) =  | k i +2>| k i2>. (1.2.14)
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We can abbreviate (14) to
[ k i k 2) = I k i +2ki2>. (1.2.15)

It is easy to  prove by using (6 ) that

 ̂L i 2®̂ 12 kl 12̂ — L + 2  ̂1+-2) (̂̂ 12 ^12̂* (1.2.16)
The kinetic energy associated with the m otion o f a particle or the centre of
mass is given by

E i =  ( /=  1, 2, 1+ 2) (1.2.17)

and the relative kinetic energy is given by

E n  =  (1.2.18)
2/.112

It is clear that
(Ki +  K2) | k ik 2) =  (jfe'i +  £>) i ( 1.2.19)

Ki +2 1 ki + 2) — E\ + 2 1 ki +2), ( 1.2 .2 0 )
Ki2 | ki2) =  E \2 1 ki2), (1.2.21)

and since j k ik 2) =  | ki . 2k i2) it follows from (19) to (21), (5) and (15) that

E \- \ -E *  = £'i + 2-)-£'i2. (1.2.22)

The result (22) may also be verified directly from (17) and (18).

F ig . 1.1. Coordinate vectors for a three-particle system.

We can extend this process to the N-particle case in a systematic way. 
Firstly, U N  = 3 we separate out the motion o f the centre o f mass o f  2 and 3. 
Form ally we have (see Fig. 1.1)

Ri> R:s — R i, R 2+3i R ’3> (1.2.23)
Ki +  K2 + K s =  Ki +  K2+3 + K 235 (1.2.24)

| ki> | k2) | k 3> =  |k i ) |k 2 +3>|k23>, (1.2.25)
£ i + Ei~\-E^ =  E \ +£"2 + 3  -f- £ 23* (1.2.26)
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We now separate out the centre o f mass motion o f 1 and 2 + 3 . This is, o f 
course, the centre o f mass o f the three particles as a whole, and we can 
denote it by 1 + 2  +  3. The centre o f mass o f 2 and 3 is denoted hy 2 +  3 so 
that, for example, K1(2+3) denotes the kinetic energy operator for the motion 
o f 1 relative to  the centre o f mass o f 2 and 3. We obtain

In the case o f four particles we separate out the m otion of the centre of 
mass 2 +  3 +  4 of three o f them as just described, and finally separate ou t the 
overall centre o f mass motion from  the motion o f the rem aining particle I 
and th a t o f 2 +  3 +  4 (Fig. 1.2). The extension to n particles is straightforward. 
The configuration o f the system is defined by the position vector o f the 
centre o f mass o f the system, and the vectors r i , r2, . . ., rn_15 where tj is the 
position vector o f they'th particle relative to  the centre o f mass o f the particles 
7 + 1 , 7 + 2 , . . . ,  n ( j  =  1, 2, . . . ,  h - 1 ) .  The state vector | k ik 2. . .k„) is 
given by

I k ] k 2  . . - k „ )  =  I k l  +  2 + . . .  +  „  k i ( 2 + 3 + . . . + n )  k 2 ( 3  +  4 + . . . + n ) -  • - k f n - l ) , , ) ,  ( 1 . 2 . 3 1 )

the total kinetic energy operator is given by

(1.2.27)
(1.2.28)

(1.2.29)
(1.2.30)

3

F ig . 1.2. R e la tive  p o sitio n  vecto rs fo r a fo u r-p a rtic le  system .

K l+  K2+  . . . +  K„ — Kl + 2+... + „+  Kl(2+3+...+n)

+  K2 0 +4+ ...+«)+ • • • +  (1.2.32)

and the total kinetic energy is given by

E 1 + E 2  +  • ■ • + ■ £ »  =  £ l  +  2 + . . .  +  n + £ ' l ( 2  +  3 + . . . + n )

+  £2(3 + 4 + ... + /!)+ • • • +-£n(7!-l) • (1.2.33)

Relative coordinates other than the ones described here may be used;
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how ever, the simple breakdow n o f the kinetic energy operator into the sum 
o f  the  kinetic energy operators associated with each relative coordinate may 
n o  longer be possible—cross-terms may appear.

E X E R C IS E S

1. Verify that the Jacobean J  o f  the transformation

(JCi.^i.z1,Jf2,>’2, 22.) -* (x I + 2, y 1 + 2, z l + 2, x I2, y l2, z l2)

satisfies | J  | - 1.
2 . Verify (5), (10), (13), (16), and (22).
3 . Carry out the above separation process in the case o f a system o f four elementary

particles.
4 . If the system consists o f  four elementary particles o f equal mass show that

£ 1(2 + 3+ 4): E 2(3 + «  : E3l — 8A'i(2 + 3 + d : 9A.'2(3 + 4): 12A.j4.

5 . Draw the diagram for a system o f  five elementary particles corresponding to Fig. 1.2 
for four elementary particles.

1.3. T H E  CHANNELS O F A SYSTEM

We saw in Section 1.1 that corresponding to  a decomposition o f the N
particles into m  clusters the H am iltonian Hc o f the system can be expressed
as

m
Hc = I h  jc + V ,  (1.3.1)

i = i
where

h ; c =  I  Kr( j)+ V (A j) .  (1.3.2)
r =  1

is just the H am iltonian for the cluster Aj in isolation, while K(. is the 
interaction between the clusters and dies away to zero as the clusters separate
to large distances from  each other. The kinetic energy operator K( for the
centre o f  mass m otion o f each cluster Aj ( j  — I . .  .m ) may be separated out 
as described in the last section so that

hjG =  Ky+h/ (1.3.3)

where ĥ  describes the internal m otion o f Aj. If each cluster H am iltonian h 
( j  =  1 , 2 , . . . ,  m) supports a t least one bound state o f the particles o f the 
cluster the decom position is called an arrangement channel of the system and 
denoted by /, say. If the internal states o f A u A 2, ■ ■., A m are also specified, 
by a set o f quantum  num bers labelled n, then we have a channel. A channel 
is therefore denoted by ni. It will be convenient to  norm ally refer to this by 
the single symbol n, provided this causes no ambiguity. Corresponding to

QTSP 2
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each arrangem ent channel there is at least one channel. There may be several 
channels, or indeed an infinite num ber o f channels, corresponding to any 
arrangem ent channel.

If we use the procedure o f the last section we may specify the configuration 
o f the system by the position vector o f the centre o f mass, the vectors n, r2, 

rm_1 where r , =  R,w+I)+0+2)+ . . .  +m] is the position vector o f the 
centre o f mass o f Aj relative to the centre o f mass o f  AJ+1, Aj+2, . . . ,  
A m (1 =s,/' m -  1), and the internal coordinates o f A \, A 2, ■ ■ ■, Am which 
we collectively denote by x. Now substitution o f (3) into (1) yields

m m
He =  K /+ £  hj+ V /. (1.3.4)

j  = i i = i

If  Kc is the kinetic energy for the motion o f the centre o f mass o f the system
the procedure o f the last section, when applied to the centres o f  mass o f
A \, A 2, . . . ,  Am, shows that

m m — 1

X  =  Kc +  X  ^y'[0 + 1)+U+2)+-.. + m]- (1.3.5)
7 = 1  7 = 1

If we put
m — l

K =  X  ^y[0'+i)+U+2)+...+mj» (1.3.6)
j = i

so that K is the total relative kinetic energy operator, and

m
h =  £  hy, (1.3.7)

; = i

so that h is the total internal Hamiltonian, we see from  (4) and (5) that

Hc =  KG+ K  +  h +  K,. (1.3.8)
From  (8 ) we get

Hc =  Kg + H  (1.3.9)
where

H =  K + h  +  K.; (1.3.10)

is the Hamiltonian after the centre o f mass has been removed.
If we put

H ,=  K+ h ,  (1.3.11)

so that H; is the unperturbed Hamiltonian o f arrangem ent channel i when
the centre o f  mass motion has been removed, we can rewrite ( 1 0 ) as

H =  H ,+  K,. (1.3.12)

The Ham iltonian is therefor the sum o f the H am iltonian H, for the system 
when the clusters are far apart, and the interaction Vt between the clusters.
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E x a m ple  1. Suppose we have two electrons a and b , and a proton P. One arrangement 
channel is that in which electron a is free, while b and P are bound together to form a 
hydrogen atom. The kinetic energy operator K for the relative motion o f  the electron and 
atom  is the internal Hamiltonian h is Kt/>+ VbP, where VbP is the interaction
between b and P, and the interaction V, is V * + V .r .

E x a m ple  2. If we have three electrons a , b and c and a proton P, an arrangement 
channel is that in which a and b are free while c and P  form a hydrogen atom. Then 
the relative kinetic energy operator K =  K„(6+(,+,>> +  Kj(e+f), while h — Ke/>+ Vep,
H, =  K +  h, and Vt — Vab +  K „+ VaP +  Vbc +  VbP where Vtj is the Coulombic interaction 
between particles i and j ;  for example, Vab =  - e 2lx0rab. If (he mass o f  an electron is 
negligible compared with that o f  a proton we can put K c* K„,>+ Kj/..

EXERCISE

W hat are the arrangement channels for the four-particle system consisting o f  three 
electrons a, b and c, and a proton P I  In each case write down expressions for the total 
relative kinetic energy operator K, total internal Hamiltonian h, and interaction V,. 
W hich o f  these expressions simplify if  the mass o f  an electron is regarded as negligible 
com pared with that o f  a proton?

1.4. U N PERTU RBED  STATES

Let us denote by H,c the unperturbed Hamiltonian for arrangem ent
channel i in the laboratory system. Then H/c =  Hc — and so from  (1.3.4)
and ( 1.3.7)

m
H; c = £ K ; +h .  (1.4.1)

J =  i

The internal H am iltonian h is just the sum o f the internal H am iltonians for 
the m  clusters A ,, A>, . . . ,  Am. An eigenstate o f h will therefore be a product 
of states o f  A \, A >, . . . ,  Am. By definition such a state | n) can only belong 
to the arrangem ent channel i under consideration if these states o f A\, A>,
.. ., Am are all bound states. The energy En o f the state | n) is the sum o f the 
internal energies o f  each o f the A /s , and so is negative and satisfies

h I n> =  En | n). (1.4.2)

The state o f  the system as a whole in the laboratory system must be 
represented by the product o f  |n )  with the kets | k j), |k 2), . . . ,  |k m) 
representing the free m otion o f  the centres o f mass o f the A -s. We denote 
[his by | k ik 2. . k mn), and so

| k ik 2. . . k„,w) =  ! k .)  | k2>-. .1 k,„) |«> =  | k i k 2. . .k ,„ ) |« ). (1.4.3)

!f the wave vector o f the centre o f mass is K =  k i +  k 2+ . . . + k m and 
ky =  k;[0-+1)+ +m] is the wave vector for the motion o f  the centre o f mass 
of Aj relative to  the centre o f mass o f Aj+1, AJ+2, . . . ,  Am it follows, as in
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Section 1.2, that

| k i k 2. . .k mn) =  | k ik 2. . .k m) |  w) =  | K> |k^k .;.. .k ^ _ i> | ri)
=  |K > |k ik i . . .k ^ _ i» > . (1.4.4)

A fter the removal of the centre o f mass motion the unperturbed state has 
the wave function

ipr(ri, r 2, . . . ,  rm_i, x) =  (rj, r 2, . . . ,  rm_ i, x | k ; k 2. . .k ^ _ iri)

-  (27r)-3(m_1>/2 exp (/Til*ri +  /k2*r2 +  . . .  + /k ,'„_ i* r,„_ i)^ (x ) (1.4.5)

where ^n(x) =  (x | ri) is the internal wave function and x denotes the internal 
coordinates o f the composite particles A \, A 2, . . . ,  A m (see Section 1.3). 
W e shall denote the vectors k j, kg, . . k^_j  by the single 3(m — l)-dim en- 
sional vector k, and the vectors r l5 r ,, . . . ,  rm_ 1 by the single 3 ( w - l ) -  
dimensional vector r. Then if

<pk(r) = (2n)~3(m~iy 2 exp (; k  • r) (1.4.6)

where k«r is the 3(w — l)-dimensional scalar product k i » r i + k 2»r2+ . . .  
+  km_ 1«rm_ 1 we can write (5) as

cpXr, x) =  9?k(r)x»(x). (1-4.7)

We shall sometimes denote more fully by <pkn or by cpkni. In other words the 
symbol v denotes both the arrangem ent channel i under consideration and 
the quantum  numbers, discrete and continuous, defining a particular state 
o f i. We shall also use Greek letters fi, cx>, oc, ji, etc., instead o f v, to denote the 
quantum  numbers and arrangem ent channels o f unperturbed states o f the 
system.

Since En is the internal energy

h %n =  E„i„. (1.4.8)

Let E k be the sum o f the kinetic energies associated with the vectors kj, kg,
. . . ,  k 'n_ 1. Hence if fij is the reduced mass o f Aj relative to  the centre o f  mass 
o f the particles AJ+V AJ+2, . . A m, we have

E k =  E  • (1-4-9)
j = l -‘-rv

Then it follows from (1.3.6) and (5) that

K<pk =  Ek<pk. (1.4.10)

If we define F.v by

E v =  E k+ E n (1.4.11)
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a n d  remember tha t, by (1.3.11), H; =  K +  h, while we see that
(8), (10) and ( I I )  imply

Hi(pv — E vcfv. (1.4.12)

T he energy E,. o f the state <py is therefore the sum o f the kinetic energies o f 
the particles after the subtraction o f  the energy associated with the motion 
o f  the centre o f mass o f  the system as a whole, viz. E k, and the internal 
energy E n.

Suppose the system has a total energy E  apart from  that o f  the centre of 
mass. If it can exist in some channel n, so that its state is given by an expres­
sion o f the form (3), then E  = E k + E n. Since E k 0 it follows that E  s» En. 
C onsequently if  the system has energy E  it can only exist in those channels 
for which E  En. If E  E n we say that the channel n is open, otherwise we 
say tha t it is closed.

If we assume that the internal state %n is normalized it follows that 
(? J ? > )  — ar|d Vv belong to the same arrangem ent channel. If
and belong to different arrangem ent channels this may not be so.

The states o f the arrangem ent channel E  in which all elementary particles 
move freely are just products o f  plane waves and spin functions, and hence 
form  a complete orthonorm al set for the system. Hence the set o f all possible 
</,, is, in general, overcom plete and therefore necessarily not orthogonal. If 
the system as a whole can have bound states m  can take the value one. For 
completeness we shall regard this case, where obviously H =  H,, as an 
arrangem ent channel. In the literature the bound states are usually not 
referred to  as channels, since their time evolution is a trivial change o f phase 
factor.

E xam ple  1. Two electrons and a proton. We shall denote the electrons by e and a, 
the proton by P, and regard the electrons as distinguishable. The possible decompositions 
are:

0. e , a, P.
1. e, (aP).
2. a, (eP).
3. (eaP ).
4. (ea), P.

0 is the arrangement channel in which all the particles are free. To simplify matters let us 
regard the proton P  as infinitely massive. The position vector r„ o f  e relative to P  is then 
also the position vector o f  e relative to the centre o f  mass o f the atom aP. Further, the 
position vector r„ o f  a relative to P is also the position vector o f  a relative to the atom eP. 
In a typical state o f  the system in arrangement channel 0 electron e will have momentum  
/ik relative to P, while a will have momentum h\ relative to P. It will therefore have a wave 
function ?>kl where

T ^ r,, r„) =  y k(re)?>,(ra). (1.4.13)

In arrangement channel 1 we can suppose e  to be moving freely relative to the centre 
o f  mass P  o f  the atom aP  with momentum hV., say, while the hydrogen atom aP  is in some 
state | «) with wave function /„. The state o f  the system will therefore have a wave function 
y knl where

rJ =  Vk ( 0  (1 .4.14
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In arrangement channel 2 electron a may have momentum hk relative to the centre o f  
mass P o f the atom eP, while the atom is in some state with wave function The system 
now has as its wave function <pkia, say, where

9 W r«>r«) -  y k(r0) /„(r„). (1.4.15)

In arrangement channel 3 in which all three particles are bound the possible states are 
the stable states o f the H “ ion. In this case the wave functions are those o f  the stable states 
o f  the H~ ion.

Finally we note that the decomposition 4 is not an arrangement channel, since the 
electrons e and a cannot form a bound state.

If the mass o f the proton is taken into account rf must bc taken as the position vector 
o f e relative to the centre o f mass o f a and P  in 1, while r„ must be taken as the position 
vector o f a relative to the centre o f  mass o f  e and P  in 2; either system can be used for
0 or 3. W hen spin is taken into account the functions must all bc multiplied by the spin 
functions o f e, a and P. W e note that the functions o f  arrangement channel 0 form a 
complete (5-function normalized set. If P  is regarded as infinitely massive it follows from 
(14) and (15) with k replaced by 1, n replaced by p, that (95*,,, | <f,P2) =  (<fk | /„ ) (%n \ <pt). 
This clearly does not vanish, since it is the product o f  the Fourier transforms o f  %n and / p.

E xample 2. Three electrons. The forces between the electrons are repulsive, and so the 
only arrangement channel o f the system is that in which all three particles are free. Indeed, 
this is a system with only one channel whose threshold energy is zero.

E xample  3. Harmonic potentials. If the potential between two particles / and j  has the 
form -  kifrfj, where rtj is the distance between i and j  and k,j is a positive constant, the 
particles can never move freely o f each other. If we regard the bound states as channels 
the only arrangement channel is that o f the bound states, and the only channels are the 
bound states. As remarked above, such "channels” are o f  no interest in scattering theory.

E x am p le  4. As a final example let us consider a system consisting o f two electrons a 
and b, and three protons A, B and C. One arrangement channel is that in which a is bound 
to A and b is bound to B  to form two hydrogen atoms, while C is free. If we take A t as C, 
A z as the atom a A, and A 3 as the hydrogen atom bB, we have in the above notation 
kj =  k 1(2+3) =  kCfa+A+i+B>, k2 =  kj3 =  k(a + ̂ )(4 + B). A typical unperturbed state in this 
arrangement channel is I k,') | k2) I n'aA) | n['B)  where | n'aA) is a state o f  atom aA with 
quantum numbers collectively labelled n and | ihB) is a state o f  atom  bB  with quantum 
numbers collectively labelled n". If we write k for (kj, k2) and n for n'aAn'b'B we can further 
abbreviate this to | k) | n) — \ kn). Thus

kn) =  I kC(o + A + J + S>) I k(n + A) (6+ «l) 1 i nbs)' (1.4.16)

If the mass o f  an electron is negligible compared with that o f a proton this simplifies to

!k/i) ^  I + bi) ! fl) | n'aA) | n'h'B). (1.4.17)

The internal Hamiltonian h is given by

h =  K .i +  K . j + ^ H - ^  (1.4.1b)

where V0 is the interaction between particles i and j .  The unperturbed Hamiltonian H, 
is given by

- Ki(2 + 3) +  K23 +  h =  Kc(0 +  ̂+ 6 + 2() +  K(0 + ^)(t + a) +  h; (1.4.19)

if the mass o f  an electron is negligible compared with that o f a proton this can be re­
placed by

=« KC(j  + B) +  KAB +  h. (1.4.20)
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EXERCISE

W hat are the arrangement channels o f the five-particle system consisting o f two elec­
trons, two protons and an a-particle? Assuming that the interactions between the five 
particles are Coulombic, write down the internal Hamiltonian h and unperturbed Hamil­
tonian H, (after removal o f  the centre o f mass) in each case. Also write down a typical 
unperturbed state for each arrangement channel when the centre o f  mass motion has been 
removed.

[You may assume that the mass o f  an electron is negligible compared with the nuclear
masses.]

1.5. SCATTERING STATES

The scattering states, or Schw inger-Lippm ann states, ip* corresponding 
to the unperturbed state rpv in the relative coordinate system are defined by

V± = c p M E ~  H ± k ) - ^ V i(Pv (1.5.1)

where E  = E„ is the energy o f  the system. The operators (E — H i / e ) -1 are 
G reen’s operators1 for the full Ham iltonian H.

If we operate on (1) with E — H ± / e  and rearrange using the fact that 
H =  H, -I- Vj we obtain

( E -  H,±/e)(v>±—?,) -  K/V>± (1.5.2)

Operation on (2) w ith (E — H ,± /f ) -1 yields

| =  < P v+ (E -H ,± ie )-i V,xpi. j (1.5.3)
I__________  ___________________ j

1: is easy to  show from  this th a t, as one o f the clusters separates from the 
ethers, behaves asym ptotically as a sum o f f v and outgoing waves.t

Since H # „ =  Ev<pv = E<p„ and  H =  H ,+  Vi we can rewrite (2) as

(E — H ± /e )y *  =  ±ie<pr. (1-5.4)

!: follows from  (4) th a t as e — 0 +, E y* . In other words, in the limit
f -* 0 + the functions \pf becom e solutions o f the time-independent Schro-
cinger equation o f the system.

If we take the com plex conjugate o f (1) with the -f sign and assume that 
H and Vt are real, we get

(V’,+)* =  ? : + ( £ - H - f e ) " 1 V,<pt- (1-5.5)

t A brief account o f  G reen’s operators is given in Appendix C. A fuller account is given 
i: an introductory book on scattering theory by the present author (Farina, 1973, Chapter 
51. The positive quantity s is allowed to tend to zero at the end o f  any calculation.

+ This is shown in Appendix C. The development o f  this book, however, does not need 
Uis fact.
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Now V\ftv =  E v(fv = E<pv, and H, =  H — V, is real if H and iVi are real, 
hence H/p* =  Ecp*. Thus <p* is another eigenfunction o f H, with energy E , 
and so we can write it as <p where // denotes the quantum  numbers defining 
9 *. We can therefore write (5) as

( v t Y  = V r H E - H - ie T 'V f ip , , .  (1.5.6)

We deduce from  (6 ) that
%  = ( f t ) *  (1-5.7)

where <pr — y*.
As one cluster separates from  the others

ipf ~  (p,. +  sum o f outgoing waves. (1.5.8)

A corollary o f  (7) is therefore tha t, as one cluster separates from  the others,

%  ~  f t  +  incoming waves
=  9 + incoming waves. (1.5.9)

We can also state these results in the laboratory fram e of reference. F o r 
if | v) is the state vector | in the relative coordinate system
and | K) describes the motion o f the centre o f mass it follows from (1.4.4) 
that the state vector in the laboratory system is given by

| k ik -2. .  .k„,;i) -  \ K ) \v )  =  | Kj>). (1.5.10)

The energy E c  in the laboratory system is equal to E + E K, where EK is the 
energy associated with the motion o f the centre o f mass. The scattering 
states | K v ± )  in the laboratory system are defined by

I K v±> =  | Kv> +  (E c — 1 Kv)

=  |Kv) +  ( £ + £ Ar- H - K c ± /e ) - 1Ki|Ky>.  (1.5.11)

Now | Ki’)  =  | K) | v) where | K) involves only the coordinates o f the centre 
o f  mass, while F, involves only the remaining coordinates. Also Kc involves 
only the coordinates o f the centre o f mass while H involves only the relative 
coordinates. Since KG | K) =  E K \ K) it follows from  the results o f Appendix 
A, in particu lar equation (A9), that

I K v ± )  =  |K> | * > + [(* -H ±fc)-iF , | *>] I K>
-  |K > [ |* > + (£ -H ± fc ) - iK , |* > ] .  (1.5.12)

The state vector in the square brackets on the right-hand side o f (12) is 
just the sta te  vector | v + )  represented by the wave function Flence

(1.5.13)
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The centre of mass is therefore unperturbed by the potential, as is to be 
expected from  the translational invariance of the system. Equation (13)
shows that the ket | K) for its free motion factorizes out of the scattering
state in the laboratory  system, leaving the scattering state | v + )  in the relative 
coordinate system.

E xam ple . In the case o f  scattering o f  two elementary particles the unperturbed state 
in the relative coordinate system isi)5k, and ( 1 ) becomes, in this case,

-  9?k +  (£ ,* - H ± i e ) - 1 J'ipk. (1.5.14)

Since H and V are real and rpt — <p_k it follows immediately from (14) that

V* =  (V»±k)* (1.5.15)
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C H A PTER  2

T H E  D Y N A M IC  S T A T E S  O F A N  N - P A R TIC LE  
SY S T E M

2.1. WAVE PACKETS FO R  NON-INTERACTING PARTICLES

In the last chapter we considered the stationary states o f an Ar-particle 
system . However, a chemical or nuclear reaction is a dynamical process 
w hich takes place in tim e; two molecules, for example, collide, interact, and 
then  the products separate. If we w ant to describe a chemical or nuclear 
reaction, we m ust consider the Af-particle system as evolving in time, and 
th is we shall do in this chapter.

In this section we shall consider a situation in which the system is in some 
definite arrangem ent channel /, consisting o f composite particles A \, A2, ■.. ,  
A m {in *sN ), which we suppose to be moving freely; we suppose further 
tha t A i, A 2, . . . ,  A m are in definite internal states specified by a collection n 
o f  quantum  numbers defining the internal state %n. As in C hapter l,w e denote 
by x the internal coordinates o f A i, A 2, . . . ,  Am, by t ,  and k.j the position 
vector and wave vector o f the centre o f mass o f Aj relative to the centre of 
mass of AJ+1, AJ+„, . . . ,  A m ( j <  m — 1), and by r and k the 3(m—1)- 
dimensional vectors r =  ( n ,  r 2, rm-1) and k =  (kj, k^, . . . ,  k^_ j).
As we saw in Section 1.4, in particular equations (1.4.6) and (1.4.7), a station­
ary  state o f  the system is given by

9W (r, x) =  (2jr)_3<m-1)/2 exp (/k.r) *„(x), (2.1.1)

and as usual we can abbreviate <fkni by q>kn or
Very often the system is prepared in a state where it consists o f the 

particles A \, A 2, . . A m in a definite internal state whose wave function 
is yn; that is, the  system is in a definite channel. If  this is the case the wave 
function o f the system m ust be the product o f x„ exp( — iEnt/ft) and a wave 
packet describing the free relative m otion o f the com posite particles; we will 
denote this by (pn(t). Such a wave packet m ust be a superposition o f  the 
states (pk e x p (—iEkt!fi) with a weighting function C(k), which must be square 
integrable; hence

<p(r, x, /) =  [(*„ exp (-£„//*)] [JC(k) <pk(r) e \ p ( - i E kt/fi) t/k]. (2.1.2)
.7

1
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In (2) the function r/k is given by (1.4.6) while the integration goes over the 
3 (m — 1) com ponents o f the vector k. The wave packet is, in fact, the most 
general solution o f the Schrodinger equation ihdy/d t = Ky> for the relative 
m otion o f  the com posite particles, since Kqrk =  E k<pk and the form a 
com plete orthonorm al set.

The result (2) may be rewritten as

y n(r, x, 0  =  J  C(k) 9>k(r) %„(x) exp [ - i ( E k +E„)t/fi\ dk. (2.1.3)

We shall often abbreviate t}k/ n by <pkn, and E k+ E n by Ekn, in which case (3) 
takes the abbreviated form

<P„(r, x, t) -  J  C(k) <;okn(r, x) exp ( - i E k„l/fi) dk. (2.1.4)

W e have assumed that the £„are orthonorm al while (q k | qpk.) =  6 ( k - k ') .  
If  these facts are used it is a simple exercise to verify from  (2) or (3) that

j  j  | <p„(r, x, t) |2 dr dx =  J  | C(k) |2 dk. (2.1.5)

The integral on the left-hand side is an integration over the 3(m — 1) com­
ponents o f  r and the continuous com ponents o f x, and a summation over 
the spin com ponents o f x. The integration o f the right is over the 3(m— 1) 
com ponents o f  k. We shall always assume that <pn is norm alized to unity, 
so tha t either side o f (5) is equal to one.

The probability  am plitude for the relative wave vector k is the scalar 
p roduct o f  </>k exp( —iEkt/fi) with the second term in square brackets on the 
right-hand side o f (2), and this is C(k). It follows tha t |C (k ) |2 d k  is the 
probability  th a t the wave vector k lies in the 3(m — 1 )-dimensional volume 
element d k  =  </k', dk!, . . .  dk'm_ v  The integral on the right-hand side is the 
probability  th a t the particles A \, A 2, . . A m have some relative wave vector 
k, and so it is natural to normalize this to  unity.

EXERCISE
Verify (5).

2.2. T H E REM O TE PA ST AND FU TU R E

If we consider a reaction involving two particles A  and B,  we can think 
o f  times in the rem ote past before the particles collide, and limes in the remote 
fu ture after the reaction takes place. A  may be, for example, a molecule 
which has been produced in an oven, then accelerated to a certain velocity, 
while B  m ay be a molecule in a target gas. The “remote p ast” of the system 
is the period o f  time after A  has left the oven and accelerator, and before it 
begins to in teract with B.  In the case o f a reaction in a gas it is the time after
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A and B  have made their last collisions before meeting each other, but before 
ttheir own encounter takes place. In either case we may well know the initial 
s ta te  of both A  and B, say their ground states; in this case the initial state 
us in a definite channel as discussed in Section 2.1. On the o ther hand, if A  
'was produced in an oven, it may well be in an excited state (vibrational or 
electronic o r both) and in this case the initial state will be a superposition 
o f  states o f the type <pn(t) discussed in the last section, if  the oven was very 
lhot, A may possibly have dissociated into particles A' + A ", in which case 
th e  initial state would be a  superposition o f states from  different arrangem ent 
channels. In the same way the final state, after the reaction, which we will 
ca ll the “remote fu ture", may well have possibilities such as A + B  (no 
reaction), C + D  (first reaction), or E + F  (second reaction), and these will 
occu r with different probabilities. Thus the final state will, in general, be 
a  superposition o f  states from  different arrangem ent channels; w ithin each 
possible arrangem ent channel (possible reaction path) there will occur 
different possible states. The probability o f the reaction A + B  — C + D  
tak ing  place will be just the sum o f the probabilities o f the various states o f 
C  and D  being produced, the same applying to the other arrangem ent 
channels.

W e are excluding from  our considerations the possibility o f the presence 
o f  photons, or the creation or destruction o f elementary particles. It is 
therefore possible for us to accept as reasonable, on physical grounds, the 
following postulate:

Postulate. If a physical system consists o f N  elemen­
tary particles moving under mutual interactions of 
finite range, and the system is observed in the remote 
past or rem ote future, the only observations will be 
the states o f the various arrangem ent channels o f 

the system.

We m ust assume finite range forces, for otherwise the elem entary particles 
can never move freely o f each other. In practice it is clear th a t in the case 
o f electrons and atom ic nuclei they must move freely when sufficiently 
distant from  each other, although there are problems which can arise from  
this (Volume 4, Section 2.5). If we apply the postulate (1) to Exam ple 1 o f 
Section 1.4 we see tha t, in the case o f two electrons and one p ro ton , the 
only possible observations in the rem ote past or remote future are either 
an H “ ion, a hydrogen atom  and a free electron, or a free proton and two 
free electrons. Similar conclusions apply to the o ther examples o f  Section 1.4.
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The immediate consequence of postulate (1) is that if  W )  describes the 
state o f the system at time t, then as / — ±  <*> W )  becomes a super­
position o f  wave packets describing the relative motion o f  the particles in 
various states and various arrangem ent channels. Any one such motion 
was described in Section 2.1. If t0 is a time in the remote past we must there­
fore have

W o) = Z  B nVn(to) (2.2.2)
n

where the sum goes over all possible channels o f the system. The sum m a­
tion therefore goes over all possible internal states %n o f  each arrangem ent 
channel, and over all arrangem ent channels. In general the momentum 
am plitude C(k) will be different for different channels, and so we shall 
write it as C„(k).

If we substitute for y n from  (2.1.4) into (2) we obtain

W o )  =  L  j  d kB nC n(k) </ kn exp ( - iEknto/h) (2.2.3)
n

where, as usual, we write E kn for E k+E„ and (fkn for (fkx„- The quantity 
BnC n(k) may be abbreviated to  A t, where v =  k n denotes the quantum  
numbers o f the state <fkx„ — (pkn =  an<  ̂ so (3) can written

W o ) -  Y_ A p(pr e \ p ( - i E j 0/fi). (2.2.4)

Here J cik, and goes over all possible unperturbed stationary
states cpv =  <fkn of the system, including the bound states. In the case of the 
bound states the integration over k is, o f course, omitted.

In the rem ote future we pick some typical time 11. f ( t i )  m ust also be a  super­
position o f  wave packets, a wave packet being associated with each channel. 
The wave packet associated with the /;th channel may now be different, so we 
denote this wave packet by <p’(fi). The weighting coefficient may also be
different — let us call it B'n. Equation (2) therefore has, as the corresponding
result for the remote future,

W i )  =  I  K<p'n(n). (2.2.5)
n

Corresponding to  (3) and (4) we have

W i)  = Z J dkB'nC '„(k) <pkn exp (-/Ek„/i/fi), (2.2.6)
n

W i )  = Z  A'„<p,,exp(-iE"h/ti). j (2.2.7)
v
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The wave packets <pn(t) become mutually orthogonal as t — ±  To see 
this we note th a t Opp(t) | <p„{t)) certainly equals zero if q>p and q>n belong to 
the same arrangem ent channel, and p  ^  n, due to  the orthogonality o f the 
internal wave functions %p and for these are orthonorm al eigenfunctions 
o f  the same internal H am iltonian. Suppose now tha t y n and y p belong to 
different arrangem ent channels; it then follows that there is a t least one pair 
o f  elementary particles, P  and O say, which are bound to  the same composite 
particle in one wave packet and to  different com posite particles in the other. 
We can suppose w ithout loss o f generality tha t P  and Q are bound to the 
same composite particle in cpp(t), but to different composite particles in <p„(t). 
N ow  in the rem ote past or remote future the composite particles must 
separate, so that there is negligible probability o f their being found close to 
each other. This means tha t as t — +  °° the probability o f P  and O being 
found close to each other in the state becomes zero. On the other hand, 
in the state <pp(t) the elementary particles P  and Q will always be observed 
close to  each other, since they belong to the same com posite particle. Now 

1 ^„(0)l2 is the probability o f  observing the state cpp(t) when the system 
is in the state q>n(t), and  since in the state <pp the particles P  and O must be
close this must be negligibly small. In other words ( f p{t) | <p„(0) -- 0 as
( ' - * + « = ,  so that the wave functions become orthogonal. Since by definition 
each <p„(r) is norm alized to unity we deduce that

<<Pp ( 0 I < P « ( 0 )  ~  < W  ( 2 . 2 . 8 )
i — ± ~

Similarly the q>'n(t) are orthonorm al in the rem ote past or future.
An immediate consequence o f  (8) is that \B n \~ is the probability of 

observing the system to be in the state <pn(t) in the remote past; for by (2) 
the system becomes, when / =  to ~  — °°, a superposition o f orthonorm al 
states (p„(/o), the coefficient o f being Bn. Similarly in the rem ote future 
the probability o f observation o f the wave packet <p'n{t\) is | Bn |2. Since the 
postulate (1) implies tha t the system must be in some such state both in the 
rem ote past and in the remote future we deduce that

X l i ? „ l 2 =  Z l 5 ; i 2 =  1. (2.2.9)
n n

As we saw in Section 2.1, the probability of the com posite particles being 
in a state o f relative m otion defined by the 3(m — l)-dim ensional wave vector 
k in the 3(w — l)-dim ensional volume element dV. is |C „(k ) |2 c/k when the 
state o f the system is q>n(t). Hence in the general cases expressed by (3) and (6) 
the probability o f  the system being in the arrangem ent channel i and internal 
state y_n with the relative m otion of the particles being defined by a wave 
vector in the volume element (k, r/k) is | Bn |2 | C„(k) |2 dk  o r | Bn j2 1 C),(k)\-dk. 
Since A v = BnC n(k) and  A , =  B'nC'n{k) it follows tha t A v and a!v are the
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probability amplitudes for observation o f the stationary state (pv in the 
remote past and remote future respectively. It follows immediately that

X  m , p  =  i m ; p  =  i,  (2.2.10)
v r

which may also be deduced from  (9) and the fact tha t the m om entum  am pli­
tude functions C„(k) o r C^(k) are normalized to unity.

E x a m p le . T wo electrons and a proton. Let us assume that the proton P  can be regarded 
as infinitely massive, and denote by re and r„ the position vectors o f  the electrons e and a 
relative to P. We saw in Example 1 o f  Section 1.4 that there are four arrangement channels
0, 1, 2, and 3. Typical wave functions in each o f  these arrangement channels are:

9 o (r ,.r „ /)  =  { {  C (k )? v (0  exp ( - /£ » //* )  r fk }{j'/)(l)9>1{r.) exp ( —iE,t/fi) d l}  ;

<Pi(r„ r„, t) =  y j r j  exp ( -  iE„tjh) J C„(k) <pk(r,) exp ( -  iEkt!h) d k 

Zn(r«) exp ( -  iE jjf i)  pn(r„ t), say;

r„, t ) = xP(rx) exp ( -  iE^tjh) J C,(k) <pk(r,) exp ( -  iEt ljfi) d k

Xp(Te) exp ( — iEpt/fi) <pp(ra, t), say; (2.2.13)

y 3(r„, ra) /) =  yin(r„ r„)exp ( - i E j / h ) .  (2.2.14)

In (14) y>„ is a wave function o f  an H “ ion. The expression (11) is a product o f  two wave 
packets describing the relative motion o f the electrons to the proton when all three 
elementary particles are free; (12) and (13) define wave functions when one electron is free 
and the other is bound to the proton to form a hydrogen atom; (14) describes a state o f  
the H -  ion. The wave functions (11) to (14) describe states in the arrangement channels 
0  to 3 defined in Example 1 o f  Section 1.4. The orthogonality o f  the wave packets is clear 
enough in this case; for example, the scalar product o f  ̂ j(r) and y„(t) is

(9 i(t)  1 ? 2(0 ) =  (Xn I @p(Q)(Ph(0  I XP) exp [i(En- E p) t/h)}. (2.2.15)

The overlaps between Xn and y p(t), and between and <pn (t), both tend to zero by virtue
o f  the expansion o f  the wave packets.

2.3. TH E INTERACTION PICTU RE

For the purposes o f scattering theory it is useful to define a picture in ter­
mediate between those o f  Schrodinger and Heisenberg, and  known as the 
“ Interaction P icture” . We transform  each wave function 1p(t) o f  the Schro­
dinger picture into a wave function y>,(t) o f the interaction picture according 
to

iMO =  exp ( i H i t / f t ) (2.3.1)

hence each arrangem ent channel gives rise to a specific interaction picture.
If  A is an operator in the Schrodinger picture, and y (t)  is any wave 

function o f tha t picture, then Aip(t) is transform ed into exp (/H(.//ft)Ai/'(0 — 
exp (iHit/fi) A e x p (—/Hf//ft)v>/(0- T h 's equals A,(t)rp,(t) where A /0  is the

(2 .2 .11)

(2.2.12)
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operator in the interaction picture corresponding to A in the Schrodinger 
picture and so

A/(/) =  exp (;'H,7/A) A e x p (—/H,7/A). (2.3.2)

In particular the interaction V. is transform ed into V,(?) by

V/(f) — exp (/'H,7/A) V,-exp ( —/H,7/A). (2.3.3)

From  (2) it follows that unitary operators are transform ed into unitary
operators, and that Herm itian operators are transform ed into Hermitian
operators.

If the  evolution operator in the interaction picture is U,(/, to) so tha t1̂

H’i(l) =  Ui(t, to) yij(to) (2.3.4)

a very similar argum ent to tha t above shows that

U,(/, t0) = exp (/H,7/A) exp [ - i H ( t - t 0)/fi\ exp (- /H ,7 0/A). (2.3.5)

From  (5) we see immediately that U,(t0, to) = I, U,(f, /i) U ,U i,/0) =  U,(/, t0), 
while the Hermitian conjugate U,(t, t0) = U,(to, t);* hence U,(/, t0) is unitary. 
Partial differentiation with respect to / yields the operator differential 
equation

(0/6/) U,(r, t0) = (//A)exp(/H,7/A)(H,— H )exp [ -  /H ( r -  t0)/h)] exp ( -  / H/0/A).
(2.3.6)

Now H — H, =  V/ and V,(/) is given by (3), hence we deduce from  (5) and (6) 
that

0U,( /,/„ )  = _  / Vi(/) U(.(,, ,o). (2.3.7)
dt A

This is clearly equivalent to the integral equation

U,(/, to) -  1 - 1  ri V/(r) U ,(r, t0) dr (2.3.8)

since U,(/o, to) = 1. If  we take the Herm itian conjugate o f this and then 
interchange t and t0 we obtain

=  , 4 j u „U,-(f, t0) =  1 + — I U,(/, t )  V ;(t)dr. (2.3.9)

t It is more convenient to use the subscript i rather than I in the symbol Uf(r, !„) for 
the evolution operator in the interaction picture.

QTSP 3
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EXERCISES

1. Verify that the transformation tp -* xp, =  exp(iH (//i)y> transforms Hermitian opera­
tors into Hermitian operators, and unitary operators into unitary operators.

2. Verify (5).

2.4. TH E  EV O LU TIO N  O F A W AVE PACKET

We are now in a position to describe the evolution o f an N-particle wave 
packet such as that discussed in Section 2.1; in o ther words, a wave packet 
initially representing the motion o f an /V-particle system when the internal 
states of the particles are defined by the set o f quantum  num bers Before 
doing this we shall collect together a few results which we shall use in the 
derivation o f the expression for the state into which the system evolves.

The initial wave packet <p„ is given by (2.1.4); this may be further abbre­
viated to

fpnit) =  J C(k) cpkn exp { - i E knl/fi) dk. (2 .4 .1)

Now (pkn is an eigenfunction o f H, with energy £ k„ and so exp ( —r'H,r/ft) <pkn — 
exp ( —iEknt/hyp^. It follows tha t (1) can be written

cpn(t) =  exp ( - 1H,-f/ft) J C(k) <pkn d k . (2.4.2)

When / =  0 equation (1) becomes

fn (0 )  =  J C(k)<pk„ d k .

Com parison o f  (2) and (3) yields

<pn(t) =  exp ( —/Hi?/ft)<p„(0),
and so

cp„(0) =  exp (/H ,7/ft) <?„(/).

Finally we note tha t if we put t =  0 in (2.3.5) we obtain

U,(0, to) =  exp (/H*o/ft) exp ( -  /H,r0/ft). (2.4.6)

We are supposing that in the rem ote past the system was in the internal 
state | ri). It must therefore be the case th a t if  the wave function o f  the 
system is ip(t), then ip(t) = q>n(t) for t <  t0, where t0 is a time in the rem ote 
past. Since <pn(t0) evolves under the full H am iltonian H into f(0 ) we have

f(0 )  = exp(;H/o/ft)<p„(fo)- (2.4.7)

If  we put t — t0 in (4) and then substitute the resulting expression for <pn(tn) 
into (7) we obtain

(2.4.3)

(2.4.4)

(2.4.5)

yj(0) = exp(/H /0/ft)exp (-/H ,/o /ft)y„(0 ). (2.4.8.)
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W ith the aid of (6) we can rewrite (8) as

0) =  U,(0, /0)<p„(0). (2.4.9)

Since this is true for any tim e in the remote past (8) implies

lim exp (iHt/fi) exp ( — /H,7/ft)<p„(0) =  y(0) (2.4.10)
t —► — ■x>

and  (9) implies

y(0) =  U/(0, — oo)^„(0). (2.4.11)

We shall now calculate y(0), and hence obtain an expression for rp(t).
W e first substitute for U,(0, t0) from (2.3.9) with t — 0 into (9); this gives

VX0)-<p„(0) =  (ijh) J  U,(0, r) V ,(x )y n(0) dx. (2.4.12)
0

Now (6) gives U,-(0, r )  =  exp (iHx/h) exp ( - /H,r/ft), (2.3.3) gives V ,(r) 
=  exp exp ( — /H t/A ), while (5) gives <f„(0) — exp (/H/r/ft) </„(t).
Substitution for these three expressions into (12) yields

vX0)-<^„(0) =  (i/ft) J  e \p ( iH r / f j ) V ^ n(T)dx. (2.4.13)
o

A t this stage we in troduce a  small positive num ber e which satisfies the
condition e \ tn\ «  I . Equation (13) can now be replaced by

yiO) -  q>„(0) =  (i/ti) J  exp [ i(H -ie ) t/A ] K,</>„(t)</t. (2.4.14)
0

The particles are moving freely when t t0, and so Vjpn(t )  must be negligible 
when t  <  tn. We can therefore replace the upper limit t0 o f  the integral on 
the right-hand side o f (14) by — °°. If we also put t — x in (1) and substitute 
the resulting expression for cpn(x) into (14) we find that

# ))-9 > „ (0 ) =  (i/fi) f  dx J  d k  C(k) exp [/(H — ie—E kn)x/fi] V i(fkn. (2.4.15)
0

Owing to  the presence o f  the e term  the integrals in (15) may be interchanged 
and the integration over r  may be carried out by use o f the operator identity

|  e x p [ i ( H - i e - E kn) t /h ] d x  =  ( f i /M E to -H  +  ie ) -1; (2.4.16)
0

(16) may be easily verified by an expansion in terms o f a complete set o f 
eigenstates o f H (see Volum e 4, Appendix D). These things done, (15)
3*
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becomes

m ~ < P n (0 )  =  J C (k )(£ k„ - H  +  /e) - i  Viq}kn d k . (2.4.17)

If  we substitute for <p„(0) from  (3) into (17) and rearrange we obtain

# 0 )  =  J a k H ^  +  t ^ - H  +  Ze)-1 V,<pkn]d k . (2.4.18)

The definition (1.5.1) shows that, in this case, the term in square brackets 
under the integral sign in (18) is just ip£n, and so

9 ( 0 ) -  J C ( k ) V+ d k . (2.4.19)

Since f ( /)  — exp ( —i'H//ft)f(0) and y kn is an eigenstate o f H with eigenvalue 
Ekn it follows from  (19) tha t

rpit) =  J C(k)y>+n exp ( - iE ^ t/h ) d k . (2.4.20)

The above argum ent applied to a system which in the rem ote past was in 
the state We can also consider the case o f a system which develops
into the state <p„(t) in the rem ote future. In this case if(t) — y n(t) if  t tu
where ti is a time sufficiently far in the future. The previous argum ent which
led to  (13) is unaltered except tha t t0 is replaced throughout by t\. Hence (13)
is replaced by

Y*0)-<p„(0) -  (i/ft) j  exp (/Hr/ft) V,<pn(T) dr. (2.4.21)
0

Now, however, we replace (21) by

0 ) -  <p„(0) =  (//ft) j ‘ exp [i(H +  ie) x /ft] V,<pn(r) dr (2.4.22)
o

where e| f i |  <sc 1. Since the particles are moving freely in the rem ote future 
we have Vfip„(r) =  0 if r  >- ti, hence we can replace t\ in (22) by +  °°. If  we 
also substitute for <pn(r) by means o f  (1) we see that (22) becomes

rp{0) — <p„(0) =  (//ft) J  dr j  d k  C(k) exp [i(H + i e - E kn) t/fi]Vi(pkn. (2.4.23)
o

Application o f the operator integral

J  exp [/(H + i e - E kn) t/ft] dr  =  (ft//)(£k„ - H  —/e )-1 (2.4.24)
0

and o f (3) to  (23) gives

f ( 0) -  J C(k)[<pkn + (E kn- H - i e ) - i  V ,9>kn] dk-  (2.4.25)
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the term in square brackets is given by (1.5.1) with v — kn  and so (25) 
becomes

$ 0 ) =  J C (k )  Vu-  d k . (2.4.26)

Since ip^n is an eigenstate o f H with eigenvalue E Vn and %p{t) = exp ( — iHt/fi) 
X V'(0) we see from (26) that

xjit) =  J C(k) Vk-  exp ( - i E kat/h) d k . (2.4.27)

We may summarize the results o f this section as follows. If the state 
o f the system is represented in the remote past by the expression (1), then 
its state at any time is represented by (20). That is to say , in the expression 
( / )  fo r  the wave function in the remote past we replace the unperturbed station­
ary state  </k„ by the stationary scattering state f£ n. On the other hand if (1) 
represents the state o f  the system in the rem ote future the expression for the 
wave function ip(t) a t any time t is now given by (27). In other words the 
unperturbed stationary state q kn is replaced by the stationary scattering state 

These results may be summed up by the formulae

exp [—/H (/—/0)//j] J C(k) (pkne \ p ( - i E k„t0/fi)d k

~  j  C(k) y>+n exp ( - iEknt/ft) d k ,  (2.4.28)
l0 —oo

exp [ - / H( / - / i ) / f t ]  J C(k) <pk„ e x p ( - i£ 'k„/1/A)^/k 
~  J C ( k ) ^ ne x p ( - /£ 'kn/j/fi)t/k . (2.4.29)

/| —► +oo

We can also put these results in another way. Let us define wave func­
tions (0  by

V>±(0 =  J C(k) v£, exp ( - i E knt/h) d k . (2.4.30)

Such wave functions may describe the system at all times. The wave function 
y>*(t) then evolves from  while f~ ( t )  evolves into <pn(t), where <p„(/) is 
defined by (1). Thus

flKO ~  <?„(/). (2.4.31)

Since y,7(0 =  exp(-/H r/^)y> ^(0), and <pn(t) — e x p (—iHjt/h)<pn(Q), itfollow s
that

e x p ( - iH / / f t ) # ( 0 )  ~  e x p ( - i H , / / * ) ^ 0 ) ,  (2.4.32)
/ —► OO

or equivalently
ipH 0) ~  exp (H-itjh) exp ( -  iH,t/h)<pn(Q). (2.4.33)

t  —► oo

It follows from  (6) that (33) can be written

?±(0) -  U,(0, +  00) <p„(0). (2.4.34)
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We have not proved (33) in a mathematically rigorous way. We have only 
shown that such a result is necessary if the physically reasonable postulate 
(2.2.1) is to be satisfied. To prove equation (33) for particular potentials 
is a task o f great m athem atical difficulty, although much progress has been 
made in this field o f recent years. It is not true in the case o f C oulom b 
potentials, for example, due to  the long range nature o f this potential. If two 
or more atoms or molecules are ionized they can never be completely out o f 
range o f each other, and so (2.2.1) does not hold in such a case. However, 
for many purposes the potential may be given a cut-off that is, put equal 
to zero for r ^  R  say, in which case (33) may be p roved . . .  (For example, see 
Taylor 1972.)

2.5. O R TH O G O N A LITY  O F TH E SCATTERING STATES

We shall now show that the Schwinger-Lippm ann scattering states 
defined in Section 1.5 are orthogonal. In the case o f the arrangem ent channel 
in which the system is bound we have H =  H(, so that V: =  0. In this case 
case (1.5.1) shows that i/j* =  <pv, where cpp is the bound state—we shall denote 
this by y)b. Let y kn be a scattering state in some arrangem ent channel i. and 
consider the state represented by

We consider the value o f the scalar product (f„(0l%> exp ( - i E bi/h)) as 
t — — °o, where Eb is the energy o f the bound state. In Section 2.4 we saw 
tha t the wave function ipn(t) given by (1) develops from  cpn(t) in the remote 
past, where y n(t) is given by (2.4.1). W e therefore have

(rpn(t)\Vb ex p ( — iE bt/h)) ~  (<p„(t)\ipb exp ( - i E bt/fi)). (2.5.2)

Now y b is always confined to some finite region o f configuration space 
while q>n(t) spreads ou t as the particles A i, A>, A m separate when 
/ — -  ; hence the right-hand side o f (2) tends to  zero as t — — °°. At the
same time the left-hand side o f (2) equals

f„ (0  =  J  C(k)ip+ne x p { - iE kntlfi)d k . (2.5.1)

(2.5.3)

(2.5.4)

(2.5.5)
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T he left-hand side o f (5) is independent o f I and so equals zero; that is,

( y > n ( 0 ) \ y > b )  =  0 .  (2.5.6)

If we put t — 0 in (1) and substitute the resulting expression for yjn(0) into 
(6) we obtain

J C * ( k ) « l v > 6)</k =  0 ;  (2.5.7)

but C*(k) is arbitrary  and so
(v-’kn I y ’b )  =  0- (2.5.8)

We have now shown that any scattering state is orthogonal to any 
bound state ipb. A  similar argum ent applied t o ( l )  with ip£n replaced by ip̂ n 
and with t allowed to tend to +  shows that any scattering state is 
orthogonal to any bound state ipb. Since the bound states are orthonorm al it 
follows that all we have remaining to show is that (y>£n \ ipfc) =  <5(k- 1) <5„p<S,y, 
where q.,n and q lp belong to arrangem ent channels / and /  respectively, and 
this will complete the proof o f the orthogonality o f the Schwinger Lippmann 
states.

In order to complete the proof we consider the wave packet

f P(t) =  J  D (l)w+ e x p ( - i E lptlh )d \;  (2.5.9)

yip is the scattering state with outgoing wave boundary conditions associated 
with the unperturbed state <plp. The wave function qip is assumed to represent 
a state in some arrangem ent channel/  which may differ from  /, the arrange­
ment channel of q k„. As we saw in the last section, as /->  -  »  xpp(t) ~  q>p(t) 
where

y p(t) =  J D(\)<pipe x p ( - i E lpt/fi)d l, (2.5.10)
and so

m o i f n i o ) t ~  <<pp( o i ^ w ) .  (2.5.11)

Now we showed in Section 2.2, in particular equation (2.2.8), that the 
wave packets cpn(t) and q>p(t) become orthogonal as / — — if p n. They
are therefore orthogonal if the arrangem ent channels / and /  are different,
and so

<<PP(01 <M0> ~  (2.5.12)
t  —*■ — oo

Further,
(fp(J) I Wn(t)) = (exp ( -  Mt j h)  Vp(0) | exp ( -  iH t/h) v „(0)>

=  <y„(0)|^,(0)>. (2.5.13)

It follows from  (13), (11) and (12) that

<W(0) | y„(0)> ~  I q „{!))■
t  —*■ — oo

(2.5.14)
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We may write (14) ou t more fully using (9), (1), (10) and  (2.4.1) as

j d l  D*(l) j  d k C ( k X t fp \W£n)
~  bfi j d l  D*( I) J d k  C(k)(<p,p | <pkn> exp [i(Elp- E kn)t/fi\. (2.5.15)

t  —*■ — oo

Now if /  =  / we know that (<plp\<pkn) — 5(1 —k)Spn, and  if /  ^  i the right- 
hand side o f  (15) is zero. We can therefore p u t E\P — Ek n and express (15) as

j  d \D *(\) j  dkC(k)(y>*p \y>+n)^ ~  J </l D*(I) J </k C7(k) d ^ l - k )

(2.5.16)

Both sides o f (16) are independent o f t, and  so they a re  equal. Since £>*(1) 
is arb itrary  we deduce that

J C(k)<i/>r„ I Vk+„> d k  =  J C(k) bfi <5(1—k) bpn d k .  (2 .5 .17)

Since C (k) is also arbitrary  we infer from  (17) tha t

(VlP I Vkn) =  ^ 5 ( l - k ) 5 pn. (2.5.18)

A sim ilar argum ent which considers the asym ptotic behaviour o f the 
system in the rem ote future ra ther than the rem ote past leads to

(Wp\V>kn)= bf ib ( l - k ) b pn. (2.5.19)

In o ther words, the scattering states are orthonorm al. The bound states of 
the system are orthonorm al, and we have already shown that the bound 
states are orthogonal to the scattering states. If  we denote the general mem­
ber o f  the set {y>b, y>£n} o f eigenfunctions o f  H by y>+, an d  the general mem­
ber o f  the set {ipb, o f eigenfunctions o f H by y>~, these results may be
sum m arized by the single im portant form ula

<y±ly?> =  v ]  (2.5.20)

In o ther w ords, the y>,+ are orthonorm al eigenfunctions o f  the full Hamiltonian 
H, and so also are the y>~. The question o f  their com pleteness will be consid­
ered in the next section.

EXERCISES

1. Prove that any scattering state v k„ is orthogonal to any bound state w

2. Prove (19).
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2.6. T H E  C O M PLETEN ESS TH EO R EM

In the last section we saw that the sets y+and %~are both  orthonorm al, 
an d  in this section we shall show that they are both complete. A ccording to  
the  fundam ental postu late (2.2.1), for any time t0 sufficiently far in the rem ote 
past the wave function ip(t) has the form  (2.2.3). This may be written

W o )  =  Z  B bWt exP (— iEbto/fi) 
b

+  Z  J c »(k) Pk n exp ( —iE ^t/h ) dk  (2.6.1)
n

where the sum m ation goes over all bound states ipb, while goes over 
all internal states o f  the system when it consists o f  two or m ore freely mov­
ing composite particles. Similarly for any time t\ sufficiently far in the fu ture 
the wave function ip{t) has the form

W i )  =  Z B 'b'l’b exp ( - i E bti/Ji) + YJ K  J C^(k) <pkn exp ( - iE ^ h jh ) dk.
b n

(2 .6 .2)

To evaluate y (t)  we operate on (1) with exp [—/H(f— t0)lfi]. This is a linear 
operator and so we can use the fact that

exp [ -  t0)lfi] y)b = exp [—iEb( t— t0)/h] rpb (2.6.3)

along with (2.4.28) to  obtain

?(0 =  Z B bWb exp ( - i E btlfi) +  J^B„  f C„(k) exp ( - iEknt/fi) dk.
b n

(2.6.4)
*

Similarly if  we operate on (2) with exp [ — iV\(t— ti)jh \ and use (2.4.29) we 
obtain

V(0 =  X B'bf b exp ( - iEbtlh) + Yj B '» f c «(k) Vk«exP dk.
b n J

(2.6.5)

Now ifb = yb , Bb o r BnC J k )  may be written A , and B'b or B'nC'n(k) may be 
written A'r. The results (4) and  (5) may therefore be written more concisely as

(2 .6 .6)

(2.6.7)

Vit) =  £  A„rpt exp ( -  iE.t/fi),
v

W )  =  Z  A 'vWv exp ( - iEvt/h).
v
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We discussed the quantities A v and A'r in Section 2.2 where we saw th a i 
they are the probability am plitudes for the unperturbed states q v in the re­
mote past and future.

The expressions (6) and (7) show that any wave function ip(t) may be 
expanded in terms o f either o f the orthonorm al sets y v+ or W7• h ave 
therefore obtained the following theorem :

Completeness Theorem. The Schwinger- Lippm ann 
states including the bound states, form  a complete 
orthonorm al set. The Schwinger-Lippm ann states 
y>~, including the bound states, form a second com ­
plete orthonorm al set.

(2 .6 .8)

The theorem (8) enables us to generate sets other than the two explicitly 
stated there. For we can associate complete sets with every arrangem ent 
channel o f the system, viz. the product o f the plane waves describing the 
relative motion o f the com posite particles A ,, A2 . . . ,  Am, together with the 
complete sets or y>~ for each o f the sub-systems o f elementary particles 
which make up A t, A>, . . . ,  Am. Such sets o f eigenstates o f H, are orthonor- 
mal and complete, and there are 2m o f them. Which complete set we choose 
will depend upon the problem under consideration, as we shall show later 
by an example.

At this stage we should point out that we have not proved the completeness 
theorem. For the theorem is a statem ent o f a mathematical fact about 
certain Hamiltonians. It can be proved in a mathematically rigorous way 
for certain potentials; being a m athem atical fact it cannot be deduced from 
a physical postulate. W hat we have shown here is that, if  a Ham iltonian is to 
describe a physical system satisfying the physical postulate (2.2.1), then it 
must have the mathematical property (8). If, for example, the potential is too 
singular, particles may spiral into each other and am algam ate, in which 
case the postulate (2 .2 .1) is obviously not adhered to. Only potentials which 
satisfy (8) can be regarded as realistic potentials for the system (Taylor, 
1972).

E x a m p l e . Suppose we have a three-particle system consisting o f  two electrons a and b, 
and proton A. For simplicity we suppose the mass o f A to be effectively infinite compared 
with that o f  a or b , and ignore spin. Typical unperturbed states o f  the four arrangement 
channels are: j nabA), a state o f  the H ion; | kaAntA) =  | k0̂ ) | nbA), a state in which 
electron a moves freely with momentum /ik relative to A and b is bound to the proton A to 
form a hydrogen atom in state | «); | khinaA. obtained from the previous one by inter­
changing the electrons; iknjllM), a state in which the electrons a and b move freely with 
momenta kk  and h\ relative to A respectively. The scattering states corresponding to the 
last three may be written |k aAnbA\ ± ) ,  \V.bAn„A; ± ) ,  and \kaAlbA\ ± )  respectively. Two
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c o m p le te  se ts a re  th e re fo re

K A»bA\ +>, I k bAnaA; + ) ,  I K aUa ', + )} . (2.6.9)
I K a'Ha ', -> ,  !kMnoJ; - ) ,  | k „ J ^ ; - ) } .  (2.6.10)

The above set is a complete orthonormal set o f  eigenstates o f the total Hamiltonian H 
W e can form other complete sets which are eigenstates o f  the unperturbed Hamiltonians 
Hf corresponding to the various arrangement channels. For example, consider the arrange­
ment channel in which b is free while a is bound to A to form a hydrogen atom. Since 
we are assuming that the mass o f a proton is effectively infinite compared with that o f  an 
electron the centre o f  mass o f  the atom is A, and so in this case

H, Km  +  K , a+Ka=  KM +  h. (2.6.11)

The eigenstates o f  Kw are | ktjl), representing the free motion of b relative to A with 
momentum /ik. The eigenstates o f  the internal Hamiltonian h are the bound states I naA) 
o f the atom a A, and its ionized states \x aA +  )  representing the scattering o f a by A when 
the unperturbed momentum o f a relative to A is hx. Two complete orthonormal sets are 
therefore

{i ktl<)  I naA), I ktJ) i x aA +  )}, (2.6.12)
and

{ l kM) I O ,  I k6j() I x„ A - ) } .  (2.6.13)

In the problem o f  scattering o f  electron b with momentum hk when the atom is in its
ground state 10aA) we may have reason to believe that there is not much likelihood o f  
excitation or ionization o f  the atom. If this is the case we can truncate the complete set (12) 
selecting only the set ]kfcj4) | 0aA) where k takes all values. In this case the scattering state 
has the form

I K aQ.a ; + ) = ' /  £ (k) I 0aA)  I kM> elk =  | 0„^) J' F(k) | kM> elk (2.6.14)

where ~F is some function o f  k. The scattering state is therefore the product o f  the ground 
atomic state |0„^) and some state J p(k) |kM)rfk o f  motion o f b relative to  A. Its wave 
function is now

V  kÔ aA, rtA> =* Zo(f «a) F (  *>A )  ( 2 -6.'

where F(rhA), the Fourier transform o f  f ’(k), is some unknown function. Such an approxi­
mation forms a basis for a calculation o f  the clectron-hydrogen scattering amplitude (Mott 
and Massey, 1965, chapter XVII).

EXERCISES

1. Write out the complete sets corresponding to the various arrangement channels o f a 
system o f  two electrons and a proton. Can you think o f  any other complete sets?

2. Repeat Exercise I in the case o f  the four-particle system consisting o f two electrons 
and two protons.

2.7. T H E  SCATTERING MATRIX

Let us summarize the results so far obtained in this chapter. F o r any time 
to sufficiently far in the past the system is represented by the wave function

W o ) = Y. A '(P’ exP { - iE jo jh ) (2.7.1)
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where goes over the unperturbed stationary states rpv of the system, in ­
cluding the bound states. F o r any time sufficiently far in the fu ture the 
system is represented by the wave function

? ( fi) =  Z  exP ( - iEvh/ti)■ (2.7.2)
v

A t any time t, w hether in the past, present or future, the wave function is 
given by either (2.6.6), viz.

f ( 0  =  £  A,.tp+ exp ( — iE„t/fi) (2.7.3)
V

or by (2.6.7), viz.
W )  =  Z  A 'Wv exP { - iE J lh ) .  (2.7.4)

V

The quantities Av and A[, are the probability am plitudes for the state cp 
in the remote past o r future. Thei/)+ and ip~ form  two com plete sets o f  o rth o ­
norm al eigenstates o f H. We can remember these results by noting tha t in 
evolution from  <p„ is replaced by i/>+, while in evolution into cp„ is replaced by y>~.

The fundam ental problem when considering the dynamics o f  a system is 
to  be able to  predict the future o f  the system when we know its past. Since 
we are dealing with a quantum  mechanical system we cannot predict with 
certainty how any particular reaction will proceed, bu t we are concerned, 
given the initial state o f the reactants, with the problem  of predicting what 
reactions may take place and with w hat probabilities. The key to the solution 
o f  this problem is the so-called scattering m atrix, and  this is the concept 
which we will introduce in this section. The discussion o f practical m ethods 
o f  actually calculating such probabilities will be postponed to  subsequent 
chapters.

I f  we replace the sum m ation index v in (3) o r (4) by a , then put / — 0, we 
obtain

I  =  I  Ax f+, (2.7.5)
a a

since both  sides equal xp{0). I f  we take the scalar p roduct o f this on the left 
with rpp and use the orthogonality property o f  the scattering states in the 
form  {\pp | ip~) =  6 ^  we obtain

A 0 = :'Z (y )p (2.7.6)
a

Let us define a quantity  Sgx by

Sfix =  (y>p lv£>- (2.7.7)
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W e can now rewrite (6) as

A', =  X  S^A *. (2.7.8)

(8) has the form o f a m atrix equation. The “column vector” o f  probability 
am plitudes A a for the various states o f free m otion o f the particles o f  the 
various arrangem ent channels o f the system in the initial state is transform ed 
in to  the column vector o f corresponding probability am plitudes Ap in the 
final state by m ultiplication by the m atrix whose elements are defined 
by (7). If  the m atrix is known, the state o f the system after the reaction 
can be, in principle, calculated if the initial state before the reaction is known. 
F o r this reason is known as the Scattering M atrix.

We can define a scattering operator S by the expression

s =  X  Iv tfX v; (2.7.9)

for it follows immediately from  the orthonorm ality o f the ip*, (7) and (9) 
th a t

( w  I s i ip - ) = Z ( w  I w i) <vr1 V a ) = Z (W
V V

= ( W \ t i )  = S * ,  (2.7.10)
and  similarly

<v; i s i o  =  s * . (2.7.11)

In other words, the scattering m atrix is just the m atrix o f  the operator S 
relative to  either the complete orthonorm al set o f the i\p* or relative to  the 
com plete orthonorm al set o f  the ip~.

The scattering matrix is unitary. F o r from  (7) and the completeness o f 
the ip~

(s ts)/5, =  X  s;„sra =  X  S =  X  ( w  I w+>* < vr I %+>

=  Z  ( v t  I v;v > {Wv I w i) = ( v t  I v i )  =  V -
v

Similarly ( S S ^  =  b and so we conclude tha t

Sts =  SSt =  1;

(2.7.12)

(2.7.13)

in o ther words, S is unitary. The unitarity  o f  S has, in effect, been deduced 
from the postulate (2.2.1); since this says th a t any past or future observation 
will show the system to be in some free state (p„ we expect probability to  be
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conserved, as expressed by (2.2.10). This is ensured by unitarity, for from (8)

z  i Afi\2 =  z  A? Ah = z z  s u a :  z s » A r
P P P <* v

= z Z A ' Ar Z ̂  = Z Z ̂  K
a y  /3 a y

=  Z l ^ l 2 = 1 - (2.7.14)
a

Before we proceed to  the physical interpretation o f  the scattering operator 
S defined by (9) we note two o f its properties. Firstly it follows from  (9) 
that

Sy» = Z I f r  > = Z V’JV  = Vv-

Secondly, if/(H) is any function o f H we see from  (9) that

/(H) s = z/(£)lv?Xvrl,
v

s/(H) = Z I vi") <vr l/(£).
V

and so

/(H) S -  S/(H).

(2.7.15)

(2.7.16)

(2.7.17)

(2.7.18)

In o ther w ords S commutes with every function o f  H.
We can now discuss the physical interpretation o f the scattering operator. 

T he sta te  Z» A rV7 a t time t =  0 evolves into the state Z vA,fPv exp {—iE jijti)  
a t tim e /j, and  so

exp( — iH fi//i)Z  A’V>7 = Z  Ajpve x p ( —iE ttilh). (2.7.19)
v v

If  we operate on (19) with S and use the fact that S commutes with any func­
tion o f H we get

exp ( — /H fifh) Z  A,Sy)~ =  S Z  4,<pp exp ( — iE ji/h ) .  (2.7.20)
V V

We can substitute for S%  from  (15) into (20) to obtain

S Z  At<p,exp (—iE,Ujfi) =  e x p ( - /H / i / f t ) Z  A*vt- (2.7.21)
V V

Now =  develops into Z ^ .V *  exP ( ~ iE jtjh), for A[ is the final
probability  am plitude, and since t\ is a time in the remote future (21) 
becomes

(2.7.22)
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The result (22) shows that S transforms the state that would have emerged i f  
there had been no interaction into that which actually emerges.

T he bound states ipb = qr6 are orthonorm al, and orthogonal to the scatter­
ing states, while >pb = >pb =  \pb\ hence particular cases o f the definition (7) 
a re :

Sb, b' = { fb  I Vb') — bbi b’

Sb. kn =  (Wblfkn) =  °-
Skn. b =  (Wkn I Vb) =  O'

The results (23) to (25) may be expressed by the single formula

S br = S,.b = bb,.. (2.7.26)

It follows from (26) and (8 ) that

A'b =  £  S b*Aa =  X  = A>» (2.1.21)a a

so tha t the probability am plitudes of the bound states are unaltered by the
collision. This is not surprising, however, for it means no more than  th a t a
bound state is stable, which it certainly must be. A metastable particle which 
decays into products with time is not, in fact, a bound state, but a super­
position o f  continuum  states forming a wave packet which remains localized 
for an unusually long time. The result (27) is therefore a confirm ation o f  
the general theory.

EXERCISES

1. Verify (11).
2. Prove that (SS*)^ =  <V».
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C H A PTER  3

T R A N S IT IO N  R A T E S

3.1. THE WAVE OPERATORS

W'e started by discussing the stationary states of a system o f N  elementary 
particles in its various arrangem ent channels, in the first place when the 
com posite particles move freely, and in the second place when their m utual 
interactions are taken into account. Having done this we considered the 
evolution in time o f such a system, and this led to the concepts o f the scatter­
ing operator and scattering matrix. The definitions (2.7.7) and (2.7.9) o f the 
scattering m atrix and scattering operator arise naturally from  a study o f the 
dynamics o f the system, but are not in a form useful for actually calculating 
the probabilities o f various collision and reaction processes taking place. Ft 
will be the object o f this chapter to derive expressions which will enable us 
to  perform actual calculations.

Let us define operators ^ f ( E )  by the expression

Q ?(E ) = \ + ( E - H ± i e ) - 1 V i. (3.1.1)

where e is a small positive num ber which is usually allowed to tend to  zero at 
the end of any calculation. ( 1) defines an operator-valued function  o f the 
energy; given the arrangem ent channel i, the operator is specified once the 
variable param eter E  (which has the dimensions o f energy) is defined. It 
follows immediately from  (1) and (1.5.1) that

ipf = Q f{ E v) <pv (v in i), (3.1.2)

where v in i means tha t rpv is an unperturbed stationary state o f  arrangem ent 
channel i. In other words the operators Q f{ E )  transform  any unperturbed 
state <p, o f arrangem ent channel i into the scattering states provided 
E  =  £■„. The operators Q ^ E )  are known as the “ M oller operators” or 
“Wave operators” .*

Energy-independent operators Q f  may be defined as follows:

Q ?=  I  IV^X^I (3-1.3)
v in i

t The wave operators are discussed in the simpler context o f  potential scattering in 
Volume 4, p. 88.

QTSP 4 39
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where the summation goes over those unperturbed states q>„ which belong to 
arrangem ent channel /. From  (2) and (3) and the orthonorm ality  o f  the cf r's  
belonging to the same arrangem ent channel we see that

Qf<pv = rpf -  O f( E v) cpr (v in <); (3.1.4)

that is, Q f  and Q f(E ,)  coincide when operating upon the unperturbed sta te  
<pv o f  arrangem ent channel i. In time-independent theory this is norm ally the 
im portant case and we then often do not distinguish between them. The 
Q f  defined by (3) are also referred to as M oller operators o r wave operators. 
In the remainder o f this section we will be concerned with wave packets. 
These have a spread in energy, and so we shall concentrate on the energy- 
independent operators defined by (3).

The Moller operators are closely connected with the tim e developm ent o f  
the system considered in Section 2.4. Firstly we note tha t

U,(0, t){/.yj+n<p) =  /U ,(0, t ) f + / j.Ui(0, t)cp (3.1.5)

where ip, <p are any elements o f Hilbert space. It follows from  (5) that if 
U,(0, t)if and U,(0, t)q> have limits as t — if °° then

U,(0, q: oo)(A y+J(i^) =  P.U,(0, +  o ° )y +  /iU,(0, if°° )(p , (3.1.6)

and so U,(0, :p °°) is also a linear operator. It therefore follows from  (2.4.34) 
that

£  =  U,(0, T oo) X  B ncpn(0) (3.1.7)
n  in / n  in i

provided the summation is confined to internal states %n o f  arrangem ent 
channel i, as indicated. If we substitute for xp^(0) and <^„(0) from  (2.4.30) 
and (2.4.3) we obtain

X  J d k  B„C„(k) ip~n = U,(0 , f  - )  £  J ' ^  B„C„(k) n „; (3.1.8 )
n in i  n  in i

(8 ) can be abbreviated to

X  AvVv=  U,(0, T co) X  A # . .  (3.1.9)
v in i v in i

Since y)~ =  Qfpy when v in / it follows from  (9) that

Q f  £  =  U,(0, + - )  X  (3-1-10)
v in i v in /

We cannot conclude from  (10) that U,(0, q: «>) =  Q f ,  for in general the 
<pv for a given arrangem ent channel are not complete they do not include 
the ionized states o f the com posite particles A\, A 2, . . . ,  A in. The exception 
to  this is when i — F, the arrangem ent channel in which all the elementary
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particles are free. In this case the <pv form a complete set, and so

=  UF(0, T =o). (3.1.11)

If wc make use of (2.3.5) we see that (11) can be written

D p — lim exp (iHt/h) exp ( — iHft/h). (3.1.12)
t —► qioo

By use o f  (2.3.5) we can write the result (10) as

Q f  Y_ d vcpv =  lim exp(/H //A )exp( —/H,//7t) £  d v(pv. (3.1.13)
v in i  * "P00 v in /

This result forms the basis o f a mathematically rigorous treatm ent of the 
subject. It becomes a m atter o f  showing that if <p, describes a state o f free 
m otion governed by the H am iltonian H;, and H =  H, +  V, is the full 
H am iltonian, then exp (iHt/h) exp ( — iH j t /h )^  has a limit as t — +  °° in the 
sense tha t there are states ip± for which || ip± — exp (iHt/h) exp (iHit/h)<f-i \\ — 0 
as t — q: °° (Taylor, 1972, chapter 16). In the case when i = F , H^ is just 
the kinetic energy operator, and we obtained the result (12). The precise 
sense in which this is true is that exp (iHt/h) exp ( — iHFt/h) ip has a well- 
defined limit for every ip in Hilbert space.

EXERCISES

1. Prove that, for any arrangement channel /,

Q r 'Q r  =  X  iTvXfvl.
t- iu i

Qtur* = £  IvrXv'.H
r  In i

2. P ro v e  th a t, fo r the  a rra n g e m e n t ch an n e l F  in w hich  all e lem en ta ry  partic les a re  
ree,

Q p i i f  = I,

a$ o i*  £  \ v v ) ( w !•
v in F

Deduce that iJ -. preserves scalar products.
3. Prove that if the forces between the elementary particles are all repulsive then the 

wave operators are unitary.

3.2. CALCULATION O F T H E  SCATTERING MATRIX

In Section 2.7 we defined the scattering matrix and calculated its ele­
ments when one or both o f  9^ , <pa are bound states o f the whole system. As we 
saw the result, viz. (2.7.26), is not the physically interesting one (although it



42 SCATTERING PROCESSES: GENERAL PRINCIPLES

provides a  useful check on the consistency o f the theory). In this section we
shall obtain  an  expression for the elements S lptbl of the scattering matrix
between tw o scattering states specified by the quantum  num bers k« (channel 
i) and Ip (channel / ) .

The scattering m atrix Spx is defined by (2.7.7). We can rewrite this, using 
the orthonorm ality  o f the Schwinger-Lippm ann states, as

Spa =  (Vp I v t )  + ( W - W p \ f t ) =  <V +  ( W  (3.2.1)

or as

Spa =  ( V F \ V a )  +  ( W  IV’t - f a )  =  +  \ f a ~ V a ) -  (3-2-2)

Let us calculate (ipp —ipp \iPa) when ft = Ip, a. — k n. We do this by putting

rP =  J  C ( k ) f i „ d k  (3.2.3)

and considering — ip̂ , | ip). F rom  (1.5.1) with E  =  E v = E lp we have

< V 6-V ip l9>  =  <[(£,i p - H - z’e)_ 1 - ( - Eip - H - f ie ) _:l] Vf<pip \ip)
=  (<PiP \ V f [ ( E l p- H  +  i e ) - i - ( E l p- H - i e ) - i ] \ i p )

=  J  C(k)(cPlp\ Vf [(Elp- E kn + i e ) - i - ( E ]p- E kn-ie)- i] \ ip+ n) d k
(3.2.4)

on use o f (3). F rom  (3) and (4) we see tha t

C — 2 ip
J ̂ (kXVip—yip I Wkn) dk. — C(k) -  — —-gT y>_|_ e2 (9V I K f l  f k n )  d k -  (3.2.5)

It is easy to  see tha t as e — 0 +  an expression o f the form

(3-2.6)
x 2+e~

m ust tend to  nb(x ) ; for if x  ^  0  the limit is zero, and the integral o f the 
expression from  x  =  — °° to x  =  + °°  is n. If  we insert this in (5) with 
a- =  E lp—E kp we find that

j  C ( k ) < y £ - y £  | VW  d k  =  J  C (k )(-2 .T /) d(Eip- E kn)(<pip \ Vf  \ i p £ „ )  dk,
(3.2.7)

and since C (k) is arbitrary  (7) implies

(Wp-Wipl  Vk»> =  -2 n id (E ip - E kn)((p,p \V/  \ y>£„). (3.2.8)

Insertion o f  this last result into (1) with ft = \p, oc =  kn, yields

S i,. k„ =  W - k )  K „ -2 n id (E lp- E kn)(cplp | Vf  | ). (3.2.9)
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When either (pfi or is a bound state o f  the system the quantit y d(Ep — E J  X 
(SPp\ 1 ) must vanish. For if  <fp is a bound state F y =  0 and the result
is obvious, while if (f a is a bound state, =  <pa. Since Vf =  H — Hy we 
have in the latter case (<pp\ Vf \y)x )  — (<pp\ H —Hy|<pa). Now cpx is a bound 
state, so is negligible outside some finite volume o f configuration space, and 
hence H. Hf  must be Herm itian between cpp and <px. Since Hf i p  =  Eptyp and 
H</ „ =  E jp x it follows that

(<Pf)\Vf\'Pi) =  (<Pp\ =  ( E p - E aL)((pp\<px)  (3.2.10)
and so

d (E p -E x)((pp\ Vf \xpt) =  b {E p -E x) { E p - E x)(cpp\<px) =  0. (3.2.11)

Also S pa = b ^  if either either <f p or <fx is a bound state. Hence

Spx =  dfa—2md(Ep—E x)(<pp| Vf \ v t ) \  (3.2.12)

for if either or q>a is a bound state ( 1 2 ) states that Spx ~  /̂3a> and  if neither
<Pp nor cpa is a bound state (12) is equivalent to  (9).

If the same type o f  argum ent is followed, but beginning with (2) ra ther 
than ( 1), the result

Spx =  bp* — 2nib(Ep—Ea)(yp \ V, \ cpx) (3.2.13)

is obtained. The expressions (12) and (13) for the elements o f the scattering 
m atrix will form the starring point for our derivation o f expressions for the 
differential cross-sections.

EXERCISE

Prove equation (13).

3.3. TRA N SITIO N  AM PLITU D ES

In a scattering experiment the system is usually prepared in som e definite 
state <px o f  arrangem ent channel i, say. <pa will usually represent two com posite 
particles, one a t rest (the target), and the other moving towards it (the b o m ­
barding particle). O ur problem  is to  discuss the likelihood o f a transition  
from  (pa to  some final state o f arrangem ent channel / (consisting o f  two 
or more com posite particles). To do this we have to introduce a quantity  
T(a — /?), known as the “transition am plitude” from  the state <pa to  the 
state cpp\ we shall do this in this section.

We first introduce transition operators T%(E) according to

T# £ )  -  V fQ f tE ) ,  
T j ( £ )  -  Q y \ E )  V ,

(3.3.1)
(3.3.2)
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It follows from (3.1.1) that

T J(£ )  =  Vf + Vf ( E - H  +  ie)~i V h (3.3.3)
Tfl(E) = V t + V f (E — H +  /e) - 1  V,. (3.3.4)

T ^ (£ )a re  known as the transition operators for transitions from  arrangem ent 
channel i to arrangem ent c h a n n e l/a t  energy E.

As defined above the transition operators depend upon a variable para­
meter E  having the dimensions o f energy. They may be defined in an energy- 
independent way by the expressions

Tfj = V fQ f ,  (3.3.5)
T>7 =  Q j '  Vh (3.3.6)

where Q f  is given by (3.1.3) while, analogously,

=  X  I v r X ^ I -  (3.3.7)
v i n /

The quantities T ±{oc — /?) are defined as the m atrix elements

T +(x  -*/?) =  (<pp | T;,(EX) | ip.) (oc in /, p  i n / ) ,  (3.3.8)
T - ( ol -  p) =  | Tfi(Ep) | y .)  (a  in /, p  i n / ) .  (3.3.9)

We saw in Section 3.1 that Q f ( E 0i)q>!l = ip^ and so (1) and (8 ) imply that

T+i* -  0) = (&  \V f \rpi). (3.3.10)

We also saw in Section 3.1 that i/>+ =  Q f  (p. ; if we substitu te this for into
( 1 0 ), then use (5), we obtain

T +(a. -*■ P) = (<pp I Tfi 19?a>. (3.3.11)

Similarly (2) and (9) show that

r-(« -  0) = | £>/»(£,) Vi | (p.) =  (0 / ( E p )  Cfp ] K, I ?*> (3.3.12)
so that

r - ( «  ~ p )  = (w f  \Vt\<p*). (3-3.13)

Since =  Qj<pfi, (13) and (6 ) give

r - ( «  -  0 ) =  <9 ,  |Tr7 l ^ > .  (3.3.14)

From  (8 ) and (11) we see that

<9 * | T̂ v (£ .)  I 9V> =  (tp? | T£ | y «>, (3.3.15)

while from  (9) and (14)

( fp  \T/i(Ep) I <Pa) =  <9?/s IT7  I 9?,); (3.3.16)
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th a t is to say, T £ ( E J  and Tfi have the same m atrix elements between <f p and 
</ „  and so do T^(Ep) and Tjr  As we shall now show, these are in fact, the 
physically im portan t m atrix elements.

If we com pare (3.2.12) and (3.2.13) we see that

(<Pp I V/\ w t )  =  ( W  \ v i \ <P«) when £> =  £ a. (3 .3 .17)

It therefore follows from  (10) and (13) that

T^CC -  /?) =  (<pp \ Vf\  V’a > =  ( W  I Vl\ <P*)
=  T~(oc — ft) when Ep =  £*.

(3.3.18)

I f  we denote the com m on value o f the four terms in (18) by T(x  — ft) we see 
that (3.2.12) and (3.2.13) may be replaced by

Sp, =  bfil- 2 m d ( E p- E x) T (x  -  ft) j (3.3.19)

since the second term on the right-hand side is only non-zero when Ep =  E x.
The quantity  7"(a — ft) which appears in (19) is known as the “transition 

am plitude” . When — 'V  (2.7.8) implies tha t A'p = Ap and so in such a 
case the interaction is ineffective. The quantity T(x  --ft)  measures the effect­
iveness o f the interaction, and this is the reason for its name.

We saw in Section 3.2 that the quantities (<pfi\ and Vt \<pa)
must vanish if either or is a bound state. It follows from (18) that
T(oc — ft) must vanish if either <pa or is a bound state, and since the work
o f  Section 2.7 showed th a t ■V =  V  if either 9  , or 9  ̂ is a bound state, it 
follows that (19) is true fo r all a and ft.

The results o f this section lead to a very useful corollary. If we take matrix 
elements o f (3) and (4) between <pp and (p„ and subtract we get

{(p/s | Tf,(E) | <px) - ( ( p 0 \ T/7 (£ )  I <p,)

= (fP  I vf  \ I Yi \ <P*)- (3.3.20)

We have seen that the left-hand side of this equation vanishes when
Ep — £ x =  E, and so therefore must the right-hand side; in other words:

If  Ep =  £ ,,  <9ofi | Vf  \ 9?a) =  (<f>p | V, | <px). (3.3.21)

This result will be very useful, for example, in our discussion of the Born 
approxim ation (Section 5.3).

EXERCISE

Verify equation (21) in the case o f  exchange scattering o f electrons and hydrogen 
atoms. (You may assume that the mass o f  the proton is effectively infinite.)
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3.4. CRO SS-SECTIO N S FO R TW O -PA RTICLE C O LLISIO N S

Let us confine our attention for the time being to  collisions o f  the fo rm

A + B  — C + D .  (3.4.1)

“Direct collisions” are o f the form

A + B ^ A  + B\  (3.4.2)

(2) is a special case o f (1). If A  and B  have the same states as initially the  
collision is “elastic” ; if the states o f one or both  are changed, the collision is 
called “inelastic” . W hen the final pair o f  particles is different from  th e  
initial pair we have a “ rearrangem ent collision” . M ore generally, we can  
define elastic collisions as those in which the channel is unchanged, inelastic 
collisions as those in which a transition takes place between channels in the  
same arrangem ent channel, and rearrangem ent collisions as those in which a  
transition takes place between different arrangem ent channels.

The initial state o f the system has the form

w j r i ,  X,) =  <Pk(r,') Z„(x,) =  (2ji)~312 e x p (/k .r ,)  ^,(x,) (3.4.3)

where r, is the displacem ent of the centre o f mass o f A  relative to  the centre 
o f  mass of B  (Fig. 3.1a), x,- denotes the internal coordinates o f A and  B,  
Xn the initial internal state, ftk the initial m om entum  o f A  relative to B, and  i 
labels the arrangem ent channel o f  A  and B. The final state o f  the system 
has a corresponding form

<Pip(*f, x /) =  'pi(rf) x„(xf ) = ( I n ) - 3'2 exp (fl.iy) / p(xf ). (3.4.4)

We must now consider how we can define an experimentally determ inable 
quantity  which measures the rate a t which the reaction (1) proceeds. In 
many collision experiments a uniform  beam  o f the particles A is aimed a t a 
target containing N,  particles in the path  o f the beam. The num ber o f 
particles C emerging per unit time in the solid angle drf  in the direction o f 
the unit vector rf  relative to the recoil particle D  when the internal sta te  o f  
the product particles is %p is m easured (Fig. 3.1b). U nder suitable experi­
mental conditions this is found to be proportional to  N„ d£f  and the “incident 
flux” / ;  the incident flux /  is the num ber o f particles per unit time crossing 
a unit area placed transverse to  the beam. Since we suppose the incident 
beam  to be uniform , 1 must be independent o f the position o f the unit area. 
The num ber N(kn  — if p) dif  o f pairs C, D  emerging per unit time in drf  
with displacement iy o f C  relative to  D, the internal state being is therefore 
o f the form

A'(k« — f/p) d i f  = a(kn  — ryp) IN, drf  (3.4.5)
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F ig . 3.1. C o n fig u ra tio n  o f  th e  system  (a) before th e  co llis io n , (b ) a f te r  th e  co llis io n .

where a(kn  — ff p)  is a quantity  known as the differential cross-section ro f 
the process. The fact that N(kn  — rf p) is proportional to  both  I  and N, 
means that the collisions are independent; there are no multiple collisions, 
nor do the particles o f the incident beam or o f  the target interfere with each 
other. It is therefore possible for us to evaluate the probability o f the process

— 9 'ip for a single collision, and hence evaluate <r(kM — if p) from  (5). 
The cross-section for the process x„ — XP is given by

<r(k/i — p) =  J  o-(k« -*• f/p) dxf  (3.4.6)

where the integral is taken over the unit sphere. From  (5) and (6 ) we can see 
that lN,a(kn  — p) is ju st the num ber o f  pairs o f particles C  and D  produced 
in the internal state %p■ If we sum this over all energetically possible final 
states xp we obtain the cross-section or(k« — / )  where

<r(k« - / )  =  £'<r(krt -  p) =  J dff a(kn -  xf p). (3.4.7)
p in /  p in /

In (7) £ p in /means summation over the energetically allowed channels o f f .  
From  (5) and (7) we see that /7Vtff(k/? — / )  is just the num ber o f  pairs C. and D  
produced per unit time, and is consequently closely related to  the rate con­
stant for the reaction (Bunker, 1966).
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3.5. EVALUATION O F TW O-PARTICLE C R O SS-SECTIO N S

We shall now obtain the relationship between the cross-sections defined in 
Section 3.4 and the transition amplitudes defined in Section 3.3. To do this 
we will first consider the initial state o f the system, which must have the 
form

<p„(r„ X,-. t) =  <p(r„ t) 2 „(x,) exp ( - iE„t/fi) (3.5.1)

where

(p{r„ t) =  (2?r) ' 3/2 j  C(k) exp (/k*r,) exp ( - iEkt \h ) dk. (3.5.2)

Certain experimental conditions which must be satisfied in a properly per­
formed experiment will enable us to calculate the flux I. The work o f Sections 
3.1 to 3.3 will then enable us to calculate Nikon  — tjp), and hence the differ­
ential cross-section a(kn  — rf p), where k 0 is the mean relative wave vector 
o f the incident beam.

The initial wave packet is normalized to unity, and since this holds for all 
times we have

J  | <p(r;, 0) | 2 dii -  1. (3.5.3)

We suppose that the incident beam is parallel to the axis Oz o f Cartesian 
coordinates O x y z ; the wave packet <p must therefore have a cross-section 
A perpendicular to Oz and possessing the shape o f the diaphragm  through 
which the incident beam  is emitted (Fig. 3.2). It is thus possible to replace (3) 
by the equivalent expression

J J  dx dy  J  dz \ <p(x, y , z, 0 ) | 2 =  1 (3.5.4)
A -OO

F ig .  3.2. The incident wave packet for motion relative to the target 0. The probability that 
r, lies in the cylinder o f  cross-section dxdy  is independent o f  x  and y.
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w here r; has com ponents (x , y ,  z) relative to Oxyz. Now the integral with 
respect to z  is a function o f a and y  which, when multiplied by dxdy, gives 
the probability o f the relative displacement r, being in a cylinder of cross- 
section dxdy  and axis parallel to Oz  (Fig. 3.2). In a properly performed scat­
tering  experim ent the incident beam is uniform , and so this probability 
m ust be independent o f  .v and y. We can therefore put x  =  y  =  0 so that (4) 
becomes

JJ" d .v dy J" dz \ <p(0 , 0 , z, 0 ) | 2 (3.5.5)

T he integrand o f the double integral in (5) is independent o f .v and y, and so 
if  we denote the area o f  A by A  we obtain

j  dz  | <p(0 , 0 , z, 0 ) | 2 — 1 . (3.5.6)

If we substitute fo r <p(0 , 0 , z, 0 ) in (6 ) from  (2 ) we obtain

I =  A(2jt)~3 j  dz j  dk x J dky J d k : C*{kx, ky, k .)  exp ( -  ik :z) X
— OO —oo —oo —oo

■foo -j- oo -f- oo

X J dk'x J dk'y J dk'2C(k'x, k'y, k'z) exp(ik'.z).

Integration over z and then over k'z yields

1 =  A(2jz)-2 f  d k ,  J  d k ,  J  d k y C ( k x , k y , k 2 )  \  (3.5.7)

Let us suppose th a t Nb bom barding particles are emitted per unit time.
The incident flux is then /  =  A ^ -1, and so from  (7) with the dummy varia­
ble o f integration k : replaced by k

I =  Nh(2rr,)-2 $ dk j  dkx J  dky C (kx, ky, k) (3.5.8)

We have now calculated the incident flux; the next task is to calculate the 
probability P{if p)  o f a particle C  emerging in the direction relative to the 
recoil particle D  specified by the unit vector rf , the internal state o f C  and D 
being represented by xp. In order to do this we m ust first calculate the p ro ­
bability am plitude A\p o f  observing the final state (plp. According to  (2.7.8) 
this is given by

Aip = Z $ d k S 'p .*nAkr„ (3.5.9)

where goes over all channels. By hypothesis we have only the initial



50 SCATTERING PROCESSES: GENERAL PRINCIPLES

internal sta te  %n, and so the probability am plitude A kn is ju s t the m om entum  
am plitude C (k); hence (9) becomes

A\„ =  J  S lp, u„ C (k )dk . (3.5.10)

The scattering matrix is given by (3.3.19) which in this case becomes

Sip. kn = bfidpnd(l~k)-27Tih(E ip- E kn) T (k« -  Ip). (3.5.11)

If we substitu te  (11) into (10) we obtain

AiP =  bfibp„C(\)—2ni  J C(k) b(Eip- E kn) T (kn  -  \p) d k .  (3.5.12)

In practice we need only consider cases when C(l) =  0 ; for we will only 
observe elastic collisions ( /  =  i, p  =  n) when the final velocity o f C  relative 
to D  is no t parallel to the incident beam. This implies th a t there is no p ro ­
bability o f observation o f the momentum h\ in the initial wave packet 
describing the state o f motion o f A  relative to B in the incident beam , and 
so | C(l) | 2 — 0, whence C(l) =  0. If C(I) did not vanish the  detector w ould, 
in fact, be swamped by the incident beam. We can therefore replace (12) by

A[p =  - 2ni  J  C(k) b(Eip- E kn) T(kn  -  \p )d k ,  (3.5.13) 

which may also  be written
oo

Aip =  - 2 n i  J  k*dk  J  d k  C(kk) b (£ ,„ -E k„ )T (kkn  -* \p). (3.5.14)
0

where £ =  k /k .
If  we carry  ou t the integration over k,  and remember th a t E ^  =  fr k - j2 u t + 

+ E n, where //, is the reduced mass o f A  and B, this becomes

Alp = —27iinikh~2 j  C (k k )T (k k n  -* lp )d k .  (3.5.15)

In (15) & is determ ined by the condition EklI =  £ ,p, which expresses the con­
servation o f  energy^ In a well-performed experiment collim ation is suffici­
ently good to  ensure that there is no variation in the transition am plitude 
T(k(Lti — 1p)  as £ varies over the directions o f the incident beam ; in o ther 
words, as fc takes values for which C(&fi) ^  0. We can therefore replace 
T(ki.n  — 1/?) in (15) by T(ki.0n — I/?) where C0 is the un it vector in the 
direction o f  Oz. T  can then be taken outside the integral in (15), and so

Alp — — 2jiifjjk/t- 2 T(kkon  — 1/;) J  C(A:k)rfk (3.5.16)

where E kn =  E ]p.

It may happen that there is no k for which E,p =  £ k„, in which case A',r =  0. Such a 
case would arise i f  the internal energy o f the final particles C and D  were less than the 
internal energy o f  the initial particles A and B. Then if E\ <  En — Er , E\r -e Ekn for all k. 
We shall assum e that this is not the case here.
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o
F ig. 3.3. The final relative wave vector 1 o f C and D  is defined by its magnitude I and direc­
tion, viz. that o f  the unit vector rf . As I takes magnitudes between / and dl and directions 
in the solid angle dr, it fills a volume element dl o f  cross-section I- dr, and length dl. The 
probability o f observing I in the volume element dl is | A[p |2 dl, and so equals | A[t |2 i ‘

d l  drf .

In order to calculate P(rf p) we note that the probability o f observing the 
final wave vector 1 in the volume element l2d!drf  a t the point 1 =  lrf  o f 
1-space is | A'lp \2l2dldif  (Fig. 3.3). It follows that the probability P(?{p) drf  
o f  observing the final relative displacement being in the solid angle dry 
along fy is

P(rf p) d i f  = d if  j  I2 dl \ A[p |2,
0

and so by (16), if we remember that 1 =  lvfy

P{Tf p)  =  J d/47T'ikH2/i'ffi-i \T ( k k 0n -  lr/P )\2 \ f C { k k ) d k \ 2. (3.5.17)

Now C(fcfi) 5̂  0 only if k  ^  k n, and in a properly performed scattering 
experim ent the energy resolution is sufficiently good to ensure th a t the 
modulus o f  the transition am plitude does not vary much for different energies 
in the incident beam. We can therefore replace | T(k$i0n — lfyp) \ in (17) 
by | 7\koM — loifP) where k 0 =  /cotu and l0 is obtained from  k 0 by the energy 
conservation condition ; | T \ 2 can now be taken outside the integral sign 
in (17), which becomes

P(i/p) = \ 27Tf,fi-2T ( k 0n -  l0rfP )\2 f d lP k 2 \ J  C(A:k)rfk|2. (3.5.18)
0

The unit vector k  is almost parallel to £ 0 if C(&£) ^  0 so we can pu t 
dk  = k g 2 dkx dky where (kx, ky, k ,)  are the com ponents o f  =  k  (Fig. 3.4).
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Fig. 3.4. The solid angle dk  is generated by vectors k whose *  and y  components lie 
between kz and kx +  dkx, k y a n & k ,+ d k t , respectively. Since the magnitudes o f such vectors 
approximately equal k0, while their directions are nearly parallel to £ 0, the intercept thatrfk 
makes with a sphere o f radius k is approximately a rectangle perpendicular to Oz, and 

with sides o f lengths dkx and dkv. It follows that dk  =* dkx d k ,/k 0.

Hence

J  dir-k2 \ f C(kk) d k  | 2 =  J  d!l-k2k ~ i \ f f dkx dky C (kx, ky, k t ) |* (3.5.19) 
0 0

where the double integral inside the modulus signs on the right-hand side 
o f (19) may be taken over all values o f k x and ky, since C  vanishes unless 
both k x and ky are very much less than k 0- The energy equation Elp = £ k„ 
can be written more fully as

f ,W x + k ; + k j )  
2 Hi

+ E n
h2P 
2 Hf

+E„ (3.5.20)

where f i f ' s the reduced mass o f C  and D, and for fixed I this determines k. 
as a function of k x and k v. If we differentiate (20) partially and implicitly with 
respect to k x we see that Sk j d k x =  — (kxjk z), and this is obviously small if 
C(kii) 0, since then k x <ac ko and k z ^  k 0. Similarly dkz/dky is small, 
and so k z may be regarded as independent o f kx and k y, and given by (2 0 )

k  wherewith k x =  ky =  0 ; then k z

h~k ~-+E„ = ^ L + E p . (3.5.21)
2 N  " 2 fjf

We can therefore replace k z in (19) by A: to  obtain 

J d l l2k 2\ J d k C(/ck) | 2 =  J d l l2k 2k o i \ JJ dkx dky C (kx, ky, k ) \2, (3.5.22)
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and  from  (21) we can replace / as the variable of integration by k. Now 
C (kx, ky, k )  =  0 if  k  is less then the threshold value [2lui(£'/)—E n)/fi2]m , 
otherwise the collision energy would be too close to zero for resolution. This 
threshold is the lower limit on k  corresponding to I =  0. We can therefore 
extend the lower limit on the integration over k  to  — °° to  obtain from  (2 1 ) 
a n d (2 2 )

J  dl l2k 2 1 J  d k  C(/ck) | 2 =  j dk p f ^ ' l k 3̂ *  \ J  j  dkx dky C(kx, ky, k)  |2.
0 — oo

(3.5.23)

The m om entum  am plitude C  vanishes unless k  ^  k 0, in which case by 
(2 1 ) / =  l0 where

h-k% ti-l2
-T ^ - + E n =  - ^ - + E p. (3.5.24)

2  m  2  ̂

We can therefore replace (23) by

oo -f- oo

J  d l l2k 21 f d k  C (kk )  | 2 =  /- / / / , '' U , , 1 J  dk \ \ \ d k x d k vC{kx, ky, k ) | 2
0 -o o

(3.5.25)
and hence from  (18)

P(ifp) =  Hffjr1l0k o 1\2nnifi-'i TQion — loijp)\2X
-f oo

X J dk\ j j d k x dky C(kx, k y, k ) \2. (3.5.26)

The num ber N (k 0n — rf p) drf  o f  particles C  emerging per unit time in the
solid angle (if, drf ) with C  and D  in the internal state %p is given by

N(k0n -  ifp) = NbN,P(ifp)  (3.5.27)

since TV, is the num ber o f  target particles and Nb the num ber o f bom barding 
particles per unit time, and so by (26)

N(kon — ifp)  =  [iffj.il0k o 1\2 j ih-2T(k0n — laif p ) \2NhN, X

X J dk  | J  J  dkx dky C(kx, k y, k)  |2. (3.5.28)
— oo

We have now obtained N (k 0n rf p). The differential cross-section is 
given by (3.4.5), hence

o{k0n — ifp) = I ~ lN ~ 1N i k 0n — ryp). (3.5.29)

If we substitute for /  and Nikon  — iyp) in (29) from  (8 ) and (28) we obtain 

tr(k0H -  fyp) =  /j.ffilloko1\4ji2f i - 2T(kon  — l0rf P ) \2. (3.5.30)
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(30) is the required relation between the differential cross-section and the 
transition am plitude.

The scattering am plitudef{k0n — 1p)  is defined by

/ ( k 0« -  Ip) =  ( — 4rr2////A2) T(kon -  1 p). (3.5.31)

Since hkolpi is the initial speed v0 and ft/o/^uyis the final speed v'0 (31) enables 
us to rewrite (30) as

or(k0/7 -  rf p) = (v'0lv o ) \ f ( k 0n -  l0i /p ) \2. (3.5.32)

EXERCISES

1. If 0 is the angle which the direction o f  the scattered particle makes with the direction 
o f  the incident particle, k and 1 are the initial and final relative wave vectors, and q =  k  — 1, 
show that

q 2 =  k 2 +  l2 — 2kl cos 6.

Explain why the scattering amplitude can only depend upon k and q if  the problem has 
axial symmetry about the direction o f the incident particle.

2. Use the results o f  Exercise 1 and (3.4.6) to show that if  the collision is direct, and has 
axial symmetry about the direction o f  the incident particle, then the total cross-section 
«(kfl -* p )  is given by

i+*
«(k/t - / > )  =  ~  J \ f ( q ,k ) \ - q d q ,

I i-*l
where f(q , k) is the scattering amplitude.

3.6. GENERAL PR O C ESSES

In the last section we obtained the expression (3.5.32) for the differential 
cross-section a(knn — f/?y) for the two-particle process A  +  B  — C +  D. 
A lthough in most reactions the initial state o f the system consists o f two 
particles, it is quite often the case that after the reaction there are more than 
two particles; for example, collisions in which one or both o f the colliding 
particles are ionized. We can reduce these examples to that of Section 3.5 
by choosing one o f the resulting particles as the “recoil” particle. If we label 
it as C, the rem aining particles may be grouped together and collectively 
labelled as D. We can denote by r i the position vector o f the centre of mass 
o f  C  relative to  the centre o f  mass o f  D, and by I the corresponding relative 
wave vector. The final state now takes the form

9 W (ru q) =  <p,(ri) !«P(q) (3.6.1)
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where i xp is a  product o f ^-function normalized plane waves which describe 
the relative m otion o f the particles o f D, x  =  (x 2, . . x„,_i) denoting the 
collection o f wave vectors specifying the relative m om enta o f these particles, 
w ith the wave function %p representing the internal state. Here q denotes 
collectively the internal coordinates Xyand the relative displacements r 2, . . . ,  
rm_x o f the particles of D.

The probability that the wave vector 1 for the motion of C  relative to D 
lies in the volume element dl — I2 dl drx while the relative wave vectors 
x  =  (* 2, • • •> x m_i) lie in the volume elements d x 2, . .  . , d x m_v  the internal 
state being represented by ywp, is given by | A'Wp\-I2 dl di\ d x 2 . . .  d xm_1 
where A is the am plitude for the final state <fWp. We can therefore calculate 
the probability P(i\xp )  dt\ d x 2 . . .  dxm_ 1 tha t the motion o f C relative to D 
lies in the solid angle dr i along ?! while the relative wave vectors x 2, . . . ,  x m_ 1 
o f  the recoil particles lie in the volume elements dx> at x 2, . . . ,  d xm_ 1 a t 
x m_ i, by integrating | A'Wp | 2 / 2 dl from  / =  0 to  I =  °°. The calculation 
follows that o f Section 3.5 with p replaced by xp ,r^replaced by f j , the product 
dx-i, . . . ,  d x m_j inserted where appropriate, and so P(i\xp)  will be given by 
(3.5.18) modified in the same way. Following the reasoning o f Section 3.5 
we find that the num ber N (k nn — ?ixp) dx-i . . .  d x m_1 o f particles appearing 
in the solid angle dr\ along f i per unit time is given by (3.5.28) modified as 
described; th a t is, by

N (k 0n — r ixp )  — pfHil0kQ1\ 2nh~2T(kon — \0hxp ) \2X

XN „N , f  dk | J J  d k ,  dky C(kx, ky, k)  |2. (3.6.2)
— oo

In (2 ) /o is given by the energy conservation equation
*2/2 *2/2 1,21,2

^ + E Kp =  -T ± + E M+ Ep = ? p - + E n (3.6.3)
2 nf  2 iif  p 2 pi

where E K is the to tal relative kinetic energy o f the recoil particles, E p the final 
internal energy o f the particles, and the reduced mass o f C relative to the 
recoil particles.

The differential cross-section cr(k0/7 — ?ixp)  for the final state qtKp where 
1 =  /0fi is now  naturally defined by

a(kon — i i x p )  =  /~W ,- W (k0« — r \xp ) ,  (3.6.4)

so tha t IN ,a(k0n — f i  xp) di\ d x 2 . . .  dxm_ 1 is the num ber o f particles C 
appearing in the solid angle dr j per unit time along f i  when the relative wave 
vectors lie in the volume elements d x 2 a t x>, . . . , d x m_ 1 a t x m_ r  The expres­
sion (3.5.8) for /  remains valid, and so we deduce from  (2) and (4) that

cr(koH — rixp)  =  pfp,jl0k 0 x | 4jr2h - 2T { k 0n — l0r ix p ) \2. (3.6.5)
QTSP 5
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The scattering am plitude is defined by (3 .5 .31) with p  replaced by y.p, th a t
is by

/ ( k 0« — 1 xp) =  ( - 4 i c 2fif/tr)T(k„n — 1 y.p), (3 .6 .6 )

where nf is the reduced mass o f C  and D. As before we obtain the result

<r(ko« — rixp)  =  (t'o/t’o) l / ( k n« — /0r i >tf/?) |2 (3 .6 .7 )

where i:'0 is the speed o f the scattered particle relative to  the centre o f mass 
o f the recoil particles.

The flux into the solid angle di\  when the particle of arrangem ent channel 
/  are in the internal state / p is clearly obtained by integrating over all energet­
ically possible sets o f values o f x 2, • • *m_i> and so the differential cross-
section ff(k0/7 — ri/j) for the final internal state % is given by

cr(ko/; ^  rip)  — J' d x 2 . . .J-' dx m-io(k„n  — i ixp) ,  (3 .6 .8 )

the prim es signifying that the region o f integration is th a t allowed by energy 
conservation ; tha t is, the region for which EHp is less than or equal to E - E p, 
where E  is the total energy. The cross-section a(k0n — / )  for production o f 
particles in arrangem ent channel / i s  obviously obtained by form ing the sum 
and integral

<x(k0w - / )  =  f dr\ a (k 0n — ? ip)  (3 .6 .9 )
p  in /

where the prim ed sum goes over all energetically possible final internal states 
y_p o f arrangem ent channel/ ;  tha t is, all states / p o f/ satisfying Ep <  E.

EXERCISE

Hydrogen atom s in their ground state arc ionized by electron impact. The initial wave 
vector o f  the incident electron is k, and its final wave vector is 1, while q =  k — 1. The 
momentum o f  the atomic electron relative to the proton after ionization is fix. Relative to 
spherical polar coordinates with q as polar axis x  has coordinates x, ■/, y>. Explain why the 
scattering amplitude for the process can be expected to depend only upon k, q, x, % and y> 
at most.

Deduce that the ionization cross-section o  is given by

x„ * +  in  n

<7 =  ^  ( # d x  j" q dq J dx  |  sin y> dip |/|2
0 l*-*xl o o

where

k% — k 2 — x 2 — 2mllh'-,

I being the ionization energy o f the hydrogen atom, while

= (>t2 — 2/jiZ/A2)1/2.

(The mass o f  the proton may be taken as effectively infinite, and the mass o f  the electri n 
is in.)
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3.7. M IXED STATES

In many experiments the target beam consists o f particles in different states; 
for example, in the case o f ionized molecules produced in a furnace various 
vibrational levels may be populated. It is always assumed that such a m ixture 
o f  states form s a statistical mixture, so that the differential cross-section 
measured in the laboratory is obtained by averaging over the initial states. 
Thus if the incident beam and target system consists o f various initial states 
(pa, and pa is the probability o f the occurrence o f the state cpa, the differential 
cross-section cr(— /?) for transition to the final state </ p is given by

a(-~ P) =  Z  P ^ x  /*) (3.7.1)
a

where runs over all initial states.
It is w orth pausing to consider the physical conditions which m ust be 

satisfied if (I) is to  be accepted as a valid rule o f calculation. Suppose for the 
sake of argum ent that there are only two internal states, xi and y_2 say. A t 
some time t0 in the past a particle A o f the incident beam and a particle B 
o f the target system will be in a state cp(to) where

<p{to) — ci<pi(fo) +  c'2<P2(fo), (3.7.2)

t'i and c > are complex numbers, and (pi(/o), ^ 2(^0) are each products o f  a wave 
packet describing the relative m otion o f A and B  and the internal sta te  
Xi or xz respectively (see Section 2.1). If each particle is produced under the 
same experimental conditions the functions <pi and <p2 and positive num bers 
| ci | and | c2 | will always be the same, but the phases Oi and 02 o f  c\ and  c2 
may possibly vary. If  pi  and p 2 are the probabilities o f observing the states 
represented by xi and %2 in the incident beam we have | c \ | =  p\12, \c2\ =  pV2, 
and so (2 ) can be written

<p(to) =  pYz exp (id 1) y , ( t 0)+ p l12 exp (id2) f 2(t0). (3.7.3)

Let j m)  be a state of the system in which a complete set o f com m uting 
observables (such as the relative m om enta o f  the elementary particles o f  the 
system) have definite values. The probability o f  observing the system to  
have such a set o f  values at time t0 is | (m \ q>(tn)) | 2 =  P{m) say, and  so  
from  (3) we find

P(m) = pi  | (m  | ^ i ( /0)>\2+ p 2 |<w|  <p2(fo) } | 2

+ 2(p ip2)112 Re exp[i(0i -  d2)] (m  | <pi(/0))<m | n ( t 0))*  (3.7.4)

Now | (m  | v s(t0)) I2 (s =  1,2)  is just the probability Ps(m) o f  observing the 

5 *
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values m  in the state (ps(to), and so (4) is equivalent to

P(m) = p iP i(m )+ p 2P2(m)+2(pip2)112 Re exp [/(0i — 02)]X
X ( m | y i ( t0) ) (m  \ <p2(^o))*- (3.7.5)

In any beam produced, for example, by a furnace it is found th a t the classical 
statistical formula

P(m) =  piPy(jn)+p2P 2(m) (3.7.6)

holds. The probability (6 ) is obtained from  (5) by averaging over a  large 
num ber o f observations o f such initial states. The third term  on the right- 
hand side of (5) therefore always disappears, and this can only be the case 
if  the arbitrary phase relationship 0\ — d2 between cpi and f 2 is assum ed to  
vary in a random  way.

Let us now consider what happens after the collision. The state <p(to) now 
develops under the full Ham iltonian H into the state \p{t) =  exp [—/H( /— to)/ 
fi]y(t0), and similarly and (f-iUn) develop into fzQ )  say. If  we
operate on (3) with the evolution operator exp f  — zH(f — t0)jh\ we obtain

W )  =  Pi2 exP O'0i) fi(0+/>22 exP (3.7.7)

As we saw in the last chapter the probability am plitude A'p for observation 
o f  the state cpp after the collision is given by (rp7 \ f(0 ))t and so by (7)

A ’p =  pYl exp (ifli)> | f i (0 ) )+pH2 exp (i02) <ipf  I y 2(0)> (3.7.8)

It follows tha t the probability P((i) =  | A'p\2 o f observing the state cpp after 
the collision is given by

P(p) = p ^ i f o + p . P ^ P H l i p x p ^  Re exp [ /(0 ,-0 ,) ]X
X ( y j  | fi(O)) (ipp | f 2(0)>* (3.7.9)

where Ps(fl) = \ (y>p | rf>s(0)) |2 (s — 1, 2) is the probability o f observing the 
state <pp after the collision in which the initial state is <ps(to)- T o  find the 
experimentally m easured probability we m ust average (9) over a large 
num ber o f  observations. Since the phase relationship 0\ — 02 has been seen 
to  vary in a random  way it follows that the phase 6i — d2 o f the th ird  term  on 
the right-hand side o f (7) will also vary in a random  way, and so

P(P) = p,P i( f i)+ p2P m \  (3.7.10)

in other words, the probability o f  observing the final state <pp is obtained by 
averaging over the initial states. A similar argum ent will apply if  there are 
more than two states in the initial beam, and so it is easy to  see th a t (1) 
follows.

t To see this, put t =  0 in (2.6.7) and then take the inner product on the left with iffj, 
using the orthonormality o f  the v’,7.
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T he addition  o f cross-sections for different final states is also worthy of 
so m e  further comment. In order to  find the differential cross-section for 
scattering into the direction o f the unit vector ry for collisions o f the form 
A + B — C  + D  we can observe the different differential cross-sections when 
various final internal states %p are produced ; the summation o f  the differential 
cross-sections over the states % is then obvious. In an experiment when only 
the differential cross-section is observed, and not the final internal states, we 
m ust expect to  get the same resu lt; for it is a fundam ental assum ption that the 
transition probabilities (and hence differential cross-sections) are determined 
by the history o f the system before the m easurement, and are no t dependent 
upon the nature  o f the measurement. The same arguments obviously apply 
to  m ore com plicated processes.

W e may sum up the conclusions o f this section by the following rule:

In order to calculate cross-sections for various 
initial and final states, given the cross-sections 
for individual initial and final states, we average over 
initial states and sum over final states.

(3.7.11)

A related problem  is that o f  spin. F or simplicity, let us suppose that the 
problem  is one o f scattering o f  two elementary spin ~  particles. Normally 
beams and target particles are “unpolarized”, so that there is equal proba­
bility o f  either colliding partner having “spin u p ” or “spin dow n” . The spin 
state o f  the incident particle is therefore a j  <x) + ap\ ft), where | a )  and | ft) 
are the  “spin u p ” and “spin dow n” states respectively, and I f lj  =  I ap\ = ~ .  
Similarly the spin state o f  the target particle is b j  ot) + bp\ ft) where | b j  =
| bfi| The initial spin state o f  the system is therefore ( a j  oc) + ap\ ft)) 
X (ba\oc)+bp\ ft)). I f  we put | a ) | a )  =  | a a ) ,s o th a t | a a )  is the spin state when 
both particles have spin up, | a ) | ft) =  \ xft), so that | xft) is the spin state 
when the incident particle has spin up and the target particle has spin down, 
etcetera, we see that the overall initial state has the form

V(t0) [ci | aoe) +  c2 1 a. ft) +  c3 1 ft ft) +  ct | ft a ) ] ; (3.7.12)

in (12) a  = a j ia, c2 = aabp, c3 =  a^bp, and a  =  Thus | a  | =  | c2 | =
I c3 | =  | ct | = - j-  The wave packet y ( t0) will be the same for all identical 
experiments apart from  a phase factor which can be incorporated into the 
coefficients ci, c2, c3 and a .

As before the phase relationship between c j, c2, c% and  a  m ust vary in a 
random  w ay; for the expectation value o f  any spin-dependent operator A  is

t t c:cs(cp(to)r,r \A\<p(to)r)s) (3.7.13)
r — 1 5 =  1
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where r)i . . .774 are the four spin states | *«), | a/3), | /?/?) and  | /?a). In any  
unpolarized beam this will always be observed to have the value

this is the average o f the expectation values in the four states. Again this can  
only be the case if  the phase relationships between c1, c2, c3 and a  vary in a 
random way, so that the cross terms in (13) vanish on averaging over a large 
number of observations.

The spin space o f the particle is spanned by the four orthonorm al spin 
states | tx.cn), \ a/3), \ /3/3) and | /3a). It is also spanned by the four orthonorm al 
spin states

| 0) is the singlet state, | 1), | 2) and | 3) are the three triplet states. We can 
express ( 1 2 ) in terms o f these states we get

cp{tB) [ c i  | l )  +  2 - i /2 ( c 2 +  C4) | 2 )  +  c 3|3 )  +  2 - i/2 (c '2 - c 4) | 0 ) ]

— ?K^o)[^i | l)  +  6?2 1 2) +  ̂ 3 1 3) +  <̂o 10)], say. (3.7.19)

If we take the average o f  the values of | di | 2 and | da | 2 we get since 
di = d  and d3 =  c3. Also | d2 12 = | ( |  c2 12+ |  c4 |2) + R e  cjc4 = - |-+ R e  c*2cit 
and  averaged over a large num ber o f observations this is -j. Similarly | d0 12 

has average value -i On the other hand d*ds averages to  zero if r ^  s\  for 
example d*d3 — c*c3 which we already know averages to  zero, while again 
d*2d0 =  -̂(c*2+c*4)(c2 —ci) =  Im c4c2, and  this averages to  zero. This means 
th a t we can select as our initial states the four states | 0), | 1), | 2) and | 3) 
rather than | a  a ), | a/3), | (lot) and  | /3/3); in later examples we shall find this 
more convenient. We can calculate the transition probability  for each o f the 
initial states | 0), | 1), | 2) and | 3), and average over these for our final 
result.

We can also take the final states to  be the singlet and triplet states, rather 
than  the ones in which each particle has a definite spin, for the reason given 
above. I f  we do no t observe the spin states the probability  o f  observing the 
final m omentum to be fil is the sum o f the probabilities o f  observing the four 
spin states, and must obviously be the same whichever final set o f  spin states 
we choose.

4 4
£  \cr \2((p(to)i]r \A \cp(to)Vr)=  i £  (<p(lo)Vr\ A\cp{to)rir); (3.7.14)

r = 1 r =  1

|0 )  =  2~ 1/2 [|a/3)—|/?a)], 

I 1) =  l« a )
I 2) =  2 - 1/2 [|a /3 )+ |/3a)], 

13) =  1/3/3)

(3.7.15)
(3.7.16)
(3.7.17)
(3.7.18)



TRANSITION RATES 61

3.8. E X PR ESSIO N  FOR TH E TOTAL CRO SS-SECTIO N

We saw in Section 3.6 that the differential cross-section for the process 
V.n V.p *s given by (3.6.7). Let us denote the initial speed o f the bom barding 
particle relative to the target particle by v and the final speed o f the scattered 
particle relative to the centre o f  mass o f the recoil particles by vyp. The latter 
quantity  is given by the energy conservation condition

l u , v 2+E„ = \p.fV2p+ E xp (3.8.1)

where is the final reduced mass, and the initial and final wave numbers k  
and lKp are given by hk — p p ,  hlyp = pf vKp. We can therefore rewrite (3.6.7) as

a(kn  -  h « p )  -  ( i \p/v) \ f ( k n  — lxpr \x p ) \2. (3.8.2)

We can now use the addition o f final states rule to obtain the cross-section 
for transitions %n — yp by integrating (2 ) over all energetically allowed values 
o f  the final relative wave vectors x  =  ( x 2, ■ ■ ■, x m_ 1) o f the recoil particles 
and over all values o f  the unit vector f i  in the direction o f the scattered 
particle. This gives

o(kn  — p) = J ' dx(vHp\v) J  d r i | / ( k «  -  l ^ i i x p ) ] 2 (3.8.3)

where the region o f integration over x  is determined by energy considerations 
If the final state consists o f only two particles we om it the integration over x  
Since is the final wave vector 1 for the motion o f the scattered particle 
relative to the recoil particles and E lxp = ftrPj2fif +Exp while vxp/v = PjlKplpf k  
the expression (3) is equivalent to

<T(k/2 — p) = H 'J dry ^ S .  d(Elxp- E kn) | / ( k n  -  Ixp)  |2; 
I 'fk  Pf

(3.8.4)

the integral over x  may now be taken over all x-space, since the integral over / 
autom atically vanishes if l xp is energetically unattainable. Now lKp can be 
replaced by / in the integrand o f (4) due to the presence o f the 6 -function in 
energy; since d\ = I2 dl d ii  we see tha t (4) is equivalent to

M ‘a(k/i ~ p ) = \ d x \  dl b i E ^ - E ^ )  | / ( k n  Ixp) |2. (3.8.5)

If we substitute fo r/(k /( — Ixp)  from  (3.6.6) we obtain

er(k/i — p) =  - ^  j d x  (*dl b(Ebip- E k„) \ T (kn  -  Ixp) |2. (3.8.6)
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Jn order to obtain the total cross-section a we must first sum (6 ) over all 
states xp ° f  arrangem ent channel / ;  we can include the energetically un ­
attainable states since the ^-function then vanishes for all x  and 1. Having 
done this we sum over all final arrangem ent channels apart from  the bound 
states and so we obtain

=  ~ ¥ T ~  £  £  [ d*  f  d \d (E lxp- E kn) | T(kn  -  \x p ) \2. (3.8.7)
/V  b pinfj J

If we put a =  kn, ft =  1 xp  we see that (7) may be abbreviated to

=  " W 1  £  E  W f i - E , )  I T ( x  -  /?) |2. (3.8.8)
f * b  P i n f

In Section 3.3 we noticed that T(a  — /?) vanishes if either o r is a bound 
state, and hence T(x  ->-/?) =  0 for all which are bound; we can therefore 
further abbreviate (8 ) to

a  =  ( 1 6 Z  K E f - E J  \ T ( x  -  /?) |2. (3.8.9)
e

We can generalize the definitions (3.5.31) and (3.6.6). The scattering 
amplitude for the process <pa — q>g is defined by

/(<* — /*) =  ( - 4 n 2/Xfh-2)T(oL — /?). (3.8.10)

With this defintion (9) can be rewritten

cr =  V-pip j 2k - ' Y . K E ti- E J  | / ( a  -  f t  I2- (3.8.11)
ft

3.9. TH E LABORATORY SYSTEM

It is sometimes useful to work in the laboratory system. In the laboratory 
system the initial state is represented by the product o f the m  kets | k i), | k 2), 
. . . ,  | k,„) which represent the free m otion o f  the centres o f  mass o f the m 
composite particles with mom enta Aki, tik2, . . . ,  tikm, and the ket | n) which 
represents the internal state o f the particles. We can separate ou t the centre of 
mass motion for the whole system in the way described in Section 1.2. If 
K =  k i +  k 2+  . . .  + k m is the wave vector for the motion o f the centre of 
mass G o f the system, and | k) represents the relative motion o f the composite 
particles, we obtain

| ki> | k->>. . .  I k m> | n) =  ! K> | k> | n). (3.9.1)
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The product | k) | n) describes the state o f the system after removal of the 
centre o f mass m otion, and can be replaced by the single ket | a). Thus (1) 
gives

| k i ) | k 2> . . .  | k M) | n > =  | K ) | « > =  | K , a ) ,  say. (3.9.2)

In exactly the same way the final state is represented by the ket 
| L, (i) =  | L) | /?), where L is the wave vector o f the centre o f  mass and | /J) 
the state o f the system in the relative coordinate system.

The full H am iltonian Hc in the laboratory system consists o f  the sum of
the kinetic energy operators for the motion o f the centres of mass o f the
com posite particles, the sum o f their internal Ham iltonians, and the inter­
action Vj. We may express the sum o f the kinetic energy operators as the sum 
of the kinetic energy operator Kc associated with the motion o f G and the 
sum K o f the relative kinetic energy operators (see Section 1.2). The full 
H am iltonian H0  in the laboratory system therefore has the form

Hg = K c + H  (3.9.3)

where H is the full Ham iltonian in the relative coordinate system.
The transition operator T£(E)  in the relative coordinate system is defined 

by (3.3.3), viz.

T j ( £ ) =  F/ + K / ( £ - H  +  /> )-1 K,-. (3.9.4)

We define a corresponding transition operator in the laboratory system by

T JC( £ ) =  Vf+ V f(E - H c  +  z'e) - 1 V (3.9.5)

We saw in Section 1.2 that if Ea is the energy o f the state | a ) , and so the 
energy o f the initial state in the relative coordinate system, the energy E xK 
of the initial state in the laboratory system is E a+ E K where EK is the kinetic 
energy associated with the m otion o f  G. It follows from  (5) that

T} g(E*k ) I K, *) =  [Vf  +  Vj{ExK-  Hc+Ze ) - 1 V,] \ K, *>, (3.9.6)

and so by (2) and (3)

T Jc (£ ^ r) |K ,« >  =  V f \ ¥ ) \ * ) + V f {E*+EK- H - ) t G+ie)- 'V i\lL)\aL).
(3.9.7)

Now H, Vj and | « ) are independent o f the coordinates o f the centre o f 
mass G, Kc and | K) depend only on the coordinates o f G, and Kc | K) =  
Ek \ K). We can therefore apply the results o f  Appendix A to obtain

( £ . + £ , - H - K c + » e )- l K ,|K ) |« >  =  { (£ ,— H +  />)-* V,\ *>} | K). (3.9.8)

Since Vt is also independent o f  the coordinates o f G we deduce from  (7) and
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(8 ) that

T J c (£ « * ) |K ,a > =  {[Vf+ Vr( L \ - H  + ie ) -1 V',•] | a » |  K>, (3.9.9)

and so by (3.3.3)

1 > ( £ ,* )  | K, a )  =  {T +(£J | a)} | K). (3.9.10)

The final state is | L, (i) =  | L) | /?), where | L) depends on the coordinates 
o f G and | /?) is independent o f these. If we take the inner product o f (10) 
on the left with | L, /?) =  | L) | /?) we therefore obtain

<L,/3 |T+C( £ ^ ) |K ,« >  -  a (L -K )< /3 |T J (£ ^ |« > . (3.9.11)

The (5-function in (11) expresses the conservation of total mom entum . 
F or by (3.1.2) we have and hence by (3.3.1)

( n \  V f W i )  = {<P?I V,Q t(E .) \(p .)  = (<pp\T+(E,)\'pa). (3.9.12)

We can therefore rewrite (3.2.12) as

Sp* — b p * -!n id (E f , -E a)((pf, | Tj] (Ey) | (p%). (3.9.13)

If we had worked in the laboratory system, rather than in the centre o f mass 
system, we should have obtained a scattering matrix S ftL , K  where, instead 
o f (13),

V .  .K =  K ) - 2 m % E I4- E K.)(ipL, \  Tfc{E*K) \ (3.9.14)

where r/K, and (p^  are the wave functions corresponding to the states 
| Ka) and | L/3) respectively, while E Ka and ELfj are their respective energies. 
Insertion o f (I I) into (14) shows that SpLotK has a factor <5(L — K), ensuring 
the conservation o f the total momentum which is associated with the motion 
o f the centre o f mass G.

REFERENCES

Bunker, D. L. (1966) Theory o f  Elementary Gas Reaction Rates, Pergamon Press (Volume 
I o f Topic 19 o f the International Encyclopedia o] Physical Chemistry and Chemical 
Physics).

T a y l o r , J. R. (1972) Scattering Theory. The Quantum Theory on Nonrelativistic Collisions, 
J. Wiley & Sons.



CH A PTER  4

ID E N T IC A L  PA R T IC L E S

4.1. INTRO D U CTIO N

So far we have developed our theory without taking into account the fact 
tha t some or all of the "elem entary particles” involved in the collision may 
be identical. In the initial state the internal wave functions for the composite 
particles will be autom atically symmetric (or antisym m etric) in the internal 
coordinates of identical particles. As a result o f  a collision identical elemen­
tary  particles may be exchanged between composite particles. If an observa­
tion o f the system after the collision is made there will be no means o f telling 
w hether exchange has taken place or not in fact this is an unanswerable 
question. All we shall be able to observe after the process will be the distri­
bution o f identical elementary particles am ong the composite particles 
produced by the reaction there is no means o f relating this to the distribu­
tion o f elementary particles before the collision. In this chapter we shall 
turn our attention to the task o f  investigating the m odifications which must 
be m ade in order to take account o f the possibility o f  the (unobservable) 
exchange o f identical particles.

We shall now discuss the approach which will be given in this chapter. 
Before the collision the wave function o f the system is q>(ta), say. We operate 
upon this state with an operator S ,  called the “sym m etrizer” , so that  the 
resulting state Sq>(to) is invariant under the interchange o f  two identical 
bosons, but changes sign under the interchange o f  two identical fermions. 
If there is only one species o f identical particle the symmetrizer S  is defined 
by the expression

' 5 = a 7 t £ 4 ' p  ( 4 I , )

where M  is the num ber of identical particles, is a sum m ation of all 
perm utations P o f the identical particles; in the case o f bosons <5P =  1, but 
in the case o f fermions 6P is the parity ( ±  1) o f the perm utation P. It is easy 
to show that S  = (Hermiticity), A2 = S  (idempotency), and that S  is 
linear.

The state represented by </>(/«>) is normalized, but the state S q ( tn) may no

65
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longer be norm alized.t We saw in Section 3.7 tha t the initial state may 
usually be regarded as in some definite channel, and therefore in some 
arrangem ent channel i. The state &v(t0) may be norm alized by m ultiplication 
by a norm alization constant which, as we shall see, may depend upon the 
initial arrangem ent channel i. We shall therefore denote this constant by ar 
The symmetrized and normalized initial state therefore takes the form

q>s(to) -  a,Sq>(t0). (4 .1 .2 )

In the remote future the state (q>s t0) evolves in to  the s t a t e w h e r e

=  exp [ —/H(fi —/o)/6 ] cp&(to) =  exp aiSq>(t0). (4.1.3)

Now the total Ham iltonian H must be invariant under perm utations o f the 
identical particles, and so S  commutes w ith the evolution operator 
exp [—/H(fi — to)l?>]- Since the unsymmetrized function q(l0) evolves into 

we see that (3) becomes

ps(tt) =  a,<£exp [—/H(/i — t0)/fi]q>(t0) =  a^(p '{ tx). (4.1.4)

The expression (4) enables us to  see how to proceed. Initially identical 
particles belonging to different colliding partners will be distinguishable, 
since they will be confined to different regions o f  space. If we did not have to 
take account o f the Pauli principle we could let this evolve into the state 
q>\t\). The probability o f observing some state qp after the collision is then the 
square o f  the modulus o f  the coefficient A'p o f  q>p exp {—iEpt\/ft) in q>\ti). 
The experimental arrangem ents do not allow us to  distinguish this observa­
tion from  that o f a state <py, say, where q:y can be obtained from  q>p by a 
perm utation of identical particles. We will only be able to  observe whether, 
after the collision, the system is in the state qp o r a state obtainable from  qp 
by a perm utation o f  identical particles. If  we w rite y  ft to  mean tha t the 
state represented by q>Y may be obtained from  the sta te  q>p by a perm utation 
o f  identical particles the probability we shall actually  observe is

I  m ; i 2 (4.i.5)
y as fi

where the sum m ation goes over all distinct states qY obtainable from  qp by a 
perm utation o f identical particles, including q>p itself.

The result (5) will not, in general, agree with experim ent, for it fails to  take

t  Strictly speaking, operators such as P or ^  operate on vectors representing states. 
In the coordinate representation they operate on the wave functions representing the vec­
tors, and hence the states. If an operation carries a wave function <f into Ay, A ^  1, a 
distinct vector or wave function is produced, but the state is unchanged. For example, if ip 
is antisymmetric then Pip =  — 5P, a distinct wave function, but the state is unchanged— thus, 
in this case, the operator P does not produce a distinct state.
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account o f the Pauli principle. To do this we operate upon ip'(t) with S  and 
then multiply by ar As we have seen this gives us a final wave function with 
the correct symmetry, and also normalized to unity since the evolution opera­
to r in (3) conserves norm . It follows that if the coefficient o f  ̂  exp ( — i E ^ / h ) 
i' 1 V&ih) is Ap(S) then the probability o f  observing 7 ^ is | A'(S)  |2. As before 
the experim ental apparatus will not distinguish between </p and any state 
<py obtainable from  it by a perm utation o f identical elementary particles; the 
probability  which we shall be able to observe is therefore

I  \ A 'M )  I2- (4-1.6)
r~ P

Now the symmetry of the final state will naturally lead to the equality o f the 
terms in the sum (6 ). This will therefore be replaceable by

Mf \ A ' 0 W  (4.1.7)

where Mf  is the num ber o f distinct states obtainable from (pfi by a perm uta­
tion o f identical particles this num ber clearly depends only on the arrange­
ment channel / t o  which <pp belongs. The result (7) will enable us to write
down a form ula for the cross-section in terms o f the correctly symmetrized
scattering amplitudes.

In Section 4.2 we will follow this argum ent through in the simplest possible 
case, namely the collision o f two spinless bosons. Section 4.3 will then 
consider the more com plicated case o f  electron-helium  scattering, while 
Section 4.4 will deal with the more general case when M  o f the N  elementary 
particles are identical, bu t the remaining ones are distinct. The remaining 
sections will deal with some further results and generalizations.

EXERCISES

1. Prove that if P is a permutation o f  identical particles then P is linear, and Pt =  P_I. 
Deduce that the norm o f  a wave function is invariant under permutations o f  identical 
particles.

2. Prove that the operator defined by (I) is linear, Hermitian and idempotent.

4.2. T H E  C O LLISIO N  O F  TW O ID EN TICA L SPIN LESS BOSONS

Initially the system is described by the wave packet

? ( r , l0) =  J  A k<fy exp ( - i E kt/h) d k .  (4.2.1)

In this case M  =  2, and since we are dealing with bosons dp = 1; hence the
definition (4.1.1) particularizes to

rS =  i ( l  +  P) (4.2.2)
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where P interchanges the two particles. It follows that P</(r, to) = <jp(- r, t0) 
and so from ( 1) and (2 )

<ps(r, t0) = ctj&q>(r, t„) = \ a ,[^(r, /o) +  «7 ( - r ,  t0)]. (4.2.3)

To obtain | |^ ( /o ) | |  we take the square o f the m odulus o f the right-hand 
side o f  (3) and integrate over all space. Now initially the wave packet moves 
in the direction of positive z towards the origin (Fig. 3.2), and so in the 
remote past <p(r, tn) will only be non-vanishing for negative values o f z. 
It follows that tp(r, to) is non-vanishing if, and only if, q>( — r, t0) = 0. This 
implies that the cross-term in the expression for | y s(r, t0) | 2 vanishes, and  so

ll<P<j('o)ll2 =  t !<?(<% /o)!2 r̂ + J |(p(-r, /0)|2 o'r]
=  T a?[j l<P(r> to)\2 clr + J  |(/Hr, M l2 dr]
= \ d f  (4.2.4)

since <p(to) is normalized to  unity. Now || y s(t0) || =  1, and hence (4) implies 
a. = 21/2. Expression (3) can now be rewritten

<fs(t0) =  2_1/2[<p(r, /0) + 9> (-r , /o)]. (4.2.5)

The unsymmetrized state in the far future has the form

<p\t\) = J  Alip, exp ( - iE it/ f i)  dl. (4.2.6)

Equation (6 ) can be rewritten

<p'(h) = J "  (A'\<pi+ALty-i)exp( - iE/tlh) dl (4.2.7)

where J "  is an integration over all I for which /. >  0 , say. In (7) we have 
taken advantage o f the fact th a t£ ,  is unaltered when 1 becomes — 1. Equation 
(7) expresses q>\t\) as a linear com bination o f the states y , and the states r/. _, 
obtained from them by interchange o f the two particles, and an integration 
over all states <p, which cannot be transform ed into each other by an exchange 
o f the particles.

Since a, =  21/2 we see from (2) that a f i  — 2“ 1/2(l +  P). The normalized and 
symmetrized final state cp'#(t\) is obtained from  (7) by operation with 
since Py, =  ip_| we obtain

<p's(h) = 2~112 J "  \(A[(pi+ AL\(p-\) f  (^4193_ 1 +  A_\(f\)] dl. (4.2.8) 

The coefficient o f  95, is therefore

A's(l) =  2 - 1/2(^,' - M l , )  (4.2.9)

while the coefficient o f <p_t is

A ' A - 1) =  2~ll2(AL\ + A'i). (4.2.10)
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The probability of observing the final relative momentum to be h\ or — h\ is 
therefore

X  i I2 =  I l2+1 A's{ -  I ) — 2j Aj(\) |J =  | A\ +  A - i  |-. (4.2.11)
ji = i

In this case Mf , the num ber of distinct states which can be obtained from 
cpt by a perm utation o f the two particles, is two.

We deduce from  (11) th a t the probability am plitude for observation of the 
final relative m om entum  being til or — h\ is A[ + A ' _ This must therefore 
replace A[ in the derivations of the last chapter concerning the differential 
cross-section. The differential cross-section now refers to a final observation 
in which the relative m om entum  is hi or — hi. The result (3.5.32) becomes

os (k  -  1 or - I )  =  | / , ( k  -  I or - 1 ) |2, (4.2.12)

since the initial and final velocities v  and v must obviously be the same,
where the symmetrized scattering am plitude is defined by

f s (k -  I or -1 )  =  / ( k  -  l ) + / ( k  -  -  I). (4.2.13)

If the spherical polar angles defining I relative to k are (0, </) the result (13) 
may be rewritten

M O , cf ) = f ( 0 ,  tp)+f(7t- 6, cp+n), (4.2.14)

while ( 1 2 ) may be rewritten

^ ( 0 ,  <P) -  \ W ,  9)  I2- (4.2.15)

In calculating the to tal cross-section as we must be careful not to count the 
same event twice. We must therefore integrate ffj(k — 1 or —I) only over 
values o f f for which lz >  0 , say, thereby counting all possible final outcomes 
precisely once; hence

as — J" <7<s(k -> I or —1) /̂1 (4.2.16)

where the integration goes over all I with positive z-component. Equivalently 
to (16) we have

i n 2 ix

as =  J  dl) J  d(fOs(0, q>). (4.2.17)
o o

The application o f this result to the scattering o f a-particles is discussed 
elsewhere (Volume 4, C hapter 3).

EXERCISE

In the case o f the collision o f  two electrons the initial wave function in the centre o f 
mass system may be written

<p('o) =  X  d kA kn<pkXn( l ,  2) exp ( -  iEktJh)
n  -  0
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where Xo IS (hc singlet spin wave function o f the two electrons 1 and 2, while Xi, Xz wnd 
X3 are the three triplet wave functions. If A',p(<$) (p  0, 1 ,2 ,  3) is the coefficient o f  
TiXp exP( -iE iti/f t)  in the antisymmetrized and normalized final state while A[p is the 
coefficient o f <f\XP exp(-iE ,t^ lh )  in the final state before antisymmetrization prove that

Aio (S) — 2 ~ 'l2(Aio +  A _iu),

a ’,M )  =  2 - 1I*(a Ip - a Ip) (p  =  1 ,2 , 3).

Deduce that the differential cross-section for scattering o f two electrons is

Oj(d,<p) =  i  1 /(0 . <P)+f(n~0, <P + n )  !2 +  i  1 /(0 , < P )- f ( x -0 ,< p  + Tr) |2 

where /(0 , <p) is the amplitude for direct scattering.

4.3. ELEC TR O N -H ELIU M  SCATTERING

We will now follow through the argum ent o f  Section 4.1 in the more 
complicated case o f electron-helium  scattering. In the initial state ^ (/0) we 
suppose an electron 1 impinges upon a helium atom  with electrons 2 and 3. 
If the momentum o f 1 relative to the centre o f mass o f the atom  is 6k the 
relative motion is described by a plane wave gpk( l , 23). Let the “spin u p ” and 
“spin dow n” wave functions be ocj and c«2, so that a„,(l) is the spin function 
o f electron 1 when in the spin state x m, and let /„(23) denote the internal 
wave function o f the helium atom. The initial unsymmetrized wave function 
q>{to) is then

<p(/0) =  j  AunmiU 23) <pk(l, 23) a„,(l) x„(23) exp ( ~ i E k„t0lti) dk  (4.3.1)

where A Vnm (1,23) is the initial probability am plitude for the stationary state 
in which 1 has spin a,„ and m omentum 6k relative to  the centre o f mass of 
the helium atom , while x„(23) Js the atom ic wave function.

In this case we are dealing with three identical fermions, viz. the electrons, 
and so (4.1.1) particularizes to

S  — -jj- (P 123—P132 +  P231 — P2 1 3+  P31 2— P321) (4.3.2)

where Pijk is the perm utation which takes 123 into ijk. To form  the an ti­
symmetrized initial state we must operate on (1) with atS.  The resulting 
expression is simplified if we note that the resulting term s are equal in pairs. 
F or P123 leaves ^ (/0) unaltered, whereas

-P m M kw nO , 2 3 )9 ^0 , 23)a,„(l)% „(23)exp( —/£/t„f0/6)]
=  2 3 )9?k( l ,  32)a m(l)x « (3 2 )ex p ( —iE knt0jh)\. (4.3.3)

The plane wave is unaffected by interchange of electrons 2 and 3, since this



IDENTICAL PARTICLES 71

cannot change the centre o f mass of the atom . Since electrons are fermions 
yn m ust be antisym m etric in its electron coordinates, and so (3) becomes

-P i3 2 M k„„,(l, 23) 7?k( l , 23)cc„,(\) Xn(23) exp ( - iEknto/fi)\
=  23) <7 k(l,  23)a,„( 1) £,,(23) exp ( - iE k„!ulfi)

= Pi23Mk/.m(l, 23) 9^ ( 1 , 23)xm(\)  x„(23) exp ( -  iEkntolfi)\, (4.3.4)

and so the first two terms in (p/Jo) =  are equal.
Similarly

-P2i3[^knm (l, 23) <^(1, 23) a,„( 1) in(23) exp ( -  iE kntolft)\
= - [ A „ m (  1, 2 3 )(fk(2, 13)«,„(2)£,,(13)exp ( — iEk„t0lh)\

= Aknm( 1, 23) <fk(2, 31) «m(2) Xn(31) exp (—iE k„t0/fi)

=  P23iMk*m(l, 23) 9?k( 1, 23)«m(l)  %„(23) exp { — iEknt0lh)\, (4.3.5)

and so the fourth term  equals the third term. Likewise the last two terms ara 
equal. Indeed the resulting states in each o f these pairs differ only by e 
perm utation  of identical particles in the same composite particle, viz. the 
helium  atom , and this is the reason for their equality.

If we use these results we obtain, after operation on (1) with the result

Vs^o)  =  \ ai j  A knm(l,  2 3 )exp (—iE knto/h)[<Pk(\, 23)a„,(l)x„(23)
+  <pk(2, 31)a„,(2)x„(31)+9sk(3, 12)am(3)x„(12)]dk.  (4.3.6)

The sum  under the integral sign in (6) is a sum over the three distinct states 
which can be obtained by perm uting the electrons. The factor 1/3! has been 
m ultiplied by 2, the num ber o f  states which differ by a perm utation of 
electrons within the atom .

Let us denote the unsymmetrized wave function cp(t0) by (p(l, 23, t0) to 
em phasize that it represents the state when 1 is the incident electron. With 
this no tation  (6) may be written

Vs(ta) — \ a t[q>{ 1, 23, /0)+<p(2, 31, f0)+<p(3, 12, r0). (4.3.7)

Since | |^ ( ^ o ) | |  =  1 we deduce from  (7) that

9 =  af 11 <p(l, 23, f0) +  9K2, 31, /„) +  *■(3, 12, /0) | |2. (4.3.8)

Now 11 ^(1, 23, t0) 11 =  1, and it is easy to prove that the norm  o f a function 
is invariant under perm utations o f identical particles; hence

11^(1, 23, fo)|| =  119*2, 31, r0) | |  =  11^(3, 12, /0)l| =  1. (4.3.9)

The three terms inside the norm  signs in (8) represent the states in which 
1, 2 and  3 are free respectively, the o ther two electrons being bound to the 
atom . It follows tha t the cross-terms in the expansion o f the square o f the

QTSP 6
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norm, which are overlap integrals, must vanish. F or example, since rn is a 
time in the remote past ^(1, 23, tn) can only be non-vanishing if 1 is far from 
the nucleus of the atom , but r/(2, 31, /0) can only be non-vanishing if  1 is 
close to the nucleus. A similar argum ent applies to the o ther cross-terms. The 
vanishing o f the cross-terms together with (9) enables us to infer from  (8) 
that 9 =  3tf ,  and hence that at =  31/2.

In the remote future the state q(t0) evolves into the state cp\ti) where

y \ h )  =  Z j  d l e x p ( - i E i pti/fi)[A'lpq(\ ,  23)<p,(1, 2 3 )a ,( l)  ^ (23 )
PQ

+ A'im (2, 31)<7i(2, 31)a,(2)xP(3l)
+ A[PV{ 3, 12)95,(3, 12)x9(3) %p(\2)]

+  terms in which the helium atom  is singly ionized 
+  terms in which the helium atom  is doubly ionized. (4.3.10)

A lpq(], 23) is the final probability am plitude for the state in which electron 1 
has wave vector 1 relative to the centre o f mass o f the atom  and spin function 
x q, the atom  having wave function %p, while A'\pq{2, 31) and A[pq(3, 21) are the 
final probability am plitudes for the two distinct states obtained from  this by 
the corresponding perm utations o f the electrons. No bound states can occur 
in (10) since there are no such states initially. The first term s on the right-hand 
side o f (10) are a sum and integration over those states in which one electron 
is finally free and the others are bound to the nucleus to form a helium 
atom.

To normalize and symmetrize (p\t{) we must operate upon (10) with afi .  
Since a; =  31/2 and & is given by (2) we have

----T ( P 123 — Pirt2+ P23! — P213+ P.-S12— P32l)- (4.3.1 1 II  J

Let us concentrate for the time being on those final states in which only one 
electron is free, and determine the coefficient A lpq(2, 31, 3 )  of the state 
95,(2, 31 )a^(2)^(31) in q>'s (t). If we operate with a(S  on (10) the term in 
square brackets becomes

- ^ ~ j A \ pq( 1, 23)[? ,(2. 31)a,(2)x„(31)-<p,(2, 13) ocq(2) yp(\3)}

+  Alpq(2, 31)[y,(2, 31 )a ,(2 )x P(31)-9 'i(2 , 13)a ,(2 ) %p(13)]

+ - L - A ’lpq(3, 1 2 )[-y ,(2 , 13) x q(2) xP( 13) +  tpi(2, 31) a ,(2 ) ‘/ p(31)]
1 V -

+  terms in which 2 is bound. (4.3.12)

The two terms in each o f the square brackets differ by only a perm utation
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o f the electrons o f  the atom , and so differ from  each other in sign only. 
Accordingly, (12) equals

3~1/2M U  1. 23)+Alpq(2, 31) +  A'lpq(3, 12)]^,(2, 31) «,(2) Xp(31)
+  terms in which 2 is bound. (4.3.13)

It follows from  (13) that

A U 2, 3 1 1 <5) =  3 ~ W [A M U  23)+Alpq(2, 3 l)  + A{pq(3, 12)]. (4.3.14)

If we had calculated A[pq(2, 13| J )  we would have obtained (14) with a 
negative sign.

The reader may verify similarly that

A[pq( 1, 2 3 1 A) =  Alpq(2, 31 |rJ) =  A[pq(3, 121S )  =  -  A[pq( 1, 3 2 1S)

= - A l pq(2, 13|<£) = — Alpq(3, 21 |^ ) .  (4.3.15)

The probability o f  observing 1 free in the final state is therefore the same as 
that o f observing 2 or 3 free. The probability o f observing an electron with 
wave vector 1 relative to the centre o f  mass o f the atom  and spin function 
a f/, while the atom  is in the state %p, is therefore

3 1 A\pq( 1, 2 3 1 r?) |2 =  3 | Alpq(2, 3 1 1 &)\* = 3 \ A{pq (3,12) |2
-  | A[pq( 1, 23)+A'lpq(2, 3 \)+  A\pq(3, 12)|°- (4.3.16)

by (14). The probability am plitude for observing an electron free with 
m om entum  h\ relative to the atom ic centre o f mass and spin function <xq, the 
atom ic wave function being %p, is therefore

■d\pq(\ ,  2 3 )+ Aipq(2, 3 \)+ A \m (3, 12). (4.3.17)

Let f (viv-2.vzV.nm — v[v'2v'xlpg) denote the scattering am plitude for the 
process in which initially electron i’i has m om entum  fik relative to the atomic 
centre o f mass, and spin function ocm, the atom ic wave function being 
X„(v2v3), while finally electron v\ has momentum h\ relative to the atomic 
centre o f  mass and spin function x q, the atom ic wave function being yp. 
Let us further denote by f ( k n m  — <£lpq) the scattering am plitude for the 
process when initially the incident electron has momentum /ik relative to the 
centre o f mass o f the atom  and spin function the atom ic wave function 
being while finally an electron has m om entum  hi relative to the atomic 
centre of mass and spin function x q, the atom ic wave function being / p(v',v'3). 
It follows then from  (17) that

f ( k n m  — Mpq) = /(123k«m  — 1231^)+ /(123k/»»  — 2311 pq)
+/(123k/»w — 3121/;^). (4.3.18)



74 SC A TT E R IN G  PROCESSES: G E N E R A L  PRIN CIPLES

The differential cross-section for the process is given by

a(knm — S\pq) — (v'/v) \ f ( k n m  — Sipq) |2, (4.3.19)

and the total cross-section for the process is

o(knm  — Spq)  =  (v'/v) J  | / (knm  — Slpq) |2 d\. (4.3.20)

The correct am plitude which takes into account the Pauli principle is 
given by (18). It is a sum o f two term s; the first term represents direct 
scattering, while the remaining two terms represent exchange scattering. At 
high energies the exchange terms are small, and so (18) becomes

f ( k n m  — Sipq) =* f ( k n m  — I pq), (4.3.21)

w here/(k /w  — 1 pq) is the scattering am plitude for direct scattering. In other 
words, at high energies exchange effects may be ignored. A t low and inter­
mediate energies, however, they become im portant.

EXERCISE
Verify (15).

4.4. IO N IZA TIO N  O F H ELIU M  A TOM S BY ELECTRON IM PA CT

We shall now consider the process whereby a helium atom  is doubly ion­
ized by electron impact. In other words, we shall discuss collisions o f the 
form

He +  e — He+ + +  e +  e +  e. (4.4.1)

The initial state has been described in the last section. The final unsymme­
trized state is given by (4.3.10), which is now more conveniently written

f ' (h)  = £ J J dx J dX exp (- iEi„xhlfi) A'lxXqrs( l ,  2, 3)X
qrs

X<pi(l, 23) f/„(2, 3) (px(3) x9( 1) x r(2) a 5(3)

+  terms in which the helium atom  is neutral 
or singly ionized. (4.4.2)

In (2) the plane wave ^ ,(1 ,23) represents the free motion o f electron 1 relative 
to the centre o f  mass o f  the nucleus and electrons 2 and 3, cpK(2, 3) represents 
the free motion o f electron 2 relative to the centre o f  mass o f  the nucleus 
and electron 3, while <^(3) represents the free motion o f electron 3 relative 
to the nucleus. The terms <xq, a r and ocs are spin functions, while ElyX =  E,+  
E x+ E i  is the total relative energy in the final state. The quantity A,y U 1 .2 3 )  
is the final probability am plitude for this state.
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Let us now introduce an ordering o f the three electrons according to the 
following scheme. We shall take as first electron that one whose speed rela­
tive to the centre o f mass o f the other particles is greatest. It is natural to 
treat this as the “ scattered electron” . As second electron we take tha t one 
o f  the remaining two electrons whose speed relative to the centre o f mass
o f  the nucleus and other electron is the greater. The remaining electron we
take as third. We shall also denote by J"dl J" d x  J" d2. an integration 
restricted to  values o f  1, x  and A which satisfy the above ordering. Any state 
in the integrand o f  such an integral cannot be transform ed into another such 
state by a perm utation o f the electrons. On the other hand any state o f the 
arrangem ent channel in which all three electrons are free can be transformed 
into a state with such an ordering by a perm utation of the three electrons.

These considerations enable us to rewrite (2) in the form

V \ h )  — X  j "  f" d x  | "  exp ( — / £ / „ ; . / 1 /^ ) X
qrs

X [Alxiqrsil, 2, 3)<pi(l, 23)(pK(2, 3 )<js (̂3)ocq( 1)a r(2 )a s(3)

+  A'lKiqrs( 1, 3, 2) 7 1( 1 , 32) <pK(3, 2) <^(2) x q( I) a r(3) x s(2)

+ Aixiqrs(2, 3, l)yi(2, 31)qy«(3, l)(pA( l ) a 9(2 )a r(3 )a s(l)
-(-remaining perm utations of I, 2 and 3]
+  terms in which the helium atom  is neutral o r singly ionized.

(4.4.3)

The first term represents a sum and integral over all states in which 1 sepa­
rates more quickly from  the centre o f  mass o f 2, 3 and the nucleus than 2
separates from  the centre o f mass o f 1, 3 and the nucleus or 3 separates from 
the centre o f  mass o f  1, 2 and the nucleus, while 2 separates more quickly 
from  the centre o f  mass of 3 and the nucleus than 3 moves from  the centre 
o f  mass o f  2 and the nucleus. The second term  is a sum and integral over all 
states in which the role o f electrons 2 and 3 is interchanged. In states o f  the 
third sum electron 2 moves more rapidly from  its partners than 3 or 1, while
3 moves more rapidly from  1 and the nucleus than 1 moves from 3 and the 
nucleus. The remaining terms make up the remaining states in which all 
electrons are free. + E k+ E x is the total energy in the centre o f mass
system, and is obviously invariant under perm utations o f the electrons.

The norm alized and antisymmetrized final state <p's( t i) is obtained by 
operating upon (3) with aLS ,  which is given by (4.3.11) in this case. If we do 
this we find for the coefficient A'Mgr£ l ,  2 ,3  | S )  o f the state <p,( 1, 23) <jp„(2, 3) 
X ^ ( 3 ) a ?( l ) a r(2 )« s(3) in the consequent expression for q's( t ,) the result

AlxtqrslL 2, 3 I S )  = —----— [/llK^rjO* 2, 3 )— A'lxXqrXl, 3, 2) +  /^M<7rJ(2, 3, 1)

— AixXl/rs(2, I, 3 )+  A'b,Xqrs{̂ , I , 2) — A'lxXqrsil, 2, 1)]. (4.4.4)
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The result for A'lttXlIrs( 1, 3, 2 | 8)  is the negative o f this. It is easy to see that 
this is a consequence o f the fact that the perm utation P132 has negative 
parity. In fact the reader may easily verify that

A'wqrs^U 2 , 3 \ S ) =  ^UJ,rs(2, 3, 1 |r£) =  A'ixiqrs(3, 1, 2 \ S )
= — AlKiqrs( 1, 3, 2 1 <£) =  — A{Hiqrs(2, 1, 3 1S )  =  — ^ ^ ^ rs(3, 2, 1 | S). (4.4.5)

The signs arise from the fact that the perm utations P123, P231, and P312 all
have parity + 1 , while the perm utations P ia2, P213 and P32i all have parity 
— 1. M ore briefly we may write

^123 =  ^231 =  ^312 — 1> (4.4.6)
<51 32 — ^213 — <̂ 321 — ~  1 • (4.4.7)

The probability that after the collision an electron has m om entum  h\ 
relative to the centre o f mass o f the remaining particles, one o f  the remaining 
electrons has momentum h x  relative to the centre o f mass o f the remaining 
electron and the nucleus, and the remaining electron has m om entum  h i  
relative to the nucleus is the sum o f the squares o f the moduli o f the six 
probability am plitudes in (5), and therefore six times the square o f the m odu­
lus o f any one of them. This probability thus equals, for example, on using (4)

6 | l̂xA9rj(K 2, 31 r£)|2
=  2 M iidi/rXU 2, 3) — A ixi,irs{ 1, 3, 2 )+  Ai,xqrs(2, 3, 1)

— A\xxqrs(2, 1, 3) +  Ah,jqrs(3, t, 2 ) -  Aixiqrs(3, 2, 1)|2. (4.4.8)

Let us denote the scattering am plitude when the final state is 
Vi(vi, v2vs)(px(v2, )’3)<fx{Vi)(xq(v\)ar(v2)a/ »’3) by /(123knm  -* viv2v3lxlqrs) ,  
and the symmetrized scattering am plitude by f ( k n m  — S lx lqrs) .  The 
expression (8) gives

J \k n m  — S\xXqrs) — 2 _1/2[ / (  123kwn — \23\xXqrs)
—/(123k/?w — \32 \xXqrs)+ f(\23knm  — 2311 x lq rs )  
—f( \2 3 k n m  — 2 \3 lx lq r s )+ f{  \23knm  — 3 1 2\xXqrs)

—f  (123knm -* 3211 xlqrs)).  (4.4.9)

The total cross-section for the double ionization process, which we can 
denote by a ^ +, is given by

<t++ =  £  J  d, J " ' d x  J '"  d l ( v ' j v ) \ f ( k n m  -  S lx lq r s )  |2. (4.4.10)
qrs

In (10) hi is the momentum of the electron which recedes fastest from 
the centre o f mass o f the others relative to that centre of mass, h x  is 
the momentum of the electron which recedes fastest from  the centre of
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mass of the remaining two particles relative to  that centre o f mass, tiX is the 
momentum o f the remaining electron relative to the nucleus; txq, x r and ots are 
the spin functions o f the three electrons in order. The m agnitude / of 1 is 
determined by energy conservation, and the triple primes denote that the 
region o f integration goes over values o f x  and A which obey the given 
ordering relation and are also energetically attainable.

In fact only three of the six terms in (9) are distinct. According to (3.3.18) 
the transition am plitude for the process is given by

T(ot —•/?) =  (gip \ Vf  \ !/.’+> (4.4.11)

where belongs to  arrangem ent channel f .  By the definition (1.5.1), if 
belongs to arrangem ent channel /,

T(y. -  ft) = {cpf>\V,[\ +  ( £ -  H +  /V)-> V ,] | <f l)  (4.4.12)

where £ ,  =  Ep — E. Let P be the perm utation which interchanges electrons
2 and 3. Since 2 and 3 are the atom ic electrons in the initial state P</>a =  — 7 ,, 
and so ( 1 1 ) can be written

T (« -  ft) = (cpp | Vj{I + ( £ — H +  ie)~1 V ,] | -  P<pa). (4 .4 .13)

The potential V, refers to the incident channel in which 2 and 3 belong to 
the helium atom , and so is invariant under P. Further H m ust also be in­
variant under interchange of 2 and 3, and since Vj.is Hermitian and P1 - P" 1 

~  P equation (13) can be replaced by

T(a  -  f i ) = - { P ( V f U ) | l + ( £ _ H  +  /e) - iK , |<fa>. (4.4.14)

If P transform s the final state 99̂  in arrangem ent channel / i n t o  the state 
<ly o f arrangem ent channel g, it also transform s K̂  into Vg, and so

T(a -* ft) = - < K g9>v | | + ( £ - H + /e)-i
- < ^ | K x[ l + ( £ - H  +  /e ) - 1 K ,] |^ >  = - r ( a  -  y). (4.4.15)

if  we denote y  by Pft we can write (15) as

T(% -  Pft) = - T ( «  -  ft). (4.4.16)

In other words, if two final states differ by an interchange o f electrons 2  and
3 the scattering am plitude for these final states differ by a sign.

It follows from (16) that the first and second, third and sixth, and fourth 
and fifth am plitudes on the right-hand side o f (9) are opposite in sign. E qua­
tion (9) therefore simplifies to

f (knm  — Mxlcjvs) =  21/2[ / (  123krtm — \22\xXqrs)

+/(123k/i/>? — 231lxAgr.y)-i-/(123k«/?2 — 3121 xkqrs)\.
(4.4.17)
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EXERCISES

1. Verify (5).
2 . Repeat the above discussion in the case when helium atoms are singly ionized under 

electron impact.
3. Prove that in the case o f exchange scattering o f  electrons by helium atoms interchange 

o f  the atomic electrons o f the final state changes the sign o f  the scattering amplitude.
Deduce that (4.3.18) can be simplified to

f(kjan  -* S\pq) =  /(123k«m  — 123l/;</) -  2 / (  123kw>; — 2131 pq).

4.5. TH E ^-PA R T IC LE  SYSTEM  W ITH ONE S PE C IE S  OF IDENTICAL
PARTICLES

We shall now consider an A^-particlc system in which M  elementary 
particles are identical, but the remaining N — M  particles are distinct from the 
first M ,  and from  each other. For example, our system may consist o f M  
electrons and N —M  atom ic nuclei, where the nuclei are all different. The 
approach is a straightforward generalization o f  the particular cases studied 
in the previous sections o f  this chapter.

In the remote past the system has a wave function (f{to) given by an expres­
sion o f the form

<p('o) =  X  B»<Pn(to) (4.5.1)
n

where f n(t0) is a wave packet in channel n, when the internal state o f the m  
com posite particles A\, A 2, . . . ,  A m is represented by yv„. Since we sum over 
final states and average over initial states we can assume tha t only one channel 
is present, so that (1) can be replaced by

vOo) = <pn(t0)- (4.5.2)

To obtain the symmetrized initial state (ps(t0) we operate on cp(to) with the 
symmetrizer S  defined by (4.1.1). This gives

<rd'o) -  a ,{ M l) '1 X  <5P/W o )  (4-5.3)
* p

where £ P goes over all perm utations of identical particles.
Suppose P and R are two perm utations which have the property that the 

wave function Pq (lo) differs from  the wave function R<p(/») by a perm utation 
Q which permutes the identical particles o f R^(/0) w ithin each o f the com ­
posite particles A i, A 2, ■ . A m but does not interchange identical particles 
between composite particles; thus

Pq(t o) =  QR </('(>)■ (4.5.4)
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Since Q permutes identical particles o f  RqAto) within the same composite 
particle w ithout interchange between composite particles its effect is to 
leave the wave function unaltered if the particles are bosons, but to multiply 
it by the parity o f Q if the identical particles are fermions. In other words

QR(^(/0) =  5qR<p(/0) (4.5.5)

where bQ = 1 for bosons, and equals the parity o f Q for fermions. Now (4) 
implies tha t P =  QR, and so (5P =  <5Q<5R. Since (3̂  =  1 we see on multiplica­
tion by dQ that dpdQ =  3q5r — <5R, and so from (4) and (5)

<5PP<p(/o) =  <5pQR<p(/o) =  ^p^qR</'(̂ o) =  SnR<p(to). (4.5.6)

The result (6) shows that terms in (3) which differ from  each other by a 
perm utation o f identical particles within the same com posite particles are 
identical.

Let the num ber of perm utations o f identical particles which permute 
particles within the same composite particles w ithout exchange o f identical 
particles between com posite particles be M r The integer Af, obviously 
depends only on the arrangem ent channel i to which the initial channel n 
belongs. If  M ir is the num ber of identical particles in the com posite particle 
Ar o f arrangem ent channel / we have

III
M , =  n  (M ir\). (4.5.7)

r =  1

If two arrangem ent channels, i and g  say, can be transform ed into each 
other by a perm utation o f  identical particles then obviously = M g.

The num ber o f terms in (3) which are equal to  df Py(t0) for any given 
perm utation P is M r We can therefore replace (3) by

n V o )  =  fl,(A f!)-W , X ' W r ( to )  (4.5.8)
p

where goes over all functions P ^ /o ) which cannot be transform ed into 
each o ther by perm utations o f  identical particles within the same composite 
particles. T hat is to say, any two term s under the sum on the right-hand 
side o f  (8) differ by an interchange o f identical particles between composite 
particles. Such states are therefore initially distinguishable from  each 
other.

We shall now determine the value o f  at from  the condition that (ps(to) 
is norm alized to unity. We have seen that if P<p(/o) and R<p(?o) are two states 
on the right-hand side o f (8) there is at least one elementary particle e which 
will be attached to different com posite particles in these states; different, 
that is, in the sense that they are localized in different regions o f space,
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for some composite particles may be identical in com position and structure. 
F o r example, e may be attached to a particle o f the incident beam in P</(/o)
but to  a target particle in R<p(/0)- It follows tha t Py>(to) and Rq{to) are only
non-vanishing when e is close to the centres o f mass o f different com posite 
particles which at time r0 must be well separated. The product [P<p(fo)]*X 
X[R<p(/o)] must therefore vanish, and so m ust therefore the inner product 
o f P<p(f0) and R<p(/o). If  we take the inner product o f q's(to) with itself with 
the aid o f (8) we consequently obtain

| |^ ( /„ ) |1 2 =  a H M \ r 0- M ? T  II P<p('o)ll2- (4.5.9)
p

We have already pointed out that || q{t0) 11 =  1, and since the norm o f a 
wave function is invariant under a perm utation o f identical particles we have
II P f(?o) || =  || q>(to) II =  I - The number o f  terms in the sum is 
since it was obtained from  the sum o f M \  terms by collecting together 
groups o f M ,  equal terms. Equation (9) now gives us 1 =  
and so

a, = ( M l /M d 1!2. (4.5.10)

We saw in Section 4.1 that the normalized and symmetrized final state is 
alSq’'(ti), where q>'(t\) evolves from  q>(t0) under the action o f  the total Ham il­
tonian H. We shall now pick out the coefficient ^(<£) o f  the final state qs 
in <p^(fi). We shall assume that the final wave function can be written

9 \ h )  = Y ," Z  A v<Pv expC -iE y/i/ft) (4.5.11)
fi y~ . f)

where goes over all distinct states cpY which can be transform ed into qa 
by a perm utation o f identical particles, including <pp itself, while ^  g °es 
over all states which cannot be so transform ed into each other. We have 
seen examples o f the way in which this can be done in previous sections. 
The interchange o f identical particles between com posite particles cannct 
alter the energy o f a state, and so [} % y  implies Ep = E y\ hence (11) can te  
replaced by

exP (~iEphlft)  £  A SPv (4.5.12)
t> Y~f>

We now operate on (12) with a,S  to obtain Since S  is given ty
(4.1.1) we get

fs{U) =  £ "  exp ( - iEpt y!fi) £  A'y £  <5PP<;cy. (4.5.13)
a P

As we have seen, not all terms in the sum £ P are distinct. In fact t>pP ,̂, =
if, and only if, PqY can be transform ed into R<py by a perm utaticn
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of identical particles within com posite particles. Let M f  be the num ber of 
perm utations o f  identical particles within com posite particles in arrange­
ment channel / ,  to which <pp belongs. Since every Pxpy differs from <ĵ  only 
by a perm utation o f  identical particles, it follows that M f  is also the num ber 
o f perm utations o f identical particles within composite particles in the 
arrangem ent channel to which P<py belongs. The M \  terms in the sum Y P 
divide into M \ / M f  classes the A/^terms in each class can be transformed 
into each other by perm utations o f identical particles within composite 
particles, and so are all equal. Terms in different classes differ by an inter­
change o f identical particles between composite particles, and are distinct. 
It follows that (13) can be replaced by

<pXM =  £ "  exp ( — iE^i/fi) M f  £  A'y £ '  5PP<pv (4.5.14)
P y * p  P

where £ P goes over distinct states P<py.
Let P„ _ ,5  be the perm utation which transform s the state cpy into the state 

(ft, and let dy_^t be the corresponding value o f <5P. With this notation (14) 
can be rewritten

=  d i iM '.y 1 £ "  exp ( — iE ^  11 ft) M f  X  Ay £  8y-»t(f«. (4.5.15)
p yxfi a«y

Now *s a sum over distinct states cpe which can be transform ed into <py 
by a perm utation o f identical particles. Since cpy can itself be transform ed 
into by a perm utation o f identical particles it follows that the sum 
is the same as the sum ° f  distinct states <p} which can be transform ed 
into (fp by a perm utation o f identical particles. We deduce that (15) can be 
written

V d h )  =  a,(A/!)-1 £ "  e \p ( - iE f i t i / f i )  Mf Y  A'y £  by^cpg. (4.5.16)
P y x f i  d x f i

Since <5 % /? implies E d =  Ep we can rewrite (16) as

<p's{ti) =  X " Z  exp ( - iEth/fi) 1- (4.5.17)
P t ~ P  V y^p  J

The coefficient A'd(S)  o f <pt exp( - iE dtijfi) in the final state q ' / t \ )  is therefore 

A'AS) =  a,(A /!)_1 M f  V by^A 'y .  (4.5.18)
y

n particular
Afi(S) = ci;(A/l)~lM f  Y  by_+gAy. (4.5.19)

y^P

Now Py_^e=  Pfi^tPy^p,  hence =  bp__sby_^p, so if we substitute for 
V—e *n (18) we obtain

A & )  = ai(M \)~ 1M f bfi_+s £  by^fiA'y.
y ~ P

(4.5.20)
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Com parison o f (19) and (20) shows that

A't(S)  =  d f^ sA X  S).  (4.5.21)

The probability o f observing the final state cpe, or any other final state y 6 
which can be obtained from  it by a perm utation o f identical particles, which 
we shall denote by P (a — <£/?), is given by

P(a — Sfi) =  X  | ^ ) | 2. (4.5.22)
3

From  (21) we see tha t | A'6(S)  |2 =  | A'p(S)  |2, and there are M \ M j 1 distinct
states, including tpp, which can be obtained from  <pp by a perm utation of
identical particles. The observable probability (22) therefore becomes

P (a -  Sff) =  M IM f1! Ap(S) |2. (4.5.23

Now by (10) at = (M \ \ M ,)1/2, and so if  we substitute for Ap(S)  from  (19) 
into (23) we obtain

P(oc -  SP) =  M j M y 1 | X  A;  I2. (4.5.24)
v = P

We can therefore take as the probability am plitude fo r observation o f the 
final state <pfi, or any final state <py obtainable from  it by a perm utation of 
identical particles, the quantity

A\%  -  Sj3) = (M f/M i)112 X  b y ^ A ’y. (4.5.25)
y ~ P

This quantity replaces the final probability am plitude A ’p in derivations 
o f  expressions for the observed differential cross-section. If  we define the 
symmetrized scattering am plitude / ( a  -» S(l) by

/ ( a  -  cSft) =  (M f/M /)112 I  W ( a  -  y),
V «  P

the observed differential cross-section for the process which takes <px into <pp 
o r any other state obtainable from  it by a perm utation  o f  identical particles is

a(% -  Sfi) = (vPM  | / ( a  -  S p ) \2\ , (4.5.27)

in (27) i \  is the speed o f the centre o f mass o f  the incident com posite particle 
relative to the centre o f mass o f  the target com posite particle, while vp 
is the speed o f the scattered com posite particle relative to  the centre of mass 
o f the recoil com posite particle or recoil particles.
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The total cross-section a is given by

j or = <*(« - W) I (4.5.28)
I______________________I

where Y j "  goes over all energetically allowed final states rj^ which cannot 
be transform ed into each other by a perm utation o f identical particles.

E x a m p le  1. In the case o f  scattering o f  two identical spinless bosons the only permuta­
tions are the identity and the exchange operator which takes the plane wave <pt into <p_ |, 
while M i — M f =  I. In this case (26) yields

/ ( k - < H )  =  _ i/(k  -* l ) + 5 - i —i/(k  -* - l ) = / ( k - l ) + / ( k - - l )  (4.5.29)

in agreement with (4.2.13).

E x a m p le  2. Let us consider the collision o f  two spin |  fermions, such as two electrons 
or two protons. The initial state is (f\am (1, 2) (m =  0, 1, 2, 3) where a 0 is the singlet spin
function while a ,, a ,  and a 3 are the three triplet spin functions. One final state is <P|a,(l, 2),
and the distinct state obtainable from this by permutation o f  the particles is y _ |a t(2 , 1 ). 
If we denote the scattering amplitudes for these two processes by /(km  — I q) and /(km  -* 
-  IPq) respectively we see that (26) gives

/(k m  — X\q) =  /(k m  -* 1 q )~  /(k m  — -IP i/). (4.5.30)

Now by (3.5.31)

/(k m  — 1<7) =  T(km  -* \q), (4.5.31)

/(k m  -  -IP q )  =  - 4 J tV ' - 2  T(km  -  IPq) (4.5.32)

where fi is the reduced mass and, by (3.3.18) and (1.5.1), if V is the interaction potential,

T(krn — Iq) =  <qp,a,(l, 2) | V +  K (£ -  H •-/e )_ 1 V | ipka,„( 1, 2)), (4.5.33)
r<km -  -1P</) =  <?>.,«, (2, 1)| V + V ( E - H + ie ) ~ '  V \?>ka„(I, 2)>. (4.5.34)

Also a , (2, 1) =  d,a, (1, 2) where <50 =  — 1, ^  =  62 — d3 =  1. and so (34) becomes

T(km — -IP ? ) =  6,(?>_iat( l ,  2) | V +  V (E -  H + ie)~  ' V \ 7\a ,„ (l, 2)). (4.5.35)

If the interaction potential V  is spin-independent, then so is H, and (33) factorizes into

T{km  -  1 q) =  (9 l | F + K ( £ - H + / e ) - ‘ K |9)k)< « ,( l ,2 ) |« „ ( l ,  2))
=  <?>, | V + V ( E - H  +  ie ) - 'V \< p d 6 '„  (4.5.36)

by the orthonormality o f the spin states. If we define the transition amplitude T(k — I) by

F(k -  1) <90, | V + V (E -  H +  je) _1  K |y k) (4.5.37)

we can rewrite (36) as
T(kn, -  Iq) =  7\k -* I) (4.5.38)

In a similar way we can infer from (35) that

T (k m ----- IP//) =  <5,7"(k — - 1 )  Smg. (4.5.39)
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Let us define a scattering amplitude /(k  — 1) by

/ (k -  1) = -4 n -n h - -T (V .  -  1). (4.5.40)

It follows then from (31), (38) and (40) that

/(k m  -  I?) =  3 ^ / ( k  -  1), (4.5.41)

and from (32), (39) and (40) that

/(k m  -  -  IP?) =  6,6m f (k -  -1 ) . (4.5.42)

Hence (30) gives

/(k m  -  S\q) =  <5m,[ / (k  -  1 ) -  <5„/(k -  -1 )] . (4.5.43)

The result (43) implies that if the system is initially in a singlet state, it remains in a singlet 
state, and the corresponding scattering am plitude/,(k — <SI) is given by

/ , ( k -  cSl) =  / ( k  -  l ) + / ( k  -* -  I), (4.5.44)

while if  it is initially in a triplet state it remains in it, and the corresponding scattering 
amplitude / , ( k -* <£l) is given by

/ , ( k -  <JI) =  / ( k  -  1) - / ( k -  -1 ) . (4.5.45)

The differential cross-section <j(k — (SI) is obtained by averaging over the one singlet 
state and three triplet states; this yields

/ ( k -  cH) =  j  |/ ,(k  -  <£1)1* + -J |/ ,(k  -  (4.5.46)

If the interaction depends upon spin the calculation is correspondingly more complicated

E x a m p l e  3 . As a final example we shall discuss the scattering o f  an electron b y  a n  
atom. W e shall label the incident electron by 0 and the atomic electrons by 1 ,2 , . . . , « .  I n  
the case o f  direct scattering electron 0  is the scattered electron; the initial state here has 
wave function <pa =  <pt(0 )0im(0 )y_n0 , 2, . .  n), say, while the final state has wave function
<Pp =  ?>i(0)a,(0)Xp(l, 2, . .  . ,« ) ,  say. W e can denote the scattering amplitude for this process 
by f d(kji — Ip). There are also n exchange collisions, when electron 0 is exchanged with 
electron j  o f  the atom. The final state here has wave function <py =  9>|(/)*»(j)%p0> 2 ,.  . . ,  
j — 1, 0 ,y +  I, . .  ., n). As j  varies from 1 to n we obtain the n distinct states obtainable from 
<pr by a permutation o f the electrons. In this case, therefore, M t =  M s =  n + 1 . Let us 
denote the scattering amplitude for the process in which electron 0  is exchanged with 
electron j  by /j(kn -* lp). Each o f  the n final states for exchange scattering is obtained from 
the final state <pp for direct scattering by an interchange o f  two electrons only, which is a 
permutation with odd parity. In this case, therefore, (26) becomes

/(k «  -* S\p)  = f d(kn -» 1 p ) -  £  f,(kn  — Ip). (4.5.47)
i -  1

EXERCISES

1. Verify (4.4.9), the expression for the scattering amplitude for the process He-l-c -* 
He~'*~ +  e +  e +  e, by direct application o f (26).

2. Use (26) to write down the scattering amplitude for the following processes:

(a) H +  He -  H - + He+.

( b )  H +  He -  H ~4-H e+ —e —e.



ID E N T IC A L  PA RTICLES 85

4.6. S IM PLIFIC A TIO N S DUE TO INITIAL OR FINAL SYM M ETRY

In the last section we obtained the expression (4.5.26) for the symmetrized 
scattering am plitude / ( a  -*■ S[i). Some o f the terms in this expression may 
be equal. In this section we shall obtain conditions on the stationary states 
cpa, 7 y and <fe which imply the equality o f the terms 6y^ pf (« — y) and de_^p 
/ ( «  -  d).

From  (1.5.1) and (3.3.18) we obtain

T( x -  /?) =  (cpp | Vf [l + ( E -  H + ie ) -1 V j] \ (ft), (4.6.1)

7 \a  -  p ) =  ([1 +  ( E -  H — /£)-* Vf ] q>fi | Vi | <p.)
= (cfP | [1 +  Vf { E -  H +  /e )-i] F , | y .)  (4.6.2)

where E  — E^ — Ep. A ccording to (3.6.6) the unsymmetrized scattering
am plitude is defined by

/ ( a  -  (i) = -4 7 i '2[if h - 2T (x  -  />’) (4.6.3)

where itf  is the reduced mass o f the scattered particle relative to the centre 
o f  mass o f the recoil particles in the final state 7 .̂ We deduce from  (1) and (3) 
that

/ ( *  -  fi) = — 4n2jif fi-\(pp\ Vj[\  + ( £ - H +  i'f: ) - 1 F (] | cpa), (4.6.4)

and from (2) and (3) that

/ ( «  /?) = - A n ^ f h-\cpp\  [1 +  Vf ( E -  H  +  1C)-1] V ,1 <p.). (4.6.5)

We shall prove the following:

If P is a perm utation which permutes identical particles within the same 
com posite particles o f  the final state 7 ,̂ then

/ ( a  -  P/3) -  «P/ ( a  -  p). (4.6.6)

The proof follows immediately from (5), for Pcpp = dp(fp, and so 7 and P<pp 
belong to the same arrangem ent channel/ .

As it stands, the result (6 ) does not help us to simplify (4.5.26), for the 
sum 8 oes °nly  over distinct final states <py, and <pp represents the same 
final state as P<1 p =  <5P7 .̂ However, we can use (6 ) in conjunction with the 
following result:

If  P is a perm utation which permutes identical particles within the 
same com posite particles o f the initial state 7 ,, and P ^  is denoted by 
7 'P/j, then

/ ( a  -  P/3) =  5P/ ( x  -  ,3). (4.6.7)
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We prove this by use o f (1). Firstly we note that P(̂ a =  (5P9 a, since P per­
mutes identical particles within the same composite particles o f  9oa. Hence 
p 'V a  =  =  <P«> a n d  s o  5 p p “ V =c =  dp?~ip2(r« =  <5pP<pa  =  W e

can therefore write ( 1) as

T (a  -  0) =  b?{Vm \ 14-( E — H 4- ie)-1 F ,| P - ty a>. (4.6.8)

Since P permutes identical particles within com posite particles o f  <px, P_ 1

does the same, and hence leaves the initial potential V, invariant. It must
also leave H invariant, and so we can replace (8 ) by

T(x  -~ p )  =  bf (Vm \ P - iI l  +  ̂ - H  +  ie ) -1^ ] ^ . ) .  (4.6.9)

Now Pf =  P-1, hence (P_1)+ =  P, whence (9) yields

T(oc ~ p )  = bP(?(Vm ) | 1 +  ( £ -  H 4-i s ) - 1 V ,-1 <pa). (4.6.10)

If  we denote the arrangem ent channel to which (ppp =  Pq?p belongs by Ff  
we see that P transform s Kyinto VPJ . We can therefore infer from  (10) that

T(a  114- {E — H +  i'e) - 1  V, \ <px)

=  &p(<pppI Vrf[\ + ( £ — H +  / e ) _ 1 F , ]  |<jca> =  6PT (x  -  ?p) (4.6.11)

by (1). The result (7) now follows from  (3), since the reduced mass /uf  is not
changed by a perm utation o f identical particles.

E x a m p l e . We shall use the results (6) and (7) to effect a considerable simplification in 
the expression (4.5.47) for the symmetrized scattering amplitude/ ( k — <£lp) for electron 
atom collisions. The exchange amplitude J] refers to the final state obtained by exchanging 
the incident electron 0  with the atomic electron j ,  where we are using the notation o f  
Example 3 o f Section 4.5. Similar considerations apply to the exchange amplitude f k. 
Without loss o f  generality we can assume that j  <  k, in which case the initial state may be 
denoted schematically by

0 ;  1, k ................n. ( 4 . 6 . 1 2 )

The final states in f t and f k may be correspondingly denoted by

j ;  1, . . . ,  0, . . . ,  k, . . . ,  n ( 4 .6 .1 3 )

k;  1............ j ,  . . . , 0 .............. « .  (4.6.14)

W e can obtain the final state (14) from the final state (13) in two steps. Firstly we inter­
change 0 and k in (13) to obtain

j ;  1, 0 ,  . . . ,  n .  ( 4 . 6 . 1 5 )

This is an odd permutation o f the electrons o f  the atom in the final state, and so by (6) 
changes the sign o f/} . If we interchange j  and k in (15) we obtain (14), the final state o f /* ;  
but this is an odd permutation o f the electrons o f the initial state, and so changes the sign 
o f f j  a second time. In other words, f j  - f k. The n exchange amplitudes in (4.5.47) are 
therefore all equal. If we denote their common value by / ex we see that (4.5.47) simplifies to

/(k/z — M p )  =  f d(kn  — Ip ) - - * 1 p).  ( 4 . 6 . 1 6 )

EXERCISE

Simplify the symmetrized scattering amplitudes o f  Exercise 2 o f  Section 4.5 as far as 
possible.
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4.7. TH E W-PARTICLE SYSTEM  W ITH SEVERAL SPEC IES OF 
IDENTICAL PARTICLES

H itherto we have assumed that only one species o f identical particles has 
two or more representatives in our N-particle system. We shall now remove 
this assum ption. The argum ents and results o f Sections 4.1, 4.5 and 4.6 go 
over to the most general case with a few m inor modifications, which we shall 
now consider.

Suppose there are L  species o f identical particles, each with two or more 
representatives in the A'-particle system. Let P be an operator in the Hilbert 
space o f states (or wave functions) which permutes the identical particles 
o f  each species am ong themselves. If there are A/(,) members o f the /th 
species there are C ~ l such operators P, where C is defined by

C  =
L

i = i
(4.7.1)

The operator P may be regarded as the product o f L  perm utations. Let b? 
be the product o f the Lb 's corresponding to these L  perm utations. In fact 
bP — — 1 if P consists o f an odd num ber o f odd perm utations o f fermions,
otherwise <5P — 1; thus bj — I. It is also easy to see that <5PQ =  bpbQ if
Q  is a second operator o f the same type. Analogously to (4.1.1) we now 
define a symmetrizer S  by

^  =  CX<5PP (4.7.2)
p

where the sum m ation goes over all C -1 operators P. In the special case 
when L — 1 we see from  (1) that C =  (A/!)-1 , and (2) reduces to (4.1.1). 
It is easy to show th a t S  is linear, Hermitian and idempotent.

The argum ent o f  Section 4.1 remains valid in the more general case if M \  
is replaced throughout by C -1 . If M f 1 is the num ber o f perm utations of 
identical particles o f species I which do not interchange particles between 
com posite particles o f arrangem ent channel / t h e  quantity  M /  is now given by

Mf = f \ M V \ .  (4.7.3)
i = i

As before, Mf  rem ains the num ber o f ways identical particles may be 
perm uted in arrangem ent channel/  w ithout interchange o f  particles between 
com posite particles taking place.

T hroughout Section 4.5 we must again replace M l  by C _1. Exactly similar 
argum ents to  those o f  Section 4.5 show that the C _1 terms 6pP^(/0) in a,<£<p(fo)
QTSP 7
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divide into C 'W r 1 groups each containing A/, equal term s, where M i is the 
num ber o f ways of permuting identical particles o f each species without inter­
change o f particles between composite particles taking place. Corresponding 
to  (3) we have

Mi = f[ M ^ \ . (4.7.4)
i = i

The calculation of the value o f the norm alization constant in Section 4.5 
goes over provided M \  is replaced by C -1 . Instead o f (4.5.10) we obtain

«, =  (CM j)~112. (4.7.5)

The remaining argum ents o f Section 4.5 also go over. The expression
y  % /? means that the state qy can be obtained from  (fp by perm utation o f
the identical particles o f each species. The operator Py_ a is now that product 
o f perm utations o f identical particles o f each species which takes cpy into q6, 
and d t the corresponding br. Instead o f (4.5.20) and (4.5.21) we obtain

At(S) — ciiCM/dp _  a ^  dy pAy — d p t A p ( £ )  (4.7.6)
■/ *

for the coefficients o f <p6 and (fp in <p^(/i).

Since there are C ~ vM j l distinct final states obtainable from <Pp by per­
m utations o f identical particles the probability o f observation o f the state 
represented by <p„, or any other state obtainable from  it by perm utation o f 
identical particles, is

P ( x  -  S p )  =  C  ' M j 1 1 Ap(S)  | 2 =  a j C M f  X  PA 'v 2 b > ( 6 )
V ~  P

= M rM r l \ X  dy^pA 'y  2 (4.7.7)
I y «  P

where the last step follows from (5). We conclude therefore that (4.5.26) 
remains valid provided and Mf  are the num ber o f products o f perm uta­
tions o f  identical particles o f each species which do not interchange particles 
between composite particles in the arrangem ent channels i and / containing 
cpx and <pp respectively, and the sum goes over all distinct states obtainable 
from  (fp by perm utations o f identical particles within each species.

Finally we note tha t the resul' (4.6.6) and (4.6.7) remain valid if P is a 
product o f perm utations of idem _al particles o f different species.

E xam ple 1. Let us apply the above results to the case o f scattering o f  an electron by an 
n-electron molecule in which two o f the nuclci are identical, the remaining nuclei being 
distinct from the first two, and from each other. Interchange o f the identical nuclei does 
not change the final state, and so the sum (4.5.26) need be taken only over the direct 
amplitude and the n exchange amplitudes. This means that (4.5.47) remains valid in this 
case. The argument leading to the simplified result (4.6.16) also remains valid here.
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E xam ple  2. As a second example let us consider the dissociative collision

H e+ H ,+ -* H e + H  +  H + . (4.7.8)

Let us denote the electrons by 1, 2 and 3, and the protons o f  the by A and B. Let 
/ ( 1 2, 3AB  — 12, 3,4, B) denote the scattering amplitude when initially electrons I and 2 
belong to the helium atom , electron 3 belongs to the H j ion, while finally 1 and 2 belong to
the helium atom , 3 is attached to proton A to form a hydrogen atom, and B is the free
proton. For simplicity we omit the initial and final wave vectors and quantum numbers o f  
bound states— these are, o f  course, unaltered by permutations. In this case M((,) =  2 ! x l !  =
2 (electrons), M (<2> =  2! =  2 (protons), so M , =  4, while M}') =  2 !X 1! =  2, M f 1 =
1 !X 1! =  1, hence M f =  2. Application o f (4.5.26) gives the following expression for the 
symmetrized scattering amplitude:

f ( S )  =  2 ~ in[ f ( \ 2 , ’iA B  -  12,3A, B ) - f ( \ 2 ,3 A B  -  12,3B, A)

-r /(12 ,3 /lB  -  23 ,M , B )—f(\2,7>AB -  23 ,IB, A)

+ /( ]2 ,3 /4 S  -  31,2A, B ) - f ( \ 2 ,3 A B  -  31,2B, A). (4.7.9)

In this case C -1 — 3 !2 !, hence C ~ ' M y l =  6, the number o f  distinct final states in this 
case. A and B  belong to the same initial state, and so terms which differ from each other by 
their exchange must be equal; (9) therefore becomes

f ( S )  =  2 + 1,i[ f ( \2 ,3 A B  -  12,3/4, £ )+ /(1 2 ,3 /4 £  -  23,1/4, B)

-t-/(l2,3/<B -* 31,2/4, B)]. (4.7.10

Electi ons 1 and 2 are bound in the initial state, hence

/ ( 1 2,3,4# -  23 ,IA, B) =  - / (  I2,3,4fl -  13,2,4, B) =  / ( 1 2,3/1 S  -  31,2/4, B ). (4.7.11)

Insertion o f (II) into (10) gives

/(<£) =  2 * l l i [ f ( \2 ,3 A B  -  12,2A,  fl) +  2/(12,3/4fl -  23,1/4, B)]. (4.7.12)

EXERCISES

1. Show that the operator P is linear, and Pt =  P-1 .
2. Show that the operator S- defined by (2) is linear, Hermitian and idempotent.
3 . Prove (5).
4. Write down and simplify the scattering amplitudes for the following processes:

(a) H e* H j+ -  He+ +  H 2.

(b) He + H 2+ -  He+  +  H + H.

7'
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S O M E  A P P L IC A T IO N S  O F T H E  T H E O R Y

5.1. SCATTERING BY TWO POTENTIALS

We have now the main principles and results o f the non-relativistic quan­
tum theory o f  radiationless reactions in which “elementary particles” are 
neither created nor destroyed, but move under their m utual interactions. 
W'e have seen that in order to calculate the experimentally interesting cross- 
section a (a — ft) we must, in principle, first calculate either the scattering 
state or the scattering state fp  corresponding to the initial and final states 
<pa and cpp. Having done this we calculate the scattering am plitude f(<x — ft) 
from either the form ula

/ ( a  -  /?) =  ( —4rt2////^ 2) T(oc -  ft) =  ( - 4 n 2fif l^)(q>p\Vf \ ip+)

or from  the formula

/ ( «  - *  ft) =  ( — 4n2nf /h2) T(oc -  ft) =  ( - 4 n*(,f /tr*)(W I V>\V*)- (5.1.2)

The differential cross-section is then calculated from

o ( a - / 3 )  =  ( » , / » . ) | / ( a - 0 ) |*  (5.1.3)

where vx is the initial velocity o f the centre o f  mass o f  the bom barding 
particle A  relative to the centre o f  mass o f the target particle B , while vp is 
the velocity o f  the centre o f mass o f  the scattered particle C  relative to  the 
centre o f mass o f the recoil particle (or particles) D. We have seen that energy 
is conserved, so that E a = Ep, and vp is calculated from  vx by this condition.

Now in practice we usually cannot carry out the algorithm  just described. 
Even in the case o f the scattering o f  two elementary particles the calculation 
o f  y;+ or ip~ involves the solution o f  Schrodinger’s time-independent equa­
tion subject to outgoing or incoming wave boundary conditions followed by 
the evaluation o f  the three-dimensional integrals (^1  or F f |<pa).
I n the case o f a system o f N  elementary particles this is a 3(N — 1 )-dimensional 
problem , and so quite beyond the scope o f such direct calculations. This
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means that in practice we have to take advantage o f any features o f  a specific 
reaction which enable us to make the approxim ations necessary to  render 
the problem of calculating cross-sections tractable. In this chapter we shall 
discuss some of the approxim ate m ethods o f calculation which have been 
developed in the course o f  the growth o f  the subject.

In this section we shall discuss the case when the initial and final interaction 
potentials V, and Vf  can each be decomposed into sums o f two potentials 
so that

V , =  U,+ W h (5.1.4)
Vf = U f + W f . (5.1.5)

We may know, for example, the solution o f the problem when the initial 
and final potentials are V i and Uf , and it may be possible to treat M/j and Wf  
as small perturbations. In such a case we can apply a perturbation technique 
to find an approxim ate solution to the whole problem. The actual technique 
will be discussed in a later section o f this chapter, but in order to do this we 
must first develop a form ula known as the “Tw o-potential F o rm ula” .

» Corresponding to the unperturbed state r/,a and potential Ui we can define 
Schwinger-Lippm ann states by

0± =  (5.1.6)

where E  — E a, and reasoning as in Section 1.5, in particu lar ju st before 
equation (1.5.3), we see that these will satisfy the corresponding integral 
equations

0± =  ? .  +  ( £ - H ,± fe )-i£ /,0 ±  (5.1.7)

Since H,.^a =  operation on (7) to  the left with E — H,.±ie yields

( £ -  H ,- t / , ) 0 ±  =  ± /< # * - 0 ± )  (5.1.8)

and  so as e — 0 +  we get (H, + U,) 0* =  EO*. Thus 0* are eigenstates o f  the 
H am iltonian Hi+ U i obtained by ignoring W r

We shall now show tha t it is possible to express y *  in term s o f 0*. The 
Schwinger-Lippm ann equations for are

Wi =  ? « + ( £ - H ,±/£)_1K,y>±, (5.1.9)

and if we substitute for V. from  (4) into (9) we get

V>t -  <Pa+(E-H ± /e ) -1 (U,+ W i )  y f .  (5.1.10)

By subtracting (7) from  (10) we obtain

V± - 0 ±  =  ( £ - H ,± / e ) - i  t / M - 0 ± ) - K £ - H ,± i £ ) - W ,y ,±  (5.1.11)



SOM E APPLICATIONS O F  T H E  T H E O R Y 93

O peration on (11) to the left with E — H,-±/e yields

( E -  H ,± ie) (y ± -0 ± )  =  (U,+ W t) y f  -  l / ,6 f , (5.1.12)

a n d  this may be rearranged to give

( £ -  H , - U , - W , ± i e )  y>± =  ( £ - H ,-  U , - W , ± i e )  8 ± + W ft± .  (5.1.13) 

If we operate on this to the left with ( E — H(— U — I V ^ i e ) -1 we find that 

Wi =  0± +  ( E - H , - [ / , - H / , ± i > r 1 (5.1.14)

and since from  (4) H,-t-U i+ W i =  H ,+  F (. =  H,

Vf =  +  ( £ -  H ± fe ) - i  (5.1.15)

Equation (15) has an interesting interpretation. Starting off with the 
unperturbed plane wave state cpa we can “d isto rt” it by the potential Ur 
The result is 0* according to the boundary conditions imposed on the 
"distorted wave". (15) now shows that \pf may be obtained from the “ dis­
torted states” 0± by treating the latter as the unperturbed states and applying 
the additional potential W t to  them ; thus Ui takes us from <pa to  0*, and W , 
takes us from 0* to In the latter step we note that, to  obtain the overall 
state ip* with outgoing wave conditions we must use the distorted state with 
outgoing waves, and similarly with the incoming waves state.

We can derive Schwinger Lippm ann equations for t/j* treating 0~ as the 
unperturbed states in the same way as before when <pa was the unperturbed 
state. If we rearrange (13) we obtain

( E — H,— Uj+ie) V± =  ( £ - H , - l / , ± f c )  0 f +  ^ f ,  (5.1.16)

and operation on (16) to the left with ( E — H(— Ut± ie )~ l yields

V* =  f lf+  ( £ -  H ,— U ,± ie ) - '  W<&. (5.1.17)

C om parison o f (17) with the Schwinger Lippm ann equations (9) shows that 
(17) is also a kind o f  Schwinger -Lippm ann equation, but with the states 0* 
replacing cpx as unperturbed states, H,.+ U. replacing H,- as “unperturbed 
H am iltonian’', and lVi replacing V. =  Uj+ W i as the interaction.

We saw in Section 3.3 that the transition am plitude T(x  — ft) is given by

T(x -  ft) = ((pp | Vf \ip+) (5.1.18)

where E ,  =  Ep. According to (5) Vf  — Uf + W f , and so (18) becomes

T(a -  ft) =  ;V f \Uf \rpt)+('pP I Wf \ v +>. (5.1.19)

From  (6) with a  replaced by ft and i replaced by /  we have

< p p = 6 j -  ( £ -  Hf — Uf - i e r 1 Vjtfp (5.1.20)
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and  substitution for from  (20) into the second term on the right-hand side 
o f  (19) gives

r ( «  -  /?) =  ( V f i i v f  i v+)+<fl? I w f \ v + )
- < ( £ -  H /— t / , - / e ) - i Um | H7/!  y /> ;  (5.1.21)

hence

r ( «  -  /9) =  < ^ | u f - [ / / £ -  h , -  u f + h y '  w f \ , p t ) + ( 0p I » 7 I v +>. (5. 1.22)

The second term on the right-hand side of (22) is, by analogy with (18), 
the am plitude for the transition from  the unperturbed initial state <pa to  the 
"distorted  final sta te” d j  via the “final interaction” Wf . The first term on the 
right-hand side o f (22) appears to require knowledge o f the full scattering 
state ip+. W e shall, however, show tha t it is capable o f calculation if we know 
the distorted wave 07;  it does not, in fact, require knowledge o f  y>£. In 
order to do this we must obviously eliminate y>+ from  the first term on the 
right-hand side o f (22), and this we shall now do.

Let us pu t A  = E — H,+ie, B =  E — Hy— Uf + ie  in the identity 
A-1 =  B‘_1 +  B_1(B— A) A-1 ; we get

(£ -H ,■ + /» - !  = ( E - H f - U f + i e ) - 1

+  ( E — H /—C//-+/e)-1(H(—H /— U / ) ( E — H, +  ie)_1. (5.1.23)

N ow  Hi+ V j  — H =  Hj-+Vf=z H /+  U/+ Wf,

so H /—H /—1 //=  H,- —(H /+J7/) =  (H —K,-)—(H —W'/); (5.1.24)

in o ther w ords,
H ,-H f - U f  = - { V , - W f ) (5.1.25)

and so (23) becomes

(£ — H/+ic)-1 = ( E - H f - U f + i e ) - 1

— (£— Hf -  Uf + i e ) ~ x ( V j — W f ) ( E — H,+ ie)-1. (5.1.26)

If  we substitu te for ( £ - H. +  i'e)-1 from  (26) into the Schwinger-Lippm ann
equation (9) we obtain

y>t =  <P« +  ( £ -  H / -  U f+ ie ) -1 V,fa
— ( £ — H /— Uf + ie ) - i  Wf ) ( E -  H, +  ie ) -1 V,y>+ (5.1.27)

F rom  (9) we have
( £ - H i+ i 'e ) -1 K,v£ =  vZ~<p* (5.1.28)

and  so (27) becomes

V t  = tp<,+(E—Hr - U j  + ie )-1V iipi
— ( £ — H /— U f + i e ) - H V , -  Wf )(ipt-<p«) (5.1.29)



SO M E  APPLICATIONS O F  TH E  T H E O R Y 95

o r equivalently

[ l - ( £ -  H f - V j  + i e ) - W f ] <pt

= q>a + ( E - » / - U f + i e ) - ^ V l- W f )q>.. (5.1.30)

We can substitute for the left-hand side o f (30) in the first term on the right- 
hand side o f (22) to obtain

7 (a  -  ft) =  (q>p\ U /+ U f(E — H / -  Uf+ie.)~l X

X ( V , ~  W f)  | <p .)+ (Op \ f V f \ f i ) .  (5.1.31)

We can now see that the first term on the right-hand side o f (31) requires 
only a knowledge o f the G reen’s operator ( E — H ,— Uf +ie)~1, and n o t a 
knowledge o f the G reen’s operator ( E — Hy — Uf — Wf -\-/e )_1. It is therefore, 
in principle, possible to calculate the first term by a knowledge o f the solution 
o f  the “d istortion" problem (\Af +U f )0 j  = E O R e n t e r s  the problem  
only as a multiplicative operator, and not through the G reen’s function. 
W'e can, however, show this in a more transparent way by w riting the first 
term on the right-hand side o f  (31) in a different form, which we shall now do. 

The first term  on the right-hand side o f (31) can be rewritten as

\ U f\y*) + ( ( E -  H y - U f - i e ) - 1 Uftppl V ;-W f\(p„).  (5.1.32)

Now from  (20)

{ E - U f - U f - i r ) - i U m  = Op —cfp (5.1.33)

and so (32) becomes

= ( w  I Uf+ W f -  Vj I cpa) + (0? | V,-fV f\<pa);  (5.1.34)

by (5) this is equal to

{ n \ V f \ < P * ) - ( n  I ^il9>->+<^-| V i - W f ] ^ ) .  (5.1.35)

Energy conservation implies that Ep = £„ =  E, and so by (3.3.21) the first 
two terms cancel, leaving us with (Op \ V W f \ <px) as a simplified expression 
for the first term  on the right-hand side o f (31); (31) can therefore be written

7X« -  0) = (Op | V W f \ cp*)+(0p | W f\ xp+). (5.1.36)

The expression (36) is the two-potential form ula we have been seeking. 
We have already seen tha t the second term  on the right-hand side may be
interpretated as the transition am plitude for the process which takes us from
the initial unperturbed state tpa to the final distorted state dp under the action 
o f  the potential W f . The first term also has a physical in terpretation, for
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since Hf+  V. =  H =  H/ +  Uf + Wf

H i + ( Y i - W f ) = H f + U f . (5.1.37)

If we regard the “distorted” Ham iltonian as H/-+ JJf  we see that the "initial 
interaction” is V — Wf \ by analogy with (2) we see that the first term  on the 
right-hand side o f (36) is just the transition am plitude for the process 
?a — ?/5 when the unperturbed Ham iltonians remain H, and but the 
initial and final interactions are replaced by V — W ^and Uf  respectively. It
involves only the distorted wave 6£ and not the full scattering state ; for
this reason this term must be supplemented by the second term (07\ Wf  y;+) 
in order to obtain the total transition amplitude T(oc — fi).

5.2. T H E FINAL STATE INTERACTION

In this section we shall consider break-up collisions o f the form

A + BC  -  A + B + C. (5 .2 .1)

As a result o f the collision the target particle BC  breaks up  into two particles 
B  and C. Since the elementary particles o f BC  are the same as the elementary 
particles o f B and C  separately it is clear that the initial interaction V, 
between A and BC  is just the sum o f the interactions VAB and Vac between 
A and B, and A and C, respectively; thus

Vi =  Va b+ V Ac . (5.2.2)

At the same time the final interaction F, is the interaction between the sepa­
rate particles A, B  and C, and so

V f =  V a b +  Va c + V  b c -  (5.2.3)

For simplicity we shall, for the m oment, assume that A  is an elementary 
particle.

Let r denote the position vector o f  A  relative to the centre o f mass o f BC 
(or B  and C ) and R be the position vector o f the centre o f  mass o f B  relative 
to  the centre o f mass o f C, and let us denote by Kr and KR the kinetic energy 
operators associated with r  and R respectively. With each o f the particles 
B  and C we can associate internal Ham iltonians hB and hc , so that after the 
collision the total internal H am iltonian is

h/ =  h g + h c- (5.2.4)

Before the collision the internal Ham iltonian also includes ^BC and Kr ,
and so

h; — hfl-f h c +  K r+  y  b c  — K r+ F b c + K /. (5.2.5)
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The initial and final unperturbed Ham iltonians are given hy

H, =  Kr +  h „  (5.2.6)
H / = K r+ K R+ h / ,  (5.2.7)

respectively. If q denotes the coordinates other than r and R, the initial and 
final states are given by

<pk„(r, R. q) =  (/k(r) x„(R, q) (5.2.8)

(A  has momentum relative to BC  and yn is the internal state)

<Pi*p(r, R. q) =  q,i(r)ip ,(R )ip(q) (5.2.9)

(A  has momentum ti\ relative to B + C , B has momentum fix  relative to C, 
and is the internal state).

Let us put Wf  =  VJB+ VAC, Uf  — VBC, so that (3) implies Vf  — Uf + Wf . 
This is a particular case o f the decomposition o f the potential K^into a sum 
o f two potentials Uf  and Wj discussed in the last section, and so we can apply 
(5 .1.36); since by (2) V i — W^we find that

7(k/7 -  \xp) =  <0,^1 VAb + Y a c \V’£„)- (5.2.10)

V’k"„ is the total scattering state and VAB+ VAC is the interaction between A and 
the recoil particles B and C, and equals the initial interaction Vi. We shall 
now investigate (he nature o f the state 6^p.

The 6~ states are defined by (5.1.6). In this particular case a  =  Ixp, i is 
replaced by f ,  and so

0\mP — <P\*p+(E— H /— Uf— ie)~l Uf<pi p̂ . (5.2.11)

Now Uj■ — VBC, while H ;  is given by (7). Also y ̂  is given by (9), and so

®i*p ~  Wk~p +  (£"~ Kr — Kr — h /— VBr — ie)~l VbcW ^ p - (5.2.12)

Kr and <p, depend only on r and Kr</, =  E f f y, while +  and y j , p
are independent o f r. It follows from  Appendix A that

( E — K r — K r — h f — V BC — j'e)-1 VbcWiVkZp 

= { ( E - E i - K R- h f - V Bc - i e ) - l VBC(pMZp}(pi (5.2.13)

and since by energy conservation E —E, — Exp, (12) becomes

0»P =  {q>^P+ (E xp- K R- h f - V Bc - i e ) - l VBc M < P i -  (5-2.14)

The expression in the curly brackets o f (12) is just the Schwinger-Lippm ann 
state for scattering o f  B  by C via the potential VBC when ihe unperturbed 
state is <pH$.p and incom ing wave boundary conditions are imposed. It is
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therefore a  continuum  state o f the system B + C  and so by analogy to %n, 
which denotes the initial bound state o f BC, we may denote it by -/~p\ thus

0|kp =  m *p-  (5.2.15)

We can now summarize the results o f this section. A collision A + BC  — 
A + B + C  may be treated as direct, so that the final interaction as well as the 
initial interaction is VAB+ VAC, provided the final state is taken as the product 
o f  (i) a plane wave 99, representing the motion o f A  relative to the centre o f 
mass o f  the two-particle system B  + C, (ii) a wave function %~p describing the 
motion o f B  relative to C  in the presence o f the potential VBC which obeys 
incoming wave boundary conditions at infinity.

In our derivation o f this result we have assumed that A  is an elementary 
particle. If this assum ption is removed the initial and final internal states o f  A 
must be included. The reader should have no difficulty in proving that (10) 
still holds, where 6^p is given by the product o f the final state of A  with 
9’iI hP and Xup ^  the continuum  state o f BC  defined above.

EXERCISE

Prove that if  A has structure the result (10) becomes

7"(kn -* 1 xps) =  {fp tf.X iv  I V iB  +  V ac  I Vw) 
where rj, is the final internal wave function o f  A and the other quantities have their usual 
meanings.

5.3. TH E BORN A PPRO X IM A TIO N

We stated at the outset o f  this chapter that we would describe approxim a­
tions which enable us to  calculate cross-sections in practice. One o f the most 
useful o f these is the Born approxim ation, which is appropriate at high 
energies when scattering is small.

In the case of direct scattering the transition am plitude T(x  — ft) is given by

T (a -  /?) =  (<pP\V\ip+) = (y>p \ V\(pa) (5.3.1)

where we have dropped the arrangem ent channel indices. If  scattering is small,
as is the case at high energies, we shall have ip* ^
tion for either tpp or y>+ in (1) yields the Born approxim ation

(fp, and substitu-

T(<x -  /5) -  (<p$ \ V \  q>.). (5.3.2)

The problem  of obtaining the transition am plitude is thus reduced to the 
calculation o f a 3(A^—1)-dimensional integral, since in principle the states 

and <pp are known. If N  is large this still remains a form idable problem.
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and in practice further approxim ations need then to be made (M ott and 
Massey, 1965).

The scattering state ip* satisfies the integral equation = <px + ( E — H» +  
ie)- 1Fy+where Ho is the unperturbed Ham iltonian ;if  we deno te(£ ’— Ho4- is)-1 
by this may be written

V*+ =  <Pa+G0+KV+. (5.3.3)

We may solve (3) by iteration to obtain

V t = <p=,+ G0f K<pa+ G +K G +V(pa+ ----  (5.3.4)

The Born approxim ation, or first Born approxim ation, is obtained by 
approxim ating by the first term o f the series on the right-hand side; the 
“second Born approxim ation” is obtained by taking the first two terms. 
Corresponding to the “Born series” (4) for ip+ we have a Born series for the
transition am plitude; we obtain this by substitution for ip+ from  (4) into (1),
so that

7K a-j9 ) =  (>pp\y\>pa) +  <fPp\P G + r  l9 >.> +  <wl KG+KG + FI <pa>+ . . . .  (5.3.5)

In the case o f rearrangem ent collisions the transition am plitude is given by
either o f the expressions

7 (a  -  /S) =  < ^ |  Vf \ip+), (5.3.6)

J ( « -  p) =  (y>p\V,\<p.). (5.3.7)

If  V. is treated as a small perturbation we have y>+ ^  </>„, and (6 ) gives

T(x  ft) — (<pp \ Vf  \ cpx). (5.3.8)

On the other hand if Vf  is treated as small we have (pp, and so (7) 
gives

T { « ~ 0 )  -  (<pp\V,\<P*)- (5-3.9)

Now Ep =  since energy is conserved, and so by (3.3.21) we see tha t the 
right-hand sides o f (8 ) and (9) are equal. The derivation o f (3.3.21) depended 
upon the assum ption th a t rpa and cpp are the exact wave functions. If  approx­
imate functions are used for the unperturbed states the right-hand sides o f 
(8 ) and (9) may no longer be equal—a phenom enon often referred to as the 
“post-prior” discrepancy, V, being the “prio r” interaction and Vf  being the 
“post” interaction.

We saw in C hapter 4 that if exchange o f identical particles is taken into 
account the scattering am plitude is given by the expression (4.5.26). Each 
o f  the am plitudes / ( a  — /?) on the right-hand side o f (4.5.26) may be obtained 
by the Born approxim ation the resultant expression is then known as the 
Born-O ppenheim er approxim ation for the exchange am plitude.
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In Section 5.2 we saw that, in the case of break-up collisions o f the form 
A + B  — A + C + D , the transition am plitude is given by (5.2.10). If we 
approxim ate the scattering state tpkn by the unperturbed state q kn in this 
expression we obtain

T(kn  -  lx/>) 2 , (0,-pl ^ B + ^ d q P k , , ) ,  (5.3.10)

which is the Born approxim ation for break-up collisions.
The result (10) may be generalized as follows. The scattering state is 

given by

W  — (pp+(E— Hf—Vf —ie ) - l Vf<p0. (5.3.11)

Suppose now that after the collision we have a particle C  moving quickly 
relative to the remaining particles which may be collectively labelled by D.
Then Vf  = V' + VCD where VCD is the interaction between C  and D, while Vj
is the interaction between the particles o f D. Since C  is moving rapidly rela­
tive to the other particles it is reasonable to suppose that we can neglect 
VCD in (11), which can therefore be replaced by the approxim ate expression

Vfi =* <Pfl + ( E - H / - y } - i e ) - 1 V}ipfi. (5.3.12)

Now ^  +  where Kco is the kinetic energy operator for
the motion o f the centre o f mass o f C  relative to  the centre o f  mass o f  D, hc 
is the internal Ham iltonian o f C, and hc is the H am iltonian for the particles 
D after removal o f the centre o f mass motion. F u rth er =  cp^C$D where 
9 , is a plane wave describing the relative motion o f  the centres o f mass o f C  
and D, while £c and £D are the unperturbed wave functions o f C  and D. 
Since V\f  =  KCD+  hc +  hD we see that (12) can be written

ipp =* <pi£c£d+ [E— (K cd+  he)- (h o +  V/ )  — /e]-1  Vfyiic^D- (5.3.13)

Now V'n  hD+ V r  and involve only the internal coordinates o f the system 
Z), KrD+ h c , and £c  involve only the rem aining coordinates, while 
(KCD+ h c)<p,Sc =  (.E,+Ec)<p^c  where Ec  is the internal energy o f C. Hence 
by Appendix A we have

[£ - (K c D + h c )- (h » - t-  V f)— ie]-1 Vf<pi icSo 
=  { [ £ - ( £ , + £ c) - ( h D+  < p £ c .  (5.3.14)

Since E -(E ,- \ -E c)  is the internal energy E D o f the system D the right-hand 
side o f (14) becomes

{{Ed-  h o -  V f - i e ) - 1 V £  d ) <p£c (5.3.15)

and so (13) yields

W  -  {*D+(,ED- h D-  V f - i e ) - 1 K } |D}99|lc- (5.3.16)
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The expression inside the curly brackets on the right-hand side o f (16) is the 
scattering state produced by the interaction V\ am ong the com posite particles 
o f  D  when the unperturbed state is and incoming wave boundary con­
ditions are imposed. We can call this £D, so that (16) becomes

y f  -  <p£c*b- (5.3.17)

The expression (7) for the transition am plitude can now be replaced by the 
approxim ate expression

T(y. -  ft) ^  I ^/l<Pa>. (5.3.18)

In this approxim ation we neglect only the interaction between the fast 
moving particle C  and the recoil particles D. It should therefore be more 
accurate than the straight approxim ation (y ^ \  Vi \ </;,) ^  (yp\ V; \</%), which 
neglects the interaction between all particles in the final state.

The Born approxim ation is found experimentally to work well for energies 
o f  a few hundred eV or more for electron scattering, and a few hundred keV 
or more for atom ic or molecular scattering.

EXERCISES

1. Show that the Born approximation to the direct scattering amplitude lor inelastic 
collisions of fast electrons with hydrogen atoms is given by

/ d(k/i -  lp )=  — J | ^  Xp (R) exP ( — /N r) ^  , * R | %„(R)exp (ik-r),

where m is the mass o f  an electron and e-/x0|r — R| is the Coulomb repulsion between the 
electrons, if the mass o f the proton can be taken as effectively infinite.

2. Show that the Born-Oppenheimer approximation for the exchange amplitude for 
collisions of fast electrons with hydrogen atoms is given by

f 'X[kn -  Ip) =  | d r  | </R j£ ( r ) e x p ( - /N R )  — "~'K " *’‘(R) cxp </k,r>’

provided the mass o f the proton can be taken as effectively infinite. Hence, or otherwise,
show that

J d r  J d R x?(r) cxp ( - /N R )  R ” 1 x,.(R) cxp (/k-r)
=  J dr  J d R  Xp(r) exp ( —/N R ) r - 1 x„(R) exp (<k*r).

3. Show that the differential cross-section for scattering o f fast electrons by hydrogen 
atoms is given by

</(k/; -  Ip) =  ( vp/ v j [ \ \ f d(kn -  i p ) + f cx(kn -  Ip) |=+ £ j f d(kn -  l p ) - / el(k/i -  lp ) |2]

where/ , , , / «  are as given by Exercises 1 and 2, and v„ and vp are the initial and final speeds 
o f  the electron, provided the mass o f the nucleus can be taken as infinite.
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5.4. TH E D ISTO RTED  WAVE APPRO X IM A TIO N

In the last section we discussed the Born approxim ation for the transition 
am plitude. We also derived the Born series (5.3.5) for the transition am plitude 
T (a  — /?) for direct collisions, which offers a systematic way of improving on 
the first approxim ation. In practice this is not very useful, since the integrals 
increase by 3(N— 1) dimensions a t each successive approxim ation. W e shall 
now consider a more practicable method o f improving on the Born approxi­
m ation, and thus dealing with collisions at lower energies.

We note firstly th a t if  the crude approxim ations Op 9op, f *  =* 95 a are
made in the two-potential form ula (5.1.36) the Born approxim ation (5.3.9) 
is obtained. A less crude approxim ation is obtained from  (5.1.36) if we make 
only the approxim ation \p+ ^  0+. In other words, as we can see from  (5.1.15), 
we regard W i as a small perturbation, but treat t/,. exactly. With this approx­
imation (5.1.36) becomes

T(a <0j | V i -  W { \9V> + <fy- I W { \0+>. (5.4.1)

This is known as the “distorted wave Born approxim ation”, or simply as the 
“distorted wave approxim ation” , since it takes into account the distortion 
o f  the initial and final states (pa and qip by the potentials Ui and Uf . In order 
to  see how it may be applied in practice we will consider some examples.

E x a m p l e  1. Let us consider processes o f  the form

A +  B - + C + D .  (5.4.2)

The particles involved may be elementary or composite. Let us suppose that U, is a func­
tion o f the initial relative displacement r( only, while Ut  is a function o f the final relative 
displacement r, only. For example, we could take

U, =  f  K,(r„ x() | Xn(*<) I2 d x ,  =  U,(r(), (5.4.3)

U, =  J  V f a ,  x,) | xp(x,) |= dxf  =  U fa ) ,  (5.4.4)

where x ( and xf  denote the initial and final internal coordinates. In other words, £/( and 
Uf  could be the static potentials between A and B, and between C and D,  obtained by 
averaging the potentials V, and Vf over the static charge clouds o f A and B or C and D.
Any other potentials will do, provided they are functions only o f  r( and r; . In the present
case ?>a =  (p̂ Xn where, as usual, <pk is the plane wave representing the initial relative motion 
o f  A and B, while H, =  K( +  h( where K( is the initial relative kinetic energy operator and 
hf is the initial internal Hamiltonian. Since a  =  kn (5.1.6) becomes

=  ?>kX»+['E-(K4+ t / i) - h (± / e ] - 1 U,<Pt:X„. (5.4.5)

N ow  K(, Ui and <pk depend only on r,; also h(, depend only on x ( and h,^„ =
Hence by Appendix A

= {'F< + [ £ -  (K< + V.'t*} X*-, (5.4.6)
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but E - E „  =  Eit, and so the term in curly brackets is

rpi + ( £ * -  K ,-  Ui +  i e y ' U f t i .  (5.4.7)

These are, however, the Schwinger-Lippmann states 0£ for the potential U, when the 
unperturbed state is <pk; thus

Oin =  0 i x P (5.4.8)
where

Oft <Pk+(Ek~Ki -  U i± ie)~1Oi<Pk- (5.4.9)

In exactly the same way we can also show that, for the final state, when |8 =  Ip,

0fp =  OrxP (5.4.10)

where

Or = < P i+ (E ,~  K j - U f i i e r ' U m -  (5.4.11)

These expressions show that 0£ is the product o f  the initial internal state /„  and a “distorted 
wave” 0^ which describes the initial relative motion under the action o f  the distorting 
potential U,, outgoing wave boundary conditions being imposed. Similarly Op is the 
product o f the “distorted wave” Of (which takes account o f  the effect on the final relative
motion o f the potential Uf) and the final internal state xP. The solution o f Schrodinger’s
equation for 0k or Of is a 3-dimensional (one-particle) problem only. If this is done (1) 
shows that the problem o f  calculating the transition amplitude is reduced to a quadrature; 
written out using (8) and (10) it is

m „  -  iP) =. <i0,-x, I v, -  w,\<ptXn)+(Qry.P I w,\ ok+*„>. (5 .4 .12)

E x a m p l e  2. Elastic collisions. As a second example we consider direct collisions A 4 B - - 
A +  B in which the internal state o f the colliding particles is unaltered. The arrangement
channel labels i  and / may now be dropped, and the potential has the form V =  U + W .
Since V , -  Wf  =  V — W  — U, (1) simplifies to

T(a - /S )= *  {0p\U\<pa)+ {6 p \W \Q + ) .  (5.4.13)

In this case H, =  Hy =  H0, say, and so and Op are given by (cf. (5.1.6))

0 }  =  <p% +  ( E - H 0- U + i e ) ~ l U(pa , (5.4.14)

Op =  <pp +  ( E - H 0- U - i e ) - 1 Utpp. (5.4.15)

In (13) the first term on the right-hand side is obviously the transition amplitude for 
scattering by the potential U, and the second term is obviously the Born approximation 
for scattering o f  the distorted states by the potential IV.

In the special case discussed in Example 1, U is a function only o f  the relative displace­
ment fj Xf =  r, say, and since the internal states o f  A and B are unchanged (13) becomes

T(kn — In) ^  <0f/„ I U \ %x«) +  (ei~Xn I W I dk Xn) (5.4.16)

where by (9) and (II)
0k+ =  9"k +  (£ k- K  - u + i e ) - 1 U<rk, (5.4.17)
Of =  tp, +  ( E , - K - U - i e ) ~ l U<p,. (5.4.18)

In (17) and (18) K is the relative kinetic energy operator o f A and B. N ow  U  is a function 
of r only, while depends on the internal coordinates only, and (/„  | /„ ) =  1, hence

(OrXn I u  195kX„> =  (Of I u  | <Pi)(Xn I Xn) =  (Of I V I <Pk)- (5.4.19)
QTSP 8
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The expression (16) for the transition amplitude therefore simplifies to

T(kn -  In) =  <0f I U\<pk) +  <0fZn | W \ f)+Xn). (5.4.20)

The first term is the exact amplitude for scattering by the potential U\  the second term is a
first order correction term which takes account o f the remainder o f the potential tV. If we 
make the further approximations 6~ ^  y, and Of ^  <pk in the second term on the right- 
hand side o f  (20) this becomes

! W  | <PiXn)  =  (<p,xn \ V - U \  ) =  (m n  ! v  I ¥**„>-<7>11 U\  <pk)(xn I Xn>

=  W J  V\<rnX*)-(<Pi\(Jin)-  (5.4.21)

Now if U is the static potential the first term on the right-hand side is, since =  x f x
say,

J" dr j dx qs*(r) pk(r) V(r. x) | x„(x) |2 = J dr tpf(r) U(r) <pk(r) = <95, | U  1?y>, (5.4.22)

and so (qitfn I W  I <PkXn) =  0; that is, (20) becomes

T(k/! -• Ip) (0 f  | U | <pk). (5.4.23)

(23) is the transition amplitude for the collision if the interaction potential U  is taken as the 
average o f V over all positions o f  the elementary particles o f  A and B  in the state 
If U  is a better potential than this which depends only on r, the term (<Piy_,! W  \ <pk%̂ ) may 
no longer vanish and the expression obtained by putting 0 f  c* <pu 0£ <pk in (20), viz.

T(kn -  1«) =* (Of | U \< p j  +  (<p,xn \ (5.4.24)

should give an improved result; if we take (20) as our formula for T, we should obtain an
even better result.

E x a m p l e  3. Inelastic collisions. Let us now consider collisions o f the form A ~ B  —- A ‘ B, 
when one at least o f the colliding systems changes its internal state. The decomposition o f  
V now becomcs

U,+ W, =  V =  U ,+  W,. (5.4.25)

U{ may be the static potential initially when the internal state is while Vs may be the
static potential when the internal state is xP- Since by (25) V — Wf Uf and V, =  V, — V,
H, =  Hf H,,, the expression (1) now becomes

T(a  - / } ) = *  (Op | Ur \ n )  +  (0p | W , \ 6 i )  (5.4.26)

where by (5 .1.6)
0 i  =  ?>a +  ( £ - H 0- t / ,  +  /f ) - ‘ t/(<pa , (5.4.27)

Op =  <pp +  ( E — H0— Uf—ie)~' Uftpp. (5.4.28)

If Uj is a function of r only the reasoning o f  Example I shows that (26) can bc written as

T(kn -  \p) -  (0t xP I U, | <f\Xn)+(0i X„ I W, I 0kX«) (5.4.29)

where 6k , Of are given by (9) and (11). In this case they become

0£ =  <pk+ ( E t - K -  Ut +  ie)~l Ui<pk, (5.4.30)

Or (5.4.31)

where K is again the relative kinetic energy operator for A and B. Since U) is a function of 
r onlv

(o r x ,  1 u ,  1 n t i  -  <e r  I v ,  I <p*>(x p i z»> =  o (5.4.32)
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clue to the orthogonality o f /„  and / p. Thus (29) becomes

T(k« — Ip) s* xP I W, ! 0* Xn) (5.4.33)

which is the distorted wave approximation for inelastic collisions when the distorting
potentials Ut and U, depend only on the relative position vector r. (If Ut and Uf are the
static potentials it treats these exactly, but takes account o f polarization effects, for example, 
by a perturbation treatment.) Since V =  Wf +  Uf  wc have

<flrxr i v i Oixn) = <erx, I w, \ o ix J + V r x ,  I u, I ek+x„>; (5.4.34)

but Uf depends only on r, hence

<0,-X, I u ,  I d+Xn> =  <0r I Ut  I »+><&! *„> =  0, (5.4.35)

and so (33) can be rewritten as

T(kn -  Ip) =, <0r3f,  I KI 0+*,,). (5.4.36)

In other words if 6', and Uf depend only on r, the Born approximation

T(kn -  Ip) (cptX, I V I <f kx») (5.4.37)

for inelastic collisions may be improved by replacing the plane waves and <f , in the
expression for the transition amplitude T(kn —■ Ip) by the w aves and t\~ distorted by the
potentials Ut and Uj from <pt and <pt respectively.

EXERCISES

1. Assuming that the mass o f  the proton is effectively infinite, and that the electrons are 
spinless and distinguishable, show that the distorted wave approximation to the direct 
amplitude for inelastic scattering o f  electrons by hydrogen atoms is given b\

f jk /i -  Ip) =  -  J dr J  </R 0±,(r) j£(R) R ^ r 0j*(r) jf„(R),

where e-/xu\ r — R | is the Coulomb repulsion between the electrons and in is the mass o f  an 
electron; Oti, 0£ are the final and initial waves distorted by the static potentials.

2 . With the same assumptions as the previous exercise prove that the exchange 
amplitude for inelastic scattering o f  electrons by hydrogen atoms is given by

/ « ( k» -  IP) =  - - J T -  | dr | <"/R 0i|(R)x*(r) | ——L — - + (£ „ ..£ ,)] 0+(r)z,(R)

where 0£ and Ot\  are the initial and final waves distorted by the initial and final static 
potentials.

3 . Prove that if the spin and indistinguishability o f  the electrons are taken into account 
the exact differential cross-section for inelastic scattering o f  electrons by hydrogen atoms 
is given by

"•<k« -  lp) =  (vr lvJ l 4 1 f -  l p ) + / „ ( k / r  -  l p ) | 3-i- J i f jXn  — l p ) - / eI(k /; -  lp )  |-]

where f d and / CI are the exact direct and exchange scattering amplitudes obtained by 
ignoring spin and the Pauli principle, and v„ and vp are the initial and final speeds o f  the 
free electron.

[Note:  The amplitudes f d and/ „  o f Exercise 3 may be approximated by the expressions 
given in Exercises I and 2. The resultant expression may be further refined if the effect of 
exchange in the initial and final distorted waves is also taken into account. For an account 
o f  this, and references to calculations which have been made by this method, the interested 
reader is referred to the book o f  Mott and Massey (1965).]
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5.5. TH E G ENERALIZED O PTIC A L T H E O R E M

In Section 2.7 we showed that the fundam ental postu late  (2.2.1) led to  the 
unitarity o f the scattering matrix as expressed by (2.7.13). W e further showed 
that the unitarity property expresses the conservation o f probability. The
property (2.7.13) may be expressed in a rather m ore concrete form  as a
relation between the total cross-section and the forw ard scattering am plitude. 
Such a relation is directly verifiable by experiment.

We shall start the derivation by first noting that the unitarity  condition 
S fS  = 1 may be expressed as

Y S L S m/t =  V  (5.5.1)

Since =  S*m this is equivalent to

=  V  (5-5.2)
co

We can express S wv and S  in terms o f the transition am plitudes T(v  — co) 
and T(fi co) by means o f (3.3.19); if we do this and  substitute for the 
results in (2) we get

X  [bm +2nib(Em- E v) T \ v  -  ©)]X

X[bmli-2 n ib { E m- E IJ)T ( f i  -  co)] =  8mv (5.5.3)

which simplifies to

2nib(EM—E p)T*(v  — /.i) — 2mb(E,,—E /I) T(/j — v)

=  -  (2n f  X  b(Em- E v) b(Eoj- E :l) T(/, -  co) T*(v  -  co). (5.5.4)
a>

N ow  b(Ew- E ^  b(Ea - E M) = b(EM- E v) b(Em- E M), and  so both sides o f (2) 
contain the factor b(EM—E v) = b(E„—E fl). It follows th a t the quantities 
multiplying b(EM- E ,,) must be equal when Efl =  £„; hence if  £,, =  E v,

i[T*(v -  -  v)]

= - 2 m  X  b{Em—E^) T([i -  co) T \ v  -* co). (5.5.5)
U)

In particular, i f  /u = v,

Im T(v  -  v) =  - n  X  b(Em-E„) \ T (v  -  co) |2. (5.5.6)

This is the generalized optical theorem  expressed in term s o f transition 
amplitudes.
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Let us now express (6) as a relationship between the cross-section and 
forward scattering am plitude. To do this we note from  (5.1.1) that

T (x  -  p) =  ( - / i 2/4 ^ V /) / ( *  -  0) ' [(5.5.7)

and hence in particular

T (x  — sc) =  ( —A2/4.t:2iu ,) / ( a  -  a).] (5.5.8)

Since when v = a  (6) can be written

Im T { x  — a) =  — 7t £  b (E p -E T) \ T (a  — /?) |2 (5.5.9)
P

we obtain

( — trjAn-ui)  Im  / ( a  -* a) =  a  £  | T («  -  /?) |2. (5.5.10)

If we multiply this by 16.t:3/iJh2k  and use (3.8.9) we obtain the im portant 
result

(J = Im / ( a  — a)
K

(5.5.11)

which is the prom ised relation between the total cross-section a and the 
imaginary part o f  the forward scattering am plitude / ( a  — a).

E x a m p l e . The Born approximation. According to the Born approximation (5.3.9) the 
forward transition amplitude is given by

T(a  -  a) =* <99a | F, | pa>. (5.5.12)

Written out more full) this is

7 \a  -» a) ^  J</r, J</Xj F,(r„ x,) | ^ (r j, x() |2. (5.5.13)

Since Vt is usually real this is real, and hence so is the forward scattering amplitude 
/ ( a  — a); hence (II) im plies;/ =  0! W e must, however, remember that (5.3.9) is an approx­
imation, and (II) has only been proved to hold for the exact cross-section and forward 
scattering amplitude. Since (11) was deduced from the unitarity o f  the scattering matrix, 
which expresses the conservation o f  probability, this means that the Born approximation 
does not conserve probability (or particles). Approximations have been developed using 
the so-called “reactance matrix” which are, in fact, consistent with ( 1 1 ); these approxima­
tions are, however, beyond the scope o f  the present book (M ott and Massey, 1965, p. 371).

5.6. T H E  FRA N CK -CO N D O N  PR IN C IPLE

We shall now discuss collisions o f  the form

A + M  -  A  + M  (5.6.1)

where A  is an elem entary particle and M  is a diatom ic molecule. F or the 
m om ent we shall neglect any com plications which arise if A is identical
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with any o f the elementary particles o f M .  Since (1) is a direct collision we 
shall also be able to drop all arrangem ent channel indices.

Before the collision the state o f the system may be described by the wave 
function </km. given by

<phnv(r, R , q) =  (pk(r) x„(q | R) /;„(R) (5.6.2)

where is the initial electronic wave function, rjv is the initial vibrational- 
rotational wave function, r is the displacement vector o f  A  relative to  the 
centre o f mass o f M ,  R is the relative displacement vector o f  the nuclei o f M ,  
and q the remaining coordinates (electron position coordinates and spin) 
The other symbols have their usual meaning. In this notation the quantum  
numbers n label the electronic state o f the m olecule, while the quantum
numbers v label the vibrational-ro tational state. The notation %n (q l R) is
used to indicate that y_n depends param etrically upon R (Schiff, 1955, chapter 
XI). In this case the internal coordinates are the com bined coordinates (R, 
q) while the initial internal state has been replaced by the product xnVv- 

After the collision we can assume that the quantum  numbers knv  are 
replaced by the quantum  numbers 1pw  which describe the new state o f 
relative motion and new state of the diatom ic molecule M , so that (2) is 
replaced by

ftpH-fr, R, q) =  9n|(r)Xp(q| R)»7M,(R). (5.6.3)

We will now obtain an approxim ate expression for the scattering am plitude 
f ( k n v  — 1/w).

According to (5.1.1) the scattering am plitude is given by

f ( k n v  -  Ipw) =  ( - | V | i/£„v) (5.6.4)

where // is the reduced mass o f A and M ,  and V  is the interaction between 
A and M.  The scattering state y>£nr is defined by

Vknv =  + (-£-- H +  /e)“ 1 V(pkm, (5.6.5)

=  ipkOT +  C E - H o - P + te ) -1  V<fk,,v (5.6.6)

w'here the unperturbed Ham iltonian H0 has the form

Ho =  K,.+ KrH-------—— b hr ; (5.6.7)
y.oR

in (7) Kr and KR are the kinetic energy operators corresponding to the rela­
tive displacements r  and R, Z \  and Z 2 are the atom ic num bers o f  the nuclei 
o f the molecule, hf is the H am iltonian for the m otion o f  the electrons o f  the 
molecule relative to the nuclei, and xo is the dielectric constan t for free space.
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We shall now find an  approxim ate expression for the scattering state ykHl, 
based on the Born O ppenheim er separation process (Schiff, 1955, chapter 
XI). Let us imagine the nuclei o f  the molecule frozen at the displacement R. 
The molecule will have an electronic energy En(R), and we can consider the 
scattering o f  A  by the molecule M  if M 's  nuclei are fixed. The unperturbed 
Ham iltonian for this process is

H0 =  Kr+ h „ (5.6.8)

the interaction is still V, while the energy is Ek + En(R)  where E k is the energy 
o f A relative to M .  The unperturbed state is r/k„ where

<pk„(r, q | R) =  <jTk(r) x„(q ; R), (5.6.9)

and depends param etrically upon R. By definition

Vk« =  <iun+[Ek +E„(R)-H '0 - K-f-z'f]-1 Kqok„, (5.6.10)

and since Hq</kn =  [£ \ -+-£■„( /?)] 9 k„ we deduce that

[Ek + E n(R) — Hq— V +  if] vk„ =  i£fkn• (5.6.11)

If we substitute for H0 from  (8) into (1 1) we get

[Ek + E n(R)~  Kr— hP— V + ie] vk„ =  itrpkn. (5.6.12)

Let us now consider y>£,Vv From  (7) we see that

Z\Zoe-
( E - H 0- V  + ie)y)£nr)„ = E — Kr — Ks

y-oR
V +  if VknVv (5.6.13)

In the Born-O ppenheim er approxim ation it is always supposed that the 
electronic wave function varies slowly with the nuclear coordinates R. In the 
spirit o f this approxim ation we shall assume that this applies to the state 
’Pkn a lso ; for it is analogous to  the molecular electronic state, since it is 
calculated with M 's  nuclei fixed, and obviously depends parametrically 
upon R. If we make this assum ption KRyk'H can be neglected, and so (13) 
becom es

( E — H0— V + if )  y+nr)v

Z i Z 2e2
{[E - K t - K - V  + ie] v Zn}rh,- ,pZn 

and by (12) equation (14) can be written

( E — H0— V +  if) V’k„»?r

{[E - E k - E„( R)] v’k„ +  itrpkn} Vo -  Vk„

Kr

K r

xo R

Z]Z»e*
r.u R

Vv (5.6.14)

Vv (5.6.15)



From  (2) and (9) we have = y km, hence (15) can be rearranged to  give

( E - H o - V + i e ) v £ t b
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= n,n E —E k —E n(R )— Kr - Z lZ '2e'
y.n R

rjv \ + iecpknB. (5.6.16)

Now rjv is the nuclear wave function, and so satisfies the nuclear wave 
equation

Z  1
Kr +  £„(/?) +  -

y.o R
yjv — E nvY]v. (5.6.17)

Here Env is the total energy of the molecule, hence E  =  E k+ E nv, o r E —E k 
=  E nv. The first term on the right-hand side of (16) therefore vanishes, and 
so (16) becomes

( E - H o — V + i e ) ^ ^  =  iscpknv. (5.6.18)

Since H0? km) =  Eknv<pkm = E<pknK this can be rewritten

( E -  H o -  V + ie) ipknr]v = ( E —Ho—V+ie)q>knv+V’<pkmi> (5.6.19) 

and if we operate on (19) to  the left with ( E -  Ho— K +i'e)-1 we obtain

VknVv =  <pknv+(E— H0— K + ie )-1 V(fkm- (5.6.20)

If we com pare (20) with (6) we see that we have obtained the approxim ation

fknv “  VinVv (5-6-21)

The scattering am plitude now follows by substitution o f  (21) into (4); if 
we do this we get

/(k m ; -  1pw) = ( —4iz2(i/ ft2)(g>ipw \ V  \ (5.6.22)

If  we substitute for cplpw in (22) from  (3) we obtain

f ( k n v  -  1pw) =  ( — 4,-r2// Ifi'1)((fi\/pt}„ | V  | f\r]v)-  (5.6.23)

Now the scattering am plitude f ( k n  — lp \ R) for the scattering o f  A by the 
fixed nuclei o f M  is given by

f ( k n  -  Ip | R) =  ( - 4 | V  | <„> (5-6.24)

and obviously depends param etrically upon R. (24) gives the am plitude 
when A's  relative m omentum is changed from fik to h\ while the electronic 
state of M  is changed from  y_„ to  %p, its nuclei being fixed at relative displace­
ment R. It follows from  (23) and (24) that

f ( k n v  — 1 pw) =  J  »?*(R)7]v( R ) / ( k/i -  Ip | R) c/R (5.6.25)
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An immediate corollary from  (25) is that the scattering am plitude depends 
on the overlap between the initial and final vibrational states if there is no 
overlap there is no scattering. In terms o f the potential energy diagram of 
the molecule (Fig. 5.1) it means that transitions between ground vibrational 
states which take place in nature must be “ vertical” , not diagonal— a result

F i g . 5.1. The Franck-Condon principle. In each diagram the lower curve represents the 
nuclear potential when the electronic state is ■/,„ while the upper curve represents the 
nuclear potential when the electronic state is y_v. In (a) the transition is vertical, and so there 
is plenty o f  overlap between »/„ and ?j„, giving a high probability o f the transition taking 
place. In (b) the transition is diagonal, giving negligible overlap between »/„ and rj„, 
and so there is negligible probability o f  a transition taking place. In (a) a transition from rj, 
to a higher vibrational level is more likely to take place if the uppercurve is displaced to 

the right or left to ensure maximum overlap o f  the vibrational wave functions.

known as the “ F ranck-C ondon principle” . If  one or both o f  r/v and r)w 
represent excited vibrational states transitions which are not vertical may 
take place (Fig. 5.1a).

The energy condition for (24) to  be valid is

Ek+E„(RC) — E ,+ E p(R e) (5.6.26)

when R =  Re, the distance o f  the nuclei from each other in the equilibrium 
position (Fig. 5.1a). If initially and finally the molecule has low v ibrational- 
rotational quantum  num bers, we shall have En( R ) + Z 1Z.1e -R ~1y ~ l ~  En 
and Ep(R e) +  Z 1Z 2e2R ~ 1x ~ l ^ E pw. Hence adding Z xZ . f 2R ~ xy.u 1 to  both 
o f  sides (26) we get

Ek+E„v — E /+ E pw, (5.6.27)

ihe energy condition for the actual collision. If the difference between the
vibrational energies is significant the energy conditions are inconsistent, and
the validity o f  F ranck-C ondon principle is then in doubt.
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EXERCISE

Show that (25) still holds if  (i) A is an electron, or ( i i) / l  is identical to one o f  M ’s 
nuclei, or (iii) A is a composite particle some o f whose elementary particles may be e lec­
trons, or identical with one or other o f  the nuclei o f  M ,  provided the exchange am plitudes 
for the collision (I) are much smaller than the corresponding direct amplitudes.

5.7. CO LLISIO N A L D ISSO C IA TIO N  O F  D IA TO M IC 
M O LEC U LES

We shall now consider collisions o f the form

A + M  — A + M i  +  Mo (5.7.1)

where A  is an elementary particle, M  is a diatom ic molecule, and M i,  
are two atom s. We shall assume for the m om ent th a t A is distinguishable 
from the elementary particles o f M ,  and tha t the nuclei o f  M  are distinguish­
able. If any of these assumptions are not valid for example, if A  has struc­
ture the argum ents which we shall present may be easily modified.

The initial state is o f the last section, given by (5.6.2). A fter the 
collision we have an atom  M i,  nucleus jVi, whose centre o f mass moves with

F ig . 5.2. The final state for the collisional dissociation o f  a diatom ic molecule by an ele­
mentary particle A. After the collision the molecule M  has dissociated into two atoms 

and A/2, whose centres o f  mass approximately coincide with the nuclei TV, and N 2.

wave vector y, relative to the centre o f mass o f  the second atom  M 2, nucleus 
No- We shall take the nuclei N i  and N 2 as the centres o f  mass o f  the two 
atom s, and denote by R the displacement vector o f  N i  relative to  N 2 (Fig. 
5.2). The final relative motion o f  the centres o f  mass is therefore the final 
relative motion o f  the nuclei, and described by the wave function (px{R ) =  
(2tt)~3/2 exp (/x«R). The motion o f A  relative to  the centre o f mass o f  M ,  
and M y  may be described by ^(r) =  ( 2 n )~ 31- exp (/l*r), where r is the 
displacem ent vector o f A relative to the centre o f mass G o f N i  and No.
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Let us suppose that M  possesses n electrons, M \  possesses m  electrons and 
M-> possesses n — m  e lectrons; let us further denote the electrons by 1, 2, . .  
m + 1 , . . n. A possible final state is then

where M i  consists o f N i  and electrons 1 to m  with internal wave function 
y}p), while M z  consists o f  N i  and  electrons m + 1 to n w ith internal wave 
function y®),. Initially all the electrons are attached to M ,  and so the number 
Mi  o f perm utations o f  electrons which perm ute electrons within the same 
composite particles is n\  F inally , m  electrons are attached to  M i  and n — m  
electrons belong to so the num ber My o f perm utations o f electrons which 
do not interchange electrons between the com posite particles M , and Mo is 
m l (n—m)\ Consequently it follows from  (5.1.1) and (4.5.26) tha t the dis­
sociation am plitude fQanv  — S \p 'p")  is given by

where Vp goes over all distinct final states P o b t a i n e d  from  by per­
m utations P of the electrons, including 9^ itself. In (3) Vrf 'K the sum o f the 
three interactions between A  and the two atom s o f the state P ^ , bf  is the 
parity  o f P, and fi = //, the reduced mass o f  A  and M  (which is also the reduced 
mass jUy of M  and M i + M  >).

We saw in Section 5.2 th a t a dissociative collision o f the form (1) may be 
treated as direct, so that Vf  = V, =  V  where V  is the interaction between A 
and M ,  and therefore the in teraction  o f  A  with M i  and M->, provided the 
final state is taken as the p roduct o f  cpt with a continuum  state possessing 
incoming wave boundary  conditions. We therefore have

<Pfi = (5.7.2)

J \k n v  S \p 'p"x)  —
' m \(n —m )\  ~|1/2 / 4‘7r° \

( ----- | r - ] I / t y pWl V*f\ v£*> (5-7.3)

(5.7.4)

where
Xphpp-  ~  P [ $ )X$i]<P*+ incom ing waves. (5.7.5)

If we substitute from (4) into (3) we obtain

/(k m ; -  S \p 'p "x )  =  ( -  W ^ Y y a w p "  I y  I ViU> (5.7.6)
where

m\(n — m)\  1 1/2
(5.7.7)

From  (5) and (7) we see th a t

m H n— n i )̂  ~i 1/2
Unpp" ~  <Px — :— j------ 1  X ' dt‘p['fy)y$>'] + incoming waves (5.7.8)

R —P-OO • p
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Let us assume that the B orn-O ppenheim er separation process is applicable 
when the nuclear states lie in the continuum . It may then be possible to  form  
a linear com bination o f molecular electronic states yp which has the asym p­
totic form

~n\

1/2
I '  m i W P ]  ~  (5.7.9)
p R —*-oo p

Such a state is obviously normalized. We can then take as the appropria te  
expression for

7.s*p'p" =  Z  api prf/>~ (5.7.10)
P

where is a continuum  nuclear state for the potential curve generated 
by yp which satisfies the asym ptotic condition

Vxp)~ ~  <pH-(-incoming wave. (5.7.11)
R —► co

It then follows from  (9) to  (11) tha t the asym ptotic condition (8) is satisfied.
The dissociation cross-section for the process <pkxpVv — *s then

obtained by integrating the differential cross-section over all energetically 
allowed x. With the approxim ation (5.6.21) and certain other approxim ations 
this integration can sometimes be carried out using the closure relation

C =  d ( R - R ')  (5.7.12)
V

fo r the complete set o f continuum  nuclear states corresponding to
the electronic state yp.

5.8. CO LLISIO N A L D ISSO C IA TIO N  O F IO N IZ E D  H Y D RO G EN

M O LECU LES

In this section we suppose that the diatom ic molecule M  considered in 
the last section is an ionized hydrogen molecule. In o ther w ords we shall 
consider dissociative collisions o f  the form

A + H£  — /1 +  H + H  + . (5.8.1)

We shall assume initially that the ion is in its 1 sag state, and  has 
v ibrational-rotational wave function r]v, while A  (which we shall take as 
elementary) has m omentum hV. relative to  the centre o f  mass o f  the ion. The 
initial state is therefore represented by the wave function

<pa(r, R . q) =  y k(r) & ,(q! R) rjy {R) a r(12) (5.8.2)
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where r  is the position vector o f  A  relative to the centre o f mass of the H j  
ion, R is the relative displacem ent o f  proton 1 to proton 2 o f the H.^ ion 
(Fig. 5.3), q denotes the coordinates o f the electron, %g(q | R) is the wave 
function o f the I sag state o f the ion, and a r( 12) is the initial spin function 
for the protons. A will be assumed to  be a spinless atom ic nucleus. The spin 
function o f  the electron will not be affected by the collision, and may there­
fore be ignored.

In the final state we shall assume that the hydrogen atom  is in its ground 
state with proton 2 as nucleus, while proton 1 has m om entum  fix relative to 2 
(Fig. 5.3). If A  then has m om entum  #1 relative to the centre o f  mass o f the

I (H+)

F i g . 5.3. Coordinates o f  the A — H+ system discussed in Section 5.8.

fragm ents o f  the ion while %0(2) is a ground state hydrogenic wave function 
based on 2 as nucleus the final wave function is

<Mr , R, q) =  <Mr) Zo(q! 2)<p»(R)aJ(12) (5.8.3)

where a , is the final spin function o f the protons.
The only final state distinct from  <pp, and obtainable from it by permuting 

the pro tons, is

9‘p/s =  P<pp =  <pi(r)j£o(ql l)g>„(-R )a,(21)

=  <Mr ) Xo(q I 1) gp—̂CR) a.t(21). (5.8.4)

In this sta te  1 is nucleus of the hydrogen atom , and has momentum — fix
relative to  2.f The num ber o f perm utations M t o f protons in the initial state
which perm ute protons within the same com posite particle is two, and the 
corresponding num ber M f  in the final state is unity. Since protons are fer- 
mions (4.5.26) gives

/ ( a  -  W )  =  2 - 1« [ / ( «  -  / ? ) - / ( «  -  Pft)]. (5.8.5)

Now (f Pfj differs from  by an interchange o f the protons, which both 
belong to  the same com posite particle H 2+ in the initial state. Hence (4.6.7)

f rppp is, o f  course, experimentally indistinguishable from yp.
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implies / ( a  — P/?) =  — / ( a  — /?), and so (5) simplifies to

/ ( a  -  W )  =  2 W /(«  -  f t-  (5.8.6)

The am plitude/(a  — /?) is given by (5.1.1) where =  //,. =  //, the reduced 
mass o f A and the ion or A  and the system H +  H + . Since =  Q f(E y p a 
where Q f  (E) is the wave operator for the initial arrangem ent channel we 
obtain

f { x  - / ? )  =  ( - 4 n ^ h - % < p e \ V f Qt(E)\<pa)

=  ( - -)/m d2)<pKocs( 12) | V f Q t ( E ) |  q k/ grlva r(l2))  (5.8.7)

by (2) and (3). Since K^-and £?,+(£ ) do not involve spin the spin functions 
factor out and (7) becomes

/ ( a  - *  /S) =  ( -  4 n 2/ ^ - 2)  < 5 „< ( ;,^ o (2 )  <pK | V j Q t ( E )  I W g V v )

= ( ~ 4 j i2iuti-2) 5 rs(<plx({2)<pK\V f \y)£gv), say. (5.8.8)

In (8) the state ip£gv — Qf(E)<fkygr]v is the initial scattering state with o u t­
going wave conditions.

As we saw in Section 5.2 the collision (1) m ay be treated as direct if  the 
final state o f the product proton and atom  is taken as the scattering state 
'Uo(2) which describes the final relative motion o f  p ro ton  1 and the hydrogen 
atom  based on 2 as nucleus. It is defined by

Jft(2) =  rP*%o(2)+ [ E -  KR-  h (2 ) -  U - i e ] ~ i  U<pHyA2) (5.8.9)

where h(2) is the internal Ham iltonian o f the hydrogen atom  and U the 
interaction between H and H +. As R  — °° the function %^{2) behaves as 
(f xy0(2) plus incoming waves. Hence from  (8) we obtain

/ ( a  -  0) =  ( - 4n2̂ h ~ 2) drs(W ^ 2 )  | V \ xp+J (5.8.10)

where V = Vi is the interaction between A  and the H ^  ion, which is also 
the interaction between A  and the system H -f H + in the final state (Fig. 5.3).

The only electronic state o f the H J  ion o ther th an  the 1 sag state which 
leads to a hydrogen atom  in its ground state in the separated atom  position 
is the 1j<tu state. We have denoted the wave function o f the 1 sag state by
%?(q | R), and so we denote the wave function o f  the \sau state by x„(q | R).
The functions yg and -yu have the asym ptotic form s

U  ~  2 -M zo(D + Z o(2)], (5.8.11)
R —► OO

Xu ~  2-V*lZo(l)-Zo(2)], (5.8.12)
R —*• oo

and so
yg-y.u  ~  21/2*0(2). (5.8.13)
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It follows that there is only one linear conbination of molecular states which 
behaves as 95̂ 0(2 ) +  incom ing waves as ft — «=, and this can therefore be 
taken as 3̂ ( 2 ); the expression is

y-0(. 2) =  2-*/*[*, j £ - - - / u7 / r i  (5.8.14)

where r/®- , r]“~ are the continuum  nuclear states associated with the potential 
energy curves generated by the 1.kt and \sau electronic states respectively 
(Fig. 5.4), and which behave as <pK plus an incoming wave when ft — °°.

If we insert (14) into (10), and then the resulting expression for / ( a  —■ /3) 
into (6), we get

/ ( a  -  Sp) = — A n - f i tr -  6r,(<pi(xtr & - - x uv i~ )  \ V I </&„>• (5.8.15)

Let us define the scattering am plitudes f ( k g v  I gx)  and f ( k g v  ->■ lux)  by

/ ( k g ®  -  1 gx) = -47z2[ifi-2(tp,xg7;*- | V \ y)+gv), (5 .8 .16 )
f(kgv  -  1 ux) = \ V I V’Z J .  (5 .8 .17 )

Equations (2) and (3) show th a t x and may be written more fully as kgvr 
and lo w  respectively; hence, w ith the aid o f (16) and (17), (15) may be written

/ ( k g v r  -  J lo xs)  = d „ [ f ( k g v  -  l g x ) - f ( k g v  -  1m*)]. (5.8.18)

On the left-hand side o f  (18) we have the scattering am plitude for the 
process which takes an ion from  the electronic 1 sag state, vibrational-
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rotational state r]v, and spin state ocr, into a state in which a  proton has m o­
mentum fix relative to a hydrogen atom  in its ground state xo, the spin state 
o f the protons being a s. On the right-hand side o f (18) we have a facto r brs, 
showing that the spin state o f the protons is unaffected by the collision. We 
also have the scattering am plitudes f ( k g v  — lgx) and f { k g v  — 1 ux). The 
first am plitude describes a transition to a continuum  nuclear state on the 
1 sag nuclear potential energy curve (Fig. 5.4); it therefore describes a  process 
by which the diatom ic molecule dissociates through nuclear excitation. The 
am plitudef ( k g v  — lux)  represents a process by which the diatom ic molecule 
dissociates via excitation o f the repulsive 1 sau electronic state. E quation  (18) 
implies that the differential cross-section ff(kgw — M oxs)  for the process is

cr(kgw — Sloxs) = drs\ f ( k g v  — l g x ) - f ( k g v  — \ux)\K  (5.8.19)

The observed differential cross-section is obtained from  this by summing 
over the four final spin states and averaging over the fou r initial ones. The 
effect o f this is to remove the factor brs.

Suppose instead o f using (14) as final state o f the H +  H + system we had 
used

2 - ll2[xgrf--H+7.uVu-l.]- (5-8.20)

Since rf~H and jj“~ ~  <p_H as R — while %g and y_u obey the asymptotic 
conditions (11) and (12), we see that

2 - 1/2[ ^  +  M “_-] ~  Zo( 1)9>_„. (5.8.21)
R —► oo

Such a choice o f final state describes a situation where, after the collision, 
the atom  on 1 as nucleus is observed to  have m om entum  — fix relative to the 
proton 2 (see Fig. 5.3), so that the proton has m om entum  fix  relative to the 
atom . This represents the same physical situation as previously, and so an 
alternative expression for the cross-section is therefore obtained from  (19) 
by replacing the difference o f the am plitudes by a  sum, and x  by — x \  this 
yields

ff(kgi.r -  M oxs) = < 5„|/(kgr -  I g -  x)-\-f{kgv  -  \ u - x ) \ - .  (5.8.22)

It follows immediately from (19) and (22) that

2 Re [ / ‘(kgi- -  \ g - x ) f ( k g v  -  \ u - x ) ]

=  — 2 Re [/* (kgu  — lg x )/(k g v  — \ux)\ (5.8.23)

so that the interference term in (19) or (22) is antisym m etric in x.

The dissociation cross-section ad(o) for production o f  a hydrogen atom in 
its ground state is obtained by inserting (18) into (3.8.11) w ith the summation 
over [i replaced by a summation over s  and integration over all I and x. Siice
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Hi =  //y =  ;U we obtain

ad{o) =  fi2([ik)~l J  d I J d x  b(Eiox- E kgv)\ f ( k g v  -  \ g x ) - f ( k g r  -  \ux)\-

(5.8.24)

where Ek =  £ A.+ £ ?l. isthe initial energy o f the system, and Elox =  El+ E a+ E x 
is the final energy. W e note that od(o) is independent o f the spin state o f the 
protons. The quantities Ek and Et are the initial and final kinetic energies 
o f  A relative to the centre o f mass of the Hi; ion or the H + H + s y s t e m , i s  
the final relative kinetic energy of the proton and atom , and - E 0 is ^the 
binding energy o f  a hydrogen atom  in its ground state. Since the interference 
term in (24) is antisym m etric in x  it vanishes on integration over x,  and so 
(24) reduces to

ad{o) -  h ' i / i k ) - 1 j  d\ j  d x  d(Elox- E kgv) \ f ( k g v  -*■ \g x ) |2

+ h \ fx k )~ 1 J  d\  J  d x  d(Eiox- E kgr) \ f ( k g v  — lux ) \2. (5.8.25)

We can therefore evaluate the dissociation cross-sections for nuclear and 
electronic excitation, and add the results to obtain the total dissociation 
cross-section.

In the spirit o f  the Born Oppenheim er separation process we now make 
the approxim ation (5.6.21) for f ^ gl.- On doing this (16) becomes

f ( k g v  -  Ig x )  -  J  >fM- *(R) ^ ( R ) [ - 4 I  V  | f \ ) ]  dR  (5.8.26)

where yi£ is the scattering state with asym ptotic boundary condition y k%g 
+  outgoing waves when the protons are frozen with relative displacement R. 
The term  in square brackets on the right-hand side o f  (26) is therefore the 
scattering am p litu d e /(k #  — Ig | R) for elastic scattering o f  A  by the molecule 
when in the electronic state %g, the protons being frozen with relative 
displacem ent R. We can therefore replace (26) by

f { k g v  -  1g x )  = J  7tf-*(R)??,-(R)/(k£ -  \ g \ R ) d R .  (5.8.27)

Similarly (17) leads to

f ( k g v  -  Iux)  =  j  i£ -* (R ) rjv( R ) f ( k g  -  1 u | R) d R  (5.8.28)

where f ( k g  — 1;/1 R) is the am plitude for inelastic scattering o f A by the HZ  
ion when the electronic transition 1 sag — [sau takes place, the nuclei being 
frozen w ith displacem ent R.

Let us pu t

°d{g -  g) =  h \ n k ) ~ x j  d\  J  d x  d(Elox- E kgv) \ f ( k g v  -  \g x )\2, (5.8.29) 
ad(g — u) = f i \ n k ) ~ v j  d\ J- d x  b{Eiox- E kgv) \ f ( k g v  -* \ux) \2. (5.8.30)

QTSP 9
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The quantity ad(g — g) is the dissociation cross-section via nuclear excitation 
only, and ad(g — u) is the dissociation cross-section via electronic and nuclear 
excitation. It follows tha t (25) can be written more simply as

oAo)  =  (Td{g -  g)+(*d(g »)■ (5.8.31)

We shall now evaluate ad(g — g) by means o f the expression (27). Inspec­
tion o f (27) shows tha t /(kgt> — \gx) decreases as *. increases due to  the  
increasing oscillation o f ifM~ in the integrand. Let us therefore suppose th a t 
the main contribution to ad{g — g) in (29) comes from  the part o f the in teg ra­
tion where x is very small. If  * is very small E lox — E ,+ E 0+ E x =* E l+ E a =  
E lo, and so from  (29)

od(g — g) =* h X itk ) -1 j  d\ J  d x  d(Elo- E kgv) \ f ( k g v  -  1 g x )  |2
= W if ik ) -1 J  d\ d(Elo- E kgv) J  d x \ f { k g v  -  Ig x )  |2. (5.8.32)

Now from  (27)

J  d x \ f ( k g v  -  \g x ) \z -  J  d x  j  dR»7*-*(R)r?0(R)/(kg -  lg | R)x
X j  d R  rg~(R) r,t(R ') f* (kg  -  1 g  | R'). (5.8.33)

The closure relation for the complete set o f nuclear states r]w, rfH~ associated 
with the electronic state %g is

f d x r g r \ R)rjj{-(R ')+  X ^R ^R ') =  a(R-R') (5.8.34)
W

where goes over the bound nuclear states. If  we apply (34) to  (33) to 
integrate over x  we obtain

J d x  | f ( k g v  -  I g x )  |2 =  J d R  17j„(R) I21 f ( k g  -  1 g  | R) |2
- ^ \  j  dRr,:(R )r ,v( R ) f ( k g  -  l g |R ) |2. (5.8.35)

W

By (5.6.25) the general term  o f the sum is the square o f  the modulus 
o f  the scattering am plitude for the nuclear transition rjv — r)w w ithout 
electronic excitation; thus (35) can be written

J  d x \ f ( k g v  -  lg x ) |2
=  J  d R  | ^ (R )  |21 /(k g  -  l g |R ) |2-  £ | / ( k g »  -  1 gw) |2. (5.8.36)

W

I f  we insert (36) into (32) we get

<yd(g -g) = J dR I ,h(R) I2 j  d\ b(Et0-Ekgv)\f{kg — lg | R) I2
-  £  f i \ i ik )~ '  J  dl d(Elo- E kgv) \ f ( k g v  -  1 gw) |2. (5.8.37)

vv

Now E lo—E kgv =  E l+ E 0—E k- E gl„ and Ea- E gv is the dissociation energy
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D v of an H+ ion in the state %gVv (Fig- 5-4). If this is negligible compared with 
E k we can pu t E lo—E kgv =* E,—E k in the first term. It also follows that 
E ,+ E a E ,+ E gw — Elgw if Ea—Egv, the dissociation energy o f an 
ion when in the state %/]„, is negligible com pared with E,. With these 
approxim ations (37) becomes

<Td(g -* g) =  J  d R  | J7„(R) I2 J  d \ b ( E , - E k) \ f ( k g  -  l g |R ) |2
-  £  J  d\ d(Eigw- E kgv) \ f ( k g v  -  Igw) |2. (5.8.38)

YV

In other words the contribution to the dissociation cross-section due to 
nuclear excitation only is made up o f two parts. The first part is the cross- 
section for elastic scattering o f  A  by th e H ^  ion, when its nuclei are fixed, 
averaged over the nuclear probability function | ^ t,(R) |2. The second part is 
a subtraction o f the cross-sections for the process A + H *  — A + H?  when 
electronic excitation does not take place. !t is a subtraction o f the terms 
representing scattering w ithout electronic excitation, and with or w ithout 
excitation o f  bound vibrational-ro tational states o f  the molecule.

The expression (30) for the dissociation cross-section ad(g  — u) via ex­
citation o f  the \agu state may be similarly simplified. From  Fig. 5.4 we see 
tha t, due to  the negligible overlap ofr)“~ and rjv, excitation does not take place 
if E  <  Ek , where E K is the repulsive potential energy o f the protons at the 
equilibrium separation Rc o f  the protons. Assuming that the cross-section 
drops ofT rapidly as * increases beyond K, we can replace EUo by E lKo =  
E ,+ E k + E 0. Also Ekgv = E k+ E0—Dv, where D v is the dissociation 
energy o f the H f  ion when in the state xgrjL„ Equation (30) now becomes

°u (g  — w) ^  h-{f tk)~v J d \b ( E /+ E K + D v- E k) j  d x \ f ( k g v  -  \ux)\~.

(5.8.39)

Since the electronic state %u is repulsive, there are no bound nuclear states, 
and so the closure relation (34) is replaced by

J  d x  R ') =  <5(R -  R')- (5.8.40)

Substitution for f(kgi< — \ux) from  (28) into (39) and use o f (40) now 
yields

v j ( g  — n) =“ h \ f i k ) - 1 J  d\ b (E ,+ E K + D v- E k) x
X J r f R |» f o ( R ) |* |/ ( k * -  Ih |R )|* . (5.8.41)

Hence the cross-section for excitation o f the repulsive electronic state must 
be averaged over all displacements R o f the fixed nuclei with weight function 
| tj„(R) I2. Equation (31) shows that the dissociation cross-section is just the 
sum o f the  cross-sections for dissociation through nuclear excitation and 
through excitation o f  the redulsive lser(( state.
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We can also note that, if  Eg{Re) and E u{Re) are the values o f the electronic 
energy in the lrog and 1 sau states when R  = Re, then Eu(R e) —Eg(R c) is the 
difference between the nuclear potential energy curves for the two electronic 
states at the point R  — R e. F rom  Fig. 5.4 this is EK+ D V, and so

E i+ E u(R e) —E k —Eg(Re) — E i+ E k + D v—Ek ■ (5.8.42)

We can therefore rewrite (41) as

<td(g -  u) =* J I %(R) \2fi2(/.ik)~l X
X J  dl b[E ,+Eu{ R ) - E k - E g{ R ) \ \ f ( k g  1»| R) I2 (5.8.43)

if we use the fact that jj„(R) =* 0 unless R  =* R c. In this form  we see more 
clearly that we can obtain the cross-section au(g — u) for dissociation via 
excitation o f the repulsive electronic state 1 sau by fixing the nuclei a t relative 
displacement R, calculating the cross-section for excitation o f the \sau state, 
and then averaging the result over all relative displacements R.

EXERCISE

Show that the results o f this section remain valid if  A is a proton or electron provided 
exchange between A and the ion can be neglected. Show also that the results remain 
valid if  A has structure provided exchange between any protons or electrons o f A and the 
H2+ ion can be neglected.
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APPENDIX A

S u p p o se  / ( Ha, H,,) is a function o f two commuting Hermitian operators
Ha and H6, and | tp) is a state vector such that Ha | y )  =  a  | ip) ; then

/(H „H 6)|V> = /(« ,H 6)|V>. (Al)

Proof. Since Ha and H6 are two com m uting Herm itian operators they have 
a complete set o f  common eigenvectors | where

Ha | a'/?') =  oc' | a'/S'), H* | a '/? ') =  /?' | a'/?'). (A2)

By definition

/(H„ H*) | v) = X  £ /(« ', /S') | a'/3')<a'/S'! v>- (A3)
a ' p ’

Since | a'/S') and | y ) are eigenvectors o f  the Herm itian operator Ha 
with eigenvalues a ' and a  respectively they are orthogonal if a  ^  a '. Hence 
< i ) =  O ifa ' ^  a , and therefore in (3 ) /(a ',  /?')can be replaced by /(a ,/S '); 
(3) now becomes

/ ( H a, H4) | y) =  ! / ( « ,  P )  E  I «70<«'/S ' I V>. (A4)
/S'

Since | a'/S') =  | a ')  | /S') and £„,| « ') ( a ' | =  1, we find from  (4) that

/(H., H6) | W)  = £ /(« , Z3') I i5') </*' I V>- CA5)
/S'

By definition the right-hand side o f  (5) is / ( a ,  H6) | y ), and  so (1) follows.
A particular case o f this is when | y>) = \ ipa) | ipb) =  | ipjpb), where | tpa) 

involves one set o f coordinates xa and  | ipb) involves the rem ainder xb. 
Then if  Ha depends only on xa and HA depends only on xb we see tha t Ha and 
H,, com m ute. Hence if  Ha | y>a) = a  | tpa)  it follows that Ha | y>aipb ) =  
[H„ I fa)]  I Vb) =  * | xpaVb), and so

/(H „ , Hi) I fafb)  = / ( a ,  Hi) | VaVb)- (A6)

M ore particularly, if  Ha | rpa) = oc | ipa) and Vb is an operator depending 
only on xb,

HaVb 11Pa) I Vi) =  [Hfl | V’a>] [Vb I y>b)] =  « I Wa)[Vi  | y*>] =  | W ), (A7)
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hence by (6) with / ( Ha, Hfc) =  ( E — Ha— H6± /e )_1, and | ipaipb)  replaced by

v b I m ) .

(.E - H a- H b± i e ) - i V b \W b ) =  ( E - * - H b± is ) - ' - V b \xparpb).  (A8) 

Since i i/>0) is unaffected by Vb and Ht this gives

( £ -  H0— H (,±/e)_1 Vb | VaVb) = [{E -< x-b \b± i e ) - 1 Vb \ ipb)] \ y>a). (A9)
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APPENDIX B

I f A and B are two com m uting Hermitian operators, and /(A )  and g(B) 
are functions o f  A and B respectively, then

ex p [/(A )+ g (B )] =  exp[/(A )]exp [g (B )] =  exp [g(B)] exp [/(A )]. (Bl )

Proof. Since A and B are Herm itian and com m ute, they have a complete 
se to f common orthonorm al eigenvectors | A'B ')  where A | A'B ') — A ’ \ A 'B ') 
and B | A 'B ')  =  B ’ \ A'B')-, thus

[/(A )+ g(B )] | A'B ') =  /(A )  | ^ '5 ')+ g (B )  | A 'B 1)

= [ f (A ')+ g (B ') ] \A 'B ') .  (B2)

Hence if | ip) is an arbitrary  vector

exp [/(A ) +  g(B)] | y>) =  £  exp [ f{A ')+ g (B ') \  \ A 'B ') (A 'B ' \ ip), (B3)
A'B '

exP [/(A )] exp [g(B)] | ip) — £  exp [ f (A' ) \  exp [g(fi')] | A 'B ') (A 'B '  \ xp), (B4)
A'B'

exp [g(B)] exp [/(A )] | xp) =  £  exp [g(B')] exp [ f (A' ) ]  \ A 'B '){A 'B ' \y>). (B5)
A'B'

The right-hand sides o f (3) to (5) are obviously equal, and hence so are the 
left-hand sides; but | tp) is an arbitrary  vector, so (1) follows.

A particular case is w hen/(A ) =  iA t/h ,g(B) = i&t/fi. Then (1) yields

c x p d A t /h  + iBt/fi) =  exp (ikl/ti) exp (iBt/fi) =  exp (ibt/h) exp ( ikt/h).  (B6)

A nother case is w hen /(B ) =  k ,  where k  is a complex constant; then if C 
is another Hermitian operator, and //(C) is a function o f C,

e x p [/(A ) +  £]exp  [/i(C)-A:] =  exp [/(A )] exp (A:) exp ( — k)  exp [/i(C)]
=  exp [ /(A )] exp [A(C>]. (B7)
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APPENDIX C

G R E E N ’ S  O P E R A T O R S  A N D  A S Y M P T O T I C  S C A T T E R I N G  S T A T E S

G r e e n ’s operators ( i s — H ± ie )-1  for a Herm itian operator H are defined by

(£ ’- H ± j ‘e ) - 1| y ) =  £ ( £ —•E'«±ie)~1 |a ) ( * l  w) ( Cl )
a

where | y>) is an arbitrary  state and H is assumed to  have a  complete set o f  
orthonorm al eigenstates |a ) with eigenvaluesEa. The quantity  e is an arb itrary  
positive num ber and E  is real. The Hermiticity o f H ensures tha t the Ex are  
all real, and so the presence o f the term ie prevents any singularity occurring 
on the right-hand side o f (1). We usually allow e to  tend to  zero a t the end o f  
any calculation. The operators ( i s — H ± /e )-1 are obviously the inverses o f  
the operators E — H ± /e .

We can assume tha t the unperturbed H am iltonian H, has a complete set 
o f  eigenstates | k£) =  | k) | £) where | k) represents the free m otion o f the 
centre o f  mass o f  a cluster A  relative to the centre o f  mass o f the rem aining 
clusters, while | f )  represents the internal state o f  all the clusters and  the free 
relative motion o f  the clusters other than A,  if there is m ore then one of these. 
Since we shall assume these states to  be complete we must include continuum  
states o f the various clusters in the set o f  | k£)’s. The energy associated with 
the state | k£> is E *  = E k + £ {, where E( is the internal energy plus the rela­
tive energy o f the recoil clusters if  there are two o r m ore o f  these.

In this case (1) gives, taking the positive sign,

(£ -H ,+ /£ ) -M v >  =  I J  < /k ( £ - £ «  +  ie)-H  k |)< k 5 | y>). (C2)
e

As usual we take r as the relative position vector o f  the centre o f  mass o f  the 
recoil cluster and q  to  stand for the remaining coordinates. If  we take repre­
sentatives o f  (2) in configuration space we obtain

< rq |( £ —H j+ ie ) -1!^ )
=  £  f  d k (E -E kt+ ie ) - \ r q  \ k | )  J  dr' J  r f q ' ( k |  | r ' q ' ) < r ' q '  | y>)

=  j  dr' J  dq' [ J  d k (E - Ekr\-i c ) - 1 ^ !  k ) ( k |  r ' ) ] ( q  1 1 > < | | q ' ) }  < r ' q '  h / > ) .  

i
(C3)
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Now the quantity in square brackets in (3), which we can denote by [ ], is

[ ] =  2 /ifl-2 ( 2 j r ) - » J < /k [ ^ * - ^ £ - £ * ) - J f c H f l? ] - 1 e x p [ ik . ( r - r ') ]  (C4)

where >7 =  2/(e/i~ 2 while n  is the reduced mass o f A  and the recoil clusters. 
If  we put 2fih~2( E —E t) =  ±  k] according as E  >  or < E e, take spherical 
polar coordinates f o r k  relative to r —r' as polar axis, and integrate over the 
angular coordinates o f k, we find that (4) yields

j P f  * {exp [fA: | r -  r~ I-- exp 1 -  J* ! r - r ' ! ]} ^
2n-hli J  | r —r | ( ± k i — k z+irj)

o

To evaluate [ ] we replace A: by —k  in the second integral on the right- 
hand side o f (5); (5) then becomes

+ 00
r 1 -  ^  f  A-exp [ik ] r - r '  |]
[ ] 2 n W i  J | r - r '  \ ( ± k % - k 2+irj) ( >

This may now be evaluated using contour integration. The appropriate con­
tour is a semicircle in the upper half o f the complex A-plane, with the origin 
as centre and the real axis along the base ; after using the theorem o f residues 
we then let r) — 0 + .  We obtain

r i  n  exp (ike I r - r '  |) t r ,
11 W -------1 7 = 0 1 ------  <E ' E,)' <C7)

or
r i  n  exp ( —£ > |r  —r' | )  i r  ^
1 1 =  ~ W ------- jT^pn--------- ( E  «= Ee). (C 8 )

(7) and (8) are the two alternative expressions for the square-bracketed 
term  [ ] in (3). If  we substitute for [ ] in (3) we can rewrite (3) as

( r q  | (E — H .  +  j e ) - 1 1 tp) =  J  dr’ J  dq1 G(r ,  q ;  r ' ,  q ' ) ( r '  q '  | ip) ( C 9 )

where

<*-,«; O = -  V <q, £><5, „

n  ^ „ exp ( - i k e  I r - r '  |) _  _
~ i n ¥ ^  — r r = m — < « iix « i9 > ;  (C10>

in (10) goes over states | | )  for which £  >  E( , while goes over states 
| f )  fo r which E  <  Es. The result (9) shows tha t G reen’s operator is an
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integral operator with kernal G ( r ,  q ;  r ' ,  q ' ) .  It also shows that the Schw inger- 
Lippmann equation (1.5.3) is an integral equation for the scattering w ave 
function ip+.

To find the asym ptotic form o f (1.5.3) we note that

The doubly primed sum does not appear due to the exponential decay o f  
its terms as r — oo. In the case o f the Schwinger Lippm ann equation (1.5.3) 
we obtain

The Schwinger-Lippm ann equation with positive sign therefore gives rise to 
outgoing wave boundary conditions.

Since k 2 =  2fifi^2(E —E () the quantity k ( is, by energy conservation, the 
wave num ber / o f the final state 11|> =  11) | I). The unit vector r  is in the 
direction o f the final outgoing wave. We can therefore put k j  =  1, and so 
(15) becomes

| r —r ' |  =  (r2 — 2r»r' + r'2)112 ~  = r — r»r'.
r —► oo f

( C l l )

It follows from (9), (10) and (11) that

< iq |(£ -H ,+ ie ) -M v >  ~  Z '/K ? )  Cxp(<M  <q | g) (€ 1 2 )r OO t f

where

/f ( f )  =  ~ 2 ^ r  [  dr' ^q ' exp ( -  ik(r ' r ' )  < | | q')  < r ' q '  | ip). (C13)

{
(C 1 4 )

where by (13) f ((r) is now given by

dq' exp ( —ik(T»T') (£ | q ' )  ( r ' q '  | V,y>+). (C15)

In the case o f a local potential this becomes

dr' f  J q ' e x p ( - / / c t f . r ' ) < l | q ' )  K , ( r ' ,  q ' )  V’.t(r', q ' ) -  ( C 1 6 )

(C l 7)
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