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PREFACE

THE purpose of this book is to give a systematic account of the general
principles and concepts governing the non-relativistic quantum mechanical
motion of a set of N elementary particles under their mutual interaction,
where by “elementary particle” is meant one which can be neither created
nor destroyed. (For most purposes in chemical physics the elementary
particles are electrons and atomic nuclei.) The book is not strictly an intro-
duction, but is addressed rather to the reader who, after a study of introduc-
tory topics,’ wishes to see the whole subject treated systematically by deduc-
tion from general principles. At the same time, it is largely self-contained
and efforts have been made to reduce mathematical sophistication to a
minimum. The only essential prerequisite is, in fact, a knowledge and under-
standing of elementary quantum mechanics as contained in earlier volumes
of the present series.¥

The book commences with a discussion of the unperturbed and perturbed
stationary states of the system in Chapter 1, considers its time evolution in
Chapter 2, discusses transition amplitudes and cross-sections in Chapter 3,
investigates the complications which arise from the possible identity of
elementary particles in Chapter 4, and finally gives some examples of appli-
cations in Chapter 5. One or more exercises are set at the end of most
sections—these are in the main very simple, and should help the reader in
following the arguments in the text. The definition of the scattering operator
used is that of Rodberg and Thaler,! which seems to be the most suitable
for the N-particle system considered here.

Thanks are due to Professor McWeeny and Pergamon Press for their
kindness and help with the writing and production of this book ; without this,
the task would have been much more difficult.

t For example J. E. G. Farina, Quantimn Theory of Scattering Processes, Pergamon
Press, Oxford {1973) (Volume 4 of Topic 2 in the present series).

I In particular R. McWeeny, Quantum Mechanics. Principles and Forawalism, Pergamon
Press, Oxford (1972) (Volume 1 of Topic 2}.

§ L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering,
Academic Press, New York (1967).






CHAPTER 1

THE CHANNELS OF AN N-PARTICLE SYSTEM

1.1. NATURE OF THE SYSTEM TO BE STUDIED

The purpose of this book will be to describe the quantum mechanical
theory of the dynamics of an N-particle system. In atomic and molecular
physics and chemistry these particles will almost always be electrons and
atomic nuclei, and these will be regarded as our “fundamental™ particles.
As such, we shall regard them as indestructible, and atoms and molecules will
be regarded as composed of these elementary particles. In nuclear physics
the elementary particles are neutrons and protons, and atomic nuclei are
regarded as made up of these. The field of high-energy physics is very much
at the frontiers of knowledge, and the nature of the “elementary™ particles
in this case is still a matter of controversy.

Our system, therefore, consists of N “elementary™ particles. We shall
suppose the particles to move with non-relativistic velocities under their
mutual interactions, and we shall not consider the effect of external agencies
such as the electromagnetic field. There will therefore be no photons in our
system, and processes involving the absorption or emission of photons will
not be considered. Although this rules out many reactions of interest, it does
not rule them all out by a long way. In many reactions in the gaseous state
processes of the form A+ B —~ C+ D, where A and B are composite particles
such as atoms. molecules, or ions, take place, and such reactions can be
considered as distinct from any previous or subsequent emission or absorp-
tion of radiation. Also of much interest are processes of the form A+B —~
C*+ D where C* is an unstable composite particle which subsequently dis-
integrates, so that a process of the form C* —~ D+ E, for example, takes place
without the absorption or emission of radiation. It is the fundamental theory
of such processes which will be studied in this book.

Let us first consider the configuration coordinates of the system. If we
label the particles 1, 2, ..., N the rth particle is specified by its position
vector R, and spin s,. The vectors Ry, Ry, ..., Ry and numbers s, 53, ..., Sy
now specify the configuration of the system.

With the vector R, is associated a Laplacian operator 7. If the mass of
the rth particle is m, its kinetic energy operator is defined by K, = —/*?/2m,.
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In nonrelativistic quantum mechanics the Hamiltonian H, of the system
takes the form'

N
Ho= ¥ K+V. (1.1.1)

r=1

The system can be decomposed into m “clusters”, the jth cluster 4;
containing »; elementary particles, say, so that nmi+ne+...+n, = N. We
shall assume that the quantity V can be expressed in the form

V=3 V)V, (11.2)
i=

where V{4;) depends only on the coordinates of the particles of the jth
cluster, while ¥, tends to zero as the clusters are separated from each other.
The suffix i denotes the particular decomposition, and V; represents the
interaction potential between the clusters.

We can use (2) to put (1) in the form

Ho= 3 5 K+ T VUA)+V; (1.13)
=]

j=1r=1

where K,(j) is the kinetic energy operator for the rth particle of A,. If we put

hio= 3 KA+ V(4. (1.1.4)

r=1

s0 that h; depends only on the coordinate of the jth cluster,t (3) becomes

L
He= ¥ hig+Ve (1.1.5)
J=1

We shall assume that ¥ and V| are invariant under translations of the
system as a whole, and that ¥(4,) is invariant under a translation of the jth
cluster as a whole. In other words, we assume that the N-particle system is
not affected by its environment.

ExamrLE 1. If the elementary particles are electrons and atomic nuclei which
interact through their Coulombic interactions ¥ iz just the sum of these interactions, in
this case P(4,) is the sum of the Coulombic interactions between particles within the jth
cluster, while ¥; is the sum of the interactions between particles in different clusters, The
decomposition (2) is obvious in this case. Since the Coulomb potential depends only on the
distance between the particles the translational invariance is aiso obvious here.

T We use the symbol Hg for the Hamiltonian in the laboratory systerm as later we
shall yse H for the Hamiltonian after the motion of the centre of mass has been removed.

1 Again the suffix G denotes the Hamiltonian before removal of centre of mass
motion.
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ExampLr 2. The assumption remains valid if translational invariance hoids and the

effect on any one cluster of the others becomes negligibie as the clusters separate. For
then

He - 3" hyg {1.1.6)

je

where hyg is given by un cxpression of the form (4). If we define ¥, by

V[ = Ha— E hjg []‘I.T)

J=13

then (35) is obviously satisfied, and from (6) and (7} V; -+ 0 as the clusters separate from
each other. If we substitute for hyg from (4) into (5) we obtain (3). Hence Hy is given by
(1) where V has the form (2).

1.2. SEPARATION OF THE CENTRE OF MASS MOTION

Let us first consider a system consisting of two elementary particles | and
2. We shall denote the position vectors of 1 and 2 by Ry and R, the position
vector Ry — R, of | relative to 2 by R; 4, and the position vector (nR1+ mzRs)
{(m1+mg) of the centre of mass by R, ,. Associated with the vectors
R;, Rq, R;+ and R;; we have Laplacians which we denote by v, 2, vi.»
and vi, respectively.

We can describe the positions of the two particles by cither R; and Ra,
or by R, ;2 and R;s. If we denote the components of R; relative to a set of
Cartesian axes Oxyz by (x1, y1, z1), with a similar notation for the compo-
nents of the other vectors, we can specify the configuration of the system by
either the six coordinates (xi, ¥1, 21, X2, Ve, 2z) or by the six coordinates
(X142, Y1425 Z1+2, X125 Y12, Z12)- The reader may easily verify that the Jacobean
of the transformation between them is unity.

The kinetic energy operators for the motion of 1 and 2 are

h?

Kij=—mem 7} (=1,2) (1.2.1)

Let us denote the reduced mass n1ms/(m:1 + ms) of 1 and 2 by uy,, the kinetic
energy operator for the motion of the centre of mass by Ki. 5, and the kinetic
energy operator for the motion of 1 relative to 2 by Ky,. In this notation

ﬁ2

= —— 2 .
K1+2 2(m1+m2) V1+2 (1.2.2)

and

oy

Kiz Z—M V%g- (1.2.3}
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The four Laplacians are, of course, given by

(=12 1+2 12). (1.2.4)

The reader should have no difficuliy in verifying from equations (1) to (4)
that
Ki+Kz = Kip2+Kie (1.2.5)

The state of free motion of a particle in which its momentum is #k may be
represented by a ket |k) whose wave function g,(r), or representative in
configuration space {r | k) (Dirac, 1938), is given by

o(R) = (R | k) = (2m)" %2 exp (ik+R). (1.2.6)
1t is easily verified that

kIK)=[&in{rik)dr = | gile) i (r) dr = dk—k'). (1.2.7)

The state of motion of two particles 1 and 2 is now specified by the ket
| kik3), where the momenta are #k; and Ak,. At this stage we shall not con-
sider complications arising from the Pauli principle, and so the wave function
for the two particles is the product of the separate wave functions (R; |k,
and (Ry| k). Hence

{RiRz| kik2) = {R1| k1) {Ra|ka2), (1.2.8)
and so
[ kiks) = | Kp) | ko). (1.2.9)
It is easy to verify that

{kika [ kika) = O(ki—ki) B(ky —ks). (1.2.10

The state of motion may also be specified by the ket | k; ol2) = K1+ 2){k 2}
in which the centre of mass moves with momentum #kq+», while 1 moves
relative to 2 with wave vector k5. The relative wave vector ki, is defined by

(L.2.11)

and since the centre of mass moves with the total momentum #k; + Ak, it
follows that
kisz = ki+-ka (1.2.12)

Now Ry s = (miRy+maRo}f{(mi+my) and Riz = Ri—R: s0 it is easy 1o
show from (6), (11) and (12) that

(Rif k1 (Re| ko) = (Risz] kit2) {Riz| kiz), (1.2.13)
hence
| ki) | Koy = |Kyyo)| Kaop. (1.2.14)
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We can abbtreviate (14) to

|klk2> = 1k|+2k12>. {]2[5}
it 1s easy to prove by using {6) that
[kiioKig Ky oKy = oK —ky0) Sk —Ko). (1.2.16)

The kinetic energy associated with the motion of a particle or the cenire of
mass is given by

E = g:'g (i=1,21+2) (1.2.17)

and the relative kinetic energy is given by
E = ’;{"3‘: (1.218)

It is clear that

(Ki+ Kz kiks) = (E: 4 E2)| kiks). (1.2.19)
Kijelkiyo) = Erpa|kiga) (1.2.20)
Kiz| ki2) = Eve| kig), (1.2.21)
and since | kika) = | Ki..2ki2} it follows from (19} to (21}, (5) and (15) thai
Et+Ez = Eipot+Ene. (1222

The result (22) may also be verified directly from (17) and (I8).

&

RI(2+3!

o]
FiG. [.1. Coordinate vectors for a three-particle system.
We can extend this process to the N-particle case in a systematic way.

Firstly, if N = 3 we separate out the motion of the centre of mass of 2 and 3.
Formally we have (see Fig. 1.1)

Ri, Rz, Rz - Ry, Ray s, Rag, (1.2.23)
Ki+Kz+Ks = Ki +Kg 3+ Kas, (1.2.24)
lk1> | kz)“‘s) = |k1> | k2+3> | k23>, (1-2—25)

Ei+Es+Es = Ey+ Ep 3+ Eps. (1.2.26)
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We now separate out the centre of mass motion of 1 and 2+ 3. This is, of
course, the centre of mass of the three particles as a whole, and we can
denote it by 1+ 2+ 3. The centre of mass of 2 and 3 is denoted hy 2+ 3 so
that, for example, K;,, 5, denotes the kinetic energy operator for the motion
of 1 relative to the centre of mass of 2 and 3. We obtain

Ry, Raya, Rog — Ry2.3, Ryyay, Rag {1.2.27)
Ki+Kopa+ Koy = Kypoua+Kigin+Kes (1.2.28)
K1) | Kos3) | Kag) = | Kysoss) | Kizsay | Koa) {1.2.29)
Ex+Es 3+Esy = Ey o g+ Eyaiay+Ess. (1.2.30)

RII2+3+4J

R?!bml

Fii. 1.2. Relative position vectors for & four-particle system.

In the case of four particles we separate out the motion of the centre of
mass 2+ 3+4 of three of them as just described, and finally separate cut the
overall centre of mass motion from the motion of the remaining particie 1
and that of 2+ 34 4 (Fig. 1.2). The extension to » particles is straightforward.
The configuration of the system is defined by the position vector of the
centre of mass of the system, and the vectors ry, ts, ..., T,_,, wherer,1s the
position vector of the jth particle relative to the centre of mass of the particles
J+L 42, ..., n(j=1, 2, ..., n—1). The state vector | kiks.. k) is
given by

1kaky. . k) = |Kipot . +nKizise.. . +mKa@its.. +n)- - Ka—peh (1.2.31)
the total kinetic energy operator is given by

Ki+Ke+...+Kp=Kitag 4ot Kierar...4m
+Koziar...omt .o Kap-1m (1.2.32)

and the total kinetic energy is given by

E14+-FEat ... +E, = E1+2+...+n+E1(2+3+‘..+n)
+Ex@iar...+mt o FEnn-ny- (1.2.33)

Relative coordinates other than the ones described here may be used;
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however, the simple breakdown of the kinetic energy operator into the sum
of the kinetic energy operators associated with each relative coordinate may
no longer be possible —cross-terms may appear.

EXERCISES

1. Verify that the Jacobean J of the transformation

(Xgs V15 235 Xos Vo Z.) == (X o Visos Zp a0 Xyos Vias 212)

satisfies | J| = 1.

2. Verify (5), (10), (13), (16), and (22).

3. Carry out the above separation process in the case of a system of four elementary
particles.

4. If the system consists of four elementary particles of equal mass show that

Eveiss+nEsasnt Esg = BKiaias 0t Wige 0t 125,

5. Draw the diagram for a system of five elementary particles corresponding to Fig. 1.2
for four elementary particles.

1.3. THE CHANNELS OF A SYSTEM

We saw in Section 1.1 that corresponding to a decomposition of the N
particles into m clusters the Hamiltonian H, of the system can be expressed
as

He = Y higtV (1:3:1)
J=1

where

ny
hjc = Zl Ko(j)+V(A4)). (1.3.2)

hjg is just the Hamiltonian for the cluster 4, in isolation, while.¥; is the
interaction between the clusters and dies away to zero as the clusters separate
to large distances from each other. The kinetic energy operator K; for the
centre of mass motion of each cluster 4, (j = 1...m) may be separated out
as described in the last section so that

th == KJ"" h; (13.3}

where h; describes the internal motion of A4;. If each cluster Hamiltonian h
(j= 1,2, ..., m) supports at least one bound state of the particles of the
cluster the decomposition is called an arrangement channel of the system and
denoted by i, say. If the internal states of Ay, A, ..., A,, are also specified,
by a set of quantum numbers labelled n, then we have a channel. A channel
is therefore denoted by ni. It will be convenient to normally refer to this by
the single symbol n, provided this causes no ambiguity. Corresponding to

QTSP 2
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each arrangement channel there is at least one channel. There may be several
channels, or indeed an infinite number of channels, corresponding to any
arrangement channel.

If we use the procedure of the last section we may specify the configuration
of the system by the position vector of the centre of mass, the vectors i, ra,
voes Ty Where 1, = Ry piiias o 4m 18 the position vector of the
centre of mass of A4; relative to the centre of mass of 4,y 4jyn ...
A, (1 =j=m—1), and the internal coordinates of Ai, Az, ..., 4, which
we collectively denote by x. Now substitution of (3) into (1) yields

Ho= 3 Kt 3 b4V (1.34)

J=1 i=1

If K,; is the kinetic energy for the motion of the centre of mass of the system
the procedure of the last section, when applied to the centres of mass of
Ai Ay ..., A, shows that

" m=1
121 Kj= KG+,ZI Kitcr++cteme.4m- (1.3.5)
If we put

w—1
K =jz.1 KiaG+n+G+n+ .. +mp (1.3.6)
so that K is the total relative kinetic energy operator, and
h = 3 h., 1.3.7
Jg’x ! (1.3.7)

so that h is the total internal Hamiltonian, we see from (4) and (5) that

He = Kg+K+h+V;. (1.3.8)
From (8) we get
He = Kg+H (1.3.9)
where
H=K+h+V,; (1.3.10)

is the Hamiltonian after the centre of mass has been removed.
If we put
H, = K+h, (1.3.11)

so that H, is the unperturbed Hamiltonian of arrangement chanrel / when
the centre of mass motion has been removed, we can rewrite (10) as

H = H:+V.. (1.3.12)

The Hamiltonian is therefor the sum of the Hamiltonian H, for the system
when the clusters are far apart,and the interaction V; between the clusters.
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ExaMpLE 1. Suppose we have two electrons a and b, and a proton P. One arrangemsant
channel is that in which electron a is free, while b and P are bound together to form a
hy drogen atom. The kinetic energy operator K for the relative motion of the electron and
atom 15 K. p, the internal Hamiltonian h is Ky + Vyp, where Ve is the interaction
between b and P, and the interaction Vis Vy+ V,p.

ExameLe 2. If we have three electrons a, b and ¢ and a proton P, an arrangement
channel is that in which a and b are free while ¢ and P form a hvdrogen atom. Then
the relative Kinetic energy operator K = K,s.c.p = Kierry, while h = Ko+ Vep,
H; = K+h,and ¥, = Vy+ Vy+ Vap+ Vie+ Vip where ¥y is the Coulombic interaction
between particles i and j; for example, ¥V, — —e®/#yre. If the mass of an clectron is
negligible compared with that of a proton we can put K = K, 5+ K,z.

EXERCISE

What are the arrangement channels for the four-particle system consisting of three
electrons a, b and ¢, and a proton P? In each case write down expressions for the total
relative kinetic energy operator K, total internal Hamiltonian h, and interaction V.
Which of these expressions simplify if the mass of an electron is regarded as negligible
compared with that of a proton?

1.4. UNPERTURBED STATES

Let us denote by H,; the unperturbed Hamiltonian for arrangement
channel { in the laboratory system. Then H,; = H;— ¥, and so from (1.3.4)
and (1.3.7)

H;(; == z K,"r‘h {]4]}
J=1

The internal Hamiltonian h is just the sum of the internal Hamiltonians for
the m clusters A, As, ..., A,. An eigenstate of h will therefore be a product
of states of 4y, A», ..., 4,,. By definition such a state |n) can only belong
to the arrangement channel i under consideration if these states of Ay, A,

.., A, are all bound states. The energy E, of the state | n) is the sum of the
internal energies of each of the A4;s, and so is negative and satislies

hln) = E,| nd. (1.4.2)

The state of the system as a whole in the laboratory system must be
represented by the product of |»n) with the kets |ki), |ko), ..., |k,
representing the free motion of the centres of mass of the 4’s. We denote
this by | kiks. . .k,n), and so

kiks. . .kmF!“J =1l k!> | k),: _ .Jk,,.:’ | ﬂ> = |k1ka. . .k.,,:’fﬂ}. {}.4.3)

If the wave vector of the centre of mass is K = k;+k.+...+k, and

m
.

ki = Kj(js1)4..4m 18 the wave vector for the motion of the centre of mass
of 4; relative to the centre of mass of 4, 4, ..., 4, it follows, as in

e
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Section 1.2, that

Ikike. . k) = [Kike. . kn) | 7) = | K) | KiK. . k1) |7
= |K) | kiks. . K1) (1.4.4)

After the removal of the centre of mass motion the unperturbed state has
the wave function

fp,(l’l, Fzy ... 1, X) = <l'1, Fay oo o3 B 14 X[k)'_k; . .k;,,_lﬂ>
= (27)-3m—Vi2exp (Ikior1+ ikgeTo + . . . +Kpo1oFm-1) Xi(X)  (14.5)

where y,(x) = (x|#) is the internal wave function and x denotes the internal
coordinates of the composite particles 41, As, ..., A, (see Section 1.3).
We shall denote the vectors ki, k3, ..., k,,_, by the single 3(m— 1)-dimen-
sional vector k, and the vectors ry, 1y, ..., r,_; by the single 3(m—1)-
dimensional vector r. Then if

eulr) = Qm)-3m-12exp (ker) (1.4.6)

where ker is the 3(m—1)-dimensional scalar product Kisti+Kzers--. ..
+k,_,sr,_, we can write (5) as

Po(Fy X) = @r(r) xalx). (147

We shall sometimes denote ¢, more fully by ¢, or by ¢,,.. In other words the
symbol » denotes both the arrangement channel / under consideration and
the quantum numbers, discrete and continuous, defining a particular state
of i. We shall also use Greek letters u, o, «, 3, etc., instead of v, to denote the
quantum numbers and arrangement channels of unperturbed states of the
system.

Since E, is the internal energy

hye = Epln- (1.4.8)

Let E, be the sum of the kinetic energies assocfated with the vectors k;y, k,,
. k,_,. Henceif u ,is the reduced mass of 4, relative to the centre of mass
of the particles 4, , 4,5, ..., 4,, we have

Ek = . 4 ' (1.4.9)

Then it follows from (1.3.6) and (5) that

Kox = B (1.4.10)
If we define E, by '
E, = Ey+E, (14.11)
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and remember that, by (1.3.11), H; = K-+h, while ¢, = ¢,7,. we see that
(8), (10) and (11) imply
H,-(;;' = Ey(,{l,_ (1412]

The energy E, of the state ¢, is therefore the sum of the kinetic energies of
the particles after the subtraction of the energy associated with the motion
of the centre of mass of the system as a whole, viz. £}, and the internal
energy E,.

Suppose the system has a total energy £ apart from that of the centre of
mass. If it can exist in some channel n, so that its state is given by an expres-
sion of the form (3), then E = E, +E,. Since E,_ = 0 it follows that £ = E,.
Consequently if the system has energy E it can only exist in those channels
for which E = E,. If E = E, we say that the channel n is open, otherwise we
say that it is closed.

If we assume that the internal state y, is normalized it follows that
(9.9 = 0, if ¢, and ¢, belong to the same arrangement channel. If ¢,
and ¢, belong to different arrangement channels this may not be so.

The states of the arrangement channel F in which all elementary particles
move freely are just products of plane waves and spin functions, and hence
form a complete orthonormal set for the system. Hence the set of all possible
¢, is, in general, overcomplete and therefore necessarily not orthogonal. If
the system as a whole can have bound states m can take the value one. For
completeness we shall regard this case, where obviously H = H,, as an
arrangement channel. In the literature the bound states are usually not

referred to as channels, since their time evolution is a trivial change of phase
factor.

EXAMPLE 1. Two electrons and a proton. We shall denote the electrons by e and a,
the proton by P, and regard the electrons as distinguishable. The possible decompositions
are:

). e, a, P.

. e, (aP).

. a, (eP).

. (eaP).

. (ea), P.

0 is the arrangement channel in which all the particles are free. To simplify matters let us
regard the proton P as infinitely massive. The position vector r, of e relative to P is then
also the position vector of e relative to the centre of mass of the atom aP. Further, the
position vector r, of a relative to P is also the position vector of a relative to the atom eP.
In a typical state of the system in arrangement channel 0 electron e will have momentum

fik relative to P, while a will have momentum #il relative to P. It will therefore have a wave
function ¢, where

W ==

£

r{'!lltrf! ral = rf’k(rc) ’?"1.(l'¢)- “ 4.1 3’

In arrangement channel 1 we can suppose e to be moving freely relative to the centre

ol mass P of the atom aP with momentum ik, say, while the hydrogen atom aP is in some

state | n) with wave function y,,. The state of the system will therefore have a wave function
Py Where

Pren1(Tes r-u) - ?;h{rcj zntrn)- “4"4
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In arrangement channel 2 electron a may have momentum Ak relative to the centre of
mass P of the atom eP, while the atom is in some state with wave function g,,. The system
now has as its wave function g, ,, say, where

PrnalFes Tu) = Pulla) Zulre). (1.4.15)

In arrangement channel 3 in which all three particles are bound the possible states arc
the stable states of the H™ ion. In this case the wave functions are those of the stable states
of the H™ ion.

Finally we note that the decomposition 4 is not an arrangement channel, since the
electrons e and a cannot form a bound state.

If the mass of the proton is taken into account r, must be taken as the position vector
of e relative to the centre of mass of @ and P in 1, while r, must be taken as the position
vector of a relative to the centre of mass of e and P in 2; either system can be used for
0 or 3. When spin is taken into account the functions must all be multiplied by the spin
functions of e, a and P. We note that the functions of arrangement channel 0 form a
complete d-function normalized set. If P is regarded as infinitely massive it follows from
(14) and (15) with k replaced by 1, n replaced by p, that (@ra | 1pa) = (x| %) Ctw | 1)
This clearly does not vanish, since it is the product of the Fourier transforms of , and y,,.

ExampLE 2, Three electrons. The forces between the electrons are repulsive, and so the
only arrangement channel of the system is that in which all three particles are free, Indeed,
this is a svstem with only one channel whose threshold energy is zero.

ExameLe 3. Harmonic potentials. If the potential between two particles i and j has the
form — kyri, where ry is the distance between 7/ and j and kg is a positive constant, the
particles can never move freely of each other. If we regard the bound states as channels
the only arrangement channel is that of the bound states, and the only channels are the
bound states. As remarked above, such “channels™ are of no interest in scattering theory.

ExamprLt 4. As a final example let us consider a system consisting of two electrons a
and b, and three protons A, B and C. One arrangement channel is that in which « is bound
10 A and b is bound to B to form two hydrogen atoms, while C is free. If we take 4, as C,
A. as the atom ad, and A, as the hydrogen atom b8, we have in the above notation
ki = Kyeosy = Kewwsainomn Ko = Kia = Ky ay 05 A typical unperturbed state in this
arrangement channel is | ki) | ks) | m5.) | mps) where | mi,) is a state of atom aAd with
quantum numbers collectively labelled n’ and | n;%) is a state of atom bB with quantum
numbers collectively labelled n”’. If we write k for (k7, ki) and n for nj my5 we can further
abbreviate this to | k) | #) = [ kn). Thus

Ky = | Koot asos 50 | Kot ay o ) | 1020) | 3 5). (1.4.16)
I the mass of an electron is negligible compared with that of a proton this simplifies to
Tkit) 2 [ Keea o m) | Kam) | o) | g (1.4.17)

The internal Hamiltonian h is given by
h = Kig+Kip+ Via+ Via (1.4.18)

where V; is the interaction between particles i and j. The unperturbed Hamiltonian H;
is given by
Hi = Koo =Ko +h = Koo aspiem T Kar o eemth; (1.4.19)
if the mass of an clectron is negligible compared with that of a proton this can be re-
placed by
Hy = Kgeasm+ Kagt+h (1.4.20y
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EXERCISE

What are the arrangement channels of the five-particle system consisting of two elec-
trons, two protons and an e-particle? Assuming that the interactions between the five
particles are Coulombic, write down the internal Hamiltonian h and unperturbed Hamil-
tonian H; (after removal of the centre of mass) in each case. Also write down a typical
unperturbed state for each arrangement channel when the centre of mass motion has been
removed.

[You may assume that the mass of an electron is negligible compared with the nuclear
masses. |

1.5. SCATTERING STATES

I'he scattering states, or Schwinger-Lippmann states, yp; corresponding
to the unperturbed state ¢, in the relative coordinate system are defined by

vt = gH(E-HEie) Vg, | (1.5.1)

where E = E, is the energy of the system. The operators (E—H+ie)™! are
Green’s operators' for the full Hamiltonian H.
If we operate on (1) with E—H+ie and rearrange using the fact that
H = H,+V¥, we obtain
(E—Hitie)(yi—q) = Vit (1.5.2)

Operation on (2) with (E—H,+i¢) 1 yields

! - -
| ¥ = @t (E-Hitie) Vi |

It is easy to show from this that, as one of the clusters separates from the
cthers, y,” behaves asymptotically as a sum of ¢, and outgoing waves.?

(1.5.3)

Since Hg, = E,¢, = Egp,and H = H,+ V, we can rewrite (2) as
(E—H=xie)yt = +iep,. (1.5.4)

I: follows from (4) that as ¢ — O, Hy® — Ep. In other words, in the limit
¢ - O the functions y;* become solutions of the time-independent Schri-
cinger equation of the system.

If we take the complex conjugate of (1) with the + sign and assume that
H and V, are real, we get

(v7)* = @} +(E—H—ie)" Vig}. (1.5.5)

T A briefl account of Green’s operators is given in Appendix C. A fuller account is given
i*an introductory book on scattering theory by the present author (Farina, 1973, Chapter
5. The positive quantity ¢ is allowed to tend to zero at the end of any calculation.

+ This is shown in Appendix C. The development of this book, however, does not necd
tis fact.
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Now Hg, = Eg, = Eg,, and H, = H—V, is real if H and ;¥; are real,

hence Hg, = Eg¢,. Thus ¢, is another eigenfunction of H, with energy E,
and so we can write it as ¢, where ¢ denotes the quantum numbers defining
¢.. We can therefore write (5) as

W) = g HE-H—ie) 'Vig,. (1.5.6)

We deduce from (6) that

v =" (1.5.7)
where ¢, = ¢,

As one cluster separates from the others
¥} ~ @, + sum of outgoing waves. (1.5.8)
A corollary of (7) is therefore that, as one cluster separates from the others,
v, ~ ¢, + incoming waves
= ¢, + incoming waves. {1.5.9)

We can also state these results in the laboratory frame of reference. For
if | ») is the state vector |kik,...k,,_,») in the relative coordinate system
and | K) describes the motion of the centre of mass it follows from (1.4.4)
that the state vector in the laboratory system is given by

|Kiks. . .kn) = |K) [ ) = |K#). (1.5.10)

The energy E in the laboratory system is equal to E+E,, where E is the
energy associated with the motion of the centre of mass. The scattering
states | Kyt ) in the laboratory system are defined by

| Kvt) = |Kv)+(Eg—HgLie)"W; | K)
= | K») +(E+Eg—H—Kgtic)y W; | K. (1.5.11)

Now | K») = | K} | ¥) where | K) involves only the coordinates of the centre
of mass, while ¥, involves only the remaining coordinates. Also K. involves
only the coordinates of the centre of mass while H involves only the relative
coordinates. Since Kg | K) = Eg | K) it follows from the results of Appendix
A, in particular equation (A9), that

[Krd) = [K) | o) +[(E—Hzie) W, |1] | KD
= (K {| )+ {(E—HLie) ¥, | 9)]. (1.5.12)

The state vector in the square brackets on the right-hand side of (12) is
just the state vector | v+ ) represented by the wave function y;. Hence

[Kv4) = {K) | v+). (1.5.13)
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‘The centre of mass is therefore unperturbed by the potential, as is to be
expected from the translational invariance of the system. Equation (13}
shows that the ket | K) for its free motion factorizes out of the scattering
state in the Jaboratory system, leaving the scattering state | »+ ) in the relative
coordinate system.

ExaMptE. In the case of scattering of two elementary particles the unpertiurbed state
in the relative coordinate system is @y, and (1) becomes, in this case,
¥ = Gt (Ex—HIie) W (1.514)
Since H and Varercal and ¢f = ¢_, it follows immediately irom {14} that
vy = (pho)* (1.5.15)

REFERENCES

Dirac, P. A. M. (1958) The Principles of Quantum Mechanics, Oxford University Press,

Farma, J. E. G, (1973} Quantum Theory of Scattering Processes, Pergamon Press. This is
VYolume 4 in Topic 2 of the International Encyclopedia of Physical Chemisiry and
Chemical Physics, and will be subsequently referred to as simply Volume 4.






CHAPTER 2

THE DYNAMIC STATES OF AN N-PARTICLE
SYSTEM

2.1. WAVE PACKETS FOR NON-INTERACTING PARTICLES

In the last chapter we considered the stationary states of an N-particle
system. However, a chemical or nuclear reaction is a dynamical process
which takes place in time; two molecules, for example, collide, interact, and
then the products separate. If we want to describe a chemical or nuclear
reaction, we must consider the N-particle system as evolving in time, and
this we shall do in this chapter.

In this section we shall consider a situation in which the system is in some
definite arrangement channel /, consisting of composite particles 4, A, .. .,
A, (m=N), which we suppose to be moving freely; we suppose further
that A, As, ..., A, are in definite internal states specified by a collection n
of quantum numbers defining the internal state y,. As in Chapter 1, we denote
by x the internal coordinates of Ay, 4, ..., 4,, by r; and k} the position
vector and wave vector of the centre of mass of 4, relative to the centre of
mass of 4,,, 45,0, ..., A, (j= m—1), and by r and k the 3(m—1)-
dimensional vectors r = (ry, T2, ..., I,_;) and k = (k}, k,, ..., k,,_,).
As we saw in Section 1.4, in particular equations (1.4.6) and (1.4.7), a station-
ary state of the system is given by

Prni(E, X) = (27)"Hm=DI2 exp (iker) 7,(X), (2.1.1)

and as usual we can abbreviate ¢, by ¢, or ¢,.

Very often the system is prepared in a state where it consists of the
particles Ay, Aa, ..., A, in a definite internal state whose wave function
is 7,; that is, the system is in a definite channel. If this is the case the wave
function of the system must be the product of y, exp(—iE,t/A) and a wave
packet describing the free relative motion of the composite particles; we will
denote this by @,(¢). Such a wave packet must be a superposition of the
states ¢, exp (—iE,t/h) with a weighting function C(k), which must be square
integrable; hence

(1, X, 1) = [(1a exp (—E,1/h)] [ [C®) gu(r) exp (—iEwt/h) dk]. (2.1.2)

TS 05" 17
1926
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In (2) the function g, is given by (1.4.6) while the integration goes over the
3(m— 1) components of the vector k. The wave packet is, in fact, the most
general solution of the Schrodinger equation #igy/ot = Ky for the relative
motion of the composite particies, since Ky, = E.p, and the ¢, form a
complete orthonormal set.

The result (2) may be rewritten as

@a(r, X, 1) = { C(&) gulr) gal%) €xp [—i( Ex+Ept/h) dk.  (2.1.3)

We shall often abbreviate ¢,%, by ¢, and E, +E, by E, , inwhich case (3)
takes the abbreviated form

@ur, X, 1} = _[ Ck) guir, x) exp (—iE,1/f) dk. 21.4)

We have assumed that the y, are orthonormal while (¢, | gy = d{k—Kk’).
If these facts are used it is a simple exercise to verify from (2) or (3) that

§§ 19ae, x, DI2drdx = § |CE)P dk. @1.5)

The integral on the left-hand side is an integration over the 3(m—1) com-
ponents of r and the continnous components of x, and a summation over
the spin components of x. The integration of the right is over the 3(m—1)
components of k. We shall always assume that ¢, is normalized to unity,
so that either side of (5) is equal to one.

The probability amplitude for the relative wave vector k is the scalar
product of ¢, exp(—iE, /%) with the second term in square brackets on the
right-hand side of (2), and this is C(k). It follows that |C(k)|* dk is the
probability that the wave vector k lies in the 3(m— 1)}-dimensional volume
element dk = dk, dk, ... dk,, ;. The integral on the right-hand side is the
probability that the particles A, A4s, ..., 4, have some relative wave vector
k, and so it is natural to normalize this to unity.

EXERCISE
Yerify {5).

2.2. THE REMOTE PAST AND FUTURE

If we consider a reaction involving two particles 4 and B, we can think
of times in the remote pastbefore the particles collide, and times in the remote
future after the reaction takes place. 4 may be, for example, a molecule
which has been produced in an oven, then accelerated to a certain velocity,
while B miay be a molecule in a target gas. The “remote past” of the system
is the period of time after A4 has left the oven and accelerator, and before it
begins to interact with B. In the case of a reaction in a gas it is the time after
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A and B have made their last collisions before meeting each other, but before

itheir own encounter takes place. In either case we may well know the initial
sstate of both A and B, say their ground states; in this case the initial state
is in a definite channel as discussed in Section 2.1. On the other hand, if 4
was produced in an oven, it may well be in an excited state (vibrational or
electronic or both) and in this case the initial state will be a superposition
of states of the type ¢,(¢) discussed in the last section. If the oven was very
Inot, 4 may possibly have dissociated into particles 4'+ 4", in which case
the initial state would be a superposition of states from different arrangement
channels. In the same way the final state, after the reaction, which we will
call the “remote future”, may well have possibilities such as 4+ B (no
reaction), C+ D (first reaction), or E+F (second reaction), and these will
occur with different probabilities. Thus the final state will, in general, be
a superposition of states from different arrangement channels: within each
possible arrangement channel (possible reaction path) there will occur
different possible states. The probability of the reaction 4+B - C+D
taking place will be just the sum of the probabilities of the various states of
< and D being produced, the same applying to the other arrangement
channels.

We are excluding from our considerations the possibility of the presence
of photons, or the creation or destruction of elementary particles. It is
therefore possible for us to accept as reasonable, on physical grounds, the
following postulate:

Postulate. If a physical system consists of N elemen-
tary particles moving under mutual interactions of
finite range, and the system is observed in the remote
past or remote future, the only observations will be
the states of the various arrangement channels of
| the system. I

(2.2.1)

| SV SRS RO W S R

We must assume finite range forces, for otherwise the elementary particles
can never move freely of each other. In practice it is clear that in the case
of electrons and atomic nuclei they must move freely when sufficiently
distant from each other, although there are problems which can arise from
this (Volume 4, Section 2.5). If we apply the postulate (1) to Example 1 of
Section 1.4 we see that, in the case of two electrons and one proton, the
only possible observations in the remote past or remote future are either
an H~ ion, a hydrogen atom and a free electron, or a free proton and two
free electrons. Similar conclusions apply to the other examples of Section 1.4.
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The immediate consequence of postulate (1) is that if §(r) describes the
state of the system at time 7, then as 1 — + < () becomes a super-
position of wave packets describing the relative motion of the particles in
various states and various arrangement channels. Any one such motion
was described in Section 2.1, If 7o is a time in the remote past we must there-

fore have
P(to) = Y, Bupulto) (2.2.2)

where the sum ), goes over all possible channels of the system. The summa-
tion therefore goes over all possible internal states %, of each arrangement
channel, and over all arrangement channels. In general the momentum
amplitude C(k) will be different for different channels, and so we shall
write it as C (k).

If we substitute for ¢, from (2.1.4) into (2) we obtain

ito) = Y, [ dkB,C.(K) Gun €Xp (— ikignto/h) (2.2.3)
where, as usual, we write E,, for E +E, and ¢, for ¢,%,. The quantity

B,C,(k) may be abbreviated to A, where v = kn denotes the quantum
numbers of the state ¢, %, = ¢, = ¢,,» and so (3) can be written

pto) = Y. Aup, exp (—iEto/h). (2.2.4)

Here ¥, = Y, j dk, and goes over all possible unperturbed stationary
states ¢, = ¢, of the system, including the bound states. In the case of the
bound states the integration over k is, of course, omitted.

In the remote future we pick some typical time ;. §(#1) must also be a super-
position of wave packets, a wave packet being associated with each channel.
The wave packet associated with the nth channel may now be different, so we
denote this wave packet by @.(11). The weighting coefficient may also be
different — let us call it B,. Equation (2) therefore has, as the corresponding
result for the remote future,

@) = ¥ Bgi(ny). (22.5)

Corresponding to (3) and (4) we have

Pr) = Y. [ dkB,CH(K) Gun Xp (—iEial 1 /1), (2.2.6)

§1) = T A, exp (—iEyti[h). J 227
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The wave packets ¢,(f) become mutually orthogonal as ¢ -+~ 4 e. To see
this we note that (¢,(r)|¢,(r)) certainly equals zero if ¢, and ¢, belong to
the same arrangement channel, and p = n, due to the orthogonality of the
mternal wave functions 7, and 7, for these are orthonormal eigenfunctions
of the same internal Hamiltonian. Suppose now that ¢, and ¢, belong to
different arrangement channels: it then follows that there is at least one pair
of elementary particles, P and Q say, which are bound to the same composite
particle in one wave packet and to different composite particles in the other.
We can suppose without loss of generality that P and Q are bound to the
same composite particle in ¢ ,(7), but to different composite particles in @,(1).
Now in the remote past or remote future the composite particles must
separate, so that there is negligible probability of their being found close to
each other. This means that as 1 — + <= the probability of P and O being
found close to each other in the state ¢,(¢) becomes zero. On the other hand,
in the state ¢,(?) the elementary particles £ and Q will always be observed
close to each other, since they belong to the same composite particle. Now

70| @,(0)1* is the probability of observing the state ¢,(r) when the system
1s in the state ¢,(7), and since in the state ¢, the particles P and Q must be
close this must be negligibly small. In other words (¢,(1)|¢, (1)) —~ 0 as
7 — & oo, so that the wave functions become orthogonal. Since by definition
each @,(¢) is normalized to unity we deduce that

(D) @ult)) ~ Opp (2.2.8)
 §

— +a0

Similarly the ¢,(t) are orthonormal in the remote past or future.

An immediate consequence of (8) is that |B,|* is the probability of
observing the system to be in the state ¢, (/) in the remote past: for by (2)
the system becomes, when ¢ = 1y ~ — ==, a superposition of orthonormal
states ¢,(to), the coefficient of ¢,(t0) being B,. Similarly in the remote future
the probability of observation of the wave packet @,(t;) is | B, |2 Since the
postulate (1) implies that the system must be in some such state both in the
remote past and in the remote future we deduce that

Y IBsl2 =Y 1B =1 (2.2.9)

As we saw in Section 2.1, the probability of the composite particles being
in a state of relative motion defined by the 3(m— 1)-dimensional wave vector
k in the 3(m— 1)-dimensional volume element dk is |C,(k)|* dk when the
state of the system is ¢,,(7). Hence in the general cases expressed by (3) and (6)
the probability of the system being in the arrangement channel / and internal
state y, with the relative motion of the particles being defined by a wave
vector in the volume element (k, dk) is | B, |* | C (k) |*dk or | B IC,',(k) |*dk.
Since 4, = B,C,(k) and 4, = B,C,(k) it follows that 4, and A, are the
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probability amplitudes for observation of the stationary state ¢, in the
remote past and remote future respectively. It follows immediately that

Ll4p=Y14r=1 (2.2.10)

which may also be deduced from (9) and the fact that the momentum amptli-
tude functions C,(k) or C,(k) are normalized to unity.

ExAMPLE. Two electrons and a proton. Let us assume that the proton P can be regarded
as infinitely massive, and denote by r, and r, the position vectors of the electrons e and o
relative to P. We saw in Example 1 of Section 1.4 that there are four arrangement channels
0, 1, 2, and 3. Typical wave functions in each of these arrangement channels are:

Folfo b 1) = {f C) pulr,) exp (—iEwtiA) dk}{ [ D pir) exp (—iEgii) dI}; (2211
ol Ty 1) = Yol£a) ExP (—iELL/) | Culk) pi(r,) oxp (—iExt/A) dk

= zl{rl) exp (— !‘E,Jfﬁ} @n(rci ‘)s say; (22 1 2)
@2(“” rn: 'f) = xﬂ(rz) exp ( - iEF”Iﬁ) I Cﬁ(k} ¢k{r¢) exP ( - IE*”rﬁ) dk

= yp(®) exp (—IE ) @plrs 1), say: §2.2,13)
Falty, To 1) = Pulr, Y exp (—iEy/h). (2.2.14)

In (14) y, is a wave function of an H~ jon. The expression (11) is a product of two wave
packets describing the relative motion of the clectrons to the proton when all three
elementary particles are free; (12} and (13) define wave functions when one electron is free
and the other is bound to the proton to form a hydrogen atom; (14) describes a state of
the H- ion. The wave functions (11) to {14) describe states in the arrangement channels
0 to 3 defined in Example 1 of Section 1.4. The orthogonality of the wave packets is clear
enough in this case; for example, the scalar product of §;{#) and (1) is

(FrD Lol = (| FlOH{Pal) | 2y €30 [ E— E,) 1/} {2.2.15)

The overlaps between ¥, and @,(7), and between y, and §, (1}, both tend 0 zero by virtue
of the expansion of the wave packets.

2.3, THE INTERACTION PICTURE

For the purposes of scattering theory it is useful to define a picture inter-
mediate between those of Schrédinger and Heisenberg, and known as the
“Interaction Picture”. We transform each wave function () of the Schro-
dinger picture into a wave function y(f) of the interaction picture according
to

wi(t) = exp ((Ha/A)p(1); (2.3.1)

hence each arrangement channel gives rise to a specific interaction picture.

If A is an operator in the Schridinger picture, and (1) is any wave
function of that picture, then As(7) is transformed into exp (7H,f/A)Ap(t) =
exp (iH,t/7) A exp(—iHt/Rype). This equals Ay, (1) where A{!) is the
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operator in the interaction picture corresponding to A in the Schradinger
picture and so

A L) = exp (i /) A exp (—iH i) (2.3.2)
In particular the interaction V, is transformed into V1) by
V() = exp (iH#/#) Y exp (—iH 1 1A). 2.3.3)

From (2) it follows that unitary operators are transformed into unitary
operators, and that Hermitian operators are transformed into Hermitian
operators.

If the evolution operator in the interaction picture is U(t, to) so that'
pit) = UL, 1) pito) (2.3.4)

a very similar argument to that above shows that

Uit fo) = exp (M) exp [—iH(t— to)/h) exp (—iHito/h). | (2.3.5)

From (5) we see immediately that Uz, ta) = 1, Uf¢, 11) U{f1, fo) = ULL, to),
while the Hermitian conjugate U{!, to) = U{to, 1):! hence U(#, ts) is unitary.
Partial differentiation with respect to ¢ yields the operator differential
equation
(B/0t) Ui(2, to} = (iff) exp (iHt/A)(H;— H) exp [—iH(t— to)/h)) exp (— iH o fA).
(2.3.6)
Now H—H, = V,and V{1} is given by (3}, hence we deduce from (5) and (6)
that

Ui t) i
T = "z V](f) U;(I, ta). (23.?}

This is clearly equivalent to the integral equation

Uit ) = 1= Iv;(r) Uie, to)de 238)

since Uf{fo, 1a) = L. If we take the Hermitian conjugate of this and then
interchange t and ¢, we obtain

-
Us, t0) = 1+%I UL, 1) Vi(r) dr. (2.3.9)

It is more convenient to use the subscript § rather than 7 in the symbol U, ¢,) for
the evolution operator in the interaction picture.

QTSP 3
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EXERCISES

1. Verify that the transformation y — ; = exp(iH,/#)y transforms Hermitian opera-
tors into Hermitian operators, and unitary opérators into unitary operators.
2. Verify (5).

2.4. THE EVOLUTION OF A WAVE PACKET

We are now in a position to describe the evolution of an N-particle wave
packet such as that discussed in Section 2.1; in other words, a wave packet
initially representing the motion of an N-particle system when the internal
states of the particles are defined by the set of quantum numbers n. Before
doing this we shall collect together a few results which we shall use in the
derivation of the expression for the state into which the system evolves.

The initial wave packet @, is given by (2.1.4); this may be further abbre-
viated to

Fnl1) = | CK)} Pun exp (— i Eint /1) k. (2.4.1)

Now ¢, is an eigenfunction of H, with energy £, , and so exp (—iHt/#) g, =
exp (— ik, i/h)p,,. It follows that (1)} can be written

(1) = exp(—Hut/h) [ CK) g, d, (2.4.2)
When 1 = 0 equation (1) becomes -
#l0) = § C(K) prn dk. (24.3)
Comparison of (2) and (3) yields |
: Pall) = exp (—iH/7) $,(0), (2.4.4)
and so
@:(0) = exp (Ht /W) ga(D). (2.4.5)
Finally we note that if we put ¢ = 0 in (2.3.5) we obtain
(0, 1) = exp (iH1o/#) exp (— iHto/#). {2.4.6)

We are supposing that in the remote past the system was in the internal
state |n). It must therefore be the case that if the wave function of the
system is (?), then () = @,(¢) for £ = ta, where 1, is a time in the remote
past. Since §,{(fo) evolves under the full Hamiltonian H into §(0) we have

H0) = exp (iHto/#) @ult0). (2.4.7)

If we put t = t, in (4) and then substitute the resulting expression for ¢ (fa)
into (7) we obtain

0) = exp (iHto/h) exp (~ iH,t0/%) @(0). (2.4.8)
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With the aid of (6) we can rewrite (8) as

P(0) = U0, 10) pA0). (2.4.9)
Since this is true for any time in the remote past (8) implies

lim exp ((H1/A) exp (—iHt/#) @4(0) = 9(0) (2.4.10)

and (9) implies
P0) = UA0, — ==} p,(0). (2.4.11)

We shall now calcnlate 9(0), and hence obtain an expression for §(r).
We first substitute for U0, 7o) from {2.3.9) with 7 = 0 into (9): this gives

P0)— pal0) = (i/%) j UL, 7) Vi(r) $:(0) dx. 2.4.12)

Now (6) gives U(0, 7) = exp (iHt/f) exp (—iHz/#), (2.3.3) gives V/(z)
= exp (iHz/hV, exp (—iHt/h), while (5) gives §,(0) = exp (iHz/A) ¢,(7).
Substitution for these three expressions into (12) yields

HO—5n0) = (/) [ exp (MO V.pudhde.  (24.13)
¢ ’

At this stage we introduce a small positive number ¢ which satisfies the
condition # |fo} « 1. Equation (13) can now be replaced by

PO~ 3.(0) = (/) aj expliH—ie) T/ Vign dr.  (24.14)

The particles are moving freely when ¢ = 15, and so V@”('r;) must be negligible
when = < fp. We can therefore replace the upper limit ts of the integral on
the right-hand side of (14) by — ==, If we also put # = 7 in (1) and substitute
the resulting expression for (1) into (14) we find that™

HO)— @.0) = (i/A) T dr [ dk C(K) exp [(H—ie— B T/H) Vign.  (2.4.15)

Owing to the presence of the & term the integrals in {15) may be interchanged
and the integration over T may be carried out by use of the operator identity

~—aa

| expli(H—is— Eun)t/h] dv = (hfi)(Bun—H+ie)Y;  (24.16)
o

(16) may be easily verified by an expansion in terms of a complete set of
eigenstates of H (see Volume 4, Appendix D). These things done, (15)

3*
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becomes

PO —n0) = [ Clk) (s — H+ i) Vi1 dik. (2.4.17)
If we substitute for ¢,(0) from (3) into (17) and rearrange we obiain

0} = [ CO) g+ (Exn—H+i2) "1 ¥ iun] dki. (2.4.18)

The definition (1.5.1) shows that, in this case, the term in square brackets
under the integral sign in (18) is just y4,, and so

H0) = § Ck)vy, dk. (2.4.19)

Since (t) = exp (—iHt/A)p(0) and vy, is an eigenstate of H with eigenvalue
E,, it follows from (19) that

§1) = [ CO) v exp (— iBnt /) dk. (24.20)

The above argument applied to a system which in the remote past was in
the state @,(f). We can also consider the case of a system which develops
into the state @,(f) in the remote future. In this case §{¢) = () if 1=1,,
where 7, is a time sufficiently far in the future. The previous argument which
led to (13) is unaltered except that f, is replaced throughout by #:. Hence (13)
is replaced by

P0)—¢,0) = (/R oj‘ exp (iHt/k) V @ A7) dr. (2.4.21)
Now, however, we replace {21) by
PO —§.(0) = (i/#) j" exp [i(H +ie) /k) Vg () dv (2.4.22)
0

where & #1| <« I, Since the particles are moving freely in the remote future
we have Vg (zv) = 0if v > 1y, hence we can replace 1, in (22) by + <. If we
also substitute for § (t) by means of (1) we see that (22) becomes

PO)—F4(0) = (i/#) T dv | dk C(k) exp [i(H +ie—Eya) TV en. (24.23)

Application of the operator integral

=+ o

J' exp [i(H+ie—Ey,) tihl dt = (Bfi B, —H—te)"1  (2.4.24)
0

and of (3) to (23) gives
P0) = [ CB)pn + (Eua— H—i6) 71 Vi) (2.4.25)
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the term in square brackets is given by (1.5.1) with » = kn and so (25)
becomes

90) = [ Ck) v, dk. (2.4.26)

Since gy, is an eigenstate of H with eigenvalue £,, and §(r) = exp (—iHi/h)
X #(0) we see from (26) that

1) = | Ck) v, exp (—iEunt/h) dk. (24.27)

We may summarize the results of this section as follows. If the state
of the system is represented in the remote past by the expression (1), then
its state at any time is represented by (20). That is to say, in the expression
(1) for the wave function in the remote past we replace the unperturbed station-
ary state g, by the stalionary scattering state y}. On the other hand if (1)
represents the state of the system in the remote future the expression for the
wave function (f) at any time 7 is now given by (27). In other words the
unperturbed stationary state g, is replaced by the stationary scattering state
y,- These results may be summed up by the formulae

exp {—iH(r— 10)/#) [ C(k) pun €xp (— i Euato/#) dk

~ [ CE) i exp (—iEyat/h) dK, (24.28)
exp [~ iH(t—11)/] [ CK) pun€Xp (— iEunts /H) dk

~  f C(K) pign exp (— i Eats /) dkk. (24.29)

#y = ton

We can also put these results in another way. Let us define wave func-
tions (1) by

P = I Ck) wik, exp (—iEx,t/h) dk. (2.4.30)

Such wave functions may describe the system at all times. The wave function

#1{1) then evolves from ¢,(¢), while g, (f) evolves into §(¢), where ¢,(1) is
defined by (1). Thus

PO~ el (2.4.31)

—~F

Since F(¢) = exp (—iH1/A) pE(0), and ¢,(1) = exp(—iH/A)§0), it follows
that

exp(~iHIM FHO) ~ exp(—iHIMEL0), (2432
t-—rToo
or equivalently
FO) ~  expGHU/B)exp (—iHit/7) @a(0). (2.4.33)
! —=Too
It follows from (6) that (33) can be written

73(0) = U0, F =) @(0). (2.4.34)
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We have not proved (33) in a rmathematically rigorous way. We have only
shown that such a result is necessary if the physically reasonable postulate
(2.2.1) is to be satisfied. To prove equation (33) for particular potentials
is a task of great mathematical difficulty, although much progress has been
made in this field of recent years. It is not true in the case of Coulomb
potentials, for example, due to the long range nature of this potential. If two
or more atoms or molecules are ionized they can never be completely out of
range of each other, and so (2.2.1) does not hold in such a case. However,
for many purposes the potential may be given a cut-off — that is, put equal
to zero for r ## R say, in which case (33) may be proved. .. (For example, see
Taylor 1972.) '

2.5. ORTHOGONALITY OF THE SCATTERING STATES

We shall’ now show that the Schwinger-Lippmann scattering states
defined in Section 1.5 are orthogonal. In the case of the arrangement channel
in which the systemis bound we have H = H,, so that V; = 0. In this case
case (1.5.1) shows that w§ = ¢,, where ¢, is the bound state—we shall denote
this by y,. Let o, be a scattering state in some arrangement channel i, and
consider the state represented by

@lt) = jC(li) ¥ eXP (— i Exnt /1) dK. (2.5.1)

We consider the value of the scalar product (p,(Dly, exp (—iE,1/h)) as
t — — =, where E, is the energy of the bound state. In Section 2.4 we saw
that the wave function {,{¢) given by (1) develops from ¢,(?) in the remote
past, where @,(¢) is given by (2.4.1). We therefore have

CrOIL tﬂcr’(-iE:,rIfi)_)r ~ APLDtypexp (—iEptfh)). (2.52)
Now y, is always confined to some finite region of conﬁguration space
while #,(1) spreads out as the particles 4;, Az, ..., A4, separate when

t = — =; hence the right{-hand side of (2) tends to zcro as t - — oo, At the
same time the left-hand side of (2) equals

- (exp (— H/A) 9,(0) | exp (— iH/A) p) (2.5.3)
and since exp (v:Ht/h) is unitary this is
<wn(0) l9s); (2.5.4)
thus (2) becomes .
WO ps) ~ 0. (2.5.5)

= -
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The left-hand side of (5) is independent of f and so equals zero; that is,
@A) ws) = 0. (2.5.6)

If we put + = 0 in (1) and substitute the resulting expression for §,(0) into
(6) we obtain
[ C* Kyt | o) dk = 0; (2.5.7)

but C”(k) is arbitrary and so
(¥inlys) = 0. (2.5.8)

We have now shown that any scattering state ", is orthogonal to any
bound state y,. A similar argument applied to (1} with v}, replaced by g,
and with ¢ allowed to tend to + o= shows that any scattering state y_, is
orthogonal to any bound state ;. Since the bound states are orthonormal it
follows that all we have remaining to show is that (yi |y} = d(k—1)8 0,
where ¢.,, and ¢,, belong to arrangement channels i and f respectively, and
this will complete the proof of the orthogonality of the Schwinger-Lippmann
states.

In order to complete the proof we consider the wave packet

o) = | D), exp (—iE;tit) di; 2.5.9)

iy 1S the scattering state with outgoing wave boundary conditions associated
with the unperturbed state ¢,,. The wave functiong,, is assumed to represent
a state in some arrangement channel £ which may differ from /, the arrange-
ment channel of .. As we saw in the last section, as ¢ — — o= §,(t) ~ §,(1)
where

Falt) = ..' Dy g exp (—iFt/h) dl, {2.5.10)
and so

(a1 @n(f»f ~ P @al))- (2.5.11)

—

Now we showed in Section 2.2, in particular equation (2.2.8), that the
wave packets ¢,(7) and ¢ ,(¢) become orthogonal as { ~ — = if p ¢ n. They
are therefore orthogonal if the arrangement channels i and f are different,
and so

(Polt) | §u(1)) L 3P0 @al1)). (2.5.12)

—-—

Further,
Pl galt)) = (exp (—iHt/R) ,(0) | exp (—iH/%) 9.(0))
= {p(0) | 9(0)). (2.5.13)

[t follows from {13), (11) and (12) that

(@0 | al0)) o O @p(1) | @ul1)). (2.5.14)

—_
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We may write (14) out more fully using (9}, (1), (10) and (2.4.1) as

J A1 D) | dx C)(wi | iy
ied 85 [ d1D*())  dk C(k){@, | uny €XP [ Brp~ Exa)t/h].  (2.5.15)
Now if f = i we know that {g,l¢,,) = 8(1—k)J,,, and if f > i the right-
hand side of (15) is zero. We can therefore put E,, = E,, and express (15} as
J DO [ dkCE)wlwity ~ [ 1D [ dk Ok} 843(01-K) 8.

-

(2.5.16)

Both sides of (16) are independent of ¢, and so they are equal. Since D*(1)
is arbitrary we deduce that

)it vty dk = [ Ck) 858(1—K) 3, dk. (2.5.17)
Since C(k) is also arbitrary we infer from (17) that
(i |9y = 8500 —K) Bpa. (2.5.18)

A similar argument which considers the asymptotic behaviour of the
system in the remote future rather than the remote past leads to

Win | Ve = 85 8(1—K) bp. (2.5.19)

In other words, the scattering states are orthonormal. The bound states of
the system are orthonormal, and we have already shown that the bound
states are orthogonal to the scattering states. If we denote the general mem-
ber of the set {y,, '} of eigenfunctions of H by y;, and the general mem-
ber of the set {v,, v} of eigenfunctions of H by v,", these results may be
summarized by the single important formula

@ENvE) = b | 2.520)

In other words, they are orthonormal eigenfunctions of the full Hamiltonian
H, and so also are the y,". The question of their completeness will be consid-
ered in the next section.

EXERCISES

1. Prove that any scattering state g, is orthogonal to any bound state p,.
2. Prove (19).
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2.6. THE COMPLETENESS THEOREM

In the last section we saw that the sets y;and y;are both orthonormal,
and in this section we shall show that they are both complete. According to
the fundamental postulate (2.2.1), for any time ¢, sufficiently far in the remote
past the wave function (f) has the form (2.2.3). This may be written

Peo) = T Bups exp (—Estol)

+ 3 By | Col) puen xp (— iEiat [#) dk (2.6.1)

where the summation ', goes over all bound states 1, while 3, goes over
all internal states of the system when it consists of two or more freely mov-
ing composite particles. Similarly for any time #; sufficiently far in the future
the wave function §(¢) has the form
Plt) = Eb:Bé% exp(—iEsti 1)+ Y B, [ Cok) @un eXp (—iEiut1/%) dki.
(2.6.2)

To evaluate §(r) we operate on {1} with exp [—iH(t— to)/#]. This is a linear
operator and so we can use the fact that

exp [—iH(1— to)/Al s = exp [—iEs(t— 10)/#] s (26.3)
along with (2.4.28) to obtain
P = );B;,% exp (—fE;,t/ﬁ)+Z B, I Cok) v, exp (—iEyqi/#) dk.
(2.6.4)

Similarly if we op;rate on (2) with exp [—iH{t— t1)/#] and use (2.4.29) we
obtain

90 = T Biys exp (~iEst/W)+ . B,  C1) piaexp (~ iial ) k.
(2.6.5)

Now y, = yif, B, or B,C,(k) may be written 4,and Bj or B,C.(k) may be
written 4.. The results (4) and (5) may therefore be written more concisely as

P1) = Y Ay} exp (—iE,tlh), (2.6.6)

) = T Ay exp(—iEt/H). (2.6.7)
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We discussed the quantities 4, and A, in Section 2.2 where we saw that
they are the probability amplitudes for the unperturbed states g, in the re-
mote past and future.

The expressions (6) and (7) show that any wave function i(t) may be
expanded in terms of either of the orthonormal sets y or ;. We have
therefore obtained the following theorem:

Completeness Theorem. The Schwinger-Lippmann
states p;", including the bound states, form a complete
orthonormal set. The Schwinger-Lippmann states {2.6.8)
y, , including the bound states, form a second com-
plete orthonormal set.

The theorem (8} enables us to generate sets other than the two explicitly
stated there. For we can associate complete sets with every arrangement
channel of the systen, viz. the product of the plane waves describing the
relative motion of the composite particles A, 4a.. ., 4,, together with the
complete sets ¢;f or y, for each of the sub-systems of elementary particles
which make up A1, As, ..., 4,,. Such sets of eigenstates of H, are orthonor-
mal and complete, and there are 2" of them. Which complete set we choose
will depend upon the problem under consideration, as we shall show later
by an example.

At this stage we should point out that we have not proved the completeness
theorem. For the theorem is a statement of a mathematical fact about
certain Hamiltonians. It can be proved in a mathematically rigorous way
for certain potentials; being a mathematical fact it cannot be deduced from
a physical postulate. What we have shown here is that, if 2 Hamiltonian is to
describe a physical system satisfying the physical postulate (2.2.1), then it
ronst have the mathematical property (8). If, for example, the potential is too
stngular, particles may spiral into each other and amalgamate, in which
case the postulate (2.2.1) is obviously not adhered to. Only potentials which
satisfy (8) can be regarded as realistic potentials for the system (Taylor,
1972).

ExampLE, Suppose we have a three-particle system consisting of two electrons g and b,
and proton A. For simplicity we suppose the mass of 4 1o be effectively infinite compared
with that of @ or b, and ignore spin, Typical unperturbed states of the four arrangement
channels are: | nyy), a state of the H™ ion; | Keat,) = 1K) 1 M) a state in which
electron a moves freely with momentum Ak relative (o A and b is bound te the proton A to
form a hydrogen atom in state | #); | Kpu#tas, Obtained from the previous one by inter-
changing the electrons; |k, L), a state in which the electrons a and & move freely with
momenia kk and 4l relative to A4 respectively, The scattering states corresponding to the
lasy three may be written K, n4; ), Meafea; ), and [k hg; L) respectively. Two
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compiete sets are therefore

{i Mg “Raatpas T | Mpattyas +0 | Kaalsa; +3} {2.6.9)
{UBga 1 Keampas =) hgaeas = Ikeahia; =) (2.6.10)

The above set is a complete orthonormal set of eigenstates of the total Hamiltonian H.
We can form other complete sets which are eigenstates of the unperturbed Hamiltonians
H; corresponding to the various arrangement channels. For example, consider the arrange-
ment channel in which b is free while a is bound to 4 to form a hydrogen atom. Since
we are assuming that the mass of a proton is effectively infinite compared with that of an
electron the centre of mass of the atom is 4, and so in this case

He = Kps+Keat Vas = Kya+h. (2.6.11)

The eigenstates of K,, are |k, ), representing the free motion of b relative to 4 with
momentun Ak. The eigenstates of the internal Hamiltonian h are the bound states 151, ,)
of the atom aA, and its ionized states |3, , 1) representing the scaitering of a by A when
the unperturbed momentum of a relative to A is /s, Two complete orthonormal seis are
therefore

{i i) sy [Keu) i3s3} 12.6.12)
and

HLPIZE A I Kpa) |34 =) (2.6.13)

In the problem of scattering of electron 5 with momentum &k when the atom is in its
ground state |0,,) we may have reason to believe that there is not much likelihood of
excitation ot ionization of the atom, If this is the case we can truncate the complete set {12)
selecting only the set ik, .} |0, where k takes all values. In this case the scatteting state
has the form

IkeOoss 4 > § FRI 000} 1kpa) dk = 10,0 [ FY Ky ) dk (26,14
where F is some function of k. The scattering state is therefore the product of the ground

atomic state |0,,) and some state Iﬁ'{k) ik, > dk of motion of 5 relative to 4, Its wave
function is now

WoolTusy Bpa) = Xolry ) FlTy ) (2.6.7

where F(r, ), the Fourier transform of F(k), is some unknown function. Such an approxi-
mation forms a basis for a calculation of the electron-hydrogen scattering amplitude (Mott
and Massey, 1965, chapter XVII).

EXERCISES

1. Write out the complete sets corresponding to the various arrangement channels of a
system of two electrons and a proton. Can you think of any other complete sets?

2. Repeat Exercise | in the case of the four-particle system consisting of two electrons
and two protons.

2.7. THE SCATTERING MATRIX

Let us summarize the results so far obtained in this chapter. For any time
1o sufficiently far in the past the system is represented by the wave function

Wto) = 3 Avp, exp (— iE;tof#) @71
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where 3, goes over the unperturbed stationary states @, of the system, in-
cluding the bound states. For any time # sufficiently far in the future the
system is represented by the wave function

#n) = ¥, A, exp (~iEn/h). 21.2)

At any time ¢, whether in the past, present or future, the wave function is
given by either (2.6.6), viz.

W) = ¥ A exp (—iEdt/h) (2.7.3)

or by (2.6.7), viz.
W) = 3. A exp (—iEth). (2.7.4)

The quantities 4, and A4, are the probability amplitudes for the state ¢
in the remote past or future. They;" and ;" form two complete sets of ortho-
normal eigenstates of H. We can remember these results by noting that in
evolution from g, isreplaced by y;, while in evolution into ¢, is replaced by ¥,

The fundamental problem when considering the dynamics of a system is
to be able to predict the future of the system when we know its past. Since
we are dealing with a guantum mechanical system we cannot predict with
certainty how any particular reaction will proceed, but we are concerned,
given the initial state of the reactants, with the problem of predicting what
reactions may take place and with what probabilities. The key to the solution
of this problem is the so-called scattering matrix, and this is the concept
which we will introduce in this section. The discussion of practical methods
of actually calculating such probabilities will be postponed to subsequent
chapters.

If we replace the summation index v in (3) or (4) by e, then put ¢ = 0, we
obtain

; Ay = Z A, (2.7.5)

since both sides equal §(0). If we take the scalar product of this on the left
with ;" and use the orthogonality property of the scattering states in the
form {y; | y;) = 8, we obtain

Ay = Y (95 |v2) Ao (2.7.6)

Let us define a quantity S,, by

St = (w7 05, ! (21.7)
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We can now rewrite (6) as

43 =Y Spudh (2.7.8)

(8) has the form of a matrix equation. The “column vector” of probability
amplitudes A, for the various states of free motion of the particles of the
various arrangement channels of the system in the initial state is transformed
into the column vector of corresponding probability amplitudes A;, in the
final state by multiplication by the matrix S, whose elements are defined
by (7). If the matrix §j, is known, the state of the system after the reaction
can be, in principle, calculated if the initial state before the reaction is known.
For this reason Sy, is known as the Scattering Matrix.

We can define a scattering operator S by the expression

S = E [y <o 15 (2.7.9)

for it follows immediately from the orthonormality of the F, (7) and (3)
that

(v 1S1ve) = X wr | v wi lvo) = X (w7 193 b
= W5 |v3) = Spw (2.7.10)
and similarly
G181yl = Spe (2.7.11)

In other words, the scattering matrix S, is just the matrix of the operator S
relative to either the complete orthonormal set of the y;' or relative to the
complete orthonormal set of the y,.

The scattering matrix is unitary. For from (7) and the completeness of
the p;

(8"S)pe = X 5hSm = 3. 83Sm = 3 (o 1v8)* (w5 | 92)
= 2w lve) (o 19d) = (W 19d) = B (2.7.12)

Similarly (SS')& = 8g,, and so we conclude that

§s = S5t = 1; (2.7.13)

in other words, § is unitary. The unitarity of S has, in effect, been deduced
from the postulate (2.2.1}; since this says that any past or future observation
will show the system to be in some free state ¢, we expect probability to be
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conserved, as expressed by (2.2.10). This is ensured by unitarity, for from (8)
§ [ 4p!* = BZ Ay g = ﬂZ;SEaA: ?Z Sey A,
=33 4;4, § StaSs, = 5.3 ATA, b,
= Z !VA,F = L ' (2.7.14)

Before we proceed to the physical interpretation of the scattering operator
S defined by (9) we note two of its properties. Firstly it follows from (9)
that

Sy, = ;w: (pu lyi) = gwiﬁm = ). (2.7.15)
Secendly, if f(H) is any function of H we see from (9) that
SH)S = Zf(E,) I Gy 1 (2.7.16)
SA(H) = 3 lvi) (wi LA(E), (2.7.17)
and so '
f(H)S = Sf(H). (2.7.18)

In other words S commutes with every function of H.

We can now discuss the physical interpretation of the scattering operator.
The state ¥, 4,y at time ¢ = 0 evolves into the state 3, A,p, exp (—iE, /%)
at tirne #4, and so

exp(—iHL/MY Ay =Y Ag.exp(—iEnih). ~ (2.7.19)

I we operate on (19) with 5 and use the fact that § commutes with any func-
tion of H we get

exp(—iHO/M) Y A,Sy; = ST A exp(—iEnfh).  (2.7.20)

We can substitute for $y;” from (15) into (20) to obtain

SY Ag,exp(—iEn/h) = exp(—iHL/A) Y A9 (2.7.21)

Now Y, 4% = #0) develops into ¥, 4,p, exp (—iE,1/#), for A, is the final
probability amplitude, and since #; is a time in the remote future (21)
becomes

|
‘ SY Awg,exp(—iEti[h) =Y Ag.exp(—iEti/h). i (2.7.22)
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{he result (22) shows that S fransforms the siate that would have emerged if
there had been no interaction into that which actually emerpes.
The bound states v, = g, are orthonormal, and orthogonal to the scatter-

ing states, while y;” = v = y,: hence particular cases of the definition (7}
are:

Sooor = (Wslysr) = O s, (2.7.23)
So ke = (Wslud,) =0, (2.7.24)
Sin, 8 = {Yign| w1y = 0. (2.7.25)

The results (23) to (25) may be expressed by the single formula
Sbv = Snb = abv' (2'?'26)
It follows from (26) and (8) that

A; = Z SbmAa, == Z 6b:Ax = Ab’ (2’?‘2?)

so that the probability amplitudes of the bound states are unaltered by the
collision. This is not surprising, however, for it means no more than that a
bound state is stable, which it certainly must be. A metastable particle which
decays into products with time is not, in fact, a bound state, but a super-
position of continuum states forming a wave packet which remains localized
for an unusually long time. The result (27) is therefore a confirmation of
the general theory,

EXERCISES

1. Verify (11).
2. Prove that (85%)3: = ga.
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CHAPTER 3

TRANSITION RATES

3.1. THE WAVE OPERATQORS

We started by discussing the stationary states of a system of N elementary
particles in its various arrangement channels, in the first place when the
composite particles move freely, and in the second place when their mutual
Interactions are taken into account. Having done this we considered the
evolution in time of such a system, and this led to the concepts of the scatter-
ing operator and scattering matrix. The definitions (2.7.7) and (2.7.9) of the
scattering matrix and scattering operator arise naturally from a study of the
dynamics of the system, but are not in a form useful for actually calculating
the probabilities of various collisicn and reaction processes taking place. It
will be the object of this chapter to derive expressions which will enable us
to perform actual calculations.

Let us define operators £2E(E) by the expression

QHE) = 1 +(E~Hzie) 1 V. (3.1.1)

where ¢ is a small positive number which is usually allowed to tend to zero at
the end of any calculation. (1) defines an operator-valued function of the
energy; given the arrangement channel 7, the operator is specified once the
variable parameter E (which has the dimensions of energy) is defined. It
follows immediately from (1) and (1.5.1) that

yf = QHE)y, (vini), (3.1.2)

where v in i means that g, is an anperturbed stationary state of arrangement
channel /. In other words the operators 2F(E) transform any unperturbed
state g, of arrangement channel i into the scattering states p¥ provided
E = E, The operators 2f(E) are known as the “Msller operators” or
“Wave operators”.!
Energy-independent operators £F may be defined as follows:
Qf = Y lyixel (3.1.3)

t The wave operators are discussed in the simpler context of potential scattering in
Volume 4, p. 88.

QTSP 4 39
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where the summation goes over those unperturbed states ¢, which belong to
arrangement channel {. From (2) and (3) and the orthonormality of the ¢,’s
belonging to the same arrangement channe! we see that

Qip, = yF = QFEYp, (vini); (3.1.4)

that is, 2F and 2 (E,) coincide when operating upon the unperturbed state
@, of arrangement channel i. In time-independent theory this is normally the
important case and we then often do not distinguish between them. The
% defined by (3) are also referred to as Moller operators or wave operators.
In the remainder of this section we will be concerned with wave packets.
These have a spread in energy, and so we shall concentrate on the energy-
independent operators defined by (3).

The Motller operators are closely connected with the time development of
the system considered in Section 2.4. Firstly we note that

UAO, Dp+uF) = AULO, D p+uUi0, D@ (3.1.5)

where §, @ are any elements of Hilbert space. It follows from (5) that if
UL0, £yp and U0, 1)@ have limits as ¢ -~ F o= then

Ui0, F == }p+pp) = AU[0, Foo}y+uld0, T==)@, (3.10)
and so U{0, T =) is also a linear operator. It therefore follows from (2.4.34)
that
Y B0 = Uk0, T o) T Buinl0) (3.1.7)
nini ning
provided the summation is confined to internal states y, of arrangement

channel i, as indicated. If we substitute for §£(0) and §,(0) from (2.4.30)
and (2.4.3) we obtain

Y, Jak BCAK)yE, = U0, Feo) T [dkB.CAW) g (3.1.8)

rini nin§
(8) can be abbreviated to
Y Ay = UL, T=) Y Ap. (3.1.9)
Since yf = Q¢, when » in / it follows from (9) that

2F Y A9, = U0, T=) Y A, (3.1.10)

ving rini
We cannot conclude from (10) that U0, =) = QF, for in generat the
¢, for a given arrangement channel are not complete—they do not include

the ionized states of the composite particles A1, As, ..., 4,,. The exception
to this is when i = F, the arrangement channel in which all the elementary
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particles are free. In this case the ¢, form a complete set. and so

Q= U, T ). (3.1.11)
If we make use of (2.3.5) we see that (11) can be written
Of = lm exp(iHi/f)exp{—iHgt!h). {3.1.12)
P — :Fm

By use of (2.3.5) we can write the result (10) as

QY Agp, = lim exp(@Ht/Mexp(—iHp/h) Y Ag,. (3.1.13)
vini §—Feo vini

This result forms the basis of 2 mathematically rigorous treatment of the
subject. 1t becomes a matter of showing that if ¢; describes a state of free
motion governed by the Hamiltonian H;, and H = H,+¥; is the full
Hamiltonian, then exp (iHt/#) exp (—iH;t/#) ¢; has a limit as  — 7 ce in the
sense that there are states §* for which || % —exp (iH¢/A) exp ((H /2§, || =0
as t — F = (Taylor, 1972, chapter 16). In the case when i = F, H, is just
the kinetic energy operator, and we obtained the result (12). The precise
sense in which this is true is that exp (iHt/A) exp (—iHg7/#) © has a well-
defined limit for every ¢ in Hilbert space.

EXERCISES
1. Prove that, for any arrangement channel |,

-in'glt = E “pv)(@ﬂ-

*n i

Qrart = 3 vl

*la @

2, Prove that, for the arrangement channel F in which all elementary particles are
rge.

ogE =i,
GO = ¥ ey(wi .

vin F

Deduce that 27 preserves scalar products.
3. Prove that if the forces berween the elementary particles are all repulsive then the
wave operdtors are unitary.

3.2, CALCULATION OF THE SCATTERING MATRIX

In Section 2.7 we defined the scattering matrix Sy, and calculated its ele-
ments when one or both of ¢4, @, are bound states of the whole syster. As we
saw the result, viz, (2.7.26), is not the physically interesting one (although it

4
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provides a useful check on the consistency of the theory). In this section we
shall obtain an expression for the elements Sty kn of the scattering matrix
between two scattering states specified by the quantum numbers kxn (channel
i) and lIp (channel f).

The scattering matrix S, is defined by (2.7.7). We can rewrite this, using
the orthonormality of the Schwinger-Lippmann states, as

Sge = (op | v+ —vf |vh) = et (5 —wd lvd), B2.1)

of as
Spe = (W |y +vr 19d—vi) = dp+ (v IvE—pa). (22
Let us calculate (y; —v; |v}) when 8 = Ip, @ = kn. We do this by putting
7= | CERpi,dk (3.2.3)

and considering (v, —v;, | §). From (1.5.1) with E = E, = E,, we have

{Pip— 01y | ) = ([(Eip—H—i) = (Bip—H+ie) | Ve | 9
= {Pup| Vsl(Ep— H+ie) 21— (Eyp—~H—ie) ]| 9
= I C(“)('ﬁp I Vf[(EIp_Ekn+ is)_l - (Elp“Ekn_ ;'g)—ll ] w:n> dk
(3.2.4)

on use of (3). From (3) and (4) we see that
-2
Je®)vip—wiy | ¥it dk = '[C(k) m (90| Vyl v dk. (3.2.5)

It is easy to see that as ¢ — 0+ an expression of the form

&
L 326
x24 g (3.26)

must tend to zé(x); for if x £ O the limit is zero, and the intepral of the
expression from x = — e« 10 x = +e is 7. If we insert this in (5) with
x = E,—E,, we find that

f C) (Wip— ¥ | vile) dk = f C&Y(—27) 8(Ei p— Evn) {91, | Vr | 9 dkk,
(3.2.7)

and since C(k) is arbitrary (7) implies
(Wi~ | Yiw) = — 2700(Erp — Eig) (@151 Vi | i) (3:2.8)
Insertion of this last result into (1) with g = Ip, & = kn, yields

S p.kn — 6}56(1 - k) apn - 2:"""ia(-Elp— Exn) (‘plp | Vf | wk+n> (3'29)
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When either ¢, or ¢, is a bound state of the system the quantit; 6(E; — E,) X
(4sl V¢| 9, ) must vanish. For if ¢, is a bound state ¥, = 0 and the result
is obvious, while if ¢, is a bound state, y; = ¢,. Since ¥V, = H—H, we
have in the latter case (g4l V,|y)) = (g3| H—H;|¢,). Now ¢, is a bound
state, so is negligible outside some finite volume of configuration space, and
hence H, H, must be Hermitian between ¢, and ¢,. Since H;g, = Ezp, and
Hy, = E.g, it follows that

(pl Vily) = (ppIH=Hrl o) = (Es—E)(gsl o)  (3.2.10)
and so
8(Ep—E.) (9| Vy|93) = S(Es—E)(Es—E){gpl¢a) = 0. (3.2.11)

Also Sy, = 0y, if either either ¢, or ¢, is a bound state. Hence
Spe = Opu—2i(Ep—E.) (s V|93 (3.2.12)

for if either g, or ¢, is a bound state (12) states that S,, = 0g,, and if neither
¢, nor ¢, is a bound state (12) is equivalent to (9).
If the same type of argument is followed, but beginning with (2) rather
than (1), the result
St = 8pa—21i8(Eg— E){y5 | Vil @2) (3.2.13)

is obtained. The expressions (12) and (13) for the elements of the scattering
matrix will form the starting point for our derivation of expressions for the
differential cross-sections.

EXERCISE

Prove equation (13).

3.3. TRANSITION AMPLITUDES

In a scattering experiment the system is usually prepared in some definite
state ¢, of arrangement channel i, say. ¢, will usually represent two composite
particles, one at rest (the target), and the other moving towards it (the bom-
barding particle). Our problem is to discuss the likelihood of a transition
from ¢, to some final state ¢, of arrangement channel f (consisting of two
or more composite particles). To do this we have to introduce a quantity
T(% - f), known as the “transition amplitude™ from the state ¢, to the
state ¢,: we shall do this in this section.

We first introduce transition operators T3 (E) according to

TH(E) = V,QHE), (3.3.1)
T7(E) = Q7Y(E) Vs (3.3.2)
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It follows from (3.1.1} that

THE) = Vi+VAE—H+ie) 2V, (3.3.3)
TF(E) = Vi+VA{E-H+ie)"1 V. {3.3.4)

T#(£)are known as the transition operators for transitions from arrangement
channel { to arrangement channel £ at energy E.

As defined above the transition operators depend upon a variable para=
meter E having the dimensions of energy. They may be defined in an energy-
independent way by the expressions

Th = VA, (3.3.5)
Ts = 7'V, (3.3.6)
where 2" is given by (3.1.3) while, analogously,
QF = ¥ |wy{(p.t. (3.3.7)
vio f

The quantities T+ (« ~ /) are defined as the matrix elements

THe — 8y = (gs | THE) g2  (aini Binf), (3.3.8)

T~ ) ={ps| Ti(Eg} | ey  (wini, Binf). (3.3.9)

We saw in Section 3.1 that Q}(E)¢, =] and so (1) and (8) imply that
To ~ B) = {pa! Vrlui)- (3.3.10)

We also saw in Section 3.1 that v} = 2 g,; if we substitute this for p; into
(10}, then use (5), we obtain

THa — B) = {@s| Tf lga)- (3.3.11)
Similarly (2) and (9) show that
T(x — B) = (sl QFUED Vi lga) = (7 (Ep) s | Vil (33.12)

so that
T (x - f) = (w5 | Vil @) (3.3.13)
Since y; = £27¢;, (13) and (6) give
T(x—~ B) = (ps | T7 | @a)- (3.3.14)
From (8) and (11) we see that
(@l T (E) l9a) = (@ | TH | @a)s (3.3.15)

while from (9) and (14)

{pa | Tr(Ep) | @) = s | T | @) (3.3.16)
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that is to say, TH(E,)and Tf} have the same matrix elements between (9 and
¢ .» and so do T;(E,) and T;. As we shall now show, these are in fact, the
physically important matrix elements.

If we compare (3.2.12) and (3.2.13) we see that

{pp | Vil wd) = (yg | Vil @a) when Es=E.  (3:3:17)

It therefore follows from (10) and (13) that

|_;+ = B) = (oz| ¥+l _+_= -'v—-I-V-I _ [
RACEY \Q_aF ANI=NE TR | (3.3.18)
= T (2~ p) when Eg—

If we denote the common value of the four terms in (18) by 7(x —~ ) we see
that (3.2.12) and (3.2.13) may be replaced by

\ Spe = Op—2mi (Eg—E,) T(e — f) | (3.3.19)

{
i

since the second term on the right-hand side is only non-zero when £, = E,.

The quantity T(« — ) which appears in (19) is known as the “transition
amplitude”. When S,, = 0, (2.7.8) implies that 4, = A4, and so in such a
case the interaction is ineffective. The quantity T(x — f#) measures the effect-
iveness of the interaction, and this is the reason for its name.

We saw in Section 3.2 that the quantities (g5 V,|p)) and (yz |V, lg.)
must vanish if either ¢;; or ¢, is a bound state. It follows from (18) that
T(e - 3) must vanish if either ¢, or ¢, is a bound state, and since the work
of Section 2.7 showed that S,, = &, if either ¢, or ¢, is a bound state, it
follows that (19) is true for all 2 and £.

The results of this section lead to a very useful corollary. If we take matrix
elements of (3) and (4) between ¢, and ¢, and subtract we get

{ps | THE)| @u)— (98 | TA(E)| ¢a)
= (s Vil p)—{pp | Vil @a). (3.3.20)

We have seen that the left-hand side of this equation vanishes when
E, = E, = E, and so therefore must the right-hand side; in other words:

| If Es=E, (glVile)= (Vi@ | (3320)

This result will be very useful, for example, in our discussion of the Born
approximation (Section 5.3).

EXERCISE

Verify equation (21) in the case of exchange scattering of clectrons and hydrogen
atoms. (You may assume that the mass of the proton is effectively infinite.)
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3.4. CROSS-SECTIONS FOR TWO-PARTICLE COLLISIONS

Let us confine our atiention for the time being to collisions of the form
A+B +~ C+D. (3.4.1)

“Direct collisions™ are of the form
A+B +~ A+B; (3.4.2)

(2) is a special case of (1). If 4 and B have the same states as initially the
collision is “elastic”; if the states of one or both are changed, the collision is
called “inelastic”. When the final pair of particles is different from the
initial pair we have a “rearrangement collision”. More generally, we can
define elastic collisions as those in which the channel is unchanged, inelastic
collisions as those in which a transition takes place between chanunels in the
same arrangement channel, and rearrangement collisions as those in which a
transition takes place between different arrangement channels.
The initial state of the system has the form

Proilis Xi) = @ur) xa(X;) = (2)~¥2 exp (ikeor,) 74(X7) (3.4.3)

where r; is the displacement of the centre of mass of A relative to the centre
of mass of B (Fig. 3.1a), x; denotes the internal coordinates of 4 and B,
4. the initial internal state, #k the initial mementum of A relative to B, and {
labels the arrangement channel of 4 and B. The final state of the system
has a corresponding form

o %) = (ty) x{Xr) = Q)32 exp (flexy) (%)  (3.4.4)

We must now consider how we can define an experimentally determinable
quantity which measures the rate at which the reaction (1) proceeds. In
many collision experiments a uniform beam of the particles A4 is aimed at a
target containing N, particles in the path of the beam. The number of
particles C emerging per unit time in the solid angle d¥, in the direction of
the unit vector f, relative to the recoil particle D when the internal state of
the product particles is y, is measured (Fig. 3.1b). Under suitable experi-
mental conditions this is found to be proportional to N, diand the “incident
flux™ I; the incident flux 7 is the number of particles per unit time crossing
a unit area placed transverse to the beam. Since we suppose the incident
beam to be uniform, 7 must be independent of the position of the unit area.
The number N(kn — ¥,p) df, of pairs C, D emerging per unit time in df,
with displacement Ff of C relative to D, the internal state being %, is therefore
of the form

N(kn — £yp) dfy = o(kn — ryp) IN, diy (3.4.5)
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—————— e ?

(q)

()
FiG. 1.1, Configuration of the system (a) before the collision, (b} after the coflision.

where a(kn —+ 1"}p) is a quantity known as the differential cross-section rof

the process. The fact that N(kn — f;p) is proportional to both / and N,

means that the collisions are independent; there are no multiple collisions,

nor do the particles of the incident beam or of the target interfere with each

other. It is therefore possible for us to evaluate the probability of the process

%1a — @y, for a single collision, and hence evalvate o(kn — 1}p) from (5).
The cross-section for the process y, — x, is given by

o(kn ~ p) = [ a(kn —~ izp) dfy (3.4.6)

where the integral is taken over the unit sphere. From (5) and (6) we can see
that INs(kn — p) is just the number of pairs of particles C and .D produced
in the internal state y,. If we sum this over all energetically possible final
states y, we obtain the cross-section e(k» - /') where

okn —f) = Y okn~ p) = ¥’ [ dija(kn ~ Fpp). (3.4.7)
pinf pinf
In (7) ¥',;. ,means summation over the energetically allowed channels of £,
From (5)and (7) we sce that IN,o(kn —~ [} is just the number of pairs C and D
produced per unit time, and is consequently closely related to the rate con-
stant for the reaction (Bunker, 1966).
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3.5. EVALUATION OF TWO-PARTICLE CROSS-SECTIONS

We shall now obtain the relationship between the cross-sections defined in
Section 3.4 and the transition amplitudes defined in Section 3.3. To do this
we will first consider the initial state of the system, which must have the
form

Fllis X 1) = §(Te, 1) 20X) €XP (— it /) (3.5.1)
where

@(ri, 1) = (20 { C(k) exp (ikor) exp (—iEyt/h)dk.  (3.5.2)

Certain experimental conditions which must be satisfied in a properly pet-
formed experiment will enable usto calculate the flux 7. The work of Sections
3.1 to 3.3 will then enable us to calculate N(kon — T,p), and hence the differ-
ential cross-section o(ks — r;p), where ko is the mean relative wave vector
of the incident beam.
The mnitial wave packet is normalized to unity, and since this holds for all
times we have
J 1@, 0)12de; = 1. (3.5.3)

We suppose that the incident beam is parallel to the axis Oz of Cartesian
coordinates Oxyz; the wave packet ¢ must therefore have a cross-section
A perpendicular to Oz and possessing the shape of the diaphragm through
which the incident beam is emitted (Fig. 3.2). It is thus possible to replace (3)
by the equivalent expression

+ o
{j dxdy | dzig(x,y,2,00]> =1 (3.5.4)
A 4 ,
/L—Swrcu Kk,
] —_— ¥

Centre of mass
of torget X

_/

FiG. 3.2. The incident wave packet for motion relative to the target 0. The probability that
t; lies in the cylinder of cross-section dxdy is independent of x and y.
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where r; has components (x, y, z} relative to Oxyz. Now the integral with
respect to z is a function of x and y which, when multiplied by dxdy, gives
the probability of the relative displacement r; being in a cylinder of cross-
section dxdy and axis parailel to Oz (Fig. 3.2). In a properly performed scat-
tering experiment the incident beam is uniform, and so this probability
must be independent of x and y. We can therefore put x = y = 050 that (4)
becomes

+ ol
J.d.\‘ dy J- dz | @(09 0! Z, 0) |2 =1 {355)
A —
The integrand of the doubie integral in (5) is independent of x and y, and so
if we denote the area of A by A4 we obtain

oo

A I dz| @0,0,2,0)* = 1, (3.5.6)

woa

If we substitute for §(0, 0, z, 0) in (6) from (2) we obtain

V= AQuys [ dz [ dky [ dk, [ k. Co(kn ko ko) exp(—iki)X
so ot ae
x [ kg | ko, K k) exp ko).

Integration over z and then over &, yields
+ a0

I = AQ2x)-2 j dk,

—a

+0o +2 2
I dk, J' dik, Clky, ky, k2}| .

—— — oo

(3.5.7)

Let us suppose that N, bombarding particles are emitted per unit time.
The incident flux is then [ = N,47, and so from (7) with the dummy varia-
ble of integration &, replaced by &

2

e -2 -
I = Ny@n)2 dk| [ ke |k, Clhss iy ) (3.5.8)

oo

We have now calculated the incident flux; the next task is to calculate the
probability P(Ffp) of a particle C emerging in the direction relative to the
recoil particle D specified by the unit vector T, the internal state of C and D
being represented by x,. In order to do this we must first calculate the pro-
bability amplitude 4, of observing the final state @y, According to (2.7.8)
this is given by

Alrp = Z I dk Slp. kn Agons (3.5.9)

where 3 goes over ail channels. By hypothesis we have only the initial
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internal state y,, and so the probability amplitude A, is just the momentum
amplitude C(k); hence (9) becomes

Aip = [ Sip, 1 CK) dK. (3.5.10)
The scattering matrix is given by (3.3.19) which in this case becomes
Sip, kn = 050,,0(1— k) — 27i8( Ey p— Eye) Tkt — Ip). (3.5.11)

If we substitute (11) into (10) we obtain
Aip = 848 CO)—2n2i [ CK) 8(Er,—Ei) T(kn ~ Ip)dk. (3.5.12)

In practice we need only consider cases when C(}) = 0; for we will only
observe elastic collisions (f = i, p = n) when the final velocity of C relative
to D is not parallel to the incident beam. This implies that there is no pro-
bability of observation of the momentem #l in the initial wave packet
describing the state of motion of A relative to B in the incident beam, and
so | C(l) |* = 0, whence C(1) = 0. If C(1) did not vanish the detector would,
in fact, be swamped by the incident beam. We can therefore replace (12) by

Al = —27i | C(k) 8(Eip—Eun) Tk ~ 1p) dk, (3.5.13)

which may also be written

Aip =—2mi | k2dk | dk C(kk) 3(Ey,— Eyw) T(kkn ~ 1p).  (3.5.14)
0

where k& = k/k.
If we carry out the integration over k, and remember that £, = #%k2/2u +
+E,, where y, is the reduced mass of 4 and B, this becomes

Aty = —2mipich=2 [ Clkk) T(hckn ~ 1p) dik. (3.5.15)

In (15) & is determined by the condition E,, = E, , which expresses the con-
servation of energy.! In a well-performed experiment collimation is suffici-
ently good to ensure that there is no variation in the transition amplitude
T(kkn — 1p) as k varies over the directions of the incident beam; in other
words, as k takes values- for which C(kk) > 0. We can therefore replace
T(kkn —~ 1p) in (15) by T(kkon — lp) where K, is the unit vector in the
direction of Oz. T can then be taken outside the integral in (15), and so

Ay = — 2mip k=2 T (kkon —~ 1p) | C(kk) dk (3.5.16)

Whel'e ERK = Elp'
T 1t may happen that there is no & for which £, = Ey,, in which case 4;; = 0, Such a
case would arise if the internal energy of the final particles C and D wete less than the

internal energy of the initial particles 4 and B. Then if E, = E,—£,, E,, = Ey, forall k.
We shall assume that this is not the case here.
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Fic. 3.3, The final relative wave vector1 of Cand D is defined by its magnitude / and direc-

tion, viz. that of the unit vector #,. As 1takes magnitudes between ! and o/ and directions

in the solid angle dr; it fills 2 volume element @l of cross-section i* dr; and length dl. The

probability of observing I in the volume element dl is | 4/, |* di, and so equals | 4, {* £
dat dl".

In order to caiculate P(r,p) we note that the probability of observing the
final wave vector 1 in the volume element Pd/d¥, at the point 1 = !i'} of
I-space is | Ay, |*Pdidt, (Fig. 3.3). It follows that the probability P(r.p) df,
of observing the final relative displacement being in the solid angle df,
along 1, is

P(ip) diy = diy [ Pdl| 4}, %,
1]
and so by (16), if we remember that | = /r,,
P(yp) = [ dian®kfuth—*| T(kkon ~ I7p){?| JC(kK) dk 2. (3.5.17)
1]

Now C(kk) > 0 only if & ~ k¢, and in a properly performed scattering
experiment the energy resolution is sufficiently good to ensure that the
modulus of the transition amplitude does not vary much for different energies
in the incident beam. We can therefore replace | T(kkon — Ir;p) | in (17)
by | T(kon — Iif,p) where ko = koko and /y is obtained from ko by the energy
conservation condition; | T|? can now be taken outside the integral sign
in {17), which becomes

P(&p) = | 2zuh 2 T(kon — lofyp) |2 | dI k2| [ Clkk) dk |2, (3.5.18)
1]

The unit vector K is almost parallel to ko if C(kk) = 0 so we can put
dk = k;*? dk,dk, where (k,, k,, k) are the components of kk = k (Fig. 3.4).
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7 b ke K

F1G, 3.4, The solid angle dk is generated by vectors k whose x and ¥ components lie

between &, and k. + dk,, k, and k, +dk,, respectively. Since the magnitudes of such vectors

approximately equal k,, while their directions are nearly parallel to k,, the intercept thatdk

makes with a sphere of radius & is approximately a rectangle perpendicular to Oz, and
with sides of lengths dk, and d¥,. It follows that dk = dk, dk,/k,.

Hence
[ arear) [ cukydi (2 = [ drtkekgy [ dydk, Clky, kyy ks) |2 (3.5.19)
i 1]

where the double integral inside the modulus signs on the right-hand side
of (19} may be taken over all values of &, and k,, since C vanishes unless
both k, and k, are very much less than ko. The energy equation E,, = E,,
can be written more fully as

K2+ RS+ K2) + #2

E, = +E, 3.5.20
2p 2up 7 ( )

where u, is the reduced mass of C and D, and for fixed / this determines &,
as a function of &, and &,. If we differentiate (20) partially and implicitly with
respect 1o k, we see that 9k, /ok, = —(k_/k,), and this is obviouslysmall if
C(kk) = 0, since then k, <« ko and k, = ko. Similarly 8k /ok, is small,
and so k, may be regarded as independent of £, and k,, and given by (20}
with k, == k, = 0; then Xk, = k where

L i

it = 5+ E. (3.5.21)

We can therefore replace %, in (19) by & to obtain

| dirie) fdkeuky 2 = | dirkekg?| [ dk,dk, Clks, &y, K)12, (3.5.22)
1] 1]
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and from (21) we can replace { as the variable of integration by k. Now
Clk,, k,, k) = 0 if k is less then the threshold value [2u(E,-E,)/#%2,
otherwise the collision energy would be too close to zero for resolution. This
threshold is the lower limit on & corresponding to [ = 0. We can therefore
extend the lower limit on the integration over k to — == to obtain from (21)
and (22)

oo - e
| ar ek J dkCk)12 = | dk pppy k%4 [f dksdle, Clky, kys k)12
n — o

(3.5.23)

The momentum amplitnde € vanishes unless & ~ kq, in which case by
(24) I = Iy where

#2k2 R
e +E, = T +E,. (3.5.24)
We can therefore replace (23) by
oo + =
[ dr ey j dk C(kk) |2 = gppi kst | ak| jj dky dic, Clk, &,y k) |2
1] -—an
_ (3.5.25)
and hence from (18)
Piyp) = pepi ok * | 2muit—* T(kon —~ L, p) 2 X
+ o
X j’ dic| (§ dicedk, Clks, ky K)[2. (3.5.26)

—_

The number N(kon - £,p) df, of particles C emerging per unit time in the
solid angle (T, df,) with C and D in the internal state y, is given by

Nikort ~ £p) = No N, P(§;p) (3.5.27)

since N, is the number of target particles and N, the number of bombarding
particles per unit time, and so by (26)

Nikon — Frp) = pppdoky? | 222 T(kon — lifyp) 2Np N, X
e
X f dk| § di. die, Clhs, ky k)| (3.5.28)

We have now obtained N(kon — I;p). The differential cross-section is
given by (3.4.5), hence

o(kon — Frp) = I-IN7IN(ken —~ ¥rp). (3.5.29)
If we substitute for I and N(ken — t,p) in (29) from (8) and (28) we obtain

o(kent — Tp) = pppdoky'| 4a2h=-2T(ken — lorpP)|2. (3.5.30)
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(30) is the required relation between the differential cross-section and the
transition amplitude,
The scattering amplitude f(kon — 1p) is defined by

Fkon — Ip) = (—da2uy/#?) T(kon —~ Ip). (3.5.31)

Since #iko/u, is the initial speed »o and #ilo/u,is the final speed v, (31) enables
us to rewrite (30) as

alkon — Frp) = (vpfvo) | flkon — lobrp) {2 {3.5.32)

EXERCISES

1. If 8 is the angle which the direction of the scattered particle makes with the direction
of the incident particle, k and I are the initial and final relative wave vectors, and q = k-1,
show that

gt = k*+ 12 -2kicos d.

Explain why the scattering amplitude can only depend upon & and ¢ if the problem has
axial symmetry about the direction of the incident particle.

2. Use the results of Exercise 1 and (3.4.6) to show that if the collision is direct, and has
axial symmetry about the direction of the incident particle, then the total cross-gection
o{kn — p) is given by

2, i+
L R
okn = p)= 5 [ 1f@korads.

[1-%|

where fig, k) is the scattering amplitude.

3.6. GENERAL PROCESSES

In the last section we obtained the expression (3.5.32) for the differential
cross-section a(kon — Ip,) for the two-particle process A+B — C+D.
Although in most reactions the initial state of the system consists of two
particles, it is quite often the case that after the reaction there are more than
two particles; for example, collisions in which one or both of the colliding
particles are ionized. We can reduce these examples to that of Section 3.5
by choosing one of the resulting particles as the “recoil” particle. If we label
it as C, the remaining particles may be grouped together and collectively
labelled as D. We can denote by r: the position vector of the centre of mass
of C relative to the centre of mass of D, and by 1 the corresponding relative
wave vector, The final state now takes the form

Prap(F1, @) == Pr{r1) Supl@) (3.6.1)
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where £ is & product of d-function normalized plane waves which describe
the relative motion of the particles of D, % = (s, ..., x,,_,) denoting the
collection of wave vectors specifying the relative momenta of these particles,
with the wave function g, representing the internal state. Here q denotes
collectively the internal coordinates x,and the relative displacements r., .
r,,_; of the particles of D.

The probability that the wave vector 1 for the motion of C relative 10 D
lies in the volume element dl = [*d] dr, while the relative wave vectors
® = (s, ..., ®,_1) lie in the volume elements dxs, ..., dx,, _,, the internal
state being represented by y,, is given by |4, 2P didrndxs ... dx,_
where Ay, is the amplitude for the final state ¢,,,. We can therefore calculate
the probability P(T1#p) df\ duz . .. dr,,_, that the motion of C relative to D
lies in the solid angle df, along T, while the relative wave vectors xy, . .., %, _;
of the recoil particles lie in the volume elements dxs at s, ..., dx,,_, at
X, _1. by integrating | A, [22dl from /=0 to /= . The calculation
follows that of Section 3.5 with p replaced by xp, ¥, replaced by Ty, the product
dwg, ..., dw,_, inserted where appropriate, and so P(rxp) will be given by
(3.5.18) modified in the same way. Following the reasoning of Section 3.5
we find that the number N(kon - T1xp) dx; . . . dx,,_; of particles appearing

in the solid angle df, along ) per unit time is given by (3.5.28) modified as
described; that is, by

ey

N(kont — Tixp) = pruloky t| 20k 2 T(kont —+ Lob12p)% X
e
XNpN; | dk] {f dk.dk, Clks, Ky, k)2 (3.62)

In (2) /s is given by the energy conservation equation

A2 R A2k

By +Ep = Ty +E+E, = T +E, (3.6.3)
where E,_ is the tolal relative kinetic energy of the recoil particles, £, the final
internal energy of the particles, and p, the reduced mass of C relative to the
recoil particles.

The differential cross-section o(konr — Tixp) for the final state Pip Where

I = /oy is now naturally defined by

o(ken —+ F1xp) = I"INTIN(kon — F12p), (3.6.49)
so that IN,o(Ken —~ £13¢p) dty dxs ... dx,_, is the number of particles C

m
appearing in the solid angle dr, per unit time along f; when the relative wave
vectors lie in the volume clements dx; at xs,. . ., d%,,_, at x,,_;. The expres-

sion (3.5.8) for { remains valid, and so we deduce from (2) and (4) that

o(kon —~ F12p) = upudoky | 4nA—2T(kon — Lib1xp)|2.  (3.6.5)
QTSF 5
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The scattering amplitude is defined by (3.5.31) with p replaced by »p, that
1s by
Jkon —+ Vxp) = (—4a2ur /A T{kon — bxp), (3.6.6)
where #i,is the reduced mass of C and D. As before we obtain the result
o(kon — F12p) = (vp/vo}| flkon ~ Ll 12p)|? (3.6.7)

where u, is the speed of the scattered particle relative to the centre of mass
of the recoil particles.

The Rux into the solid angle dr; when the particle of arrangement channel
Jare in the internal state y, is clearly obtained by integrating over all energet-
ically possible sets of values of s, ..., %,,_;, and so the differential cross-
section o(kon —~ T1p) for the final internal state %, is given by

o(ken = T1p) = J dxs. . I dx 1 0(ken — T1%p), (3.6.8)

the primes signifying that the region of integration is that allowed by energy
conservation; that is, the region for which E, , is less than or equal to E—~E,,
where E is the total energy. The cross-section o(ken —~ f} for production of
particles in arrangement channel f'is obviously obtained by forming the sum

and integral
okon ~ f) = Y [diioken —~ F1p) (3.6.9)

pin f
where the primed sum goes over all energetically possible final internal states
x, of arrangement channel f; that is, all states y, of f satisfying E, =< E.

EXERCISE

Hydrogen atoms in their ground state are fonized by eleciron impaet., The initial wave
vector of the incident electron is k, and its final wave vector is I, while g = k—1. The
momentum of the atomic electron relative to the proton after ionization is fx. Relative to
spherical polar coordinates with q as polar axis x has coordinates x, ¥, . Explain why the
scattering amplitude for the process can be expected to depend only upon %, ¢, », y and ¢

at most.
Deduce that the ionization cross-section o is given by

g kot an o

u:% »® du J. qdqfdxfsinwdy:lﬂ’
1] | k—k,| ] ]
where

ki = ki-x=2mlA,
1 being the ionization energy of the hydrogen atom, while
sy = (kT—2mifi)ifE,

{The mass of the proton may be taken as effectively infinite, and the mass of the glectrcn
ism,)
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3.7. MIXED STATES

In many experiments the target beam consists of particles in different states;
for example, in the case of ionized molecules produced in a furnace various
vibrational levels may be populated. It is always assumed that such a mixture
of states forms a statistical mixture, so that the differential cross-section
measured in the laboratory is obtained by averaging over the initial states.
Thus if the incident beam and target system consists of various initial states
¢, and p, is the probability of the occurrence of the state ¢,, the differential
cross-section a(-- ) for transition to the final state ¢, is given by

o(—~ B) = ) p.oex — ) (3.7.1)

where X', runs over all initial states.

It is worth pausing to consider the physical conditions which must be
satisfied if (1) is to be accepted as a valid rule of calculation. Suppose for the
sake of argument that there are only two internal states, y1 and . say. At
some time f, in the past a particle 4 of the incident beam and a particle B
of the target system will be in a state ¢(ty) where

@(to) = e1@palto)+ ca@allo), 3.7.2)

¢y and ¢ are complex numbers, and ¢1(fo), @2(10) are each products of a wave
packet describing the relative motion of 4 and B and the internal state
71 Or %2 Tespectively (see Section 2.1). If each particle is produced under the
same experimental conditions the functions ¢; and @ and positive numbers
| ¢1 | and | €5 | will always be the same, but the phases ¢/, and 6, of ¢; and ¢»
may possibly vary. If p, and p. are the probabilities of observing the states
represented by y1 and . in the incident beam we have |¢;| = p}/?, | ca| = p¥/2,
and so (2) can be written

@(to) = pi exp (i) @:1(to)+ p3’? exp (i62) pa(to). (3.7.3)

Let | m) be a state of the system in which a complete set of commuting
observables (such as the relative momenta of the elementary particles of the
system) have definite values. The probability of observing the system to
have such a set of values at time 1y is | (m | @(t0)) |* = P(m) say, and so
from (3) we find

P(m) = py [(m| @1(to)) >+ pa | (m| @a(to))] *
+2(p1p2)'* Re expli(by — 02)] (m| @1(t0)) (m| @a(to)).* (3.7.4)

Now | (m| @ (to)) |* (s = 1, 2) is just the probability P (m) of observing the
5.
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values # in the state @ (fo), and so (4) is equivalent to
P(m) = pLPi(m)+ poPa(m)+2(pip2)V2 Re exp {i(0:1—~ 83)] X
X {m| @r{te)) {m] Pslte))". (3.7.5)

In any beam preduoced, for example, by a furnace it is found that the classical
statistical formula
P(m) = p1Py(m)+ p2Polm) (3.7.6)

holds. The probability (6} is obtained from (5) by averaging over a large
number of observations of such initial states. The third term on the right-
haund side of (5) therefore always disappears, and this can only be the case
if the arbitrary phase relationship 6, — 8, between @; and @, is assumed to
vary in a random way.

Let us now consider what happens after the collision. The state @(fo) now
develops under the full Hamiltonian H into the state g(¢) = exp [—iH({¢ — to)/
#1@(t0), and similarly @i(fo) and Fa(fo) develop into Pi(f), () say. If we
operate on (3) with the evolution operator exp [—iH(?— t0){#] we obtain

#(t) = pi®exp (iB1) Pu()+ p3* exp (i02) Po(2). (3.7.7)

As we saw in the last chapter the probability amplitude 4, for observation
of the state g, after the collision is given by {y; | %(0))" and so by (7)

Az = pi* exp ({61)) (wg | 9u(0)) +pi2% exp (i0:) (w5 1 92(0))  (3.7.8)

1t follows that the probability P(8) = | A:,P of observing the state ¢, after
the collision is given by

P(B) = prPi(f)+p2Po{B)+2(p1p2)2 Re exp [i(61—02)] X
X {wg |90 Cpr | 900" 3.7.9)

where P(f) = | (y5 | #L0)}* (s = 1, 2) is the probability of observing the
state g, after the collision in which the initial state is ¢,(to). To find the
experimentally measured probability we must average (9) over a large
number of observations. Since the phase relationship 8;— 8 has been seen
to vary in a random way it follows that the phase 6, — 8, of the third term on
the right-hand side of (7) will also vary in a random way, and so

PB) = puPi(B)+p2Pa(B): (3.7.10)

in other words, the probability of observing the final state ¢, is obtained by
averaging over the initial states. A similar argument will apply if there are
more than two states in the initial beam, and so it is easy to see that (1)
follows.

T To see this, put ¢ = 0 in (2.6.7) and then take the inner product on the left with yg,
using the orthonormality of the p, .
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The addition of cross-sections for different final states is also worthy of
some further comment. In order to find the differential cross-section for
scattering into the direction of the unit vector ff for collisions of the form
A+ B —~ C+ D we can observe the different differential cross-sections when
various final internal states y, are produced ; the summation of the differential
cross-sections over the states y, is then obvious. In an experiment when only
the differential cross-section is observed, and not the final internal states, we
must expect to get the same result; for it is a fundamental assumption that the
transition probabilities (and hence differential cross-sections) are determined
by the history of the system before the measurement, and are not dependent
upon the nature of the measurement. The same arguments obviously apply
to more complicated processes.

We may sum up the conclusions of this section by the following rule:

In order to calculate cross-sections for various
initial and final states, given the cross-sections
for individual initial and final states, we average over
initial states and sum over final states.

(3.7.11)

A related problem is that of spin. For stmplicity, let us suppose that the
problem is one of scattering of two elementary spin  particles. Normally
beams and target particles are “unpolarized”, so that there is equal proba-
bility of either colliding partner having “spin up” or “spin down”. The spin
state of the incident particle is therefore a,| «)+ag| 8, where | a) and | 5}
are the “spin up” and “spin down" states respectively, and | a,| = | a5 =7
Similarly the spin state of the target particle is b,| a)+ b4l §) where | b, | =
| bs| =4 The initial spin state of the system is therefore (a,|x)+ayl B))
X (b lay+bgl B)). If we put | &)| ) = | aex), sothat| axx) is the spin state when
both particles have spin up, | &)} #) = | a8), so that | «f) is the spin state
when the incident particle has spin up and the target particle has spin down,
etcetera, we see that the overall initial state has the form

Fto)ler| ey +calafd+cal BB+ ca) fad]; (3.7.12)
n{1D e, =ab,c2= a,,bﬁ, €3 == @by, and ca = agh,. Thus [ e1| = | 2| =
feal = eal =%. The wave packet $(to} will be the same for all identical

experiments apart from a phase factor which can be incorporated into the
coefficients ¢y, ¢», €3 and ca.

As before the phase relationship between ¢, ¢z, ¢3 and ¢4 must vary in a
random way; for the expectation value of any spin-dependent operator A is

4 4 .
Y X cedgltorn | Al §ltorny) (3.7.13)



60 SCATTERING PROCESSES: GENERAL PRINCIPLES

where 7:...14 are the four spin states | aa}, |28}, | 88) and | fz). In any
unpolarized beam this will always be observed to have the value

4 4
r;licrlzGT?(fu)m | Al @)y = ¢ r):l (@lto) 1| Al plro) ey (3.7.14)
this is the average of the expectation values in the four states. Again this can
only be the case if the phase relationships between 1, ca, ¢3 and ¢4 vary in a
random way, so that the cross terms in (13) vanish on averaging over a large
number of observations.

The spin space of the particle is spanned by the four orthonormal spin
states | an), | ), | B8 and | f). It is also spanned by the four orthonormal
spin states

|0) = 2712 [jaf) —| Bo)], (3.7.15)
11 = |oa) (3.7.16)
|2y = 2712 [|aff) + | B}, (3.7.17)
13 =188 _ (3.7.18)

1 0) is the singlet state, | 1}, | 2) and | 3} are the three triplet states. We can
express (12) in terms of these states—we get

@to) o1 | 1)+2-M2c2+ o) | 2)+ €2 3)+ 27 ¥z~ ) | O))

If we take the average of the values of | 41 [* and | ds |? we get , since
di = ¢y and ds = ca Also | dp 2 =2(] c2 [>+] ¢ |9+ Re cpeq =3+ Re cheu,
and averaged over a large number of observations this is %. Similarly | do|®
has average value 1. On the other hand d;d, averages to zero if » = s; for
example did; = cjc; which we already know averages to zero, while again
dydy = Hey+Eg)es—cd = Im cies, and this averages to zero, This means
that we can select as our initial states the four states | 0), | 13, | 2) and | 3)
rather than | aa), | «f), | fz) and | B); in later examples we shall find this
more convenient. We can calculate the transition probability for each of the
initial states | 0), | 1), | 2) and } 3), and average over these for our final
result,

We can also take the final states to be the singlet and triplet states, rather
than the ones in which each particle has a definite spin, for the reason given
above. If we do not observe the spin states the probability of observing the
final momentum to be Al is the sum of the probabilities of observing the four
spin states, and must obviously be the same whichever final set of spin states
we choose.
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3.8, EXPRESSION FOR THE TOTAL CROSS-SECTION

We saw in Section 3.6 that the differential cross-section for the process
7n ™ ¥pis given by (3.6.7). Let us denote the initial speed of the bombarding
particle relative to the target particle by » and the final speed of the scattered
particle relative to the centre of mass of the recoil particles by v, ,. The latter
quantity is given by the energy conservation condition

;’ witt+E, = ';_ F"fUEp +Exp (3.8.1)

where uis the final reduced mass, and the initial and final wave numbers k
and /, are given by ik = g, #l,, = v, . We can therefore rewrite (3.6.7) as

o(kn — Frxp) = (2.,/0) | flhn — L F1%p) 12 (3.8.2)

We can now usg the addition of final states rule to obtain the cross-section
for transitions y, —~ 7, by integrating (2) over all energetically allowed va-lues
of the final relative wave vectors x = (%, ..., ®,,_,) of the recoil particles
and over all values of the unit vector I, in the direction of the scattered
particle. This gives

o(kn - py = [ du(vey/v)  dis] flkn - I F12p) 2 (38.3)

where the region of integration over x is determined by energy considerations
If the final state consists of only two particles we omit the integration over x
Since /¥ is the final wave vector 1 for the motion of the scattered particle
relative to the recoil particles and E,, | = #%%/2u+E, while v,/ = gl /uk
the expression (3) is equivalent to

okn ~ p) = J.dx f dlj'd“ Pl B p"*’ 8(Epp—Ewn) | f(kn — 1xp)}|2;
f

(3.8.4)

the integral over » may now be taken over all x-space, since the integral over/
automatically vanishes if &,, is energetically unattainable. Now /,, can be
replaced by / in the integrand of (4) due to the presence of the -function in
energy; since dl = /2 df dry we see that (4) is equivalent to

o(kn —~ p) = J-dxjdl B By —Eu) | fkn ~ Ixp)2. (38.5)

If we substitute for f{kn ~ lxp) from (3.6.6) we obtain

16
o(kn - p) = ﬁ*:k'“' j J AN (B — Ei) | T(kn —~ lxp)i2.  (3.8.6)
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In order to obtain the total cross-section ¢ we must first sum (6) over all
states y, of arrangement channel f; we can include the energetically un-
attainable states since the d-function then vanishes for all x and 1. Having
done this we sum over all fina] arrangement channels apart from the bound
states and so we obtain

1634‘&;
0=—zm % 3 | dr | dl{(Ewp—E) | Thn — lxp) 2. (38.7)
Ak f#b pi
pinf

If we put o« = kn, § = lxp we see that (7) may be abbreviated to

1674
= —;:{i 2 X HE-E)T(z—~ H2 (3.8.8)
F=b Binf

In Section 3.3 we noticed that T(a —~ f) vanishes if either ¢, or ¢, is 2 bound
state, and hence T{(x ~ ) = 0 for all g, which are bound; we can therefore
further abbreviate (8) to

0 = (1654, /#2%) Y 8(Es—E) | T —~ B)|2. (3.8.9)
B

We can generalize the definitions (3.5.31) and (3.6.6). The scatiering
amplitude for the process ¢, — @, is defined by

fle~ B) = (~4mPurh=2) T(a ~ ). (3.8.10)

With this defintion (9) can be rewritten

o = Wk Y (Eg—E) | f(o ~ I (38.11)
A

3.9. THE LABORATORY SYSTEM

It is sometimes useful to work in the laboratory system. In the laboratory
system the initial state is represented by the product of the m kets | ki), | ka),
.. .» | k,,» which represent the free motion of the centres of mass of the m
composite particles with momenta #k,, #ks, ..., #ik,,, and the ket | #) which
represents the internal state of the particles. We can separate out the centre of
mass motion for the whole system in the way described in Section 1.2. If
K = ki+ka+...+k,, is the wave vector for the motion of the centre of
mass G of the system, and | k) represents the relative motion of the composite
particles, we obtain

k) (ke . ) ) = (K[ K)| ). (3.9.1)



TRANSITION RATES 63

The product | k} | #) describes the state of the system after removal of the
centre of mass motion, and can be replaced by the single ket | a). Thos (1)
gives

[k {ka). .. [Kpp|m)y = |Kyjay = [K, ), say. (39.2)

In exactly the same way the final state is represented by the ket
| L, 8y = | L) | 8}, where L is the wave vector of the centre of mass and | 8)
the state of the system in the relative coordinate system.

The full Hamiltonian Hg in the laboratory system consists of the sum of
the kinetic energy operators for the motion of the centres of mass of the
composite particles, the sum of their internal Hamiltonians, and the inter-
action V. We may express the sum of the kinetic energy operators as the sum
of the kinetic energy operator K associated with the motion of G and the
sum K of the relative kinetic energy operators (see Section 1.2). The full
Hamiltonian M in the laboratory system therefore has the form

He = Kg+H (3.9.3)

where H is the full Hamiltonian in the relative coordinate system,
The transition operator T/ (£) in the relative coordinate system is defined
by (3.3.3), viz.

THE) = Vy+ VAE—H+ig) 3V, (3.9.4)
We define a corresponding transition operator in the laboratory system by
Tho(E) = Vit Vi(E—Hg+ie) 1V, (3.9.5)

We saw in Section 1.2 that if E, is the energy of the state | &), and so the
energy of the initial state in the relative coordinate system, the energy E,
of the initial state in the laboratory system is F, + £, where E, is the kinetic
energy associated with the motion of G. It follows from (5) that

Th(E) K, o) = [Vt Vi E.x—Hg+ie)~ V]| K, ),  (3.9.6)
and so by (2) and (3)
TiolExH K, a) = Vo Ky | oy + VA E A Ex—H—Kg+ie)= V| K} | ).
397

Now H, V; and | &) are independent of the coordinates of the centre of
mass &, K, and | K) depend only on the coordinates of G, and K| K) =
E| K). We can therefore apply the results of Appendix A to obtain

(E,+Ex—H—Kg+ie) V| K)|a) = {(EamH+ie)1V;|ad} K.  (3.9.8)

Since ¥, 1s also independent of the coordinates of G we deduce from (7) and
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(8) that
TidE) | K, @) = {[V+ VAE,—H+ie)" V] |2} |K),  (3.9.9)
and so by (3.3.3)
Tic(Ex) | K, 2) = {TH(E)| o)} | K). (3.9.10)

The final state is | L, #) = | L) | #), where | L) depends on the coordinates
of G and | f3) is independent of these. If we take the inner product of (10)
on the left with | L, #) = | L) | ) we therefore obtain

(L. B TholEax) | K, 2) = SL-K)BITHED 2).  (39.11)

The é-function in (11) expresses the conservation of total momentum.
For by (3.1.2) we have y;” = Q(E,)¢,, and hence by (3.3.1)

'.’;"'ﬁ” Vfl IJ';—(\ Lok fq:'ﬁ| VIQT(E:} f 'T:\" = {ff'ﬁ'1 T;{b‘qj | (Pq}‘ (3-9- I 2}
We can therefore rewrite (3.2.12) as
Spx = 0p—27i0( Eg— E,) (s | T (E2) | 9 (3.9.13)

If we had worked in the laboratory system, rather than in the centre of mass
system, we should have obtained a scattering matrix Sy, ,x where, instead
of (13),

Spr. ak = 0p.0(L—K)—27id(Epp— Exa) (prp| T Eax) | gxa) (3.9.14)

where gy, and ¢, are the wave functions corresponding to the states
| Kz) and | L) respectively, while Ey, and E, ; are their respective energies.
Insertion of (11) into (14) shows that S, ., has a factor d(L— K), ensuring
the conservation of the total momentum which is associated with the motion
of the centre of mass G.
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CHAPTER 4

IDENTICAL PARTICLES

4.1. INTRODUCTION

So far we have developed our theory without taking into account the fact
that some or all of the “elementary particles” involved in the collision may
be identical. In the initial state the internal wave functions for the composite
particles will be automatically symmetric (or antisymmetric) in the internal
coordinates of identical particles. As a result of a collision identical elemen-
tary partticles may be exchanged between composite particles. If an observa-
tion of the system after the collision is made there will be no means of telling
whether exchange has taken place or not—in fact this is an vunanswerable
question. All we shall be able to observe after the process will be the distri-
bution of identical elementary particles among the composite particles
produced by the reaction - there is no means of relating this to the distribu-
tion of elementary particles before the coltision. In this chapier we shall
turn cur attention to the task of investigating the modifications which must
be made in order to take account of the possibility of the (unobservable)
exchange of identical particies.

We shall now discuss the approach which will be given In this chapier.
Before the collision the wave function of the system is &(fs), say. We operate
upon this state with an operator &, called the “symmetrizer”, so that the
resulting state Sg(fo) is invariant under the interchange of two identical
bosons, but changes sign under the interchange of two identical fermicns.
If there is only one species of identical particle the symmetrizer & is defined
by the expression

I
é:mgapp (4.1.1)

where M is the number of identical particles, 3, is a summation of all
permutations P of the identical particles; in the case of bosons 8, = 1, but
in the case of fermions &, is the parity (= 1) of the permutation P. It is easy
to show that & = " (Hermiticity), $2 = & (idempoténcy), and that & is
linear.

The state represented by ¢(70) is normalized, but the state &¢i(fc) may no

65
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longer be normalized." We saw in Section 3.7 that the initial state may
usually be regarded as in some definite channel, and therefore in some
arrangement channet f. The state $¢(1,) may be normalized by multiplication
by a normalization constant which, as we shall see, may depend upon the
initial arrangement channel i, We shall therefore denote this constant by a;.
The symmetrized and normalized initial state therefore takes the form

@s(te) = aid@p(te). “.1.2)
In the remote future the state (@ ) evolves into the state ¢4(t1) where
Ps(11) = exp [—iH(t1 — to)/h] Eslte) = exp [—iH(t1— fo)/R] aiS@(te).  (4.1.3)

Now the total Hamiltonian H must be invariant under permutations of the
identical particles, and so & commutes with the evolution operator
exp [—iH(t,— fo}{#]. Since the unsymmetrized function @(te) evolves into
@'(11) we see that (3) becomes

@3(t1) = a S exp [—iH(H — to)/H) @(to) = ad@'(n). (4.1.4)

The expression {4) enables us to see how to proceed. Initially identical
particles belonging to different colliding partners will be distinguishable,
since they will be confined to different regions of space. If we did not have to
take account of the Pauli principle we could et this evolve into the state
#'(#1). The probability of observing some state @, after the collision is then the
square of the modulus of the coefficient A4, of @, exp (—iEsni/#) in §'(t1).
The experimental arrangements do not allow us to distinguish this observa-
tion from that of a state @, say, where ¢, can be obtained from ¢, by a
permutation of identical particles. We will only be able to observe whether,
after the collision, the system is in the state ¢, or a state obtainable from ¢,
by a permutation of identical particles. If we write ¥ =~ § to mean that the
state represented by ¢, may be obtained from the state ¢, by a permutation
of identical particles the probability we shall actually observe is

214 (4.1.5)

v f

where the summation goes over all distinct states @, obtainable from ¢, by a
permutation of identical particles, including ¢, itself.
The result (5) will not, in general, agree with experiment, for it fails to take

T Strictly speaking, operators such as P or § operate on vectors representing states,
In the coordinate representation they operate on the wave functions representing the vec-
tors, and hence the states. If an operation carries a wave function @ into 4@, A = 1, a
distinct vector or wave function is produced, but the state is unchanged. For example, if §
isantisymmetricthen P§ = —§, a distinct wave function, but the state is unchanged-—thus,
in this case, the operator P does not produce a distinct state.
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account of the Pauli principle. To do this we operate upon ¢'(1) with & and
then multiply by a,. As we have seen this gives us a final wave function with
the correct symmetry, and also normalized to unity since the evolution opera-
tor in {3) conserves norm. It follows that if the coefficient of ¢, exp (—iEpt: /#)
in ¢ig(f1) is 4(S) then the probability of observing g, is | 4($)|% As before
the experimental apparatus will not distinguish between ¢, and any state
¢, obtainable from it by a permutation of identical elementary particles; the
probability which we shall be able to observe is therefore

> AU (4.1.6)

y f

Now the symmetry of the final state will naturally lead to the equality of the
terms in the sum (6). This will therefore be replaceable by

My ALY 4.1.7)

where M, is the number of distinct states obtainable from g, by a permuta-
tion of identical particles—this number clearly depends only on the arrange-
ment channel f to which ¢, belongs. The result (7) will enable us to write
down a formula for the cross-section in terms of the correctly symmetrized
scattering amplitudes.

In Section 4.2 we will follow this argument through in the simplest possible
case, namely the collision of two spinless bosons. Section 4.3 will then
consider the more complicated case of electron-helium scattering, while
Section 4.4 will deal with the more general case when M of the N elementary
particles are identical, but the remaining ones are distinct. The remaining
sections will deal with some further results and generalizations.

EXERCISES

1. Prove that if P is a permutation of identical particles then P is linear, and Pt = P-1,
Deduce that the norm of a wave function is invariant under permutations of identical
particles.

2. Prove that the operator & defined by (1) is linear, Hermitian and idempotent.

4.2. THE COLLISION OF TWO IDENTICAL SPINLESS BOSONS

Initially the system is described by the wave packet
@(r, 10) = | Auprexp (—iEyt/h) dk. (4.2.1)

In this case M = 2, and since we are dealing with bosons 8, = 1; hence the
definition (4,1.1) particularizes to

S =3(1+P) (4.2.2)
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where P interchanges the two particles. It follows that Pg(r, 1p) = g(—r, 1)
and so from (1) and (2)

pr(rv :0] —, al’_g@(rs ID} = :lz fl_-[q(l‘. fﬂ]“:‘q[ K, f"}}. (423)

To obtain ||g4(te)|| we take the square of the modulus of the right-hand
side of (3) and integrate over all space. Now initially the wave packet moves
in the direction of positive z towards the origin (Fig. 3.2), and so in the
remote past ¢(r, o) will only be non-vanishing for negative values of z.
It follows that ¢(r, 7o) is non-vanishing if, and only if, ¢(—r, 1) = 0. This
implies that the cross-term in the expression for | ¢ (r. t9) |* vanishes, and so

I @s(to) 1> = § @[] |g(r, 1o)* dr + [ |g(—r, 10)* dr]
= i a?[_[ [q’r{r. i'u.}|2 dl'-!f*j |q-‘[l’, fu;‘;'“, dr]
=1q7 (4.2.4)
since ¢(fo) is normalized to unity. Now || ¢4(f0) || = 1, and hence (4) implies

a; = 2V Expression (3) can now be rewritten

pslto) = 27V [q(r, to)+qg(—r, 1o)]. (4.2.5)
The unsymmetrized state in the far future has the form
§'(t) = jA.'q.. exp (—iEt/h) dl. (4.2.6)
Equation (6) can be rewritten
g'(h) = [ (Aig+ Ayp 1) exp (—iEgt/h) dI (4.2.7)

where J'“ is an integration over all | for which /. = 0, say. In (7) we have
taken advantage of the fact that E, is unaltered when 1 becomes —1. Equation
(7) expresses ¢'(11) as a linear combination of the states ¢, and the states ¢ _,
obtained from them by interchange of the two particles, and an integration
over all states g, which cannot be transformed into each other by an exchange
of the particles.

Since g, = 2'* we see from (2) that 8 = 27"*(1 + P). The normalized and
symmetrized final state @j(1,) is obtained from (7) by operation with a8
since Py, = ¢_, we obtain

Ps(ty) = 2712 I [(Aigpr+ AT )+ (Aiga+ ALg)l dl. (4.2.8)
The coefficient of ¢, is therefore
A5(l) = 2712(A4{ + A7) (4.2.9)
while the coefficient of ¢ _, is

Ay(—1) = 27V AL 1+ A4)). (4.2.10)
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The probability of observing the final relative momentum to be Al or —#l is
therefore

Y AR = [ 45D 2+ A5(—D[* = 2| AsD|* = | A+ 452 (421])
A=

In this case M,, the number of distinct states which can be obtained from
¢, by a permutation of the two particles, is two.

We deduce from (11) that the probability amplitude for observation of the
final relative momentum being #il or —#l is A+ A",. This must therefore
replace A, in the derivations of the last chapter concerning the differential
cross-section. The differential cross-section now refers to a final observation
in which the relative momentum is fil or —Al. The result (3.5.32) becomes

as(k — lor —1) = | fs(k — Lor —1)%, (4.2.12)
since the initial and final velocities » and »" must obviously be the same,
where the symmetrized scattering amplitude is defined by

Js(k =~ lor —=1) = f(k - D+f(k = —D). (4.2.13)

I the spherical polar angles defining I relative to k are (/. ¢ ) the result (13)
may be rewritten

S50, @) = [0, @)+f (0, g +), (4.2.14)

while (12) may be rewritlen
osll, ¢) = | /500, @) |* (4.2.15)
In calculating the total cross-section o we must be careful not to count the
same event twice. We must therefore integrate o4k -~ 1 or —1) only over

values of 1 for which /. = 0, say, thereby counting all possible final outcomes
precisely once; hence

as = [ ostk -1 or —1)di (4.2.16)

where the integration goes over all T with positive z-component. Equivalently
to (16) we have
2n

1
3..'|'

05 = I df) _[ dyos(l, q). (4.2.17)
0 i

The application of this result to the scattering of «-particles is discussed
elsewhere (Volume 4, Chapter 3).
EXERCISE

In the case of the collision of two electrons the initial wave function in the centre of
mass system may be written

3
#lte) = Y | dkAngia(l, 2) exp (—iEgty/h)
U
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where ¥, is the singlet spin wave function of the two electrons 1 and 2, while ¥, x, and
%, are the three triplet wave functions. If A7(F) (p = 0, 1, 2, 3) is the coefficient of
oy, exp(—iEy {f) in the antisymmetrized and normalized final state while Ajy is the
coefficient of gy, exp(—iEy, /k) in the final state before antisymmetrization prove that

Ad8) = 2 A+ A ),
A(S) = 27 WA — Ay} (p=1,2,3).
Deduce that the differential cross-section for scattering of 1wo electrons is
ag0, ) = 176, @)+ fl—0, p+m) 2+ 1 fO, @) —flm—6,p+m) |

where fi0, @) is the amplitude for direct scattering.

4.3, ELECTRON-HELIUM SCATTERING

We will now follow through the argument of Section 4.1 in the more
complicated case of electron-helium scattering. In the initial state §(tg) we
suppose an electron 1 impinges upon a helium atom with electrons 2 and 3.
If the momentum of 1 relative to the centre of mass of the atom is #k the
relative motion is described by a plane wave ¢, (1, 23). Let the “spin up” and
“spin down”" wave functions be «; and x», so that e, (1} is the spin function
of electron 1 when in the spin state &,,, and let y,(23) denote the internal
wave function of the helium atom. The initial unsymmetrized wave function
@{to) is then

#(t0) = [ Awm(1> 23) i1, 23) (1) 2(23) exp (—iEratolh) dk  (4.3.1)

where A, (1,23)is the initial probability amplitude for the stationary state
in which 1 has spin ,, and momentum #k relative to the centre of mass of
the helium atom, while x,(23) is the atomic wave function.

In this case we are dealing with three identical fermions, viz. the electrons,
and so (4.1.1) particularizes to

1
&= 37 (Piza—P1az+ Pasi— Para+Paiz —P3a1) (4.3.2)

where P, is the permutation which takes 123 into ijk. To form the anti-
symmetrized initial state we must operate on (1) with a. The resulting
expression is simplified if we note that the resulting terms are equal in pairs.
For Py2; leaves @(ta) unaltered, whereas

—Prgz[Ainm(1, 23) a1, 23) (1) 1a(23) €Xp (- i Excalo/?)]
= — [ A1, 23} a1, 32)0m(1) £(32) €xp (—iEkato/M)).  (4.3.3)

The plane wave is unaffected by interchange of electrons 2 and 3, since this
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cannot change the centre of mass of the atom. Since electrons are fermions
¥, must be antisymmetric in its electron coordinates, and so (3) becomes

- PI 32[Almm( ] 3 23) (Fk(] L] 23) am( l) 7;1{23) cXp (_ I.Ekn’()t'rﬁ)]
= Aknm{l y 23) (Pll( 1 L] 23) mm( 1) ;‘:n(23) exp { I.Ekn'fﬂfﬁ)
=P ' 23[Ak,,m(l R 23) (pk(] N 23) rx,,,(l) /5(23) exXp { — I-Eknf()/fl)], (434)

and so the first two terms in §g{to) = a>F(fo) are equal.
Similarly

—Pars[Aand 1, 23) a1, 23) 2{1) 2(23) €XP (— EEento/P)]
= — [Akand1s 23} pil2, 13)2nl2) xa(13) exp (— iEiato/#)]
= Awnn(1, 23) 12, 31)2n(2) 14(31) exp (— i Egntof)
Posi[Akam(1, 23) gil1, 23) 2,0(1) x(23) €xp (—iEpale/B)],  (4.3.5)

and so the fourth term equals the third term. Likewise the last two terms ara
equal. Indeed the resulting states in each of these pairs differ only by e
permutation of identical particles in the same composite particle, viz. the
helium atom, and this is the reason for their equality.

If we use these results we obtain, after operation on (1) with a.&, the result

@J(IG) == %ﬂi J Aknm(ls 23) exp(_fEkﬂ"i)/ﬁ) [‘Pk(], 23) am(l) XH(23)
+ax(2, 31) @nf2) 2,31+ al3, 12y (3) 24(12)] dk. (4.3.6)

The sum under the integral sign in (6) is a sum over the three distinct states
which can be cbtained by permuting the electrons. The factor 1/3! has been
multiplied by 2, the number of staies which differ by a permutation of
electrons within the atom.

Let us denote the unsymmetrized wave function ¢(7e) by @(1, 23, #) to
emphasize that it represents the state when 1 is the incident electron. With
this notation (6) may be written

]

?slte) = 3afpQ), 23, 10)+@(2, 31, to)+H(3, 12, f). 4.3.7)

Since || @s(ta)|| = 1 we deduce from (7) that

9 = at||p(l, 23, fo}+F(2, 31, to)+¢(3, 12, to) ||% (4.3.8)

Now [[@(1, 23, 15} || = 1, and it is easy to prove that the norm of a function
is invariant under permutations of identical particles; hence

I1@(1, 23, t)ll = [I@(2, 31, ta)l] = [|(3, 12, t9)[| = 1.  (4.3.9)

The three terms inside the norm signs in (8) represent the states in which
I, 2 and 3 are free respectively, the other two electrons being bound to the
atom. It follows that the cross-terms in the expansion of the square of the

QTSP 6
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norm, which are overlap integrals, must vanish. For example. since 7, is a
time in the remote past ¢(1, 23, 7,) can only be non-vanishing if 1 is far from
the nucleus of the atom, but ¢(2, 31, 1y) can only be non-vanishing if 1 is
close to the nucleus. A similar argument applies to the other cross-terms. The
vanishing of the cross-terms together with (9) enables us to infer from (8)
that 9 = 3a;, and hence that a, = 3"

In the remote future the state ¢(t,) evolves into the state ¢'(1,) where

¢'(1) = Y [ dlexp (—iEjpt/h)[ A1, 23) g1, 23) (1) 7,(23)
by

+ A2, 31) (2, 31)2,(2) 7,(31)

+ Aipg(3, 12) (3, 12)2,(3) 7,(12)]

+terms in which the helium atom is singly ionized

+terms in which the helium atom is doubly ionized. (4.3.10)

A,'m( 1, 23) is the final probability amplitude for the state in which electron |
has wave vector I relative to the centre of mass of the atom and spin function
o, the atom having wave function y,, while A,'M(Z, 31)and A;M{l 21) are the
final probability amplitudes for the two distinct states obtained from this by
the corresponding permutations of the electrons. No bound states can occur
in (10) since there are no such states initially. The first terms on the right-hand
side of (10) are a sum and integration over those states in which one electron
is finally free and the others are bound to the nucleus to form a helium
atom.

To normalize and symmetrize ¢'(f;) we must operate upon (10) with a,5.
Since @, = 3" and & is given by (2) we have

ﬂ,‘rsl

373 (P123— P12+ Pagmi — Paya+ Para— Paay). (4.3.11)
Let us concentrate for the time being on those final states in which only one
electron is free, and determine the coefficient A,'W(Z. 31, &) of the state
P2, 3D)2,(2)7,(31) in g(r). Il we operate with a8 on (10) the term in
square brackets becomes

' »

33 Alpg(1, 23) [gf2, 31) 2,(2) 2,(31) — (2, 13) 224(2) 7,(13)]
|

o A2 3002 30542 23D -2 132, 1,19
+ﬁ A;pq{3- I?-)[ = ffl(?—s I3) ’xq(zl 7::(] 3) +Q:]{2s 31) ZQ{Z) 79(31 }]

+terms in which 2 is bound. (4.3.12)

The two terms in each of the square brackets differ by only a permutation
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of the electrons of the atom, and so differ from each other in sign only.
Accordingly, (12) equals

312[ Alpg( 1, 23)+ Aipg(2, 31)+ Aipg(3, 12)] a2, 31) 24(2) 2(31)
+terms in which 2 is bound. (4.3.13)

It follows from (13) that
Aipg(2, 311 8) = 3-12{ A1, (1, 23)+ A[pe(2, 31)+ A1pe(3, 12)].  (4.3.14)

If we had calculated 4,,(2, 13|$) we would have obtained (14) with a
negative sign.
The reader may verify similarly that

A1, 2318) = Aip(2, 31| 8) = A3, 121 8) = — A1, 321 8)
= — Ap20 13]8) = — A3, 211 8). (4.3.15)

The probability of observing 1 free in the final state is therefore the same as
that of observing 2 or 3 free. The probability of observing an electron with
wave vector | relative to the centre of mass of the atom and spin function
x,, while the atom is in the state y,, is therefore

3| Aipg(!, 231 3)[2 = 3| Aipg(2, 31| S))° = 3| Aipg (3,12) |
= | Aipg(1s 23)+ A1pel2, 31)+ Aipg(3, 12) 12 (4.3.16)

by (14). The probability amplitude for observing an electron free with
momentum #1 relative to the atomic centre of mass and spin function «,, the
atomic wave function being y,, is therefore

Alpe(1, 23)+ Aipg(2, 31)+ A3, 12). (4.3.17)

Let f(rivavgknm — vivyvipg) denote the scattering amplitude for the
process in which initially electron »; has momentum /k relative to the atomic
centre of mass, and spin function «,, the atomic wave function being
7,(vava), while finally electron », has momentum #1 relative to the atomic
centre of mass and spin function =,, the atomic wave function being 7,
Let us further denote by f(knm -~ Slpq) the scattering amplitude for the
process when initially the incident electron has momentum #ik relative to the
centre of mass of the atom and spin function «,, the atomic wave function
being y,, while finally an electron has momentum #l relative to the atomic
centre of mass and spin function %, the atomic wave function being 7 ( valy).
It follows then from (17) that

Sknm — Slpg) = f(123knm — 1231pg) +f(123knm — 2311Ipg)
+f(123knm — 3121pg). (4.3.18)
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The differential cross-section for the process is given by
clknm — Sipg) = (©'[v}| Flknm — Slpg) |2, (4.3.19)

and the total cross-section for the process is
olknm — Spg) = (v'/v) [ | f(knm ~ Slpg) 2 dl. (4.3.20)

The correct amplitude which takes into account the Pauli principle is
given by (18). It is a sum of two terms; the first term represents direct
scattering, while the remaining two terms represent exchange scattering. At
high energies the exchange terms are small, and so (18) becomes

fknm — Slpg) ~ f(knm - 1pg), (4.3.21)

where f(k/m — lpg) is the scattering amplitude for direct scattering. In other
words, at high energies exchange effects may be ignored. At low and inter-
mediate energies, however, they become important.

EXERCISE
Verify (13).

4.4. IONIZATION OF HELIUM ATOMS BY ELECTRON IMPACT

We shall now consider the process whereby a helium atom is doubly ion-
ized by electron impact. In other words, we shall discuss collisions of the
form

He+e - Het++ete+te. (4.4.1)

Fhe mitial state has been described in the last section. The final unsymme-
trized state is given by (4.3.10), which is now more conveniently written

') = 3 f d [ d [ dhexp (—iEwati/) Arael, 2, X
qrs

X1, 23) 2, 3) al(3) acg{1) e (2) 2,(3)
+terms in which the helium atom is neutral
or singly ionized. 4.4.2)

In (2) the plane wave ¢,(1, 23) represents the free motion of electron 1 relative
to the centre of mass of the nucleus and electrons 2 and 3, ¢,(2, 3) represents
the free motion of electron 2 relative to the centre of mass of the nucleus
and electron 3, while ¢,(3) represents the free motion of electron 3 relative
to the nucleus. The terms &, «, and &, are spin functions, while E,;, = E,+
E,+E,is the total relative energy in the final state. The quantity 4,,,,(1,23)
is the final probability amplitude for this state.
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Let us now introduce an ordering of the three electrons according to the
following scheme. We shall take as first electron that one whose speed rela-
tive to the centre of mass of the other particles is greatest. It is natural to
treat this as the “scattered electron™. As second electron we take that one
of the remaining two electrons whose speed relative to the centre of mass
of the nucleus and other electron is the greater. The remaining electron we
take as third. We shall also denote by [“dl [ dx [ dA an integration
restricted to values of I, » and A which satisfy the above ordering. Any state
in the integrand of such an integral cannot be transformed into another such
state by a permutation of the electrons. On the other hand any state of the
arrangement channel in which all three electrons are free can be transformed
into a state with such an ordering by a permutation of the three electrons.

These considerations enable us to rewrite (2) in the form

g'(h) =Y j' dl [ dx [ dAexp (—iEu1/h) X

qrs

X [Abagrs(1s 2, 3) a1, 23) a2, 3) a(3) gl 1) 2,(2) 2(3)

+ Avagrs(1y 3, 2) (1, 32) (3 2) ga(2) 2g(1) 2,(3) 24(2)

+ Abaagrs(2, 3. 1) (2, 31) a3, 1) a(1) 22g(2) 2,(3) 225(1)

-+ remaining permutations of 1, 2 and 3]

+terms in which the helium atom is neutral or singly ionized.
(4.4.3)

The first term represents a sum and integral over all states in which 1 sepa-
rates more quickly from the centre of mass of 2, 3 and the nucleus than 2
separates from the centre of mass of 1, 3 and the nucleus or 3 separates from
the centre of mass of 1, 2 and the nucleus, while 2 separates more quickly
from the centre of mass of 3 and the nucleus than 3 moves from the centre
of mass of 2 and the nucleus. The second term is a sum and integral over all
states in which the role of electrons 2 and 3 is interchanged. In states of the
third sum electron 2 moves more rapidly from its partners than 3 or 1, while
3 moves more rapidly from 1 and the nucleus than 1 moves from 3 and the
nucleus. The remaining terms make up the remaining states in which all
electrons are free. E,; = E,+E, +E, is the total energy in the centre of mass
system, and is obviously invariant under permutations of the electrons.

The normalized and antisymmetrized final state ¢j(/1) is obtained by
operating upon (3) with a8, which is given by (4.3.11) in this case. If we do
this we find for the coefficient A;dm(] ,2,3| &) of the state ¢(1,23) ¢,(2,3)
X pa(3) (1) 2,(2) 2 (3) in the consequent expression for ¢(1,) the result

¢ i ' I !
Aladqrs“ ) 2! 3 I "S, = m [Altdqrs( I$ 2» 3)_ Alwlqr,r( 1‘ 34 2) P Alqur;(z- 3~ I}

— Avagrs(2, 1, 3)+ Apagrs(3, 1, 2)— Abagrs(3, 2, 1)]. (4.4.4)

pa-
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The result for Ay, (1,3, 2| 8) is the negative of this. It is easy to see that
this is a consequence of the fact that the permutation P;3» has negative
parity. In fact the reader may easily verify that

Al:dqrs(]v 2, 3"3) I Ai’xlql‘!{2$ 34 f‘S} = Aiuiqr.\'{3v 1, 2| &)
A A;xlqr,;{ls 3. 2 | (S‘] —_— A;,dq”(?-, I" 3 | ’g) e Aiulqr:(z'- 2s 1 J’S) (445}

The signs arise from the fact that the permutations Pyas, P2si, and Pgi» ali
have parity + I, while the permutations P;gs, P213 and Pgs; all have parity
— 1. More briefly we may write

O1ag = Bog1 = 0310 = 1, (4.4.6)
D132 = 0213 = g0y =— 1. (4.4.7)

The probability that afier the collision an electron has momentum #l
relative to the centre of mass of the remaining particles, one of the remaining
electrons has momentum /i relative to the centre of mass of the remaining
electron and the nucleus, and the remaining electron has momentum /424
relative to the nucleus is the sum of the squares of the moduli of the six
probability amplitudes in (5), and therefore six times the square of the modu-
lus of any one of them. This probability thus equals, for example. on using (4)

6 i Aqur.s{ '« 2* 3 | ’g)iz
= :1’ ! A[’ldqr.\( 1$ 2\ 3}'_— “‘Hxlqr.\'{Iq 31 2]_{— {‘l')‘b{rx{zt 3! I)
— Avaars(2, 1y )+ Abagrs(3, 1, 2)— Apaars(3, 2, D2 (4.4.8)

Let us denote the scattering amplitude when the final state is
Py vera)gve, va)pa(va)e (v)a, () (vs) by f(123knm — mvovglxAgrs),
and the symmetrized scattering amplitude by f(kmm — Slxdgrs). The
expression (8) gives

S(knm —~ SlxAgrs) = 2-V2[f(123knm —~ 1231xAqrs)
~f(123knm —~ 1321xAgrs)+f(123knm —~ 2311xAgrs)
—f(123knm —~ 2131xAqrs)+f(123knm - 3121xAgrs)
—f(123knm — 3211xAgrs)]. (4.4.9)

The total cross-section for the double ionization process, which we can
denote by o *, is given by

oit=Y j d, _['” dx j”' dA(Y' [v)| f(knm — SlxAqrs) . (4.4.10)
qrs
In (10) 4l is the momentum of the electron which recedes fastest from

the centre of mass of the others relative to that centre of mass, fix is
the momentum of the electron which recedes fastest from the centre of
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mass of the remaining two particles relative to that centre of mass, #4 is the
momentum of the remaining electron relative to the nucleus; e, z, and =, are
the spin functions of the three electrons in order. The magnitude / of | is
determined by energy conservation. and the triple primes denote that the
region of integration goes over values of »x and A which obey the given
ordering relation and are also energetically attainable.

In fact only three of the six terms in (9) are distinct. According to (3.3.18)
the transition amplitude for the process ¢, — ¢, is given by

T(x ~ B) = (ga| Vsl 4D (4.4.11)
where ¢, belongs to arrangement channel f. By the definition (1.5.1), if ¢,
belongs to arrangement channel 7,

T(x —= B) = (qgal V[ +(E—H+ie)" V]| gx) (4.4.12)

where E, = E, = E. Let P be the permutation which interchanges electrons
2 and 3. Since 2 and 3 are the atomic electrons in the initial state Py, = —q .
and so (11) can be written

T(x — ) = (¢p| Vi) +(E—H+ie)"1V}]| —Pg).  (44.13)
The potential ¥, refers to the incident channe!l in which 2 and 3 belong to
the helium atom, and so is invariant under P. Further H must also be in-

variant under interchange of 2 and 3, and since ¥, is Hermitian and P' = P~1
= Pequation (13) can be replaced by

T(o = B) =—(P(Vrgp)| | +(E—H+ie)~V; | qs). (4.4.14)

If P transforms the final state ¢, in arrangement channel / into the state
¢, of arrangement channel g, it also transforms ¥, into ¥, and so

T = ) = = Vgl 1+ (E=H+ie) Vil )
= — (@ | Vil H(E—H+ie)~Villp,) = —T(x - 7). (4.4.15)

If we denote 3 by P we can write (15) as
T(x — PB) = —T(z —~ f). (4.4.16)

I other words, if two final states differ by an interchange of electrons 2 and
3 the scattering amplitude for these final states differ by a sign.

it follows from (16) that the first and second, third and sixth, and fourth
and fifth amplitudes on the right-hand side of (9) are opposite in sign. Equa-
tion (9) therefore simplifies to

f(knm — Slxdgrs) = 2V2[ f(123knm —~ 1231xAqrs)
S f(123knm — 23WUxAgrs)+f(123knm — 3121xAgrs)).
(4.4.17)
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EXERCISES

1, Verify (5).

2. Repeat the above discussion in the case when helium atoms are singly ionized under
electron impact.

3. Prove that in the case ofexchanpe scattering of electrons by helium atoms interchange
of the atomie elecirons of the final state changes the signt of the scattering amplitude.

Deduce that (4.3.18) can be simplified to

flknen — Slpg) = F1123knm — 1230pg) — 2/ (123knm — 213ipg).

4.5. THE N-PARTICLE SYSTEM WITH ONE SPECIES OF IDENTICAL
PARTICLES

We shall now consider an AN-particle system in which M elementary
particles are identical, but the remaining N — M particles are distinct from the
first M, and from each other. For example, our system may consist of M
electrons and N— M atomic nuclei, where the nuclei are all different. The
approach is a straightforward generalization of the particular cases studied
in the previous sections of this chapter.

In the remote past the system hasfa wave function ¢(#o) given by an expres-
sion of the form

@10} = 3. Bualte) {4.5.1)

where & (o) is a wave packet in channel n, when the internal state of the m
composite particles 41, A4, ..., 4, is represented by y,. Since we sum over
final states and average over initial states we can assume that only one channel
is present, so that (1) can be replaced by

P(10) = Palto). (4.5.2)

To obtain the symmetrized initial state @(¢o) we operate on ¢{to) with the
symmetrizer & defined by (4.1.1). This gives

Pslfo) = a{M1)=1 3 dpPip(to) (45.3)
» P
where Y, goes over all permutations of identical particles.

Suppose P and R are two permutations which have the property that the
wave function Pg(to) differs from the wave function R@(t) by a permutation
Q which permutes the identical particles of Rp(#s) within each of the com-
posite particles 41, As, ..., 4, but does not interchange identical particles
between composite particles; thos

P@(10) = QR(fo). (4.5.4)
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Since Q permutes identical particles of R@(zo) within the same composite
particle without interchange between composite particles its effect is to
leave the wave function unaltered if the particles are bosons, but to multiply
it by the parity of Q if the identical particles are fermions. In other words

QR(ta) = SoR{to) (4.5.5)

where 8, = 1 for bosons, and equals the parity of Q for fermions. Now (4)
implies that P = QR, and so d, = dg8. Since 8§ = I we see on multiplica-
tion by dq that 8,8 = 838, = d,, and so from (4) and (5)

8Pp(to) = SsQRF(t0) = SpdRP(l0) = SaRe(te).  (4.5.6)

The result (6) shows that terms in (3) which differ from each other by a
permutation of identical particles within the same composite particles are
identical.

Let the number of permutations of identical particles which permute
particies within the same composite particles without exchange of identical
particles between composite particles be M. The integer M, obviously
depends only on the arrangement channel / to which the initial channel n
belongs. If M, is the number of identical particles in the composite particle
A, of arrangement channel { we have

M, =r1j1(Mf,!). (4.5.7)

If two arrangement channels, i and g say, can be transformed into each
other by a permutation of identical particles then obviously M; = M,.

The number of terms in (3) which are equal to ;P@(te) for any given
permutation P is M. We can therefore replace (3) by

@slte) = a(M) M, Y’ 8:P@(t0) (4.5.8)
P

where Y, goes over all functions P@(to) which cannot be transformed into
cach other by permutations of identical particles within the same composite
patticles. That is to say, any two terms under the sum on the right-hand
side of (8) differ by an interchange of identical particles between composite
particles. Such states are therefore initially distinguishable from each
other.

We shall now determine the value of 4, from the condition that @g(to)
is normalized to unity. We have seen that if Pg(fo) and R¢(f,) are two states
on the right-hand side of (8) there is at least one elementary particle e which
will be attached to different composite particles in these states; different,
that is, in the sense that they are localized in different regions of space,
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for some composite particles may be identical in composition and structure.
For example, e may be attached to a particle of the incident beam in P#(#o)
but to a target particle in Rg(to). It follows that Pg(re} and Rg(te} are only
non-vanishing when e is close to the centres of mass of different composite
particles which at time fo must be well separated. The product [P@(1o)]* X
X [Rp(10)] must therefore vanish, and so must therefore the inner product
of P@(to) and Rg(ts). If we take the inner product of @g(tp) with itself with
the aid of (B) we consequently obtain

N@s(ta) 1 = af (MY 2M?E Y || P@(ta) [I2. (4.5.9}
[

We have already pointed out that || ¢{te} || = 1, and since the norm of a

wave function is invariant under a permutation of identical particles we have

I P@(to} [| = 1] $(to) Il = 1. The number of terms in the sum Y g is MM,

since it was obtained from the sum Y of M! terms by collecting together

groups of M, equal terms. Equation (9) now gives us I = &(M)™M,,
and so

a; = (MM (4.5.10)

We saw in Section 4.1 that the normalized and symmetrized final state is
aS@’(f), where §'{t1) evolves from @(#y) under the action of the total Hamil-
tonian H. We shall now pick out the coefficient 448) of the final state ¢,
in @(t1). We shall assume that the final wave function can be written

gty =37 Y Alp, exp(—iEyh/fA) @.5.1n
B y=$

where } .., goes over all distinct states g, which can be transformed into ¢,
by a permutation of identical particles, including ¢, itself, while Y, goes
over all states ¢, which cannot be so transformed into each other. We have
seen examples of the way in which this can be done in previous sections.
The interchange of identical particles between composite particles cannct
alter the energy of a state, and so § ~ y implies E, = E,; hence (11) can be
replaced by

§'(h) = Z" exp{—iEgt: /h) Z A;.q},,. (4.5.12)

[ yf
We now operate on (12) with 48 to obtain @y(f1). Since & is given by
(4.1.1) we get

o) = a(M) 1Y exp (~iEgts /1) Y 4, T %Py, (4.5.1)
-] yo= £

As we have seen, not all terms in the sum ) p are distinct. In fact §,Pg, =
8gRe, if, and only if, Py, can be transformed into Rg, by a permutaticn
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of identical particles within composite particles. Let M, be the pumber of
permutations of identical particles within composite particles in arrange-
ment channel /| to which ¢, belongs. Since every Py, differs from ¢, only
by a permutation of identical particles, it follows that M, is also the number
of permutations of identical particles within composite particles in the
arrangement channel to which Pg, belongs. The M! terms in the sum ¥,
divide into M!/M; classes — the M, terms in each class can be transformed
into each other by permutations of identical particles within composite
particles, and so are all equal. Terms in different classes differ by an inter-
change of identical particles between composite particles, and are distinct,
It follows that (13) can be replaced by

Falt) = alMO) LY exp (—iEprijhy My Y A, 3Pg, (4.5.14)

8 ¥ P

where ¥ p goes over distinct states Pg,.

Let P, , be the permutation which transforms the state ¢, into the state
¢s and let 8, , be the corresponding value of 8, With this notation (14)
can be rewritten

@s(th) = a(MO)LY" exp (—iEgn /MY M;Y 4,3 Sy gps. (4.5.15)
B v=f day

Now } .., is a sum over distinct states ¢, which can be transformed into ¢,
by a permutation of identical particles. Since ¢, can itself be transformed
nto ¢, by a permutation of identical particles it follows that the sum ¥,
is the same as the sum Y,_, of distinct states ¢, which can be transformed
into ¢, by a permutation of identical particles. We deduce that (15) can be
written

Ps(tr) = a{MV)"2 Y " exp (—iEgti /WY MY A4, Y 8,ops. (4.5.16)
[ yuf B

Since & = f§ implies E; = E, we can rewrite (16) as

7ot = X' 3 go exp (—iEats/8) [alMY7M; 5 8yai]. (4517
A =4 posf

The coefficient 4{($) of ¢, exp(—iE,t,/A) in the final state @y(1)) is therefore
AS) = a{MOY L M, Y. 8yrody, (4.5.18)
y =
in particular
AYS) = a{ M) M, T Bynady. (4.5.19)
Y=b
Now P, 4= Py P, s hence 8, =8, ,0 ,, soif we substitute for

,—a in (18) we obtain

AYS) = a{MY M85 T 8,54 (4.5.20)
ya g

)
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Comparison of (19) and (20) shows that
AS) = Spoa AN S). (4.5.21)

The probability of observing the final state g,, or any other final state ¢,
which can be obtained from it by a permutation of identical particles, which
we shall denote by Pl + £f), is given by

Pl —~ 8B) :dzﬁ| A (4.5.22)

From (21) we see that | 4(S) |2 = | 4¢3) |2, and there are MM distinct
states, including ¢,, which can be obtained from g, by a permutation of
identical particles. The observable probability (22) therefore becomes

Plo + 88) = MIM; Y| A)(S8)|2. (4.5.23

Now by (10) 4, = (M!/M )", and so if we substitute for 4(3) from (19)
mto {23) we obtain

Pla~ 8By = MM;*| Y 8,5 A, (4.5.24)
paf
We can therefore take as the probability amplitude for observation of the

final state g, or any final state ¢, obtainable from it by a permutation of
identical particles, the quantity

A — 38) = (MM Y 8, 54, (4.5.25)
v
This quantity replaces the final probability amplitude A4, in derivations

of expressions for the observed differential cross-section. If we define the
symmetrized scattering amplitude f(or — $5) by

fla ~ ) = (Mf/Mi)my;ﬁa?—vﬁf(“ =) (4.5.26)

the observed differential cross-section for the process which takes ¢, into g,
or any other state obtainable from it by a permutation of identical particles is

i oo + SB) = (v/va) | flz — 3H)i%; (4.5.27)

in (27} v, is the speed of the centre of mass of the incident composite particle
relative to the centre of mass of the target composite particle, while v,
is the speed of the scattered composite particle relative to the centre of mass
of the recoil composite particle or recoil particles.
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The total cross-section ¢ is given by

I e b i
g = % U(a - rsﬂ} (4.528)

where ¥, goes over all energetically allowed final states ¢, which cannot
be transformed into each other by a permutation of identical particles.

Exameek [. In the case of scattering of two identical spinless bosons the only permuta-
tions are the identity and the exchange operator which takes the plane wave ¢ into ¢ _;,
while M; = M, = 1. In this case (26) yields

Sk = Sl == §jpfik = B8 flk~ =D = filk = D~flk - -1 (4.5.29)
in agreement with (4.2,13).

ExaMpLE 2. Let us consider the collision of two spin ¥ fermions, such as twoelectrons
or twe protons. The initial state is gy, (1, 2) (m = 0, 1, 2, 3) where a, is the singlet spin
function while a,, &, and &, are the three triplet spin functions. One final state is ge,(1, 2),
and the distinct state obtainable from this by permutation of the particles is ¢_g,(2, 1).
If we denote the scattering amplitudes for these two processes by f{km - Ig} and fikm —
--IPg) respectively we see that (26) gives

flkm — Slg) = flkm - lg)— fikm — —1Pg). {4.5.30)

Now by (1.5.31)
ik = Vg) = —4n*ph~2 T(km — lg}, {4.5.31)
flkm — —1Pgq) = —4nup~* T(km — —1Pg) (4.5.32)

where p is the reduced mass and, by (3.3.18) and (1.5.1), if ¥ is the interaction potential,

Ten — Ig) = {1, 2) | V+ WE-H s ie)~ Vipem,(l, 2)), (4.5.33)
Tikm —~ —1Pg) = (p_,0,(2, D[ ¥+ WE-H+ie) ! Vigeo, (1, 2)). {4.5.34)

Also e, (2,1) = d,&, (1, 2) where 8, = — 1, 8, = 8§, = &, = 1, and 50 (34) becomes
Tim = ~1Pg) = S g _ 1241, 2) | ¥+ VIE—H+ie} L V| ppaidl, 2. (4.5.35)
If the interaction potential V is spin-independent, then so is H, and (33) factorizes inte

Tikm -~ 1g) = (@ | V+ HE-H+ie) "V | gd{e (), i1, 2))
={@| V+VE-H+ie) Vg b, (4.5.36)

by the orthonormality of the spin states. If we define the transition amplitede T{k — I) by
Tk - b= {p | V+ E-H+is} ' Vig) {4.5.37)

we can rewrite (36) as
Tkt —+1g) = Tth = D 4. (4.5.38)

[n a similar way we can infer from (35) that

Tikm -~ —IPg) = 8,T(k ~—1)4,,. (4.5.39)
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Let us define a scattering amplitude fik — 1) by
filk = 1) =—4a*uh~"T(k - 1). (4.5.40)
It follows then from (31), (38) and (40) that
fkm = 1g) = 8,0 f(k = 1), (4.5.41)
and from (32), (39) and (40) that
f(km —= —1Pg) = 8,0,,f(k - —1). (4.542)

Hence (30) gives
fikm = 8lg) = 8, [f(k = )0, f(k = —1]. 14.5.43)

The result (43) implies that if the system is initially in a singlet state, it remains in a singlet
state, and the corresponding scattering amplitude f,(k — £1) is given by

filk = 81) = fik = D+f(k —-—1), (4.5.44)

while if it is initially in a triplet state it remains in it, and the corresponding scattering
amplitude fi(k - 31) is given by

Silk = 81) = f(k = ) —f(k =~ ~1). (4.5.45)

The differential cross-section a(k - S1) is obtained by averaging over the one singlet
state and three triplet states; this vields

Sk =8 = 1| fitk = SHPE+3 | filk = SDHL (4.5.46)

If the interaction depends upon spin the calculation is correspondingly more complicated

ExaMPLE 3. As a final example we shall discuss the scattering of an electron by an
atom. We shall label the incident electron by 0 and the atomic electrons by 1, 2, ..., n. In
the case of direct scattering electron 0 is the scattered electron; the initial state here has
‘wave function g, = @e(0)a,,(0)xa(1, 2, .. ., n), say, while the final state has wave function
Pp = (02 (0)x5(1, 2, . . ., n), say. We can denote the scattering amplitude for this process
by fikn — lp). There are also n exchange collisions, when electron 0 is exchanged with
eleetron j of the atom. The final state here has wave function ¢, = @(j)eg(j)zs(1, 2, . . .,
j—=1,0,7+1,...,m. Asj varies from 1 to n we obtain the n distinct states obtainable from
@, by a permutation of the electrons. In this case, therefore, M; = M, = n+1. Let us
denote the scattering amplitude for the process in which electron 0 is exchanged with
electron j by fj(kn - 1p). Each of the n final states for exchange scattering is obtained from
the final state gp for direct scattering by an interchange of two electrons only, which is a
permutation with odd parity. In this case, therefore, (26) becomes

fikn = S1p) = fykn —~1p)— ¥ fi(kn — Ip). (4.5.47)
j=1

EXERCISES

1. Verify (4.4.9), the expression for the scattering amplitude for the process He+¢ -
He " +e+e+e, by direct application of (26).
2. Use (26) to write down the scattering amplitude for the following processes:

(a) H+He - H- +He".
(b)H+He - H +He" e ~e¢.
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4.6. SIMPLIFICATIONS DUE TO INITIAL OR FINAL SYMMETRY

In the last section we obtained the expression (4.5.26) for the symmetrized
scattering amplitude f(x -- ). Some of the terms in this expression may
be equal. In this section we shall obtain conditions on the stationary states
%as 7., and g, which imply the equality of the terms o, ;f(« —~ y) and 05,5
fla — 0).

From (1.5.1) and (3.3.18) we obtain

T(x - B) = (gp| Vi1 +H(E=H+ie)"1Vi] | gu), (4.6.1)
T(x = f) = ([N +(E—H—ie)"*Vilgs| Vil 9
= (gpl [1+VAE—H+ie)"1 Vil qa) (4.6.2)

where E = E, = E; According to (3.6.6) the unsymmetrized scattering
amplitude is defined by

f(ﬂ - f}]‘ = —4:’!2‘!Ffﬁ'_"!T(1 o p’) {463)

where ;i is the reduced mass of the scattered particle relative to the centre
of mass of the recoil particles in the final state ¢ ;. We deduce from (1) and (3)
that

fle — B) =—4auch~Xqp| Vi [1 +(E—H+ie)" V]| ga), (4.6.4)
and from (2) and (3) that
fla = B) =—da2uh=2gpl |+ VA E—H+ie) Vil ga).  (46.5)
We shall prove the following:

If P is a permutation which permutes identical particles within the same
composite particles of the final state ¢,. then

(2~ PB) = 8o f(x ~ B, (4.6.6)

The proof follows immediately from (3), for Py, = 0p7,, and so ¢, and Pg,
belong to the same arrangement channel f.

As it stands, the result (6) does not help us to simplify (4.5.26), for the
sum ), goes only over distinct final states ¢., and ¢, represents the same
final state as Py, = 59, However, we can use (6) in conjunction with the
following result:

If P is a permutation which permutes identical particles within the
same composite particles of the initial state ¢, and Pg; is denoted by
7pp» then

f(a—~ PB) = Bpf(2 ~ B). (4.6.7)
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We prove this by use of (1). Firstly we note that Pg, = &p¢,, since P per-
mutes identical particles within the same composite particles of ¢_. Hence
Plp, = &g, = ¢,, and so 6Py, = 6P P, = &Py, = &p, = ¢, We
can therefore write (1) as

T(a ~ B) = 8{Vygs| | +{E—H+ic)1V;| P-ig,). (4.6.8)
Since P permutes identical particles within composite particles of ¢, P71
does the same, and hence leaves the initial potential ¥, invariant. It must
also leave H invariant, and so we can replace (8) by

T(z ~ ) = 0e{Vyips| P 1+ (E—H+ie) V]| g {4.6.9)
Now P' = P~ hence (P~1)" = P, whence (9) yields
T(x = B) = 3u(P(Vsp) | FH(E—H+ie)~1V;| go). (4.6.10)

If we denote the arrangement channel to which @g; = Py, belongs by Pf

we see that P transforms ¥, into Vp,. We can therefore infer from (10) that
T(x —+ 3) = &p{Vprpeg| 1 +-(E—H+ie)" V|

Se(pes| Ves[l +(E—H+ie) ' Vil gy = 8T (@ — PF) (46.11)

by (1). The result (7) now follows from (3), since the reduced mass y, is not

changed by a permutation of identical particles.

ExAMPLE. We shall use the results (6) and (7} to effect a considerable simplification in
the expression (4.3.47) for the symmetrized scattering amplitude fik — Sip) for clectron-
atom collisions, The exchange amplitude f; refers to the final state obtained by exchanging
the incident electron 0 with the atomic electron j, where we are using the notation of
Example 3 of Section 4.5, Similar considerations apply to the exchange amplitude f;.
Without loss of gengrality we can assume that j < &, in which case the initial state may be
denoted schematically by

1130 PRI SUSUY S {4.6.12)
The final states in f; and £, may be correspondingly denoted by

Fidy o 00k .8 4.6.13)

33 U A | U ) (4.6.14)

We can obtain the final state (14) from the final state (13) in two steps. Firstly we inter-
change @ and k& in (13) to obtain

Lok . 0 .0 (4.6.15)
This is an odd permutation of the electrons of the atom in the final state, and so by (6)
changes the sign of f}. If we interchange j and & in (15) we obtain (14), the final state of fi;
but this is an odd permutation of the electrons of the initial state, and so changes the sign

of f; a second time. In other words, f; = f;. The n exchange amplitudes in (4.5.47) are
therefore all equal. T we denote their common value by f,, we see that (4.5.47) simplifies to

Skn = Slp) = fa(kn — Ip)—nf,kn ~ Ip). (4.6.16)

EXERCISE

Simplify the symmetrized scattering amplitudes of Exercise 2 of Section 4.5 as far as
possibte.
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4.7. THE N-PARTICLE SYSTEM WITH SEVERAL SPECIES OF
IDENTICAL PARTICLES

Hitherto we have assumed that only one species of identical particles has
two or niore representatives in our NM-particle system. We shall now remove
this assumption. The arguments and results of Sections 4.1, 4.5 and 4.6 go
over to the most general case with a few minor modifications, which we shali
now consider.

Suppose there are L species of identical particles, each with two or more
representatives in the N-particle system. Let P be an operator in the Hilbert
space of states (or wave functions) which permutes the identical particles
of each species among themselves. If there are MY members of the /th
species there are C~t such operators P, where C is defined by

cz[ﬁnﬂﬂl. @1.1)
=1

The operator P may be regarded as the product of L permutations. Let 6,
be the product of the Ld's corresponding to these L permutations. In fact
d, = — 1 if P consists of an odd number of odd permutations of fermions,
otherwise &, = 1; thus 87 = 1. It is also easy to see that g = 8;8q if
Q is a second operator of the same type. Analogously to (4.1.1) we now
define a symmetrizer & by

8 =CY &P 4.7.2)
P

where the summation goes over all C~! operators P. In the special case
when L = I we see from (1) that C = (M1)~1, and (2) reduces to (4.1.1),
It is easy to show that & is linear, Hermitian and idempotent.

The argument of Section 4.1 remains valid in the more general case if M!
is replaced throughout by C1 If M}” is the number of permutations of
identical particles of species / which do not interchange particles between
composite particles of arrangement channel f the quantity M, is now given by

Mﬁ:ﬁﬁmL (4.7.3)

As before, M, remains the number of ways identical particles may be

permuted in arrangement channel /' without interchange of particles between
composite particles taking place.

Throughout Section 4.5 we must again replace M! by C~L. Exactly similar

arguments to those of Section 4.5 show that the C~1 terms 8.P@(#y) in a,3F(to)

QTSP 7
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divide into C~'M; ! groups each containing M, equal terms, where M, is the
number of ways of permutingidentical particles of each species without inter-
change of particles between composite particles taking place. Corresponding
to (3) we have
L
M; = J] M. (4.7.4)
=1

The calculation of the value of the normalization constant g, in Section 4.5
goes over provided M! is replaced by C~. Instead of (4.5.10) we obtain

a; = (CM )12, (4.7.3)

The remaining arguments of Section 4.5 also go over. The expression
y ~ f# means that the state ¢, can be obtained from ¢, by permutation of
the identical particles of each species. The operator P, __ ; is now that product
of permutations of identical particles of each species which takes ¢, into ¢,
and 0,_, , the corresponding d,. Instead of (4.5.20) and (4.5.21) we obtain

A;(:S) = a.CM;ép =D 235., 5 .ﬂA':' - 53.. JAB(IS) (4.7.6)
o=

for the coefficients of ¢, and ¢, in @j(1).

Since there are C™*M* distinct final states obtainable from ¢, by per-
mutations of identical particles the probability of observation of the state
represented by ¢, or any other state obtainable from it by permutation of
identical particles, is

Pl ~ Sf) = C'M7! | AYS)|* = a?CM,' Zﬁ 8y s gk, |2 by (6)

Zﬂ a? - ﬁA;

Y=

= M;M;! 2 (4.1.7)

where the last step follows from (5). We conclude therefore that (4.5.26)
remains valid provided M, and M, are the number of products of permuta-
tions of identical particles of each species which do not interchange particles
between composite particles in the arrangement channels i and f containing
@, and ¢, respectively, and the sum goes over all distinct states obtainable
from ¢, by permutations of identical particles within each species.

Finally we note that the resul’ [4.6.6) and (4.6.7) remain valid if P is a
product of permutations of ident _:al particles of different species.

ExampLE 1. Let us apply the above results to the case of scattering of an electron by an
n-electron molecule in which two of the nuclei are identical, the remaining nuclei being
distinet from the first two, and from each other. Interchange of the identical nuclei does
not change the final state, and so the sum (4.5.26) need be taken only over the direct
amplitude and the n exchange amplitudes. This means that (4.5.47) remains valid in this
case. The argument leading to the simplified result (4.6.16) also remains valid here.

of
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EXAMPLF 2. As a second example let us consider the dissociative collision
He+Hi - He<H+H~". 4.7.8)

Let us denote the electrons by 1, 2 and 3, and the protons of the HF by A and B, Let
f12, 348 — 12, 34, B) denote the scattering amplitude when initially electrons 1 and 2
belong to the helium atom, electron 3 belongs to the HY ion, while finally 1 and 2 belong to
the helium atom, 3 is attached to proton A4 to form a hydrogen atom, and B is the free
proton. For simplicity we omit the initial and final wave vectors and guantum numbers of
bound states—these are, of course, unaltered by permutations. In thiscase M = 21x11=
2 {electrons), M}® = 21 = 2 {protons), so M, = 4, while M’ = 2111 =2, M® =
11'x1' = 1, hence M, = 2. Application of (4.5.26) gives the following expression for the
symmetrized scattering amplitude:

FI$) = 27U f112,348 - 12,34, B)—f(12,34B - 12,38, 4)
+f(12,34AB -+ 23,14, B)—f{12,34A8B — 23,1B, 4A)
+(12,348 —~ 31,24, B)— {12,348 « 31,2B, A). {4.7.9)
In this case C~1 = 312!, hence C"M;‘: 6, the number of distinct final states in this.

case. A and B belong to the same initial state, and so terms which differ from each other by
their exchange must be equal; (9) therefore becomes

Sy = 2413 f{12,348 —+ 12,34, BY+ 112,348 —~ 23,14, B}
+f(12,348 -+ 31,24, B)]. (4.7.10

Electrons 1 and 2 are bound in the initial state, hence
HI2348 —+ 23,14, By = —f(12,348 —«~ 13,24, B) = f(12,348 -~ 31,24, B). (4.7.1D
Insertion of {11) into (10) gives

F(E) = 2V FI,34R — 12,24, B)+2f(12,34B —~ 23,14, B)]. 4.7.12}

EXERCISES

1. Show that the operator P is linear, and Pt = P-1,

2. Show that the operator & defined by (2) is linear, Hermitian and idempotent.
3. Prove (5).

4. Write down and simplify the scattering amplitudes for the following processes:
{a) He + H -~ He" +H,.

() He+H; -~ He* +H+H.

L]






CHAPTER 5

SOME APPLICATIONS OF THE THEORY

5.1. SCATTERING BY TWO POTENTIALS

We have now the main principles and results of the non-relativistic quan-
tum theory of radiationless reactions in which “elementary particles™ are
neither created nor destroyed, but move under their mutual interactions.
We have seen that in order to calculate the experimentally interesting cross-
section o(x — ) we must, in principle, first calculate either the scattering
state y,” or the scattering state y, corresponding to the initial and final states
¢, and ¢, Having done this we calculate the scattering amplitude f(x —~ f8)
from either the formula

! S~ B) = (—4aug 1) T(x —~ B) = (— 4 /#2) pp| Vil i) [ (5.1.1)

or from the formula

|’f(<z - B) = (4% ) T(x ~ B) = (—dxu )y | Vil ). 1 (5.12)

The differential cross-section is then calculated from
o(a - ) = (vp/v) | f2 = B)I? (5.1.3)

where v, is the initial velocity of the centre of mass of the bombarding
particle A relative to the centre of mass of the target particle B, while v is
the velocity of the centre of mass of the scattered particle C relative to the
centre of mass of the recoil particle (or particles) D. We have seen that energy
is conserved, sothat £, = E s and v, is calculated from v, by this condition.

Now in practice we usually cannot carry out the algorithm just described.
Even in the case of the scattering of two elementary particles the calculation
of ™ or y~ involves the solution of Schrodinger’s time-independent equa-
tion subject to outgoing or incoming wave boundary conditions followed by
the evaluation of the three-dimensional integrals (gs| ¥V, |p;) or (y,; | ¥;¢,)-
In the case of a system of N elementary particles this is a 3(N— 1)-dimensional
problem, and so quite beyond the scope of such direct calculations. This

91
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means that in practice we have to take advantage of any features of a specific
reaction which enable us to make the approximations necessary to render
the problem of calculating cross-sections tractable. In this chapter we shall
discuss some of the approximate methods of calculation which have been
developed in the course of the growth of the subject.

In this section we shall discuss the case when the initial and final interaction
potentials ¥, and ¥, can each be decomposed into sums of two potentials
so that

V= U+ W, (5.1.4)
Vi= Urt+ W, (5.1.5)
We may know, for example, the solution of the problem when the initial
and final potentials are U; and Uy, and it may be possible to treat W, and W,
as small perturbations. In such a case we can apply a perturbation technique
to find an approximate solution to the whole problem. The actual technique

will be discussed in 2 later section of this chapter, but in order to do this we
must first develop a formula known as the “Two-potential Formula™.

» Corresponding to the unperturbed state ¢, and potential U, we can define
Schwinger-Lippmann states 8% by

bf = gt (E~H;— U, £ie) 1 Ui, (5.1.6)

where E = E_, and reasoning as in Section 1.5, in particular just before
equation (1.5.3), we see that these will satisfy the corresponding integral
equations

0t = g +{E—Htie)-L UL, (5.1.7)
Since Hp, = Eg, operation on (7) to the left with E— H, +ie yields
(E—H;— Uy 8 =tielg.—6F) (3.1.8)

and 50 as ¢ ~ 0+ we get (H,+ U,)) 6% = Ef8%, Thus 8 are eigenstates of the
Hamiltonian M,+ U; obtained by ignoring W,

We shall now show that it is possible to express ¥ in terms of 6. The
Schwinger-Lippmann equations for 1 are

F = g+ (E—Hitie) Wi, (5.19)
and if we substitute for V, from (4) into (9) we get
¥ = gt (E—H+ie) (Ui+ W) vt (5.1.10)
By subtracting (7) from (10) we obtain

YE—OF = (E—H;tie)~! Uy —05)+(E—H;+ie)y Wy, (5.1.11)
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Operation on (11) to the left with £—H,ti¢ yields
(E—H;tir) (yt—0%) = (Ui+ W) wi — UL, (5.1.12)
and this may be rearranged to give
(E—Hi—Ui—W;tie)yf = (E—H;—U;,—W;xie) 0F + W0, (5.1.13)
If we operate on this to the left with (E—H,—U,— W, +ie) ! we find that
vy = 0F+(E—H;—U;—W;Lie)™ W%, (5.1.14)
and since from (4) H+ U, + W, = H+V, = H,
yE = 0F+(E—Hxie)™ W,0E. (5.1.15)

Equation (15) has an interesting interpretation. Starting off’ with the
unperturbed plane wave state ¢, we can “distort™ it by the potential U,
The result is 6F according to the boundary conditions imposed on the
“distorted wave”. (15) now shows that > may be obtained from the “dis-
torted states™ 0F by treating the latter as the unperturbed states and applying
the additional potential W, to them; thus U, takes us from ¢, to 6, and W,
takes us from 6% to y. . In the latter step we note that, to obtain the overall
state ;" with outgoing wave conditions we must use the distorted state with
outgoing waves, and similarly with the incoming waves state.

We can derive Schwinger- Lippmann equations for y treating 6. as the
unperturbed states in the same way as before when ¢, was the unperturbed
state. If we rearrange (13) we obtain

(E—H;—Utie) yt = (E—H;— U;tie) 02+ Wy,  (5.1.16)
and operation on (16) to the left with (E—H,— U, xie)"! yields
yE = 0F+(E—=H;—U;xie) "t Wypt. (5.1.17)

Comparison of (17) with the Schwinger-Lippmann equations (9) shows that
(17) is also a kind of Schwinger-Lippmann equation, but with the states 6
replacing ¢, as unperturbed states, H,+ U, replacing H, as “unperturbed
Hamiltonian™, and W, replacing ¥, = U,+ W, as the interaction.

We saw in Section 3.3 that the transition amplitude T(x - j) is given by

T(x = f) = {@a| Vsl ) (5.1.18)
where E, = Ej;. According to (5) ¥, = U+ W, and so (18) becomes
T(2 —~ B) = (g8 | Usl ya)+{qps| Wyl yi). (5.1.19)

From (6) with o replaced by f and i replaced by f we have
gp = O —(E—Hp—Us—ie) "  Usgp (5.1.20)
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and substitution for ¢, from (20) into the second term on the right-hand side
of (19) gives

T(x —~ ) = {pa| Urt 5>+ (85 | Wrlwh)

—{(E—Hp—Usr—ie)* Upps| Wrlwi: {(5.1.21
hence

T(x ~ B) = (5| Up— U{E—Hyp— Ut ie) Wy +(05 | Welys). (5.1.22)

The second term on the right-hand side of (22) is, by analogy with (18),
the amplitude for the transition from the unperturbed initial state ¢, to the
“distorted final state™ f, via the “final interaction” W,. The first term on the
right-hand side of (22) appears to require knowledge of the full scattering
state . We shall, however, show that it is capable of calculation if we know
the distorted wave 07 ; it does not, in fact, require knowledge of ;. In
order to do this we must obviously eliminate yw) from the first term on the
right-hand side of (22), and this we shall now do.

Let us put A=FE—-H+is, B=E-H,—Us+ir in the identity
ATl =B 14+ B YB—A) AL; we get
(E—H;+ie) 1 = (E—Hp—Ustie)?
+(E—H—Uptie)" L {H;— Hp— Up)(E—H;+ie)~. (5.1.23)
Now H,+ V,' =H= Hf+ Vf = Hf+ Uf-l‘Wf,
so Hi—H—Ur = H—(H+Up) = (H=V)—(H-W;); (5.1.24)

I

in other words,
Hi—Hp— Uy = —(Vi— W) (5.1.25)

and so (23) becomes

(E—H;+ie)-t = (E—Hp— Ut ie)—
—(E—Wy—Uptie) W (Vi— WE—H;+ie)"t.  (5.1.26)

If we substitute for (E— H,+ie)~! from (26) into the Schwinger-Lippmann
equation (%) we obtain

v} = @ H(E—Hp—Uptie) Vit
—(E—H—Ustie)" 1 (Vi— W E~Hi+ie)y" V!t (5.1.27)

From (9) we have
(E—Hi+ie) Wt = vt —q, (5.1.28)

and so (27) becomes

v = gut (E—Hp—Uy+ie) 1 Vit
A E=~Hp=Upti) "t (Vi— Wt —a) (5.1.29)
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or equivalently
(1 —(E—Hy— Uy+ie)= W] 3
= @at-(E—=Hp—Us+ie) 2 (Vi— W) pe. (5.1.30)

We can substitute for the left-hand side of (30) in the first term on the right-
hand side of (22) to obtain

T(x - B) = (¢p| Up+ U E—Hp— Us+ie) -1 x
XVi—=Wp) | gu)+05 | Welp3)- (5.1.31)

We can now see that the first term on the right-hand side of (31) requires
only a knowledge of the Green's operator (E—H,—U,+ie)"*, and not a
knowledge of the Green’s operator (E—H,— U, — W +ie)~ 1. It is therefore,
in principle, possible to calculate the first term by a knowledge of the solution
of the “distortion™ problem (H,+U)0; = E0;; W, enters the problem
only as a multiplicative operator, and not through the Green’s function.
We can, however, show this in a more transparent way by writing the first
term on the right-hand side of (31) in a different form, which we shall now do.

The first term on the right-hand side of (31) can be rewritten as

(pa| Ul @y +{(E—H;— Up—ie) 2 Uspgp| Vi—Wyl@s).  (5.1.32)
Now from (20)
(E—Hp—Up—ie)~tUspp = 05 —qp (5.1.33)
and so (32) becomes

(s Url @)+ (05 —pp| Vi— Wyl ga)
= (pp| U+ Ws—Vil @)+ {05 | Vi—Wyl@a): (5.1.34)

by (5) this is equal to
(el Vilge)—{gsl Vilgs)+ (05 | Vi— Wyl @a). (5.1.35)

Energy conservation implies that E; = E, = E, and so by (3.3.21) the first
two terms cancel, leaving us with (0| V,—W,|¢,) as a simplified expression
for the first term on the right-hand side of (31); (31) can therefore be written

T(x — ) = (05 | V,-—Wfqu,)-i-(ﬂﬂ‘ | Wrlyph). (5.1.36)

The expression (36) is the two-potential formula we have been seeking.
We have already seen that the second term on the right-hand side may be
interpretated as the transition amplitude for the process which takes us from
the initial unperturbed state ¢, to the final distorted state 05 under the action
of the potential W,. The first term also has a physical interpretation, for
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since Hi+V; = H = H+ U+ W,
Hi+(Vi—Wp) = Het+ Uy (5.1.37)

If we regard the “distorted” Hamiltonian as H,+ U, we see that the “initial
interaction” is ¥,— W; by analogy with (2) we see that the first term on the
right-hand side of (36) is just the transition amplitude for the process
¥, = ¢z when the unperturbed Hamiltonians remain H; and H, but the
initial and final interactions are replaced by ¥,— W and U, respectively. t
involves only the distorted wave §; and not the full scattering state 1" for
this reason this term must be supplemented by the second term (857 W, iy )
in order to obtain the total transition amplitude T(x — ).

5.2. THE FINAL STATE INTERACTION

In this section we shall consider break-up collisions of the form
A+BC ~ A+ B+ C. (5.2.1)

As a result of the collision the target particle BC breaks up into two particles
B and C. Since the elementary particles of BC are the same as the elementary
particles of B and C separately it is clear that the initial interaction V,
between A and BC is just the sum of the interactions ¥ ,, and ¥ . between
A and B, and A and C, respectively; thus

Vi=Yaia+Vac. (5.2.2)

At the same time the final interaction ¥, is the interaction between the sepa-
rate particles 4, B and C, and so

Vi= Vapg+Vic+Vse. (5.2.3)

For simplicity we shall, for the moment, assume that A4 is an elementary
particle.

Let r denote the position vector of A relative to the centre of mass of BC
(or B and C) and R be the position vector of the centre of mass of B relative
to the centre of mass of C, and let us denote by K and Ky the kinetic energy
operators associated with r and R respectively. With each of the particles
B and C we can associate internal Hamiltonians hy and h, so that after the
collision the total internal Hamiltonian is

hs = hs+hc. (5.24)

Before the collision the internal Hamiltonian also includes ¥ and Kg,

and so
h; - h3+hc+KR+Vgc = KR+VBC+ hf- (5.2.5)
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‘The initial and final unperturbed Hamiltonians are given hy

H: = K, +h;, (5.2.6)
H}.-: Kr+ KR+ hf._. (52?)

respectively. If q denotes the coordinates other than r and R, the initial and
final states are given by

‘pkn(rs R‘ q) = ‘I‘k(r) Xn(Rs 'l) (528}
(A has momentum #k relative to BC and y,_ is the internal state)
Pip(ls R, @) = (1) p(RY £,(q) (5.2.9)

(A has momentum #l relative to B+ C, B has momentum #zx relative to C,
and §, is the internal state).

Letusput Wy = V g+ V 0, U = Vg, so that (3) implies V, = U AW,
This 1s a particular case of the decomposition of the potential ¥, into a sum

of two potentials U, and W discussed in the last section, and so we can apply
(5.1.36); since by (2) ¥, = W, we find that

T(knt — bep) = (B2, | Van+Vac| vin)- (5.2.10)

¥y, is the total scattering state and V', 5+ ¥ . is the interaction between 4 and
the recoil particles B and C, and equals the initial interaction V. We shall
now investigate che nature of the state 6.

The 8~ states are defined by (5.1.6). In this particular case o = lp, I is
replaced by £, and so

Bip = Prp+ (E—H— Up—ie) " Upgnup. (8.2.11)
Now U, == Vg, while H, is given by (7). Also ¢, is given by (9), and so
Oup = P1Pusp HE— K —Kp—hy—Vigr—ie) " Vpcorpek,. (5.2.12)

K, and g, depend only on r and K¢, = Eg,, while Kg+h+ ¥V, and ¢.5,
are independent of r. It follows from Appendix A that

(E—Ki—Kp—hy—Vac—ie) "V geqrpuly
= {(E—E—Kp—hy—Vac—iey " ¥V pcpuis} 1 (5.2.13)
and since by energy conservation E—-E, = E, , (12) becomes
9;9 = {pulp+(Ep— Krn—hg—Vac—ie) "' Vacpubo} pr.  (5.2.14)

The expression in the curly brackets of (12) is just the Schwinger-Lippmann
state for scattering of B by C via the potential V. when ihe unperturbed
state is ¢, and incoming wave boundary conditions are imposed. It is
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therefore a continuum state of the system B+C and so by analogy to %,
which denotes the initial bound state of BC, we may denote it by Tp> thus

b5, = Ol (5.2.15)

We can now summarize the results of this section. A collision A+BC —
A+ B+C may be treated as direct, so that the final interaction as well as the
initial interaction is ¥ , g+ ¥ 4, provided the final state is taken as the product
of (i) a plane wave ¢, representing the motion of 4 relative to the centre of
mass of the two-particle system B-+C, (ii) a wave function y,_, describing the
motion of B relative to C in the presence of the potential ¥ 5. which obeys
incoming wave boundary conditions at infinity.

In our derivation of this result we have assumed that A is an elementary
particle. If this assumption is removed the initial and final internal states of 4
must be included. The reader should have no difficulty in proving that (10)
still holds, where 8, is given by the product of the final state of 4 with
Pi¥p @0d %, is the continuum state of BC defined above.

EXERCISE

Prove that if’ A has structure the result (10} becomes
Tikn —+ 1xps) = {omaep | Vaz + Vaic | 9k

where n, is the final internal wave function of 4 and the other quantities have their usual
meanings,

5.3. THE BORN APPROXIMATION

We stated at the outset of this chapter that we would describe approxima-
tions which enable us to calculate cross-sections in practice. One of the most
useful of these is the Born approximation, which is appropriate at high
energies when scattering is small.

In the case of direct scattering the transition amplitude T(e — f8)is given by

T(x —~ B) = (pal VI9E) = (y5 |V Ipa) (5.3.1)

where we have dropped the arrangement channe! indices. If scattering is small,
as is the case at high energies, we shall have v ~ @,, 7 = @;, and substitu-
tion for either y; or v} in (1) yields the Born approximation

Tz = B) = {@s| Vi ga)- (5.3.2)

The problem of obtaining the transition amplitude is thus reduced to the
calculation of a 3(N—1)-dimensional integral, since in principle the states
¢, and g, are known. If N is large this still remains a formidable problem,
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and in practice further approximations need then to be made (Mott and
Massey, 1965).

The scattering state y, satisfies the integral equation y = ¢, +(E—Ho+
ie) Wy whereHois the unperturbed Hamiltonian ;if we denote( £ — Ho+ i) ™1
by G, this may be written

yt = q_.,«}-GgVi[':_ (3.3.3)
We may solve (3) by iteration to obtain

¥ = @at GiVput GHVGHVipa+ . . .. (5.3.4)

The Born approximation, or first Born approximation, is obtained by
approximating . by the first term of the series on the right-hand side; the
“second Born approximation” is obtained by taking the first two terms.
Corresponding to the “Born series™ (4) for . we have a Born series for the
transition amplitude ; we obtain this by substitution for . from (4) into (1),
so that

T(x—P) = (gp| V | @a)+{@a| VGV | @)+ (s VGG VGV | @) + - . .. (5.3.5)

In the case of rearrangement collisions the transition amplitude is given by
either of the expressions

T(x —~ p) = (ps| Vslyi), (5.3.6)

(e~ B) = (vg | Vil @a)- (5.3.7)
If ¥, is treated as a small perturbation we have y" ~ ¢_, and (6) gives

T(x = B) = (9| Vsl pa). (5.3.8)

On the other hand if ¥V, is treated as small we have y; =~ ¢, and so (7)
gives
T(x = B) ~ (ps| Vil a)- (5.3.9)

Now Ej = E, since energy is conserved, and so by (3.3.21) we see that the
right-hand sides of (8) and (9) are equal. The derivation of (3.3.21) depended
upon the assumption that ¢, and ¢, are the exact wave functions. If approx-
imate functions are used for the unperturbed states the right-hand sides of
(8) and (9) may no longer be equal-—a phenomenon often referred to as the
“post-prior” discrepancy, V; being the “prior” interaction and ¥, being the
“post™ interaction.

We saw in Chapter 4 that if exchange of identical particles is taken into
account the scattering amplitude is given by the expression (4.5.26). Each
of the amplitudes f( — f8) on the right-hand side of (4.5.26) may be obtained
by the Born approximation— the resultant expression is then known as the
Born-Oppenheimer approximation for the exchange amplitude.
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In Section 5.2 we saw that, in the case of break-up collisions of the form
A+B —~ A+C+ D, the transition amplitude is given by (5.2.10). If we
approximate the scattering state v, by the unperturbed state ¢, in this
expression we obtain

T(kn — lxp) =~ 5, | Vap+Vac | Prn)s (5.3.10)

which is the Born approximation for break-up collisions.
The result (10) may be generalized as follows. The scattering state y; is
given by
w5 = gp+(E—H—V—ie)* Vyyp. (5.3.11)

Suppose now that after the collision we have a particle C moving quickly
relative to the remaining particles which may be collectively labelled by D.
Then ¥, = V,+ ¥V, where V', is the interaction between C and D, while V;
is the interaction between the particles of D. Since C is moving rapidly rela-
tive to the other particles it is reasonable to suppose that we can neglect
Vpin (11), which can therefore be replaced by the approximate expression

'f"ﬁ_ car fp.s-i-(.E— Hf“' V_;"'f'ﬁ)"]' V_:rl‘[ﬁ. (5.3.'2]

Now H, = Kgp+he+h, where K¢, is the kinetic energy operator for
the motion of the centre of mass of C relative to the centre of mass of D, h.
is the internal Hamiltonian of C, and h,, is the Hamiltonian for the particles
D after removal of the centre of mass motion. Further ¢; = ¢,5.5, where
¢, is a plane wave describing the relative motion of the centres of mass of €
and D, while £. and &, are the unperturbed wave functions of C and D.
Since H, = K¢p+he+hp we see that (12) can be written

vi = gEcEp+[E—(Kep+he)—(hp+ Vi) —ie]l VipEctp. (5.3.13)

Now ¥}, hp+ ¥ and £, involve only the internal coordinates of the system
D, Kep+he ¢y and &, involve only the remaining coordinates, while
(Kep+hedpée = (E+EQ)géc where E is the internal energy of C. Hence
by Appendix A we have
[E—(Kepthe)—(hp+ Vp)—ie] Y Vipscin
= {[E—(E+Ec)—(hp+ Vi) —ie] ' Viip} pide- (5.3.19)
Since £—(E;+E_) is the internal energy E, of the system D the right-hand
side of (14) becomes
{(Ep—hp—Vi—ie)  Viip}piEc (5.3.15)
and so (13) yields
vi =~ {Ep+(Ep—hp—Vi—ie) " Vilp} pite. (5.3.16)
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['he expression inside the curly brackets on the right-hand side of (16) is the
scattering state produced by the interaction ¥, among the composite particles
of D when the unperturbed state is £, and incoming wave boundary con-
ditions are imposed. We can call this &, so that (16) becomes

vi =~ pikctp. (5.3.17)

The expression (7) for the transition amplitude can now be replaced by the
approximate expression

T(2 = B) = {@pEcip | Vilgs)- (5.3.18)

{n this approximation we neglect only the interaction between the fast
moving particle C and the recoil particles D. It should therefore be more
accurate than the straight approximation (y; | V| ¢,) =~ (g, V,|q,), which
neglects the interaction between all particles in the final state.

The Born approximation is found experimentally to work well for energies
of a few hundred eV or more for electron scattering, and a few hundred keV
or more for atomic or molecular scattering.

EXERCISES
1. Show that the Born approximation to the direct scattering amplitude for inelastic

collisions of fast electrons with hvdrogen atoms is given by

i

Salkn = 1p)= — RETE J erdR 1 (R)exp (—ilsr)

e .
mx.lkuxpuk-rl.
where m is the mass of an electron and e*/x,|r — R| is the Coulomb repulsion between the
clectrons, if the mass of the proton can be taken as effectively infinite.

2. Show that the Born—Oppenheimer approximation for the exchange amplitude for
collisions of fast electrons with hydrogen atoms is given by

2—’;—;— l er dR gr(r)exp( ——il-m[y £ et 2a(R)exp (iker),

fstiin S 8a) == e e

provided the mass of the proton can be taken as effectively infinite. Hence. or otherwise,
show that

[ dr [ dR gp(r)exp (—=ilsR) R~ 7,(R) exp (iker)
_I dr I dR yh(r)exp (—ileR) r ' 7, (R) exp (iKsr).

3. Show that the differential cross-section for scattering of fast electrons by hydrogen
atoms s given by

atkn = 1p) = (/v )[4 falkn = 1p) - fokn = Ip) I+ 3| fkn — Ip)—fo (kn — 1p) ]

where fg, f.. are as given by Exercises 1 and 2, and v, and v, are the initial and final speeds
of the electron, provided the mass of the nucleus can be taken as infinite.
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5.4. THE DISTORTED WAVE APPROXIMATION

In the last section we discussed the Born approximation for the transition
amplitude. We also derived the Born series (5.3.5) for the transition amplitude
T (e — p) for direct collisions, which offers a systematic way of improving on
the first approximation. In practice this is not very useful, since the integrals
increase by 3(N— 1) dimensions at each successive approximation. We shall
now consider a more practicable method of improving on the Born approxi-
mation, and thus dealing with collisions at lower energies.

We note firstly that if the crude approximations 05 = g, y. =~ ¢, are
made in the two-potential formula (5.1.36) the Born approximation (5.3.9)
is obtained. A less crude approximation is obtained from (5.1.36) if we make
only the approximation y;” =~ 0. In other words, as we can see from (5.1.15),
we regard IV, as a small perturbation, but treat U, exactly. With this approx-
imation (5.1.36) becomes

T(x — B) ~ (05 | Vi— Wl @)+ (05 | Wy| 05). (5.4.1)

This is known as the “distorted wave Born approximation”, or simply as the
“distorted wave approximation”, since it takes into account the distortion
of the initial and final states ¢, and ¢, by the potentials U, and U;. In order
to see how it may be applied in practice we will consider some examples.

ExAMPLE 1. Let us consider processes of the form
A+B—+ C+D. (54.2)

The particles involved may be elementary or composite. Let us suppose that U; is a func-
tion of the initial relative displacement r; only, while U, is a function of the final relative
displacement r, only. For example, we could take

U; = I Vilr, X | ga(x) | dxg = Ui(ry), (5.4.3)

Up = [ Vi, X)) | (%) I* dxy = Uglry), (5.4.4)

where x; and x; denote the initial and final internal coordinates. In other words, U; and
U, could be the static potentials between A and B, and between C and D, obtained by
averaging the potentials ¥; and ¥ over the static charge clouds of 4 and B or C and D.
Any other potentials will do, provided they are functions only of r; and ry. In the present
case ¢, = Pi). Where, as usual, gy is the plane wave representing the initial relative motion
of A4 and B, while H; = K;+ h, where K, is the initial relative kinetic energy operator and
h, is the initial internal Hamiltonian. Since « = Kkn (5.1.6) becomes

0% = pudnt+[E— (K4 U)—hi +ie] = Uit - (5.4.5)

Now K, U; and ¢, depend only on r;; also hy, x, depend only on x; and h;y, = E.x..
Hence by Appendix A

6 = {pu +1E— (Ki+ U) — E. £ i€} Ui} Hus (5.4.6)
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but £~ E, = £;, and so the lerm in curly brackets is
gu HE— K= Uptie) Wy, (5.4.7

These are, however, the Schwinger-Lippmann states 8F for the potential U; when the
unpecturbed state is gx; thus
0 = by, (5.4.8)
where
0 = gt (Ex—Ki= Uitie) 'Uig,. (5.4.9)

In exactly the same way we can also show that, for the final state, when 8 = lp,

0f = O, {5.4.10)
where
OF = o (E— K= Uptie) 1. (5.4.11)

These expressions show that 6 is the product of the initial internal state y, anda “distorted
wave” fy which describes the initial relative motion under the action of the distorting
potential U, outgoing wave boundary conditions being imposed. Similarly 85 is the
product of the “distorted wave™ 8 (which takes account of the effect on the final relative
motion of the potential Uy} and the final internal state x,. The solution of Schridinger’s
equation for 8 or # is a 3-dimensional (one-particle) problen: only, If this is done (1)
shows that the problern of calculating the transition amplitude is reduced to a quadrature;
written out using (8) and (10 it is

Tikn = 1p) ~ {87t | Vi — Welpatio+ (Ot | W1 B ) (5.4.12)

ExamrLe 2, Elastic collisions, As a second example we consider direct collisions 4 + B—
A+ B in which the internal state of the colliding particles is unaltered, The arrangement
channel labels 7 and f may now be dropped, and the potential has the form ¥V = U+ W,
Since ¥;— Wy = V-~ W = U, (1) simplifies to

Tia = B} =~ (05 \ Ul + {05 |W163. {5.4,13}
In this case H; = H; = H,, say, and so 0; and 63 are given by (cf, (5.1.6))

8% = @+ (E—H,—U+ie)~! Up,, (54.14)

67 = @p+{(E—H,— U—-ig)~* Upy. (5.4.15)
In (13) the first term on the right-hand side is obviously the transition amplitude for
scattering by the potential U, and the second term is obviously the Born approximation
for scattering of the distorted states by the potential #.

In the special case discussed in Example 1, U/ is a function only of the relative displace-
ment r; == Ty = r, say, and since the internal states of 4 and B are unchanged (13) becomes

Tkt — ) o (073, | U | @) {0520 | W1 65 20} (5.4.16)
where by (%) and (11
6F = pyt+ (B~ K=U-+ie)=! Ugy, (5.4.17
O = g+ (E,—K—=U—ie)~! Up,. (5.4.18)
n (17) and (18) K is the relative kinetic energy operator of 4 and B. Now I is a function
of r only, while y, depends on the internal coordinates only, and {x, | ¥.) = 1, hence
Orxa | Ulogty = 67 | Ul g Ol = 07 1 U @) (5.4.19)

QTSP 8
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The expression {16) for the transition ampiitude therefore simplifies to
Tikee — 1) = {0 | U1+ {00 ita | W1 B 3. (5.4.20

The first term is the exact amplitude for scattering by the potential I7; the second term is a
first order correction term which takes account of the remainder of the potential W, If we
make the further approximations 6 = ¢, and 8} = @, in the second term on the right-
hand side of (20} this becomes

@ta ] Wiote = @ | V= Ulpaty = 0! Vo) =@ | UL o) | 22
= (o | V 1oy — {0 U L) (5.4.21)

Now if U is the static potential the first term on the right-hand side is, since x; = x, = x
say,

far [ ax ot oo Ve, x) ) 2 = [ drot@ U = @i Ule, (5422
and so (g%, | W | @ xw = 0; that is, {20) becomes
Tkn = 1py = 07 | U 19 (5.4.23)

{23) is the transition amplitude for the collision if the interaction potential ¢/ is taken as the
average of J over all positions of the elementary particles of 4 and B in the state y,.
If U is a better potential than this which depends only on r, the term {pyx. | # | piX,) may
no longer vanish and the expression obtained by putting 8~ =« ¢, 8 =~ ¢y in (20), viz.

Tikn = n)y =~ (07 | UV 1+ | W | gt {3.4.24)

should give an improved result; if we take (20) as our formula for T, we should obtain an
even better result,

ExampeLe 3. fnelastic collisions. Let us now consider collisions of the form A+B — 48,
when one at least of the colliding systems changes its internal state. The decomposition of
¥ now becomes

Ui+ Wy = Vs Uk W), (5.4.25)

U, may be the static potentiat initially when the internal state is x,, while ¥/, may be the
static potentiul when the internal state is yp. Since by (25) V— W, = Uy and V; = ¥Fe=V,
H, = H; = Hy, the expression (1) now becomes

T{o — ) ~ <0ﬁ | Uplpay +{05 | W |05 {5.4.26)

where by {5.1.6)
O0F = g +H{E=-Hy— Ui +iny"  Uigpg, (5.4.27)
05 = pg+{E—H,~ U—ie)* Uypp. (5.4.28)

If U is a function of r only the reasoning of Example 1shows that (26) can be written as
Tikr ~ Ip) = (g, | Uy l@aitn {00 2 | W5 L0 20 5.4.2%)
where 67, 0 are given by (93 and (11). In thjs case they become

0F = @+ (B —K—Ui+ie) ™ Uiy, {5.4.30)
OF =@ +(E—K-U—ig)" Uy {5.4.31)

where K is again the relative kinetic energy operator for 4 and B. Since U} is a function of

r only
O | U oty = O 1 Urimdlpltmy = 0 (5.4.32)

A
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due to the orthogonality of 7, and .. Thus (29) becomes
Tikn — Ip) =~ Oy, | Wyl 02y, (5.4.33)

which is the distorted wave approximation for inelastic collisions when the distorting
potentials U/, and U, depend only on the relative position vector r. (If U; and U, are the
static potentials it treats these exactly, but takes account of polarization effects, forexample,
by a perturbation treatment.) Since ¥ = W+ U, we have

2 | VI Oty = O | W 1 Og st + O 21 | U | O s (5.4.34)

but Uy depends only on r, hence

(U.'Xp | Upl S:Xa) = <63- | Uf | B‘f)upli.’n) =0, (5.4.35)
and so (33) can be rewritten as
T(kn = 1p) ~ (071, | V165 2. (5.4.36)

In other words if U, and U, depend only on r, the Born approximation
Ttkn — 1p) = {pp | V gt (5.4.37)

for inelastic collisions may be improved by replacing the plane waves gy and ¢, in the
expression for the transition amplitude Ttkn — Ip) by the waves fl, and 1~ distorted by the
potentials U and U, from ¢ and ¢ respectively.

EXERCISES

1. Assuming that the mass of the proton is effectively infimte, and that the electrons are
spinless and distinguishable, show that the distorted wave approximation to the direct
amplitude for inelastic scattering of electrons by hydrogen atoms is given by
8;[['} zn(R).

7 T N fdrfda 050) 25 (R) -

1
htx, R-r
where ¢ /=, r—R| is the Coulomb repulsion between the electrons and m is the mass of an
electron; A7, 6f are the final and initial waves distorted by the static potentials.
2. With the same assumptions as the previous exercise prove that the exchange
amplitude for inelastic scattering of electrons by hvdrogen atoms is given by

. 4=*m " .
folkn = 1p) = == [ de [ dR %R x;m[ - (B B 0 0 1Ry

(J
“lr—R
where 07 and 07, are the initial and final waves distorted by the initial and final static
potentials.

3. Prove that if the spin and indistinguishability of the electrons are taken into account
the exact differential cross-section for inelastic scattering of electrons by hvdrogen atoms
is given by

irlkn = Ip) = (vle )[4 fulkon — 1p)+ fio(kn = 1p)* = 3| fulkn = Ip) - fo(kn - 1p) %]

where fy; and f,, are the exact direct and exchange scattering amplitudes obtained by
tznoring spin and the Pauli principle, and », and v, are the initial and final speeds of the
{ree electron.

{Note: The amplitudes f; and [, of Exercise 3 may be approximated by the expressions
ziven in Exercises | and 2. The resultant expression may be further refined if the effect of
exchange in the initial and final distorted waves is also taken into account. For an account
of this, and references to caleulations which have been made by this method, the interested
reader is referred to the book ol Mott and Massey (1963).]

e
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5.5. THE GENERALIZED OPTICAL THEOREM

In Section 2.7 we showed that the fundamental postulate (2.2.1) led to the
unitarity of the scattering matrix as expressed by (2.7.13). We further showed
that the unitarity property expresses the conservation of probability. The
property (2.7.13) may be expressed in a rather more concrete form as a
relation between the total cross-section and the forward scattering amplitude.
Such a relation is directly verifiable by experiment.

We shall start the derivation by first noting that the unitarity condition
S'S = 1 may be expressed as

Y S8 = 0. (5.5.1)

Since ST, = S_, this is equivalent to
Y S8 S = 8y (5.5.2)
We can express S, and S, in terms of the transition amplitudes T(v - w)

and T(u - w) by means of (3.3.19); if we do this and substitute for the
results in (2) we get

Y [Bon+ 2i8( By — E) Ty ~ )] X
X [0y — 20 Ey—E) T( = )] = 8, . (55.3)
which simplifies to

2o0i8(E,~E)T*(» — p)—2mid(E,~E)T (s ~ )
=P Y §E,~E)¥E,~E)T(s ~ @) T*(» ~ w). (5.5.4)

Now d(E,—E,)8(E,~E,) = 8(E,—E,) 3(E,—E), and so both sides of (2)
contain the factor &(E,—E) = 8(E,—E,). It follows that the quantities
multiplying 8(E,—E,) must be equal when E, = E; hence if E, = E,,

i - p)—T(u ~ 7]
=—2nY §(E,~E)T(s ~ 0) T*» — w). (5.5.5)

In particular, if ¢ = »,

ImT(—~ ) =—a¥ §E,—E)| T(» - w) |2 (5.5.6)

This is the generalized coptical theorem expressed in terms of transition
amplitudes.
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Let us now express (6) as a relationship between the cross-section and
forward scattering amplitude. To do this we note from (5.1.1) that
T(z= = ) = (—h*[4=2uyp) f(x — B) ! 1(5.5.7)
and hence in particular
T(x% - o) = (—#2/dx%u) f(2 —~ 2).] (5.5.8)
Since when » = « (6) can be written
ImT (o —+a) =—n) 0(E—E)|T(x ~ p) (5.5.9)

(&)
we obtain

(—=h*fd=u) Im fa - o) = ."rz O(Ep—E,) | T(x - f3)
g

% (5.5.10)

If we multiply this by 16x%u,/#% and use (3.8.9) we obtain the important
result

4

%d-- 7 Im f(2 —2) (5.5.11)

which is the promised relation between the total cross-section ¢ and the
imaginary part of the forward scattering amplitude f(x — ).

ExameLe, The Born approximation. According to the Born approximation (5.3.9) the
forward transition amplitude is given by

Tl —= o) = (g, | Vil pa). (5.5.12)
Written out more fully this is
T(@ - @) = [ dr; [ dx; Vilre, x;) | alre, x0) 1. (5.5.13)

Since V; is usually real this is real, and hence so is the forward scattering amplitude
Sfiee — &); hence (11) implies o = 0! We must, however, remember that (5.3.9) is an approx-
imation, and (11) has only been proved to hold for the exact cross-section and forward
scattering amplitude. Since (11) was deduced from the unitarity of the scattering matrix,
which expresses the conservation of probability, this means that the Born approximation
does not conserve probability (or particles). Approximations have been developed using
the so-called “reactance matrix™ which are, in fact, consistent with (11); these approxima-
tions are, however, beyond the scope of the present book (Mott and Massey, 1965.p. 371).

5.6. THE FRANCK-CONDON PRINCIPLE

We shall now discuss collisions of the form
A+M —~ A+M (5.6.1)

where A is an elementary particle and M is a diatomic molecule. For the
moment we shall neglect any complications which arise if 4 is identical
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with any of the elementary particles of M. Since (1) is a direct collision we
shall also be able to drop all arrangement channel indices.

Before the collision the state of the system may be described by the wave
function ¢, given by

PrmolTs R, @) = (1) 24(q | R) n(R) (5.6.2)

where y, is the initial electronic wave function, 7, is the initial vibrational-
rotational wave function, r is the displacement vector of A4 relative to the
centre of mass of M, R 1s the relative displacement vector of the nuclei of M,
and q the remaining cooerdinates (electron position coordinates and spin)
The other symbols have their usual meaning. In this notation the quanium
numbers » label the electronic state of the molecule, while the quantum
numbers v label the vibrational-rotational state. The notation y,(q | R) is
used to indicate that y, depends parametrically upon R (Schiff, 1955, chapter
X1). In this case the internal coordinates are the combined coordinates (R,
q) while the initial internal state y, has been replaced by the product ¥,%,.

After the collision we can assume that the quantum numbers kne are
replaced by the quantum numbers lpw which describe the new state of
relative motion and new state of the diatomic molecule M, so that (2) is
replaced by

Pl R, g) = qulr) 2.(q | R) (R} (5.6.3)

We will now obtain an approximate expression for the scattering amplitude
Stkno — Ipw).
According to (5.1.1) the scattering amplitude is given by
Siknv —~ 1pw) = (— 4w [1*) (pipw | V | 9 (5.6.4)

where u is the reduced mass of 4 and M, and V is the interaction between
A and M. The scattering state y;", is defined by

Yo = PrmpH(E—R+1)1 Veppns (5.6.3)
= Q-+ (E—Ho—V +i8)~1 Veymy (5.6.6)

where the unperturbed Hamiltonian Ho has the form

ZZ 282
ng

Ho = Kr+ KR+ -!-—h,; (567)
in (7) K, and Kp are the kinetic energy operators corresponding to the rela-
tive displacements r and R, Z, and Z, are the atomic numbers of the nuclei
of the molecule, h, is the Hamiltonian for the motion of the electrons of the
molecule relative to the nuclei, and % is the dielectric constant for free space.
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We shall now find an approximate expression for the scattering state .,
based on the Born-Oppenheimer separation process (Schiff, 1955, chapter
X1). Let us imagine the nuclei of the molecule frozen at the displacement R.
The molecule will have an electronic energy £,(R), and we can consider the
scattering of 4 by the molecule M if M's nuclei are fixed. The unperturbed
Hamiltonian for this process is

Ho = K.+ he, (5.6.8)

the interaction is still ¥, while the energy is £, + £ (R) where E, is the energy
of A relative to M. The unperturbed state is ¢, where

Pra(Ts 1 R) = qu(r) 7,(q | R), (5.6.9)
and depends parametrically upon R. By definition
Yin = Trnt [Ex +E(R)—Hg — V +ie] ! Vepyens (5.6.10)
and since Hyg,, = [E,+E,(R)] ¢,, we deduce that
[Ex+E(R)—Ho—V +iel yi, = ie@un. (5.6.11)
If we substitute for H, from (8) into (11) we get
[Ex+E(R)—Ki=h,—V+ielys, = leqpn. (5.6.12)

Let us now consider y,>7.. From (7) we see that

VAV A S
R

(E—Ho—V+ie)pim, =| E—K,—Kr—
%o

b, —V+:'FJ¢;,,:;U- (5.6.13)
In the Born-Oppenheimer approximation it is always supposed that the
electronic wave function varies slowly with the nuclear coordinates R. In the
spirit of this approximation we shall assume that this applies to the state
vy, also; for it is analogous to the molecular electronic state, since it is
calculated with M’s nuclei fixed, and obviously depends parametrically
upon R. If we make this assumption Kgy,, can be neglected, and so (13)
becomes

(E—Ho—V+ie)ptn,

= {[E" K-r"" hr_ V“}' I.F] ‘p:ﬂ} No— 'ﬂ“;u ll.KR + %—‘ ?."t'} [5'6‘14)
0

and by (12) equation (14) can be written
(LEE—Ho—V+ie) pitm,

o s : ; VAV A i
= “h_[;k_ku{ R)] 'I'I:;;'E"Fr}’kfr} Ne— 'l!;rl{[KR ‘l";—;:] "'.J'u} . (3.6.15)
20
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From (2) and (9) we have ¢,,7, = ¢,,,» hence (15) can be rearranged to give

(E—Ho— V +ie) yitre

2
=vio{[E-EeE® ke ET |kt G010
tp

Now 7, is the nuclear wave function, and so satisfies the nuclear wave
equation

Z 1Z 282

|kt B+

]m = Enile- (5.6.17)

Here £, is the total energy of the molecule, hence £ = E,+E,, or E—E
= E, . The first term on the right-hand side of (16) therefore vanishes, and
so (16) becomes

(E—Ho=V+ie) pin, = itgy .. (5.6.18)
Since Hy@m = EpnPionw = Ei this can be rewritten
(E—Ho—V+ie)yom, = (E—Ho—V +ie) grme+ Vorm, (5.6.19)
and if we operate on (19) to the left with (E— Ho~ V +f¢) ™! we obtain
Wit = Pupt (E—Ho—V +i8)~1V oy (5.6.20)
If we compare (20) with (6) we see that we have obtained the approximation
Yo = ViTe- (5.6.21)

The scattering amplitude now follows by substitution of (21) into (4); if
we do this we get

Sflkny — lpw) = (—4m2u /B 1o | V | 9i0)- (5.6.22)
If we substitute for ¢,,,, in (22) from (3) we obtain
Snw ~ Ipw) = (— 422 /P (@it | V | 900)- (5.623)

Now the scattering amplitude f(kn - Ip|R) for the scattering of 4 by the
fixed nuclei of M is given by

Skn =~ p|R) = (—4a?u/i®) o, | V | ¥ (5.6.24)

and obviously depends parametrically upon R. (24) gives the amplitude
when A’s relative momentum is changed from #k to #l while the electronic
state of M is changed from %, to %, its nuclei being fixed at relative displace-
ment R. It follows from (23) and (24) that

flkne — pw) = [ ni(R)7(R) f(kn ~ IpiR) dR. (5.6.25)
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An immediate corollary from (25) is that the scattering amplitude depends
on the overlap between the initial and final vibrational states- -if there 1s no
overlap there is ne scattering. In terms of the potential energy diagram of
the molecule (Fig. 5.1) it means that transitions between ground vibrational
states which take place in nature must be “‘vertical’”, not diagonal—a result

(x,) -

T

{X,)

I 1?\‘
|
f
Re (b)
{a)
FiG. 5.1. The Franck—-Condon principle. In each diagram the tower curve represents the
nuclear potential when the electronic state is y,. while the upper curve represents the
nuclear potential when the electronic state is y,. Ln {(a) the transition is vertical, and so there
is plenty of overlap between », and %, giving a high probability of the transition taking
place. In (b) the transition is diagonal, giving negligible overlap between #, and 7,
and so there is negligible probability of a transition taking place. In (a) a transition from #,
to a higher vibrational level is more likely to take place if the upper curve is displaced to
the right or left 10 ensure maximum overlap of the vibrational wave functions.

known as the “Franck—Condon principle”. If one or both of 7, and #,
represent excited vibrational states transitions which are not vertical may
take place (Fig. 5.1a).

The energy condition for (24) to be valid is
Ex+E(R.} = E+EJR,) {5.6.26)

when R = R,, the distance of the nuclei from each other in the equilibrium
position (Fig. 5.1a). If initially and finally the molecule has low vibrational -
rotational quantum numbers, we shall have E(R)+Z,Z,e*R;'x;" =~ E,
and E(R)+Z,Ze?R; ;' ~ E,,. Hence adding Z,Z,e*R;'%;' to both
of sides (26) we get

Ek +Env - EI+Epw9 (5‘6'27)
the energy condition for the actual collision. If the difference between the

vibrational energies is significant the energy conditions are inconsistent, and
the validity of Franck—Condon principle is then in doubt.
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EXERCISE

Show that (25) still holds if (i) A is an electron, or {ii) 4 is identical to one of M’s
nuclei, or (iii) A is a composite particle some of whoseelementary particles may be elec-
trons, or identical with one or other of the nuclei of M, provided the exchange amplitudes
for the collision (1} are much smaller than the corresponding direct amplitudes.

5.7. COLLISIONAL DISSOCIATION OF DIATOMIC
MOLECULES

We shall now consider collisions of the form
A+ M - A+ M+ M, {5.7.1)

where A is an elementary particle, M is a diatomic molecule, and M1, M2
are two atoms. We shall assume for the moment that A is distinguishable
from the elementary particles of M, and that the nuclei of M are distinguish-
able. If any of these assumptions are not valid -for example, if 4 has struc-
ture --the arguments which we shall present may be easily modified.

The initial state is ¢, of the last section, given by (5.6.2). After the
collision we have an atom M., nucleus Ny, whose centre of mass moves with

Fi1G. 5.2. The final state for ihe collisional dissociation of a diatomic molecule by an ele-
mentary particle 4. After the collision the molecule M has dissociated into two atoms M,
and M,, whose centres of mass approximately coincide with the nuclei N, and N,.

wave vector x relative to the centre of mass of the second atom M, nucleus
Na. We shall take the muclei Ny and N, as the centres of mass of the two
atoms, and denote by R the displacement vector of N, relative to N, (Fig.
5.2). The final relative motion of the centres of mass is therefore the final
relative motion of the nuclei, and described by the wave function g (R) =
(27)~%2 exp (ix~R). The motion of A relative to the centre of mass of M,
and M, may be described by p(r) = (27) % exp (ilar), where r is the
displacement vector of A relative to the centre of mass G of N, and N,.
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Let us suppose that M possesses n slectrons, M, possesses m electrons and
M, possesses n—m electrons: let us further denote the electrons by 1, 2, . . .,
m+1, ..., n. A possible final state is then

P8 = PEAIP (512)

where M, consists of N, and electrons 1 to m with internal wave function
7_:,!& while M» consists of N» and electrons m-+1 to n with internal wave
function (. Initially all the electrons are attached to M, and so the number
M, of permutaticns of electrons which permute electrons within the same
composite particles is ! Finally, m electrons are attached to M; and n—m
electrons belong to M, so the number M, of permutations of electrons which
do not interchange electrons between the composite particles M, and M, is
m! (n—m)! Consequently it follows from (5.1.1) and (4.5.26) that the dis-

sociation amplitude f(kne — Slp’p’’) is given by

(n—m)! 1M/ 4z
Sflknv — Sp'p”’x) = [M] (_ Ll

m 7 )? SePp| Verl iy (5.7.3)

where Y’z goes over all distinct final states Py, obtained from ¢, by per-
mutations P of the electrons, including g itself. In (3) Vg, is the sum of the
three interactions between A and the two atoms of the state Py, 0p is the
parity of P, and u = u,the reduced mass of 4and M (which isalso the reduced
mass yu,of M and M+ M.).

We saw in Section 5.2 that a dissociative collision of the form (1) may be
treated as direct, so that ¥, = ¥V, = V where V' is the interaction between A
and M, and therefore the interaction of A with M, and M, provided the
final state is taken as the product of ¢, with a continuum state possessing
incoming wave boundary conditions. We therefore have

(Pos| Verl W) = (Pt | V | Wi (5.7.4)
where
Iomppe  ~  PlzP2s] ¢ +incoming waves. (53.7.3)
R —»oe

If we substitute from (4) into (3) we obtain

Sknv — Slp'p"' %) = (—47uh=) (@yisepp | V | Vi) (5.7.6)
where

_ " mi(n—m)! 142 -
i <00} ln—‘l Y Oy (5.1.7)
i | P

From (5) and (7) we see that

ml(n—m)!
n!

1/2
Lsnpp s [ ] Y. 0pPlysP ]+ incoming waves (5.7.8)
—_ o P
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Let us assume that the Born-Oppenheimer separation process is applicable
when the nuclear states lie in the continuum. It may then be possible to form
a linear combination of molecular electronic states , which has the asymp-
totic form

mi(n—m)! 22
[g] T PP ~ T (57.9)
P

n! .-

Such a state is obviously normalized. We can then take as the appropriate
expression for yz ...

Lo = 2 X (5.7.10)
P

where 7"~ is a continuum nuclear state for the potential curve generated
by x, which satisfies the asymptotic condition
7P~ g@,+incoming wave. (5.7.11)
R =roac
Jt then follows from (9) to (11) that the asymptotic condition (8) is satisfied.
Th.e dissoci.ation CI"OSS~S€Cti(?n for the process g,x,%, ~ @x1? is then
obtained by integrating the differential cross-section over all energetically

allowed 2. With the approximation (5.6.21) and certain other approximaticns
this integration can sometimes be carried out using the closure relation

[ dx g P R PR+ Y HR) (R = SR—R')  (5.7.12)

or the complete set of continuum nuclear states 57, 7))~ corresponding to
for th lete set of cont lear states 7”, () d
the electronic state -

5.8. COLLISIONAL DISSOCIATION OF IONIZED HYDROGEN
MOLECULES

In this section we suppose that the diatomic molecule M considered in
the last section is an ionized hydrogen molecule. In other words we shall
consider dissociative collisions of the form

A+H} — A+H+H*. (5.8.1)

We shall assume initially that the H ion is in its lso, state, and has
vibrational-rotational wave function 7, while 4 (which we shall take as
elementary) has momentum #k relative to the centre of mass of the ion. The
initial state is therefore represented by the wave function

75, R, ) = ) 2500 R) (R) 2 (12) (5.82)
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where r is the position vector of A4 relative to the centre of mass of the H;
ion, R is the relative displacement of proton 1 to proton 2 of the HF ion
(Fig. 5.3), q denotes the coordinates of the electron, 7,(q | R} is the wave
function of the 1sg, state of the H} ion, and «,(12) is the initial spin function
for the protons. 4 will be assumed to be a spinless atomic nucleus. The spin
function of the electron will not be affected by the collision, and may there-
fore be ignored.

in the final state we shall assume that the hydrogen atom is in its ground
state with proton 2 as nucleus, while proton 1 has momentum #x relative to 2
(Fig. 5.3). If A then has momentum 21 relative to the centre of mass of the

1HHY

F1G. 5.3. Coordinates of the 4— H} system discussed in Section 3.8.

fragments of the ion while y¢(2) is a ground state hydrogenic wave function
based on 2 as nucleus the final wave function is

@s(ts R, q) = @i(r) 1o(q | g (R) xs(12) (5.8.3)

where «, is the fina! spin function of the protons.
The only final state distinct from ¢,, and obtainable from it by permuting
the protons, is

ges = Pps = q@ilr) xo(q | 1) pu{ —R) ox(21)
= @i} zo(@| 1) p_.(R) zs(21). (5.8.4)

in this state 1 is nucleus of the hydrogen atom, and has momentum — fix
relative to 2.' The number of permutations M, of protons in the initial state
which permute protons within the same composite particle is two, and the
corresponding number M, in the final state is unity. Since protons are fer-
mions (4.5.26) gives

fle ~ 88) = 27 f(a ~ B)—f(x ~ PB)I. (5.8.5)

Now ¢p, differs from ¢, by an interchange of the protons, which both
belong to the same composite particle H, in the initial state. Hence (4.6.7)

T ppg is, of course, experimentally indistinguishable from ;.
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implies f(x - PB) = — fla —+ §), and so (5) simplifies to
fla—~ 3= 22f(a — f). (5.8.6)

The amplitude f(« — 8) is given by (5.1.1) where p, = 1, = u, the reduced
mass of A4 and the H} ion or 4 and the system H+H™*. Since p} = QN (E)g,
where Q;(E) is the wave operator for the initial arrangement channel we
obtain

fla~ B) = (—4nuh=2) s | Vi HHE) 92
= (—4n’uh~ ) (p1e(2) @1 2) | Ve R (E) | regenne(12)) - (5.8.7)

by (2} and (3). Since V', and QF(E) do not involve spin the spin functions
factor out and {7) becomes

fla — B) = (—4n%uh=2) 8, (g o(2) @u ) V2 (E) | puteney
= (—4n%h D) 8ot x| Vi | ¥)»  SBY.  (5.8.8)

In (8) the state 4, = 2/ (E}p,2,7, is the initial scattering state with oui-
going wave conditions.

As we saw in Section 5.2 the collision (1) may be treated as direct if the
final state of the product proton and atom is taken as the scattering state
Y%w(2) which describes the final relative motion of proton 1 and the hydrogen
atom based on 2 as nucleus. It is defined by

to(2) = Quto(2)+ [E—Kp—h2)~ U—ie] ™ Upyto(2) (5.8.9)

where h(2) is the internal Hamiltonian of the hydrogen atom and U the
interaction between H and H*. As R - e« the function 3_(2) behaves as
#,x0(2) plus incoming waves. Hence from (8) we obtain

Sle ~ By = (—4n2uh~?) Sl V 9y (5.8.10)

where ¥ = V, is the interaction between 4 and the HF ion, which is also
the interaction between A and the system H4 H* in the final state (Fig. 5.3).

The only electronic state of the HY ion other than the 1so, state which
leads to a hydrogen atom in its ground state in the separated atom position
is the 1so, state. We have denoted the wave function of the lso, state by
%,(q 1 R), and so we denote the wave function of the 1so, state by y,(q | R).
The functions y, and y, have the asymptotic forms

2s ~ 27V2[xe(1)+%0(2)), (5.8.11)

—_—

Ze ~ 27Myo(1)— xef2)), (5.8.12)

R oo
and so
Ae—fu ~ 2Y230(2). (5.8.13)
R

—oa
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It follows that there is only one linear conbination of molecular states which
behaves as ¢, xq(2) + incoming waves as R — o, and this can therefore be
taken as y(2); the expression is

Anp(2) = 2712 mEm — i), (5.8.14)

where 7, ;™ are the continuum nruclear states associated with the potential

o

energy curves generated by the lso, and lso, elecironic states respectively
(Fig. 5.4}, and which behave as ¢, plus an incoming wave when R — oo,

eq, Ao —

F1G. 5.4. Potential energy curves for the 1so, and 1sa, states of the H} ion.
If we insert (14) tnto (10), and then the resulting expression for fla ~ )
into (6), we get
Sz~ ) = —Anpuh =2 8 (et — xae IV ive.  (5.8.15)
Let us define the scattering amplitudes f(kgv — lgx) and flkgr — lux) by
Jkgy — lgx) = —daub— gt 1V | v, (5.8.16)
Skgy — lux) = —4m°uh~Yppme 1V | wh,)- (5.8.17)

Equations (2) and (3) show that « and 8 may be written more fully as kgor
and loxs respectively; hence, with the aid of (16) and (17), (15) may be wriiten

Slkgor = Sloxs) = &, f(kgv -~ lgx)—f(kgv — lux)]. (5.8.18)

On the left-hand side of (18) we have the scattering amplitude for the
process which takes an Hy ion from the electronic lso, state, vibrational-
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rotational state 7., and spin state o, into a state in which a proton has mo-
mentum % relative to a hydrogen atom in its ground state o, the spin state
of the protons being x,. On the right-hand side of (18) we have a factor §,,,
showing that the spin state of the protons is unaffected by the collision. We
also have the scattering amplitudes flkgs — Igx) and flkgv — lux). The
first amplitude describes a transition to a continuum nuclear state on the
1so, nuclear potential energy curve (Fig. 5.4); it therefore describes a process
by which the diatomic molecule dissociates through nuclear excitation. The
amplitude f(kgv — lux) represents a process by which the diatomic molecule
dissociates via excitation of the repulsive 1so, electronic state. Equation (18)
implies that the differential cross-section o(kger — Sloxs) for the process is

a(kgor — Sloxs) = &, f(kgy — lgx)—fkge — lux)[2. (5.8.19)

The observed differential cross-section is obtained from this by summing
over the four final spin states and averaging over the four initial ones. The
effect of this is to remove the factor 8,

Suppose instead of using (14} as final state of the H+H* system we had
used
2~V oty (5.8.20)

Since %%, and n* ~ ¢_, as R —~ «, while y_ and y, obey the asymptotic
conditions (11) and (12), we see that

2Vt i ~ gD gy, (38.21)
R—voo

Such a choice of final state describes a situation where, after the collision,
the atom on 1 as nucleus is observed to have momentum — 7 relative to the
proton 2 (see Fig. 5.3), so that the proton has momentum #x relative to the
atomn. This represents the same physical situation as previously, and so an
alternative expression for the cross-section is therefore obtained from (19)
by replacing the difference of the amplitudes by a sum, and x by —x; this
yields

olkger - Soxs) = & | fligy — lg— )+ f(kgy — lu—2x) (2 (5.8.22)

It foltows immediately from (19) and (22) that

2Re{f"(kgy — lg—2) flkgv —+ lu—x))

=—2 Re [ f*(kgv — lgx) flkgy - lux)] (5.8.23)
so that the interference term in (19) or (22) is antisymmetric in ».

The dissociation cross-section o (o) for production of a hydrogen atom in
its ground state is obtained by inserting (18} into (3.8.11) with the summation
over f replaced by a summation over s and integration over alll and x. Sirce
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;= pty = p we obtain

oufo) = A¥yik)~1 _f dl J dn 3 Epox—Ergy)| flkge — lgx)—f(kge — lux)(*

(5.8.24)
where £, = E, +F_ isthe initialenergy of the system,and E,,, = E+E +E,
is the final energy. We note that ¢ ,(o} is independent of the spin state of the
protons. The quantities £, and F, are the initial and final kinetic energies
of A relative to the centre of mass of the H ion or the H-+ H* system, E, is
the final relative kinetic energy of the proton and atom,and —E, is gthe
binding energy of a hydrogen atom in its ground state. Since the interference
term in (24) is antisymmetric in » it vanishes on integration over x, and 5o
(24) reduces to

94(0) = #*(pk)=1 [ dl [ dx 8(Ejpe— Ergo)| flkgr — lgx}|?
+#%uk)~t [ dl [ dx 8(Epou—Eigy)| flkgo ~ lux) . (5.8.25)
We can therefore evaluate the dissociation cross-sections for nuclear and

electronic excitation, and add the results to obtain the total dissociation
cross-section.

In the spirit of the Born-Oppenheimer separation process we now make
the approximation (5.6.21) for 4" . On doing this (16) becomes

flkgy ~ lgx) = [ " (R) ny(R)[—4n’uhi~ i, | V |9* ] AR (5.8.26)

where i, Is the scattering state with asymptotic boundary condition gy,
+outgoing waves when the protons are frozen with relative displacement R.
The term in square brackets on the right-hand side of (26) is therefore the
scattering amplitude f{kg — 1g | R) for elastic scattering of 4 by the molecule
when in the electronic state g, the protons being frozen with relative
displacement R. We can therefore replace (26) by

flkgy ~ Igx) = [ *(R)7(R) flkg ~ lg|R)dR.  (5.8.27)
Similarly (17) leads to

Jkgv ~ lux) = [ ni="(R) 7, (R) f (kg — lu|R)dR (5.8.28)

where f(kg —~ lu | R) is the amplitude for inelastic scattering of 4 by the H}
ion when the electronic transition lso, — lso, takes place, the nuclei being
frozen with displacement R.

Let us put

o4(g ~ &) = #¥uk)~\ | d\ § dx H(Ejp— Ein)| fkge — lgx) (%, (5.8.29)

o4(g ~ u) = #Huk)* [ di | dot 8(Ejpy— Ergy) | flkgo —+ hux} |2 (5.8.30)
QTse 9
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The quantity o (g —~ g)}is the dissociation cross-section via nuclear excitation
only, and o(g ~ u)is the dissociation cross-section via electronic and nuclear
excitation. It follows that (25) can be written more simply as

04(0) = g4(g ~ 8)+as(g ~ u). (5.8.31)

We shall now evalvate o,(g — g) by means of the expression (27). Inspec-
tion of (27) shows that f(kgv — lgx) decreases as » increases due to the
increasing oscillation of 5~ in the integrand. Let us therefore suppose that
the main contribution to ¢ ,(g —+ £)}in (29) comes from the part of the integra-
tion where x is very small. If x is very small £, = E+E +E, ~ E+E, =
E,,, and so from (29}

oa(g ~ &) = Fuk)~1 | A\ [ di 8(E,—Exgo)| flkgo ~ gx) |*
= (k)1 | 1 8(Eyy~Ex) [ dx | flkigo — Igx) . (5.8.32)
Now from (27)
f dx) fkgy ~ lgx)[* = [ dx [ AR 7E~*(R)n,(R) f(kg ~ lg| RYX
X [dR f~R)ni(R) f*(kg ~ g R).  (5.8.33)

The closure relation for the complete set of nuclear states #,,, 95~ associated
with the electronic state y, is

fdnnE @R~ ®)+ TR n(R) = SR-R)  (5834)

where ), goes over the bound nuclear states. 1f we apply (34} to (33) to
integrate over x we obtain

[ dl| fkgy —~ Mg} P = [ dR|7,(R)1?] flkg ~ 1g|R)[?
— 21 JARTR) 7,(R) fkg ~ g R) % (5.8.35)

By (5.6.25) the general term of the sum Y, is the square of the modulus
of the scattering amplitude for the nuclear transition %, - %, without
electronic excitation; thus (35) can be written

[ d| fkgv ~ lgx) |2
= [dRIn®R)P| fke ~ IgIR) [~ T flkgw ~ lgw) . (5.8.36)

If we insert (36) into (32) we get

0a(g ~ 8) = #¥{uky~t [ dR| 7 R) |2 [ @1 8(Ero— Eeg) | f(kg ~ Ig|R)[?
=~ SRR [ 1 8(Eia—Eigs)| fkgv ~ IgW)I. (5.8.37)

Now E,,—E, , = E+E,—E,—E,,and E,—E_, is the dissociation eneigy
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D, ofan Hy ion in the state g, (Fig.5.4). If this is negligible compared with
E, we can put E;,—E, -~ E~E, in the first term. It also follows that
E+E, ~ E+E,, = E,, if E,—E,, the dissociation energy of an H;
ion when in the state y.,. is negligible compared with E, With these
approximations (37) becomes

aa(g ~ g) = #(uk)* [ dR|1o(R) | | d1O(Ei—EL)| f(kg — Ig|R)[?
== Z ﬁet‘ﬂ'k}_l j dl 6(Ef‘w—“Ekgv)Jf(kgl‘ =3 lgld”‘! (5838)

In other words the contribution to the dissociation cross-section due to
nuclear excitation only is made up of two parts. The first part is the cross-
section for elastic scattering of A4 by the H} ion, when its nuclei are fixed,
averaged over the nuclear probability function | 7,(R) |%. The second part is
a subtraction of the cross-sections for the process 4+H; —~A+H; when
electronic excitation does not take place. It is a subtraction of the terms
representing scattering without electronic excitation, and with or without
excitation of bound vibrational-rotational states of the molecule.

The expression (30) for the dissociation cross-section o,(g —~ u) via ex-
citation of the log, state may be similarly simplified. From Fig. 5.4 we see
that, due to the negligible overlap of%~ and 1,, excitation does not take place
if E < Ej, where E is the repulsive potential energy of the protons at the
equilibrium separation R, of the protons. Assuming that the cross-section
drops off rapidly as » increases beyond K, we can replace E,, by E,., =
EA+Eg+Eo. Also E,,. = E+E,—D, where D, is the dissociation
energy of the H," ion when in the state y,,. Equation (30) now becomes

Ga(g —+ u) =~ W (uk)~! J'dl b(li',»+b'x+f)l.—1;'k)jdxlf(kgr - lusx) >
(5.8.39)

Since the electronic state g, is repulsive, there are no bound nuclear states,
and so the closure relation (34) is replaced by

[ de i *(R) 74~ (R") = SR—R). (5.8.40)

Substitution for flkge — lux) from (28) into (39) and use of (40) now
yields
aulg — u) = h(uk)-! I dlS(E +Ex+D.—E) %
X [dR|n(R)[?| f(kg = lu|R)[*. (5.8.41)

Hence the cross-section for excitation of the repulsive electronic state must
be averaged over all displacements R of the fixed nuclei with weight function
[ 7(R) |2 Equation (31) shows that the dissociation cross-section is just the
sum of the cross-sections for dissociation through nuclear excitation and
through excitation of the redulsive 150, state.

o
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We can also note that, if E,(R,) and E,(R,) are the values of the electronic
energy in the 1so, and lso, states when R = R,, then E(R)}—E/(R,) is the
difference between the nuclear potential energy curves for the two electronic
states at the point R = R,. From Fig. 5.4 this is Ez+ D,, and so

Er+E(R)—Er—ElR,) = E;+Ex+Dy—E,. (5.8.42)
We can therefore rewrite (41) as

oa(g + u) = [ dR|7(R)[2A¥pk)+ X
X § 13 Er+ER)—Ex—Ey(R))| flkg —~ k| R)|>  (5.843)

if we use the fact that 5, (R) = 0 unless R ~ R,. In this form we see¢ more
clearly that we can obtain the cross-section ¢,(g — %) for dissociation via
excitation of the repulsive clectropic state 150, by fixing the nuclei at relative
displacement R, calculating the cross-section for excitation of the 1so,, state,
and then averaging the result over all relative displacements R.

EXERCISE

Show that the results of this section remain valid if 4 iz a proton or electron provided
exchange between 4 and the HZ ion can be neglected. Show also that the results remain
valid if A has structure provided exchange bstween any protons ot glectrons of 4 and the
Hj ion can be neglected.
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APPENDIX A

Suppose f(H,, H,) is a function of two commuting Hermitian operators
H, and H,, and | v} is a state vector such that H, | ¢} = « | y); then

S (Has Ha) 1) = fo, Hp) 4. (AD)
Proof. Since H, and H, are two commuting Hermitian operators they have
a complete set of common eigenvectors | «’f" where
Hala'B" = a'la'f), Hyla'B) = §'|«f. (A2)
By definition
Sf(Ha, Hy)lp) = 3 T f (o', B) '8 )8 | ) (A3)
o

Since {a'f") and |y) are eigenvectors of the Hermitian operator H,
with eigenvalues &’ and « respectively they are orthogonal if = = «’. Hence
('8 |9y = 0ifa’ # «, and therefore in (3) f(a’, §)can be replaced by f(«,8');
(3) now becomes

SHa Ho)ly) =3 fla, B 3 1’8 ) (B | y)- (A4)
¢ @

Since |a'fy = la) | #) and ¥ | &)’ | = 1, we find from (4) that
S(Ha, Ho) 19} = 3 f (e, B BB | 9)- (A5)
#
By definition the right-hand side of (5) is f(z, H,) { v}, and so (1) follows.
A particular case of this is when | v) = [ v,) | v5) = | ¥,¥,), Where |y,)
involves one set of coordinates x, and {¢,) involves the remainder x,.
Then if H, depends only on x, and H, depends only on x, we see that H, and

H, commute. Hence if H,|y,) =aly,) it follows that H,iym,) =
[Ha | w2211 ws) = @ | ), and so

f(Ha, Hy)| 1}’5‘?’&) =f (e, M) 'Pn'Pb)- (A6)

More particularly, if H,[v,) =« |, and ¥, is an operator depending
only on x,,

HoVs 1 va) [9s) = [Hai vl Vel we)) = @ lva) (Ve lwe)l = aValvaps), (A7)
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hence by (6) with f(H,, H,} = (E—H,—H,%ic)"%, and | p,) replaced by
V! waveh
(E—H,-Hptie) 2 Vilwaws) = (E~a—Hytie) 2 Va|pays). (A8}
Since | y,) is unaffected by ¥, and H, this gives
(E~Ha—Hp i) * Vo | yays) = [(E—a—Hytie)™! Vi [95)] |90y (A9)



APPENDIX B

I# A and B are two commuting Hermitian operators, and f(A) and g(B)
are functions of A and B respectively, then

exp [f(A)+g(B)]) = exp [f(A)] exp [g(B)] = exp [2(B)] exp [ f(A)]. (BD)

Proof. Since A and B are Hermitian and commute, they have a complete
setof common orthonormal eigenvectors | 4'B") where A| A'BY= A'| A'B")
and B| A'B"y = B’ | A'B"); thus

[F(A)+2(B)]| A'B") = f(A)| A'B")+g(B)| 4'B")
= [f(4)+8(B)]| A'B). (B2)
Hence if | y) is an arbitrary vector
exp [f(A)+g(B)] [v) = ) exp[f(4)+g(B)| AB)(AB |y), (B3)
A'B
exp[f(AM)]expgB)} ) = 3 exp[f(4))exp[g(B))| A'B)(A'B |y), (B4)
AR
exp [g(B)l exp [f(A)]) |w) = ¥ explg(B))exp [f(AN| A'B)(A'B y). (BS)
AR
The right-hand sides of (3) to (5) are obviously equal, and hence so are the

left-hand sides; but | y) is an arbitrary vector, so (1) follows.
A particular case is when f(A) = iAt/#, g(B) = iBt/A. Then (1) yields

exp (IAt{h+iBtfh) = exp (iAtjh) exp (iBt/h) = exp (iBt/#) exp (iAt/h). (B6)

Another case is when f(B) = k, where k is a complex constant; then if C
is another Hermitian operator, and 4(C) is a function of C,

exp [f(A)+ k) exp [H(C)—Kk] = exp [ f(A)] exp (k) exp (— k) exp [#(C)]
= exp [ f(A)] exp [A(C)]- (B7)
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APPENDIX C

GREEN'S OPERATORS AND ASYMPTOTIC SCATTERING STATES

GREEN's operators (E— H+ie)™2 for a Hermitian operator H are defined by
(E—Hzxie)|y) = T (E-E, i)} |a)(x(y) (1)

where | v} is an arbitrary state and H is assumed to have a complete set of
orthonormal eigenstates [a) with eigenvalues £,. The quantity ¢ is an arbitrary
positive number and E is real. The Hermiticity of H ensures that the E, are
all real, and so the presence of the term iz prevents any singularity occurring
on the right-hand side of (1). We usually allow & to tend to zero at the end of
any calculation. The operators (E—H+ie)™1 are obviously the inverses of
the operators E— Ht iz,

We can assume that the unperturbed Hamiltonian H, has a complete set
of eigenstates | k&) = [k} | &) where | k) represents the free motion of the
centre of mass of a cluster A relative to the centre of mass of the remaining
clusters, while | £) represents the internal state of all the clusters and the free
relative motion of the clusters other than A, if there is more then one of these.
Since we shall assume these states to be complete we must include continuum
states of the various clusters in the set of | k&)’s. The energy associated with
the state | k&) is E,, = E, +E,, where E_ is the internal energy plus the rela-
tive energy of the recoil clusters if there are two or more of these.

In this case (1) gives, taking the positive sign,
(E—Hi+ie) ™t p) = Y, | dK(E—Epe+ic)~1| k&) (kE | ). (€2)
3

As usual we take r as the relative position vector of the centre of mass of the
recoil cluster and q to stand for the remaining coordinates. If we take repre-
sentatives of {2) in configuration space we obtain

{eq]| (E—Hy+ie)=1{y)
=z J IR(E—Eie-+ie)Xrq | ké) [ dv’ [ dg'(kEIPQ) (e’ |y)

= [dr' | dy {T[f dR(E—Eee+io) 2@k (kI £)1(g1 )51} ' )
(€3)
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Now the quantity in square brackets in (3), which we can denote by [ ], is
[ 1= 2uA"2Q2n)~* | dk[2ut~*E—Es)—k*+ i)Y exp [ik - (r—1")] (C4)

where 5 = 2us%2 while 1 is the reduced mass of 4 and the recoil clustess.
i we put 2uti"*(E—E,) = + k} according as E > or <E,, take spherical
polar coordinates for k relative to r—r' as polar axis, and integrate over the
angular coordinates of k, we find that (4) yields

=

()=t k{exp [ik|r—r'|—exp [—ik|r—r'{]} dk
= D Ir—r [(£Rk— K+ in) '

L]

(C5)

To evaluate [ ] we replace & by —k in the second integral on the right-
hand side of (5); (5) then becomes

_u [ kexplik|r—r|]
[1= 2 '[ |r—r’|(:|:k§'—k2+l'?}) dk. (C6)

—no

This may now be evaluated using contour integration. The appropriate con-
tour is a semicircle in the upper half of the complex k-plane, with the origin
as centre and the real axis along the base; after using the theorem of residues
we then let  — 0+. We obtain

___p expliklr—r'])
[ ] - znﬁn Ir__r:)l (E - EE)! (C?)
or
___# exp(—kjr—r'j)
[ ] - 2?‘:;12 Ir_rl'l (E b Ee)‘ (CB)

(7) and (8) are the two zlternative expressions for the square-bracketed
term { ] in (3). If we substitute for { ] in (3) we can rewrite (3) as

(rq](E—H,+ie)t|y) = [d’ [y’ Gir,q; ¥, @) q'1y)  (C9)

where
6 i q) = 5o 5 ZRTEIED g0yt 1)
£
. EXpP (— ik |r_', |)
L T @lDEley O

in (10) }'; goes over states | £) for which E > E,, while ;" goes over states
| £ for which E < E,. The result (9) shows that Green’s operator is an
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integral operator with kernal G(r, q; ', q'). It also shows that the Schwinger~
Lippmann equatmn (1.5, 3) is an integral equation for the scattering wave
function ;. A%

To find the asymptotic form of (1.5.3) we note that

rer’

[E—r"| = (P2=2rer"+ L2 ~ p— = r—Ter. (C11)
It follows from (9), (10) and (11) that
el (E-Hrio g ~ YO g1 i

F— o £

where

168) = s [ e [ @ o ik 1D @1 (©3)

The doubly primed sum does not appear due to the exponential decay of
its terms as r —o<, In the case of the Schwinger-Lippmann equation (1.5.3)
we obtain

Yo ~ P +Zf (f) —— cxP{'k‘*'} (ql$) (C14)
where by (13) £,(r) is now given by
fe®) =— Idr qu' exp (—ikerer’) & Q7 ('q" [ Vi), (C15)

In the case of a local potential this becomes
16 =~ 5t [ # [dr v iem @iV ORE O (€0

The Schwinger-Lippmann equation with positive sign therefore gives rise to
outgoing wave boundary conditions.

Since k} = 2uh~HE—E,) the quantity , is, by energy conservation, the
wave number ! of the final state | 1) = | I} | £). The unit vector ¥ is in the
direction of the final outgoing wave. We can therefore put k& = 1, and so
(15) becomes

1/2
JoF) = — —{2::,12 ! [dr’ JA{J’(]F A1) E Q) E'q | V)
= — @)V 2uh=2 (& | V| ). (C1T

It is, in fact, (21)~*/2X the scattering amplitude for the process.
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