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INTRODUCTION

The International Encyclopedia of Physical Chemistry and Chemical 
Physics is a comprehensive and modem account of all aspects of the 
domain of science between chemistry and physics, and is written 
primarily for the graduate and research worker. The Editors-in-Cliief, 
Professor E. A. Guggenheim, Professor J. E. Mayer and Professor 
F. C. Tompkins, have grouped the subject matter in some twenty groups 
(General Topics), each having its own editor. The complete work con­
sists of about one hundred volumes, each volume being restricted to 
around two hundred pages and having a large measure of independence. 
Particular importance has been given to the exposition of the funda­
mental bases of each topic and to the development of the theoretical 
aspects; experimental details of an essentially practical nature are not 
emphasized although the theoretical background of techniques and • 
procedures is fully developed.

The Encyclopedia is written throughout in English and the recom­
mendations of the International Union of Pure and Applied Chemistry 
on notation and cognate matters in physical chemistry are adopted. 
Abbreviations for names of journals are in accordance with The World 
List of Scientific Periodicals.

vii
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PREFACE

The aim of this book is to provide an account of the theory of vectors, 
linear equations, matrices and tensors which serves the needs of graduate 
chemists, physicists or engineers. The first need is for a description of 
the various entities, their nature and manipulation, and a derivation 
of the mathematical properties most frequently needed in applications. 
The second need is for a short selection of efficient methods of solving 
linear equations and eigenvalue problems, adequate for practical 
numerical application and described in sufficient detail to be used con­
fidently. These methods should be suitable for hand-calculation and 
include the information needed to use them on an electronic computer.

In both content and presentation this book is intended to bridge the 
gap between books and courses designed to introduce the subject to 
science undergraduates and treatises written for mathematicians. This 
gap is felt most keenly by those beginning research and facing urgent 
numerical problems. It is hoped that this account, if not itself sufficient 
to solve a problem, may give enough background to enable specialized 
textbooks and journals to be consulted fruitfully. The examples after 
each chapter have the same purpose. Some provide direct illustrations 
of the ideas and procedures in the text but others are introductions to 
more advanced topics or more specialized applications.

The author is happy to be able to acknowledge his debt to many from 
whose discussion and writing he has profited and, in particular, to 
Dr. S. F. Boys and Prof. P. O. Lowdin whose experienced judgements 
have been invaluable, and to his wife for her help in preparing the 
manuscript and her forbearance during its writing.





CHAPTER 1

VECTORS

1.1 Definitions

The theory of vectors is most easily understood as a theory of arrows 
drawn from a common point. These arrows can then be used to repre­
sent physical properties such as the position, velocity or acceleration 
of a particle or the displacement of an atom from its equilibrium 
position in a molecule. The theory enables any such properties, which 
have a magnitude, a direction and a sense and so can be represented by 
arrows, to be described by one abstract symbol. The arrows will usually 
be considered as lying in a three dimensional space although much of 
the theory is independent of the dimension of the space. The generaliza­
tion to an n-dimensional space is treated later.

Vectors are represented in diagrams by arrows drawn from an origin 
and are denoted in the text by lower case letters in distinctive type. 
The basic operation which can be performed on vectors is known as 
addition. The sum of two vectors is defined geometrically as the

a

Fig. 1.1. Addition of 2 vectors.

diagonal of the parallelogram formed by the two vectors and two lines 
drawn parallel to them as in Fig. 1.1. According to this definition it is 
clear that the sum is independent of the order of addition,

a 4- b = b -f- <j (1.1.1)
1



2 MATRICES AND TENSORS

This process of addition can be continued with any number of vectors 
by adding them in pairs until a single vector remains. As with ordinary 
addition, there are various ways of doing this, differing in the order of 
performing the additions, but these all lead to the same total sum. For 
three vectors the three ways are indicated by

(a + b) 4- c, a + (b -f- c), (a + c) 4- b

and Fig. 1.2 shows that these are three different methods of specifying 
the space diagonal of the parallelepiped spanned by the three vectors.

o*c

b

Fig. 1.2. Addition of 3 vectors.

The general result for any number of vectors follows logically from this 
Addition leads naturally to subtraction. If

a + b = c (1.1.2)
then the difference is defined as

b = c —a (1.1.3)
Figure 1.1 shows that subtraction can be defined geometrically by com­
pleting the triangle formed by the two vectors to be subtracted and then 
this third side, transferred to the origin by drawing parallels, gives the 
difference. When a vector is subtracted from itself the result is just 
the origin itself; so this point may be interpreted as a null vector 0 
with the properties

a-o = O (1.1.4)

a 0 — a (1.1.5)

When a vector is added to itself the result is a vector having the 
same direction and sense but of twice the length. By generalization of
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this, any multiple of a vector may be defined as a vector in the same 
direction as the original vector but with the length magnified by the 
multiple. Negative multiples are defined similarly but have the sense 
of the vector reversed. These multiples obviously obey the usual rules 
of multiplication

(2. -|- fi)a = Ao + pc (1.1.6)
A(a + b) = Ao + Ab (1.1.7)

A(pa) = (Ap)o (1.1.8)

The second of these rules gives a method of stating the similarity of 
similar triangles.

1.2 Concurrence of Medians

The power of the vector theory is illustrated by the rapid proofs, 
which it makes possible, of geometrical theorems such as the concurrence 
of the medians of a triangle. To prove this theorem the origin is taken 
at a vertex of the triangle and the two adjoining sides are denoted by 
the vectors a and b (Fig. 1.3). The arrows to the mid-points of these

Fig. 1.3. Intersecting medians.

sides are then |o and |b. The median to the third side is then half the 
diagonal of the parallelogram, viz. j(o -f- b), since the diagonals of a 
parallelogram bisect one another. Consider now the point f along this 
median viz. |(o -f- b). The vector joining this to |o is

|(0 + b) - ia = jb - |o (1.2.1)

and the vector joining it to the opposite vertex is

b - i(o + b) = lb - la (1.2.2)

These two vectors are clearly in the same direction and they have the 
point j(o + b) in common so that they must lie in one straight line. 
In exactly the same way, with a and b interchanged, the third median
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will also pass through |(a b). The proof also shows, incidentally
that each median is divided in the ratio 2:1.

1.3 The Vectors /, j, k

The dimensionality of a space can be measured by the number of 
mutually perpendicular vectors which can be found in it. A plane 
cannot have more than two perpendicular vectors and any other vector 
in the plane can be expressed as a linear combination of two such 
vectors. Similarly, in a three-dimensional space, there are three per­
pendicular vectors and no more. It is convenient to choose three 
perpendicular vectors of unit length in order to set up a coordinate 
system in a three-dimensional space. These are denoted by I, j, k and 
are a right-handed system. This is indicated in Fig. 1.4 in which I is to

be considered as rising from the paper. Any other vector can then be 
expressed in terms of these three by completing the rectangular solid 
which has r for space diagonal and /, J, k as edges. From the definition 
of addition it can be seen that r is the sum of three vectors lying along 
these edges and of lengths x, y, z respectively so that

r = xl + yj 4- zk (1.3.1)

The vector is said to be resolved along these axes and the numbers are 
its components relative to these axes. This relationship is sometimes 
indicated by

r ~ (x, y, z) (1.3.2)
or even

r=(x,y,z) (1.3.3)
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but this is legitimate only if /, j, k are fixed and have been specified in 
relation to the problem.

When the components of two vectors are known the sum of the 
vectors can be found arithmetically. Thus, if

r = xl + yj + zk (1.3.4)

$ = pi 4- qj -p rk (1.3.5)
then the sum is

r + s = (x + p)l + (y + q)j + (z + r)k (1.3.6)

The components of the vector sum are, therefore, the sum of the
corresponding components of the vectors. The multiple of a vector, 
according to the rules, must be

Ar — A(xi -p yj + zk)
= Axi -P Ayj + Azk (1.3.7)

and so has components multiplied by the same factor. Thus the geo­
metrical and physical quantities represented by the vectors are easily 
manipulated by finding the components.

1.4 Scalar Product

The concept of multiplication can be extended to apply to vectors in 
three ways. Along with two vectors there can be associated, as their 
product, a scalar, a vector or a tensor. The scalar product can be defined 
as the product of the lengths of the two vectors with the cosine of the 
angle between them and is indicated by a dot between the vectors. 
The three basic vectors, for example, are of unit length and orthogonal 
so their scalar products are

1.1=1, I.]= 0
].j=l, j.k = O
k.k=l, l.k = 0 (1.4.1)

Since an arbitrary multiple changes only the length of a vector the 
definition implies that the effect of a multiple A is

a . (Ab) = A(o . b) (1.4.2)

Furthermore the order of the vectors in the product is obviously 
irrelevant so that

a . b = b . a (1.4.3)
2—M*T VOL 4



6 MATRICES AND TENSORS

The product of the length of a vector and the cosine of the included 
angle gives the projected length of the vector on the other vector..
Since the projected length of a sum of two vectors equals the sum of'

o*b

Fig. 1.5. Projection of a vector sum.

their projected lengths, as the congruent triangles in Fig. 1.5 show, it 
follows that the scalar product satisfies a distributive law

(«4- b).c = o.c-f-b.c (1-4.4)

If the components of two vectors are known the scalar product can 
be calculated. Thus using (1), (2), (4) the general product can be 
simplified as

r . s = (xl + yj 4- zk). (pl + q) + rk)
= xp 4- yq -|- zr (1.4.5)

In particular, the length of a vector, denoted by modulus signs, is given 
in terms of the components by

|r| = V(*2 + y2 + z2) (1-4.6)
and the angle 0 between two vectors by

cos 0 = r . s/|r| |s| (1-4.7)

Orthogonal vectors in general will satisfy the equation
r.s = 0 (1.4.8)

1.5 Lines and Planes

In a three-dimensional space a fine can be determined by two points 
lying on it, or one point together with the direction of the line. Thus, if 
a line passes through the point a and has a direction parallel to the 
vector s, then the point on the line distant As from a is, as Fig. 6 shows,

r = a 4- As (1.5.1)
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Usually s is chosen to be a vector of unit length so that x is the lengt 
along the line from a to r.

Fig. 1.6. Equation of a line.

If the components of the vectors are given by

r = xi + yj 4- zk, a = al 4- bj 4- ck,
s = li -|- mj 4- nk (1.5.2)

the parameter A can be eliminated and the line is specified by the usual 
equations

x — a y — b z — c 
I m n

(1.5.3)

Of these three equations only two are independent.
A particular plane in space can be specified in various ways but one 

of the simplest is to give one point on it and the direction of the normal. 
If this point is a and the direction is n, then any point r on the plane has 
the property that the line joining it to a is orthogonal to n so that

(r —o).n = 0 (1.5.4)

In terms of components, with
n = ll mJ + nk (1.5.5)

this equation is
l(x — a) 4- m(y — b) 4- n(z — c) = 0 (1.5.6)

Any linear equation will in fact represent a plane since it represents one 
linear restriction on the three degrees of freedom in space. Similarly it 
needs a pair of equations to specify a line and those in (3) do so, 
therefore, as the intersection of two planes.

1.6 Vector Product

For the vector product the result of multiplying two vectors is a 
third vector. It is a vector perpendicular to both the vectors and its 
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magnitude is the product of the lengths of the vectors and the sine o>f 
the angle between them. The sense of the vector is such that a corkscrew 
rotation from the first vector to the second would produce a translation! 
in the direction of the product. This implies that when the order of thte 
vectors is reversed the direction of the product is also reversed

a a b = — b A o (1.6.1)

Thus, the vector products of the basic vectors are

I a J = k , j a i = —k
J a k = I, k a J = —i
k A I = j, I a k= -J (1.6.21)

where the symbol a has been used for the vector product. The 
vector product is also symbolized by X (cross). Because the angle its 
zero, the vector product of a vector with itself always vanishes

a a a = 0 (1.6.3')

Since the vector product is proportional to the lengths of the two 
vectors the vector product always satisfies

a A (2b) = 2(o a b) (1.6.4)

It can be proved also that the vector product satisfies the distributive 
law

oA(b + c) = oAb-|-oAc (1.6.5)

Geometrically the vector product is most easily related to areas. Its 
magnitude is the area of the parallelogram whose sides are the two 
vectors, or twice the area of the triangle also formed by them. Its 
direction is that of the normal to the area. It is convenient to link the 
area and the normal together to give a vector area and, if the vectors 
are edges of a solid, the sense of the vector is taken outwards.

From the rules (4), (5) the components of the vector product can be 
deduced. Thus

r a s = (a:/ 4- yj + zk) a (pi + q] + rk)
= [yr — zq)l + (zp — ar)J + (xq — yp)k (1.6.5)

This expression is more easily remembered in the determinantal fonn 
(see Appendix)

I J k 
yr A s = x

P
z
r

(1.6.6)
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Since the vector product produces a vector, products of three or 
more vectors are made possible. Three vectors can be multiplied to­
gether in two different ways. The scalar triple product can be written

a . (r a s)

a
x
P

(1.6.7)

and has the value, in terms of components,

b c
y z
q r

The vector triple product is written as 

a A (r a s)

and is another vector. It is evaluated in simple terms by using the 
identity

a a (r A s) = (a . s)r — (a . r)s (1.6.8)
(see exercise 7). This identity makes clear that vector products are not 
associative and that brackets indicating the sequence of multiplications 
cannot be omitted. The vector products of larger numbers of vectors 
can be formed in a similar way and are reduced to simpler terms by 
using the same identity as often as necessary.

1.7 Applications to Solid Geometry

There are many problems of solid geometry which are difficult to 
solve by direct elementary methods because of the difficulties of visualiza­
tion in three dimensions, but which are readily soluble using vectors.

Example: A molecule has atoms situated at the points whose co­
ordinates are (1, 0, 1), (2, 1, 1), (0, 1, 1). Find the bond lengths and 
bond angles.

By subtracting the atomic vectors in pairs, vectors parallel to the 
sides of the triangle are (1, 1, 0), (—1, 1, 0), (2, 0, 0) and their lengths 
are -\/2, y/2, 2 respectively. From then' scalar products and their 
lengths the bond angles are 90°, 45°, 45°.

Example: Verify that the points (2, 0, 1), (1, 1, 2), (0, —1, 1), (— 1, 
0, 2) are coplanar.

If the point (2, 0, 1) is taken as a new origin the relative vectors are 
(—1, 1, I), (—2, —1, 0), (—3, 0, 1). In general these three vectors will
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coplanar this volume will vanish.
be the sides of a parallelepiped whose volume is determined by their 
scalar triple product but if they are

he proof then is that

-1
-2
-3

1
-1

0

1
0
1

= 0

Example : If the hydrostatic pressure on a face of a solid is proportional 
to the area of the face and is normal to the face find the pressures on 
the faces of the tetrahedron which has a, b, c for three adjacent edges 
and show that their sum vanishes.

From the definition the pressure on the face with edges a and b is 
proportional to a a b. Similarly b a c and c a a give the pressures on 
the two adjacent faces. The fourth face has edges a — b, c — b, and 
so has pressure

(a — b) A (c — b) = a a c — b a c — o a b

which is just sufficient to make the total pressure over the closed surface 
vanish. A

1.8 Bases and Reciprocal Bases

The significance of the vectors i, j, k in the theory of three dimensional 
vectors is that they enable any vector to be represented by three 
numbers, its components, and any vector operation by a corresponding 
operation on these numbers. Although these vectors are the ones most 
frequently used, any three vectors (which are not coplanar) can be used 
instead. A triad used in this way is called a basis. If ei, eg, eg are a 
basis then the arbitrary vector x is expressed in terms of these as

x == x1ei + x2ez + x3ea (1.8.1)

where (x1, xa, x3) are now the components of x in this basis. For reasons 
which will emerge later it is convenient to label these components with 
superscripts^. For the elementary operations of addition, subtraction 
and multiplication by a constant these components behave in the same 
way as the earlier ones.

The scalar product introduces some differences since the vectors of 
the basis are not necessarily orthogonal. One method of evaluating the

t Xs should not bo confused with (a1)2 nor x3 with (a:1)8. 
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scalar product uses the scalar products of the basis vectors defined as

gi3 = ei. e3
?33 = e3 . e3 (1.8.2)

<7n = ei. ei , <ji2 = ei. e2 ,
ff22 — e2 . e2 , gf23 = e2 . e3 ,

and the scalar product is then

x . y = (x1ei + x2e2 4- x3e3). (y^i 4- y2e2 + y3e3)
= xtygn + x1y2^i2 -f- xb/3<7i3 + afy1?!! + ^^22 + afy3?!8

3
+ + x3y2g32 + x3y3g3a — £ atygt} (1.8.3)

v-i
The second method of evaluating the scalar product depends on 

introducing a second triad of vectors which is completely determined by 
the first and is called the reciprocal basis. These vectors are denoted by 
e1, e2, e3 and are determined by the equations

e1. ei = 1 , 
e2 . ei — 0 , 
e3. ei = 0 ,

e1. e2 — 0
e2. e2 = 1
e3 . e2 = 0

e1. e3 = 0 
e2. e3 = 0
e3 . e3 = 1 (1.8.4)

Since e1 is perpendicular to both e2 and e3 it must lie in the direction of 
the vector product so that

e1 = Ae2 a e3

and A is fixed by the first equation which gives

1Zei. (e2 a e3) = 

Thus the solution of the equations is
e1 = e2 A e3/ei. (e2 
e2 = e3 a ei/ei. (e2 
e3 — ei a e2/ei . (e2

es)
e»)
e3) (1.8.5)

When these vectors are used as basis vectors the components of x are 
• denoted by (xi, x2, x3) and

x xie1 4- x2e2 + x3e3 (1.8.6)

The scalar product of two vectors can now be evaluated easily if one 
vector is referred to the original basis and the other to the reciprocal 
basis

x . y = (x^i 4- xae2 4- x3e3) . (t/ie* 4- y2e2 4- t/3e3)

= xb/i 4- x2y2 4- x3y3 (1.8.7)
Each vector in space has therefore two sets of components. The first 

set (x1, x2, x8) are called contravariant and the second, (xi, x2, x3), 
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covariant. The distinguishing feature of I, J, k as a basis is that they are 
their own reciprocals. Components relative to I, j, k are then both con­
travariant and covariant.

The practical value of these more general bases can be seen, for 
example, in crystallography. The unit cell of the crystal provides a 
natural starting point and three adjacent edges can be taken as basis 
vectors. The position of a nucleus in the cell is then specified by the 
contravariant components (a1, a2, a3) so that all the corresponding 
nuclei in other unit cells have the components

(a1 -j-1, a2 -j- m , a3 n) (1.8.8)

where I, m, n are positive or negative integers. On the other hand, a 
plane satisfies an equation of the form

k.r = p (1.8.9)

and the normal, k, is most conveniently specified by its covariant com­
ponents in order that the scalar product may remain simple. In 
particular, a lattice plane may be defined as a plane passing through at 
least three non-linear lattice points, i.e. comers of cells. These lattice 
planes can be grouped into sets which are all parallel to one another and 
have a constant spacing. The plane of the set which passes closest to 
the origin has the equation

£&<x‘ = l (1.8.10)

where the components kt are integers. The other parallel planes are then

= n (1.8.11)

where n is an integer, so that the spacing is

|k|-i

The vector k thus specifies both the direction of the normal to the planes 
and the spacing and so fixes the set. Since the are integers all the 
possible k lie on a lattice, known as the reciprocal lattice, with e1, e2, es 
as the edges of its unit cell.

4
1.9 Transformations of Bases

The relations between a vector and its contravariant and covariant 
components become clearer when the consequences are considered of a 
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change from one basis to another. The vectors of the new basis ei, eg, eg 
have components relative to the old basis so that

ei = f|ei 4* ^ie2 + l?es
= 4ei 4" ^2e2 + ^2e3 

e8 = fjex + 4*2 4- &3 (1.9.1)

Now if x is an arbitrary vector, its components relative to the two bases 
can be defined by

x = 4- xzez 4- x8es = ixei 4- 4* ®8«8 (1.9.2)

and, if the equations for the ei are substituted into these, they satisfy 

x1 — 4- 4a;2 4- 4?8
x2 = iff1 4- ^f2 4- tfx3
X3 = fSfl 4_ f»£2 4_ (1.9.3)

These equations can be solved for the new components giving

x1 = T’x1 4- Tlx2 4- Tlx3
x2 = T&1 4- Tfa;2 4- T*x3
x3 = T^x1 4- Tlx2 4- !?|x3 (1.9.4)

where the coefficients T{ are related to the previous coefficients by 
the nine equations

X T<t' = 1, all i
i

= alli/fc (1.9.5)
i

These equations can be combined into a more convenient form by 
defining the Kronecker delta 

so that
I = 4 (1-9-7)

Practical methods of solving these equations are discussed in 3.3
The reciprocal bases are also related for, if the new triad es is ex­

pressed in terms of the old e* by

e‘ = Z4«* (1-9-8)
*
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then since, by definition,
e<. ej = <5)

£^=<5’
k

so that
S’ = T*t (1.9.9)

In a similar way the covariant components of a vector satisfy
= (1.9.10)

i
Thus the two sets of coefficients t{, T{ are sufficient to relate correspond­
ing quantities in the two bases. The term covariant is applied to these 
components because they transform in the same way as the original 
basis whereas the contravariant components transform with the 
reciprocal transformation.

The metrical constants gtk are also changed by the transformation to 
Qlm with

gjB» = eI.em (1.9.11)
The relation is more elaborate since

and so
film — X (1.9.12)

a

1.10 n-dimeusional Vectors

The theory of 3-dimensional vectors can be generalized to include 
vectors in an n-dimensional vector space with only a few changes. To 
span the space the basis must contain n vectors

ei, ea, ..., e„
An arbitrary vector x will have n components xl such that

x = aj'ei 4~ x2e% -f- ... a?nen (1.10.1)
Addition of two vectors is equivalent to addition of their components

x + X = £ (z‘+ J/4)e« (1.10.2)

and similarly for multiplication by a scalar
Ax = £ (1.10.3)

i

The usual distributive laws hold.
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The scalar product of two vectors can be calculated from the com­
ponents in two ways. If the contravariant components alone are known 
the formula involves the double summation

x . y = £ Jymgim (1.10.4)
l,m

but if both components are known the single summation relations

x . y = £ x(yl = £ x*yt (1.10.5)

are simpler. The metric constants gu are defined by

?<fc=e<.et (1.10.6)

The reciprocal basis e‘ is defined, as before, by the equations

e<. et = <5* (1.10.7)

and the covariant components of x satisfy

x = £x<e< (1.10.8)
i

The transformation of these components, as the basis is transformed 
to a new basis, gives equations which generalize the 3-dimensional 
equations above. Thus, if the new basis vectors e< are defined by the 
equations

(1.10.9) 
t

then the covariant components Xi of an arbitrary vector x in the new 
basis system satisfy

s, = £ , t = (1.10.10)
t

The contravariant components will then satisfy

f< = £T<taJ*, (1.10.11)
k

where
£2% = 4, t, fc = l......n (1.10.12)

It is a considerable advantage in handling equations such as these if 
conventions are adopted about indices which enable redundant symbols 
to be omitted. The first convention which will now be adopted is that 
in any equation an index which appears once on each side of the equa­
tion (a “free” index) will be assumed to take on, in turn, all values from 

)
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1 to n depending on the dimension of the space. The second convention 
is that an index which is repeated on one side of an equation will 
always imply a sum of all such terms even though the summation sign 
is omitted. This repeated index always occurs once as a contravariant 
index and once as a. covariant index. The sum implied is over all 
values of the index so that the particular letter used to denote the sum 
is irrelevant and can be changed at will (a “dummy” index). Thus, for 
example, the equations (12) can be written as

Tjt{ = <5j (1.10.13)
and the dimension n is fixed once for all by the context of a particular 
application and need not enter the general equation.

1.11 Generalized Rotation of Basis

Among all the transformations of bases considered above there is 
one class which has particular importance. It may be distinguished by 
the property that all its transformations leave the basis vectors with 
the same relative properties. These relative properties are summed up 
in the g^ matrix which is therefore left invariant. Thus the trans­
formations satisfy the equations

= (1.11.1) 
If the basis vectors are orthogonal and of unit length (i.e. orthonormal) 
then this restriction ensures that the transformed basis is also ortho­
normal and the transformation is a pure rotation with

= (i.n.2)i
For this reason transformations satisfying (1) may be called gen­
eralized rotations.

Since, in an orthonormal basis, there is no distinction between 
covariant and contravariant components the equations above imply 
the simple relation

T} = t\ (1.11.3)

This relation also ensures that components of any tensor transform in 
the same way irrespective of whether they are written as covariant or 
contravariant.

In the special theory of relativity it is often convenient to choose a 
basis system such that

Pu = 022 = £33 =1, £h4 = —1 and gilc = 0 for i^k
The corresponding generalized rotations are the Lorentz transformations.
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1.12 Applications to Molecules

A molecule having N atoms has 3N degrees of freedom. The con­
figuration of the molecule can then be specified by the components of 
a vector in a 32V-dimensional space. One set of basis vectors for this 
space consists of configurations in which one atom is displaced along a 
unit vector parallel to one of the three unit vectors of the space and the 
other atoms remain in their equilibrium positions. The components of 
a displacement relative to this basis will consist of the components of 
the N 3-dimensional vectors which specify the displacements of the N 
nuclei from their equilibrium positions.

This choice of basis is not usually the most convenient one to describe 
the motion of the nuclei and transformations have to be made to other 
bases. It is desirable, for example, that the translational and rotational 
motions should be distinguished from the vibrational. This can be 
done by first giving the components corresponding to pure translation 
and pure rotation of the system. Then an arbitrary displacement is 
taken and modified so that there is no linear or angular momentum 
involved. This can be repeated (32V — 6) times to give independent dis­
placements of the system. This procedure is equivalent to introducing 
a new set of basis vectors

ei = tje; (1.12.1)
where ti gives the components of the pure translation, pure rotation 
and the remaining (32V — 6) displacements relative to the original basis. 
The components of an arbitrary displacement in the two bases are 
connected by

x‘ = tfl (1.12.2)
and this enables the equations of motion given in terms of the original 
vector components to be transformed into terms of components relative 
to the new basis. The basis vectors e< give the easiest way of picturing 
the transformation and the ti can be easily read off.

It is often convenient to insist that this transformation should be a 
rotation since this enables the kinetic energy to be expressed more 
simply. It also enables the inverse transformation to be found im­
mediately and

= Tp
= (1.12.3)

This equation is then very similar in form to the equation for e< since 
the summations are over the same coefficients.
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APPENDIX

Determinants

The principal properties of determinants used in this and later 
chapters are summarized here for convenience.

A determinant is a number obtained by combining together the 
numbers which are written as elements in a square array. The operation 
of combining them is denoted by vertical lines. The number of rows and 
columns in the array is called the order. A second order determinant, 
for example, is defined as

a
c

h 
d = ad — be

For higher order determinants the element in the ith row and the jth 
column is denoted by subscripts, e.g. ay and the determinant is defined 
as

an aj2 ais ... am 
azi a22 ...

®nn

= X ( —)P-Pana22 ann
p

where P is a permutation of the column indices in the product and the 
sum includes all these permutations with a negative sign if the permuta­
tion is odd, i.e. expressible as the product of an odd number of inter­
changes.

The cofactor Ay of any element ay in a determinant is a determinant 
formed by omitting the entire ith row and jth column from the original 
determinant and prefixing the sign (—)<+*. The determinant can be 
expressed as the sum of the elements in any one row or column each 
multiplied by its cofactor e.g.

|ay| = £ayAy any;

= £ ayAy any i
i

By repeating this expansion a determinant can be expressed in terms 
of determinants of steadily smaller order and hence evaluated.
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Whenever two rows (or two columns) of a determinant are inter­
changed the value of the determinant is changed only in its sign. It 
follows from this that if two rows (or columns) are identical the deter­
minant vanishes. When one row (or column) is multiplied by a constant 
the value of the determinant is multiplied by the same constant.

EXERCISES

1. Prove that the perpendiculars from the vertices of a triangle are concurrent.
2. Prove that the lines from the vertices of a tetrahedron to the centroids of opposite 

faces are concurrent.
3. Show that the parametric equation of the line joining a and b is

r = (1—A) a + Ab

4. Show that the plane through a, b, c can be represented parametrically as

r — (1 — A — p) a + Xb + fee

5. The points a, b, c, d are coplanar when

o. [c a (d — b)] = d. [b a (c — a)]

6. The vectors a -f- 2b -f- c, a -f- b — 2c and a + 3b -j- 4c lie in a plane through the 
origin.

7. Prove that o a (r a s) = (a . s)r — (a . r)s by evaluating the components of both 
sides.

8. Show that the equation of the plane through n, rn, ra is

x y z 1
»i »i «x 1 _ 0 

yz zj 1
X3 ys zs 1

9. Show that the lines r = a + Xu; r — b -j- intersect if a . (u a v) — b . (u a y).
10. Verify that, in general

(o a b) a (c a d) # o a (b a [c a d])

11. Show that (o — b). (u a y)/|u a y| is the shortest distance between the non-inter­
secting lines r — a -f- Au, r = b + p.v.

12. By dividing into tetrahedra, or using vectors, prove that the total hydrostatic 
pressure over all the faces of a parallelepiped vanishes.

13. Prove that the reciprocal vectors to the reciprocal vectors are the basis vectors.
14. A 2-dimensional lattice is generated by a vector of length 2 and a second of unit 

length at 60° to it. Sketch the lines whose k{ are (1, 0) and (4, 1) and show that they 
are orthogonal and similarly for (0, 1) and (1, 1).

16. Kind three orthogonal vectors sufficient to describe the vibrations of an XzY 
molecule.



CHAPTER 2

MATRICES

2.1 Introduction

In chapter 1, as well as the vector components which were labelled 
with one index, quantities labelled with two indices, such as the trans­
formation /J and the metrical constants gm, have been introduced. 
This chapter is concerned with the rules for manipulating such quantities 
and for dividing them into various categories. The meaning of these 
quantities themselves will be discussed in a later chapter and it is 
sufficient at present to note that they act on a vector to produce 
another vector.

Throughout chapters 2, 3, 4 the basis vectors ej will be taken as fixed 
and orthonormal. The vectors themselves will not be used but only 
their components. The orthonormality of the basis means that the 
distinction between covariant and contra variant components disappears 
and it is possible to write all indices as subscripts. It is convenient now 
to introduce a single symbol a to refer to all the components a< together. 
In general, these components will be written in a column, i.e.

Any quantity depending on two indices will be called a matrix. Its 
components are known as elements and are written as a rectangular 
array. The two indices label the rows and columns of this array. A 
matrix with m rows and n columns is said to be of order m x n. Thus 
the matrix gm has order n x n and is written as f

+ The use of brackets, either round or square, distinguishes a matrix from a 
determinant.

20
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/9hl
/ S'ai 

9 Ik = | .

912 913 ... gin\
"■ j (2.1.2)

\(7nl 9nn/

For the matrix i* there is a choice of which index refers to the row. 
The ambiguity is resolved when the indices are spaced appropriately so
that

/it1 h2 ti3\
«<* = iT21 t22 <23 (2.1.3)

Us1 <32 <33/
while

/i1! tr2 P8\
| t2i t22 «23 (2.1.4)
^S1 «32 t33

To symbolize these matrix arrays, it is convenient to use bold upper 
case letters so that in various circumstances three notations will be 
used

>4 = a(» = 1

/«n ai2... ain \
®21 1. (2.1.5)

••• ®m»/

This more abstract notation enables the resemblances between the 
manipulation of matrices and of vector components to be emphasized 
since the column vector behaves like an n x 1 order matrix.

2.2 Matrix Arithmetic .

Just as the sum of two vectors is found by adding their components 
each to each, so two matrices are added by adding corresponding 
elements. Thus the sum of the matrix and the matrix is a matrix 
with elements

a<k + buc
or, in more detail,
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an + bn oia + 612 »i3 + 613 ••• om + bm 
®21 + 621

(2.2.1)

®ml bml ••• + 6 mn

Not only is this the most natural definition but it is the one that ensures 
consistent results when matrices act on vectors to produce vectors. If

Xi = aikzk, y{ — biicZk (2.2.2)
then

%i + yt = (atk + b(k)zk (2.2.3)
so that the sum of the vectors is found from z by using the sum of the 
matrices. This definition of addition is valid only when the two matrices 
have the same order.

Another elementary operation is the multiplication of a matrix by a 
constant. This is done by multiplying every element by the constant. 
This definition is consistent with the definition of addition for, when 
6<* —

a<k + Uik — 2aik (2.2.4)

The constant may also be a negative number and consequently means 
that matrices can be subtracted by subtracting their components. If 
A and /z are constants then the distributive laws hold

(A + y)a(k — Aatk + yaik (2.2.5)

A(a<* + btk) — Xciik + A6j£ (2.2.6)

Matrix equations such as (6) are subject to the same convention 
about free indices as vector equations and so imply mn separate equa­
tions for each matrix element. This is perhaps more obvious in the 
abstract notation for (6), viz.

A(A + B) = AA + AB . (2.2.7)

Another instance of this is the obvious equation

aik — aik = 0 (2.2.8)

and, in order to write this symbolically, a null matrix O all of whose 
elements are zero is needed so that (8) becomes

A — A = O (2.2.8)
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The effect of these rules is that matrices behave, on addition and 
multiplication by constants, just as vectors with mn components 
except that these components are written in an array instead of a 
column. To exploit this connection further it is useful to introduce the 
basic matrices Ey all of whose components vanish except for the one 
labelled ij, which is unity. The subscripts on this symbol do not refer, 
it must be emphasized, to the elements of the matrix but to all the 
different matrices. The arbitrary matrix A can then be expressed as 
the double sum

A — aticEtic (2.2.10)

in analogy with the expression (1.10.1) for vectors.

2.3 Multiplication

Two matrices can act in succession on a vector to produce a new 
vector. Thus if the original vector is x the effect of the first matrix is to 
give a vector y with

y< — aikXk (2.3.1)

The second matrix acts on y to give the final vector z with

z< = bityk (2.3.2)
and since

z< = biicakixi (2.3.3)

the combined effect is equivalent to a matrix

c« = biica/ci (2.3.4)

This combination of the two matrices is known as their product. In 
symbolic notation the product will be indicated by the juxtaposition 
of the two matrices, i.e. (4) becomes

C = BA (2.3.5)

In order to form the product the number of columns of the first matrix 
must equal the number of rows of the second but there is no other 
restriction on the order. Thus the action of a matrix on a vector is also 
a product of the same type so that (1) becomes

y = Ax (2.3.6)
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It follows from the definition that matrix multiplication satisfies the 
laws

A(BC) = (AB)C (2.3.7)

A(B + C) = AB + AC (2.3.8)

(XA)B = l(AB) (2.3.9)

The Kronecker delta matrix has special significance in relation to 
matrix multiplication for

= an = ditatci (2.3.10)

It will be denoted by the symbol I so that (10) becomes

Al—A = IA (2.3.11)

In practical terms the matrix product implies the accumulated sums 
of products of numbers one from a row and one from a column. A sum 
of this type can be calculated in one operation on a calculating machine 
and so is a convenient unit of calculation. The simplest example is the 
scalar product of two vectors. In order that a column of numbers may 
be turned into a row of numbers an operation known as transposing is
needed and it will be denoted by a tilde. Thus if

(2.3.12)

then its transpose is
A = (2:10:2 ... x„)

The scalar product can then be written as

(
Vi\

I =
yJ

If the matrix A is written as a column of row vectors

(2.3.13)

(2.3.14)

(2.3.15)
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where the symbol a<. is defined as the vector of the ith row

a{. — (atiat2 ... at„) (2.3.16)

then its product with a vector can be written

dd. X I
. (2.3.17)
am. x)

and this emphasizes the fact that the product is merely a succession of 
scalar products. A matrix can also be regarded as a row of column 
vectors, e.g.

B = (b.x b.2 b.3 ... b.p) (2.3.18)

where the column vector is

/&H\

b.t = L | (2.3.19)

This enables the product of two matrices to be treated as a number of 
scalar products for each element in the product matrix is a scalar 
product and

(
<»i» \ (b-i b.2 ... b.p)
Os. I
. (2.3.20)

/

(
ai.b.i ai. b.2 ... ai.b.p\

I (2.3.21)

b.i b.p /

Matrix multiplication differs from most other forms of multiplication 
in one essential respect, namely that it is not commutative. In general, 
the product of two matrices is entirely different when the order is 
reversed. This is the feature which enables quantum mechanical 
operators to be represented by matrices since the commutation rules
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of the operators can be matched by the commutation rules of the 
matrices. The spin operators Sx, Sv, Sz, for example, satisfy the relations

-- SyS% -- iSz
SVSZ - S^v = iS, (2.3.22)
Sz$x — $x$z === iSy

and so cannot be represented by ordinary numbers. They can be 
represented, however, by the matrices

J), S-~i(o _,) (2-3-23)

since these satisfy the same equations.
In some applications permutation matrices are important. A 

permutation matrix is obtained by applying a permutation to the row 
vectors of I. The effect of pre-multiplying a matrix by a permutation 
matrix is to apply the same permutation to its rows, e.g.

(
0 1 0 0\ /dll 012 013 O14\ /®21 022 ®23 ®24
0 0 1 0 I j ®21 022 ®23 ®24 I __ I ®31 ®32 a33 ®34
1 0 0 0 11 ®31 ®32 O33 O34 I I dll ®12 013 ®14
0 0 0 1/ \d41 O42 d43 <144/ \O41 ®42 O43 «44

while post-multiplication applies the inverse permutation to its columns 
e.g.

®12 ®13 ®14\ /0 1 0 0
021 d22 ®23 ®24 | I 0 0 1 0
®81 ®32 ®33 O34 | I 1 0 0 0
®41 d42 O43 044/ \0 0 0 1

(2.3.24)

013
023
®33
043

Oil
®21
031
041

012
022
032
O42

014
024
O34 
044.

(2.3.25)

The effect of pre- and post-multiplication by the basis matrices Eij 
is also interesting. Pre-multiplication by E(j gives a matrix of zero 
elements except for the ith row which contains the elements of the 
original jth row, e.g.

EizA —

0
0
0
0

1
0
0
0

0
0
0
0

0'
0
0
0

dll 
®21 
031 
,®41

012
O22
032
O42

013
O23
®33
043

014
O24
O34
044

021
0
0
.0

O22
0
0
0

023
0
0
0

O24\

0 I0 I
0 /

(2.3.26)
or

E12

di. 
«2. 
<13. 
o4.

02
0
0
0

(2.3.27)
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Post-multiplication by Etj also gives a zero matrix except for thejth 
column which contains the original ith column, e.g.

(a.i a.2 a.3 a.4)£?i2 = (0 a.i 0 0) (2.3.28)

These basis matrices may be used, therefore, to extract rows or columns 
from a matrix. By combining pre- and post-multiplication single 
elements can be extracted. Thus the product

EfjAEim

gives a matrix of zeroes except for the imth element which is aji.

2.4 Associated Matrices

With every matrix there is associated a number of matrices derived 
from it by simple operations. These operations are now given names and 
symbols.

The first operation is that of taking the complex conjugate of each 
element and will be denoted by a star so that

/aii a12 ••• aln \
A* = a*= ... (2.4.1)

\aml ■■■ “mJ

The second operation is transposition and it consists of a reflection of 
the elements from one side of the principal diagonal (i.e. that through 
«u, «22, ... ) to the other side. This has the effect of turning rows into 
columns and columns into rows. As for vectors, this operation is 
denoted by a tilde so that

(
an a2i...ami\
ai2 |. I (2.4.2)

®ln ••• ®mn/

The third operation combines these two operations. It is known as 
Hermitian conjugation and is denoted by a dagger so that

(
a*l °21 aml\
a*„ 1

18 I • (2.4.3)

®ln ••• amn'
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The three operations have a number of properties in common. Thus 
they all have a period of two since

(A*)* = A, A = A, (Af)f = A (2.4.4)

They also behave similarly under addition and scalar multiplication

(A + B)* = A* 4- B*. (A~Tb) = A + S
(A + B)f = Af + fit ( }

(AA)* = A*A*, (AA) = Al, (AA)f = A*Af (2.4.6) 

The effect of transposing the product of a matrix and a vector gives 
something unexpected; for if

y — Ax
then

(3/12/2 ym) = (anxi + ai2z2 -j- ... alnxn, + ... ,
• •• , 4" Umn%n)

= (xian -f- a?2ai2 + ••• ziaai 4- >
... , Xidml 4" ••• Vmn) (2.4.7)

so that
y = iA (2.4.8)

Similarly, for the other operations, it can be shown that

y* = «tAt (2.4.9)
but

y* = A*x* (2.4.10)

The matrix product behaves in the same way since it consists of opera­
tions of the same type and so

(AB) = SA (AB)* = A*B*, (AB)’ = «rAT (2.4.11)

It often happens that the effect of one of these operations leaves a 
matrix unaltered or changed only in sign. When this happens the 
matrix is given a distinctive adjective which describes the property. 
These adjectives are given in this list:

real,
symmetric. 
Hermitian.

A = A*
A = 1
A = Af

A — — A* imaginary
A = —A antisymmetric or skew
A = — Af antihermitian
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2.5 Reciprocal Matrices

A square matrix, i.e. one with m = n, can be multiplied by itself to 
give its square

= AA (2.5.1)

and similarly any positive integral power can be calculated. The question 
then arises whether it is possible to find the negative powers and, in 
particular, whether a matrix A has a reciprocal A-1 satisfying

44-1 = = J (2.5.2)

This would also enable processes similar to division to be applied to 
matrices.

For the 2x2 matrix

A

it is easy to verify that the reciprocal matrix is 

d —b\ 1,^ r 
—c

(2.5.3)

(2.5.4)a

This example is enough to suggest that reciprocals of matrices often 
exist and can be evaluated in terms of the original matrix but it also 
shows that there are exceptions. Thus if 

a b 
c d = (ad — be) = 0 (2.5.5)

then the expression breaks down. Matrices whose determinants vanish 
are called singular and do not have reciprocals. Matrices whose deter­
minants do not vanish are non-singular and can be proved always to 
have reciprocals. Practical methods of calculating reciprocal matrices 
are discussed in chapter 3.

Occasionally there is a very simple relation between a matrix and its 
reciprocal and since these matrices have distinctive properties it is 
useful to have adjectives for them. The most common types are the

self-reciprocal A-1 = A 
orthogonal A-1 = A 
unitary A~x —

2.6 Matrix Series

Knowledge of the powers of a matrix enables polynomial functions of 
a matrix to be evaluated and leads naturally to the study of infinite 
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series of matrices. Obviously, the sum of any finite number of terms in 
the series can be calculated but the result has a meaning only if the 
process converges. It is necessary then that every component in the 
matrix of the sum should converge. The tests used to prove convergence 
are discussed in 4.11.

Many of the series familiar in ordinary analysis also apply to matrices 
even though the tests for convergence differ. One familiar series is the 
geometric series

1 + x + x* + ... = 1/(1 - x) (2.6.1)

and for matrices the corresponding result is

1+ A + 42 + ... = (Z- 4)-i (2.6.2)

This can be proved by the same method as for the numerical series and 
the series converges if, as n becomes large, An approaches O.

This series can be used as the basis of a method of calculating’a recipro­
cal matrix. Similarly the exponential series suggests that exp(4) should 
be defined as

exp(4) = I + A + 42/2! + 4«/3! + ... (2.6.3)

and also the related series such as

sin 4 = 4 — 43/3! + ... (2.6.4)

cosh 4 = I + 42/2! 4- ... (2.6.5)

From the binomial theorem is derived series such as

(I - 4)* = I - >4 - |42 - ... (2.6.6)

though here again the series can be used only when it converges.
Some of the properties of the functions defined by the numerical 

series can also be established for the matrix functions but often there 
are restrictions and sometimes there is no analogous property. There 
has, therefore, to be a careful investigation before any property of the 
numerical series is assumed to hold for the matrix series. Thus, for 
example, the exponential property

exp(4) exp(B) = exp(4 -J- B)

holds for matrices only when

4B = B4

(2.6.7)

£2.6.8)
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2.7 Partitioning and Bordering

It often becomes necessary, because of the size of a matrix, to divide 
it into submatrices in order to be able to handle it conveniently. 
Sometimes, too, even for smaller matrices, this division will illuminate 
the properties of the matrix. The division of a matrix into row or 
column vectors, in (2.3.15) and (2.3.18) is one example of this. The 
division is carried out by means of horizontal or vertical partitions 
dividing the whole matrix. The positions of the partitions have to be 
chosen so that the submatrices can be added or multiplied as the context 
requires. Thus two matrices partitioned at exactly the same places are 
added by adding the submatrices, e.g.

(A B\ /X Y\ _ (A+ X B + F\
\C »' + \Z W/ ” \C + Z D + w)

On the other hand, for two partitioned matrices to be multiplied the 
vertical partitions of the first must match the horizontal partitions of 
the second so that the orders of the submatrices may be correct in each 
of the submatrix products. The rule for multiplication is exactly 
analogous to that for matrices except that the elements are now sub­
matrices and the order in which they are multiplied is important. This 
rule is readily verified by expanding the matrix products. If one 
matrix, for example, is partitioned as 

and a second as

(in • .. bn . ..

••• Umn bml ■ • • bmp
Cll ... Gin dn ■ .. dip

Cql ... Cjn dql ..>• dqp

(2.7.2)

fn •■•fit

fnl ■■■ fnt 
hn ... hia (2.7.3)

A B 
C D

then they can be multiplied to give

(A B\(E F\ (AE + BG AF + BH\
d)[g h)\ce + dg cf + dh)
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As an example of the value of partitioning consider the problem of 
finding the reciprocal of a matrix. If the matrix is partitioned as

M B\ 
W d) 

where A and D are square and non-singular then the inverse matrix can 
be shown by direct multiplication to be
(A B\-i _ ( (A - -A~iB(D - CA~iB)-i\

DJ ~ \-D~iC(A - BD-iC)~i (D-CA-iB)-i )
(2.7.5) 

The original problem is thus reduced to that of finding the reciprocals 
of A,D, (A — BD^C) and (D — CA~lB) and, since these are of smaller 
order, this may well be an easier task.

The process known as bordering a matrix is similar in kind to par­
titioning. It consists in adding matrices or vectors to a matrix to 
enlarge it. The enlarged matrix can then be partitioned into the 
original matrix and its borders. The relations between the orders of 
the submatrices of this partitioned matrix give then the relations that 
must exist between the order of the original matrix and its border. 
If, for example, a vector is defined by the equation

y — Ax + x (2.7.6)
the mixture of addition and multiplication may be inconvenient but, 
by defining the bordered matrix B as

(
an ... am zi \

: (2.77)

O»1 ••• Zm/
and

w = (2.7.8)

it takes the simpler form
y — Bw (2.7.9)

In general, bordering helps not only to condense and simplify the nota­
tion of equations such as these but also to lead to unified techniques of 
calculation using the equations.

2.8 Direct Products

In addition to the scalar and vector products of two vectors there is a 
third type of product known as their direct productf. The components

t Alternative names we the outer, tensor or Kroneoker product. 
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of the direct product are found by multiplying the components of the 
two vectors together in all possible ways. If the first vector has m com­
ponents at and the second n components bk the direct product has mn 
components and is best arranged as a matrix

atbk=ftk (2.8.1)
In symbolic form the direct product can still be indicated by matrix 
multiplication and (1) becomes

ab = F (2.8.2)

The order of the two factors and the row-by-column rule of matrix 
multiplication ensure that the direct product is distinguished from the 
scalar product ab. The sum of the diagonal elements of the direct 
product, however, does give the scalar product. Since the direct product 
is a particular kind of matrix product the rules of matrix multiplication, 
given in 2.3, apply equally to it.

The geometrical significance of the direct product can be illustrated 
by considering its effect on another vector. If a is a unit vector then the 
direct product of a with itself is

ad

and when this acts on a vector c the result is a vector

d = a(dc) (2.8.3)
which has the same direction as a but with magnitude |c | cos 0 so that 
d is the projection of c on to a. The direct square thus gives a projection 
operator. One characteristic property of a projection operator P is that 
it gives the same result when repeated, i.e.

= P (2.8.4)
The more general product also satisfies this equation when

ba = 1 (2.8.5)
for then

(a6)(a5) = a(5a)6 = ab (2.8.6)
Thus ab may also be called a projection operator since it gives a vector in 
the same fixed direction as a but with magnitude depending on the 
scalar product on to b.

Other direct products, of a matrix and a vector for instance, can be 
constructed but the results are higher order tensors and cannot be 
expressed in matrix notation. They are treated in chapter 5.
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I. Prove

2. Classify

EXERCISES

'1 0 2'
.4 2 3,

6
13

2
8

2 3
0

3.
\i 0/’ 1,2 3/’ \1 + i 5

Show that a matrix which satisfies two of the symmetry relations of 2.4 is one 
of the four types

4.

A A* A At
real Hermitian 1 1 1 1
imaginary symmetric 1 -1 1 -1
real skew 1 1 -1 -1
imaginary Hermitian 1 -1 -1 1

Show that the matrices for Sz, Sv, St are all Hermitian and that
Si = SJ = Si = n

5.

8.
7.

Prove that
(AB)* = A*B*, (AB)t = fit At, (AB)~i = B-U-i 

Show that EtjEin = E<m8ji.
Verify that

8.
provided that 
Show that

(I — aEy — jSEim)-1 = I + «Eij + 0E|.
i j, j 1,1 m, m / i

exp 'cosfl * sinfl’ 
sin# cos0, .4 2 0.

0 
0 
1.

1
2
6

0
1
2

9. If v has components de</df show that the solution of the linear differential 
equations t> = Av is v — &‘Av0.

10. Find the reciprocals and show that
( 2 3X-1 ,/3 —3\ /I 1 OX"1 /I -1 1\
\-l 3/ — *\1 2/’ 10 1 1) = I 0 1-1)

\0 0 1/ \0 0 1/
/I 1 0\"i / I -1 1\ /2 1 1\ —x / 8 -1 —3\
10 1 1 =i 1 1 -1), |1 2 0 =A -4 4 -2
\1 0 1/ • \-l 1 1/ \0 1 2/ \ 2 -2 8/
/2 4 5\ -1 /3 -12 19\
lO 1 6) =1 0 6 -12
\0 0 3/ \0 0 2/

11. If the components of the basic vectors e< are e< prove that Ey = e< Sj, a.* = Aet, 
at. = gtA.

12. Prove that a matrix, other than I, which satisfies P2 = P has no reciprocal.
13. Prove that permutation matrices are orthogonal.



CHAPTER 3

LINEAR EQUATIONS

3.1 Introduction

The problem of solving a set of simultaneous linear equations in 
a number of variables (generally taken as n in this chapter) arises 
frequently in physics and chemistry. The elementary method of solution 
is to eliminate the variables from the equations one by one in an order 
suggested by the coefficients. Eventually an equation in one variable 
is obtained and from its solution the remaining variables are found 
quickly, by substituting in turn into the intermediate equations. This 
method, though correct in principle, has a number of disadvantages in 
practice. In the first place, it is not systematic enough to be a good 
numerical method. A method which works satisfactorily when the 
coefficients are integers, may be cumbersome and difficult to check 
when the coefficients are unwieldy decimals. In the second place, it is 
difficult to subject it to theoretical analysis so as to understand com­
plications, such as mounting rounding-off errors or ill-conditioning, 
which arise occasionally in practice. The first object of this chapter 
is to give a systematic method of eliminating the variables and solving 
the equations and then to discuss the various difficulties that may arise. 
There is also a short account of some alternative methods of solution 
which may be simpler and easier to apply in certain circumstances.

3.2 The Condensed Elimination Method

If the first two equations of the set are written with the notation

+ 012^2 -f- ... = cu n+l (3.2.1)

®21®1 + 022X2 + ••• =02 n+1 (3.2.2)

and, if necessary, their order adjusted so that the coefficient an is 
non-zero then the first equation can be used to eliminate zi from the 

35
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second. This can be done in various ways and one convenient choice is 
to multiply the first equation by an/an and subtract from the second 
leaving

(
<*21 \ . / «21 \ . / «21 \

<*22---------<*12 |®2 + I <*23----------013 IX3 4~ ... = I <*2 n+1----------<*1 n+1 IOn / \ On / \ On /
(3.2.3)

This is the basic step in the elimination method and it is repeated in an 
extended form to eliminate the remaining variables. It simplifies the 
notation and helps to clarify later equations if (3) is now written as

&22®2 + &23®3 4" ••• = &2 n+1 (<f.2.4)

with the definition

btj — d(j------ ajj (3.2.5)
an

The third equation of the set is

031®! + 032X2 4- 033X3 4- ... = 03 n+i (3.2.6)

and both xi and xz are to be eliminated from it. The first equation (1) 
is multiplied by osi/an and subtracted from (6) to eliminate xi as in 
(5). To eliminate X2, (4) is used, instead of (2), since it does not reintro­
duce xi. It is multiplied by 632/^22 and subtracted from the previous 
result to give

C33X3 4- C84X4 4- ••• — C3 m+i (3.2.7)

where now the two eliminations can be performed together by defining

c« = aij---- — ay — by (3.2.8)
on 022

In this way the original equations are reduced to the triangular set (1), 
(4), (7), ... and the number of variables steadily decreases. The nth 
equation contains only a single variable, xn, and is solved by simple 
division. This value of the variable is then inserted into the penultimate 
equation of the triangular set to yield x„_i. The remaining variables 
follow in turn by substituting into the triangular equations in reverse 
order.

One major advantage of this systematic method is that the number of 
quantities which need to be recorded is drastically reduced. The 
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quantities needed for the elimination or the substitution are the 
multipliers and the triangular equations and these can be written as

011X1 + 012X2 + O13X3 4* •• • = O1 n+l

021
On’

^>22^2 + 623^8 + ••• = &2 n+1 (3.2.9)

031 &32
Oil’ 7—> C33X3 + ...

022
= C3 n+1, etc.

where the multipliers are noted beside the equation requiring them. 
This scheme can be reduced still further by omitting the variables 
which only serve to label the numbers and the algebraic signs which 
can be readily understood. The coefficients are now identified by the row 
and column in which they appear and form the rectangular array

... C3 n+1 (3.2.10)

••• nn n+1

an ai2 «13 ... «i n+i

—- 622 623 ... ^2 n+1
an

«31 ^32
— 7— C33 
an 022

Onl &n2 Cn3

an 622 C33

a?i xz X3

and the solutions are written in the columns to which they refer, as they 
are found. The numbers in this array are calculated in shells in the 
sequence indicated in Fig. 3.1.

Fig. 3.1. Sequence of calculation of elements.

1

2

3

4

5

6 7

8

4—MAT VOL 4



38 Matrices and tensors

Equations such as (5) and (8) prescribe how the numbers are calculated 
and these reduce to an easily remembered procedure when translated 
into terms of the array. Each term above the principal diagonal is 
found by taking the corresponding coefficient in the original equations 
and subtracting the scalar product of the other elements to its left side 
in the same row in the new array with the other elements above it in 
the same column, corresponding components being located at the same 
distance from the edges. The vectors used for the element at X are 
indicated hi Fig. 3.2. An element below the diagonal is calculated by 

Fio. 3.2. Row and column vectors used to form X.

the same procedure except that each element is divided by the diagonal 
element above it. The rules for substituting and solving for the variables 
can be similarly expressed in terms of the scalar product of the rows of 
the triangular equations and the final row of solutions but are more 
easily remembered by noting that (10) is equivalent to the triangular 
set of equations in (9).

A numerical procedure of this type needs to have adequate checks 
which will ensure that errors are discovered as quickly as possible and 
that the solution may be proved correct. The only way of guaranteeing 
the solution is to substitute it into the original equations and to show 
that they are satisfied to within the allowable rounding-off error but, 
if this final check should fail, there is no indication of where the error 
lurks. It is necessary, therefore, to supplement this final check with 
a running check which provides some control over the calculation at 
intermediate stages. This is done by the simple device of changing the 
variables to the new variables

X( = X{ + 1 (3.2.11)
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The equations for these new variables are identical with those for the 
original variables except that the constants on the right are now the 
sum of all the coefficients in the original equations. These constants are 
denoted by

n+2 = + a<2 + ... + at n+i (3.2.12)
and are written as an extra column beside the original equations. In 
the new array produced by the elimination the corresponding new 
column is found by the same rules as before. Each element of this new 
column provides a check. Thus, after xi has been eliminated, (11) 
implies the relation

t>2 n+2 = £>22 + ^23 4" 4* ^2 n+1 (3.2.13)
and this can be checked. Each row of the new array is subject in this 
way to the check that the sum of the elements from the diagonal one 
to the (n + l)th should equal the (n 4* 2)th. There is also a check on 
the final stages of the solution for, if the final column is used instead 
of the (n -|- l)th, the values of x< can be found and used to check the 
values of X{. This running check gives no guarantee of the final result 
and so does not replace the substitution check. It should be considered 
as a method of spotting the most likely errors as they occur. It also 
gives an indication of the magnitude of the rounding-off errors.

In Table 3.1 an example of this condensed method is worked out. 
On the left is a key indicating the notation used above for the entries 
on the right.

Table 3.1
Condensed elimination method

2w 4- x — y = 5
2w -j- 4r + y — 3z — 38

— iw 4- 4® 4- 1y — 5z = 64
2w — Sx — Qy + 12z = — 82

041/011 642/622 C43/C33I d+4 <?46 ^43

an ai2 ais 014 016 016
an an 023 024 025 023
031 ass 033 034 036 033
a4i a42 043 044 O45 046

an aia ais 014 015 016
asi/anl 622 623 624 625 6s6
asi/an 633/622! C33 C34 C36 033

(
2 1-1 0\ / 5\ / 7\
2 4 1 —3 1 / 381 42 1

-4 4 7 -511 64 II 66 I
2 -8 -6 12/ \—82/ \ —82/

2 1 -1 0 5 7
1 3 2 - 3 33 35

-2 2 1 1 1 8 10
1 -3 1 2. 4 6

w x y z i 9 e a
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3.3 Reciprocal Matrices

If two sets of equations differ only in the constants which appear on 
the right sides of the equations then, as has already been noted in 
section 3.2, the elimination of the variables leaves the left sides of the 
triangular equations exactly the same. The equations can then be 
solved simultaneously by treating the second set of constants as an 
extra column in the table. After the elimination stage this column is 
treated separately to give the second solution. This procedure is the 
same as that for the extra checking column and can be extended to any 
number of extra columns.

When there are a large number of sets of equations to be solved and 
they differ only in the constant terms there is a more economical pro­
cedure. Each set of equations can be written in matrix notation as

Ax = c (3.3.1)

where c is the column vector of constants which changes with each set 
while A remains the same. The formal solution to this is found by 
multiplication by A"1, provided that A is non-singular, so that

x = A_1c (3.3.2)

and once the matrix AL-1 is known x is easily calculated for any c. 
The equation defining A-1 is

A A1 = I (3.3.3)

and this can be split up into n sets of equations for the n columns of 
A-1 so that

Ari = Ci
Arg = e2 (3.3.4)

where
A-i = (nrg ... ); 7=(eie2... ) (3.3.5)

The calculation of the reciprocal matrix in this way means solving n 
sets of equations each with the same coefficients on the left but with 
successive unit vectors on the right. These can be solved simultaneously 
and, if there are more than n sets of equations to be solved, it will 
clearly be more economical to find the reciprocal matrix and solve by a 
simple product with the various C.

The accuracy of a calculated reciprocal matrix can be checked by 
multiplication into the original matrix in the reverse order

A_1A = I (3.3.6)
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A running check can also be provided, as before, by including an extra 
column which is the suxn of all previous columns. The solutions found 
using this column will be

(n + ra+ ...)<+1 (3.3.7)

An example of the calculation of a reciprocal matrix is shown in Table 
3.2 with this running check included. The elements of the reciprocal 
are denoted by rit and it is to be noted that the calculation produces 
them in transposed form.

Table 3.2
Inversion of a matrix

(
1 0-1 1\ /I 0 0 0\ —2
1 2 1 -21 /o 1 0 Ol 3

-3 —4 0 5 1 10 0 1 0] -1
1 8 5 -10/ \0 0 0 1/ 5

1 0 -1 1 1 0 0 0 2
4 2 2 -3 -1 1 0 0 1

-3 -2 L L 2 1 2 1 0 7
1 4 “2| 5 5 0 2 1 13

(
-1 2-1 1 \

2 -1-5 2 0
-•2 -4 -2 -4 I
- -6 -7 — -4 -2/

Check

(
-1 2 - 2 --6\ /I 0-1 1 \ /I 0 0 0\

2-1-5 -4 '7 1/ 1 2 1-2 1 / 0 10 0 1
-1 2 ,2 --4 I 1 -3 -4 0 5 I “IO 0 1 01
10 -4 -2/ \ 1 8 5 —10/ \0 0 0 1/

3.4 Difficulties

At several points in the description of this condensed form of the 
elimination method it has been assumed that various quantities do not 
vanish. In some circumstances this assumption breaks down and the 
method can be used with confidence only if these exceptions can be 
understood and appropriate techniques of handling them found.

The first of these quantities is on. Should an vanish, the elimination 
of xi fails since it involves dividing by an. This difficulty can always 
be overcome by rearranging either the order of the equations or the 
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order of the variables. If O21, for example, does not vanish then the 
first two equations are interchanged.

The second quantity is-the second diagonal element in the triangular 
array, i.e. 622. In terms of the original coeffici&ts this quantity is the 
leading minor

622 =
an
“21

“12
“22

-r On (■3:4.1

and is always finite, since on does not vanish. It will vanish, however, 
if the 2x2 minor vanishes and this will c^use difficulty when X2 is 
being eliminated. To prevent 622 vanishing, it is still possible to replace 
the second equation by some other one or to renumber the variables. 
If necessary, the first equation can also be changed so that both the new 
an and 622 are non-zero. Thus, if any 2x2 minor in the matrix A is 
non-zero, the equations can be rearranged to satisfy these two require­
ments. If all the 2x2 minors vanish the matrix is said to have rank 
unity and further discussion of this is defered to section 3.5.

In a similar way, the third diagonal element can be shown to be 

“11 “12 “13 an “12
C33 = “21 “22 “23 -r “21 “22

“31 ■032 “33

(3.4.2)

and this, too, should not be zero if the elimination is to succeed. If 
there is one non-vanishing minor of order 3x3 then it is made into 

: the principal one by rearrangements and, if necessary, rearrangements 
Within the minor can be made to satisfy the earlier requirements. If 
all the 3 X 3 minors vanish but at least one 2x2 minor does not, the 
matrix is said to have rank two.

The general result, which can be proved, by induction, is that the 
method assumes that the leading minors

“11> an “12
021 “22

011 “12 013
“21 “22 “23

J • • • “11 •
“21

• “in

(3.4.3)

031 “32 “33 «nl • • “nn

must all be non-zero, either in their natural order or after rearrange­
ment of the equations and variables. The final minor is also the 
determinant | and a matrix, whose determinant is non-zero, is called 
non-singular. If A is non-singular it is easy to show, by using the 
expansion theorems, that at least one minor of each order is also non­
zero, and so the necessary and sufficient condition for the equations to 
be solved by this method is that the matrix A be non-singular.
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In the course of this discussion it has been shown in addition that

|-41 = ®ii^22C33 ••• nnn (3.4.4)

This means that the condensed elimination method also gives an 
efficient method of evaluating a determinant by reducing it to triangular 
form and multiplying the diagonal elements.

In practice, it is very rare for a minor to vanish exactly since the 
calculations are carried out to a limited accuracy only and rounding-off 
errors can disguise the zero. The situation is not greatly different, how­
ever, when one of the leading minors becomes of the*same order as the 
rounding-off error. Even though the method can be continued formally, 
the error caused by dividing by this small minor will be so large as to 
make further work of little value. It is highly desirable, therefore, that 
none of the leading minors should be small. If the matrix is non­
singular this can be ensured by rearrangements of the type already 
mentioned but this procedure can be tedious and may not be necessary. 
It is more useful to have a practical compromise which will reduce the 
chance of finding a small leading minor at the expense of rearrange­
ments which can be carried out easily in advance. The following rules 
embody such a compromise:

(a) The largest coefficients in the equations are made of comparable 
magnitude by multiplying the equations throughout by suitable 
factors and by replacing the variables by others proportional to 
them. This should be done before any rounding off. The simplest 
factors are usually powers of ten.

(b) Two equations, whose coefficients are almost the same, should be 
replaced by two new equations, one found by adding the equa­
tions and the other by subtracting them and rescaling.

(c) The orders of the equations and of the variables are then adjusted 
to bring the largest coefficients (irrespective of sign) into the 
diagonal positions and the smallest coefficients as far as possible 
into the positions below the diagonal.

Another way in which this difficulty becomes evident is when, even 
though a solution has been correctly obtained, it gives considerable 
residuals, due to rounding-off error, when substituted into the original 
equations. There is a simple way of improving such a solution. If the 
solution is denoted by xi and the true solution is 

xt = xt 4- xt (3.4.5)
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where X( are small corrections, then, by substitution into the original 
equations

Ax = r (3.4.6)

where the components of r are the residuals

r< = —aaxi — a(2X2 — ... + at n+i (3.4.7)
The set of equations (6) has the same matrix A as before and so its 
solution involves only the addition of an extra column to the previous 
calculation and the computation of the z<. The same procedure can be 
applied if, after the calculation has been completed, it is desired to 
carry the solution to a larger number of decimals.

3.5 Rank

The definition of matrices of rank one and two has been mentioned in 
3.4 and can now be generalized to arbitrary rank. If all the (r + l)th 
order minors, that can be formed from a matrix by omitting rows and 
columns, have the value zero and at least one minor of rth order has a 
non-zero value then the rank of the matrix is said to be r. When the 
rank is less than n, the order of the matrix A, the elimination procedure 
breaks down. A full analysis of the resulting situation is given in 
various textbooks and only the principal results will be mentioned here.

If a matrix has rank less than n it means that the expressions on the 
left sides of the equations are no longer independent. In other words it 
is possible to multiply the equations by selected constants and find that 
tiie sum of (n — 1) of them has the same left side as the remaining 
equation. There are, then, two different possibilities according as the 
right side of this sum is equal to, or different from, that of the other 
equations. If the two right sides differ, by more than the rounding-off 
error, then the equations are inconsistent and no solution is possible. 
If the two right sides are equal, then the information about the variables, 
contained in the final equation, is already contained in the other 
equations. In consequence there is no longer sufficient information in 
the equations to determine all the variables uniquely.

The number of independent expressions on the left of the equations 
is given by the rank of A. If the matrix, formed by bordering A with 
the column of constants on the right, has the same rank as A then this is 
also the number of independent equations available. The equations are 
inconsistent if the ranks are not equal. When the number of indepen­
dent equations is less than the number of variables then the solution 
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is not unique and the remaining variables can be assigned arbitrary 
values. The elimination method can be broken off, therefore, when the 
number of triangular equations equals the rank and the solution is 
completed giving arbitrary values to the variables not determined by 
these equations.

3.6 Homogeneous Equations

All the equations in the previous parts of this chapter are inhomo­
geneous, in the sense that at least one of the equations in the set contains 
a non-zero constant term as well as the terms containing the unknown 
variables. If all these constant terms vanish, the equations are said to 
be homogeneous and their solution needs further discussion.

In contrast to a set of inhomogeneous equations, a set of homogeneous 
equations never has a unique solution. For, if x< is one solution, then 
kxt is also a solution, for any value of the constant k. In particular, 
these equations always have the trivial solution

— 0 (3.6.1)

Because of the circumstances in which these equations arise, this lack 
of uniqueness rarely has any significance and the solution is made 
unique by adding some extra inhomogeneous restriction. The two most 
common restrictions arc either to fix the value of one variable at unity 
or, alternatively, to adjust all the variables so that the sum of their 
squares is unity. The first method is usually easier for numerical 
purposes. Another way of describing it is to say that the equations 
have been divided throughout by the selected variable and so become 
a set of n inhomogeneous equations in (n — 1) new variables which are 
the ratios of the old variables to the selected one. In general, therefore, 
the variables are overdetermined and the only solution is the trivial 
one (1). To have a non-trivial solution, one of the equations in the set 
must be linearly dependent on the others. The condition that this 
should be so, for the set of equations

Ax = 0 (3.6.2)
is that

|A| = 0 (3.6.3)
Thus for a set of homogeneous equations to have a non-trivial solution 
which is unique, except for an arbitrary constant Jc, the matrix A must 
have rank (n — 1). If the rank is less than (n — 1), the solutions will 
also show the lack of uniqueness discussed in section 3.5.
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3.7 Factorization of a Matrix into Triangular Matrices

The theoretical significance of the first stage in the eliminatiom 
process is that, by a limited number of operations, the original matrix 
A of the equations is turned into a triangular matrix T whose elements 
below the leading diagonal are all zero. To clarify and extend this 
result, it is convenient to express the operations in terms of matrices.

The first operation in the elimination is to remove xi from the 
second equation by subtracting an/an times the first equation from it. 
This is equivalent to the product
• (Z-a21/a.H«2i)A (3.7.1)
The elimination of Xi from all the equations is achieved by the operator

7— (®21^21 4~ ®31^31 + ••• )/®ll (3.7.2)
premultiplied into A. The variable xz is eliminated in the same way 
using

7 — (632E32 4- 642^42 + )/&22 (3.7.3)
The whole process of reduction to T is then represented by

KA = T (3.7.4)
where the matrix K has the product form

K — [7 — Win n-l/win-1 n-1] •••
[7 — (632E32 4~ ••• )/^22][7 — (<i2i7?2i 4* ••• )/an] (3.7.5)

A more convenient form of this relation between A and T can be 
found by using the reciprocal of K. It is easily shown that

|K| = 1 (3.7.6)
and consequently K is non-singular and has a reciprocal. Since K is a 
product, its reciprocal is the product of the reciprocals of each factor, 
taken in the reverse order. The individual factors are easily inverted 
according to the rule

[7 — aEr+i r — f}Er+z r — ••• ]_1 — 7 4" aEr+i r + flEf+2 r -f- ...
(3.7.7) 

which can be proved by multiplication. This gives

K~l = [7 4- (a2iE2i 4~ ••• )/an][/ + (&32E32 + . )/&22] •••
= 7-(- (a2i7?2i 4“ )lan 4* (632E32 4- )/&22 4* ••• (3.7.8)

which can be written as
K-i = I + L (3.7.9)

where L is the lower triangular matrix which is written below the T
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matrix in the condensed elimination method. Thus the first stage of 
the elimination is equivalent to a factorization of A into two triangular 

ices
A = (/ + L)T (3.7.10)

and the array which is calculated includes all the elements of L and 7 
which are not zero by definition.

This product form for A gives a simple proof of a result used earlier
for, since it is clear that

ll + £| = l (3.7.11)
the determinant

(3.7.12)
and, this |T| is the product of its diagonal elements, so that

|A| = U11622C33 ••• (3.7.13)

3.8 Symmetric Matrices
•

The condensed elimination method can be applied without difficulty 
when the set of equations has a symmetric matrix. There is a more 
efficient method possible, however, which uses the symmetry of the 
matrix to reduce the labour. Symmetrical matrices occur so often in 
such physical applications as the theory of normal vibrations, molecular 
quantum mechanics and the normal equations in fitting by least squares, 
that it is worthwhile to have a special procedure.

The factorization of a matrix into the product of a lower triangular 
matrix and an upper triangular matrix is no longer unique if the diagonal 
elements of both matrices are independent variables. The product in 
3.7 is made unique by choosing the diagonal elements of the lower 
matrix to be unity. For a symmetrical matrix a more useful restriction 
is that the diagonal elements of the two matrices should be equal. From 
this it can be proved that the two matrices are transposes of each other 
i.e.

A = SS (3.8.1)
where S is an upper triangular matrix. The method of calculating S is 
made apparent by equating elements on both sides of (1)

o *
«n = «n; = •ansi*
«22 = «12 + s22; «2* = ®12«1» + «22S2ik; ••• (3.8.2)

Thus, the diagonal elements involve square roots, which are always 
taken as positive,

= Van
522 =V/(a22 — Sj2) , ...

(3.8.3)
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It can happen that a diagonal element is a pure imaginary but in that 
event all the off-diagonal elements are also imaginary and the equations 
are no more difficult to solve. The off-diagonal elements have formulae 
in the same form as for L in 3.2.8 and 3.7

sit = ait/sn
8 2k — («2it — S12Slit)/S22 , •••

(3.8.4)

The numerical procedure is then the same as before for L, except for 
the diagonal elements which are the square root of those in T.

The primary advantage of this method is that only the one triangular 
matrix has to be calculated and recorded. The checking procedure used 
before is still applicable. An example which illustrates this modified 
method is given in Table 3.3. A secondary advantage of the method is 
that, for a fixed number of decimals, it gives more accurate solutions 
than the more general method. This happens because division by the 
square roots in (4) is less dependent on rounding-off error than division 

, by the numbers themselves as in calculating L.

Table 3.3
Solution of symmetric eqziations

4a — 66 + 4c sss 4
— 6a + 106 - 3c + 2d = 13

4a — 36 + 14c + M, = 60
26 + 5c -f- 9d = 55

2 -3 2 0 2
1 3 2 19 •

1 -1 -1
2 8 •

1 2 3 4

3.9 Other Elimination Methods

The condensed elimination method has many minor modifications. 
Some of these concern the layout of the array and are matters of con­
venience. One, which is of more theoretical interest, is equivalent to 
taking the upper triangular matrix as the one with the unit elements in 
its diagonal. This form of the method is described in many textbooks.

The elimination method can also be combined with the partitioning 
method described in chapter 2. Tliis partitioning method involves the 
calculation of the reciprocals of a number of submatrices and so is 
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usually slower than the direct elimination method. In some circum­
stances, however, it may become a profitable method. It may happen, 
for example, that the reciprocals required are easily found, e.g. tri­
angular matrices or matrices equal to one another. The method is also 
needed when the number of variables becomes larger than it is possible 
to manipulate simultaneously.

All these methods have the common advantage of yielding the final 
result after a finite fixed number of operations. They also have in 
common the disadvantage that rounding-off error becomes larger and 
larger as the calculation proceeds. In contrast, there are iteration 
methods in which an approximate solution is steadily improved. The 
number of operations needed to obtain a solution of prescribed accuracy 
is not fixed and depends largely on the accuracy of the initial guessed 
solution. On the other hand, the final accuracy is not limited by 
rounding-off error and can always be increased.

3.10 An Iteration Method

One of the most useful of the iteration methods of solving simult­
aneous linear equations begins by dividing the matrix of the equations 
into two parts. To do this in an effective way, the equations have first 
to be rearranged as described in section 3.4 and then rescaled so that 
all the diagonal elements are unity. The matrix is then divided as

A — I — B (3.10.1)

and the original equations,
Ax — v (3.10.2)

become
x — Bx -f- v (3.10.3)

where all the elements of B should now be small.
The solution of (2) is found by the iteration formula suggested by (3) 

viz.
Xn = BXn-1 + V (3.10.4)

If aco is taken as an approximate solution, (4) enables the sequence of 
vectors ®i, Xz, ... to be generated rapidly. It can be shown that, if B 
is sufficiently small, this sequence of vectors will converge to the correct 
solution no matter what a?o is used. If no better estimate is available, 
it is possible to take Xo = t>. In practice the convergence of the 
sequence is often slow and it is better to use the first few vectors to 
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extrapolate and estimate the limiting vector and then use this as the X o 
for a new sequence. This extrapolation can be carried out systematically 
and accurately on a computer but, in hand computation, it is easier to 
note that the differences bet ween corresponding components of successive 
vectors are often approximately in geometric progression and so can 
be extrapolated approximately but rapidly. (See section 4.5.)

The principal advantage in this method, as in most iteration methods, 
is the easy control over accuracy which it provides. At the beginning 
of the calculation no more decimal places need be retained than can 
reasonably be expected to be accurate. This reduces quite considerably 
the labour of a hand calculation. As the solution becomes more accurate 
the number of decimals can be steadily increased. Furthermore, 
successive iterations serve to check each other so that no independent 
check is necessary. Occasional numerical mistakes, provided they are 
not systematic, may delay the convergence but they will not prevent 
the true solution from being obtained eventually.

In order to indicate more precisely the meaning of the condition that 
B should be small it is interesting to quote one theorem. This states 
that, if B satisfies the inequalities

X | Bu | < 1, for all k

then the iteration process converges. Other less stringent conditions 
will be given later.

An example of this method is illustrated in Table 3.4. The initial Xo 
is rather poor and there are considerable changes in the uc<. From the 
first four vectors a new ®o is found by extrapolation and further 
interations indicate how accurate it is.

Table 3.4
Iteration solution of linear equations

6a + 35 - 2c -p d = 5
—a + 8b + So-3d --= 24

5 + 2c + d = 7
a 4- 25 — c 4- 4d = - 2

B Xo = v *3 *4 *» *«

0 -i i -i\ •833 •583 •784 1-159 1-052 0-979 0-988
i 0 -■i 3000 2-042 2-011 1-898 2-039 2-013 1-993
0 -i 0 -il 3-500 2-250 3-145 3-046 3-009 2-969 3-009

-i -i 0/ -0-500 -1-333 -1-105 -0-916 -0-977 — 1-031 -1-010
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One particularly useful application of this method is in improving a 
solution which is already a good approximation. The method of using 
the residuals given in section 3.4 is actually this iteration method in a 
slightly different form.

3.11 Orthonormalization of a Set of Vectors

In different contexts the problem often arises of finding, from a set 
of non-orthogonal vectors, a set which will span the same space and be 
orthonormal. There is a close similarity between this problem and that 
of solving linear equations, and the procedures discussed ip section 3.8 
provide a convenient solution.

The original set of r vectors, is in an n-dimensional space (n r), 
Indices in this section will, in consequence, take values up to r whereas 
vectors and scalar products pre in the n-dimensional space. Since the 
vectors are non-orthogonal the scalar products,

(3.11.1) 

do not vanish and form an r x r matrix known as the overlap matrix. 
The problem is to construct a set of vectors o< which are linear combina­
tions of the v< and have a unit overlap matrix

o<. aic = Sa (3.11.2)

The method of solution is easily understood in geometrical terms. 
The first vector oi is taken in the same direction as Vi but is

oi = *1(511)’* (3.H.3)

by normalization. The second vector vz along with oj defines a plane, 
but is not in a suitable direction because it is not orthogonal to oi. If, 
however, its projection on to oi is subtracted, the result will be ortho­
gonal and hence

oi = [*a — oi(fli. *2)] ($22 — SfySu)-* (3.11.4) 

In general, vk is made orthogonal to the previous a( by subtracting all 
its projected parts on them and the result is normalized to give 
oi:. This is known as the Schmidt orthogonalization process and is 
convenient numerically if the mixed scalar products o<. vk are readily 
available. If these scalar products have first to be deduced from the 
Sa it is not usually an efficient process.

The relation of this solution to the procedure in section 3.8 is made 
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clear by a formal analysis of the solution. The equations, such as (4), 
which define the can be written as

= (3.11.5)

where B{} is an upper triangular matrix of order r. From (1) and (2) it 
follows that

Sit = BXiBvkax • — BXiBXk (3.11.6)
so that the symmetrical matrix Sa is the product of the triangular 
matrix and its transpose. The first stage of the procedure in 3.8 is, 
therefore, a practical method of deducing the matrix B^ from the 
overlap matrix.

The procedure of section 3.8 can also be extended to enable o< to be 
expressed in terms of vj. The argument begins by considering a different 
problem viz. that of finding vectors w* defined by

S(kwt = vt (3.11.7)

Equation (7) can also be written as
BxtBxicWk — v( (3.11.8)

or, using (5), as the simultaneous equations
Bxiax=Vi (3.11.9)
Bxkwic — ax (3.11.10)

Now, according to the procedure of section 3.8, the first stage in the 
reduction of the equations (7) gives a triangular set which is (10). Thus, 
if an extra column, whose elements are the vectors v<, is added to the 
right of Stk and the elimination carried out the new vectors to the 
right of the triangular matrix will be the o<.

The problem of finding an orthonormal set is not one which has a 
unique solution. This is obvious since a set of orthonormal vectors 
can be rotated rigidly through any angle and will still span the space. 
The Schmidt process selects solutions which can be obtained using a 
triangular matrix. Other processes may select solutions of a different 
type.
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EXERCISES
1. Solve, using the condensed elimination method without rearrangement,

2a + 6 + 3c + 44 = -3 3x + 2y+ z — w = 3
2a + 26 — c + 4 = 6 —3x — y + 2z + w = 2
4a + 36 + 3c + 24 = 9 6z + y + 7z — 3w = 2
2a + 36 + 4c + 34 = 5 9x — y — 2z + 2w = 5

2. Solve, using the square root method,
41 + 2s + 6/ = 12 16p + 8v + 4r — it — 8
21 + 2s + 4 + f — 1 Bp + 5t> + 2r — tit — - 1

« + 54 - 4/ = - 15 ip + 2v + 5r — t — 16
61 + s - 44 + 15/ = 34 — ip — 5v + r + 101 = 19

3. Rearrange and solve by iteration
2m — 30a + 81 — s = 24
im + 20a + 21 = 14

—2m + 10a + 31 + 6« = 5
— m + 40a + 21 + 8 = - 2

4. Factorize in the form SS, where S is upper triangular, the matrix
/ 9 12 18\

12 20 18)
\18 18 41/

and form the product SS.

5. Find the rank of the matrix
/2 3 -1 6'
/1 -1 2 5V2
11 1 -3 -11
\1 -1 3 12;

working (a) to 2 decimals, (b) to higher accuracy.

6. Show how the iteration formula (3.10.4) provides a justification for the residual 
method 3.4.

7. Show that the series inversion formula of 2.6 gives the same result as the iteration 
formula for (3.10.3) when xg = v.

8. Prove that a Hermitian matrix can be factorized in the form T*T, where T is 
upper triangular.

9. Prove that the direct product of two vectors is a matrix of rank one. Is the con­
verse true?

10. Vectors, u, v, w, have the overlap matrix
4 -4 6\

-4 5-4
6 -4 22/

Find an orthonormal set spanning the same space.

11. Find the rank of the matrices
/ i _2 -1\ / 2 -1 1\ / 3 1 -1\

2 -4 —21; 1 12; |-1 1 2
\-l 2 1/ \-l 2 1/ \—2 2 1/

5—MAT VOL 4



CHAPTER 4

EIGENVALUES AND EIGENVECTORS

4.1 Basic Definitions

An eigenvalue of a matrix A, of order n, is defined as a number A 
(which may be complex even when all the elements of A are real) which 
satisfies the equatipn

Ax = kx (4.1.1)

for some non zero vector x. This vector is defined to be the corresponding 
eigenvector. The importance of a study of eigenvalues and eigenvectors 
to a chemist is threefold. In the first place they are fundamental 
quantities of a matrix and essential to any deeper understanding of a 
matrix property or problem. Secondly, the theory of eigenproperties, 
of which this is the simplest instance, has influenced the development of 
quantum mechanics to such an extent that it has become a necessary 
part of the mathematical background to modem chemistry and physics. 
Finally, equations such as (1) occur so frequently in practical applica­
tions, both of quantum mechanics and of other theories, that it is of 
importance to know several practicable methods of solving them and to 
understand their relative merits.

By inserting the unit matrix I the eigenvector equations take the 
form

(A - AZ)® = 0 (4.1.2)

which shows them to be a set of homogeneous linear equations. For 
a square matrix A and arbitrary A these equations are usually incon­
sistent and have only the trivial solution

x — 0 (4.1.3)

(c.f. 3.6.1). To have a non-zero solution the equations (2) have to satisfy 
the condition

|A - AZ| = 0 (4.1.4)

This is an e quation of the nth degree to determine A and is known as the
.54
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eigenvalue equation or the secular determinantal equation. For each 
value of A satisfying (4) there will be a corresponding eigenvector found 
by solving (2).

The solution of the equations

£A — Ax (4.1.5)

is very similar. The vectors x may be called eigenrows to distinguish 
them from the eigencolumns above. The eigenvalue equation is still (4) 
so that to each eigenvalue A there is a corresponding eigenrow and an 
eigencolumn.

These equations have a direct geometrical significance. In general the 
effect of multiplying a matrix into a vector is to give a vector in some 
other direction. The eigenvectors are those particular vectors whose 
directions are not changed by the multiplication and the eigenvalue 
represents the magnifying effect of the matrix in these directions.

4.2 Orthogonality Relations

There are a number of relations both between the eigenvectors of a 
matrix and between the eigenvectors of related matrices which are of 
theoretical importance and also assist in determining these vectors in 
practice. The first concerns the eigenrows and eigencolumns of a single 
matrix A.

Theorem A. Eigenrows are orthogonal to eigencolumns belonging to 
different eigenvalues.

The proof of this is immediate for, if the eigencolumn x satisfies

Ax Ax (4.2.1)

and the eigenrow y
yA = ny (4.2.2)

then, by multiplying in two ways,

yAx — Ayx = yijx (4,2.3)
so that

(A — u)yx — 0 (+.2.4)

Thus, for A y, the orthogonality relation

yx = 0 (4.2.5)
must hold.
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Other relationships can be established by using the operations defined 
in 2.4. Thus, by taking the transpose of (2),

Ay = ny (4.2.6)
so that an eigenrow of A is the transpose of an eigencolumn of A with 
the same eigenvalue. A corollary of this is that the eigenrows of a 
symmetrical matrix are the transposes of its eigencolumns and hence 
that the eigencolumns belonging to different eigenvalues are orthogonal 
to each other. Again, taking the complex conjugate of (1),

A*sc* = A*ac* (4.2.7)
and the complex conjugate matrix has eigenvalues and eigencolumns 
which are the complex conjugates of those of A. When A is real, it 
follows that the eigenvalues and eigenvectors are either real or can be 
associated in pairs which are complex conjugates of one another.

When A is a Hermitian matrix the Hermitian conjugate of (1) is 
x'A = A*apf (4.2.8)

so that its eigenrows are the Hermitian conjugate of its eigencolumns. 
Theorem A also shows that

(A - A*)apfa? = 0 (4.2.9)
but the Hermitian scalar product X'X is always the sum of squares and 
so always positive therefore

A = 1* (4.2.10)
If y is an eigencolumn with an eigenvalue /x X then Theorem A implies 
also that

i/f;r = 0 (4.2.11)
It is convenient to summarize these results in a theorem.

Theorem B. The eigenvalues of a Hermitian matrix are all real. 
Eigenrows are the Hermitian conj ugates of eigencolumns. Eigencolumns 
belonging to different eigenvalues are orthogonal in the Hermitian 
sense.

Theorems similar in type to Theorem B can be proved for the other 
special types of matrix. Some of these are given in the exercises.

4,3 DiugoualLxiijxi of. f Matrix

The eigenvector equations for a matrix A, which has n distinct 
eigenvalues, are

Ax( = X(Xi, » => 1, 2, ... , n (4.3.1) 
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These can be written in a more compact form by constructing a matrix 
X whose columns are the eigencolumns

. X — (a?ia?2 ••• xn) (4.3.2)
The equations now become

AX = XA (4.3.3)

where A is a matrix whose off-diagonal elements are all zero and which 
is defined by its diagonal elements in the notation

A = I- 2x^2 ... An J (4.3.4)
Similarly the eigenrows y, can be combined together as the rows of a 
matrix Y i.e.

Y = (yiy2 ... yn) (4.3.5)
If the numbering of the eigenrows and eigenvalues corresponds, then 
the eigenrow equations are

YA = \Y (4.3.6)

Theorem A of section 4.2 implies that
yiXj — 0, (4.3.7)

since all the eigenvalues are distinct. The normalization of the eigen­
vectors has not yet been fixed so it is convenient now to use it to arrange 
that

y(.r{ — 1 (4.3.8)

The equations (7) and (8) reduce, therefore, to the simpler matrix 
relation

YX = I (4.3.9)

Equations (9) and either (3) or (6) now imply that
X-'AX = YAX = A (4.3.10)

Thus the matrix A can be simplified into a diagonal matrix by multi­
plication by the matrix X and its inverse. This is the process known as 
diagonalization.

When a matrix has repeated eigenvalues the argument above, and 
that in theorem A, fails and a more elaborate theory is required. One 
result in this theory, which is of importance here, is that any normal 
matrix, i.e. one for which

A^A = AA^ (4.3.11)
has n eigenvectors and can be reduced to diagonal form. The great 
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majority of the matrices used in physics and chemistry are normal but 
some of the exceptions are important.

A second way of considering this process of diagonalization is in 
terms of projection operators. From (3) and (6) the matrix can be 
written

A = XAF (4.3.12)
or as

A = X^Sfi)^X^ (4.3.13)
i i

Each term in this sum contains a direct product of an eigencolumn and 
an eigenrow. Such a direct product is a projection operator of the type 
discussed in section 2.8 and projects any vector, on which it acts, on 
to the eigenvector. Furthermore, from the orthogonality relations, 
two different projection operators annihilate each other since

PiPk = x(ytxkyk = x^tx^yic = 0 (i k). (4.3.14)

These relations are summarized in the equation

PiPk = hkPk (4.3.15)
The square of a matrix has the same eigenvectors as the matrix itself 

but its eigenvalues are the squares. This result follows immediately 
from the eigenvector equation for, if

Axt — A<xt (4.3.16)
then

A2Xi = Axt — A.fx{ (4.3.17)

Similarly, for any integral power of the matrix, the eigenvectors are 
unaltered but the eigenvalues are the same power of the original eigen­
values. The same argument applies for any polynomial in A and by 
further argument it can be shown generally that for any function

f(A)xt=f(lt)Xi (4.3.18)
For a normal matrix or a matrix whose eigenvalues are distinct this 
result can be used to calculate 'fmictions of a matrix for

f(A) = Yf(Xt)P< (4.3.19)
i

Equation (19) has considerable practical value, e.g. in constructing' 
matrices such as

A* = £ (4.3.20)
i

and is also theoretically important, e.g. in reducing the problem of 
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convergence of ft matrix serieB to that of the convergence of the corre­
sponding numerical series for each of the eigenvalues.

Another important relation which follows from the expansion of a 
matrix in terms of projection operators is the trace rule. This rule 
states that the trace of a matrix, which is the sum of its diagonal 
elements, is equal to the sum of its eigenvalues. Since

A = (4.3.21)
t

its trace involves the trace of the direct product Xtjji which is just the 
scalar product ytXt and this is unity by normalization. Thus,

Tr A = Y atk = E A< Tr = £ A< (4.3.22)
k i i

which is the result required. A simple extension of this result is that

Tr[/(A)] = £/(A<) (4.3.23)
t

4.4 Some Simple Examples

The theorems discussed in previous sections are sufficient to enable 
the eigenvalues and eigenvectors of some simple matrices to be cal­
culated. It is advantageous to illustrate the basic concepts now, using 
some simple matrices, before developing more powerful and elaborate 
techniques.

Real symmetrical matrices occur so frequently tliat the first example 
must be of this type. The matrix chosen is

/ 5
A = 1 1

\—1

1 _1\
3 _1

— 1 3/
(4.4.1)

The eigenvalue equation is
5 — A 1 -1

|A — AI|= 1 3 - A -I = 0 (4.4,2)
— 1 -1 3- A

On multiplication and simplification this becomes
(2 - A)(3 - A)(6 - A) = 0 (4.4.3)

so that the eigenvalues are 2, 3, 6. The trace rule gives a check on these 
values. J’or A = 2 the eigenvector equations are

3z -|- y — z = 0
x y — z — 0 (4.4.4)

—x — y 4- z — 0
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and these give the solutions
x = 0 ; y = z (4.4.5)

so that the eigenvector is
(0, 1, 1) (4.4.6)

or, when normalized so that the length is unity,
$1 = Vi(0, 1, 1) (4.4.7)

Similarly, for A = 3, the eigenvector equations are
, 2x + y — z = 0 

x — z = 0 (4.4.8)
x + y =0

so that, in normalized form,
®2 = Vi(l,-1, 1) (4.4.9)

Finally, when A = 6, the eigenvector is
i8= Vi(2, 1,-1) (4.4.10)

The matrix of eigencolumns is therefore

/ 0 Vi 2Vi\ 
X = Vi -Vi Vi (4-4.11)

\Vi Vi -Vi/
and the matrix of eigenrows is its transpose. The orthogonality rela­
tions show that X is an orthogonal matrix, i.e.

/ o Vi Vi\/ o Vi 2Vi\ /i o o\
= Vi -Vi Vi Vi -Vi Vi = P 1 0

\2Vi Vi —Vi/\Vi Vi -Vi/ \o 0 1/
(4.4.12) 

The diagonalization of A is then shown by

/ o Vi Vi\/ 5 i —1\/ o Vi 2Vi\
Vi -Vi Vi 1 3 -i Vi -Vi Vi

\2Vi Vi —Vi/\—1 -1 3/\Vi Vi -Vi/
Z2 0 0\

= (0 3 0 ' (4.4.13)
< \0 0 6/

The first projection operator is
/0\(0 1 1) Z0 0 0\ /O 0 0\

= i ( 1 I =iPll = °ii
\i/ \o ii/ \o i 1/

(4.4.14)
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the second is

/ 1\(1 -1 1) / -i
352^2 = j — 1 = Hi i (4.4.15)

\ 1/ \ i -i
while the third is

/ 2\(2 1 -i) / i -i\
X3&3 = i 1 11 = i i -i (4.4.16)

\— 1/ \-i- -i
The projection operator expansion of the matrix is then

/ 5 1 —1\ /0 0 0\ / i i\
1 3 -1 =2 0 j | +3 J -j

\-l -1 3/ \0 1 V \ | -I V

/ t i
+ 6 J i (4.4.17)

\-i V
and the sum of the projection operators is the unit matrix.

A second example illustrates the 
which has no symmetry properties.

more general form of the matrix, 
The matrix is
29 —18\/ 7

A = 5
\—2

3 10
8 12/

(4.4.18)

and has the eigenvalue equation
7-2 29 — 18

5 3-2 10 = 0 (4.4.19)
-2 8 12-2

which can be simplified into
-3456 + 1202 + 2222 _ p = -(16 - 2)(18 - 2)(12 + 2) = 0

(4.4.20)

so that the eigenvalues are 16, 18,-12. The eigencolumn corresponding 
to 2 = 16 satisfies

— 9a; + 29y — 18z = 0 
5x - 133/ + 10z = 0 (4.4.21)

—2a; 4- Sy — 4z — 0

and so is
£1 = (2, 0,-1) (4.4.22)
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while the eigenrow satisfies

— 9a; 4- Sy — 2z — 0
29.r — 13y + 8z = 0 (4.4.23)

— 18a; + lOy — 4z = 0
and is

tfi = (1, 1, -2) (4.4.24)
or, if the scalar product of the two is to be unity,

’ Ur = (i. 1, -i) (4-4-25)
Similarly the eigenvalue 18 corresponds to the eigenvectors

*2 = (1, 1, 1)
& = (i, i, 4)

(4.4.26)

(4.4.27)
while, for x = —12,

= (4, -2, 1) (4.4.28)

?/3 = (^T, —i, 4) (4.4.29)

The eigencolumns are collected into the matrix

/ 2 1 4\
X = 1 0 1 -2 (4.4.30)

1 1 1/
and the eigencolumns into

/ i i -i\
F = 1 * 1 (4.4.31)

\iV -1 V

The orthogonality relations between these vectors are then summarized
as

?X = I (4A.32)

and this is readily verified. Another way of expressing these relations is 
that the yt are reciprocal vectors to the in the sense defined in 1.8. 
The projection operator expansion for the matrix is

/ 7 29 —18\ I J i -1\ /i i i\
I 5 3 10) = 16 ( 0 0 0) + 18l| |
\-2 8 12/ \-| V U > V

/ j -1 1\
-12 -I i -i (4.4.33) 

\ * -i 1/
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While these examples are typical of the form of result usually obtained, 
they are exceptional in that the eigenvalues are integers and the 
eigenvectors have fractional components,. These features simplified the 
calculation very considerably at various points. The most significant 
of these is that the eigenvalue equation could be reduced to a poly­
nomial equation and factorized very simply. For more general matrices 
the most efficient methods of finding the eigenvalues and eigenvectors 
do not involve deducing or solving this polynomial equation.

4.5 The Power Method

The power method is an easily applied iteration method of calculating 
the matrix eigenvalue which is numerically largest, together with its 
eigenvector. Since it is an iteration method it has the usual advantages 
of being self-cheeking, of having a simple basic operation, and of pre­
venting the accumulation of rounding-off error, On the other hand, it 
has to be elaborated before it can be used for other eigenvalues and it 
becomes considerably less efficient if a large number of eigenvalues and 
eigenvectors has to be found.

The power method is simpler to describe and understand when the 
matrix has one real eigenvalue whose modulus is larger ths.n that of any 
other eigenvalue, and this restriction will be imposed temporarily. The 
majority of matrices used in practical problems will satisfy this restric­
tion. This largest eigenvalue will be labelled Ai and the one next largest 
in modulus, fa. If the matrix is normal or has its n eigenvalues distinct, 
then its n eigenvectors will span the n-dimensional space and any 
arbitrary vector v can be expressed in terms of them (see 23, p. 86) viz.

® — VxXi + VzXi 4- ... 4- vnxn (4.5.1)

If these conditions are not satisfied the eigenvectors have to be supple­
mented with some other vectors to span the space but this does not change 
the essential features of the argument. This vector v is now multiplied 
m times by the matrix A and becomes

vm = Amv ------ v1^xl -F v2X?x2 4- ... 4- vnX£xn

(4,5.2)

Now, if |A2| < |Ai|, the second and subsequent terms will become pro­
gressively smaller until, for sufficiently large m,

AmV = X^VyX (4.5.3)
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Thus the limiting form of vm gives the eigenvector and the ratio of any 
pair of components of vm and gives the eigenvalue. In practice, it 
is convenient to normalize the vectors so that the largest component ia 
made unity. The practical procedure is then to multiply the approxi­
mate eigenvector by A, divide throughout by the largest component, 
compare with the starting vector, and repeat until the vector is con­
sistent to the accuracy required. The approximate eigenvalue is then 
the largest component itself.

An example illustrating this method is shown in Table 4.1. The 
initial vector, of course, is arbitrary but the process will converge more 
rapidly if it is already a good approximation. The vector chosen here 
was suggested by the large diagonal element which governs the effect of 
the matrix on a vector.

Table 4.1
Power method for largest eigenvalue and eigenvector

A vo »1 n Ayr Ay2 Ayz yi
/5 1 2 1\ 1 5 i 6-6 1 6-31 1 6'40 1
/ 2 -1 0 2 | 0 2 •4 1-6 ■24 1-82 •29 1-69 •26
1 3 0 1 -2 1 0 3 •6 3-6 •55 3-49 ■55 3-57 •56
\0 2 -1 1/ 0 0 0 0-2 •03 -0-04 -01 002 •00

yo Ayo yi Ayi y»
1 6-389 i 6-386 1

•273 1-727 •270 1-726 •2703
•558 3-558 •558 3-561 •5576
•000 -0-012 -•002 -0-019 - 0030

It is comparatively easy to relax some of the restrictions on the
matrix imposed above. Thus, if Ai is degenerate, the method need not
be changed but it gives only one eigenvector. The other eigenvectors 
can be found by solving the eigenvector equations. Again, if h is 
approximately — Ai, it is easy to show that the vectors will oscillate 
instead of converging. The simplest way of overcoming this difficulty 
is to replace A by

B = Af-kl (4.5.4)
where k is a small positive constant. This matrix has the same eigen­
vectors but its eigenvalues are larger than those of A by k so that the 
degeneracy of modulus is removed. Sometimes the dominant eigen­
value Ai is complex and a more elaborate analysis, which is given in 
many textbooks, is needed. This eventuality can be recognized by an 
oscillation in signs of each component of the v>m-
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The practical difficulty in applying this method is that the con­
vergence is often very slow. This can be understood and overcome by 
using a more detailed analysis. The ith component of vm is just etVm 
and g(o, using (2),

+ (A2/A1)mv2g<a?2/v1g4o?1 + ... ] (4.5.5)
The eigenvalue is estimated from the ratio »

rm = etVm+i/eiVm = Ai[l + (A2^i)mK + ... ] (4.5.6)
where

K = —(1 — A2/Ai)v2e<a;2/vie1a?< (4.5.7)
If A2 is almost the same as ii in modulus, the reason for the slow con­
vergence is clearly that their ratio has to be raised to a very large 
power before it becomes small. There is, however, a more direct way 
of eliminating this term if three successive values of the ratio are known. 
When (6) is broken off after the second term so that it becomes a 
geometrical progression the unknown K can be eliminated so that

and
^2/^1 — m+2 ? m) (4.5.8)

4- A2rm

'll — (rm+2l'm rm+l)l(r m+2 %rm+l 4" rm)

_  T m+2 T m+1
fm+1 rn>

= rm — (Arm^lA^m

(4.5.9)

where the three forms are equivalent. This extrapolation process gives 
not only an accurate estimate of Ai but also an estimate of Z2, though 
this is usually not very accurate. The eigenvector, also, can be estimated 
more accurately by a similar extrapolation and, if ym is a component 
of the renormalized vm, other than the one which is always made unity, 
the extrapolation formula is

ym — (d2/ro)2/d2ym (4.5.10)
In Table 4.1 the extrapolation process (10) is applied to the vectors at 

the stage marked by double rules. The improvement in accuracy is 
shown by the agreement of the normalized vectors. The estimates of 
Aa agree that it is negative, and the oscillation of the components 
confirms this, but the accuracy is very poor.

Despite its concern with the dominant eigenvalue, the power method 
can be adapted to find any eigenvalue. This is done by using, instead of 
the original matrix, some function of it such that the eigenvalue of 
interest becomes the dominant one. The simplest example is the use of

H = A + kI (4.5.11) 
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where, by choice of k, either the largest or the smallest eigenvalue of A 
becomes the one of largest modulus in B. The eigenvectors are the same 
for both A and B and the eigenvalues differ only by the constant k. 
For the internal eigenvalues the function

(4 - M)-i (4.5.12)

make? the eigenvalue nearest to k the largest. The calculation then 
proceeds by solving the equations

(A - kl)vm+1 = vm (4.5.13)

If k is equal to an eigenvalue these equations are singular and cannot be 
solved. Consequently, the equations become ill-conditioned when k is 
close to an eigenvalue and it may be necessary to solve the equations 
to higher accuracy.

4.6 Properties of Eigenvalues

There are a number of properties of the eigenvalues and eigenvectors 
which are useful in extending and improving approximate methods. 
They also provide means whereby the distribution of eigenvalues can 
be estimated rapidly.

The trace rule (c.f. section 4.3) can be applied in various ways. The 
trace of the matrix itself determines the mean of the eigenvalues. The 
trace of the square of the matrix determines their variance. Higher 
moments of the distribution of eigenvalues could also be found hut the 
labour involved increases and is not usually worthwhile. The same 
pair of traces can also be used to deduce the last two eigenvalues when 
all the others are known.

There is another theorem which can be used to locate the eigenvalues 
approximately but rapidly. It states that the eigenvalues of the matrix 
att lie inside the set of circles (in the complex plane)

|« — < X !°«| <4.6.1)

For, if A is an eigenvalue and x a corresponding eigenvector with Xi its 
dominant component, then the (th of the eigenvector equations is

X a‘^k ~ — aujxi (4.6.2)

so that
£ |az*||x*| > |A — aji||xz| (4.6.3)

and, since |xij is dominant, the result follows.
A number of powerful theorems apply only to Hermitian matrices. 
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Chief among these is Rayleigh’s principle which states that, for varying 
V, the ratio

e — rfAv/v'v (4.6.4)
is stationary when » is an eigenvector and e, then, is the eigenvalue. 
In particular, its maximum is the largest eigenvalue Amax and its 
minimum the smallest and hence, for any v,

Amin V^Av/V^V Amax (4.6.5)
The proof of this considers the continuous variation of v with some 
parameter a and then

t de {dv\\ . , , ♦ , .5®vrv — = — (Av — ev) 4- (v'A — ev') — da \da,l da
/dv\i= 2 Re I —) (Av — ev)
\da/ (4.6.6)

so that the necessary and sufficient condition that e should be stationary 
for any such parameter is that

Av — ev (4.6.7)
This result can be used in several ways. By choosing some simple v, for 
example, it is possible to estimate Amin and Amax. A more accurate 
estimate can be found by using a v which contains a number of para­
meters and finding the maximum and minimum value of e attainable 
using these parameters. Another way of using this result is in estimat­
ing eigenvalues from approximate eigenvectors. Thus, when v is close 
to an eigenvector, the stationary property means that the error in v 
affects e only in the second order. When the power method is used for a 
Hermitian matrix, for example, the eigenvalue can be estimated 
much more accurately by using the value of e than by taking the ratio of 
one pair of components.

Some of these results can be extended to more general matrices, but 
only if two vectors u and v are used and the ratio is amended to

e = uAvluv (4.6.8)
Now, if v is an approximation to the eigencolurim ®i, whose eigenvalue 
is Ai, so that

v = 05i + ex (4.6.9)
and ti is an approximation to the eigenrow y i for the same eigenvalue 
so that

w — + ey (4.6.10)
then, because of the orthogonality relations, there is no loss of generality 
in taking

yix - yxr = 0 (4.6.11)
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Equations (9) (10) (11) substituted into (8) produce
e = Ai 4-€^(4 — Ai7)a?/(^ia;i + e2)/®) (4.6.12)

so that the error in e is again of second order. Thus, in the power method, 
in addition to the vectors

vm = Amv0 (4.6.13)
a second series

um = (J)mw0 (4.6.14)
is needed and the estimate

• e = (4.6.15)
has an error of the form

(A2/Ai)2"‘X (4.6.16)
which is more rapidly convergent than (4.5.6).

4.7 Separation Theorem

Another general theorem which has many useful applications is the 
separation theorem. In its simplest form this theorem relates the 
eigenvalues of a matrix to the eigenvalues of another matrix formed by 
bordering it. If the first matrix is B then the second is

(4.7.1)

«2 
0 

bi — A

and it is convenient to assume B to be diagonalized. The eigenvalue 
equation has the form

a — A «i
t>i bi — A
t>2 0 (4.7.2)= 0

and can be expanded as

a — A = uivi(bi — A)-1 + «2V2(6a — A)-1 + ... (4.7.3)
This formula is valuable both in numerical calculation and in general 
argument. It becomes even simpler for a Hermitian matrix since all 
the b{ and all the A are real and

u = v* (4.7.4)

so that the coefficients on the right of (3) are always positive. The 
general result follows that, for a Hermitian matrix, the effect of border­
ing is to push upwards the eigenvalues which are larger than a, to push 
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down those lower than a and to produce an additional eigenvalue in 
the neighbourhood of a. This result is illustrated in Fig. 4.1 which is

Fig. 4.1. Eigenvalues hr of the submatrix separating the matrix eigenvalues Ar. 

typical of any Hermitian matrix. The functions plotted are the two 
sides of (3) and their intersections determine 2.

This theorem is often useful in locating the eigenvalues of a Hermitian 
matrix. If one row and the corresponding column is struck from the 
matrix the minor which remains has eigenvalues which lie between, or 
separate, those of the original matrix. The argument can be repeated 
with this minor and the minor which has two rows and columns removed. 
Eventually only a single diagonal element remains and the result of all 
the inequalities is that the diagonal elements of a matrix must all lie 
between the largest and smallest of the eigenvalues. The eigenvalues 
of the 2x2 minors whose leading diagonal elements are selected from 
the leading diagonal of the original matrix are also easy to calculate. 
The larger of these eigenvalues must lie between the largest and the 
second smallest of the eigenvalues of the original matrix and the smaller 
between its smallest and its second largest. By suitable choice of 
minors estimates of these four extreme eigenvalues can be obtained. 
The inequalities can be visualized from Fig. 4.2. A second way of 
applying these considerations is to use trial vectors rather than minors 
to estimate the eigenvalues. Thus for any vector v, which is normalized 
fr—MAT VOL 4
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nun

Fig. 4.2. Inequalities between the eigenvalues of a matrix and its 
leading minors.

to unity, the value of v^Av lies between the largest and smallest eigen­
values of A. Similarly, two orthonormal vectors u and v define a 
2x2 matrix

iu'Au u^Av\ .. -

whose eigenvalues satisfy the same inequalities as the minors above. 
These uses of the separation theorem can be illustrated using the 

matrix

(
4 1 2 1\

1 2 0 2 | (47 6)
2 0 0 1 1 1 '
12 11/

Inspection of the diagonal elements shows that one eigenvalue is greater 
than 4 and one is negative. The minor matrix 

c 

shows that
Ai > 4.414 > A3 ; 

while the minor
/4
\2 

gives
Ai > 4.828 > A3 ;

) (4.7.7)

A2 > 1.586 > A4 (4.7.8)

and

Ai > 1.618 > A3 ;

o) <4-7-9)

A2 > -0.828 > A4 (4.7.10)

}) (4.7.H)

A2 > -0.618 > A4 (4.7.12)
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so that, in addition to the inequalities implied by numbering,

11 > 4.828 ; 12 > 1.586 ; A3 < 1.618 ; 14 < -0.828
(4.7.13)

More accurate estimates are possible using trial vectors. The vector

v = Vl(2, 1, 1, 1) (4.7.14)
gives the result

It > 5? (4.7.15)
and with the vector

u = y|(_i,2,-1,1) (4.7.16)
gives the 2x2 matrix

if41
T\ 1 17/ (4.7.17)

which yields the inequalities

li > 5.863 ; 12 > 2.423 (4.7.18)
The vector

- = V|(-l,l,2,-l) (4.7.19)
similarly gives

14 < -If (4.7.20)

Thus, with comparatively little effort, reasonable estimates of the 
eigenvalues are obtained. The accurate values are

11 = 5-876 12 = 2-558 13 = -0-048 14 = —1-386 (4.7.21)

4.8 Accuracy of Approximate Eigenvalues

Most methods of calculating eigenvalues produce sequences of 
approximate eigenvalues which converge to the true eigenvalue from 
one side only. This makes it difficult to judge, during the calculation, 
the accuracy being attained. The information required can be obtained, 
however, with very little extra computation.

The vector
Av — Av (4.8.1)

vanishes, according to the definitions, only when v is an eigencolumn 
and 1 its eigenvalue. The accuracy of an approximate v and 1 can then 
be measured by the length of this vector in relation to the length of v. 
This is written as

a2 = \Av — lt>|a/|®|2 = (Av — Av)r(Av — Av)/vfv (4.8.2) 
and so is also the mean square of the residuals of the eigenvector 
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equations. Not only does a2 give a measure of the accuracy of the 
approximation, it also gives a method of improving the accuracy of v or 
A by minimization. The practical advantages of minimizing a2 instead 
of using the Rayleigh ratio are that it applies equally well for any 
eigenvector and does not favour the largest or smallest and that its 
minimum value, zero, is known in advance. For a fixed v, the value of 
A which minimizes a2 can easily be shown to be

A = v'Av/v'v (4.8.3)

and so the Rayleigh ratio has the property of minimizing a2 even for 
non-Hermitian matrices or intermediate eigenvalues where its more 
familiar properties are lost. When A satisfies (3), the value of a2 can be 
written as

a2 — v^A^Av/v^v — A*A
= |A»|2/|c|2 - |Aj2 (4.8.4)

For a Hermitian matrix, the significance of a2 as a measure of 
accuracy can be put into a more precise form. If the vector v is ex­
panded in terms of the eigenvectors of A as

= £ vtxt (4.8.5)
»

then
Av — Ac — £ (A< — A)t><or< (4.8.6)

»
where A< are the eigenvalues of A. It follows that

- Av|2 = y |A< - A|2|t)<|2 = |Ar - A|2 y N2 +

+ W<-*I2- |Ar-A|2}|t><|» (4.8.7)
t

where Ar is the eigenvalue nearest to A, the one for which |A< — A| is 
smallest. Since the term in braces in (7) is always positive it is always 
true that

|Ac - Ac|2 > |A, - A|2|c|2 (4.8.8)
and, hence, that

■ |Ar - A| < a (4.8.9)

Thus, for a Hermitian matrix, a true eigenvalue must lie within a of 
the approximate one. This estimate of the accuracy of A is useful only 
when A becomes fairly accurate since a is very sensitive to errors. It can 
become especially important in proving the distinctness of close 
eigenvalues.
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4.9 The Jacobi Method

Two features common to most methods of calculating eigenvalues 
and eigenvectors are that they deal with the eigenvalues one at a time 
and that the basic method is modified from time to time, in accordance 
with the judgement of the computer, in order to improve convergence. 
The first feature means that the determination of all the eigenvalues 
may be slow, and, in some methods, subject to increasing rounding-off 
error. The second feature means that these methods are not readily 
programmed for electronic computers. The Jacobi, or rotation, method 
is in sharp contrast to this since, in it, all the eigenvalues and eigenvectors 
are calculated simultaneously by a simple uniform process which is 
easily programmed. On the other hand, for hand-computation, it is too 
laborious to be a good method, particularly if only a few eigenvalues and 
eigenvectors are required. It is most easily applied to a real symmetric 
matrix though it can be extended to some other types.

In the Jacobi method the eigenvector problem is regarded as one of 
diagonalizing a matrix. A real symmetric matrix A can be brought to 
diagonal form I) by means of an orthogonal matrix O such that

Gao = d (4.9.i)

(c.f. 4.3.10). The Jacobi method achieves this diagonalization by 
expressing O as a product of orthogonal matrices since the product of 
orthogonal matrices is an orthogonal matrix. Each of these matrices 
makes one element on each side of the diagonal zero though, of course, 
later matrices may make the element non zero again. If the off- 
diagonal element is an then the corresponding matrix is the improper 
rotation matrix

1
cos 0 ... sin 0

1
Ojfc =

where
tan 20 = 2a«t/(a« — a**) 

1
sin 0 ... — cos 0

1

(4.9.2)

(4.9.3)
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i.e. all the off-diagonal elements vanish except the (ife)th and the (A-t)th 
and the diagonal elements are unity except the ith and the fcth. The 
resulting product is now

an ••• bu bik ... ain

OikAOtk —
bu ... ba ... 0 ... btn

bki ... 0 ... bkk ■■■ bkn

®nl ... bnt ... bnk ... dnn

(4.9.4)

i.e. the elements of A are unchanged except in the ith and Arth rows and 
columns which become, for r i, k,

brt = art cos 0 + ark sin 0
brk — dri sin 0 — drk COS 0
6<r = a«r cos 0 + dkr sin 0
bkr — dir sin 0 — dkr cos 0
bu — du cos2 0 -|- dtk sin 20 dkk sin2 0 

bkk = du sin2 0 — dik sin 20 + dkk cos2 0 
btk ~ bkt — 0

Now, since
+ ^rk = + d2rk

bit + bkk — aii + akk + ‘̂ aik

(4.9.5)

(4.9.6)

the sum of the squares of all the elements in the matrix is unchanged by 
the transformation (c.f. 4.3.23) but the sum of the squares of the diagonal 
elements alone has increased. Thus, after each transformation, the 
sum of the squares of the off-diagonal elements is smaller and, if the 
process is repeated, the sum must eventually become zero so that the 
matrix is diagonal. The orthogonal matrix is then the product

o=n (4-9-7)
«k

and the columns of this are the eigencolumns.
In practice, this is similar to an iteration method and the basic step 

of eliminating an element has to be repeated several times for all the 
off-diagonal elements before the result converges to a diagonal matrix. 
The most rapid convergence is obtained by eliminating the elements in 
order of their magnitude since this reduces the sum of squares of the 
off-diagonal elements to the greatest extent. This selection is possible 
in hand-calculation but is slow on a machine and it is more usual, 
therefore, to treat the elements in turn.
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There is one instance where the Jacobi method is useful in hand 
calculation. This is in applying a preliminary transformation to a 
matrix to remove some large off-diagonal elements and so improve the 
convergence of the method used to complete the solution. The easiest 
example is when and a** are equal since 0 = 45° and the new 
elements are

bri = bir = + ®rt)
brk = bkr = Vi(ar< — drk) 
bn — att + a(k

bkk — du — dtk

(4.9.8)

4.10 The Partition Method

The partition method is a method of finding eigenvalues and eigen­
vectors one by one, which is suitable both for machine and hand com­
putation. It has the advantages over the power method that its con­
vergence depends on the approximate eigenvalues, rather than the 
approximate eigenvectors, and so is usually more rapid, and that it 
does not need to be modified to yield the internal eigenvalues. It is 
simplest when applied to a real symmetric matrix, since all the numbers 
are then real, but it can be applied with slight modifications to any 
matrix.

The essential step in the method is the partitioning of the matrix into 
four parts so that the first part a is a single element

4 - (“ j)

The convergence will be more rapid if the matrix is rearranged so that a 
is close to the eigenvalue to be calculated but the process will converge 
without this rearrangement. It is even possible to find all the eigenvalues 
without adjusting the partitioning though it is more efficient to vary it. 
The eigenvector is partitioned in a way which conforms to this and is 
normalized so that the first component is unity, i.e.

T
u (4.10.2)

The eigenvector equations are then

(d c\/l\ /1\ 
\c Bf\u) \uj (4.10.3)
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or, in separated form,

(B — el)u = —c
e = a cu

(4.10.4)

(4.10.5)
In practice, the method begins with an estimate eo of the eigenvalue 

required, which need not be the dominant one, and then the inhomo­
geneous equations,

(B — eol)u = — c (4.10.6)

are solved for the corresponding approximation to u. From this 
approximate eigenvector the new estimate of the eigenvalue is found 
using the Rayleigh ratio, since this minimizes a2,

Ci = (a + cu + eouu)/(l + tttt) 
and the corresponding variance is

a2 = uu(a + cu — eo)2/(l + uu)2

(4.10.7)

(4.10.8)

The rapid convergence of this method is due primarily to the fact that 
ci is a much better approximation to the eigenvalue than (5). In order 
that (6) should be soluble by the simple methods it is necessary that Co 
should not be an eigenvalue of B and the convergence improves as eo 
becomes further from these eigenvalues since the equations are less ill- 
conditioned and w is smaller. The condition that, in the partitioning, a 
should be close to eo helps to meet this requirement. The convergence 
can be studied further using the separation theorem.

The calculation proceeds iteratively. The new estimate ei leads to a 
better estimate of u and, hence, to a better eigenvalue. This is repeated 
until the accuracy, judged from u2, is sufficient. If the changes in eo 
are small and the equations (6) not ill conditioned it is sufficient to 
treat the change in eo as giving rise to a residual (c.f. 3.4.7) and solve 
for the change in u.

To illustrate the practical form of the method, two eigenvalues of the 
matrix

(4.10.9)

will be calculated. The largest eigenvalue is estimated from the leading 
2x2 minor to be larger than 4-4. This suggests trying e0 = 4-4 and 
the rest of the calculation is shown in Table 4.2. The next largest
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Table 4.2

The partition method for the largest eigenvalue

— 2-4 0 1 -1 — 2-4
B—eJ, —c 0 —3-4 1 0 — 2-4

1 1 -4-4 0 — 2-4

-2-4 0 1 -1 — 2-4
-3-4 1 0 -2-4

-0-4167 -0-2941 — 3-6892 -0-4167 — 4-1059

ei = 4-4518 
c - 0-0248

u = (0-4637, 0-0332, 0-1129)
Co = 4-4
a =9 4

cu = 0-4637
uu = 0-2289
Ifil = 0-4784

-2-45 0 1 -1 — 2-45
B—eJ, —c 0 — 3-45 1 0 — 2-45

1 1 — 4-45 0 — 2-45

— 2-45 0 1 -1 — 2-45

0 L -3-45 1 0 — 2-45
-0-40816 -0-28986 — 3-75198 -0-40816 — 4-16014

u = (0-45257, 0-03153, 0-10879)
«o = 4-45
a = 4

cu = 0-45231
flu = 0-217649
|u| = 0-46653 
ei = 4-451897

<r = 0-000885

eigenvalue is probably around 2 since this is the next largest diagonal 
element. With a — 2 the new partitioning is

(
2
T
0
1

and the calculation starting with eo = 2 is shown in Table 4.3.

1 0 1
4
0
0

0
1
0,

(4.10.10)0
1
1
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The partition method for an inner eigenvalue

B—e0I, —c

Table 4.3

2 0 0 -1 1 1-85 0 0 -1 •85
0 -1 1 0 0 0 - 1-15 1 0 - -15
0 1 -2 -1 -2 0 1 — 2-15 -1 — 2-15

2 0 0 -1 1 1-85 0 0 -1 •85
I -1 1 0 0 on - 1-15 1 0 - -15
0 -1 -1 -1 -2 0 - 0-8696 — 1-2804 -1 -2-2804

0-6791, 0-7810)u = ( -i 1 1) -0-5405,
Co S3 2 e0 = 2-15
a =5 2 a = 2

cu = 0-5 cu = 0-2405
iiu = 2-25 uu = 1-3633
l“l = 1-5 |u| = 1-1676
ei = 2-1539 ei = 2-1883

<y = 0-2308 a = 0-0447

If the convergence to the eigenvalue should be slow it can be improved 
by an extrapolation process. The extrapolated value can be shown to be 

e = ei_| + |{l + 4(e2_ei)}i (4.10.11)
where ei and 62 are consecutive values of the Rayleigh ratio.

In hand computation and for the extreme eigenvalues there is a 
modification of the method which is sometimes useful. It has the 
advantage of improving the approximate eigenvalue but, unfortunately, 
the eigenvector is less accurate and cr2 is larger. The method above is 
interrupted after u has been calculated and a trial vector of the form

r = x (4.10.12)

is considered. The stationary values of the Rayleigh ratio, as x and y 
vary, are given by

a — e cu
cu uu(e0 — e) — cu

(4.10.13)= 0

All the terms in this quadratic are already known and the two values of 
e are easily calculated. Since the trial eigenvector has an additional 
degree of freedom over that used in the standard method the estimate 
of an extreme eigenvalue must be improved (c.f. 4.7.5) but an internal 
eigenvalue may behave quite differently. The second solution obtained 
from the quadratic may be used, in accordance with the separation 
theorem, as a limit to the next nearest eigenvalue.
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4.11 The Convergence of Matrix Series

In section 4.3 a function of a matrix was defined generally as
/M) = £/(Ar)Pr (4.11.1)

r

where P, is the projection operator associated with Ar. This definition 
simplifies considerably the discussion of the convergence of matrix 
series and enables more precise tests to be given.

From (1) it follows that f(A) is defined if and only if /(Ar) exists for 
all the eigenvalues. For a function defined as a series this implies that 
all the Ar must lie inside the circle of convergence of the series. Thus, 
for a binomial series such as

(1 + x)i = 1 + jx - |x2 + fa* - ... (4.11.2)
the circle of convergence is

|x| < 1 (4.11.3)
and consequently the matrix series

(I+A)i = I+ M2+ tWI3- - (4.11.4)
will converge if all the eigenvalues satisfy

|Ar| < 1 (4.11.5)
If this series is used to find Bi by writing

B = Z+A (4.11.6),
then the eigenvalues jzr of B will have to satisfy

|/Zr-l|<l (4-ll-7)
for (4) to converge. A better procedure is to write

kB = 1+ A (4.11.8)
so that the condition becomes

|ipr-l|<l (4.11.9)
and now, if k has the same sign as /zmax and

|*| C k'axl <411-10)
where /zmax is the eigenvalue whose modulus is largest, this condition is 
satisfied for the largest eigenvalues. The condition is violated, however, 
if one fir vanishes or if one is of the opposite sign to i.e. B must be 
positive definite or negative definite. Even a rough estimate of p max is 
sufficient to give an acceptable k and so the inequality (4.6.1), or the 
power method, can be used to give an estimated pmax-
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If x is real then the aeries (2) converges to the positive square root. 
Similarly the series (4) for a real symmetric matrix converges to the 
square root matrix all of whose eigenvalues are positive. If the whole 
family of square roots are needed it is simpler to use

= (4.11.11)
r

and since there is ambiguity of sign for each fir there are 2" square root 
matrices. If there is degeneracy among the the number becomes 
infinite (see 13, p. 85).

4.12 Commuting Matrices

When two matrices commute, relations are set up between their 
eigenvectors. A full analysis of these relations is most easily given using 
algebra theory but some of the results can be found by direct methods. 
These restricted results are discussed here and used to simplify numerical 
calculation.

If A is a non-degenerate eigenvalue of A, then the eigenvector equa­
tions,

Ax = Xx (4.12.1)

have a solution x which is unique except for a normalizing factor. C 
is a matrix which commutes with A, so that

CA = AC (4.12.2)

and hence, using (1),

CAx = A(Cx) = X(Cx) (4.12.3)
Thus, if Cx does not vanish, it must be an eigenvector of A belonging to 
A and so a multiple of x i.e.

Cx = fix (4.12.4)

This means that x is a simultaneous eigenvector of A and C. The 
eigenvalue g may or may not be degenerate. The converse, that an 
eigenvector of C belonging to a non-degenerate eigenvalue is a simulta­
neous eigenvector, follows by interchanging A and C. If A is degenerate 
the situation becomes complicated but, if A is a normal matrix, it is 
possible to find eigenvectors which are simultaneous eigenvectors.

This theorem can be applied in calculating the eigenvectors of a 
matrix A if it is possible to find a matrix C which commutes with A 
(other than C = I) and is easier to diagonalize. The simplest example is 
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when C is a permutation matrix. A matrix which is left invariant when 
two rows and the corresponding two columns are permuted commutes 
with the permutation matrix. Thus, for example,

A =
/6 1 3 2\
UU <—)

\2 4 2 0/
commutes with

/0 0 1 0\

C = i o«!)

^0 0 0 1/

and C has a triply degenerate eigenvalue, 1, and a non-degenerate one, 
— 1. The simultaneous eigenvector corresponds to the latter and is

i = (l 0 -1 0) (4.12.7)

Another illustration of the theorem involves the projection operators 
of section 4.3. If y is the eigenrow of .1 belonging to A then

P —■ xy (4.12.8)

and, using the eigenvalue equations,
AP — /xy = xyA — PA (4.12.9)

Thus P commutes with A and, since its rank is one, its eigenvalues are 
all zero except one which is unity. The eigenvector corresponding to 
unity is therefore a simultaneous eigenvector.

4.13 C.irculants and Pseudo-circulants

There is one type of matrix which occurs so frequently in the theory of 
hydrocarbons and also, in generalized form, in the theory of crystals that 
it deserves special mention. Very fortunately, it is possible to find all 
the eigenvectors and eigenvalues of these matrices easily. These are 
the matrices known as circulants and have the form

i.e. the elements are equal in hues parallel to the leading diagonal and
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circulate from the end back to the beginning. This circulation ensures 
that A commutes with the permutation matrix C which permutes the 
elements in cyclic order viz.

(4.13.2)

In fact the circulant can be expressed immediately as a polynomial 
in C

A^al + bC + cC2 + ... (4.13.3)
The eigenvalue equation for C has the simple form

p" = 1 (4.13.4)
where n is the order of the matrix, and so its eigenvalues are the nth 
roots of unity, each non-degenerate. It is convenient to use

eifc (4.13.5)
as a typical eigenvalue of the typical matrix and eventually to put

, _ (0, ± 2n/n, ±4n/n, ... , n if n even . . „
(0, ± 2n/n, ±4n/n, ... , ±(n — l)n/n if n odd ’ '

The eigencolumn corresponding to this is
v(k) = (1, e1*, e2“, ... ) (4.13.7)

and the eigenrow is
ii(k) = (1, e-‘* e-2,t, ... ) (4.13.8)

Thus, the matrix A has the typical eigenvalue

k(k) = a 6 eu + c e21* + ... (4.13.9)

- g-

which is a Fourier series in exponential form. Often A is also real and 
symmetric so that

A = al + b(C 4- C-1) + c(C’2 + C~2) + ... (4.13.10)
and its eigenvalue is

k(k) = a + 2b cos k + 2c cos 2k + ... (4.13.11)
These eigenvalues are doubly degenerate, with eigencolumns v(k) and 
v(—k), except when k = 0 or n.

The definition of a circulant can be generalized to include matrices 
which can be partitioned so that the blocks form a circulant, e.g.
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A 
Z

B
AM =

C ... Z 
B ...

B C

The typical eigencolumn is now written as

v(k) =

iv 
eikw 
e21kw

(4.13.12)

(4.13.13)

where w(k) is a subvector. The eigenvector equation reduces to

(A + Be1* + C e21* + ... )w{k) = X(k)w{k) (4.13.14) 

and this has to be solved by some appropriate method for the whole 
range of values of k.

The same basic ideas can be adapted to deal with pseudo-circulants. 
These are matrices, which occur for chain rather than cyclic molecules, 
and have the form

0 
b

b
a

a 
b

... 0'
0 ... 0 (4.13.15)

0 b a

More general possibilities can be included by considering a polynomial 
in A but the elements are no longer equal in diagonal lines. Since this 
matrix A can be considered as a block partitioned out of a larger 
circulant it is not surprising that the eigenvalues have the same typical 
form

(4.13.17)

X(k) — a + 26 cos k (4.13.16)
The eigenvectors are, however, somewhat changed. The first of the 
eigenvector equations is

(a — A)vi + bvz = 0
whereas, for the circulant, it would be

+ (a — 2)«i + = 0 (4.13.18) 

and to make these conform vq has to be zero. Similarly the final 
equation conforms if vn+i is also zero. Thus the pseudo-circulant 
eigenvector equations become circulant ones when these two conditions 
are satisfied. To satisfy the first condition the degeneracy between the
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v(k) and v(—k) of the circulant ia used and the appropriate combination 
is obviously

(
sin k \
“n2*| (4.13.19)
am 3fc I

The second condition will be satisfied if
sin (n + \)k = 0 (4.13.20)

so that k takes the values

k = n/(n + 1), 2n/(n + 1), ... , 2nn/(n + 1) (4.13.21)

and the eigenvalues are A(«7t/(n 4-1)) and are non-degenerate.

EXERCISES

1. Show that the eigenvalue* and eigenvector* of

/I 2 0\
12 3 2)
\0 2 1/

can be found using the direct methods of 4-4.

2. Show that the eigenvalues of an antihermitian matrix are pure imaginariee and 
those of a unitary matrix have unit modulus. How are their eigenrows and eigen- 
columns related?

3. Verify that the matrix 
eigenvector.

has a doubly degenerate eigenvalue but only one

4. Find four matrices whose squares are each c :)•
5. Verify that A » 0 is an eigenvalue of

/ 1 1
A = I 0 2 

\-l 0

and use the traces of A and A* to find the remaining eigenvalues.

6. A real symmetric matrix A is defined as positive definite if iAx > 0 for any real x. 
Show (i) that all its eigenvalues Ar > 0 (ii) that if a matrix has all its eigenvalues 
A, > 0 it is positive definite.

7. Use the power method to find the largest eigenvalue and eigenvector of

(
5 6 2 2\ /63 16 23 7\
6 10 3 31 16 38 12 4l
2 3 12 1s 1 23 12 49 71

2 3 2 1/ \ 7 4 7 33/

8. Find the smallest eigenvalue of the matrix (4.7.6) using the power method.
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9. Solve graphically, for a number of values of x in the range — I to 3,

x - A 1 2 1
1 2 - A 0 0
2 0 1 - A 0
1 0 0 -A

10. Diagonalize, using the Jacobi method,

/2V2 V2 1\
V2 2<2 1)

\ 1 1 3V'2/

11. Find the second largest eigenvalue of the matrix (4.7.6) by the partition method.

12. Use (4.11.1) to prove that a normal matrix satisfies its own eigenvalue equation. 
(Cayley-Hamilton theorem.)

13. Show that the matrix Q has the square roots ± j) and ± J —cos fl)

14. Verify that C commutes with A and, hence, find all the eigenvalues of A, where

/ 0 1 -1\ /-2 -1 6
C = 1 0 -1 , A = | _1 1 9

\-l -1 0/ \ 6 9 6.

15. By showing that it is a pseudo-circulant, find all the eigenvalues of

3 3 1 0 0\ 
3 4 3 1 01
1 3 4 3 1 1 
01343/ 
.0 0 1 3 3/

16. Find the eigenvalues of the circulant

'0 a 0 ...
a 0 b 0 ...
0 b 0 a 0

and discuss the changes os b approaches a.

17. Generalized eigenvalues A and eigenvectors * can be defined as solutions of

(A - AS)x - 0
for given matrices A and S. If both A and S are Hermitian, and orthogonality 
of * and y now moans

xtSy = 0
prove that Theorem B still applies.

18. A matrix has the partitioned form A
with real elements. By considering A2, or otherwise, prove that

(i) The non-zero eigenvalues occur in pairs as ±A
(ii) A2 may be determined from either BB or BB

(iii) the eigenvectors are determined by the eigenvectors of fiB or B6
(iv) eigenvectors which have A — 0 have many vanishing components
(v) orthogonal matrices O and P can be found so that OBP is diagonal.

where B is a rectangular matrix

7—MAT VOL 4
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19. If matrices C and A satisfy CA = —AC + kC, for constant k, prove that
(i) the non zero eigenvalues occur in pairs as \k ± A

(ii) C and A2 have simultaneous eigenvectors
(iii) one example is A — ; C =

20. A principal vector is defined as a vector v satisfying

(A — AI)r » = 0

for an eigenvalue A and some integer r. Find all the principal columns and principal 
rows of

/2 0 0\
A = I 1 2 O)

\0 1 2/

21. A matrix is nilpotent if A' = 0 for an integer r other than zero. Form the direct 
products of the principal columns and principal rows in 20 and show that some 
are nilpotent. Express A as a sum of these direct products.

22. A stochastic matrix ptj has all its elements real and positive and

all/
»

Prove that
(i) it has 1 as an eigenvalue

(ii) all its eigenvalues tr satisfy 0 < |rr | < 1
(iii) if vn — P"vo then vn tends to a limit independent of vo in general but that, 

if it = 1 is degenerate, the limit depends on vo and, if another eigenvalue has 
|rr | = 1, vn may oscillate.

23. If a matrix has distinct eigenvalues, prove that the sum of its projection operators 
is the unit matrix and, hence, that an arbitrary column can be expanded as a linear 
combination of eigencolumns.



CHAPTER 5

TENSOR ALGEBRA

5.1 Introduction

Tensor algebra is needed in two different types of chemical problem. 
The first and most obvious illustration of its necessity is that many 
molecular properties are tensors. Thus, the dipole moment of a molecule 
behaves as a vector and is treated by familiar vector techniques, but its 
quadrupole and octupole moments, its polarizability and the nuclear 
quadrupole moments are tensors and need more elaborate techniques. 
The second point where tensor algebra is needed is in the theory of 
atomic and molecular wavefunctions since these are tensors. The 
problem of classifying wavefunctions requires group theory for a full 
discussion but a preliminary discussion can be given in terms of the 
transformation properties of tensors.

It is convenient, in this chapter, to return to the more general non- 
orthogonal bases of the first chapter. This means that contra variant 
and covariant components are distinct and are denoted by affices and 
suffices. The convenience, which compensates for this extra complica­
tion, is that the transformation properties of the components can all be 
summed up in the conventions governing the use of indices.

5.2 Tensors

Entities whose components have one or two indices have been used 
freely in earlier chapters and, in the first instance, tensors are the 
generalization of these to any number of indices. Thus a vector becomes 
a tensor of the first order and a matrix one of the second order. A third 
order tensor will have three indices and its components can be imagined 
as a three-dimensional array of numbers. Higher order tensors need 
more indices and more imagination but are not usually more difficult to 
manipulate since it is only certain cross-sections of the array which are 
needed at any one time. For completeness a scalar quantity is con­
sidered as a zero-order tensor.

87



88 MATRICES AND TENSORS

Much more is included in the idea of a tensor than just the number of 
indices possessed by its components. In discussing vectors it was 
necessary to distinguish between several different entities which are all, 
at times, referred to as vectors. Thus the abstract vector x is dis­
tinguished from its components, whether written as a column x, or 
individually as The first is, in geometrical terms, a line segment 
directed from the origin or, in physical terms, a displacement, a velocity, 
a force etc. whereas the second is a set of numbers relating it to some 
given basic set of vectors e<. On the other hand, once the basic set is 
specified a knowledge of the components, xt, is equivalent to a know­
ledge of x so that the components are legitimately called the vector. 
The other distinction drawn earlier was between the contravariant 
components xl and the covariant components of the same vector. 
Except when the basis vectors are orthonormal, these are different 
sets of numbers which relate the vector to the basis in different ways 
and transform according to different equations when the basis is trans­
formed. Similar distinctions must now be made for tensors of any order.

The full definition of a tensor is most conveniently given in terms of 
its components and their transformation properties when the basis is 
transformed from the original to the new e«, where

e< = tikek (5.2.1)
An sth order tensor is defined to be an entity with ns components which 
transform, when the basis is subject to the arbitrary (but non-singular) 
transformation t*, as

•• •- «&:;• (s.2.2)
with

Tft = 4 (5.2.3)
as in (1.10.13). If there are r affices and (s — r) suffices these x*".’." are 
the r fold contravariant components of the tensor. The arithmetical 
properties of tensors follow immediately from this definition. Thus, 
components of the same type (e.g. r fold contravariant and (s — r) fold 
covariant) can be added, or subtracted, each to each to give the com­
ponents of a new tensor of the same type. Similarly, multiplication of 
afi the components of a tensor by the same scalar will not disrupt the 
transformation equations and so will produce a new tensor. In particular 
there is always a zero tensor of any order and all of its components are 
zero in every basis system. The final result is that, as far as addition and 
multiplication by a scalar are concerned, tensors of order s behave like 
vectors in a space of nl dimensions.
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A more elaborate operation is the product of two tensors, not neces­
sarily of the same order. This product is formed by multiplying a 
component of one by a component of another in all possible pairs and 
is sometimes called the direct product, the Kronecker product or the 
tensor product. The product of and y%, for example, is

= zfafl (5-2.4)
It is easily shown, using the transformation equations, that the product 
transforms as a tensor whose order is the sum of the orders of the two 
original tensors.

The other operation needed in tensor algebra is contraction. It is 
described formally as the identification of two indices of opposite type 
but, because of the summation convention, this implies a sum over the 
corresponding components. Contraction produces a tensor whose order 
is reduced by two; for, if the tensor is - with the transformation 
equation (2), its contraction satisfies

,K o(o.Z.o)= «...
since

Ttf = df (5.2.6)

Equation (5) is the transformation law for a tensor which is (r — 1) fold 
contravariant and (s — r — 1 ) fold covariant.

These two operations, of multiplication and contraction, include and 
generalize many of the operations used earlier. The direct product of 
two vectors, whose components are a< and bi, is in agreement with
(2.8.1) and the contraction of this second order tensor is the scalar 
product a(b*.

Similarly the matrix product AB is the contraction of the direct 
product

atjb^ (5.2.7)

while modifications such as Ab need no new symbols but become
ajibi^ (5.2.8)

The operation of taking the trace of a matrix is also a contraction,
Tr A = a? (5.2.9)

and this enables a series of invariants, i.e. quantities independent of the 
basis, to be written down viz.

aj ; aiaj ; ; ... (5.2.10)
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and these are the traces of powers of A already used in several connec­
tions. The fact that some of these relations involve one type of com­
ponent and some a different type shows that the generalization from an 
orthonormal basis to a more general one will be easy only if one type of 
component can be deduced from another type of component of the same 
tensor.

5.3 Polyadics

Some insight into the nature of a tensor itself, as distinct from its 
components, can be gained by considering examples in which tensors 
are constructed from vectors. The relation between a vector and its 
components is

a = (5.3.1)

where e4 are the basis vectors. The direct product of two vectors is 
written

ab = (a^blej) = (5.3.2)
so that the components of the second order tensor have the same relation 
to the products e<e} as the components of a first order tensor have to e<. 
This product of two basis vectors is just their juxtaposition and is 
called a dyad. An expression for a general second order tensor in terms 
of these dyads,

A = aUeiej (5.3.3)
is called a dyadic. Since this involves the double contraction of the 
contravariant components into the two covariant basis vectors the 
result is invariant and A is the tensor in a form independent of the basis. 
The nature of the dyad is further illuminated by considering its 
scalar product into a vector. Since the scalar product means that

(e4e;). a = e^ej. a) = a}et (5.3.4)
the dyad operates on the vector to produce another vector. The simplest 
dyads to interpret are the mixed dyads e{ej since, for i — j, they are 
projection operators

(e^j). (e*e{) — e((e[. e‘)e< = e’e; (no summation) (5,3.5) 
and, for i j, nilpotents (c.f. p. 86)

(e‘e;) . (e'ej) = e‘(ej . e‘)e; = 0 (5.3.6)

Thus the second order tensor is an operator which acts on vectors to 
produce other vectors and does so in a linear way. Physically, such
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operators include rotations, reflections, projections and homogeneous 
strains. The second order tensor is distinguished by the fact that it can 
also have a scalar product with two vectors. This can be denoted either 
by placing the vectors on either side as

a.A.b (5.3.7)

or on one side with a colon notation

A: (bo) (5.3.8)

This notation makes the order of the vectors in a dyadic important 
since it determines which vectors appear in these scalar products. The 
convention above implies that

a . A . b = A : (ba) = (ba): A (5.3.9)

but that these differ from

b . A . a = A : (ab) — (ab) : A (5.3.10)

It is also possible to take the double scalar product of two second order 
tensors

A:B (5.3.11)

One use of this double scalar product is to relate the different types 
of component of a second order tensor. The components of a tensor 
are found by a double scalar product into the appropriate dyads just 
as the vector components can be found by a single scalar product. 
Thus, from (5) and the relation between the reciprocal vectors,

A : (eres) — aW(e«e^): (eres) = a^(et. e")(e;. er) = asr (5.3.12) 
similarly, by defining

a,r = A: (ere«) = a'^ejej): (eres) = ab(e<. e,)(e,. er) 3 ig.
— airgia

the formula for lowering an index is deduced. This can be generalized 
to give

air = (5.3.14)
In a parallel way the scalar products gU can be used to raise an index 
as in the equation

a3r = asigir (5.3.15)

The particular second order tensor defined by the dyadic
/ = e<e, (5.3.16)
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is known as the unit tensor because of its property of leaving a vector 
unchanged, since

I. a = e‘(e< . a) = e<a( = a (5.3.17)

The mixed components of I are <5^, its covariant components git and 
its contravariant components gik.

Most of these considerations are readily generalized to tensors of 
arbitrary order. The tensor X, whose components x1̂ - are known, is 
defined by the polyadicf

X = e°e*e« ••• ejeroen ... (5.3.18)

In a polyad the order of the vectors is significant only when the scalar 
products are considered and any of its basis vectors can be multiplied 
into another vector. A possible notation to overcome this difficulty is 
to write the vector below the appropriate part of the polyad with the 
scalar product dot between. Thus (12) becomes

A
•• = a‘r (5.3.19)

e»er

and the three possible products of a triad and a vector are
ere’e( = are’et; ere’e( = a*eret; ere,e< = atCe1 (5.3.20)
• • •
a a a

By repeating the argument above, it can be shown that the indices of 
tensor components can always be lowered by contraction into ga and 
raised by contraction into gik. One function of these higher order tensors 
is, then, to operate on vectors to yield tensors. A third order tensor, as 
in (20), acts on a vector to produce a second order tensor and would be 
needed, for example, to calculate the change in a molecular quadrupole 
moment due to a small displacement of a nucleus. More generally, 
tensors operate on tensors to give tensors. The most general linear 
relation between two second order tensors, for example, is a fourth 
order tensor.

5.4 Symmetry Properties of Tensors

The components of a tensor are said to be symmetric with respect to 
a pair of indices of the same type if they are unchanged when the indices 

f It is useful, in manuscript, to denote the vectors by one underline and the rth order 
tensor by r underlines. The number of underlines should then balance on both sides of 
an equation except when soe’ar products are involved.
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are interchanged. The components a^k are symmetric with respect to 
the first pair of indices when

atjk = O)tk (5.4.1)
It can easily be shown that when this relation holds in one basis system 
it will be preserved on transforming to any other basis system. In 
particular it will hold when the indices are raised or lowered simulta­
neously so that (1) implies

(5.4.2) 

This means that symmetry is a property of the tensor itself.
In a similar way a tensor is defined to be skew-symmetric or skew if, 

when two indices of the same type are interchanged, its components are 
equal in magnitude but opposite in sign. Thus B is skew with respect 
to its first pair of indices when

btjk — — bjtk (5.4.3)
This property is also preserved on transformation of basis.

These symmetry properties are particularly important for second 
Order tensors since these have only one pair of indices. Any second 
order tensor can be expressed as the sum of a symmetric tensor and a 
skew tensor. This is proved by constructing the two tensors for, if A has 
components aa, its symmetric part is

btk = i(l + -Pi2)a<* = i(«<t + <h<) (5.4.4)
its skew part

c<k = i(l — Pi2)®<* = i(a<* — (5.4.5)
where P12 is the operation of permuting the indices, and clearly

cuk = btk + C(k (5.4.6)
The operators |(1 ± ^12) are projection operators for the symmetrical 
and skew parts respectively. Since P12 acts on a second order tensor to 
produce another of second order it must be a fourth order tensor. The 
unusual nature of this tensor is shown by considering the tetrad which 
is the direct product of two /

T = erere’e4 = II (5.4.7)

T is the isotropic fourth order tensor, in the same sense as I is the iso­
tropic second one, namely that its mixed components have the same 
numerical value in all coordinate systems. These components are

(5.4.8)



94 MATRICES AND TENSORS

and so T is symmetrical in its first pair of indices and also in its second 
pair. T can operate on a second order tensor, e.g. etek to produce another 
tensor in three and only three different ways which are

(i) erer eses — erer

(ii)
etek

erer eses = etek

(iii)

e< et
eref eset = eke(

ek d
From these it follows that, for a general tensor with components aik, the 
three isotropic possibilities produce,

(i) (ah)/
(ii) aikeieic

(hi) aiktkd

The first of these is the unit tensor with the trace of A as coefficient, the 
second is just A itself and the third is just Pn acting on A. The fact 
that the most general isotropic relation is a linear combination of these 
three operators is used in the theory of the elastic constants and else­
where.

The symmetry properties of third order tensors are more complicated. 
A third order tensor which is symmetric with respect to each pair of 
indices is called fully symmetric, and fully skew if it is similarly skew. 
The fully symmetric part of an arbitrary tensor a^t is

btflc = (1 4~ P12 4~ P 23 4* -P3I + -P123 + Pl32)d{jk 
= (aijk 4* a]ik + dikj + dkjl + (Ljki 4- aktj)

and the fully skew part is
Cijk — (1 — P12 ~ P23 — P31 4' ^123 4- P132)Uijk

— (ttijk ~ ttjlk — dikj — Ukji 4" ajki 4- ^kij)

but four other types are needed before atjk can be expressed as their 
sum. A full discussion requires the theory of the permutation group.

5.5 Rotation of Axes

Many different kinds of transformation are included in the trans­
formation of basis vectors envisaged in the transformation of a tensor , 
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and described by the matrix Among these one kind is of special 
significance. It is distinguished by the fact that it leaves the relative 
angles and lengths of the basis vectors unaltered and so may be regarded 
as a rotation of the basis though in a generalized sense. These angles 
and lengths are summed up in the metric matrix gn and the condition 
that they should be left invariant by t(r is that

9ik = (5-5-1)

When the basis system is orthonormal the metric is

g<k = <>ik (5.5.2)

and the condition that the transformed basis should also be orthonormal 
is

Sik = (5.5.3)

This means that tf is an orthogonal matrix. By taking determinants of 
(3), it follows that

= (5.5.4)

Thus, for an orthonormal basis, the rotations are divided into two classes, 
the proper rotations which have |^r| = 1 and correspond to physical 
rotations in the appropriate number of dimensions, and the improper 
rotations which have j/tr| = — 1 and are reflections, inversions, etc.

These formulae need some amendment when more general spaces are 
considered. Thus when the components are complex numbers the 
metric matrix is defined as

9ik = (e* . et) (5.5.5)

and the condition that an orthonormal basis should transform into an 
orthonormal basis is that the transformation matrix should be unitary. 
The importance of orthogonal and unitary transformations in chemistry 
is due to the fact that they leave a sphere invariant and so govern the 
form of atomic wavefunctions.

5.6 Rotation Properties of Tensors

Tensors can be classified according to their order and their symmetry. 
When the basis is orthonormal and its transformations restricted to 
rotations the behaviour of tensors under transformation is easier to 
analyse and further classification is possible. It is convenient to con­
sider a two-dimensional space in more detail since the general form 
of the results can then be demonstrated without elaborate analysis. 
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Since the bases are orthonormal the distinction between covariant and 
contravariant components can again be ignored.

In a two-dimensional space the components of a vector, with respect 
to an orthonormal basis, transform under rotation according to

xi = xi cos 0 + x'2 sin 0 (5 6 1)
±2 = — xi sin 0 + X2 cos 0 '* ' '

This implies the orthogonal transformation matrix
k _ / cos 0 sin 0'

* sin 0 cos 0
The transformation law for a second order tensor requires two of these 
matrices. It takes a simple form when the tensor is skew. In matrix 
notation the transformation is written

(5.6.2)

Crs — Cfy ts^

_ / COS 0
\ —sin 0

sin O' 
eos 0

C12
C22,

cos 0 
sin 9

Cll 
C21 

and, using the skew relations, this reduces to
0 ci2\ 

—012 0 /
On the other hand the improper rotation

- ros 0 
( \sin 0

—sin O' 
cos 0

(5.6.3)

— Crs (5.6.4)Crs ~

sin 0'
—cos 0 (5.6.5)

leads to
Crs — —Crs

= bn cos2 0 4- 022 sin2 0 2612 sin 0 cos 0
= 621 = (622 — du) sin 0 cos 0 + 6i2(cos2 0 — sin2 0) 
= fen sin2 0 + 622 cos2 0 — 2612 sin 0 cos 0

(5.6.7)

(5.6.6) 
Thus the skew tensor is invariant under rotation and changes sign under 
improper rotation. The symmetric tensor can be similarly transformed 
to give

611
512
622

In this transformation the trace remains invariant
611 + 622 = 611 + 622 (5.6.8)

so it is convenient to divide up the tensor into a part involving this 
trace and a remainder whose trace is zero. This is done by the change 
of variables

« = 611 + 622 ;
v — |(6n — 622); ® — l(6n — 622)
w = 612 ;

u — 611 -f- 622

w = 012 (5.6.9)
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so that (7) becomes
u = u

/ tA / cos 20 sin 20\ / v'
\w) sin 20 cos20/\ic

and the tensor is written as
, 0\ , Iv w\
brs ~ I n 1 I A- I I\ 0 |tl/ \W —vj

(5.6.10)

(5.6.11)

(5.6.12)

An entity, such as the trace w, which is completely invariant is referred 
to, in group theory, as one of type Ej while one, such as the skew 
tensor, which is invariant under proper rotations and changes sign 
under improper ones is of type Sa- A vector with two components such 
as xt is of type II and the two components of the trace-less symmetric 
tensor, transforming according to (11), are of type A. The most general 
second order tensor can, therefore, be split up into three parts of types 
Zi, Z2 and A.

This direct form of argument can be extended to third and higher 
order tensors but it soon becomes too complicated. The general results 
can be established more elegantly either by using a complex transforma­
tion to simplify the equations or by invoking the representation theory 
of the two-dimensional rotation group.

In three dimensions there are results of a similar type. A skew second 
order tensor has three independent components and these transform 
like a vector under proper rotations but with an additional change of 
sign when the rotation is improper. For this reason it is often called a 
pseudo-vector or an axial vector and has the label P' whereas the vector 
is labelled P. The trace of a symmetric second order tensor is again 
invariant and so can be separated from the remaining trace-less part. 
These are labelled »S7 and D respectively. Thus, for example, the direct 
product of two vectors is a second order tensor. The trace of this tensor 
is their scalar product, its skew part is their vector product (which is a 
pseudo-vector) and the D part may be called their anisotropic product. 
In the theory of atomic structure this example is summarized sym­
bolically as

(P)2 = S + P' + D (5.6.13)

5.7 Quadratic and Bilinear Forms

If ttu are the covariant components of a second order tensor and xl the 
contra variant components of an arbitrary vector then the quadratic form 

f=aaa:‘z* (5.7.1) 
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is a scalar though its value is a function of the x'. Because of the double 
summation only the symmetrical part of the tensor contributes to f. 
If «« is not symmetrical it is better to consider the bilinear form

atkX<yk (5.7.2)
These forms can be used to display tensor properties in geometrical 
terms. In two dimensions, for example, the vectors for which f is 
constant lie on a conic and, in three dimensions, the corresponding 
locus is a quadric.

When the basis is transformed the expression for f becomes

If T is the matrix of normalized eigencolumns of the real symmetric 
matrix A then T is orthogonal and the matrix A is diagonalized for, if

f = aik x* xk (5.7.3)
where

X* = t*k xk (5.7.4)
and

dik — tr< Mrs t‘k (5.7.5)
or, in matrix notation,

A - Tat (5.7.6)
This transformation can be used to find the simplest expression for f 
but in most applications there are restrictions on the allowed trans­
formations. Thus, if the original basis is orthonormal, it is usual for 
the transformation to be a rotation and the matrix T is orthogonal,

7 = TT (5.7.7)
so that the formula for the length of a vector remains the same

I® I2 = Z (*‘)8 = Z (^)2
i r

(5.7.8)

AT = Th (5.7.9)
where A is the diagonal matrix of eigenvalues

A = F Al, ^2........ An 1 (5.7.10)
then

TAT = A (5.7.11)
and the quadratic form becomes a sum of squares

/=Z>M*')2 (5.7.12)

On the other hand, there are many important applications in which the 
original basis is not orthogonal, so that the metric formula is

I2 = gikXixk (5.7.13) 
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but the final basis is orthonormal and has

Z2 = £ (z<)2 (5.7.14)

This requires a generalization of the definition of eigenvalues and 
eigenvectors to include the solutions of the equations

(«a - = 0 (5.7.15)
or

AT = GT A (5.7.16)

where T is the matrix of generalized eigencolumns and A the diagonal 
matrix of generalized eigenvalues. The generalized orthogonality con­
ditions (c.f. p. 85) and the normalization can be summarized as

TGT=I (5.7.17)

and this ensures (11) and (12). The quadratic form then becomes

/=£Ar(f')2 (5.7.18)
r

When complex numbers are involved these equations need amend­
ment. The Hermitian form is

/=au.(a;‘)*^ (5.7.19)

where is Hermitian and, if the bases are orthonormal, T must be 
unitary. The final results are almost identical.

One illustration of this theory is in the theory of molecular vibration. 
The potential energy of vibration is a quadratic form in the variables 
which describe the distortion of the molecule from its equilibrium con­
figuration and plays the role of the form f. The kinetic energy is also 
a quadratic form in these variables and plays the role of Z2. The new 
basis vectors are the normal modes of vibration with the property that 
both the kinetic energy and potential energy are sums of squares in the 
corresponding new variables z4. The equations to be solved are generally 
of the form (15) and the eigenvalues are the squares of the normal 
frequencies.

5.8 Generalized Taylor Expansions

One of the common ways in which tensors arise in chemical problems 
is in the expansion of a scalar function, such as an energy or entropy, 
in terms of some variables. These can be discussed by a generalization



100 MATRICES AND TENSORS

of the Taylor expansion to n variables. If V is a function of the con­
travariant variables xi then its expansion about the origin is

7(x‘) = F(0) + VfX* + + ^Vncix{xkxl 4- ... (5.8.1)
where

/ d3V \Vitl = -----------

(5.8.2)

(5.8.3)

(5.8.4)

The fact that these derivatives transform covariantly is easily proved. 
It is usually true that V varies sufficiently smoothly with x{ that all 
these derivatives exist and are well-behaved at xf = 0. It follows then 
that the tensors of all orders in (1) are fully symmetrical. The com­
ponents of these tensors become properties of the system. For example, 
if V is the energy and xl are the components of the electric field then Vt 
are the components of the dipole moment and Va of the polarizability.

In many applications these tensors are divided up further as in 5.6 
and in 5.7. The quadratic form can be diagonalized by a suitable rotation 
of the basis. In three dimensions, for example, the tensor is specified by 
the three angles, which describe the directions of the eigenvectors, and 
tfie three eigenvalues. This diagonal matrix can be divided into its 
trace multiplied by the unit matrix and a traceless matrix. If the eigen­
values of the original matrix are A1A2A3 then, by definition, the trace is

Ai -f- A2 4" A3 (5.8.5)
The quantity

2A3 - (Ai 4- A2) (5.8.6)
is often used as a measure of this trace-less tensor and called the 
anisotropy since it measures the departure of the original tensor 
from spherical symmetry while

(Ai - A2)/A3 (5.8.7)
is a measure of its departure from axial symmetry.
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EXERCISES

1. If y' id v(i) is an invariant, independent of the basis, where id are the contravariant
t

components of an arbitrary vector, prove that the v(i) must be the covariant 
components of a vector.

2. If a basis system has
,1 2 1\

S'. * = I 2 4 3 I
\1 3 5/

and a certain tensor has mixed components
/0 1 °\

5. Show that the tensor, whose components are

a? = 2 1 01
\2 I -1/

prove that it is symmetrical.

3. If are the covariant components of a tensor and z* the contravariant com­
ponents of a vector prove that c<kZ* transforms as the covariant components of a 
vector.

4. The tensor eq* is defined in a three dimensional space by the conditions
= 1 when ijk is even permutation of 1 2 3
= — 1 when ijk is odd permutation of 1 2 3 
= 0 otherwise

Prove that
(i) it is fully skew

(ii) its transformation equations become
‘Hit — |fim|

(iii) the components of the vector product of two vectors defined in terms of their 
contravariant components as (a 6  —a 6 , a b  — a fr-' , a’6 —a 6 ) transform 
covariantly.

2 8 3 2 3 1 1 5 2 2 1

cannot possess more than two independent invariants of the type ai*'!/,'. 
a<* a** ad........ Show also that this can be generalized to n dimensions.

6. Show that ax  + 2hxy + by  can be expressed as a square (ax + Py)  if a is a 
multiple of _ j j and p depends on and

2 2 2

7. Verify that

is a generalized rotation which preserves the metric

8. Show that the transformation
t _ /cosh S sinh

1 ~ \sinh 9 cosh 9/
where 6 is arbitrary, preserves the metric

8—M&T VOL 4
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9. If a<* is skew prove that
= “o bit + ay* b{ 4- an bj

is fully skew.

10. The set of all polynomials in x of degree not greater than three form a vector 
space and the scalar product of two polynomials p(x), q(x) can be defined as

P • « = p(x) q(x) dx
J — 1

Prove that
(i) 1, x, x2, x8 form a basis in this space and find the reciprocal basis

(ii) the effect of the operator d/dx on a polynomial is equivalent to a second order 
tensor in the vector space and find its mixed components.

11. Expand {(z — »)2 + (y — y)2 + (z — z)2}~i as a Taylor series in (x, y, z) and 
show how the first terms can be interpreted in terms of tensors and in terms of 
associated Legendre functions.
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