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Foreword
Namscience is fashionable. A ll administrations in the Western world have stressed their 
inteest in nanoobjects and nanotechnologies. As usual, this type of large scientific movement 
has ts pluses and minuses. M any scientists join the crowd without necessarily changing 
anytiing in their actual work. M ost chemists, for instance, build new molecules that may be 
calhd nanoobjects: but again, as usual, the movement does generate significant new content.

L;t us, for instance, follow the role of nanostructures in chemistry. On one side, nature 
has provided us with beautiful, robust objects such as fullerenes and carbon tubes, which 
have some admirable properties. The current challenge is to obtain them in large amounts 
and at a reasonable price. Here is the real problem.

A completely different sector is obtained from chemical nanomachines, for which a molec
ular unit of nanometric size moves with respect to another one through a change in redox 
potmtial or pH. Some of these machines have been built. A t the moment, I feel rather skep- 
tica about them because they are extremely costly, extremely fragile (sensitive to poisons), 
and not easy to protect with a suitable coating— or by a local “ antipoison" center. But, here 
agan, there is a challenge.

Lit us now turn to biology. H ere we find an immense group o f working nanomachines, 
enz;mes, ionic channels, sensor proteins, adhesion molecules, and so on. They are extremely 
impcssive, but of course they represent progressive construction by trial and error over 
morj than a billion years. Should we try to mimic these machines or, rather, use them 
for echnological purposes, as they are, for instance, to grow plants or create proteins at an 
indistrial level according to the techniques of molecular genetics? This is a major question.

A third, open side is quantum physics and the (rem ote) possibility o f quantum computers. 
In ny youth, I had hopes for digital storage via quantized flux quanta: The corresponding 
technology, based on Josephson functions, was patiently built by IB M ,  but they ultimately 
dropped out. This shows the hardship of nanotechnologies even when they are handled by 
a la ge, competent group. But the cause is not lost, and it may well be that our children use 
sone unexpected form of quantum computers.

Tius, we are facing real challenges, not just the vague recommendations of some anony- 
mois boards. And, we need the tools. W e need to know the behavior of materials at the 
namlevel, the clever tricks of physical chemistry required to produce nanoparticles or nano
pons, the special properties o f small cooperative systems (nanomagnets, nanosuperconduc
tors nanoferroelectrics, etc.), the ability for assembling functional units, and so on.

Ihe  aim of the present handbook is to help us with the tools by suitable modelizations. It 
is vritten by leading experts, starting from general theoretical principles and progressing to 
detiiled recipes.

Ii the second half of the 18th century, all the knowledge (fundam ental and practical) o f 
the Western world was condensed into an outstanding encyclopedia constructed energetically 
by }enis D iderot just after the industrial revolution started. Here, at a more modest level, we 
can hope for something similar. Soon after the first wave, including this handbook, a certain 
forn of nanoindustry may be born.

Ihc discussions started in this handbook will continue in a journal (Journal of Comput a- 
tioial and Theoretical Nanoscience) launched by the present editors. I wish them the best.

Professor Pierre-Gilles de Gennes
Nobel Prize Laureate, Physics 

College de France 
Paris, France
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Preface
This is the first handbook that deals with theoretical and com putational developments in 
nanotechnology. The 10-volume compendium is an unprecedented single reference source 
that provides ideal introduction and overview o f the most recent advances and emerging new 
aspects of nanotechnology spanning from science and engineering to neurogenetics. M any 
works in the field of theoretical and com putational nanotechnology have been published to 
date, but no book or handbook has focused on all aspects in this field that deal with nano
machines, electronics, devices, quantum computing, nanostructured materials, nanorobotics, 
medicine, biology, biotechnology, and more.

There is no doubt that nanoscience w ill be the dominant direction for technology in this 
new century, and this science will influence our lives to an extent impossible in years past: 
Specific manipulations of matter at its ultimate level w ill open com pletely new perspectives 
on all scientific and technological disciplines. To be able to produce optimal nanosys
tems with tailor-made properties, it is necessary to analyze and construct such systems in 
advance by adequate theoretical and com putational methods. The handbook gives a com 
plete overview of the essential methods, models, and basic pictures.

But, as is well known, there are also threats connected with nanotechnology, specifically 
with respect to biological systems: Self-assembly can be an uncontrolled process, and the 
final state of a developing system is in general uncertain in such cases. To avoid undesir
able developments, the theoretical (com putational) analysis o f such processes is not only 
desirable but also absolutely necessary. Thus, the com putational and theoretical methods of 
nanoscience are essential for the prediction o f new and custom nanosystems and can help 
keep nanoscience under control. There is basically no alternative. Therefore, one possible 
answer to the question, “ W h y  a book on theoretical and com putational nanotechnology?’' is 
to give nanotechnology a direction!

In the design of macroscopic and microscopic systems, engineering is essentially based on 
intuitive concepts, which are tailored to observations in everyday life. Classical mechanics is 
also based on these macroscopic observations, and its notions have been chosen with respect 
to our intuitive demands for visualizahility. However, when we approach the nanolevel, the 
tools used for the design of macroscopic and microscopic systems become more and more 
useless. A t the nanolevcl. quantum phenomena are dominant, and the main features in con
nection with quantum effects are not accessible to our intuitive concepts, which are merely 
useful at the macroscopic level; the fram ework of quantum theory is in striking conflict 
with our intuitive demands for visualizability, and we are forced to use abstract physical 
laws expressed by mathematical equations. In other words, effects at the nanolevel are 
(alm ost) not accessible to our usual engineering concepts. Therefore, here we rely on the 
abstract mathematical relations of theoretical physics. In nanotechnology functional systems, 
machines and the like cannot bc adequately designed without the use of these abstract 
theoretical laws and the application of suitable com putational methods. Therefore, in nano
technology, theoretical and computational methods are centrally important: This makes the 
present handbook an indispensable compendium.

Nanometer-scale units are by definition very small atom ic structures and functional sys
tems; it is the smallest level at which functional m atter can exist. W e  already learned to 
manipulate matter at this ultimate level: Atom s can be moved experimentally in a controlled 
m anner from one position to another. This is astonishing because one nanom eter only cor
responds to one m illionth of a m illimeter. Fo r example, an electrical nanogenerator could 
be designed consisting of various parts that included a very fast revolving rotator. O ne m il
lion of these generators could be arranged side by side on a length of two centimeters; it 
is remarkable that not only static nanostructures could in principle be produced and sig
nificantly manipulated but also artificial dynamical nanosystems. But, the downscaling of 
functional structures from the macroscopic to the nanom eter scale is only one o f the essential
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points in connection with nanotechnology. In addition— and maybe much more important—  
nanosystems provide unique properties in comparison to those we observe at the m acro
scopic level. For example, a metal nanocluster shows a melting temperature that strongly 
deviates from that of a macroscopic piece o f metal; its melting point is significantly lower. 
A  decrease down to a fraction of only 20%  is typical, depending, however, on the material 
and particle number.

A  professional treatment of the various problems in nanoscience and nanotechnology 
makes the application and development of theoretical and computational methods in this 
field absolutely necessary. In  other words, the discipline of theoretical and computational 
nanotechnology has to be considered as a key topic to be able to treat nanotechnology ade
quately and to reach optimal solutions for certain tasks. It is therefore desirable to get a 
timely overview about the specific topics presently relevant in this field. In this respect, the 
handbook gives a complete overview o f the specific topics so far established in nanotechnol
ogy. Each chapter gives a certain overview of actual activities of the envisaged topic and in 
most cases an adequate description of the basics, so advanced students also can benefit from 
the handbook. It was our strategy to provide consistent and complete representations so the 
reader would be able to study each chapter without consulting other works. This of course 
leads to certain overlaps, which was also part of our strategy to enable an approach to the 
same topic from various points of view.

The handbook reflects the spectrum of questions and facts that are and could be relevant 
in the field of nanotechnology. Not only formal developments and methods are outlined, 
but also descriptions of a broad variety of applications in particular are typical for the 
handbook. A ll relevant topics have been taken into account, from functional structures— like 
an electrical nanogenerator— or quantum computing to questions that deal directly with basic 
physics. Almost all fields related to theoretical and computational nanotechnology could be 
covered, including multiscale modeling, which is important for the transition from microscale 
to nanoscale and vice versa.

A ll theoretical and computational methods used in connection with the various topics in 
nanoscience are directly based on the same theoretical physical laws. A t the nanolevel, all 
properties of our world emerge at the level of the basic theoretical laws. In traditional tech
nologies, engineers do not work at the ultimate level. They use more or less phenomenolog
ical descriptions that generally cannot be deduced from the basic physical theoretical laws. 
W e have as many phenomenological descriptions as there are technological disciplines, and 
each is tailor-made to a specific topic. An exchange of concepts is either not possible or 
rather difficult. In contrast, at the ultimate nanolevel the world is based on only one theory 
for all disciplines, and this is expressed by basic theoretical physics. This situation opens 
the possibility for interconnections between the various topics in nanotechnology to bring 
about new effects and chances for further applications. In other words, nanotechnology and 
nanoscience can be considered interdisciplinary. C learly, the handbook reflects the interdis
ciplinary character of this new science and technology.

The Handbook of Theoretical and Computational Nanotechnology includes 138 chapters 
written by hundreds of the w orld ’s leading scientists. Topics cover mainly the following areas:

( i )  Computational biology: D N A , enzymes, proteins, biomechanisms, neurogenetic infor
mation processing, and nanomedicine

( i i )  Computational chemistry: quantum chemistry, molecular design, chemical reactions, 
drugs, and design

(ii i)  Computational methods and simulation techniques from ab initio to multiscale 
modeling

(iv ) Materials behavior at the nanolevel, such as mechanics, defects, diffusion, and dynamics
(v ) Nanoscale processes: membranes, pores, diffusion, growth, friction, wear, catalysis
(v i) Nanostructured materials: metals, composites, polymers, liquid crystals, photonic crys

tals, colloids, and nanotubes
(v ii) Nanostructures: fullerenes, nanotubes, clusters, layers, quantum dots, thin films, sur

faces, and interfaces
(v iii) Nanoengineering and nanodesign: nanomachines, nano-CAD, nanodevices, and logic 
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( ix) Nanoelectronics: molecular electronics, nanodevices, electronic states, and nanowires
(x) Nanomagnetism: magnetic properties of nanostructures and nanostructured materials

(x i) Nanooptics: optical response theory, quantum dots, luminescence, and photonic 
crystals

(x ii) Quantum  computers: theoretical aspects, devices, and computational methods for sim
ulating quantum computers and algorithms

The handbook provides broad inform ation on all basic and applied aspects of theoretical and 
computational nanotechnology by considering more than two decades of pioneering research. 
It is the only scientific work of its kind since the beginning of nanotechnology, bringing 
together core knowledge and the very latest advances. The handbook is written for audiences 
of various levels while providing the latest up-to-date information to active scientists and 
experts in the field. This handbook is an indispensable source for research professionals and 
developers seeking the most up-to-date information on theoretical and computational nano
technology among a wide range of disciplines, from science and engineering to medicine.

This handbook was written by leading experts, and we are highly grateful to all contributing 
authors for their tremendous efforts in writing these outstanding state-of-the-art chapters 
that altogether form a unified whole. K. E r ic  Drexler (designer of nanomachines, founder of 
the Foresight Institute, coiner of the term nanotechnology) gives an excellent introductory 
chapter about possible trends of future nanotechnology. W e especially express our sincere 
gratitude to Dr. Drexler for his instructive and basic representation.

W e cordially extend our special thanks to Professor Pierre-Gilles de Gennes for his valu 
able and insightful Foreword.

The editors are particularly thankful to Dr. H ari Singh Nalwa, President and C E O  of 
Am erican Scientific Publishers, for his continuous support of the project and the enthusiastic 
cooperation in connection with all questions concerning the development of the handbook. 
Furtherm ore, we are grateful to the entire team at Bythcway Publishing and especially to 
Kate Brown for copyediting.

Dr. Michael Rieth 
Prof. Dr. Wolfram Schommers

Karlsruhe, Germ any
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CHAPTER 1

Computational Studies of 
Nanomaterials: A Historical 
Perspective
Douglas L. Irving, Susan B. Sinnott
Departm ent o f Materials Science and Engineering, University o f Florida, 
Gainesville , Florida, USA
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1. INTRODUCTION
Nanom aterials have been in use for centuries (sec, e.g.. Ref. [ I ] ) ,  and have been the subject 
o f much attention from scientists and engineers over about the last 20 years. This interest has 
accelerated recently as research funding agencies across the world have allocated significant 
funds for research in nanoscience and nanotechnology.

The last two decades have seen impressive advances in the experimental tools and tech
niques that allow for significant manipulation and analysis of materials at the nanometer 
scale. G reat advances in the application of computational atomistic and molecular methods
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to the study of nanom aterials have occurred over this same time period. This growth has 
been facilitated by the development and optimization of sophisticated scientific software, 
substantial increases in available computing power, and a large drop in the price of com 
puting cycles. Thus, it is increasingly common for computational methods and experimental 
techniques to be applied simultaneously to provide a complete picture and understanding 
of nanometer-scale systems. However, the area o f nanomaterials is somewhat unique in that 
computational studies have historically had a leading or otherwise indispensable role in some 
crucial discoveries on which many current efforts build.

In this chapter, we review some historical seminal papers in which computational methods 
were used to make important predictions about, or provide crucial insight into, the behavior 
and properties of nanomaterials. We also review related experimental papers and discuss the 
relationships between the experimental and com putational findings.

2. INTRODUCTION TO COMPUTATIONAL METHODS
A  wide range of com putational methods exists for the study of nanomaterials, from atomic- 
scale methods to methods that model the properties o f parts created from these unique 
materials. In this chapter, we focus on atomic-scale methods, which range from quantum 
mechanical (Q M ) approaches with few approximations to empirical methods that include 
many estimates. In general, the accuracy of each technique is tied to the approximation or 
approximations made in its derivation. Therefore, in addition to introducing and reviewing 
the most commonly used computational methods to model nanomaterials, we discuss their 
accuracy and the conditions under which they are best applied.

2.1. Calculating Interaction Energies and Forces
Atomic-scale methods can be broken into several categories based on the manner in which 
they are formulated. The most theoretically rigorous methods are those that are classified as 
ab initio, or first principles. These approaches are derived from Q M  principles and are gen
erally both the most accurate and the most com putationally intensive. They are consequently 
limited to a small number of atoms (about 50-100). In contrast, empirical methods are func
tions containing parameters that are derived bv fitting to experimental data or the results of 
ab initio calculations. These techniques can usually be relied on to correctly describe qual
itative trends and are often the only choice available for modeling systems containing tens 
o f thousands to millions of atoms. Last, semiempirical methods include elements of both 
empirical methods and ab initio methods and require both Q M  information in the form of, 
for example, atomic orbital basis sets and some fitting to experimental data.

2.1.1. Ab Initio Methods
There are two main classes of ab initio methods: Q M  wave function based methods and 
density functional theory (D F T ) ,  which depends on electron densities. The derivation of 
both these methods relies on the Born-Oppenheim er approximation [2], which states 
that, because of the small mass of electrons in comparison to the mass o f the atom ic nucleus, 
it is reasonable to assume that the electrons will instantaneously respond to an) change of 
the nuclear position. Th is allows for the separation of the total energy into nuclear com 
ponents and electronic components. In other words, the total energy of the system can be 
written as

f:tllIJl = ( J )

where £TIOJa| is the total energy, £ n_.n is the contribution to the energy from nuclear-nuclear 
repulsion, and Ec is the electronic contribution to the energy. The nuclear-nuclear repulsion 
energy is then calculated using classical methods as follows
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where Z a, and Rlt are the atomic number and position in space, respectively, of nucleus a. 
The electronic contribution to the total energy Ec, referred to only as E  from now on, is 
then solved for bv the Q M  or D F T  methods.

Q M  is one of the most accurate theories of modern physics. One of the tenets of Q M  is 
the Schrodinger wave equation [3]. which has been shown to be very powerful in describing 
the behavior of electrons [4 ,5 ]. The time-independent form of the Schrodinger equation is

H V  = E'V  (3)

where H is the Ham iltonian, which contains the kinetic energy and potential energy of the 
system; is the wavefunction of the electron; and E  is the energy of the electron. The 
Ham iltonian acts on the wavefunction, and the energy E  is calculated.

Although this equation is both rigorously derived and very accurate, its analytic solu
tions are limited to a small number of simple cases, which include the H  atom, the simple 
harmonic oscillator, and the square-well potentials [4, 5]. It is, therefore, necessary to find 
another, nonanalytic approach to solve for the wavefunction and energy of more complicated 
systems. Fortunately, the variational theorem [4] provides a conceptually simple means of 
finding better trial wavefunctions for more complicated Hamiltonians.

The variational theorem states that given a known Ham iltonian, any normalizable trial 
wavefunction, % ,  can be used to approximate the true wavefunction of the system. The 
energy calculated with xVr will always be greater than or equal to the true ground-state 
energy, E t). The equality in the theorem is only satisfied when XV, is the true ground-state 
wavefunction, 'I',. In other words, the only time a trial wavefunction generates the ground- 
state energy is when the trial wavefunction is truly the ground-state wavefunction. This is 
an extremely powerful theorem, and it lends itself very well to iterative computational tech
niques. In particular, initial wavefunctions are constructed from orbital or plane wave basis 
sets, and a variation o f Eq. (3 ) is solved by numerical iteration until XV and E  cease to change 
within some predeterm ined value. This iterative approach is termed “ self-consistency" and 
is a viable approach for finding an approximate electronic wavefunction of complicated mul
tielectron systems.

D ifferent types of Q M  approaches exist, and these will be discussed briefly here. For a 
more in-depth discussion, the reader is referred to Refs. [6, 7]. In the Hartree-Fock (H F )  
approximation, the initial, trial wavefunction of many interacting electrons is simplified to 
a Slater determ inant of independent, one-electron wavefunctions. W ith  the application of 
the linear combination o f atom ic orbitals (L C A O )  to express each m olecular orbital (M O ), 
Roothaan [8] showed that the H F  problem could be expressed as a secular matrix equation. 
Finding the ground-state wavefunction now becomes a problem of varying the expansion 
coefficients of the L C A O s  until the minimum energy is reached. The Ham iltonian is divided 
into multiple components that are assumed to be independent: a one-electron part that con
tains the kinetic energy and the electron-nuclear interactions, and a part that contains the 
electron-electron interactions. Thus, Eq. (3) can be rewritten as a series of one-electron 
equations that provide the energies of these individual electrons. The sum of these individual 
electron energies is then the electronic energy E  of the system. These approximations, com
bined with the use o f a Lagrange multiplier to guarantee that the one-electron wavefunctions 
remain normalized with respect to each other, constitute the H F  approach.

In practice, the L C A O s  used to expand the M O s are usually Slater-type functions or 
Gaussian-type functions, where Slater and Gaussian refer to the type of functions used to 
expand the molecular orbital and constitute the basis set o f the problem. Each basis function 
has its advantages and disadvantages, and the reader is referred to Ref. [7] for a more 
thorough discussion. As noted above, once the basis set is applied to the system, the H F  
equations are self consistently solved until the lowest energy is found. The numerical method 
that is used to solve the one-electron wavefunctions in terms of the above approximations 
is often referred to as the L C A O  or M O  approach.

A  known lim itation of the H F  approach is that it often slightly underestimates bond 
energies, and better bond energies can often be obtained by making additional improve
ments. For instance, the H F  approach does not contain a term for the correlation energy of
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electrons, hut there are several ways to incorporate this contribution into the w;avefunction 
approach. One common approach is configuration interaction (C l) ,  which uses ground- and 
excited-state Slater determ inants to better approximate the true ground-state wavcfunction.

Another common approach is the application of perturbation theory to the problem. 
In particular, the difference between the H F  operators and the operators in the true 
Ham iltonian is treated as a perturbation, and equations of perturbation theory are applied 
to correct for the differences between the two terms. This approach is termed Hartree-Fock 
Moller-Plesset (H F - M P ) theory [6]. The H F - M P  approach improves the ground-state ener
gies and bond lengths. However, if the difference between the H F  ground state and the true 
ground state is large, then the application o f M P  theory can lead to numerical divergence. 
The C l approach is computationally expensive and is most often used in describing excited 
states.

Most Q M  implementations do not allow for periodicity in the system under considera
tion [6], although relatively recent developments have yielded an implementation that can 
model periodic systems [9-12]. W hen  periodicity cannot be included in the calculations, bulk 
systems are treated as clusters, with hydrogen atoms terminating any dangling bonds.

D F T  solves for the ground-state electronic energy in a different fashion. Instead of solving 
for all ground state properties in terms of the ground-state wavcfunction, D F T  describes 
the ground state in terms of the electron density [13]. This is done by iteratively solving a 
different equation, called the Kohn-Sham equation [14], which can be shown to be related 
to the Schrodinger equation [15] and is written as follows:

£ [p ] =  7'Jp| +  KvIp] +  K„[pJ +  K A p \ (4)

where E\p\, the total electronic energy, and the remaining terms are functionals (functions 
of functions) of the electron density, p. Specifically, Ts is the contribution to the energy from 
the kinetic energy of the electrons (assuming they are noninteracting), Vcc is the contribu
tion from classical electron-electron repulsion, Vcn is the contribution from electron-nuclear 
attraction, and Vxc is the contribution from electron exchange and correlation. The electron 
density p is related to the electron wavcfunction in Eq. (3 ) through the following relation

p = m 2 (5)

D F T  can be either all-electron, where it explicitly characterizes all the electrons in a sys
tem, or it can explicitly model only the valence electrons and use fitted functions, called 
pseudopotentials [16-21], to model the core electrons. This is a valid approximation because 
most chemical properties of solids are determined by the valence electrons. Pseudopotential 
D F T  calculations are commonly used for larger systems, defined in this case as consisting 
o f on the order of 100 atoms, because of the computational efficiency gained in not having 
to treat core electrons self consistently. However, although the accuracy of pseudopotential 
D F T  calculations is generally good, it does depend on the specific pseudopotential im ple
mentation being used [6]. Furtherm ore, it is more difficult to deal with the properties of 
excited states with D F T  because D F T  is a ground-state theory. However, there have been 
several successful developments in trying to treat the excited states with time-dependent 
D F T  (T D D F T )  [6 ,7].

Most flavors o f D F T  codes are implemented for periodic systems. Therefore, free surfaces 
are modeled by placing either layers of vacuum (em pty space) above and below the surface 
slab that is replicated in three dimensions, or some implementations only periodically repeat 
in the two dimensions o f the surface plane and have a pseudoinfinite vacuum spacing.

W ith in  D F T  and the Kohn-Sham  equations, all the terms needed to calculate die energy 
are known exactly except for the exchange-correlation energy F'xc, a term that character
izes the nonclassical interactions among the electrons. Two common approximations of this 
energy are the local density approximation ( L D A )  and the generalized gradient approxi
mation (G G A ) .  The L D A  approximates K iC in the real system via I7XC in finite volumes 
o f uniform electron density, where il can be calculated exactly. The G G A  builds on this 
approximation by including information about the gradients between the volumes. The L D A  
generally overestimates bond energies, whereas the G G A  predicts more accurate values [6].
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In D P I .  errors can arise as a result of electron self-exchange and self-correlation related to 
the approximations used to calculate exchange and correlation energies [15,22).

Both H F  and D F T  approaches are self-consistent, which means that either the Schrodinger 
equation or the Kohn-Sham  equation is solved in an iterative manner until the energies 
and either the wavefunctions or the electron densities stop changing. The reader is referred 
to Ref. [23] for an in-depth discussion of these methods and to Ref. [22] for some direct 
comparisons of the results of HF- and DFT-based methods.

2.7.2. Semiempirical Methods
Several methods fall into the category of semiempirical, defined as containing some Q M  
parts and some em pirically fit parts. The most important of these parts for the purposes of 
this article is the tight-binding (T B )  method. In general, the total energy for a system of N 
atoms at positions R can be written as [6]

E = 2ZriAeA + E KpUMK(R l, . . . R s.) (6)

where the first term on the right-hand side is the band term, which is generally attractive 
and derived from Q M  methods, and the second term on the right-hand side is the repulsive 
term, which is em pirically fit to ab initio or experimental data. In the first term, the sum is 
over all occupation numbers A. The terms rjA and eA represent the occupation number and 
the one-electron energy, respectively; the factor of two accounts for spin degeneracy.

The T B  method thus includes information about the atomic orbitals and whether they 
are filled or not. As a consequence, T B  methods can be used to calculate such quantities 
as the electron density of states. A  strength of this approach is that it is fast and able to 
characterize orders of magnitude more atoms than true ab initio methods (several 1000s vs. 
about 100) with some quantum mechanical character. A  disadvantage is that the fitting limits 
the transferability o f the approach. In addition, the approach shown in Eq. (6 ) is not able 
to model charge and charge-transfer.

To include inform ation about charge, a self-consistent form of the T B  method is needed. 
In this form, Eq. (6 ) is modified by including an empirically fit term on the right-hand side 
that is dependent on the change in the electron occupation [6]. The total energy is then 
minimized with respect to the electron occupations at each step.

2.1.3. Empirical Methods
Em pirical methods simplify the modeling of materials by treating the atoms as spheres that 
interact with each other via repulsive and attractive terms that can be either pairwise or 
many-body in nature. Thus, the electrons are not treated explicitly, although it is understood 
that the interactions are ultimately dependent on them. As discussed below, some empirical 
methods explicitly include charge through classical electrostatic interactions. However, most 
methods assume charge-neutral systems. The repulsive and attractive functional forms gen
erally depend on interatom ic distances or angles and contain adjustable parameters that are 
fit to ab initio results or experimental data.

The main strength of empirical methods is their computational speed. Recent simulations 
with these approaches have modeled several million atoms [24, 25], something that is not 
possible with ab initio or semiempirical approaches at this time. The ir main weakness is 
their lack of quantitative accuracy, especially if they are poorly formulated or applied to 
systems that are too far removed from the fitting database used in their construction. In 
addition, because o f the differences in the nature of chemical bonding in various materials 
(e.g., covalent bounding in carbon versus metallic bonding in nickel), empirical methods 
have been historically derived for particular classes of materials. Thus, they are generally 
nontransferable. although some methods have been shown to be theoretically equivalent 
[26], and there has been progress toward the development of empirical methods that can 
model heterogeneous material systems [27-32].

The first method to be discussed is the bond-order method to model covalently bound 
materials, which was first formulated by Abell [33] and developed by Tersoff for Si and
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G c  [34,35]. It was subsequently parameterized by Brenner and coworkers fo* hydrocar
bons [36-38], Dyson and Smith for C — S i— H [39], Sinnott and coworkers for C —O — H  [40], 
and Graves and coworkers for liuorocarbons [41].

The bond-order potential has the following functional form

where VR(r) and VA(r) are pair-additive interactions that model the interatom i: repulsion 
and electron-nuclear attraction, respectively. The quantity rjf is the distance beiween pairs 
of nearest-neighbor atoms / and y, and b is a bond-order term that takes irto account 
the many-body interactions between atoms i and /, including those resulting from nearest 
neighbors and angle effects. Overall, the potential is short-ranged and only consicers nearest 
neighbor bonds. To model long-range, van der Waals interactions, the bond-order potential 
is combined with pairwise potentials [42,43].

The second technique to be discussed is the embedded atom methed ( E A M )  
approach [44, 45] and related methods [46]. which were developed for modeling neta ls and 
metal alloys. The functional form is as follows

where F  is called the embedding energy and is the energy required to em beJ an atom 
into a uniform electron gas with a uniform compensating positive background (c lliu m ) of 
density pl that is equal to the actual electron density of the system. The term $ (/ ;,) is a 
pairwise functional form that corrects for the fact that actual materials have pcint-charge 
nuclei. Several parameterizations of the E A M  exist (see, e.g., Refs. [44,45,47-49]), and 
it has recently been extended to model nonmetallic systems. Fo r example, the modified 
E A M  (M E A M )  approach [27,28] was developed so that E A M  could be applied to metal 
oxides [29],

The third method to be discussed is the general class of Coulomb, or multipole interaction, 
potentials used to model charged ionic materials or molecules [6]. In this formalism, the 
energy can be written in the following general formalism:

where q{r{) is the charge on atom / and rlJ is the distance between atoms i and j. M ore 
complex formalisms that take into account, for example, the Madelung constant in the case 
of ionic crystals are used in practice. In general, the charges are held fixed, but methods to 
allow charge to vary in a realistic manner have been developed in combination with other 
methods [30, 50].

Last, long-range van der Waals or related forces are typically modeled with pairwise addi
tive potentials. A  widely used method is the Lennard-Jones ( L J )  potential [51], which has 
the following functional form

H ere s and a  are parameters and /*,, is the distance between atoms / and j.

2.2. Structure Optimization and Simulation
The proceeding section discussed the various ways in which the total energy of a system 
can be calculated. Being able to calculate the energy of various systems is quite important, 
as it allows for the determ ination of their relative stabilities. However, knowledge of the 
forces allows for the optimization or relaxation of a given structure, The forces acting on 
individual atoms can be analytically or numerically calculated by taking the negative of the 
first: derivative of the energy with respect to position.

£  =  E  E  [YrW  -  b. jVAnj)  1 (7)

£  = £ F ( P , ) + £ * (> • „ ) (8)

(9)
' >(•>/)

( 10)
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The rest of this section will discuss two important ways in which the combination of 
information about the energies and forces in a given system can be used to optimize material 
structures.

2.2.1. Force Minimization
Force minimization is an approach by which the forces acting on individual atoms in a sys
tem arc calculated and the atom positions are adjusted to minimize these forces. W hen the 
forces reach a minimum value, the system structure is considered to be optimized and the 
procedure stops. This is, therefore, a static approach that is focused on obtaining the opti
mal, lowest-energy structure. A  complicating factor is that most potential energy surfaces 
contain multiple local m inima in addition to the lowest-energy global minimum. An addi
tional complication is that for systems that consist of a large number o f atoms, the potential 
energy surface can consist o f large, flat regions in which relatively large changes in the struc
ture and configuration o f the system do not result in a large change in the energy or forces. 
To be assured that the global minimum has been reached, it is important to calculate the 
atom ic frequencies ( if  none are imaginary, than one is assured o f having reached a global 
minimum versus a saddle point). A  viable, though tedious, strategy for finding the global 
minimum is to restart the optimization from a variety of different starting configurations 
and see whether they transform into the same optimized structure.

Force m inim ization methods have been used with all of the methods discussed in 
Section 2 .1, but they are most important for ab initio or first principles approaches. Many 
different types of force minimization methods exist. The most important of these are the 
method of steepest descent, the method of conjugate gradients, and simulated annealing.

The steepest descent method is a way of finding the local minimum value of a function by 
calculating its gradient. In particular, one starts at point P„, at position r(), and moves from P, 
to P /+l by moving downhill from point P, along the descending gradient— V / (P ,) [52]. As a 
practical matter, the method of steepest descent is implemented by iterating the following 
equation (shown for a one-dimensional system) (53]

x, =  x,_, -  ef'(Xj ,) (H )

where x() is the initial starting position and e is a constant that is much less than zero.
This approach is thus very good at finding the local minimum value of the function under 

consideration that is nearest the starting point P (). However, a big disadvantage of this 
approach is that it does not necessarily find the global minimum (it will always move only 
downhill). In addition, it will take a large number of small steps to “ walk”  downhill, even if 
the minimum well is deep and narrow. Thus, it is not very efficient.

The method of conjugate gradients is another way of finding the local minimum value of 
a function by calculating its gradient, which improves on the method of steepest descent by 
using the conjugate gradients o f a function rather than just the local gradient to locate the 
minimum. In the implementation for a linear, one-dimensional function, / ( * ) ,  the positions 
are evaluated using the following iterative approach [53]

X, =x,~l - « ,p ,  (12)

where p, is the search direction vector and a, is a multiple of this vector. The residuals, r,, 
which are defined as

r, — h — A\{ (13)

are also solved iteratively using the following expression:

= r,-_| — or,q,- (14)

where q is related to p as follows:

q, = Ap, (15)
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The multiplier, ah is chosen to minimize r j A 'r, using the following expression:

( r ,- ir , i) , , , ,  O', = -- 7----- (16)
(p/^p,)

Last, the search directions p, must be orthogonal to each other to ensure that the gradients 
are conjugates. This is done using

P, = r , +/3,._|P,_| (17)

where
( r ■ r )

f t  = : r <18) ( r ; ir ,- i)

The conjugate gradient is more computationally efficient than the method of steepest 
descent. However, it suffers from the same drawback of not being able to guarantee location 
of the global minimum o f the function under consideration.

Simulated annealing is a fundamentally different approach to finding the minimum o f a 
function. In this approach, a random search is used that can accept changes that decrease 
or increase the value of the function /. A ll downhill movements are accepted outright, and 
uphill movements are accepted with a probability proportional to cxp( — A / / 7 ),  where A /  
is the increase in the function and 7’ is a control param eter that is analogous to the system 
temperature. The value of T is reduced slowly as the simulated annealing proceeds so that,
eventually, the bottom of the minimum well of the function is reached. Thus, simulated
annealing is analogous to the way in which a crystalline material cools from the liquid state 
at high temperature into a global minimum energy crystal structure at low temperatures. It 
is well known that this occurs only if the system is cooled slowly. Rapid quenching of liquids 
traps local minimum structures that may not correspond to the global minimum energy 
crystal structure. The same is true of the simulated annealing algorithm— the decrease in 

" control parameter T must be sufficiently slow to achieve the true global minimum of 
the i. Mon. A  major advantage of the simulated annealing method over the methods of 
steepest descent and conjugate gradients is that it generally finds the global minimum and 
avoids being trapped in local minima.

2.2.2. Molecular Dynamics Simulations
In classical mechanics, New ton’s second law states that to make a body o f mass m undergo 
an acceleration a, it is necessary to apply a force F  to the object. The acceleration will then 
be proportional to the applied force according to the following equality

F  = nm (19)

Newton's second law can also be expressed in terms of the position vector r o f the body as

d~ r
F  = /w—  (20)dt-

This is the basis of M D . Knowing the force F, based on Eq . (20), we can thus study the tra
jectory of each particle in space and investigate the time-dependent propertied ''he problem
is how to accurately and efficently calculate the force between atoms, which uin be quite
complex. From the principle of conservation of energy, we know that the kinetic energy 
(\/2m\: ) and the potential energy ( U ) of the body can vary, but their sum ( E ) is a constant.

1
— n\\~ + U --= E  (21)

In terms of r, Eq. (21) can be expressed as

I (  d r  \  ‘

+ U  = E  (22)
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Differentiating both sides o f Eq. (22) with respect to time, we find

ci r (23)
(l! 2 + U = 0

and so
d r cl2 r clU 

m—  • t t  + (24)

This can be rewritten as follows because potential energy is a function of the position U (r):

Therefore, we see

Using Newton's second law and conservation of energy, it is finally found that the force can 
be calculated from the potential energy

The potential energy can be obtained using any of the methods discussed in Section 2.1. 
In M D  simulations, the calculation of the potential energy and force are the most time- 
consuming aspects. Once the force is obtained, Newton's equation of motion [Eq . (20)] can 
be integrated to follow the time evolution of the atoms in response to the applied forces. 
For this reason, empirical methods have been most commonly used in M D  simulations. T B  
approaches can be used in a straightforward manner on smaller systems. For many years, Q M  
and D F T  approaches were too prohibitively slow to be used in M D  simulations. However, 
in 1985 Car and Parrinello [54] developed an approximation to allow D FT-M D  simulations 
to be carried out in an approach that bears their name. This method uses a Lagrangian 
and Lagrange multipliers to efficiently find the ground-state electron density before the 
time evolution of the atom ic system. This method was truly groundbreaking and allowed 
for an efficient means of perform ing D FT-M D . Detailed descriptions of the Carr-Parinello  
technique are provided in Refs. [54, 55].

In practice, numerical integration of Eq. (20), as opposed to analyitic solutions, is nec
essary to solve Newton's second law. There are several numerical methods for integrating 
Newton's equations, including the Vcrlet algorithm, the leapfrog algorithm, and the 
predictor-corrector algorithm [51].

In M D  simulations, short time-steps, A/, are required to yield reliable results. There are 
at least two reasons for this. One is because of the quick motion of the atoms (e.g., the 
timescale of atomic vibrations is typically 10 13 s [56]). To capture atomic motions accurately, 
as M D  simulation desires to do, the time-step must be much smaller than the frequency of 
the atomic motions. The second reason is that, from the integration point of view, to achieve 
the predictions calculated in Eq . (19-27) as accurately as possible, a small A / is necessary. 
Usually, time-steps on the order o f a femtosecond (10 ^s) are used. Therefore, modeling 
of processes that occur on timescales larger than a few nanoseconds is not within the reach 
of conventional M D  simulations on present-day computers.

M D  simulations can generate information at the microscopic level, including atomic posi
tions and velocities. V ia  statistical mechanics, this microscopic information can be related 
to macroscopic quantities such as pressure, temperature, heat capacities, and so forth. 
Therefore. M D  simulations can be used to study both thermodynamic properties and time- 
dependent (k inetic) phenomena. Another advantage of M D  simulations is the inherent ab il
ity to follow atomic scale mechanisms in real time. An  important disadvantage is that only 
short timescales o f up to tens of nanoseconds can be accessed. There has therefore been 
considerable effort spent on finding ways to accelerate M D  simulations [57-60].

(26)

(27)
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2.2.3. Monte Carlo Simulations
In this approach, the forces are not calculated. Instead, the energy of the starting system 
configuration is determined using one of the approaches discussed in Section 2.1. The posi
tion of one or more atoms is then randomly varied according to a set o f predetermined 
conditions. I f  the energy o f the new configuration is lower than the energy of the initial 
configuration, the new configuration is accepted and the process is repeated. If  the energy 
o f the new configuration, £ new, is higher than the energy of the initial configuration, £ initia|, 
the new configuration is accepted if

e kI > random # (28)

where k is the Boltzmann constant, T is temperature, and random # is a random number 
generated numerically. The rationale behind accepting higher energy configurations is to 
move the system out of locally stable configurations into a global minimum. It is clear from 
Eq. (28) that at higher temperatures, more configurations that have higher energies are 
accepted than is the case at lower temperatures, and the system has a better chance of 
settling into a global minimum. Monte Carlo simulations are thus similar to the method of 
simulating annealing discussed in Section 2.2.1.

The advantage of Monte Carlo simulations is the ability to rapidly transform a starting 
configuration into a more stable, global minimum structure. The disadvantage is that no time 
information is contained in the simulation results. There has therefore been some work to 
combine M D  and M onte Carlo  simulation methods (see, e.g.. Ref. [61]) to use the strengths 
of each.

3. APPLICATION TO NANOMETER-SCALE SY ST EM S
The ability o f scientists to realistically probe the nanoscale world through computational 
experiments has been facilitated by faster computational hardware and more efficient sci
entific algorithms. This has led to many computational experiments that are on the cutting 
edge of modern science. Often, new predictions o f physical properties have been made by 
performing computational experiments only. The added realism of new computational tech
niques has also played a role in understanding and interpreting experimental data, leading 
to the identification of new phenomena.

The following sections give examples of a variety of computational experiments that either 
make new predictions or assist in the understanding of new' experimental findings. Some 
of the examples have been validated by experimental findings, while in other cases experi
mental evidence is not yet available. The goal is to provide a historical perspective on the 
significant contributions that computational modeling of materials has made to the field of 
nanomaterials.

3.1. Electronic Properties of Single-Walled Carbon Nanotubes
M odern technology has almost universally sought to make devices ever smaller. One example 
is radios, which were initially dependent on vacuum tubes to function and were consequently 
quite large. W hen  Shockley, Bardeen, and Brattain invented the solid-state transistor, for 
which they were awarded the Nobel Prize in physics in 1956, portability was introduced, 
broadening the use o f radios in modern life. A t present, major computer chip makers are 
seeking to shrink the size of solid-state transistors to create faster and more functional 
compute r proccssors.

W'hen carbon nanotubes (C N T s ) were discovered in 1991 by Iijim a [62], there was almost 
an instantaneous interest in the electronic properties of these nanometer-scale materials. 
However, the measurement of the electronic properties o f these novel structures was very 
difficult at the time of discovery. This was because the generation of substantial amounts 
o f C N T s  had not yet been mastered, and it was not possible to generate a clean sample of 
homogeneous CNTs. This left the exploration of the electronic properties of the C N T  to 
computational methods. M intm ire et al. [63] were the first to model the electronic properties



Com putational Studies o f Nanom aterials: A  H istorical Perspective 11

of single-walled CNTs, followed closely by computational studies by Saito et al. [64) and 
Ham ada et al. [65]. These studies and the subsequent experimental confirmation of their 
results will be the focus of this section.

M intm ire et al. [63] were faced with the challenge of modeling a new material even before 
it had been experimentally verified as existing [66]. Because they were studying the system 
computationally, they did not have the same issues of purity and structure control that 
concerned the experimentalists. However, they did have to determine what a reasonable 
geometric structure for C N Ts should be. Their starting point was the C h() fullerene, also 
known as a buckministerfullerene or buckyball, which is a spherical molecule made up of 
hexagons and pentagons of carbon [67]. As shown in Fig. la , the atomic arrangement of the 
atoms in the buckyball is reminiscent of a soccer ball. The C 7„ molecule, shown in Fig. lb, 
is formed by aligning the C 6(, fullerene to one of its C 5 axes, which has fivefold symmetry, 
and adding a concentric ring of 10 carbon atoms with D 5h symmetry. An  extended tubular 
structure can be constructed by adding a series of these 10 atom carbon rings, as shown in 
Fig. 1c. Each newly added carbon ring that is added to the structure is rotated from the 
position of the previously added ring by half the distance necessary to rotate the structure 
to identical lattice positions. Adding ring after ring o f carbon transforms the spherical C (l0 
into an extended capsule of variable length. The original C 60 molecules can be thought of 
as caps of the tubular center section. Most carbon nanotubes are produced with capped 
ends [67, 68).

The calculations of M intm ire et al. [63] were performed on an infinitely long cylindrical 
tube with all C -C  distances set to 0.142 nm and a C N T  diameter of about 0.7 nm. The 
base unit of the structure was a set o f 10 carbon rings o f D 5h symmetry, and an extended 
structure was generated in the code by use of a screw operator. This corresponds to a (5, 5) 
nanotube structure, where the indices (/?, m) refer to the manner in which the “ rolling up" 
of a graphene sheet produces nanotubes [67]. Changes to the indices produce nanotubes of 
various helical structures, as shown in Fig. 2. Specifically, the integer lattice vectors n and m 
are added together, and the tail and head of the resulting vector are placed on top of each 
other in the final nanotube structure. Zigzag (also called sawtooth [69]) nanotubes have (//, 0) 
lattice vector values, whereas armchair (also called serpentine [69]) nanolubes have (//, n) 
lattice vector values [67]. These are the two possible achiral confirmations; all other (//, m) 
lattice vector values yield chiral nanotubes [67, 70]. Nanotubes may exist individually as single- 
walled C N Ts or as multiwalled C N Ts that have a nested structure. In particular, multiwalled 
CN Ts consist o f smaller-diameter C N Ts within larger-diameter CNTs, which are within even 
larger-diamcter CNTs, and so forth. In multiwalled CNTs, each nanotube is separated from 
its neighboring nanotubes by the van der Waals distance of about 0.35 nm.

The electronic structure calculation o f M intm ire et al. [63] was perform ed with an a ll
electron ab initio method, which was originally used for one-dimensional band structures of 
polymer systems but was adapted for structures of helical symmetry. The calculated band

(a) (b) (b)

Figure 1. Q „ is displayed in part (a). The C5 axis of the is aligned within the page in the horizontal direction. 
Part (b) displays the C7n fullerene with its C\ axis within the page and pointing in the horizontal direction. As 
noted in the text, the C7„ fullerene can be constructed from the C,„, by adding 10 carbon atoms with DSh symmetry. 
The orange atoms within the C7„ molecule are those that came from the Cm and the blue atoms represent the 
D5h ring. Part (c) shows the extended structure that can be created by adding sequential D5I, rings with the proper 
rotation. The C\ axis is also aligned within the page and in the horizontal direction. Again, the parts of the extended 
structure made with the C,((1 are orange in color and the added DSh rings are blue.
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Figure 2. Im age o f  the (n. ni) ind ices used to describe the construction o f  a C N T  from  a graphene sheet. A f te r  
Ref. (64).

structure is shown in Fig. 3. It can be seen that two bands. a] and az, crossed at the Ferm i 
level, making this structure a one-dimensional metal. The al and a2 bands had a p-type 
character near the Ferm i level and were equivalent to energy levels one would obtain for 
a graphite sheet (graphene) calculation in the same direction. G raphite is normally not 
metallic because it has low conductivity within the planes from low carrier concentration; 
graphite as a whole is insulating because of the van der Waals bonding between the sheets, 
across which charge does not travel.

One of the most interesting aspects of this calculation was that Peierls distortions [71] 
did not produce a gap at the Ferm i level to destroy the metallic character o f the nanotube, 
as had occurred in other one-dimensional materials, such as polyacetylene [63, 72, 73].

Figure 3. C a lcu la ted  band structure o f  a (6 .6 )  single-wal'ed C N  T: I" to X  runs a long  the C N T  axis from  0 to 
77 in recip rocal space. T h e  dotted line represents the Ferm i energy. F igu re  reprin ted  w ith  perm ission from  163], 
J .  W . M in tm ire . et al., Phys, Rev. Leu. 68. 631 (1992). <0 19911, A m erican  Physical Society .

•10

Wave vector X
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M intm ire et al. [63] explained this by showing that the increase in electron overlap/atom 
that would drive a Peierls distortion of the nanotube was much less than in polyacetylene 
(about one-fifth as large), whereas the elastic energy/atom resisting the distortion was much 
larger (1.5 times as large) at temperatures less than or equal to room temperature. In addi
tion. they estimated that the carrier concentration w'us on the order of more typical metal 
conductors (about 1()2: c n r 3).

Saito et al. [64] and Ham ada et al. [65] simultaneously considered, for the first time, the 
effects o f chirality and helical structure of single-walled C N T s  on their electronic properties. 
The electronic structure calculations of Saito et al. showed that C N Ts  with the same zigzag 
structure but different diameters had very different electronic densities of states. Specifically, 
the authors showed that (10 ,0 ) nanotubes were semiconducting, whereas (9 ,0 ) nanotubes 
were metallic. The researchers further derived simple, predictive rules for determining the 
conductivity of single-walled CNTs, as follows

2n + m = 3 q (27)

where n and m are the integral lattice vectors described above and q is an integer. It is 
soon obvious that this rule predicts that all armchair single-walled CNTs and all zigzag 
single-walled CNTs where n is a multiple of three are metallic. A ll other single-walled C N T  
chiralities have a band gap in their electronic structure, making them semiconducting.

The T B  calculations of Ham ada et al. yielded similar results, and they further showed how 
single-walled CN Ts with (/i( , n2) integral lattice vectors, where //, > 2n2 > 0, which obeyed 
the following expression

n, -  2n: = 0 (28)

were metals, lubes with (/?,, n2) integral lattice vectors that obeyed the following expression

n, - 2 n : = 3q (29)

were narrow-gap semiconductors, and all other single-walled C N T S  were wide-gap semi
conductors (or insulators). Note that the nomenclature used by Ham ada et al. was not the 
same as that of Saito et al. (the differences arise from the definition of the primitive lattice 
vectors of graphite). Ham ada et al. used primitive lattice vectors separated by an angle of 
120 degrees, and Saito et al. used primitive lattice vectors separated by 60 degrees. The 
nomenclature of Saito et al. is now the prevalent nomenclature used in the literature.

Experim ental verification that single-welled C N Ts are m etallic conductors came in 1997 
in a paper by Tans el al. [74]. The measurement was done on a nanotube draped across Pt 
electrodes on a S i/S i0 2 surface, as shown in Fig. 4. The experiments further showed that the 
nanotube conducted as a coherent quantum wire, as illustrated in Fig. 5, which plots current 
versus bias voltage. In other words, the current flowed through distinct and discrete electron 
states that are quantum-mechanically coherent from one contact point to the other. A  subse
quent experimental paper by W ildoer et al. [75] and one by Odom  et al. [76] confirmed the 
theoretical prediction that the electronic properties of single-walled CNTs, as measured by 
scanning tunneling microscopy, vary significantly with changes in tube diameter and chirality. 
This finding is summarized in Fig. 6 (reprinted from Ref. [75]).

The extreme relevance o f these studies is highlighted by more recent efforts to build 
complex electronic devices from single-walled C N Ts [77-79]. In this respect, computational 
work also plays an important role. For example, Heyd et al. [80] used T B  calculations to 
show that the band gap of zigzag single-walled CN Ts could be varied as the C N Ts were 
stressed in the elastic response region, and mctal-to-semiconductor transitions were possible. 
In contrast, arm chair C N Ts remained metallic, even when stressed. This finding indicates 
that nanometer-scalc strain gauges and vibration sensors could be produced from CNTs. 
Brenner et al. [81] used T B  calculations to further explore this property of CN Ts and pre
dicted that the band gap of a (17, 0) C N T  closed at a compressive strain of about 1 \ %  and 
at a tensile strain o f about 8 %  and reopened at higher strains. This study further predicted 
that the number o f charge carriers in the C N T  could be doubled by straining the C N T  in 
tension by about 5 % .
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M—  3 pm

Figure 4. Experimental setup used to measure the electronic properties of the single-walled CNT. Reprinted with 
permission from [74], S. J. Tans et al.. Nature 386. 474 (1997). © 1997. Macmillan Publishers Ltd.

A t present, much effort is being focused on experimentally producing nanotubes of one 
conducting type (i.e., metallic, semiconducting, or insulating). Very recently, there has been 
some success in separating metallic and semiconducting CN Ts from a heterogeneous mixture 
of tubes [82,83].

3.2. Structure and Properties of Nanotube Junctions
The ultimate goal o f researchers working to build nanometer-scale electronic devices is 
to be able to use as building blocks not individual CNTs, but a series of either metallic 
or semiconducting C N Ts that are connected to one another at seamless junctions. In this 
wav, for example, nanometer-scale transistors could be constructed by connecting a metallic 
nanotube to a semiconducting tube that, on its other end, is connected to another metallic

0.5

0.0
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-4  -2  0 2 4
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Figure 5. Experimentally measured current versus voltage plot of the single-walled CNT shown in Fig 4 at different 
trace voltages. Trace voltages A. B. and C are 88.2. 104.1, and 120 meY respectively. The inset shows current- 
voltage (bias) curvcs for different trace values of I . The graphs are vertically offset for clarity and range from 
Kiuic ~  mcV for the top curve, to I ,.,. ~ 136 meV for the bottom curve. Reprinted with permission from [74]. 
S. J. Tans et al., Nature 386. 474 (1997). 'I 1997. Macmillan Publishers Ltd..
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d  (nm) V/bias (V)

Figure 6. Experimental measurements of the electrical conductivity of a wide range of CNTs. Nanotubes 1-6 are 
chiral, nanotube 7 is zigzag, and nanotube 8 is armchair. Part (a) shows the I-V curves of the CNTs. Many of the 
chiral tubes have several kinks, but the armchair tube has none between 1 V and 4-1 V. Part (b) shows the dl/dV 
and estimated band gaps. Part (c) shows the band gaps of the nanotubes and their agreement with the theoretical 
predictions. Reprinted with permission from [75], J. W. G. Wildoer, et al.. Nature 391, 59 (1998). €> 1998, Macmillan 
Publishers Ltd.

nanotube. The study of such structures is again much easier to achieve with theoretical 
methods than in experiements, as discussed below.

Quite soon after the discovery of CNTs, the effect of wall defects on nanotube curva 
ture, such as pentagons and heptagons instead o f the usual hexagons, was discussed in the 
literature [84, 85]. In particular, pentagons cause inward curvature, whereas heptagons cause 
outward curvature. Such imperfections were soon found to be necessary for forming a seam
less junction between two single-walled CN Ts of differing diameters or chiralities [85-88]. 
Specifically, the presence of pentagon/heptagon pairs was predicted to allow the formation 
of the junctions such that there was no net curvature in the system. The electronic properties 
of these two-nanotube junctions were readily investigated with T B  calculations by several 
groups [86-88]. The calculations found that the junctions possessed resonant tunneling con
duction properties and effectively functioned as nanometer-scale electronic devices.

A n  example junction system is shown in Fig. 7 between a semiconducting (8, 0) C N T  and 
a metallic (7, 1) C N T  from Ref. [87]. The atoms forming the heptagons or pentagons at 
the junction are indicated by the large, gray spheres. Figure 8a and 8b show the calculated 
density of states for the system starting at the junction and moving away down the (8, 0) 
C N T  and (7, 1) CNT, respectively. It is clear from these plots that the junction had a much 
more significant effect on the properties of the semiconducting tube, with electronic states 
appearing the gap region of the pristine (8 ,0 ) CNT. In the case of the metallic tube, the
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Figure 7. Computationally constructed junction between an (8,0) single-walled ( ’NT and a (7, 1) single-walled 
CNT. The large grey balls accentuate the pcntugon-heptagon pair formed in joining these tubes. Figure reprinted 
with permission from [87]. L. Chico et al.. Phys. Rev Lett. 7b, 971 (19%). © 19%, American Physical Society.

only effect of the junction was the smearing out o f some Van Hove singularities that were 
present in the ideal C N T  [87]. In both cases, the effects of the junction were quickly lost, 
and the electronic properties of the pristine nanotubes recovered, as one moved away from 
the junction in either direction.

Subsequent work by Menon and Srivastava [89, 90] considered the electronic properties 
o f more complex Y- and T-junctions that were not necessarily constructed from pentagon/ 
heptagon defect pairs and could even contain octagons. Examples of these structures are 
shown in Fig. 9. T B  calculation results for the local density of states of the T-junction pre
sented in Fig. 9 are shown in Fig. 10. These calculations predicted that the presence of 
the structural defects (heptagons in this case) at the neck region caused the appearance of
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1996, American Physical Society.

localized states in the gap of the semiconducting (10, 0) C N T  that may act to pin the system 
Ferm i level. Sim ilar results were found for the Y-junctions considered by these authors.

These calculations were followed by calculations of the rectifying behavior of a Y-junction 
composed of a (14 ,0 ) C N T  that branched into two (7 ,0 ) C N Ts [911. The ends of all three 
nanotubes were assumed to be in contact with Ni electrodes. The calculated currents as 
a function of applied voltage are shown in Fig. 11, where currents 12 and \} flowed from 
the two (7 ,0 ) C N Ts to the (14 ,0 ) C N T  and current I, flowed through the (14 .0 ) C N T  
away from the junction branch and toward the Ni electrode. Figure 11 indicates that this 
Y-junction acted as a rectifying device, because current flowed when the applied voltage was 
negative, but current did not flow for positive applied voltages.

Experimentally, there is unequivocal evidence for C N T  Y-junctions, and some strategies 
have been developed for producing them. The first experimental report o f nanotube L-, T-, 
and Y-junctions [92] considered junctions that were produced along with regular nanotubes
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Figure V. Computationally constructed CNT junctions. Part (a) shows a fully relaxed T-junction made up of (5.5)- 
(10. 0)-o.5) CNTs. Part (b) shows a fully relaxed Y-junction made up of three (8,0) CNTs. In both figures the 
lighter atoms denote atoms making up the heptagon-pentagon pairs. Reprinted with permission from [90], Madhu
Menon .mil Deepak Srivastava,./. Mater. Res. 13. 2357 (1998). © 1998, Materials Research Society.
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Figure 10. The calculated local DOS plots at different points on the T-junction shown in Fig. 9a. Defcct induced 
gap states can be seen moving from stem to neck. Figure reprinted with permission from [89]. M. Menon and 
D. Srivastava, Phys. Rev. Lett. 79, 4453 (1997). © 1997, American Physical Society.

in an arc-chamber. However, subsequent experimental papers showed that Y-junctions could 
be reproducibly formed in nanoporous templates [93], by decomposition of fullerenes in the 
presence of metallic powders [94], by pyrolysis o f specific precursors [95], or through welding 
by electron irradiation [96,97].

Experimental measurement of room-temperature electrical conduction through Y-junc
tions of single-walled C N Ts produced in nanoporous templates [98] or through pyrolysis [95] 
showed the same rectifying behavior calculated in Ref. [91]. In this case, the experiments 
were carried out before the calculations were performed, but the good agreement between 
the two studies indicates the ability of the available theoretical models to characterize the 
behavior of these nanostructures.

M D  simulations using T B  methods [96] and bond-order potentials [99] revealed the likely 
mechanisms by which electron irradiation welds together nanotubes to form junctions. In 
particular, defects were created in the C N T  walls that caused the damaged tubes to weld 
together. T B  calculations of the electronic properties of X-shaped nanotube junctions pro
duced through electron irradiation in these simulations [99, 100] indicated that the electronic

V, (Volts)

Figure 11. The predicted rectifying behavior of a Y-jimciion consisting of a (14.0) CNT branching into two (7 0) 
( 'NTs. Figure reprinted with permission from 191 j, A. N. Andriolis et al.. Phys. Rev. Lett. 87. 066802-1 (20il). 
C) 2001, American Physical Society.



Com putational Studies o f Nanom aterials: A  H istorical Perspective 19

properties of junctions produced through irradiation were significantly different from the 
properties of ideal junctions. Figure 12a shows that the irradiated junctions were much more 
disordered than the ideal junctions shown in Figs. 7 and 9. This disorder led to localiza
tion of electronic states, shown in Fig. 12b, effectively making irradiated C N T  junctions into 
quantum dots.

3.3. Mechanical Properties of Carbon Nanotubes
It has been known for some time that graphite has a high Young's modulus within the plane. 
As carbon nanotubes are essentially graphene cylinders, it was recognized quite soon after 
their discovery that C N Ts might have large Young’s moduli as well. As was the case in the 
last two sections, computational and theoretical approaches led the way in exploring the 
mechanical properties of the nanotubes.

One of the first papers to address the mechanical properties of C N Ts was by Robertson 
et al. [69], where both early versions of the empirical bond-order potential and D FT -LD A  
calculations were used to examine the elastic properties and strain energy of single-walled 
CN Ts with diameters up to 1.8 nm. Both the computational methods used indicated that 
the strain energy per atom varied as the inverse radius squared relative to the energy of 
a perfect graphene sheet, as shown in Fig. 13. The results were found to depend only on 
the radius of the C N T  and not on its chirality. Robertson et al. also found that the force 
constants related to stretching in the direction of the tube axis decreased as the nanotube 
diam eter decreased. This behavior was found to depend on the C N T  chirality, with the zigzag 
nanotubes showing the lowest stiffness and the armchair nanotubes showing the greatest 
stiffness for the same nanotube diameter. In the limit o f infinite C N T  diameters, these 
theoretical methods reproduced the elastic constants of unstrained graphene sheets.

This study was followed by many other theoretical studies of the mechanical and elastic 
properties of single-walled CNTs, some of which are now discussed. Calculations of Young's 
modulus using T B  methods predicted a range of values close to 1 TPa  that depended slightly 
on the details of the model. For example, in Ref. [101], an average value of about 1.2 TPa 
was predicted for single-walled C N Ts of various diameters and chiralities; in Ref. [102] an 
average value of 0.97 TPa  was predicted for single-walled C N Ts that did not vary with helical 
structure or diameter; and in Ref. [103], values of 1.0-1.7 T Pa  were predicted. In the latter 
case, the elastic properties were found to be independent of helical structure, but the onset 
of plastic deformation depended significantly on helical structure, with zigzag tubes having 
a larger elastic lim it than arm chair tubes. The effects of curvature were not included in 
Ref. [102], which could explain the independence of the results on C N T  diameter.

- 5  - 4  -3  -2  -1  0 1 2 3 4 5

Energy (eV)

Figure 12. Part (a) shows two (5,5) single-walled CNTs that have been welded together by electron-beam irra
diation in MD simulations. Part (b) displays the calculated DOS of the welded CNT system. Courtesy of Inkook
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Figure 13. Minimized values for the strain energy per carbon atom as calculated with two early versions of the 
bond-order potential for hydrocarbons, termed RPI and EP2. The corresponding LDA DFT results are plotted 
with open squares. The circles and diamonds represent strain per carbon atom for unoptimized Cw„ C,S(„ and 
C\4„. These values are placed at their respective radii. T he HP I and EP2 potentials are both zeroed with respect 
to -7.3995 and —7.375ft eV per atom, respectively. This is the equilibrium energy of carbon in graphite for the 
given potentials. Figure reprinted with permission from [69|, D. II. Robertson et al.. Phys. Rev. B 45, 12592 (1992). 
© 1992, American Physical Society.

O ther theoretical methods were also applied to the determ ination of the Young’s modulus 
o f single-walled CNTs. W hen potentials were used that included torsional energy contri
butions, the calculated Young’s moduli of single-walled C N T s  decreased as the diameter 
increased and as the degree of helicity increased, yielding values o f around 1.0-1.1 T P a  [104]. 
All-electron HF-based a b  i n i t i o  calculations predicted a Young’s modulus of about 1 T P a  for 
single-walled C NTs of various chiralities and about the same radius [105]. A  study by Ozaki 
et al. [106] examined the responses of single-walled C N T s  with differing helical structures 
but approximately the same radius to large strain at 0 K. The strain energy per unit length 
did not show any helical dependence, and the resulting Young’s moduli o f about 0.980 TPa  
also showed little variation with changes in the helical symmetry, under either tension or 
compression. However, under large strain conditions (defined as 15% or greater), the zigzag 
tubes consider ’ were significantly stiffer under tension, and the arm chair tubes considered 
were significantly stiffer under compression.

M D  simulations were also applied to study the response of nanotubes to strain and deter
mine the Young’s modulus. Importantly. M D  simulations established quite early on that 
C N T s could be deformed easily by bending, twisting, or otherwise deform ing them [107-109]. 
In all cases, when the C N T  was returned to its original position, it was found that there 
was no plastic deformation as a result of the bending. Figure 14 (reprinted from the paper 
by Yakobson et al. [107]) shows snapshots from simulations in which single-walled CNTs 
were compressed and shows the effect of this deform ation on the system energy. This is 
a remarkably elastic phenomena that would not take place in other graphitic structures or 
solid nanowires.

W hen  D F T  calculations by M aiti et al. were used to study the bending of single-walled 
CN Ts under mechanical loads at the ends [110], the results showed that the tubes bent 
mechanically but retained their bonding structure to relatively high-bending angles, However, 
if the single-walled C N T  was constrained from bending (e.g., held in place), then plastic 
failure was predicted to occur in T B  calculations bv Srivastava et al. [11 1].

Ab initio calculations and M D  simulations using the bond-order potential considered the 
tensile loading of C N Ts and agreed that although the behavior was elastic under normal 
conditions, plastic behavior occurred at high strain and at low temperatures [112, 113]. The 
brittle versus ductile behavior was found to be dependent on the diameter and helical 
symmetry of the C N Ts under consideration. M D  simulations by Yakobson et al. revealed
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Figure 14. Calculated strain energy versus axial compression is plotted in part (a). Singularities can be seen in 
part (a), and these correspond to the morphologies in (b)-(e). The morphologies occur at the following strains: 
(h) f- = 0.05, (c) s = 0.076, (d) e = 0.09, and (e) e = 0.13. The evolution of the symmetry of the C'NT can also be 
seen in (b)-(e). Figure reprinted with permission from [ 107). B. I. Yakobson et al., Phys. Rev. Lett. 76, 2511 (1996). 
© 1996, American Physical Society.

information about the failure mechanisms [114] of single-walled C N Ts when they were sub
jected to extreme tensile forces. Plastic flow was predicted at high temperatures, and brittle 
failure was predicted at low temperatures. The mechanism in both cases started off with the 
creation of a dislocation dipole of 5/7 defect structures that moved away from each other 
along the C 'NT axis in a helical path. The simulations further predicted that CN Ts could be 
strained in tension to about 30-40% of their original length before failure occurred, with 
the results showing some dependence on the nanotube diameter, rate of strain, and system 
temperature.

There have been some important disagreements in the literature about the mechanical 
properties of CNTs. For instance, calculations by Yakobson et al. [107] that determined the 
Young's modulus from the flexural rigidity and in-place stiffness o f the single-walled C N T  
shown in Fig. 14 predicted a value o f 5.5 TPa , assuming a wall thickness of 0.066 nm, which 
is the radius of a carbon atom. E lectron ic band structure calculations, which also took into 
account the wall thickness of the single-walled C N Ts [11.5], found a Young’s modulus of 
5.1 TPa  for CNTs that was independent o f radius and helical structure.

The explanation for this large difference in calculated Young's moduli of single-walled 
CNTs can be attributed to the value used for the wall thickness of the C N T  [115]. W h ile  
single-walled C N Ts are one carbon atom thick, they have a van der Waals radius of about 
0.35 nm. If  the wall thickness was taken to be the van der Waals radius, continuum elasticity 
theory predicted a Young’s modulus o f 1 T Pa  but also predicted a bending stiffness that 
was about 25 times lower than that predicted by classical mechanics. The correct classical 
bending stiffness could be obtained if a wall thickness of 0.066 nm was used, but this value 
of wall thickness also yielded a Young’s modulus of about 5 TPa. If  the Young's moduli were 
determined in a very different manner, such as by scaling the modulus of graphene with 
density when it was placed in hexagonal, close-packed arrangements with hollow interior 
volumes, much lower values of about 600 G Pa  were obtained for the Young's moduli of 
single-walled C N Ts [116].

Experimental verification of the high Young’s moduli o f C N T s  first came in 1996 by 
monitoring the freestanding vibrations of nanotubes with a transmission electron m icro
scope [117]. This approach was first applied to multiwalled C N T s  [117] and was subsequently 
applied to single-walled C N Ts [118]. The average measured value of Young’s modulus was 
about 1.8 TPa  for a range of multiwalled C N Ts of differing diameters and containing a 
variable numbers of shells, and 1.25 ± 0.45 T Pa  for single-walled CN Ts with diameters of
1.0-1.5 nm.

The mechanical properties of single-walled CN Ts were also investigated by compressing 
CNTs with a proximal probe tip [119]. These studies showed that it was possible to greatly 
deform the nanotube without inducing plasticity [ 120] and that the compressibility of single
walled C N Ts was determined to be reversible up to 4 G Pa , after which the lattice was 
destroyed [121]. W hen proximal probe tips were used to investigate the responses of pinned



22 Com putational Studies o f Nanom aterials: A  H istorical Perspective

multiwalled CNTs and SiC nanorods (solid nanometer-scale cylinders), the results showed 
that the CNTs were twice as stiff as the SiC and that at high loads, the SiC nanorods 
fractured, whereas the CNTs deformed elastically [122]. This study by the Lieber group 
yielded a Young’s modulus of 1.28 ±  0.59 TPa for multiwalled CNTs. More recently, Yu 
et al. used an experimental tension set-up to measure the Young's modulus of a single-wall 
CNT [123]. The researchers found a Young’s modulus of 0.32-1.47 TPa with a mean modulus 
of 1.0 TPa.

CNTs were also embedded in epoxy matrix and cooled to compress the CNTs; the sys
tem was then characterized with micro-Raman spectroscopy [124]. The calculated values of 
Young’s modulus were about 5 TPa for single-walled CNTs and about 1.8 TPa for mul
tiwalled CNTs. It should be noted that the analysis of the experimental data in this case 
made use of the concentric cylinder model and the band shifts for the CNTs, which included 
approximations for the CNT wall thickness.

A complicating factor that should be kept in mind when comparing experimental and com
putational results for CNT mechanical properties is the common presence of point defects 
in experimental CNT walls, especially in multiwalled CNTs, which can reduce the measured 
modulus by a factor of 10 [125].

3.4. Chemical Modification of Carbon Nanotubes
Unlike the results discussed in the last three sections, the area of chemical modification of 
nanotubes is one that has been led primarily by experimental efforts. Nevertheless, com
putational studies have played an important role. In particular, computational studies have 
been used to predict the effects of chemical modification of nanotubes on their mechanical 
and electrical properties and to explore new methods for achieving chemical modification 
of CNTs.

There are numerous factors motivating the search for methods to chemically modify the 
structure of CNTs. For example, chemical modification of nanotubc walls might be a way 
to tune the electrical properties of the tube. In addition, CNTs are being explored for use 
as fibers for polymer-matrix composites [126-138] because of their electrical properties, 
high Young’s modulus in the direction of the nanotube axis, and high resistance to brittle 
failure [67,68, 139-142].

The production of composite materials with nanometer-scale components such as CNTs 
is complicated by the small size of the nanotubes and their tendency to agglomerate into 
thick ropes or bundles [67]. In addition, CNTs, like graphite, have an inherent insolubility 
in most solvents. Therefore, there is incentive to disperse CNTs in solution to enhance the 
production of these composites. Last, CNTs and polymer chains interact only weakly through 
van der Waals bonds. There is, therefore, interest in increasing the strength of the bonding 
between the nanotubes and the polymer matrix so that the overall strength ind toughness 
of the composite material can be increased.

The chemical functionalization of nanotube ends was first carried out tv the Smalley 
group as a result of efforts to purify single-walled CNTs that were mixed with amorphous 
carbon and metal catalyst [143, 144]. Purification was achieved by refluxing the as-produced 
material in H N 0 3 and then suspending the nanotubes in a mixture of water aid surfactants. 
Sonication of purified CNTs in a mixture of concentrated sulfuric and nitri: acid further 
cut them into open “ pipes” that were much shorter (by a few hundred nammeters) than 
their original length (several micrometers) and that had carboxylic acid ( —COOH) groups 
covalently attached to the open ends [143]. This finding was exploited by the Lieber group 
to make chemically sensitive proximal probe tips [145, 146]. These nanotube pipes formed 
stable colloidal suspensions in water in the presence of surfactants [143]. However, true 
dissolution of shortened single-walled CNTs was achieved by reacting the cirboxylie acid 
groups at the nanotube ends with thionvchloride (SO C L). followed by amidition reaction 
with octadecylamine (CTL(C TL)|7N IL )  (O D A) [147) or alkyl-arvl amine 4-cocecyl-aniline 
(4-CH3(C H 2),3CflFI4N IT ) [148]".

Direct covalent functionalization of the CNT walls with organic groups was first achieved 
by the Haddon group through reaction with dichlorocarbene [147.149]. lowever, the 
walls of single-walled CNTs were earlier fiuorinated in a nondestructive mamer [150-152].
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Ab initio D F T  calculations subsequently showed that F  atoms preferred to add to neighbor
ing sites on the walls o f the single-walled C N Ts [ 153]. Experim ental studies showed that the 
attached fluorine could be reacted with precursors to yield nanotubes with organic groups 
attached to the walls [ 154].

Nanotubes’ walls were more recently functionalized through noncovalent interactions by 
the irreversible adsorption o f a bifunctional molecule onto the surface of a single-walled 
C N T  [155]. This occurred through the interaction of aromatic pyrenyl group with the delo
calized bonding in the nanotube walls. There were also several reports of the dissolution of 
single-walled CNTs in various solvents by wrapping conjugated polymers around the nano
tubes or nanotube bundles [126, 156-160].

Another way in which C N T s  can be chemically modified is through electron irradiation, 
which causes their collapse in an anisotropic manner [161, 162]. Simulations [161] and cal
culations [162] showed that the threshold for atomic displacement by knock-out from the 
electrons was strongly anisotropic and that the most damage occurred at the front and back 
of the nanotube. In addition, electron irradiation caused nanotubes to shrink in diameter by 
an order o f magnitude [163] or merge through a zipper-like mechanism with other C N Ts 
having the same chirality [164]. As discussed in Section 3.2, electron irradiation was also 
used to “ weld” carbon nanotubes to form epitaxial junctions [96,99, 165].

Sim ilar findings were seen in simulations and experiments of the irradiation of carbon 
nanotubes with ions. Specifically, simulations by N i et al. predicted that the deposition of 
ions, such as C H |  and C +, at low energies of 3-80 e V  can covalently chemical modify 
single-walled C N Ts [166] and multiwalled C N Ts [167] arranged in bundles, as shown in 
Fig. 15. The ions were also predicted to produce a multitude o f defects in the nanotube walls. 
Mass-selected, C F^  ion beam deposition experiments at 45 e V  confirmed that ion-beam 
deposition was a viable approach to chemically functionalize nanotube walls [168], as shown 
in Fig. 16. The small functional groups attached in this matter may be reacted with longer 
polymer chains to yield nanotubes functionalized with long polymer groups. This finding was 
important because it indicated that nanotubes may be chemically functionalized without first 
exposing them to strong acidic or otherwise harsh chemical environments. Ion deposition was 
also predicted by Ni et al. to induce cross-links between nanotubes in the bundle and between

Figure 15. Snapshots from MD simulations. Part (a) shows the functionalization of a double-walled CNT after CH3 
ion deposition at 10 eV. Part (b) shows the functionalization of a single-walled CNT after CHr deposition at 45 eV. 
Examples of the heptagon defects that can form when CH> is deposited at 45 eV are shown in part (c). Part (d) 
shows intrashell cross-links that formed during the 45-eV ion deposition process. Reprinted with permission from 
1168]. B. Ni et al.. J. Phvs. Chem. II 105. 12719 (2001). © 2001. American Chemical Society.
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Figure 16. Core level x-ray photoelectron spectroscopy spectra in the C (Is) and F(ls) region for the unmodified 
and for a multiwalled CNT bundle modified bv CF> ion beam deposition at incident energies of 45 eV. Structures 
that form during deposition are noted in the figure. Reprinted with permission from [!68], B. Ni et al.. J. Phys. 
Chem. H 105, 12719 (2001). © 2001, American Chemical Society.

shells in multiwalled CN Ts [166-168], as shown in Fig. lx l.  This was significant because the 
inner shells o f multiwalled C N Ts have been pulled out of the outer shells using a loading 
stage [169] with either a stick-slip or smooth pullout motion. M D  simulations with classical 
potentials showed that sliding of the inner shells against the outer shells depended somewhat 
on the helicity, and hence relative corrugation, o f the nanotube shells, but confirmed that 
little energy was needed to effect the pull-out [ 170j. The formation of cross links between 
the inner and outer shells could thus not only stabilize C N T  bundles with respect to shear 
but anchor inner shells inside multiwalled CNTs. This could lead to efficient load-transfer 
between the outer and inner shells when the tube deformed.

An important combined computational and experimental study showed that introducing 
conformational strain caused the nanotubes to form “ kink" sites that were more reactive 
than normal nanotube walls [171 ]. In the study, nanotubes were bent, compressed or twisted, 
and exposed to hydrogen gas in the simulations, and to nitric acid vapor in the experiments. 
The simulations indicated that the absorption energy of hydrogen atoms at the areas of high 
strain in the kink sites increased by about 1.6 e V  relative to absorption on an unstrained 
nanotube. The experimental results were consistent with these findings. This approach for 
the chemical functionalization of C N Ts was important for two reasons: it demonstrated that 
the reactivity of nanotube walls could be increased by introducing conformational strain, and 
it provided a mechanism by which nanotubes could be selectively functionalized along their 
length.

The attachment of covalently bound groups to the walls of C N T  might be expected to 
have some effect on the mechanical properties o f the tubes through the introduction of 
sp'-defects in the normal sp-hybridized nanotube structure. Classical M D  simulations with 
the bond order potential by Garg  and Sinnott showed that the buckling forces of single- 
walled CN Ts that were highly functionalized with FI-.C— C  groups were only about 15% 
less than the buckling force o f the pristine tubes [172]. This finding indicated that although 
the mechanical properties of functionalized single-walled CN Ts were somewhat degraded 
relative to pristine tubes, the degradation was not severe. M D  simulations were also used 
to determine the relative strain of a functionalized (10. 10) single-walled C N T  relative to 
a bare (10, 10) C N T  as a function of percentage functionalization with C H ; groups [173].
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The results showed that the nanotube contracted slightly as the amount of functionalization 
increased from 0 to 15%. Furthermore, the energy as a function of strain for pure (10. 10) 
and (1 ", 0) nanotubes with .15% C H 3 functionalization was determ ined [173]. There was little 
difference between the functionalized and bare nanotube curves for the (10. 10) nanotube. 
However, functionalization reduced the modulus of the (17 ,0 ) nanotube relative to the pure
(17 ,0 ) nanotube by a slight amount. These predictions have not yet been quantitatively 
confirmed in experimental studies.

M D  simulations with many-body empirical potentials by Frankland et al. were used to 
examine the mechanical properties o f nanotube-polymer matrix composites with and w ith
out functionalization of the CN Ts [174. 175]. No permanent stress transfer was observed 
in a nanotube/polymer composite held together by van der Waals bonds. This prediction 
agreed with experimental findings that CNT/polymer composites that used unmodified CNTs 
failed by nanotube pull out [133, 136, 137]. W hen the same system was considered with a 
chemically functionalized nanotube in the simulations, the material as a whole was found to 
have improved shear yield strength [175]. The simulations also indicated that shear strengths 
and critical lengths required for load transfer could be significantly enhanced or decreased 
through chemical functionalization of the C N T  walls [174]. For instance, over an order of 
magnitude difference was predicted for cross links that involved less than 1% of the atoms 
in the C N T  walls. Calculations further showed that the helical conformation of the polymer 
was as important as the binding energy between the nanotubes and the polymer [176].

M D  simulations with bond order and L J  potentials were recently used by Hu and Sinnott 
to explore new ways of producing cross links between C N Ts and polymer chains in situ 
through ion beam deposition [177, 178). This computational study demonstrated that when 
reinforcing C N Ts were embedded close to the surface in a CNT/polystyrene composite, poly
atomic ion beam deposition of C 3F t  ions at incident energies of 50-80 eV/ion induced the 
formation of cross-links between the otherwise pristine nanotubes and the polymer matrix 
without inducing severe damage to the nanotube structure, as shown in Fig. 17. However,

Figure 17. Snapshot from MD simulations of cross links that form between a CNT and a polymer matrix in a 
CNT/polystyrene composite during the deposition of a beam of C\F- ions at incident energies of (SO eV. Courtesy 
of Yanhonii Hu.
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because of rapid energy decay within the substrate, this technique was limited to modifica
tion of the composite structure near the surface. This is in agreement with the conclusions 
of other studies on ion beam treatment of polymers that found that low-energy ion deposi
tion (<100 e V ) only modified the shallow regions of the polymer surfaces [179-181]. These 
studies also showed that if the ion energy is high (several hundred keV  to a few M e V ),  the 
surface modification can reach much deeper regions (several micrometers), and the surface 
hardness of the treated polymer can be several times larger than that o f steel as a result of 
extensive deposition-induced cross linking [182].

Chemical modification would also be expected to influence the electronic properties of the 
CNTs. T B  calculations by Brenner et al. predicted that covalent chemical functionalization 
of the walls of (6, 0) C N Ts with H : C C H : units changed the electrical properties of the 
C N Ts [81, 173]. For instance, at certain arrangements and concentrations of the H 2C C H 2 
functional groups, the functionalized C N T  behaved as a metal-semiconductor junction with 
a Schottky barrier of 0.44 e V  [173]. In particular, the addition of H :C C H 2 functional groups 
opened a band gap in the density of states of the C N T  [173]. Ab initio calculations by Seifert 
et al. also examined the electronic properties of (10, 0) C N Ts with various concentrations of 
attached Huorine atoms [183]. Three isoenergetic but very different structures with energy 
differences of about 0.1 eV/atom, were found for the same amount of absorbed fluorine. The 
F  was found to make ethylene-like or polyacetylene-like units along the walls and the cross- 
section of the nanotube change from round to pentagonal for these different arrangements. 
Depending on the structure, the fluorinated (1 0 ,0 ) was either semiconducting, metallic or 
insulating [183]. Additional calculations by Kudin et al. o f fluorinated zigzag and armchair 
single-walled C N Ts with C 2F  stoichiometry found that armchair fluorinated C N T S  were 
metallic and that fluorinated zigzag tubes were less stable than the fluorinated armchair 
tubes [184]. These results taken together indicate that a single C N T  could have different 
arrangements of fluorine atoms, and hence different electronic properties, along the length 
of the nanotube.

These computational findings were recently followed by experiments that produced a 
quantum dot about 10 nm long that operated as a single electron transistor at room tem
perature and was created out of chemically modified single-walled C N T  bundles [185]. In 
addition, nanometer-scale p-n [186] and p-n-p [187] junctions were produced from individual 
semiconducting single-walled CN Ts by doping with polymer groups or K  atoms. Chemical 
functionalization was also recently used to connect nanotubes to molecular switching and 
memory devices that might be the first step toward generating more complex nanometer- 
scale devices [ 188].

3.5. Carbon Nanotube Gas Sensors
In an interesting extension of the findings discussed in the last section, recent experiments 
and calculations indicated that the interaction o f some molecules to the nanotube walls 
can have a significant effect on their electrical conductivity. For example, the conductiv
ity of single-walled C N Ts was originally predicted to change when exposed to N H 3 and 
N 0 2 [189, 190], making it possible to use the C N Ts  as chemical sensors. Figure 18 shows the 
behavior of a single semiconducting single-walled C N T  when it was exposed to the different 
gases. Part A  shows an atomic force microscope image of the C N T  between two metal con
tacts. This C N T  was norm ally p-type and. when exposed to ammonia, the conductivity was 
depleted, as shown in part B  of Fig. 18. In contrast, when this C N T  was under a gate voltage 
of Vg~  -1-4 V  which would normally make the C N T  into an insulator, and exposed to N O : 
gas, a drastic increase in the conductivity was observed. T his was believed to be caused by 
an excess of p-type carriers in the CNT. In later experiments, it: was also shown by Collins 
et al. that a semiconducting single-walled C N T  was sensitive to detection of 0 2 gas [191] as 
well. In this study, it was shown that a normally semiconducting C N T  was transformed into 
a metallic conductor when exposed to oxygen gas.

Since these original findings, there has been an intense debate about ihe fundamental 
mechanism for how the conductivity of a C N T  changes when exposed to gases such as 
oxygen. This debate has ranged from whether a physisorbed molecule can drastically alter
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Figure 18. Experimental data. Part (a) shows an atomic force microscope image of single-walled CNT that is 
between t\u> metal contacts. Part (b) shows that the normally p-typc single-walled CNT looses carriers when exposed 
to N H ;. Under a gale voltage of +4 V, this CNT is normally an insulator. However, when exposed to NO:, the 
conductivity drastically changes, as shown in part (c). Reprinted with permission from [189], J. Kong et al.. Science 
287, 622 (2000). © 2000. AAAS.

C N T  conductivity to the effects of defects and other gases on the conductive properties. 
This section will limit itself to a discussion of the use of single-walled C N Ts as chemical 
sensors for N O : , N H 3, and 0 2. There has been extensive research into the effects of defects 
on gas adsorption, and some of these are discussed below. There has also been extensive 
research into the detection of other gases and biological substances, and on the effect of 
chemical functionalization of the C N T s  in increasing their chemical detection properties. 
To fully discuss all the current, ongoing research on the use of C N Ts as chemical sensors is 
beyond the scope of this section.

Over the last 4 years, there has been a very active debate that has centered on what 
causes the conductivity change shown in Fig. 18. The initial claim was that the conductance 
change of the semiconducting single-walled C N Ts studied in Refs. [189-191] was through 
direct interaction of the 0 : molecule with pristine or defected nanotubes. This was argued 
both theoretically in ab initio calculations [192 -194] and experimentally [1911 over the course 
of the last few years. This claim was disputed in a variety of theoretical [195-200] and 
experimental [197, 201-206] studies that found that direct contact between the 0 2 molecule 
with the C N T  did not cause the previously predicted conductivity change.

Experiments by Avorous and coworkers [205, 207] studying nanotube field effect transis
tors made from single-w'alled C N Ts found that when the transistors were exposed to oxygen, 
the conductivity changed as previously predicted. However, when the m etal/CNT contacts 
within the transistor were protected from the 0 2 gas, no measurable change in conductance 
was observed. This showed that direct contact between 0 2 gas molecules and the C N T  walls 
did not play a significant role in changing the conductivity of the CNT. Rather, it was hypoth
esized that the conductivity change was a result o f barrier height changes at the metal/CNT 
contact. In another experimental study, Goldoni et al. [206] showed that previous measure
ments of conductance changes in single-walled C N T  bundles on exposure to O z were a 
result of contaminants, such as Na and Ni, left over from the growth and cleaning process. 
Once the bundle went through annealing cycles that removed the Na contaminants, there 
was no measurable conductance change of the C N T  bundle when it was exposed to oxygen 
molecules. It should be noted that charge transfer from 0 2 molecules to the C N Ts in the 
presence of a metal contaminant was noted as a possible mechanism by Collins et al. [191].
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However, Goldoni et al. did not find contaminants to bc responsible for the C N T  conduc
tivity changes caused by N H , and N O : [206]. In fact, G o ld in i et al. saw a notable change 
of the C  Is peak when the annealed C N T  bundle was exposed to N 0 2 and N H 3 gas. In 
contrast, Bradley et al. reported that single-walled C N Ts that were annealed and left under 
vacuum did not change conductivity when N H 3 was reintroduced [208]. They also studied 
the detection of ammonia in water and found that there was a strong signal when ammonia 
was introduced in an aqueous or a humid environment. They then concluded that water 
vapor under ambient conditions must assist in the conductivity change of the single-walled 
CN Ts exposed to N H 3. This finding is consistent with the original predictions of Kong 
et al. [189], who found that the C N T  conductivity change caused by N H 3 was most likely an 
indirect process because strong binding between the two was not found in D F T  calculations. 
A  later study by Brad ley et al. [209] examined passivation of the m ctal/CN T contacts, as was 
done in the 0 : experiments in Refs. [207,205]. In contrast to the findings for oxygen, the 
authors found that the conductivity only changed by a few percent and concluded that the 
interaction causing the conductivity change was in the C N T  region rather than the contact 
region.

Finally, all experiments and theoretical studies appear to agree that N O : changes the 
conductivity of the single-walled CNTs. The N O : molecule has the strongest interaction 
with single-walled CNTs, and it is believed that it changes the conductivity through charge 
transferring from the C N T  to the N O : molecule. There have been some assertions that the 
conductivity change is caused by chemisorption or other mechanisms [210], but the ideal 
N O : physisorbtion studies appear to give the clearest evidence that physisorption changes 
the conductivity of the C N T  in this case.

It is not surprising that there is so much more disagreement between different theoret
ical and different experimental studies of gas interactions with CNTs. Experim entally, it 
is nontrivial to rule out contaminating effects. Com putationally, modeling systems where 
dispersion interactions are important is quite complicated. To truly account for dispersion 
interactions, which are long-range attractive forces, it is often necessary to use very expensive 
wavefunction-based methods that include correlation effects. The H F  method alone is not 
sufficient, and more com putationally expensive methods such as higher-order H F - M P  are 
required [211]. Exchange-correlation functionals in D F T  are not parameterized to handle 
long-range dispersion interactions. L D A  tends to overbind the molecule to the substrate, 
and each G G A  parameterization responds differently, depending on the molecule used and 
on the methodology details. Fo r example, one flavor of G G A  tends to be slightly underbind
ing, and the calculated bond distances are too long [211], whereas another flavor calculates 
accurate bond distances and energies [212]. A lthough D F T  does not capture all aspects of 
dispersion, it still can be and has been used with care to model systems in which dispersion 
is important.

The complete details of the computational methods used in Ref. [189] were presented in 
subsequent papers [190,213]. The authors used D F T  with the L D A  exchange correlation 
potential to model the interaction o f N H :> and N O : with the (10 ,0 ) semiconducting single
walled CNT. A  strong interaction was found between N O : and the C N T  as is expected, 
but no binding affinity was found between N H , and the C N T  N IL , was found to interact 
very weakly with the C N T  and, as mentioned above. Kong et al. proposed that this gas 
molecule must change the conductivity o f the C N T  through an indirect mechanism that may 
not even be related to N H y C N T  interactions. Subsequent studies by other authors who 
were also using D F T  methods reported a weak interaction of N IL , with semiconducting 
C N Ts 1193. 214].

The binding energy of N O : to a semiconducting C N T  was found to be strong with 
0.1 electron charge transfer between the C N T  and molecule [189]. This strong interac
tion was hypothesized to be a means of doping the semiconducting CNTs. The calcula
tions also showed that the physisorbed N O : changed the conductivity o f the tube by taking 
electrons away from the C N T  and adding a carrier state near the top o f the C N T  valence 
band [!89, 190]. Peng et al. [190, 213j noted this argument by comparing the position of the 
molecule's lowest unoccupied m olecular orbital to the valence band of the CNT. Later studies
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clearly showed that there was a new state near the Ferm i energy in the density of states 
plot 1193, 214-216).

The fundamental issues of how C N T  conductivity changes on exposure to gas molecules 
are by no means settled. However, it is clear that computational methods will play a major 
role in determining and understanding them.

3.6. Filling Carbon Nanotubes
About two decades ago. the computational study of molecular interactions in nanomaterials 
such as zeolites began to emerge. Zeolites are nanoporous metal oxide materials that can 
form  a variety of shapes [217). They are important molecular sieves and catalysts that can 
separate molecular mixtures through such processes as selective molecular transport and ion 
exchange [217, 218). Computational studies were instrumental in identifying the mechanisms 
by which molecules were transported through zeolites, which included well-known mecha
nisms such as normal-mode diffusion, where molecules are able to pass each other [219]; 
single-file diffusion, where molecules are unable to pass each other (220,221); and a mode 
that is between these two that is called transition-mode diffusion [222].

The first study of molecular intercalation into small, opened, single-walled C N Ts was a 
D F T  calculation of the interaction o f a H F  molecule with the interior o f a (6 ,6 ) nanotube 
(223). This calculation predicted that there was significant attraction between the molecule 
and the nanotube that was a strong driving force for intercalation. Another early theoret
ical study also found that it was energetically favorable for noble gas atoms to intercalate 
into opened C N Ts [224]. Since then, several computational studies have also considered the 
intercalation of molecules and noble gas atoms, such as hydrogen, nitrogen, and helium, 
into opened single-walled CN Ts or the interstitial sites between the nanotubes in a bun
dle [225-233]. Molecules, such as methane, and noble gas atoms, such as xenon and neon, 
were predicted to enter into opened nanotubes [233-235].

Com putational studies were also used to study molecular transport through CNTs once 
the molecules entered through an opened end. Classical M D  simulations with empirical, 
two-body potentials [236] and bond-order and L J  potentials [237] predicted that dynami
cal atomic and molecular flow was not likely to occur through opened nanotubes, and that 
even if dynamical motion started, it would rapidly stop because of the same strong attrac
tions between the molecules and the nanotube interiors that were responsible for molecule 
intercalation into the CNTs. M o lecu lar transport was rather, predicted to occur through 
m olecular diffusion, as was the case in zeolites.

In one study by Lee and Sinnott, M D  simulations using bond order and L J  potentials for 
methane and Coulom bic and L J  potentials for oxygen, were used to compare the molec
ular transport of methane and oxygen molecules through opened, hydrogen-terminated 
C N T s [238]. A  snapshot from these simulations is shown in Fig. 19. The authors predicted 
that these molecules showed some similarities and differences in the manner in which they 
flow through small-diameter CN Ts. For both molecules, the transport mode followed by the 
molecules changed with time and could be ultimately divided into three different stages.

In the first stage, both molecules followed a transport mechanism that was intermediate 
between ballistic and normal-mode diffusion. However, when the molecules had flowed all 
the way down the C N T  interior and were approaching the open exit, the significant attrac
tion between the molecules and the C N T  interiors was responsible for molecules reversing 
direction, which induced chaotic motion [239]. Thus, the second stage was characterized by 
chaotic flow that involves molecules moving forward from the gas reservoir and moving back
ward from the open end. In the third, near-steady-state stage, near-normal mode diffusion 
was followed by both sets of molecules. The differences between the methane and oxygen 
systems included the time needed for the molecular density change to level off within the 
CN T. which was lower for the oxygen systems than for the methane systems. In addition, 
the movement of the oxygen molecules during the second stage was more chaotic than the 
movement of the methane molecules. These differences were attributed to the dissimilar 
shapes of the molecules and the varying long-range forces that characterize their interaction 
with the nanotube wall.
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Figure 19. Snapshot from MO simulations of tlie molecular flow of O, through a (10, 10) 
Courtesy of Ki-Ho Lee.

single-walled CNT

Sim ilar M D  simulations by M ao and Sinnott [237] were further able to show how the C N T  
diam eter affected the results. As the diameter increased, the diffusion coefficients of the 
methane molecules decreased because of increased interaction of the molecules with other 
gas molecules and decreased interaction of the molecules with the C N T  walls. Transport that 
was neither normal-mode nor ballistic was very recently predicted to occur in the smallest- 
diam eter C N Ts (diam eters were about 0.6 nm) by Lee and Sinnott [239]. This was predicted 
to occur because either the transport was transitional between normal-mode diffusion and 
the ballistic convection of continuum theory over the nanosecond timescales of the M D  
simulations, or molecular interactions were such that more scattering occurred in smaller- 
diam eter C N Ts than in larger-diameter CNTs.

The fact that at near steady-state conditions, spherical molecules such as methane flowed 
from a reservoir region through opened CNTs with diameters of about 1 nm via norm al
mode diffusion [237, 239] agrees with what was predicted for the transport of methane 
through zeolites [219]. Classical M D  simulations with bond order and L J  potentials by 
M ao  et al. further predicted that nonspherical molecules, such as ethane and ethylene, fo l
lowed transition-mode diffusion through most single-walled C N Ts (w ith diameters of about 
1 nm ) [237, 240], w'hich also agrees with predicted behavior of these molecules through zeo
lites [222]. However, the self-diffusivities and transport diffusivities o f A r and Ne in carbon 
nanotubes were recently predicted bv Shell and coworkers to be larger by, at most, three 
orders of magnitude relative to flow in zeolites [241, 242]. These equilibrium M D  simulations 
using L J  potentials showed that the exceptionally high-flux light gas atoms and molecules 
through C N Ts were a result of the smoothness of the C N T  walls, which were very different 
from the corrugated structure of zeolite walls. W hen artificial scattering was included in the 
simulations, the diffusivities decreased significantly.

M D  simulations by Zhang also examined the behavior of nonspherical molecules, such as 
linear decanes, inside C N Ts [243]. The results indicated that the molecules preferred to form 
a single adsorption layer on the wall at most densities, and most of the transport took place 
in the center of the nanotube, where the molecules were not "trapped" by the wall [243j. 
Equ ilib rium  M D  simulations by Bhide et al. found that normai-pentane and iso-pentane 
molecules followed anomalous transport behavior midway between normal-mode diffusion
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and ballistic motion when they flowed through opened (10, 10) CNTs [244]. Several argu
ments were proposed to explain this behavior, including changes in levitation, conformation, 
and potential energy. Supple and Quirke [245] also predicted ballistic motion for decane 
molecular flow through a rigid (13, 13) nanotube. The ballistic transport mode was attributed 
to the high driving force of convection. The fact that the walls were rigid may also have 
contributed to this behavior, however.

The transport o f water molecules, which form strong intermolecular (hydrogen) bonds, 
in a small, (6, 6) C N T  was recently studied in M D  simulations with empirical potentials 
by Hum m er et al. [246, 247]. In agreement with the other studies discussed earlier, the 
simulations predicted that water spontaneously entered the opened CNTs. However, some 
previously unreported behavior was predicted to occur. In particular, the water molecules 
formed a continuous, one-dimensional chain of individual molecules within the C N T  that 
was transported through a pulse-like motion caused by the hydrogen bonding between water 
molecules. A  continuous-time, random-walk model was developed that characterized the 
motion of the water [248]. The M D  simulations were further able to characterize the kinetics 
of water motion into and out of the C N T  [249]. Specifically, water molecules were added 
sequentially at one open end and removed sequentially from the other opened end. The 
one-dimensional chain broke when the water molecule exiting the C N T  donated its hydrogen 
bond to the bulk water surrounding the C N T  rather than to the chain inside the C N T

M D  simulations with L J  and Coulombic empirical potentials by Mashl et al. of water 
confinement to single-walled CN Ts ranging in diameter from about 0.3 to about 1.8 nm 
predicted that the behavior of water changed significantly with nanotube diameter [250]. In 
agreement with the findings of Hum m er et al. [246, 247], one-dimensional hydrogen-bonded 
chains of water were formed in the smallest-diameter CNTs. In the larger-diameter CNTs, 
more disordered arrangements of water were formed. However, water confined to C N Ts 
with diameters of 0.86 nm underwent a transition to an icelike state with hydrogen-bonding 
behavior similar to that of bulk liquid water. In contrast, Noon et al. predicted the formation 
o f helically ordered ice ‘‘sheets”  inside (6, 6), (7, 7), (8, 8), (9, 9) and (10, 10) C N Ts in M D  
simulations with nonreactive empirical potentials developed from ab initio methods that did 
not include polarization effects [251]. The water molecules were predicted to form hydrogen- 
bonded networks around the inner C N T  walls. This finding could have been caused by all 
the atoms being constrained to be neutral in the simulations.

Un like the finding of fast transport of light noble gases in CN Ts [241, 242], water in C N Ts 
was predicted to flow more slowly through the CN Ts than in bulk water, most likely to 
because of the stabilization of hydrogen-bonded structures within the C N T  [250]. Subsequent 
D FT -M D  simulations by Mann et al. [252] and Dellago et al. [253] found that excess protons 
along the water chain were stabilized relative to bulk water, and that proton mobilities along 
the chain were thus much greater than in bulk water.

Experimental X-ray diffraction spectra and transmission electron microscopy images of 
water confined to the interiors of carbon nanotubes have recently been obtained [254,255] 
that qualitatively agree with the predictions of the M D  simulations. However, the nanotubes 
considered in the experiments had considerably larger diameters than the C N Ts modeled in 
the simulations, so water meniscuses [255] or nanotubes of ice [254] were observed, rather 
than one-dimensional chains of water that were one molecule wide.

Computational studies have also considered the interaction of charged particles with the 
interiors of CNTs. For example, D F T  calculations predicted that K  atoms that intercalated 
into single-walled CN Ts transferred charge to the nanotube walls leading to ionic cohe
sion [256]. Unlike the unusual transport behaviors discussed above for methane, light noble 
gas atoms, and water, the calculations predicted that the diffusive motion through the C N Ts 
were similar to that of diffusion on a graphite surface. Shortly thereafter, experimental evi
dence showed that K  and FeC l3 could be intercalated into C N Ts [257].

A  combined computational and experimental study using D F T  calculations and scan
ning transmission electron microscopy experiments showed that charged iodine molecules 
that were introduced in molten form formed a double-helix helical structure inside single
walled C N Ts [258]. The calculations explained this behavior by the preference for the iodine 
to align with the carbon-carbon bonds in the C N T  walls, which was responsible for the
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helical shape. Subsequent M D  simulations and D F T  calculations prcdictcd spiral transport 
for nonspherical organic (ethane and ethylene) molecules through (10, 10) C N T s  at low 
molecule densities for similar reasons [259].

M D  simulations with pairwise additive empirical potentials by W ilson and Madden [260] 
predict that K I crystal “ fingers” could be preferentially grown into opened C N Ts from the 
melt state. In particular, ions at the C N T  openings arranged themselves into stable crys
talline arrangements that then rapidly extended into the C N T  interior and solidified, even 
while the K I ions surrounding the C N T  exterior remained in the molten stage. Experim ental 
studies indicated that nanotubes were easily filled with a variety o f elements and com 
pounds but only as long as the surface tensions o f the filling material were less than about 
100-200 mN/m [261].

Monte Carlo  simulations by Ayappa were used to study the behavior of binary gas mixtures 
in C N Ts [262]. Molecules with larger radii were able to adsorb to the walls more easily 
than smaller-diameter molecules because they were able to get closer to the C N T  walls. 
Thus, molecular mixtures that contained molecules o f differing sizes could be separated on 
exposure to carbon nanotubes [262]. However, for m olecular mixtures in which the molecules 
were of similar sizes, such as methane/ethane mixtures, separation was not achieved [262]. 
This result was also seen in classical M D  simulations by M ao  and Sinnott that used combined 
bond-order and L J  potentials [263], which predicted significant separation of methane/butane 
mixtures but little separation of methane/ethane mixtures.

A lu ru  and coworkers have nonequilibrium M D  simulations with L J  and Coulombic poten
tials to study the transport of ions mixed with water through C N Ts that were either 
charged [264] or contained charged groups at the C N T  opening [265]. W hen  an opened 
C N T  was placed in an aqueous N aC I solution and the walls were charged in the presence 
of a counterion, an applied external electric field caused electroosmotic flow through the 
C N T  [264]. The adsorption behavior of the N a+ or C l counterions was predicted to be 
quite different from each other and to depend on several factors. O ne of these was the ion 
size, as the smaller N a + ions were able to get closer to and remain immobilized on the C N T  
surface more readily than the larger C’l ions. O ther important factors were the strength 
o f the electrostatic interactions between the water molecules and the ions and between the 
ions and the charged C N T  surface, and the strength of the electric field.

In  another set o f M D  simulations, a larger-diameter single-walled C N T  that was not 
charged but had charged N H |  groups attached to one open end and charged C O O " groups 
attached to the other opened end was placed in a solution of K C I in the presence of an 
external electric field [265]. The M D  simulations predicted that the flow o f C l“ through 
the C N T  was greater than the flow of K " ,  which preferred to electrostatically attach to the 
C O O  groups. Hence, the functionalized system was able to function as a modulator o f ionic 
conductivity.

A  membrane of C N Ts aligned within a polymer film has very recently been produced 
experimentally by Hinds et al. [266]. The C N Ts had multiple shells with inner diameters of 
about 4 nm. The ends were opened and term inated with carboxyl groups. The transport of 
N\ through the membrane was consistent with Knudson diffusion. In addition, the transport 
of R u (N H 3)^+ in aqueous solution through the membrane was substantial. This transport 
was significantly decreased by the presence of biotin coordinated with streptavidin, rather 
than carboxyl groups, at the opened ends of the CN Ts. Thus, molecular transport across the 
membrane could be readily controlled through modifications to the chemical groups at the 
opened ends of the CNTs.

The dynamics of He and C W) motion in C N Ts were studied theoretically using classi
cal M D  simulations and pairwide potentials by Tuzun et al. [267]. The results showed that 
flowing H e can impart energy to the C wl. The resulting H e/Q lU(a C N T  system was pro
posed as a nanoscale machine [267]. The experimental synthesis o f C A(,-filled C N Ts was 
subsequently achieved by annealing the CN Ts and C 60 molecules together in sealed contain
ers [268-270]. The resulting structures were termed “ peapods”  for their distinctive structure, 
as shown in Fig. 20. The electronic structure of C o0(// ( 10, 10) C N T s  were calculated, and 
the structure was predicted to be a metallic conductor [271]. Indeed, it is the potential
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Figure
shown

20. A schematic of a “peapod" structure. The C(JI molecules are shown in orange, and 
in blue.

the (10, 10) CNT is

unique electronic properties of these peapod-in-nanotube structures that are sparking the 
most intense interest [272].

These peapod structures were been proposed as unique, nanometer-scale memory 
devices [273]. Un like  regular peopods, which were formed in micrometer-scale CNTs, the 
buckyshuttle device proposed by Tom anek and Iijima [273] would only be a few nanometers 
long, as shown in Fig. 21. The C 6() would further contain a K  atom so that the “ pea”  in 
the pod would contain an overall charge. The entire system would operate as a memory 
device by movement of the K @ C 60 molecule from one end o f the capped C N T  to the other, 
as illustrated in Fig. 21. The calculations used to explore the feasibility o f this system used 
L C A O  in combination with long-range van der Waals interactions.

F illing  C N Ts with molecules or C 6(l was also shown to affect the mechanical properties of 
the C N T  [274-276]. In particular, classical M D  simulations using bond order and L J  poten
tials were used by Sinnott and coworkers to study the effect of filling 10-nm-long, (10, 10) 
single-walled C N Ts with C H 4, Ne, and C 6() on their compressibility [275]. A fter a critical 
filling density was reached, filling the C N T  increased the force at which the CN Ts buckled, 
whereas the slope of the force versus strain plots were constant, indicating that the stiffness 
or Young’s modulus was not affected by filling. However, filling the nanotubes significantly
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Figure 21. A small peapod "bucky-shuttlc” system is shown in a transmission electron microscope image in part (a). 
A computational representation of the system seen in (a) is displayed in part (b). Part (c) illustrates the possible 
bit configurations and the energetics of the C(,„ molecule in the CNT. Also shown in part (c) arc the energetics of 
the structure under bias. Part (d) shows a possible configuration for high-density memory. Figure reprinted with 
permission from [273], Y. Kwon et al., Phys. Rev Lett. 82, 1470 (1999). © 1999, American Physical Society.
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decreased the effect of temperature on the buckling force, which decreased appreciably at 
high temperatures when the CN Ts were empty but changed only a small amount or were 
unchanged when the C N T s were empty. A  sim ilar M D  simulation study by Farajian and 
M ikam i of the deformation of empty CN Ts and peapods through compression, tension, 
and torsion [274] found peapods to be slightly softer, or more easily deformable, than the 
empty CNTs, possibly because the fullerenes in the peapods were separated by 1.0-1.5 nm, 
rather than by the 0.35-nm separation used in Ref. [275]. M D  simulations by Sinnott and 
coworkers of C N Ts tilled with flexible molecules, such as n-butane [276] predicted that these 
systems would show a greater degree of yielding than CN Ts filled with molecules that were 
constrained from yielding, such as fullerenes.

There have also been several recent studies of the mechanical properties of carbon and 
other nanowires that, unlike carbon nanotubes, are solid rather than hollow. Shenderova 
et al. [277] predicted that diamond nanorods were as energetically favorable as CN Ts and 
that some had brittle fracture forces and zero strain stiffnesses that exceeded those of 
CNTs. Barnard and Snook predicted that CNTs are the most energetically favorable one
dimensional form of carbon, but that diamond nanowires could preferentially be formed 
for certain configurations [278]. Thermodynamic calculations also indicate that carbon 
nanowires may be preferentially formed inside carbon nanotubes [279], thus motivating the 
study of the mechanical properties of these systems.

Danailov et al. [280] used classical M D  simulations with bond order and E A M  poten
tials coupled through pairwise potentials to study the bending of CN Ts containing metal 
nanowires. They found that the metal nanowire suppressed the buckling instability of the 
C N T s and damped oscillations in a manner not predicted for multiwalled CNTs. In  contrast, 
Sinnott and coworkers [276] found no significant differences in the mechanical responses 
of C N Ts filled with carbon nanowires versus nanotubes (in double-walled C N T s) in M D  
simulations. Rather, they found that CNTs filled with solid nanowires or hollow carbon nano
tubes both have similar higher buckling forces than empty nanotubes or nanotubes filled 
with molecules. However, C N Ts filled with stronger, more brittle diamond nanorods such as 
those discussed in Ref. [277] may display different responses.

3.7. Nanoindentation
Proximal probe microscopes, such as scanning tunneling microscopes and atomic force 
microscopes, have achieved wide utility for imaging and exploring surface properties since 
their discovery in the early 1980s [281,282]. In these microscopes, a rigid cantilever with a 
sharp tip on the end is in electrical or physical contact with the surface. As the tip is indented 
or dragged across the surface, the cantilever is deflected as a result o f changes in the surface 
structure, and images or other information about the surface structure is obtained.

W hen  a tip touches a sample, the first interaction between the two is usually attractive. As 
the tip presses closer, the tip and the surface will usually experience a repulsive interaction. 
However, if the tip continues to press against the sample, the two might adhere to each 
other, through, for example, the formation of covalent or metallic bonds between the lip 
and the surface. U nder ambient conditions, the presence of water or other molecules on the 
surface can influence tip-surface interactions [283, 284].

Because o f their high Young's modulus, nanometer-scale diameters, and ability to conduct 
electrically, C N Ts were proposed by Smalley and coworkers as ideal proximal probe micro
scope tips [285]. C N T  proximal probe tips were formed either by gluing the C N Ts to the 
cantilever [285] or bv growing them there directly through a C V D  process [286]. Such tips 
could be used to image fine details on surfaces [287-289] and. when a current was running 
between the tip and sample, to etch the sample [290]. One of the problems with these sys
tems was thermal vibrations that degraded the performance of the tips. This was recen.ly 
overcome by coating the cantilever and C N T  tips with a polymer coating and then wearing 
away the coating to expose a short segment of the C N T  at the very end [291].

Computational studies were used to determine the atomic scale mechanisms that occ jr 
when the C N T  comes into contact with a surface. W hen a single-walled C N T  indented 
a hydrogen-terminated diamond surface in M D  simulations with a bond-order potential,
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the first response was the deformation of the tube cap from a convex to a concave structure 
[292,293], and then the C N T  buckled [292,294]. If  the C N T  was further pushed against 
the surface, the end of the C N T  slipped on the surface [294]. The M D  simulations showed 
that these deformations occurred elastically, regardless of the rigidity of the surface being 
indented in a manner analogous to what was predicted by C N T  deformation [107]. Sim ilar 
atomic scale mechanisms were predicted to occur during indentation with a double-walled 
C N T  and a bundle of single-walled CN Ts [295]. C N T  proximal probe tips were further 
shown to readily etch or penetrate the Si(OOl) surface during indentation even without the 
presence of a current between the tip and the surface [296]. W hen C N T  tips were used to 
indent Langm uir-Blodget films [297], the simulations predicted that the C N T  would be able 
to deform and push aside the hydrocarbon chains.

The first computational study of metal tips indenting metal surfaces by Landman 
et al. [298] elucidated the nature of the adhesive interactions between metal surfaces and 
single metal asperities. This study used M D  simulations with E A M  potentials to characterize 
both the tip atoms and the atoms at the surface. Because clean metal surfaces have very 
high surface energies, they were found to be very attracted to the metal tip indenting the 
sample. In fact, the attraction was predicted to be so strong, surface atoms “ jum ped" upward 
to wet the tip when the tip got close enough for the surface to interact with it [298], as 
shown in Fig. 22a. This phenomena was termed jump-to-contact ( JC )  and was confirmed 
experimentally by several studies [298-302], using the atomic force microscopes.

If  the indenting tip was pressed against the surface, the simulations [298] showed strong 
adhesion between the two, and the tip was flattened. This increased the contact area between 
the two such that when the tip was withdrawn, it resisted and a “ neck" was formed between 
the tip and the surface, as illustrated in Figure 22b.

These phenomena were seen in several other early M D  simulations using similar poten
tials [303-305]. Although agreeing with the initial predictions of Landman et al., these 
simulations also provided new insights. For example, the simulations showed that if the tem
perature of the system was increased enough to melt the topmost surface layers [304], the 
JC  phenomena was enhanced and occurred at larger tip-surface separations. In addition, 
when the tip was significantly more stiff than the surface, the indentation caused a pile-up of 
surface atoms around the tip to relieve the stresses caused by the indentation [298, 303]. M D  
simulations by Belak  et al. using perfectly rigid tips [306, 307] (i.e., tips that were not allowed 
to evolve in time in the simulations) showed how the surface yielded plastically after its elas
tic threshold was exceeded. Rigid indenter simulations are analogous to experiments that 
use surface passivation to prevent JC  between the lip and the surface (see, e.g.. Ref. [308]). 
The atomic scale mechanism by which the surface yielded included “ popping”  atoms out 
onto the surface under the indenting tip to produce a pileup of atoms. This prediction was 
subsequently verified by experimental images of “ piles” near indentation sites [309].

Figure 22. Snapshots from MD simulations of the indention of Ni tip into a Au substrate. In part (a) it can be seen 
that the Au substrate swells and jumps to contact the Ni tip. Part (b) shows the extensive neck that forms after the 
Ni tip has been embedded into the Au substrate. Reprinted with permission from 1298], U. Landman et al.. Science 
248. 454 (1990). © 1990. A A AS.



36 Com putational Studies of Nanom aterials: A  H istorica l Perspective

Variations in the speed of indentation from 1 m/s to 100 m/s [307] showed that point 
defects created as a result of the indentation relaxed by moving through the surface at a 
slower speed. A t the higher indentation speed, however, there was no time for the point 
defects to relax and move away from the indentation area. There was, therefore, interest in 
modeling the indentation of surfaces in a manner that was independent of indentation speed. 
In one such study [310], rather than use M D  simulations, the indenter was pushed against 
the substrate, and then the system was allowed to relax using standard force minim ization 
methods. W hen  the system had fully relaxed, the tip was moved closer and the process was 
repeated. The indentation created several dislocations in the surface. I f  the tip was pulled 
back after indenting less than a critical value, the atoms in the dislocations slid back to 
their original positions and the surface was healed. However, if the tip was indented past 
the critical depth, more dislocations were created that interfered with the healing process, 
resulting in a surface crater.

Proximal probe tip indentation of covalently or ionically bound ceramic material surfaces 
would be expected to eventually cause brittle fracture. M D  simulations with bond-order 
potentials of the indentation of Si surfaces by small Si indentcrs [311], revealed the rate- 
dependent and temperature-dependent yield strength of the substrate. The simulations pre
dicted that crystalline Si could be converted to an amorphous phase beneath the tip under 
certain conditions. These results agree with the outcomes of scratching experiments [312] 
that showed that amorphous silicon emerged from room-temperature scratching of pure sil
icon. Atom istic simulations also predicted the atomic-scale mechanisms by which ceramic 
tips fracture following strong adhesion in ionic (C a F : ) and covalent (S i) systems [313, 305]. 
In contrast, the atomic-scale mechanical hysteresis experienced by a tip indenting a Si(100) 
was determined from D F T  calculations [314], which predicted that at low speeds it should 
be possible to cycle repeatedly between two buckled configurations of the surface without 
adhesion.

M D  simulations by Harrison and coworkers with bond-order potentials o f diamond tips 
indenting hydrogen-terminated diamond surfaces [315, 316] or amorphous carbon films [317] 
revealed much about the nature of these interactions. The adhesion between hydrogen- 
terminated diamond tips and diamond surfaces was shown to be load dependent, with elastic 
indents occurring at low loads and adhesion occurring at loads above a certain cutoff point. 
Specifically, the tip goes through shear and twist deformations at low loads that changed to 
plastic deformation and adhesion with the surface at high loads. However, interestingly, when 
a diamond surface was compressed against another diamond surface, even if it is unpassi
vated with hydrogen, no adhesion was predicted to occur. W hen the diamond surface was 
covered with a thin amorphous carbon film [317], the tip easily penetrated the film, which 
“ healed”  easily when the tip was retracted so that no crater or other evidence o f the inden
tation was left behind.

Thus, although nanoindentation was first discovered and explored experimentally, com 
putational studies have made significant contributions to our understanding of the physics 
behind nanoindentation processes.

4. SUMMARY AND FUTURE OUTLOOKS
The proceeding sections have shown the pivotal role o f computational modeling in the 
predictive study o f nanometer-scale systems and materials. Although not every initial com
putational prediction was necessarily completely correct, each led the way for subsequent 
experiments and greatly contributed to the understanding of nanomaterials.

The future o f nanomaterials contains many challenges and opportunities. The challenges 
include the need to improve knowledge and understanding of strengths and weaknesses of 
computational methods so that they can be more efficiently applied. An  additional challenge 
is the improvement of computational methods and the expansion of existing methods to 
larger systems and longer time scales. Opportunities include the fact that in the nanorealm, 
experimental and computational results are readily and directly comparable. M ore direct 
coupling of com putational and experimental methods promises to provide the most complete 
picture of any nanomaterials system.



Com putational Studies of Nanom aterials: A  H istorical Perspective 37

ACKNOW LEDGM ENTS
W e are gratefu l to the num erous authors and publishers w ho granted us perm ission to 
reproduce their w ork here. W e  also thank the A rm y  Research  O ffice , the N a tio n a l Science 
Foundation  (CH E-0200838 ), and the N a tion a l Sc ience  Foundation  supported N etw ork  for 
C om putationa l N anotechno logy (EEC -0228390 ) for support. Yanhong  H u , K i- H o  Lee , and 
Inkook  Ja n g  are thanked fo r the ir assistance in preparing  this article.

R EF E R EN C ES
/. Nanotechnology: The Exhibition (Miami of Ohio University). Accessed October 27. 2004. http://www.fna. 

m uo h i o. e d u/a m u/n a n o/bow Is. h t m 1.
2. M. Born and J. R. Oppenheimcr. Ann. Phys. 84. 457 (1927).
3. E. Schrodinger, Ann. Phys. 79. 361 (1926).
4. J. J. Sakurai, "Modern Quantum Mechanics." Addison Wesley, New York. 1995.
5. D. J. Griffiths, "Introduction to Quantum Mechanics." Prentice Hall, 1994.
6. K. Qhno, K. Esfarjani, and Y. Kawazoe. “ Computational materials science.” Springer, Berlin, 1999.
7. A. Szabo and N. S. Ostlund, "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure 

Theory.” Dover, Mineola, NY, 1996.
(S’. C. C. J. Roothaan, Rev. Modern Phys. 23, 69 (1951).
9. C. Pisani and R. Dovesi, Int. J. Quantum. Chem. 17. 501 (1980).

10. V. R. Sanders, Faraday Symp. Chem. Soc. 19, 79 (1984).
11. C’. Pisani, R. Dovesi, and C. Roelti, "Hartree-Fock ab-initio of Crystalline Systems.” Springer-Verlag.

Heidelberg, 1988.
12. C. Pisani, "Quantum-Mechanical ab-initio Calculation of the Properties of Crystalline Materials.” Springer- 

Vcrlag, Heidelberg, 1996.
13. P. Hohenberg and W. Kohn, Phys. Rev. B  136, B864 (1964).
14. W. Kohn and I.. J. Sham, Phys. Rev. 140, 1133 (1965).
15. R. G. Parr and W. Yang, "Density Functional Theory of Atoms and Molecules.” Oxford Univ. Press, New York, 

1989.
16. D. C. Allan and M. P. Teter, Phys. Rev. Lett. 59. 1136 (1987).
17. P. J. H. Denteneer and W. Vanhacringen,./. Phys. C-Solid Slate Phys. 18, 4127 (1985).
IS. J. Ihm, A. Zungcr, and M. L. Cohen, J. Phys. C-Solid Slate Phys. 12, 4409 (1979).
19. J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47, 4174 (1993).
20. N. Troullier and J. L. Martins. Phys. Rev. B  46, 1754 (1992).
21. D. Vanderbilt, Phvs. Rev. B  41, 7892 (1990).
22. W. Koch and M. C. Holthausen, "A  Chemist's Guide to Density Functional Theor}'.” Wiley-VCH. Weinheim.

2000.
23. M. W. Finnis. J. Phys. Condens. Matter 8, 5811 (1996).
24. P. Walsh. R. K. Kalia, A. Nakano, P. Vashishta, and S. Saini .Appl. Phys. Lett. 77. 4332 (2000).
25. M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjo, and A. Madhukar, Phys. 

Rev. Lett. 84, 322 (2000).
26. D. W. Brenner, Phys. Rev. Leu. 63, 1022 (1989).
27. M. I. Baskes, J. S. Nelson, and A. F. Wright, Phys. Rev. B  40, 6085 (1989).
28. B.-J. Lee and M. I. Baskes, Phys. Rev. B  62, 8564 (2000).
29. T. Ohira, Y. Inoue. K. Murata. and J. Murayama, Appl. Surf. Sci. 171. 175 (2001).
30. F. H. Streitz and J. W. Mintmire, Phys. Rev. B  50. 1 1996 (1994).
31. A. Yasukawa, JS M E  Intl. J. A 39, 313 (1996).
32. T. Iwasaki and H. Miura, J. Mater Res. 16, 1789 (2001).
33. G. C. Abell, Phys. Rev B 31, 6184 (1985).
34. J. Tersoff, Phys. Rev. B  37, 6991 (1988).
35. J. Tersoff, Phys. Rev. B  39, 5566 (1989).
36. D. W. Brenner. Phys. Rev. B 42, 9458 (1990).
37. D. W. Brenner, Phys. Status Solidi B  217. 23 (2000).
38. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni. and S. B. Sinnott, J. Phys. Condensed 

Mailer 14, 783 (2002).
39. A. J. Dyson and P. V. Smith. Surf. Sci. 355. 140 (1996).
40. B. Ni, K.-H. Lee, and S. B. Sinnott, / Phys. C: Condensed Matter 16, 7261 (2004).
41. J. Tanaka, C. F. Abrams, and D. B. Graves. Nucl. Inst. Meth. B  18, 938 (2000).
42. S. B. Sinnott, O. A. Shenderova, C. T. White, and D. W'. Brenner, Carbon 36, 1 (1998).
43. S. J. Stuart. A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 1 12. 6472 (2000).
44. S. M. Foiles. Phys. Rev. B  32, 3409 (1985).
45. M. S. Daw. Phys. Rev B 39, 7441 (1989).
46. T. J .  Raekcr and A. E. Depristo, Inter. Rev. Phys. Chem. 10. 1 (1991).
47. R. W. Smith and G. S. Was, Phys. Rev. B 40, 10322 (1989).
48. R. Pasianot. D. Farkas, and E. J. Savino, Phys. Rev. B 43, 6952 (1991).

http://www.fna


38 Com putational Studies o f Nanom aterials: A  H isto rica l Perspective

49. R. Pasianot and E. J. Savino, Phys. Rev B 45. 12704 (1992).
50. A. K. Rappe and W. A. Goddard III../. Phys. Chem. 95, 3358 (1991).
51. D. Frenkel and B. Smit. "Understanding Molecular Simulation: From Algorithms to Applications.” Academic 

Press, San Diego, CA. 1996.
52. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical recipies in fortran,” 2nd edn. 

Cambridge Univ. Press, Cambridge. 1992.
53. Mathworld. http://mathworld.woliram.com/. Accessed October 27, 2004.
54. R. Car and M. Parrinello, Phys. Rev. Leu. 55, 2471 (1985).
55. M. Payne, R. Teter. D. Allan, T. Arias, and J. Joannopulos, Rev Mod. Phys. 64, 1045 (1992).
56. J. B. Adams, Z. Y. Wang, and Y. H. l.i. Thin Solid Films 365, 201 (2000).
57. F. Tassone, F. Mauri, and R. Car. Phys. Rev. B  50. 10561 (1994).
58. A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).
59. J.-C. Wang, S. Pal, and K. A. Fichthorn. Phys. Rev. B 63, 085403 (2001).
60. F. Montalenti, M. R. Sorensen, and A. F. Voter, Phys. Rev Leu. 87. 126101 (2001).
61. J. Jacobsen, B. H. Cooper, and J. P. Sethna, Phys. Rev B 58, 15847 (1998).
62. S. Iijima, Nature 354, 56 (1991).
63. J. W. Mintmire, B. 1. Dunlap, and C. T. White, Phys. Rev Leu. 68, 631 (1992).
64. R. Saito, M. Fujita, G. Dresselhaus. and M. S. Dresselhaus. Appl. Phvs. Lett. 60, 2204 (1992).
65. N. Hamada, S.-I. Sawada. and A. Oshiyama. Phys. Rev. Lett. 68. 1579 (1992).
66. J. W. Mintmire, B. 1. Dunlap, and C. I. White, personal communication.
67. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, "Science of Fullerenes and Carbon Nanotubcs.” 

Academic Press, San Diego, CA. 1996.
68. S. B. Sinnott and R. Andrews. 0/7. Rev. Solid State Mater. Sei. 26. 145 (2001).
69. D. H. Robertson, D. W. Brenner, and J. W. Mintmire. Phys. Rev B  45, 12592 (1992).
70. C. T. W'hite. D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47. 5485 (1993).
71. R. E. Peierls, "Quantum Theory of Solids,” Oxford University Press, New York, 1955, pg. 108.
72. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev B  22, 2099 (1980).
73. W. P. Su. J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Leu. 42, 1698 (1979).
74. S. J. Ians, M. H. Devoret, II. Dai, A. Thess, R. E. Smalley, 1.J. Geerligs, and C. Dekker, Nature 386, 474

(1997).
75. J. W. G. Wildocr, L. C. Venema. A. Ci. Rinzler, R. E. Smalley, and C'. Dekker. Nature 391, 59 (1998).
76. T. W. Odom, J.-L. Huang, P. Kirn, M. Ouyang, and C. M. Lieber. J. Mater. Res. 13, 2380 (1998).
77. A. F. Morpurgo, J. Kong, C. M. Marcus, and H. Dai, Science 286. 263 (1999).
78. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P. L. McF.uen, Nano Leu. 2, 869 (2002).
79. M. Radosavljevi, J. Appenzeller, P. Avouris, and J. Knoch% Appl. Phys. l.ett. 84, 3693 (2004).
SO. R. Heyd, A. Charlier, and E. McRae, Phys. Rev. B 55, 6820 (1997).
81. D. W. Brenner. J. D. Schall, .1. P. Mewkill, O. A. Shenderova. and S. B. Sinnott, ./. Bt. Interpl. Soc. 51, 137

(1998).
82. M. S. Strano, C. A. Dyke, M. L.. Usrey, P. W. Barone. M. J. Allen. H. Shan. C. Kittrell, R. H. Hauge, J. M. Tour, 

and R. E. Smalley, Science 301, 1519 (2003).
83. Z. Chen, X. Du, M.-H. Du, C. D. Rancken, H.-P. Cheng, and A. Ci. Rinzler, Nano Lett. 3, 1245 (2003).
84. S. Iijima, T. Ichihashi. and Y. Ando, Nature 356. 776 (1992).
85. B. I. Dunlap. Phys. Rev. B 49. 5643 (1994).
86. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 53, 2044 (1996).
87. L. Chico, V. H. Crespi, I.. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev Lett. 76, 971 (1996).
88. J.-C. Charlier, T. W. Ebbesen, and P. Lambin, Phys. Rev B  53, 11108 (1996).
89. M. Menon and D. Srivastava, Phys. Rev Lett. 79, 4453 (1997).
90. M. Menon and D. Srivastava,./. Mater Res. 13, 2357 (1998).
91. A. N. Andriotis, M. Menon. D. Srivastava, and L. Chcrnozatonskii. Phys. Rev. l.ett. 87, 066802 (2001).
92. D. Zhou and S. Seraphin, Chem. Phvs. Leu. 238, 286 (1995).
93. J. Li. C. Papadopoulos, and J. Xu. Nature 402. 253 (1999).
94. P. Nagy, R. Ehlich, L. P. Biro, and J. Gyulai.Appl. Phvs. A 70. 481 (2000).
95. B. C\ Satishkumar, P. J. Thomas, A. Govindaraj, and C. N. R. Rao. Appl. Phys. Lett. 77. 2530 (2000).
96. M. Terrones, F. Banhart, N. Grobert. J.-C'. Charlier, H. Terrenes, and P. M. Ajavan, Phvs. Rev Lett. 89, 75505 

( 2002).
97. D. Srivastava. M. Menon, and P. M. Ajavan. J. Nanoparticle Res. 5. 395 (2003).
98. C. Papadopoulos. A. Rakitin, J. L.i. A. S. Vedeneev, and J. M. Xu, Phys. Rev l.ett. 85, 3476 (2000).
99. I. jang. S. B. Sinnott. D Danailov, and P. Keblinski, Nano Leu. 4. 109 (2004).

100. F. Cleri, P. Keblinski. 1. Jang, and S. B. Sinnott, Phys. Rev B  69, 121412 (2004).
101. E. Hernandez, C. Goze, P. Bernier, and A. Rubio. Phys. Rev Lett. 80. 4502 (1998).
102. J. P. Lu. Phys. Rev Leu. 79, 1297 (1997).
103. P. Zhang, P. E. Lammert, and V. H. Crespi, Phvs. Rev Lett. 81. 53-16 (1998).
104. N. Yao and V. L o r d i . Appl. Phvs. 84. 1939 (1998).
105. G. V. Lier, C. V. Alsenoy, V. V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
106. T  Ozaki. Y. Iwasa, and T. Mitani. Phys. Rev l.ett. 84. 1712 (2000).
107. B. I. Yakobson, C'. J. Brabec, and J. Bernholc. Phys. Rev. Lett. 76. 2511 (1996).
108. S. Iijima, C. Brabec. A. Maiti, and J. Bernholc. J. Chem. Phys. 104. 2089 < 1996).

http://mathworld.woliram.com/


Com putational Studies o f Nanom aterials: A  H istorical Perspective 39

109. C. F. Cornwell and L. I. Wille. Solid State Comm. 101, 555 (1997).
HO. A. Main. Chem. Phys. Lett. 331, 21 (2000).
111. D. Srivastava, M. Mcnon, and K. Cho. Phys. Rev. Lett. S3. 2973 (1999).
112. M. 13. Nardelli. B. I. Yakohson. and J. Bernholc, Phys. Rev. B 57. R4277 (1998).
I L I B. I. Yakohson. Appl. Phys. Lett. 72. 9 IS (1998).
114. B. I. Yakohson, M. P. Campbell. C’. J. Brabec, and J. Bernholc. Comp. Mat. Sci. S. 341 (1997).
115. Z. Xin, Z. Jianjin. and O.-Y. Zhong-can, Phys. Rev. B 62, 13692 (2000).
1/6. A. G. Rinzler (private communication).
117. M. M. J. Treacy, T. W. Ebhesen. and J. M. Gibson. Nature 381, 678 (1996).
1 IS. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy. Phys. Rev. B  58. 14013 (1998).
IN . W. Shen, B. Jiang, 13. S. Han. and S.-S. Xie, Phys. Rev. Lett. 84. 3634 (2000).
120. M.-F. Yu. T. kowalewski. and R. S. Ruoff, Phys. Rev. Lett. 85, 1456 (2000).
121. J. Tang. L.-C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. lijima, Phys. Rev. Lett. 85, 1SS7 (2000).
122. E. W. Wong. P. E. Sheehan, and C. M. Liebcr, Science 277. 1971 (1997).
123. M. F Yu, B. S. Files, S. Arepalli, and R. S. Ruoff. Phys. Rev. Lett. 84. 5552 (2000).
124. O. Lourie, and H. D. Wagner, J. Mater. Res. 13, 2418 (1998).
125. R. Gao. Z. L. Wang, Z. Bai. W. A. D. Heer, L. Dai, and M. Gao, Phys. Rev. Lett. 85, 622 (2000).
126. 13. Z. Tang and H. Xu. Macromolecules 32, 2569 (1999).
127. P. M. Ajayan. O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).
128. S. Curran. A. P. Davcy. J. Coleman, A. Dalton, B. McCarthy. S. Maier, A. Drury. D. Gray. M. Brennan. 

K. Ryder. M. L. D. L. Chapelle, C. Journct, P. Bernier, H. J. Byrne. D. Carroll. P. M. Ajayan, S. Lefrant, and 
W. Blau, Synthetic Metals 103, 2559 (1999).

129. C. Stephan, T. P. Nguyen, M. L. D. L. Chapelle, S. Lefrant. C. Journet, and P. Bernier, Synthetic Metals 108, 
139 (2000).

130. M. S. P. Shaffer and A. H. Windle, Adv. Mater. I I, 937 (1999).
131. Z. Jin, X. Sun, G. Xu, S. H. Goh, and W. Ji, Chem. Phys. Lett. 318, 505 (2000).
132. L. S. Schadler, S. C. Giannaris. and P. M. Ajayan. Appl. Phys. Lett. 73. 3842 (1998).
133. D. Qian, E. C. Dickey, R. Andrews, and T. Randtell, Appl. Phys. Lett. 76, 2868 (2000).
134. II. I). Wagner, O. Lourie, Y. Feldman, and R. Tenne, Appl. Phys. Lett. 72, 1S8 (1998).
135. X. Gon, J. Liu, S. Baskaran. R. D. Voise, and J. S. Young, Chem. Mater. 12, 1049 (2000).
136. C. Bower, R. Rosen, L. Jin, J. Han, and O, Zhou, Appl. Phys. Lett. 74, 3317 (1999).
137. P. M. Ajayan. L. S. Schadler, C. Giannaris, and A. Rubio, Adv. Mater. 12, 750 (2000).
138. E. T. Thostenson. Z. Ren. and T.-W. Chou, Composites Sci. Technol. 61, 1899 (2001).
139. B. I. Yakobson and R. E. Smalley, Am. Sci. 85, 324 (1997).
140. P. M. Ajayan, Chem. Rev 99, 1787 (1999).
141. E. V. Barrera, JO M  52, 38 (2000).
142. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, “ Carbon nanolubes: Synthesis, structure, properties, and 

applications." Springer, New York, 2000.
143. .1. Liu. A. G. Rinzler, H. Dai. J. H. Hairier, R. K. Bradley, P. .1. Boul, A. Lu, T. Iverson, K. Shclimov,

C. 13. Huffman, F. Rodriguez-Macias. Y.-S. Shon. T. R. Lee, D.T. Colbert, and R. E. Smalley, Science 280. 
1253 ( 1998).

144. A. G. Rinzler. J. Liu, 11. Dai, P. Nikolaev, C. 13. Huffman, F. J. Rodriguez-Macias. P. J. Boul, A. H. Lu,
D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fisher. A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. 
A 67. 9 (1998).

145. S. S. Wong, E. Josclevich, A. T. Woolley, C. L. Cheung, and C. M. Liebcr, Nature 394, 52 (1998).
146. S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, and C. M. Liebcr, J. Am. Chem. Soc. 120, 8557 (1998).
147. J. Chen, M. A. Hamori. H. Hu. Y. Chen, A. M. Rao. P. C. Eklund, and R. C. Haddon, Science 282. 95 (1998).
148. M. A. Hamon, J. Chen. H. Hu. Y. Chen. M. E. Itkis, A. M. Rao. P. C. Eklund, and R. C. Haddon, Adv. Mater.

11. S34 (1999).
149. Y. Chen. R. C. Haddon, S. Fang, A. M. Rao, P. C. Eklund, W. H. Lee, E. C. Dickey, E. A. Grulke, 

J. C. Pendergrass, A. Chavan, B. E. Haley, and R. E. Smalley, J. Mater. Res. 13, 2423 (1998).
150. A. Hamwi, 11. Alvergnat, S. Bonnamy, and F. Bcguin, Carbon 35, 723 (1997).
151. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Flauge, and J. L. Margrave, Chem. Phys.

Lett. 296, 188 (1998).
152. W. Zhao, C. Song. B. Zheng, J. Liu, and T. Viswanathan, J. Phys. Chem. B  106, 293 (2002).
153. C. W\ Bauschlicher, Chem. Phys. Lett. 322. 237 (2000).
154. P. J. Boul, J. Liu, E. T  Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith. D. T. Colbert,

R. H. Hauge, J. L. Margrave, and R. E. Smalley, Chem. Phys. Lett. 310, 367 (1999).
155. R. J. Chen. Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc. 123, 3838 (2001).
156. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davcy, A. Drury,

B. McCarthy. S. Maier. and A. Strcvens, Adv. Mater. 10, 1091 (1998).
157. J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio. A. P. Davey, A. Drury, B. McCarthy. B. Lahr. P M. Ajayan,

S. Roth, R. C. Barklie. and W. J. Blau, Adv. Mater. 12. 213 (2000).
158. M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang. E. Haroz, C. Kuper, J. Tour. K. D. Ausman,

and R. E. Smalley. Chem. Phys. Lett. 342. 265 (2001).
159. R. Bandyopadhyaya, E. Nativ-Roth, O. Regcv, and R. Yerushalmi-Rozen, Nano Lett. 2. 25 (2002).



40 Com putational Studies of Nanom aterials: A  H isto rica l Perspective

160. A. Star, J. F. S tod dart, D. Stcucrman. M. Diehl, A. Boukai, E. W. Wong, X. Yang. S.-W. Chung. H. Choi, and 
J. R. Heath. Angew. Chem. Int. Ed. 40. 1721 (2001).

161. V. H. Crespi, N. G. Chopra. M. L. Cohen, A. Zetll. and S. G. Louie. Phys. Rev. B  54. 5927 (19%).
162. B. W\ Smith and D. E. Luzzi, A lP  Conf Proc. 486, 360 (1999).
163. P. M. Ajayan, V. Ravikumar, and J.-C. Charlier. Phys. Rev. Leu. 81. 1437 (1998).
164. M. Terrones, H. Terrones. F. Banhart. J.-C. Charlier, and P. M. Ajayan. Science 288, 1226 (2000).
165. F. Banhart, Nano Lett. 1, 329 (2001).
166. B. Ni and S. B. Sinnott, Phys. Rev. B 61, R 16343 (2000).
167. B. Ni and S. B. Sinnott, in "Applications of Accelerators in Research and Industry: Proceedings of the Sixteenth 

International Conference, Aip Conference Proceeding" (J. L. Duggan and I. L. Morgan, Eds.), Vol. 576, 
p. 959. American Institute of Physics Press. Melville. NY. 2001.

168. B. Ni, R. Andrews, D. Jacques, D. Qian, M. B. J. Wijesundara, Y. Choi, L. Hanley, and S. B. Sinnott, / Phvs. 
Chem. B 105, 12719 (2001).

169. M.-F. Yu, B. 1. Yakobson. and R. S. Ruoff../. Phys. Chem. B 104. 8764 (2000).
170. A. N. Kolmagorov and V. H. Crespi, Phys. Rev Eelt. 85. 4727 (2000).
171. D. Srivastava, D. W. Brenner, J. D. Schall. K. D. Ausman, M. Yu. and R. S. Ruoff. / Phvs. Chem. B  103, 4330

(1999).
172. A. Garg and S. B. Sinnott, Chem. Phys. Leu. 295, 273 (1998).
173. D. W. Brenner, O. A. Shenderova, D. A. Areshkin, J. D. Schall, and S.-J. V. Frankland, CM ES 3, 643 (2002).
174. S. J. V. Frankland, A. Caglar. D. W. Brenner, and M. Griebel, J. Phys. Chem. B  106, 3046 (2002).
175. S. J. V. Frankland. A. Cagler. D. W'. Brenner, and M. Griehel, Mai. Res. Soc. Svmp. Proc. 633. A 14.17.1 (2001).
176. V. Lordi and N. Yao, / Mater. Res. 15, 2770 (2000).
177. Y. Hu, I. Jang, and S. B. Sinnott. Composites Sci. Technol. 63, 1663 (2003).
178. Y. Hu and S. B. Sinnott. / Mater. Chem. 14. 719 (2004).
179. D. W. Brenner, O. A. Shendrova, and C. B. Parker, Mater. Res. Soc. Sytnp. Proc. 438, 491 (1997).
180. M. B. J. Wijesundara, L. Hanley, B. Ni. and S. B. Sinnott. Proc. Natl. Acad. Sci. U.S.A. 97, 23 (2000).
181. M. B. J. Wijesundara, Y. Ji, B. Ni. S. B. Sinnott. anti I.. Hanley,./. Appi. Phvs. 88. 5004 (2000).
182. E. II. Lee, G. R. Rao, and L. K. Mansur, Mater Sci. Forum 248, 135 (1997).
183. G. Seifert, T. Kohler, and T. Fraucnheim. Appi. Phvs. Lett. 77, 1313 (2000).
184. K. N. Kudin, II. F. Bettinger, and (i. F. Scuseria, Phys. Rev. B  63, 045413 (2001).
185. J. B. Cui, M. Burghard, and K. Kern, Nano Lett. 2. 117 (2002).
186. C. Zhou, J. Kong, E. Yenilmez, and I I. Dai, Science 290, 1552 (2000).
187. J. Kong, J. Cao. H. Dai, and E. Anderson, Appi. Phys. Lett. 80. 73 (2002).
188. J. L. Bahr. J. Yang, D. V. Kosynkin, M. J. Bronikowski. R. E. Smalley, and J. M. Tour, / Am. Chem. Soc. 123.

6536 (2001).
189. J. Kong, N. R. Franklin, ( ’. W. Zhou, M. G. Chaplinc, S. Peng, K. J. ( ho. and H. J. Dai, Science 287, 622

( 2000).
190. S. Peng and K. J. Cho, Nanotechnology I 1, 57 (2000).
191. P. G. Collins, K. Bradley, M. Ishigami. and A. Zettl. Science 287. 1801 (2000).
192. M. Grujicic, G. Cao, and R. Singh. Appi. Surf. Sci. 211. 166 (2003).
193. J. J. Zhao, A. Buldum. J. Han, and J. P. Lu. Nanotechnology 13. 195 (2002).
194. S. H. Jhi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 85, 1710 (2000).
195. S. Dag, (). Gulseren. T. Yildirim, and S. Ciraei, Phvs. Rev. B 67, (2003).
196. P. Giannozzi, R. Car, and G. Scoles. /  Chem. Phys. 118, 1003 (2003).
197. II. Ulbricht, G. Moos, and T. Hertel, Phys. Rev B 66. (2002).
198. D. C. Sorescu, K. D. Jordan, and P. Avouris,./. Phys. Chem. B  105. 11227 (2001).
199. S. Dag, O. Gulseren, and S. Ciraci. Chem. Phys. Lett. 380, 1 (2003).
200. A. Ricca, C. W. Bauschlicher, and A. Maiti, Phys. Rev. B 68, (2003).
201. R. Larciprete. A. Goldoni, and S. Lizzit. Nncl. Instr. Meth. Phys. Res. B 200. 5 (2003).
202. H. Ulbricht. G. Moos, and T. Hertel, Surf. Sci. 532, 852 (2003).
203. M. S. Strano. C. B. Huffman. V. C. Moore. M. J. O'Connell. E. H. Haroz, J. Hubbard. M. Miller. K. Rialon,

C. Kittrell, S. Ramesh, R. H. Hauge, and R. E. Smalley. /  Phvs. Chem. B  107, 6979 (2003).
204. S. Hcinze, J. Tersoff, R. Martel, V. Derycke. J. Appenzeller. and P. Avouris, Phys. Rev. Lett. 89, 106801 (2002).
205. V. Derycke, R. Martel, J. Appenzeller. and P. Avouris. Appi. Phys. Lett. 80, 2773 (2002).
206. A. Goldoni, R. Larciprete. L. Petaccia. and S. Lizzit../. Am. Chem. Soc. 125. 11329 (2003).
207. P. Avouris. Chem. Phys. 281. 429 (2002).
208. K. Bradley. J. C. P. Gabriel. M. Briman. A. Star, and Ci. Gruner, Phvs. Rev Lett. 91. (2003).
209. K. Bradley, J. C. P. Gabriel. A. Star, and G. Gruner, Appi Phys. Lett. S3. 3821 (2003).
210. L. Vaieniini, F. Mercuri. I Armentano. C. Cantalini. S. Picozzi. L. Lozzi. S. Santucci. A. Sgamellotti. and

J. M. Kenny, Chem. Phys Lett. 387, 356 (2004).
211. S. Tsuzuki and H. P Luthi, / Chem. Phys. 1 !4. 3949 (2001).
212. D. C. Patton and M. R. Pederson, Phys. Rev. A 56, R2495 (1997).
213. S. Peng and K. J. Cho, Nano Leu. 3. 513 (2003).
214. H. Chang. J. D. Lee, S. M. Lee. and Y II. Lee. Appi Phys. Lett. 79. 3863 (2001).
215. S. Santucci. S. Picozzi. F. Di Gregorio, I.. Lozzi, C Cantalini. L. Vaieniini. .!. M. Kenny, and B. Delley.

./. ('hem. Phys. 119. 10904 (2003).
216. W. L. Yim, X Ci. Gong. and Z. F. Liu../. Phys. Chew. B  107. 9363 (2003).



Com putational Studies of Nanom aterials: A  H istorical Perspective 41

2/7. I). W. Brock. "Zeolite Molecular Sieves: Structure, Chemistry, and Use." Wiley. New York. 1973.
218. S. Bhatia. “ Zeolite Catalysis: Principles and Applications.” C'RC Press, Boca Raton. FL. 1990.
219. P. U. Nelson and S. M. Auerbach,./. Chan. Phvs. 110. 9235 (1999).
220. D. Ci. Levitt, Phys. Rev. A 8, 3050 (1973).
221. D. S. Sholl and K. A. Fichthorn,./. Chem. Phys. 107. 4384 (1997).
222. D. S. Sholl, Chem. En. J. 74. 25 (1999).
223. M. R. Pederson and J. Q. Broughton, Phys. Rev Leu. 69, 2689 (1992).
224. J. Breton. J. Gonzalcz-Platas, and C. Girardet, J. Chem. Phys. 101, 3334 (1994).
225. Ci. Stan. M. J. Bojan, S. Curtarolo. S. M. Gatica, and M. W. C'ole, Phys. Rev. B  62. 2173 (2000).
226. G. Stan, J. M. Hartman, V. H. Crespi. S. M. Gatiea, and M. W. Cole. Phvs. Rev. B 61. 7288 (2000).
227. M. W. C'ole, V. H. Crespi, G. Stan. C. Ebner, J. M. Hartman, S. Moroni, and M. Boninsegni. Phys. Rev. Lett.

84, 3883 (2000).
22S. V. V. Simonyan, P. Diep, and J. K. Johnson, /  Chem. Phys. I l l ,  9778 (1999).
229. S. M. Gatica, M. W. Cole, G. Stan, J. M. Hartman, and V. H. Crespi. Phys. Rev B 62. 9989 (2000).
230. Y. F. Yin, T. Mays, and B. McEnaney. Langmuir 15, 8714 (1999).
231. A. C. Dillon, K. M. Jones. T. A. Bekkedahl. C'. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386. 377 

(1997).
232. Y. Ye. C  C. Aim. C. William, B. Fultz, J. Liu, A. G. Rinzlcr, D. Colbert, K. A. Smith, and R. E. Smalley. 

Appl. Phys. Leu. 74. 2307 (1999).
233. A. I. Skoulidas. D. M. Ackerman, J. K. Johnson and D. S. Sholl, Phys. Rev. Lett. 89, 185901 (2002).
234. S. Talapatra, A. Z. Zambano. S. E. Weber, and A. D. Migone, Phys. Rev. Lett. 85. 138 (2000).
235. M. Muris, N. Dufau. M. Bienfait, N. Dupont-Pavlovsky. Y. Grillet, and J. P. Palmari, Langmuir 16. 7019 (2000).
236. R. E. Tuzun, D. W. Noid, B. Ci. Sumpter, and R. C. Merkle, Nanotechnology 7. 241 (1996).
237. Z. Mao and S. B. Sinnott, J. Phys. Chem. B 104. 4618 (2000).
238. K.-l l. Lee and S. B. Sinnott, in preparation.
239. K.-H. Lee and S. B. Sinnott, /  Phys. Chem. B 108, 9861 (2004).
240. Z. Mao, A. Garg. and S. B. Sinnott, Nanotechnolog}' 10, 273 (1999).
241. A. I. Skoulidas, D. M. Ackerman, J. K. Johnson, and D. S. Sholl, Phys. Rev. Lett. 89. 185901 (2002).
242. D. M. Ackerman, A. 1. Skoulidas, D. S. Sholl, and J. Karl Johnson, Mol. Sim. 29. 677 (2003).
243. F. Zhang, J. Chem. Phys. I l l ,  9082 (1999).
244. S. Y. Bhide and S. Yashonath, J. Am. Chem. Soc. 125, 7425 (2003).
245. S. Supple and N. Quirke, Phys. Rev. Lett. 90. (2003).
246. G. Hummer, J. C. Rasaiah. and J. P. Noworyta, Nature 414, 188 (2001).
247. A. Kalra, S. Garde, and G. Hummer, Proc. Natl. Acad. Sci. USA 100, 10175 (2003).
248. A. Berezhkovskii and Ci. Hummer, Phys. Rev. Lett. 89, 064503 (2002).
249. A. Waghe, J. C. Rasaiah. and G. Hummer, / Chem. Phvs. 117. 10789 (2002).
250. R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Nano Lett. 3, 589 (2003).
251. W. H. Noon, K. D. Ausman, R. E. Smalley, and J. Ma, Chem. Phys. Lett. 355, 445 (2002).
252. D. J. Mann and M. D. Halls, Phys. Rev. Lett. 90. 195503 (2003).
253. C. Dellago, M. M. Naor, and G. Hummer, Phys. Rev Lett. 90, 105902 (2003).
254. Y. Maniwa. H. Kataura. M. Abe, S. Suzuki. Y. Achiba, H. Kira, and K. Matsuda, J. Phys. Soc. Jpn. 71. 2863 

(2002).
255. Y. Gogotsi. N. Naguib, and J. A. Libera, Chem. Phys. Lett. 365. 354 (2002).
256. Y. Miyamoto. A. Rubio, X. Blase. M. L. Cohen and S. Ci. Louie, Phys. Rev. Let!. 74. 2993 (1995).
257. V. Z. Mordkovich, M. Baxendale, S. Yoshimura, and R. P. II. Chang, Carbon 34. 1301 (1996).
258. X. Fan. E. C. Dickey, P. C. Eklund. K. A. Williams, L. Grigorian, R. Buczko. S. 1'. Pan tel ides, and

S. J. Pennycook, Phvs. Rev Lett. 84, 4621 (2000).
259. Z. Mao and S. B. Sinnott. Phys. Rev. Lett. 89. 278301 (2002).
260. M. Wilson and P. A. Madden, J. Am. Chem. Soc. 123, 2101 (2001).
261. T. W. Ebbesen,./. Phys. Chem. Solids 57, 9510955 (1996).
262. K. Ci. Ayappa, Langmuir 14, 880 (1998).
263. Z. Mao and S. B. Sinnott. / Phys. Chem. B  105, 6916 (2001).
264. R. Qiao and N. R. Aluru. Nano Lett. 3, 1013 (2003).
265. S. Joseph, R. J. Mashl, E. Jakobsson, and N. R. Aluru, Nano Lett. 3. 1399 (2003).
266. B. J. Hinds. N. Chopra. T. Rantcll, R. Andrews, V. Gavalas, and L. G. Bachas, Science 303, 62 (2004).
267. R. E. Tuzun, D. W. Noid. B. G. Sumpter, and R. C. Merkle, Nanotechnology 8, 112 (1997).
268. B. W. Smith. M. Monthioux, and D. E. Luzzi, Chem. Phys. Lett. 315, 31 (1999).
269. B. Burteaux, A. Claye, B. W. Smilh, M. Monthioux, D. E. Luzzi. and J. E. Fischer. Chem. Phys. Lett. 310, 21

(1999).
270. B. W. Smith and D. E. Luzzi, Chem. Phys. Lett. 321. 169 (2000).
271. S. Okada. S. Sailo. and A. Oshiyama, Phys. Rev Lett. 86, 3835 (2001 ).
272. R. F. Service, Science 292, 45 (2001).
273. Y.-K. Kwon. D. Tomanek, and S. Iijima. Phys. Rev. Leu. 82. 1470 (1999).
274. A. A. Farajian and M. Mikami. / Phys. Cond. Matter 13, 8049 (2001).
275. B. Ni, S. B. Sinnott, P. T. Mikulski, and J. A. Harrison, Phys. Rev Lett. 88, 205505 (2002).
276. I I. Trotter. R. Phillips. Y. Hu. B. Ni. S. B. Sinnott. P. Mikulski, and J. A. Harrison, J. Nanosci. Nanotech.

(in press).



42 Com putational Studies of Nanom aterials: A  H istorical Perspective

277. O. Shenderova, D. Brenner, and R. S. Ruoff. Nano Lett. 3, 805 (2003).
278. A. S. Barnard and I. K. Snook. J. Chem. Phys. 120. 3817 (2004).
279. Q. X. Liu, C  X. Wang, S. W. Li, J. X. Zhang, and G. W. Yang, Carbon 42, 629 (2004).
280. D. Danailov, P. Keblinski, S. Nayak, and P. M. Ajayan, J. Nanosci. Nanotech. 2, 503 (2002).
281. G. Binning, H. Rohrer, C. Gerber, and E. Wei be I. Phys. Rev. Lett. 49, 57 (1982).
282. J. M. Soler, A. M. Baro. and N. Garcia, Phys. Rev. Lett. 57, 444 (1986).
283. J. A. Harrison, S. J. Stuart, and D. W. Brenner, in “ Handbook of Micro/Nanotribology” (B. Bhushan, Ed.), 

p. 525. CRC Press, Boca Raton, 1999.
284. S. B. Sinnott, in “ Handbook of Nanostructured Materials and Nanotechnology” (H. Nalwa, Ed.), Vol. 2, p. 571. 

Press, San Diego, CA, 2000.
285. H. Dai, J. H. Hafner. A. G. Rinzler. D. T. Colbert, and R. E. Smalley. Nature 384, 147 (1996).
286. C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim. and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000).
287. S. S. Wong. A. T. Woolley. T. W. Odom. J.-L. Huang, P. Kim, D. V. Vezenov. and C. M. Lieber, Appl. Phys.

Lett. 73, 3465 (1998).
288. G. Nagy, M. Lew, R. Scarmozzino, J. R. M. Osgood. H. Dai, R. E. Smalley, C. A. Michaels, G. W. Flynn,

and G. F. McLane, Appl. Phys. Lett. 73. 529 (1998).
289. G. Nagy, M. Levy. R. Scarmozzino. J. R. M. Osgood. H. Dai. R. E. Smalley. C. A. Michaels, E. T. Sevy.

G. W. Flynn, and G. F. McLane, Appl. Phys. Lett. 73. 1448 (1998).
290. FI. Dai, N. Fraklin, and J. Han, Appl. Phys. Lett. 73. 1508 (1998).
291. A. Patil. J. Sippel, G. W. Martin, and A. G. Rinzler, Nano Lett. 4, 303 (2004).
292. J.  A. Harrison. S. J. Stuart, D. H. Robertson, and C. T. White, J. Phys. Chem. 13 101. 9682 (1997).
293. N. Yao and V. Lordi. Phys. Rev H 58. 12649 (1998).
294. A. Garg. J. Han, and S. B. Sinnott, Phys. Rev Leu. 81, 2260 (1998).
295. A. Garg and S. B. Sinnott, Phys. Rev B  60, 13786 (1999).
296. F. N. Dzegilenko, D. Srivastava, and S. Saini, Nanotechnology 10, 253 (1999).
297. A. B. Tutcin, S. J. Stuart, and J. A. Harrison, J. Phys. Chem. B  103, I 1357 (1999).
298. U. Landman, W. D. Luedtkc, N. A. Burnham, and R. J. Colton, Science 248, 454 (1990).
299. N. A. Burnham, R. J. Colton, and H. M. Pollock. Nanotechnology' 4. 64 (1993).
300. N. Ohmae, Phil. Mag. A 74, 1319 (1996).
301. N. A. Burnham and R. J. Colton, J. Vac. Sci. Technol. A 7, 2906 (1996).
302. N. Agrait, G. Rubio, and S. Vieria, Langmuir 12. 4505 (1996).
303. H. Raffi-Tabar and A. P. Sutton, Phil. Mag. Leu. 63, 217 (1991).
304. O. Tomagnini. F. Ercolessi, and E. Tosatti. Surf. Sci. 287/288. 1041 (1991).
305. U. Landman, W. D. Luedtke, and F.. M. Ringer, Wear 153, 3 (1992).
306. J. Belak and 1. F. Stowers, in “ Proceedings of the American Society of Precision Engineering,"’ 1990, p. 76.
307. J. Belak and I. F. Stowers, in “ Fundamentals of Friction: Macroscopic and Microscopic Properties” (I. L. Singer 

and H. M. Pollock, Eds.). Kluwer Academic, Dordrecht, 1992.
308. M. Fournel, E. Lacaze, and M. Schott, Euro. Phys. Lett. 34, 489 (1996).
309. T. Yakohala and K. Kato. Wear i68. 109 (1993).
310. C. L. Kclchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev Lett. 58. 11085 (1998).
311. J. vS. Kali man. W'. G. Hoover, C. G. Hoover, A. J. DeGroot, S. M. Lee, and F. Wooten, Phys. Rev. B 47, 7705

(1993).
312. K. Minowa and K. Sumino. Phys. Rev Lett. 69, 320 (1992).
313. U. Landman. W  D. Luedtke. and M. W. Ribarskv, J. Vac. Sci. Technol. A 7, 2829 (1989).
314. K. Cho and J. D. Joannopoulos, Surf. Sci. 328, 320 (1995).
315. J. A. Harrison, D. W. Brenner, C. T. White, and R. J. Colton, Thin Solid Films 206. 213 (1991).
316. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner, Surf. Sci. 271, 57 (1992).
317. S. B. Sinnott, R. j. Colton, C. T. White, O. A. Shenderova, D. W. Brenner, and J. A. Harrison. J. Vac. Sci.

Technol. A 15, 936 (1997).



CHAPTER 2

Density Functional Calculations of 
Clusters and Cluster Assembly

J. A. Alonso
Departamento de Fisica Teorica, Universidad de Valladolid, Valladolid, Spain 

M. J. Stott 
Departm ent o f Physics, Queens University, Kingston, Ontario, Canada

CONTENTS
1. In tro d u c t io n ......................................................................................... 43
2. T h e o ry ................................................................................................... 47

2.1. Density Functional T h e o r y .....................................................  47
2.2. Pseud op oten tia ls ..................................................................... 57
2.3. Syn thesis .................................................................................... 60

3. Applications to Clusters and Cluster-Assembled Solids ........... 63
3.1. E lectronic S h e l l s ..................................................................... 63
3.2. Perturbed C lu s te rs ..................................................................  70
3.3. Clusters with Im p u r it ie s ........................................................  77
3.4. C luster M e lt in g .......................................................................  87
3.5. C luster A ssem b ly ..................................................................... 92

4. Conclusions ......................................................................................... 97
R e fe re n c e s ..........................................................................................  98

1. INTRODUCTION
Although isolated atomic clusters have been the subject o f much experimental and theo
retical study for some time, the self-assembling of clusters opens the possibility of building 
materials with novel properties. A  prime example is the fullerite crystal, formed by the self
assembling of C 6() molecules [l j. For the assembling to be successful, the clusters must retain 
at least some of their character, which happens in the fullerite crystal, but this requirement 
is demanding for metallic clusters because the interatomic interactions are more delocalized, 
and the clusters have a tendency to react and coalesce. This chapter reviews theoretical 
work that addresses the relationship between isolated clusters and cluster-assembled bulk
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materials. The factors that influence the stability of isolated clusters will be discussed, along 
with the requirements for clusters to retain their identities as they are brought together to 
build a bulk material.

Some simple models have been used to account qualitatively for the relative stability of 
certain types of clusters. In one type, the stability appears to be geom etrical in nature and 
associated with the closing of atomic shells. These clusters, roughly spherical in shape to 
minimize the cost in energy due to the surface, can be viewed as a collection of close-packed 
spheres representing the atoms. Such compact icosohedral or cuboctahedral arrangements 
consist of concentric shells of atoms, and clusters with filled atomic shells containing 13, 55, 
147,... atoms tend to be more stable than those with a partially filled outer atomic shell. 
However, the stability o f clusters in which the electrons spread throughout the cluster tends 
to be associated with the electronic shell structure. Clusters of simple metal atoms such as 
the alkali atoms, Mg, A l , . .. fall into this group. The valence electrons in these atoms have 
s- and p-like character, are relatively weakly bound to the ion, and in the metallic state 
tend not to form directional bonds but are fairly uniformly spread. The electrons in clus
ters of these atoms occupy cluster states with orbitals that extend over the whole cluster. 
The complete filling of one group of these states closes an electronic shell, and f the total 
number of valence electrons in the cluster is such that all electronic shells are closed in 
the ground state, the cluster is stable relative to those with different numbers of electrons. 
These are the “ magic numbers’1 for electronic shell closing, in close analogy with the magic 
numbers for shell closing in nuclei. The often used jellium  model smears out the positive 
charge of the ions uniformly over the assumed spherical cluster so that the electrons move 
in a roughly spherical square well potential. The electronic shell closing magic numbers for 
this model are 2, 8, 18, 20, 4 0 , . . . ,  which accords well with the valence electron count for 
simple metal clusters that exhibit particular stability. These simple models have undoubted 
value as they provide qualitative explanation for the behavior of groups o f clusters and some 
understanding of trends. However, a detailed understanding of the properties of particular 
clusters, and possibly the prediction of other properties, requires treatment of the electronic 
structure and the atom ic arrangement that goes beyond these simple models. F( rtunately, 
calculational schemes have been developed that can simulate the behavior of a cluster and, 
indeed, the bulk material. These are the ah initio methods based on density unctional 
theory.

The existence of atomic clusters in bulk materials is well established, but most of the 
examples are not the focus of this chapter. For example, the solids consisting cf van der 
Waals bonded small stable molecules have within them well defined molecular units. As a 
case in point, N 2 molecules in solid nitrogen are clearly displayed. The bonding hat takes 
place to form the solid does not disrupt the molecular unit or link them together in any 
significant way. On the other hand, there are many systems where it is convenient to identify 
small clusters in the bulk material, but this is usually only a device for classifying structures 
o f related materials, and the clusters are strongly linked and have no separate :xistence. 
For example, the large group of silicate materials are viewed [2] as being built o f tetrahedral 
SiO;j units, but only in the orthosilicates are there discrete S iO j"  ions with tie  cations 
occupying interstices in which they are surrounded by O 2 ions. Otherwise, the S iO J" clusters 
are merely a convenience for representing the atomic arrangements, as in these materials 
the clusters are linked through one or more shared vertex oxygens to form chains, avers, or 
elaborate three-dimensional networks. Indeed, the free SiO^ ion in vacuum is n)t known 
to exist. Rather than these systems, our focus in this chapter is on stable atomic clusters, 
a nanometer or so in size, with which a bulk system with desirable properties can be built, 
a so-called cluster-assembled solid. In general, a cluster solid will be metastable (like the 
fullerite crystal, which is less stable that pure graphite), trapped in a deep minimum of the 
potential energy surface protected by sizable energy barriers.

The methods of quantum chemistry, such as configuration interaction, have beer used for 
some time to calculate the structural properties o f small molecules with sufficient accuracy 
to make confident predictions. Unfortunately, the computational effort involved in these 
calculations increases very rapidly with the number of electrons, and their appli.ation to 
systems comprising more than a few atoms is not feasible. Such systems are more th: domain
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of condensed matter physics, and for decades condensed matter theory held out the promise 
of approaches that would allow the simulation of larger systems such as clusters or even 
bulk materials with enough precision to make predictions that could guide the development 
of new materials. However, the achievement of this promise was always over the horizon. 
Very ingenious methods had been devised for treating the structural properties of materials, 
including those based on the “ nearly free" electron approximation, “ tight" binding methods, 
and semiempirical interatomic potentials such as the embedded atom method. Applications 
o f these approaches have given understanding of experimental data, particularly on trends in 
structural properties o f groups of materials. But, in many cases, these approaches involved 
parameters fitted to experiment and all involved uncontrolled approximations so that the 
accuracy of results could not be checked, and although predictions could be made, there 
was no way to assess the confidence to be placed in them. There was promise, but it was 
unfulfilled.

Clusters of atoms and bulk materials consist o f electrons and nuclei, every particle inter
acting with every other one. The electrons must be treated quantum mechanically, but the 
much heavier nuclei may be treated as classical particles to a very good approximation in 
most circumstances. If  our interest is in structural properties of the system such as the differ
ent stable arrangements of the atoms, the relative energies o f these structures, the energies 
associated with deformations and defects, and the vibrational properties, then we require the 
energy of the system as a function of the positions of the nuclei. A  further key assumption 
is that the electrons respond very rapidly to a change in position of the nuclei and remain 
in their ground state for the instantaneous arrangement of the nuclei. This is the celebrated 
Born-Oppenheim er approximation. Our task, then, is to calculate the ground state energy 
of the system o f many interacting electrons in the potential o f the nuclei for an arbitrary 
arrangement of the nuclei. Furthermore, the calculation must be ( i)  extremely efficient if 
many different arrangements of the nuclei are to be explored, or the trajectories of the 
nuclei followed as they move according to classical mechanics, and ( ii )  rather accurate if 
the energy difference between isomers or different crystal phases are to be distinguished, or 
the dynamics o f the nuclei studied using the forces acting on them.

This is a daunting task, and a number of difficulties confront us. First and foremost, the 
electronic energy requires solution of the quantum mechanical many-body problem for the 
system of many electrons interacting strongly with one another via the Coulom b potential. A  
direct attack on this problem by representing in some way the many-electron wavefunction, 
which depends on the coordinates of all the electrons, is possible for a small number of 
electrons, but the methods used cannot be extended to treat many electrons. It is this diffi
culty that limits the scope of traditional quantum chemistry methods to small molecules. The 
second main difficulty is the complexity of determ ining the behavior (i.e., the energy and 
density distribution) for even a single electron moving in the potential due to an arbitrary 
arrangement of atoms. This one-bodv problem is greatly simplified if the geometry of the 
atomic arrangement has high symmetry, but we must consider arbitrary arrangements with 
no symmetry if competing cluster isomers or the molecular dynamics of the system are to 
be studied. Some fundamental developments in condensed matter physics, some advances 
in theory, and technological developments came together in the 1980s to overcome these 
difficulties and make possible the simulation of materials from first principles with a proper 
treatment of the electrons and the ions.

The main development was density functional theory, which provided a way to treat the 
many-electron problem. Hohenberg and Kohn [3] showed that the properties of a system of 
interacting electrons can be obtained from the ground state electron density distribution. In 
particular, the electronic ground state energy can be expressed as a functional of the ground 
state electron density. This is an enormous simplification. Although all information on the 
ground state is contained in the hideously complicated many-electron wavefunction, it is also 
present in principle in the ground state electron density, a real, positive definite function of a 
single spatial variable much easier to visualize and construct than the wavefunction, or other 
amplitudes. Kohn and Sham, the following year [4], showed how to extract the ground state 
energy from the density functional theory by casting the interacting many-electron problem
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into the solution o f a system of noninteracting electrons— essentially, a one-electron prob
lem. This so-called Kohn-Sham form of density functional theory is the principal approach 
used today for handling the electron-electron interactions in clusters of atoms or bulk 
materials.

O ther developments led to methods for efficient solution of the one-electron problem that 
density functional theory delivered. First principles, transferable pseudopotentials allowed 
tightly bound electrons in the atomic corcs to be removed from the electrons to be con
sidered, and their effect incorporated in an effective electron-ion interaction— a pseudopo
tential. This had several advantages. The core electrons are tightly bound to the nucleus, 
move rigidly with the atoms, and are little affected by the electronic surroundings, but large 
energies are associated with the core and these would obscure molecular and condensed 
matter effects. Rem oving the core electrons removes the large energies associated with them 
and leaves for close attention the outer, valence electrons whose distribution determines the 
structural properties o f molecules, clusters, and bulk material. The focus is on the electrons 
that are sensitive to the atomic arrangement. The idea of a pseudopotential to describe 
the interaction between valence electrons and the ion was introduced much earlier, but 
usually these contained parameters that were fitted to calculated or experimentally deter
mined band structure features or to other experimental data [5]. These pseudopotentials 
were particularly successful in studies of simple metal properties where they were taken to 
be weakly scattering and used with second-order perturbation theory. But, two issues limited 
the use of these pseudopotentials. The first was transferability. There was no guarantee that 
a pseudopotential constructed to describe the atom in one situation, for example immersed 
in a metal, would give an adequate description when transfered to a different system, for 
instance, when the atom is chemisorbed at a surface. Second, these pseudopotentials were 
not designed to give the correct distribution of valence electrons between the core region 
of the atom and outside, which led to substantial errors in the electrostatic potential due to 
the electrons, as well as other problems. These two limitations were remedied in the norm- 
conserving pseudopotential constructed from a Kohn-Sham density functional calculation of 
the free atom [6, 7].

The introduction of pseudopotentials for describing the valence electrons has an added 
advantage. Rem oving the core electrons themselves also removed their effects on the valence 
electron wavcfunctions. The valence wavcfunctions of the all-electron atoms are orthogo
nal to the core electron wavefunction, consequently they must oscillate in the core region. 
These “ orthogonality wiggles1' in the valence electron wavcfunctions are removed along with 
the core as part of the pseudizing procedure. The resulting electron pseudowavefunctions 
are smooth in the core region and can be represented much more easily than the original 
rapidly varying valence wavefunctions. The solution of the one-electron problem requires a 
representation for the electron wavefunction— a wray to represent the wavefunction must be 
chosen. This could be as wavefunction values at a set of grid points in real space or as a linear 
combination of basis functions. W hatever the choice of basis, the number of basis functions 
required to describe adequately a smooth pseudopotential is much less than is required for 
the original wavefunction, which obviously permits the study of systems containing a much 
larger number of atoms.

The final ingredient in the synthesis that allowed the simulation of systems of many atoms 
with a quantum mechanical treatment of the electrons was the availability of large memory, 
high-speed computers. These elements were first brought together by Y in  and Cohen [8] in 
their study of the structural properties of Si and Ge, including crystal stability and pressure- 
induced phase transitions. In what has become known as an ab initio study, they used density 
functional theory for treating the electron-electron interactions, normconserving pseudopo
tentials for describing the interaction of valence electrons with the ions, and large plane w'ave 
basis sets for representing electron wavefunctions. A  further development due to C ar and 
Parrinello [c)j introduced a scheme for following the dynamics of the atoms that treated the 
electrons and the ions on a similar footing. Since the introduction of the ab initio methods, 
there have been advances in density functional theory giving improved functionals account
ing for the effects of electron-electron interactions, advances in pseudopotentials allowing
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description of a w ider range of atoms so that most of the periodic table can be treated, tech
nical advances in the representation of electron wavefunctions, such as real-space methods, 
and order of magnitude increases in the computing power that can be brought to bear on 
materials simulation due, for example, to the availability of multiprocessor machines.

In this chapter, we shall review these theoretical ingredients of the ab initio calculations: 
the application o f density functional theory for treating the electron-electron interactions, 
pseudopotentials for describing the electron-ion interaction, and the miscellany of techni
cal items that allows the realistic simulation of clusters and cluster-assembled solids to be 
performed. Next, we describe applications of the theory to clusters and cluster-assembled 
materials, beginning with the observation of shell effects in clusters of simple metals, and 
their explanation in terms of simple theoretical models within the framework of density 
functional theory [3, 4]. A  number of examples are presented indicating how the shell effects 
have a strong influence in many properties of the clusters. Simulations o f the melting of 
clusters is discussed including the application of a scheme free o f electron orbitals, based 
entirely on the electron density. The next section of this chapter is devoted to a discussion 
of com puter simulations of the assembling of metallic clusters. The simulations again high
light the important idea that closed shell clusters are the best candidates for self-assembling, 
but other favorable factors are also revealed. Further insight into the self-assembling phe
nomenon is also provided by an analysis of the chemical bonding in some ordered crystalline 
alloys known to display clustering.

2. T H E O R Y

2.1. Density Functional Theory
The origins o f the density functional theory of interacting systems of electrons can be traced 
to the statistical Thomas-Fermi model, and the main features of the theory can be illustrated 
by reviewing the Thomas-Fermi ideas [10]. Consider N electrons interacting in the normal 
way and in the presence of an external potential, Vcxt(v). In practice, Vcxt( r )  is the potential 
due to the ions or nuclei at fixed positions in the system that contribute a density of positive 
charge, //, ( r ) .  A n  electron at r will have potential energy Vcfj(r) with contributions from 
the external Held and the electron distribution. The kinetic energy1 of the fastest electron 
\kr ( r ) 2 will vary from point to point so that the total energy, kinetic plus potential, is 
constant throughout the system and equal to the chemical potential /x, giving

A  reasonable choice for the effective potential would be the electrostatic potential due 
to the total charge distribution with a contribution from the electron distribution as well as

where n(r )  is the electron density distribution. A lternatively, Poissotvs equation gives

For a uniform  system of electrons in its ground state, the kinetic energy of the fastest elec
tron is related to the constant electron density, /?, through n = k)./?)7T2. I f  the electron density 
varies sufficiently slowly, we assume that in the vicinity of r the electronic system behaves as 
though it were uniform, with density /1( r ) and kr, adjusts so that /7( r ) = k J. ( r ) ?'/3rr2. Using 
this slowly varying approximation in Eq. (1) gives the Thomas-Fermi equation:

( i )

(2)

(3)

(4 )

1 Atomic units with h = c = = 1 are used throughout except where otherwise stated.
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or, employing Poisson's equation we obtain the differential equation for the effective 
potential

(5)

Solution of Eq. (5 ) for a given external charge distribution yields estimates for Vefj- and 
hence for n(r), where fi is adjusted to give the required number of electrons.

In an alternative approach, we attempt to construct an expression for the ground state 
energy, £ , o f the N electrons moving in the external potential K .v/(r ) .  Two terms in the 
potential energy must be the electrostatic self-energy of the electron distribution

r  1 IT / / /'*(r)rt(r')
£" = 2 J J  ‘' r" r

and the potential energy of the electrons due to F'.v/( r )

E .-x, =  I  drVt,a ( r )n ( r )

both of which are expressed in terms of the electron density. To complete the total energy, 
an expression for the electron kinetic energy is required. Noting that the kinetic energy per 
electron in a uniform gas of noninteracting electrons is 3Er/5 = 3k:r /10, and assuming that 
the system is slowly varying, the kinetic energy of the //(r)^/r electrons in volume element 
dr is (3&/r ( r )2/10)(/7(r)rfr), where n(r )  = kr ( r )3/3rr2. The total electron kinetic energy 
becomes

T =  j  — (37r: / ( (r ) ) : 5 j// (r)

Assembling the pieces of the total energy, we have

E \n) =  c„ f  dr n ( ry  ' +  ^ If dr dr' f  dr | / „ , (r )/ i(r )  (ft)
r — r

where c’() — 3(37r2)2/3/10. The notation E[n] indicates that E  is a functional of /?(r), 
acknowledging that the state of the electronic system is described in terms of the density 
distribution //(r).

I f  the ground state electron density for the system is known, an estimate o f the ground 
state energy can be obtained by substituting into the energy functional E[n], Eq . (6). But, we 
shall see that Eq. (6 ) may be used to estimate the electron density. Fo r a fixed total number 
o f electrons /V = J  d rn (r ), the value of the E[n] depends on the way the electrons are 
distributed; the kinetic energy is a minimum when the electrons are uniform ly distributed, 
whereas the potential energy coming from the last two terms in Eq. (6 ) is lowered when 
electrons heap up in the regions of attractive potential. The ground state electron density 
must be a compromise between these two extremes, which minimizes the total energy. This 
suggests a variational principle for the ground state energy in which E[n] is minimized with 
respect to variations in /?(r) subject to the constraint of a fixed total number of electrons. 
The variational principle is compactly expressed

(S|/:[/;] -  \i j </r/?(r)} = 0 (7)

where S denotes variations with respect to the density, and the constraint is incorporated 
using a Lagrange undetermined multiplier /x, chosen so that there are the required number 
of electrons in the system. In terms o f the functional derivative S/Sn(r ) .  we have

8 E\n\
——~  = (J 8)
5//(r)
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which gives the Euler-Lagrange equation corresponding to the variational principle, and p 
is clearly identified as the electron chemical potential. Taking the functional derivative of 
our approximate energy functional Eq. (6), we obtain the Euler-Lagrange equation

5 - r , n(r')-c{)n(r)- + /dr ----- - + Vcx,(r) =  p. (9)
3 J |r -  r |

which is precisely the Thomas-Fcrmi equation, Eq. (4). In summary, we can view the 
Thomas-Fermi approach as:

• an attempt to express the ground state energy of an electronic system as a functional of 
the electron density distribution /?(r), and

• a variational principle with the actual ground state density minimizing the value of the 
functional subject to fixed particle number, the minimum value being the ground state 
energy.

Density functional theory shows that this approach is in principle exact, and the 
Thomas-Fermi method is an approximate special case of the exact theory. W ith  this view 
of Thomas-Fermi as a variational principle, it is easy to see where improvements are needed. 
The quantity q)n(r)2} is the energy per particle for a uniform noninteracting gas so no 
account is taken in E\n] given, by Eq. (6 ), of the exchange and correlation effects of the 
clectron-electron interactions. Furtherm ore, the expression for the electron kinetic energy, 
q, /’c/r/?(r)s \  is correct in the limit of a uniform gas but misses the direct effects of inho- 
mogencieties in the electron density. We now show how density functional theory remedies 
these defects.

The Ham iltonian for our N electron system with external potential Vcxt(r) is

H =  f  + U + f  dr  J/ , , ( r )/ ; ( r )  (10)

where T = £ ,p~/2  is the electron kinetic energy, U = 1/2 Yli Ylj î v(rij) *s the interaction 
energy, and /?(r) is the electron density operator. If  it is understood that the interacting par
ticles are electrons (i.e., fermions with v(r) = \/r and the electron mass), then the system is 
characterized by K .v, (r ) .  For example, it is Vcx,(r) that distinguishes the different 2-electron 
systems: He, H2, L i ' , Be2' , and so forth. G iven Vext(r), the N -electron Schrodinger equa
tion can in principle be solved to obtain the electronic properties of the system, for example, 
the ground state density / i„(r )> an(J  energy E (J. W e would say that //0( r ) and E () are function
als of V(,xl with the functional relationship involving the solution of the Schrodinger equa
tion. Hohenberg and Kohn [3] showed that the inverse is also true; they showed that there 
is a one-to-one relationship between /7„(r) and the Vcxt, apart from an additive constant. 
Therefore, given na(r), Vvxt can in principle be found along with other properties of the 
system (e.g., £'„), and the external potential and ground state energy are functionals of the 
ground state density, that is, Vcxt[n()], and E (\n0\. This establishes the possibility o f our first 
goal, of describing the electronic system in terms of the electron density rather than the 
many-body wavefunction or sim ilar construction.

Further progress in obtaining the ground state energy and other electronic properties 
using a density functional approach requires more than just knowledge that there is a func
tional, and this is provided by the variational principle obtained by Hohenberg and Kohn [3]. 
W e begin by identifying terms in the ground state energy that we know explicitly as func
tionals of na and extracting these from the functional. Two such terms are the electrostatic 
self-energy of the electronic charge distribution and the external potential energy. Extracting 
these gives

£„[«,.] = GK 1 + ^ j j + fclr K'.v/(r K ( r )  (H)

The residual functional G[n()\ contains all kinetic and remaining potential energy contri
butions and is universal for all electron systems. Consider now another system of N elec
trons with a different external potential, V'xr The ground state |(//) o f this system has
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electron density //(r) — (<A'J/i(r)|i/0. Because G  is universal, |t/0 = E a[n] and the
Rayleigh-Ritz variational principle gives

W„\HWU) = E„[n] > E a

where E o is the ground state energy of our system of interest, namely E ()[n,J .  F inally, we see

£ > ] > £ > „ ]  (12)

with the equality holding only for n = n0, and the ground state energy functional is a m in
imum for n = n(), subject to fclrn(r) = N. This variational principle can be expressed in 
terms of a functional derivative:

SE[n
Sn(  r) = M (13)

where the Lagrange undetermined multiplier i± is chosen to give the correct number of 
particles in the system. This is the variational principle Eq . (7 ) we applied earlier to the 
Thomas-Fermi energy functional Eq. (6). This variational principle is the route we seek 
to obtain the ground state electron density and the energy. A lthough on the face of it, 
the inequality Eq . (12) applies only to densities n that are ground state densities for some 
external potential, much work has been devoted to showing that the variational principle, in 
fact, holds for functions /z(r) that could be physically reasonable densities. A  formulation of 
the energy functional that illuminates this generalization was proposed by Levy [11].

Progress in direct use of the variational principle to calculate the electronic structure is 
hampered by lack of knowledge of the nature o f the universal functional G[n\, which con
tains all the kinetic energy contributions. The problem is illustrated by comparing for an 
atom the electronic kinetic energy calculated within the Hartree-Fock approximation, which 
is very close to the exact value, with that obtained from the Thomas-Fermi kinetic energy 
functional c0 f  clr/ i(r )5/3, where n is taken to be the Hartree-Fock density, nHF. For the 
sodium atom, the Hartree-Fock kinetic energy is 324 a.u.; the corresponding Thomas-Fermi 
value is 10% less. Although this may seem to be encouraging agreement, the discrepancy is 
about 700 eV, a massive error compared with the 1 e V  per atom that would begin to be of 
interest in structural chemistry or condensed matter physics. Nevertheless, there would be 
considerable merit in a practical scheme based entirely on the density, and some progress 
is being made in this area to which we shall return later. Kohn and Sham [4] showed how 
to circumvent this obstacle and capture the greater part o f the electron kinetic energy. The 
Kohn-Sham scheme that they introduced maps the interacting many-electron system onto an 
exactly soluble system of particles, and in doing so they provided a firm theoretical founda
tion for the self-consistent field approach to electronic systems— atoms, molecules, and bulk 
systems— which has been applied in various forms since the pioneering work of Hartree.

2.1.1. Kohn-Sham Scheme
A  system o f N noninteracting fermions moving in an effective external potential K// ( r ) has 
Hamiltonian Hs — hh where

h, ~  ~f- K,/;/(r J

The ground state wavefunction for this independent particle system is a Slater determinant 
v)' of single particle orbitals </>,•(r )  and the ground state energy. £ v, is the sum of the N 
lowest single particle energy eigenvalues e,. The solution of the single particle Schrodinger 
equation

r
W  + Vrfl(r) (bj(r) = 6,</;>,(r), / = 1. 2--- N (14)
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gives us the ground state for this system. O ther useful quantities can also be obtained simply; 
for example, the particle density is

and the kinetic energv is

/ v “  /

= -  f d r V eff{ r )n0(r )

But, the Hohenberg-Kohn theorem applies equally well to this noninteracting system as to 
our interacting system of interest. Consequently, there is a ground state energy functional

whose minimum value is the ground state energy = 51/e/» where n() is the ground
state density, which itself can be obtained from

+ Kn(r) = M/,„/ ( 16)8n( r

The kinetic energy for this system in its ground state is

7 ; k , l  = £ e; -  i dr K )j(r)n „(r )  (17)
i

Returning now to the interacting electron system, we separate out of the universal func
tional G\n\ the kinetic energy functional of a set o f independent particles with density n (r ) 
and write G[n] =  Ts[n\ + EXi.[n], The ground state energy functional becomes

E ,\>A = 7' l « ]  + ~ [ j  d rdr'n^ ^ ~  + Exc\n\ + f dr Vcx,(r)n(r) (18)

£ u.|//) is a catch-all for all the contributions to the energy that are not included elsewhere in 
Eq. (18). It is the so-called exchange-correlation energy. Applying the variational principle 
to £„[>?], the ground state density of the interacting system is the solution of

+ K  J r )  + )  =  fi (19)
87 \ [ n ]  r n (  r ) SZL’VC[/?]
t t t  +  W  I------------ 77 +  KAr)  ^  o r Tbn( r ) I J Ir — r | on(r )

W e see that Eqs. (16) and (19) have the same form and the quantity in { . . .  } plays the role of 
an effective potential acting on a system of noninteracting fermions. This is the Kohn-Sham 
potential

, /?(r )

where

^ ,1 » .  r] = K-.Vf (r )  + j  dr' ---- - + VXi. (20)
J r  -  r

^ ■ [ ' l ’ r l  =  T 7 T  ( 2 1 )OA7(r)

is the exchange-correlation potential. The Kohn-Sham approach amounts to solving the set 
o f single particle Schrodinger equations for an auxiliary system of independent particles 
moving in an effective external potential, VKS, and with the same ground state density nlf as
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the interacting system

+ VKS\n„. r ]\ (f>,(r) = e,<fe,(r), / = 1.2--- N (22)

'>„(<') = ]^l(/j,(r)l2 (23)
i

These arc the Kohn-Sham equations, and the er the Kohn-Sham eigenvalues. The solution 
o f the Kohn-Sham equations must be made self-consistent because VKS depends on the 
electron density. The ground state density can now be substituted into the energy functional 
Eq . (18), and although we do not know the independent particle kinetic energy functional, 
T’J/ j] , we do its value for the density n = n(f: it is given by Eq. (17). The ground state energy 
in terms of the density n() and the Kohn-Sham eigenvalues is

£ o =  E  +  I  fl +  I ‘lr "„(*) I K , , ( r )  ~  t ' Y s ( i ' ) ]  +  E V 1 [ " J  ( 2 4 )
/ Z JJ  Ir r I J

Extensions of the Kohn-Sham form of density functional theory have been made to treat 
spin polarized systems described in terms of spin-up and spin-down electron densities, //, 
and /?•, respectively [12, 13]. A  system of independent particles with the same densities 
as the interacting electron system is introduced along with the exchangc-correlation func
tional of the up- and down-spin densities. The ground state is obtained through solution 
o f the Kohn-Sham equations with separate potentials for up- and down-spin electrons. 
The Kohn-Sham scheme summarized bv Eqs. (22) and (24) is exact, provided an auxiliary 
independent particle system exists with the same density as the interacting electron system, 
and this does not seems to be a serious restriction, but knowledge of the exchangc-correlation 
functional is required if the scheme is to be implemented.

2.1.2. Exchange-Correlation
The functional E xc and its derivative VX(. contain all the complex manv-body effects. 
Exchange effects are those captured by the Hartree-Fock approximation and act between 
parallel-spin electrons, and correlation effects are all those beyond the Flartree-Fock level. 
Most of Exc is interaction potential energy due to the exchangc-correlation hole in the 
electron distribution around a given one. but these spatial correlations imply additional vari
ations in the electron wavefunction that lead to a kinetic contribution to E u. of a few percent 
o f the total. The total exchange-correlation energy is a small part o f the total energy for 
atom ic systems. For Be, it amounts to about 18%  of the total, but the fraction diminishes 
w'ith increasing atomic number so that for Ne and A r it is 10% and 6 % , respectively. Most 
of E xc is due to exchange, correlation amounting to 3 %  or less for the atoms noted above. 
A lso of interest is the exchange and correlation energy for a uniform electron gas, often 
taken as a model for simple metal systems. K inetic energy dominates the energy in the limit 
o f very high electron density, such as would be encountered in the inner regions of an atom, 
but in the range of mean valence electron densities of the simple metals such as the alkalis 
the negative exchange energy becomes the main contribution. A t lower densities such as 
those found in the outer regions of atoms, exchange and correlation dominate the total. In 
assessing the magnitude of E xi S we must bear in mind that it is not so much the total energy 
of clusters and bulk materials that are of interest, but differences in total energy between 
different molecular or cluster isomers or between different crystal structures, and these may 
be only 1 eV  per atom or much less, and the treatment of exchange and correlation could 
be the determ ining factor. An  important feature of the Kohn-Sham scheme is that apart 
from numerical uncertainties in the solution of the single particle Sehrodinger equation, 
approximations are all concentrated in the functional E u. It has been clear from its first 
introduction where to locus theoretical effort to improve the accuracy of the scheme.

The first approximation lor E u , which has seen and continues to see a great deal o f use 
in simulations, is the local density approximation (L D A )  and, if there is spin polarization, 
the L S D A . This is the same sort of approximation made for the electron kinetic energy in
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the Thomas-Fermi model. If  the system is spatially slowly varying so that near r it may he 
replaced by a uniform electron gas of mean densities //r ( r ) and // ( r ) for up- and down-spin 
electrons, a corresponding approximation for the exchange-correlation energy would be

E V(.[//: , //J  = j  dr /z(r) e".[//t ( r ) ,   ̂( r ) ]  (25)

where €".(//., n{) is the exchange-correlation energy per electron of a uniform electron gas 
of spin densities n. and n , and n = n} + n. is the total density. The corresponding potential 
for up-spin particles is

^vcr(r) = (26)
I /;=«,( r)

and sim ilarly for down-spin. Practical application of the L S D A  for exchange and corre
lation requires a convenient parameterized form of electron gas data of which there are 
many. The most common ones in use today are due to Vosko, W ilk . and Nusair [ 14] and to 
Perdew and Zunger [15] and are different fittings to the M onte Carlo electron gas results 
of Ceperley [ 16] and Ceperley and A lder [17]. This simple approximation works very well in 
density functional calculations of atoms, molecules, and more extended systems. A  summary 
of the successes compiled by von Barth [18] includes binding energies often better than 
1 eV, equilibrium bond lengths generally accurate to within 0.1 A , electron densities usually 
better than 2%, and physical trends are usually reproduced. Furtherm ore, errors are usually 
systematic (e.g., molecular binding energies and solid cohesive energies are usually over
estimated and bond lengths and lattice parameters are underestimated). This is not to say 
the L S D A  has no serious difficulties. The tail o f the Kohn-Sham potential outside localized 
systems— atoms, clusters, a solid surface— falls off too rapidly with distance. This is due to 
residual electron self-interaction effects that do not cancel completely in the L S D A  as they 
should when an electron is far from the rest of the system. Self-interaction corrections have 
been proposed that improve matters in a quantitative sense, but which lead to an undesirable 
orbital-dependent potential [15]. Although the L S D A  has clear deficiencies, the strength of 
its success in atomic and molecular systems is surprising in view of the rapid variation of the 
electron density in the atomic core regions, and it has been the subject o f much analysis.

Corrections to the L S D A  must involve some measure of variations in the electron density 
from place to place in the system, and a common way of accomplishing this is through 
density gradients so that the integrand in E u depends on V//(r) and possibly higher order 
gradients, as well as the density at r,

E Xi. = jd r n(r) e lr (/?(r), V/?(r)........) (27)

with the obvious generalization for spin polarized systems. The first few terms of an expan
sion o f eu. in ascending order of density gradients have been evaluated, but gradient correc
tions for atomic-like systems do not improve on the L S D A . Indeed, Langreth and Mehl [19] 
have shown that the criterion for the L S D A  to work is less restrictive than that for the 
validity of the gradient corrections. In response to this setback, various functional forms for 
eV( (/?, V//........ ) have been developed giving what are known as generalized gradient approx
imations (G G A )  for exchange and correlation. These are of two types. The first uses known 
properties of the exact E u. to construct a functional, whereas the second semiempirical type 
of functional involves parameters that are fitted to particular electronic systems. O ne of 
the first type in common use in simulations is PW91 due to Perdew and Wang [20], but 
more sophisticated functionals have since been developed by Perdew and coworkers [21]. 
A  popular semiempirical functional uses the formula for exchange due to Becke [22] and 
the correlation functional o f Lee, Yang, and Parr [23]. Currently available G G A s  achieve 
impressive accuracy for features of atomic, molecular, and solid-state systems. For example, 
a mean absolute error of 5 or so kcal/mol for the atomization energies of the G2 set of 
molecules is obtained, and agreement for lattice constants of a group of solids averages a 
few hundredths of A  [21, 24]. However, average measures o f errors over a wide range of
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systems are not particularly useful when a D F T  simulation of a new system is perform ed on 
which basis predictions of properties arc made. In such a situation, much experimentation 
is needed on electronically sim ilar systems in order to estimate the degree o f confidence in 
the results.

The exact and universal E u. is a worthy but unrealistic goal, but recent efforts suggest 
that steady progress can be expccted toward an approximate functional achieving 1 kcal/mol 
accuracy for binding energies. Developments may include methods based on Hartree-Fock 
or its best local equivalent, the optimized effective potential [25-27]. to capture the exchange 
energy that is the bulk of £ vt., with the remaining correlation part handled with an approx
imate functional [27]. Particularly important developments for the study of clusters and 
cluster-assembled solids are the introduction of nonlocal effects into E xc. Functionals of 
the type (27) are a spatial average involving the density and density gradients at a point 
so that it is only the density in the vicinity of r that enters the corresponding K u.(r ), and 
the approximation for exchange and correlation is still a local approximation. Consequently, 
the long-range van der Waals interaction due to the correlated motion of electrons in dis
tant even nonoverlapping systems is not accounted at this level o f DFT. The van der Waals 
energy is likely to be an important contribution in the interaction energy of stable neutral 
clusters, those very clusters that are candidates for cluster-assembled materials. A  number 
of approaches for introducing nonlocality into E u have been proposed and tested on sep
arated atoms and molecules, atoms and molecules outside surfaces, and interacting slabs, 
with encouraging results [28].

The density functional theory presented here is a theory for the ground state. The results 
that are on a firm footing are the electron density and the ground state energy and quantities 
that can be obtained from these including equilibrium structures, deformation energies, and 
m olecular dynamics within the adiabatic approximation. Properties that involve excited elec
tronic states are not accessible through D F T  and require the time-dependent generalization 
of D F T  established by Runge and Gross [29], but applications to realistic systems are not 
yet com monplace [30]. In addition to the ground state density and energy, the Kohn-Sham 
scheme also yields the Kohn-Sham energy eigenvalues, and it is tempting to use the differ
ences in these eigenvalues as estimates of one-electron excitation energies, in the same way 
that Hartree-Fock energy eigenvalues are used through Koopm an’s theorem. However, the 
Kohn-Sham eigenvalues appear to be artifacts of the theory with no real physical interpre
tation except for the highest occupied energy, which has been shown to equal the ionization 
potential o f a localized system such as a molecule or cluster or the work function of an 
extended system [31]. For localized systems, the eigenvalues of lower occupied states are 
found to be above the one-electron excitation energies to the vacuum, and those that are 
unoccupied are below, and this is not a consequence of using an approximate E xc although 
the L D A  does accentuate the differences. Corresponding discrepancies occur for extended 
systems. In particular, a Kohn-Sham band structure calculation for a semiconductor under
estimates the band gap. Nevertheless, the Kohn-Sham eigenvalues give useful information 
on the electronic structure. The sum of the Kohn-Sham energy eigenvalues is a major ingre
dient in the ground state energy (24), and the spectrum of eigenvalues of a cluster or the 
density of states for a solid often gives insights into the reason for stability of one structure 
over another, and sim ilar questions.

2.7.3. Orbital-Free Approach
The Kohn-Sham approach circumvents the need of an explicit density functional for the 
electron kinetic energy, or at least Ts[n] which is the major part of it. by introducing the 
kinetic energy of a set o f noninteracting fermions. This allows the value o f ’/'„[//] to be 
determ ined precisely, for the particular density of interest, but at the cost of handling not 
just the density distribution but a set o f N mutually orthogonal single particle orbitals, a task 
that becomes expensive in computational time and memory for large systems. An  alternative 
scheme more in the spirit of the Thomas-Fermi approach outlined earlier uses an explicit but 
approximate functional for /’ [//] and offers considerable savings. The system is characterized 
by n(r) alone, and the method is tree of the set of Kohn-Sham of orbitals. This is the 
orbital-free method that is seeing a number of applications [321.
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The orbital-free method uses an approximate form for as well as for £ vr[/i]. 7̂ .[//]
has seen much less study than the exchange-correlation functional, and approximations are 
still rather prim itive; in addition, in most systems of interest the value o f Ts is more than 
an order of magnitude greater than E u. and so approximations to it are likely to have more 
serious consequences. Nevertheless, the savings in computational effort compensate for this 
in carefully chosen systems, and useful results are being obtained in cases where the full 
Kohn-Sham procedure would not be feasible at present, for example, for systems of many 
particles and when long molecular dynamics runs are required.

Approximate kinetic energy functionals are usually designed to give known limiting forms 
o f the exact kinetic energy of a noninteracting electron gas. The kinetic energy in the limit of 
slowly varying density is known in the form of an expansion in gradients of the density [12],

r v[/i] = r <,n + r (2, + r (4) + --- (28)

where the leading term

Tm = Tn =ctlfd rn 5/3 (29)

is the Thomas-Fermi result,

7 «  = I ( , / r < 5 £  (30)
72 J  n

and subsequent terms are higher order in density gradients, but interestingly, 7,(4) does not 
involve a fourth derivative of the density and can be evaluated with knowledge of only //. 

and V2n. The von Weizsacker functional

T v\v\> A  = 9 7'(:) (31)

is exact for one and two-electron systems and is generally acknowledged to be appropriate 
in circumstances where the density is rapidly varying, such as in the exponentially decaying 
tail outside a localized system. A lso known is the form of the kinetic energy functional for 
a weakly perturbed uniform electron gas in terms of density response functions

T M  = 7'<ll,[/’i] + Y ,  X ,2|(q)/i(q)/'i(-q) + • ■ • (32)
q*U

The first term in (32) is the kinetic energy of the uniform gas of density ri and volume
11, and the next term is written in terms of the Fourier coefficients of the density, /'?(q ), and 
K {2) = where \{) is the fam iliar Lindhard screening function. H igher order terms in
(32) involve increasingly complicated response functions.

Approximate functionals based on these limiting cases have been used with some success in 
variational density functional treatments of simple metal systems where the electron density 
varies rather slowly. Various linear combinations of Tn. and TvW [33, 34), as well as the 
first two terms in the gradient expansion [35] have been tried, but these functionals fail 
to give any shell structure in the electron density of an atom or Friedel oscillations in the 
screening cloud of an atomic impurity in an electron gas. L inear response theory does lead 
to Friedel oscillations around an impurity, and functionals incorporating this limit as well 
as the slowly and rapidly varying limits discussed above have been proposed. Two of these 
that use different ansatz [36. 37] have been used by Smargiassi and M adden [38] in studies 
of Na and A l, and for a variety of static and dynamic properties of the solid metals, the 
two types of kinetic energy functional give satisfactory results, although, as expected, the 
agreement with experiment for A l is the poorer because o f the larger valence leading to 
stronger variations in the electron density. The functionals we have discussed so far can 
be used very efficiently; a calculation of the total energy requires order-ZV operations for 
a system of N atoms. But, there is a difficulty with the application o f these functionals 
beyond bulk simple metal systems for which conventional second-order perturbation theory 
using pseudopotentials works fairly well regardless of density functional methods. This is the
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need for a uniform “ reference" electron density for the system in order to meet the linear 
response limit. In the case of bulk simple metal systems, the mean electron density will 
suffice for the reference, but for systems with directional bonds the bonding is associated 
with variations in the electron density, and for surfaces or clusters of even simple metals the 
electron density varies from bulk values inside to zero away from the surface, and there is 
no appropriate uniform reference density. A  type of functional that overcomes this difficulty 
somewhat was introduced in 1985 by Chacon. A lvarellos, and Tarazona [39] (C A T ) and has 
seen development by this group since then [40].

The new idea in the C A T  functional is to use in an admixture of the Thomas-Ferm i and 
von Weizsacker functionals not only /?(r) but also a functional o f the density

which can be viewed as an average density in the vicinity of r. The weighting or sampling 
function co(r. n) is chosen so that the linear response limit is met in the case of a weakly 
perturbed gas. This procedure introduces nonlocality into the kinetic energy functional and 
deserves more attention than it has thus far received, but this comes at the cost o f signifi
cantly greater computational cost for its evaluation than the simpler functionals. W hereas the 
evaluation of the local functionals requires order-N operations, the nonlocal one requires 
order-/V2, because for every r-point, the ii(r) must be evaluated, which requires an integral 
o f the weighted density over all space. An  approximate form of this nonlocal kinetic energy 
functional, which has been applied with some success to liquid metals, preserves the main 
C A T  idea of using an average density n(r) but with the weighting function

where /’/ is again some constant reference density appropriate for the system. The reversion 
to a uniform reference density restricts the application of the functional to systems with 
fairly uniform density, but the n(r )  can now be obtained efficiently by, for example, a single 
fast Fourier transform and the method scales as order-/V.

The functionals described above are designed to yield a total kinetic energy when a given 
electron density is substituted. However, to be useful in ab initio total energy calculations, 
the functional must also be used to obtain the ground state electron density either by direct 
minimization of the total energy functional or by solving the Euler-Lagrange equation. 
Consequently, a useful 7’ [//] should incorporate known limiting forms but have, in addition, 
accurate functional derivatives. Wang et al. [41] built this consideration into their study of 
a generalized gradient approximation for T\n\. They  adopted a form proposed earlier by 
DePristro and Kress [42]

is a dimensionless measure of the density gradient, and V  correspondingly for the Laplacian 
of the density, and so on for higher derivatives. D ePristro  and Kress [42] used a Pade approx- 
imant form for P (X )  with parameters chosen to satisfy some limiting cases and to obtain 
agreement with the total kinetic energy for some atom ic ali-electron systems. The objective 
of kinetic energies for all-electron systems to an accuracy useful in cluster and condensed 
matter physics of 1 e V  or less is too ambitious for this primitive functional, and instead 
Wang et al. [41] designed a similar functional for use with relatively smooth densities such 
as the valence electron density oi pseudoatoms. They used model systems and adjusted 
the functional in order to obtain agreement for J\\n\ and its functional derivative, which 
apart from an additive constant is the Kohn-Sham potential for the system. The ir functional 
worked reasonably well for group IV  atoms, and there were indications that a generalized

(33)

to[\r -  r |, /?(r )] %  co( |r - r'|, n) (34)

(35)

where

(36)
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gradient approximation like Eq. (35), which reduced to the gradient expansion through 
fourth-order for slowly varying densities and to 7rl, [//] in the density tail outside localized 
systems, would be a promising development.

The future of the orbital-free method depends largely on the development of improved 
kinetic energy functionals. Its merit is the efficiency of calculation, in speed, allowing molec
ular dynamics simulations for long times, and memory requirements allowing simulation of 
large samples, but the main drawback is the error in f v, which is such a large part o f the 
total energy. Realistic simulations can only be expected at present for simple metal systems. 
Most approximate functionals incorporate Trr [n] and give good results for slowly varying 
densities as would be found in bulk simple metal systems when the electron-ion interaction 
is described by a pseudopotential. Pseudopotentials developed from first principles give an 
accurate description of the valence electronic structure of the whole of the periodic table, 
but these are nonlocal in the sense that different potentials act on orbitals with different 
angular momentum. This complication is necessary if the details of the energy spectrum and 
orbitals for different angular momenta are to be reproduced, as we shall see in the next 
section. Because the density in the orbital-free approach is not, as the name suggests, broken 
down into contributions from individual orbitals, the electron potential energy due to the 
interaction with the ions is f  ilrVcxt(r)n(r) and the external potential must be local, or at 
least, the angular momentum dependent nonlocal pseudopotentials cannot be used. This is 
not to say that a local pseudopotential that gives an accurate description of the valence elec
tronic structure cannot be developed, but at present the restriction to local pseudopotentials 
is a limitation of the orbital-free approach.

2.2. Pseudopotentials
2.2.1. Model Pseudopotentials
The development of accurate pseudopotentials greatly simplified the application of density 
functional methods to ab initio materials simulation, and it is to these pseudopotentials that 
we now turn. The idea of pseudopotentials developed in the early days of condensed matter 
physics from questions such as the following. In view of the very strong attractive potential 
that electrons experience in the core region of an atom, why are there simple metals such 
as Na and the other alkalis, Mg, A l, which behave very like a Sommerfeld model in which 
the potential inside the system is constant? W hy  also is the valence-conduction band gap in 
Si and G e so small, ~  I eV, suggesting a weakly perturbing periodic potential? The answer 
to these questions was discovered in the 1960s and simple empirical and semiempirical 
pseudopotentials were developed (5). Accurate, transferable, first principles pseudopotentials 
of the sort that are used now in ab initio simulations were first developed in the early 
1980s [6, 7).

The valence electron orbitals must be orthogonal to the core electron orbitals of the same 
angular momentum, and consequently they must oscillate as functions of r in the core region. 
This leads to valence electrons having a large expectation value of the kinetic energy. But, 
the potential experienced by the valence electrons is strongly attractive in the core region 
and so the expectation value of the potential is correspondingly large but negative. A t a few 
eV, the relatively small binding energy o f the valence electrons eV(lt = ( T ) + (V ) is the result 
o f a large degree of cancellation between the kinetic and potential contributions. This can
cellation of large energies can be removed by introducing a potential, the pseudopotential, 
that is much weaker than the full Kohn-Sham effective potential for the atom and gives the 
valence state at the right energy, which means that the corresponding valence pseudo-orbital 
wiil therefore have the correct shape in the outer region o f the atom. The pseudopotential 
is not unique, different ones w ill give different shapes for the pseudo-orbital in the core 
region, and it is useful to choose a potential that will give a smooth pseudo-orbital in the 
core with no orthogonality “ wiggles." This potential will have the valence state as its lowest 
state for the given angular momentum, and the maximum amount of cancellation between 
kinetic and potential energies will have been removed. A  spherical potential well provides 
a simple illustration of this procedure. A  well o f radius l a.u. and 32 a.u. deep has bound 
.v-states at —28.1 a.u.. and —16.8 a.u.. these are the “ core" levels, and a “ valence" state at
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€vui = —0,34 a.u. A  much shallower well 12.3 a.u. deep with the same radius has a valence 
state again at —0.34 a.u. and a single deeper .v-state at —8.9 a.u. Continuing, a well only 
2.3 a.u. deep has only the valence state bound at = -0.34 a.u. The valence orbitals for 
these three potentials are shown in Fig. I. The valence orbital for the original deep well 
being orthogonal to two deeper 5-states has two nodes, that for the intermediate well has 
one node, and the one for the shallow well is nodeless, but all behave in the same way 
outside the well, and all correspond to an energy of —0.34 a.u.

A n example of an early pseudopotential for describing the electron-ion interaction is the 
so-called empty core potential of Ashcroft [43]

v(r) = 0, r <

Z,— ---- , r > r(r
where Z v is the valence. The potential is local acting in the same way on all angular momen
tum components and contains a single parameter, the core radius, which was fitted so 
that the potential gave good agreement for selected properties. The potential was then 
used to investigate other properties. A  further example is the model potential o f Heine and 
Abarenkov [44J. They recognized that the pseudoion potential may have to be different for 
different partial waves if the spectrum of valence energy levels is to be correct for all angular 
momenta. If  K,(/‘) is the potential for /th partial wave, the total pseudoion potential can be 
expressed in terms of the operator (/, m )(/ , m\ which projects out of the wavefunction the 
(/, m) angular momentum component

KC = E v i ( r ) K’ '"></■ "'I P?)
I .  i n

The individual V/(r) were taken to be - Z j r  outside the ion core, and a constant inside 
chosen so that the lowest valence energy eigenvalue for angular momentum / was given 
correctly. Both the Ashcroft potential and the non-local Heine-Abarenkov potential were 
regarded as weakly scattering and used within second-order perturbation theory for calcu
lating total energies and related quantities.

2.2.2. First-Principles Normconserving Pseudopotentials
Two problems with these early potentials were ( i)  their “ transferability” and ( ii )  the division 
of the electron distribution between the core region and the outside region of the atom.

The first issue, (i), is the degree to which the pseudopotential, which by design describes 
accurately the valence states of the atom in one environment, can be transferred to give

r a.u.

Figure 1. Valence .v-orbitals each corresponding to energy — -0.34 a.u. lor square well potentials with radii 
i a.u. but different depths F.,. The full line for ( 3 2  a.u. has two more tightly bound ‘-stales; the dashed line 
tor V\. = 12.3 a.u. has one deeper .v-slate: the dash-dot line for 1 — 2.3 a.u. is the lowest \-stale for the potential. 
Because they correspond to the same energy, the three orbitals have the same shape oul>.ide “ the core." that is. 
bevond r — 1 a.u.
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an equally good description in another situation. For example, the pseudopotential may be 
chosen to give the correct energies for the valence states of the free atom, but if it is to 
be used in the corresponding solid to compute the conduction and valence bands, it should 
describe the electron-ion interaction not only at the discrete atomic bound state energies 
but over a range of energies covering the energy bands in the solid. In this respect, we note 
that the solution of the radial Schrodinger equation for energy E  can be obtained beyond 
some radius, say apart from a normalizing factor, by integrating out. if the logarithmic 
derivative of the solution at t\ is known:

f  ( £ ) = L-in[r R (E , r )]| , (38)dr
If  F , (£ )  is known over a range of energies, the correct exterior solutions can be obtained 
over that range.

The second difficulty, (ii), concerns the so-called norm of the valence pseudo-orbital. 
A  realistic description of the bonding in the region between atoms requires the correctly nor
malized pseudo-orbital Rll>!,(€vaJ% r) to have not only the right shape but also the right am pli
tude outside the core. Furthermore, we require the pseudo-orbital to contribute the same 
amount o f charge in the core region as the full orbital Rt(evilh r), otherwise the electrostatic 
contributions to the Kohn-Sham effective potential will be badly in error. The requirement 
that the full and the pseudo-orbital have the same norm

I (lr\rR'’s(e,,,i, r)\2 = f  dr\rR,{evlll, r ) ] 2 (39)A) A)
where eV(lt is the valence energy eigenvalue for angular momentum /, solves both of these dif
ficulties at one stroke. Manipulation of the radial Schrodinger equation gives a relationship 
between the norm and the energy dependence of V/(E) [6]. Because the pseudopotential 
gives the correct valence bound state energy, eval, it also gives correctly I )(€Vllt). If  the pseu
dopotential also conserves the norm is also correct, and a Vf correct over a
range of energy around evat is guaranteed.

The first principles, normconserving pseudopotentials first introduced by Hamann, 
Schliiter, and Chiang [6], and expanded upon by Bachelet, Hamann, and Schluter [7], form 
the basis of the pseudopotentials presently applied in ab initio simulations. The pseudopoten
tials are obtained by fitting to aspects of a Kohn-Sham calculation of the free atom including 
all electrons, not just the valence electrons. Often, an artificial electron configuration is cho
sen including some valence states that would not be occupied in the ground slate, so that 
there is some occupancy of / = 0, 1, 2 valence states that could well be occupied in a situ
ation to which the pseudopotential is transferred (e.g., a cluster of atoms). For instance, the 
ground state configuration of the free Si atom is the neon core + 3.v2 3/r, but in a solid we 
expect some occupancy o f d-like states, and the pseudopotential is more likely to describe the 
situation if it reproduces a free atom configuration such as the neon core + 3.r 3p[J> 3d{) 2".

Next, for each orbital angular momentum /-value, the all-electron valence radial wave- 
function is modified inside the core so that orthogonality wiggles are removed giving a 
pseudo-orbital Rf'. The corresponding potential that has this orbital as its solution for the 
true valence energy eigenvalue is obtained by inverting the radial Schrodinger equation. 
This procedure is far from unique. The flexibility in modifications that can be made inside 
the core and give a Rfs and an accompanying pseudopotential that still give the required 
valence energy can be used to advantage. If  the modification leads also to the conservation 
of the norm (39), then R,l)S and R, when properly normalized will be identical outside the 
core, and the transferability of the potential will be enhanced. This gives the Kohn-Sham 
effective potentials, one for each /-value, that yield the corresponding pseudo-orbital. These 
potentials include the Hartree and exchange-correlation contributions due to the electron 
density of the pseudoatom, which can be subtracted off leaving the pseudopotential for the 
bare ion, V^ n, a so-called normconserving pseudopotential. But, there still remains flexibil
ity in the core region, and the requirements above for a normconserving pseudopotential 
can be met for a whole family of potentials. A  simple procedure for choosing from these a 
normconserving potential that is smooth and is particularly well suited for use with a plane 
wave basis set is due to Troullier and Martins [45]. Pseudopotentials generated with their



60 Densitv Functional Calculations o f Clusters and C luster Assem bly

procedure are extremely efficient in those cases for which the expansion in plane waves con
verges slowly, such as first row elements and 3cl transition elements, and their procedure is
widely used in ab initio simulations. The ion pseudopotential is usually written as

V?;m = I/'•" (>■) + £  A K / '" "V )|/ .  m){l, m\ (40)
I.Ill

where Vloc(r) is a local potential that falls off outside the core as —Z v/r and acts equally 
on all angular momentum components, and the nonlocality is contained in the deviations 
W IU)nl(r) for just a small number of /-values.

Simulations that employ first principles normconserving pseudopotentials such as those 
of Troullier and M artins do not use them directly in their nonlocal form, Eq . (40), as this 
would be very expensive computationally. Instead, a separable form suggested by Kleinm an 
and Bylander [46] is used in wiiich A V"""1 (r)\l. m)(L m\ in Eq. (40) is replaced by

A [/ o _  M , > ' , ....;) ( A K .... ' C l  M n

(K ,A K ‘...' O
where the are pseudoatom wavefunctions at the reference energy. W ith  this substitution, 
if there are Nh basis functions, all matrix elements of Vf'm can be obtained from the Nh
quantities (^Vlnunl4)fl̂ l\(l>h(isis), a great saving.

The “ ultrasoft" pseudopotential scheme of Vanderbilt [47] is also becoming widely used. 
Here, the conservation of the norm in the core region is relaxed, which allows much smoother 
pseudo-orbitals in the core than would otherwise be possible. This is particularly useful for 
the first row elements and the 3d transition and rare earth elements. Taking the oxygen atom 
in the first row as an example, we note that the 2s orbital can be pseudized in the core
region while preserving the norm because of the orthogonality to the 1 s orbital, resulting in
a smooth s pseudo-orbital that is the lowest .v-state of the pseudopotential. The same is not 
possible for the 2p orbital, there is no lower /;-state in the core, and the 2p orbital cannot be 
smoothed or pseudized in the core to any significant degree while preserving the norm. The 
\ ■’i is sim ilar for the 3d orbitals and the 4f  orbitals o f the third row transition and rare
earth elements, respectively. The smoother pseudo-orbitals of the ultrasoft potentials can be 
represented by a much smaller set o f plane waves than if the norm were conserved. Relaxing 
the norm means that the charge density can no longer be given simply bv the sum of squares of 
the orbitals, and additional terms are necessary. These are formulated in Vanderbilt’s scheme.

2.2.3. First-Principles Local Pseudopotentials
In the orbital-free method described earlier, the electronic energy is expressed in terms of 
the electron density, n(r ) ,  the electron-ion interaction energy has the form [dr Vex[(r)n (r ), 
and there is no decomposition of the density into orbitals. Consequently, a pseudopotential 
describing the interaction with the ions must be local. The high efficiency of the orbital-free 
scheme has stimulated some interest in the development of first-principles local pseudopo
tentials. Gonzalez and coworkers have constructed local pseudopotentials suitable for ions 
in a metallic environment by fitting to a density functional calculation of the ion positioned 
in an atom-sized cavity in a uniform electron gas [48]. In this procedure the pseudopotential 
depends not only on the type of ion but also on the mean electron density of the system to be 
studied, and its use is mainly restricted to simple metal systems. It has been i 1 successfully 
in simulations of molten simple metals and alloys [48]. A  scheme for obtaining ; ;a l equiva
lent of a given first-principles nonlocal pseudopotential by solving the Kohn-Sham equations 
inversely has been presented by Wang and Stott [49] and applied to group IV  elements. The 
results for Si. Ge, and Sn, while certainly inferior to those of the parent nonlocal potential, are 
encouraging, and the potentials are adequate for use in orbital-free total energy simulations 
given the current deficiencies in kinetic energy functionals.

2.3. Synthesis
Within the framework of a density functional theory treatment of the electron-electron inter
actions, a number of elements need to be drawn together if reliable simulations of clusters
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and cluster-assembled solids are to be performed. At the outset, some choices have to be 
made about the sort o f approach to be taken. Foremost of these is the choice between includ
ing all electrons, core as well as valence electrons, in the calculation of the electronic energy, 
a so-called all-electron calculation, or removing the core electrons and treating the valence 
electrons only in a pseudopotential calculation. At first sight, the former, with all the elec
trons moving in the external field due to the point charge nuclei, would seem to be preferred, 
as this approach involves no uncertainties associated with the quality o f the pseudopoten
tials. Many all-electron computer codes are readily available based on a linear combination 
o f atomic orbitals (L C A O )  for representing the Kohn-Sham one-electron wavefunctions, and 
employing Gaussian, Slater orbital, or numerical basis sets.

However, there are drawbacks to this approach. The large contributions of the core elec
trons that are included in such calculations to the total energy and the electron density tend to 
obscure the valence electronic structure that is responsible for the clustering and solid-state 
effects. Furtherm ore, the very different length scales present in the all-electron wavefunc
tions makes their representation in terms of a basis set prone to error. The deep core orbitals 
have an extent ~  1 / Z  a.u., and variations on this scale occur in the valence orbitals because 
of orthogonality; these variations must be represented well because there are large energies 
associated with them. But, in addition, there are variations in the valence orbitals on the scale 
of the interatomic distance that incorporate the bonding features we wish to investigate. In 
contrast, the valence pseudowavefunctions have the rapidly varying core electron features 
removed and are comparatively smooth. They contain only a single length scale 2̂ 1 a.u. and 
are relatively easy to represent. Also, the choice of which atomic orbitals to include in the 
L C A O  is somewhat subjective. Finally, the L C A O  basis set required for an all-electron cal
culation depends explicitly on the positions of the atoms; the basis set changes if the atoms 
are moved. This feature creates difficulties in the calculation of the forces on the atoms that 
are needed if the atom positions are to be relaxed to determ ine the equilibrium arrangement 
or if molecular dynamics simulations are to be performed [50]. Overall, the balance currently 
favors the plane wave pseudopotential approach for cluster assembly studies, and most of the 
studies that have been reported use this approach. For the simulation of isolated clusters the 
choice is more open, but we again prefer the plane wave pseudopotential approach for which 
checks of convergence with respect to the basis set are decisive. Even  so, all-electron calcula
tions are useful in testing the pseudopotential, provided uncertainties due to the L C A O  basis 
set are recognized.

W e now briefly review the various ingredients of the plane wave, pscudopotential, total 
energy simulation method. A  fuller discussion can be found in the comprehensive article of 
Payne et al. [51].

2.3.1. The Pseudopotential
The plane wave pseudopotential approach requires a choice of pseudopotential and the test
ing of it. The electrons in the free atom to be treated in the calculations as valence electrons 
subject to the pseudopotential have to be decided. In some cases, it is not sufficient to lake 
just the outermost electrons, but so-called semicore electrons should also be included (e.g., 
for Cu, to the outer 4.v electron should be added the 10 3d electrons that are close by in 
energy and easily polarized). But, this is at the cost of a harder pseudopotential and a larger 
total number of electrons to be treated. W hen there is significant overlap between the core 
and valence electron densities, such as for Na, a correction [52] should be applied to account 
for the nonlinear dependence of the exchange-correlation potential on the electron density. 
Extensive testing and fine-tuning of the pseudopotential is required to determine error limits 
on calculated total energies. Usually, tests are conducted on free atom quantities comparing 
results such as excitation energies for the pseudoatom and the all-electron atom. Tests of the 
transferability of the pseudopotential into molecular and bulk systems for which results of 
other calculations or of experiment are available should also be conducted.

2.3.2. Superlattice Geometry
A  set of plane waves that have the periodicity o f a superlattice is used to represent the Kohn- 
Sham orbitals. The atoms of interest, whether they form an isolated cluster or are the atoms



62 Density Functional Calculations o f C lusters and C luster Assem bly

in a unit cell o f a crystal, are positioned in a unit cell of the superlattice, so that periodicity 
is forced on the system. This allows the Kohn-Sham orbitals to be expanded in a discrete 
set o f plane waves that have the periodicity o f the superlattice. In choosing the size o f the 
supercell and the sample of atoms to be positioned in the cell, it must be borne in mind 
that the system for which the energy, electron density, and so forth, is being calculated is 
the periodic superlattice array of atoms. To simulate an atomic cluster, the atoms must be 
placed in a supercell with enough empty space around the cluster so that the interaction 
between clusters in the periodic array is negligible. A  cluster positioned in a supercell and 
surrounding images of the cluster in the superlattice are illustrated in Fig. 2. One simple test 
o f the strength of the interaction between clusters is the effect on the energy of changing the 
orientation of the cluster in the supercell. Sim ilarly, slabs of atoms used to investigate surface 
properties must be separated by enough vacuum to make the interaction between adjacent 
slabs in the periodic array negligible. The Kohn-Sham orbitals, <//„ k(r ), will be Bloch waves 
for the superlattice, labeled by the band n and the wavevector k spanning the superlatticc 
Brillou in  zone.

2.3.3. Plane Wave Basis
The supercell geometry allows the orbitals to be expanded in the discrete set o f plane waves 
that have the periodicity o f the superlattice,

< /W r)  =  £ ^ .M ;< ',ka;,r (42)
<;

where the G-vectors are the reciprocal lattice vectors of the superlatticc. In practice, the 
sum over G-vectors is cut off at a G( given by C; = /T( , where E ( is known as the cutoff 
energy. Figure 2 illustrates the reciprocal lattice associated with the real-space superlattice, 
which is also shown. The number of plane waves included in the sum in Eq. (42) is given by 
Np„. = = i i £ 3/2/67r2, where il is the volume of the supercell and i l B = (2ir )3/ ( l
is the volume of the corresponding Brillouin zone. The energy cutoff depends on the pseu
dopotential and can range from a few Ryd. for a soft pseudopotential, for say Na, to a few 
tens of Ryd. for the Troullier-Martins pseudopotentials for first row elements C  and O, and 
~70 Ryd. for Cu and Z n  [45]. The number of plane waves in the basis set can be large, for 
example, calculating the electronic energy of a cluster involving Cu in a cubic supercell of 
edge 30 a.u. requires Npw ^  10\ It is only because of the fast Fourier transform algorithm 
that this size of plane wave basis set can be manipulated.

The periodicity of the superlattice leads to energy bands with k-vectors spanning the super 
B rillou in  zone. The sum o f Kohn-Sham energy eigenvalues and the electron density involved 
in calculation of the total energy require an integration over the Brillou in  zone as well as a
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Figure 2. Illustration of real-space and reciprocal-space situations involved in the simulation of a cluster. T he 
cluster positioned in a supercell and the images of the cluster in the surrounding superlatticc aie depicted in (a). 
The corresponding recipocaS-spacc is illustrated in (b). The wave-vector G, giving the cut-off of the plane wave 
expansion i> shown along with one of the reciprocal lattice vectors included in the sum.
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sum over occupied bands. The integration is replaced bv a weighted sum over special k-points. 
for each of which j/Vk calculated [53, 54]. The number of k-points required to achieve 
convergence of the energy and other calculated quantities must be the subject of tests; the 
smaller the supercell, the larger the super Brillouin zone, the more k-points required to 
adequately sample the bands. Exceptions are when the bands are artificial results of the 
enforced periodicity, such as for isolated clusters. It is customary to use only the k = 0, E-point 
for clusters.

2.3.4. Ground State Energy Calculation
The number of plane waves describing the orbitals is too large for direct diagonalization of 
the Ham iltonian to be feasible. Instead, the calculation of the total energy for a given config
uration of atoms in the supercell is performed variationally by iterating from an initial trial 
state described by a set o f cn k Ci's, until an energy minimum corresponding to the ground 
state is reached. The initial state can be found by using an approximate electron density to 
construct the Kohn-Sham Hamiltonian and diagonalizing this with a truncated set of plane 
waves. Preset tolerances on changes in the total energy and perhaps other quantities such 
as the forces on the ions are used to terminate the minimization. At each step in the iter
ations, an adjustment to the wavefunctions is made using some form of damped dynamics 
based on the direction of steepest descent of the energy, which can be calculated by oper
ating with the current Hamiltonian, while maintaining the orthogonality o f the Kohn-Sham 
wavefunctions [55]. The mass associated with the dynamics, the degree of damping, and the 
quality of the initial state all affect the approach to the minimum and should be the subject 
o f experimentation.

2.3.5. Atomic Arrangement
At this point, the forces on the ions may be calculated using the Hellmann-Feynman theorem, 
but unlike the energy the error in the forces is first order in the difference in the electron 
density from the ground state density, and so care must be taken to obtain an accurate ground 
state. Using the calculated forces and some ficticious damped dynamics, the atoms may be 
moved to new locations to lower the total energy if relaxation to the equilibrium atomic 
arrangement is wanted. However, unless an exorbitantly expensive annealing process is simu
lated, the system will relax to a local energy minimum of which the system could have many. 
Consequently, care must be taken to explore all the atomic arrangements that are candidates 
for the ground state. If  a molecular dynamics simulation is to be performed, the Newtonian 
equations of motion of the ions can be integrated over a time-step.

3. APPLICATIONS TO C LU ST ER S  AND 
CLU STER-A SSEM BLED  SOLIDS

G reat strides have been made in the ability to calculate using density functional theory (D F T )  
the electronic and structural properties of clusters. Ah initio methods are able to provide in 
great detail the electronic density and the constituent Kohn-Sham one-electron energies and 
orbitals. Relaxation of the atomic positions enables the spectrum of isomers to be explored, 
and even the thermal properties of clusters can be studied using molecular dynamics tech
niques. Nevertheless, simple models, also based on DFT, are a source of understanding of 
many of the properties of clusters: the stability of some, the fragility o f others, the influence 
of impurities, and the response to external perturbations.

3.1. Electronic Shells
3.1.1. Electronic Shells in Clusters of Simple Metallic Elements
A  remarkable discovery by Knight and coworkers [56, 57] motivated the strong interest in clus
ters o f the alkali metals. The abundance population in cluster beams obtained by gas aggre
gation techniques shows a non-monotonic variation as a function of cluster size, with maxima 
at some particular sizes N = 2, 8, 20, 40, 58, 9 2 . . . .  immediately followed by sharp drops in
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the population. These sizes are known as magic numbers. The same authors found [57] that 
the magnitude of the ionization potential / drops substantially after the same magic sizes, 
and after N = 18.

It was immediately recognized that these features reflect electronic shell structure in the 
clusters, and that the magic sizes correspond to clusters with filled shells. Due to the weakness 
of the pseudopotential describing the effect o f the ion core in alkali atoms, the conduction 
electrons (one per atom) behave as nearly-free electrons in the bulk metal, and a good first 
approximation is to smear out the ions uniform ly. A  corresponding model for the finite cluster 
has the ions replaced by a spherical distribution o f constant positive charge density and radius 
R. that is

/*+(r )  = n + (-)(/? — /*) (43)

where (-)(/? -  r) is the step function, with values 1 for r < R and 0 for r > R. This is the 
so-called spherical jellium model. W hen the Kohn-Sham form ulation of D F T  is applied to this 
model [57-59], the valence electrons of the cluster move in a self-consistent potential well, 
which is the sum of several contributions

^-.v(r) = K .,/ (r) + V,(r) + Vxi\r) (44)

Mere, Krw(r )  is the electrostatic potential due to the positive charge distribution //.. (r ) repre
senting the ions, Vc(v) is the electrostatic potential due to the electron density /?(r), and Vxt.(r) 
is the exchange-corrclation potential discussed earlier for which the local density approxima
tion (L D A )  [4) is often used. In this self-consistent potential, the electrons group in shells 
that are characterized by a principal quantum number (k = 1, 2, . . . )  and a quantum number 
giving the orbital angular momentum [/ = 0(.v), 1 ( / ; ) . . .  ]. The degeneracy of each electronic 
shell, taking spin into account, is 2 (2/+  1). For the spherical jellium  model, the shells become 
filled in the sequence (l.y ): (1 p)(' (1<7)I(I (2.v)- ( l / ) 14 (2/;)'* (1 &)'*•■• where the superscript 
indicates the number o f electrons required to fill the shell. The shells are separated by energy 
gaps, so clusters with the precise number of electrons required to fill shells are more stable 
than clusters of neighboring sizes, a behavior parallel to that of the inert gas atoms. The 
closed shell clusters predicted by the jellium  model, N = 2, 8, 18, 20. (34), 40, 58. 92 . . .  are 
in agreement with the observed magic numbers. The jellium  model overestimates the magni
tude of the gap between the 1/ and 2p shells, and, therefore, also the stability o f the N = 34 
cluster. A  simple modification of the model by smoothing the sharp surface of the positive 
background [60] reduces that gap and the stability of N — 34, leading to better agreement 
with experiment. The effective spherical potential well confining the electrons in the cluster 
has the form of a rounded square well, and the case of Na2{) is shown in Fig. 3. This cluster

figure 3. Self-consistent effective potential for Na?u in the spherical jellium model. The occupied electronic shells 
are represented by the continuous lines, and the lowest unoccupied shell. ! /'. by the dashed line.
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has a closed-shell electronic configuration ( Is)- ( I/ ? ) '1 ( L / ) m (2.v): and a H O M O - L U M O  
gap of 0.5 eV  between the highest occupied molecular orbital (2s) and the lowest unoccupied 
molecular orbital (1/).

The cohesive energy per atom of a cluster A \  can be written in terms of the energies of 
the free atom, E(atom), and the cluster, E ( X S).

) =  E(atom) / ( A\- )
N

(45)

W hen plotted as a function of cluster size, E cnh(X ,v ) is a local maximum for the magic sizes. 
The following argument explains the larger abundance of the magic clusters. The variations 
of the abundance population in cluster beams arise from the evaporative cooling of warm 
clusters [57] and, as highly stable clusters evaporate less frequently than other clusters, their 
abundance grows at the expense of less stable clusters. This implies that the population of 
the magic clusters can be increased deliberately if evaporation of atoms is enhanced by laser 
heating of the flying clusters. Hansen and coworkers [61] have verified the sharpening of the 
abundance spectrum by laser heating of a beam of clusters o f Cw molecules. In that case, 
laser heating enhanced the population o f (C W)) 13, which is a magic number in the family of 
(C ()„ )  v clusters, although in this family the magic numbers arise from atomic packing rather 
than electronic shell effects.

A  quantity often used in the analysis o f theoretical calculations that clearly displays the 
effect of the electronic shells on cluster stability is the second derivative of the calculated 
energy

A : ( N ) = E( X  v + l ) + E (X x ,) -  2 E (X s ) (46)

This quantity measures the relative stability o f a cluster w ith N atoms in comparison with 
neighboring clusters of N + 1 and N — 1 atoms. Figure 4 shows sharp peaks in A : (/V) for 
the closed shell clusters. In addition, thermodynam ic arguments [57] establish the following 
relationship between A : (N ) and the measured abundance populations /J v ,

In Pi A 2(N )
kHr

(47)

where kB is the Boltzmann constant and T is the nozzle tube temperature. W e  see that the 
predictions of the jellium  model based on density functional theory account for the observed 
magic numbers of the alkali clusters.

Number of atoms per cluster, N

Figure 4. Relative stability A ( ,V) [given by Eq. (4ft)| of sodium and potassium clusters in the jellium model, as 
a function of the cluster size. Peaks appear for the closed shell clusters.
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Other observed features also reflect the magic numbers. Fo r instance, drops after the magic 
numbers are seen in the measured ionization potential [57]

I = E (X + )- E (X s ) (48)

the energy required to remove one electron from the cluster. Results of jellium  model calcu
lations for the ionization potential display a local maximum for a cluster with closed shells, 
and a substantial drop afterwards.

The common explanation of the enhanced stability due to shell closing effects in alkali 
clusters is based on the results of the spherical jellium  model for the ionic background, but 
more accurate D F T  calculations taking explicit account of the granular structure of the ionic 
skeleton support the picture provided by the spherical jellium  model [62-64]. Most of these 
calculations use a nonlocal pseudopotential to represent the electron-ion interaction, but 
studies have been restricted to small sizes, up to about N = 20, because the difficulties in 
performing a full optimization of the geometries grow quickly with N.

3.1.2. Electronic Shells in Large Clusters
W hen the cluster size increases, the number of valence electrons in the cluster also increases. 
Because the depth of the confining potential remains roughly constant, the gaps between elec
tronic subshells become narrower (58], and for N sufficiently large, the discrete energy levels 
evolve into the quasicontinuous energy bands of the solid. The point at which this occurs, 
when electronic shell effects are no longer discernible, is o f interest. Experim ents indicate 
that shell effects remain important for clusters with a few thousand valence electrons [65-68]. 
W hen  cluster abundances are plotted on a N 1 /3 scale {N l;} gives the linear dimension of the 
clusters), the observed magic numbers appear at nearly equal intervals o f 0.6. This periodicity 
in the appearance of the shell closings can be explained qualitatively [66]. A n  expansion of 
N in terms of K , the principal quantum number of the highest occupied shell, has a leading 
term proportional to K y. One power of K arises from the sum over all shells up to K in order 
to obtain the total number of particles. A  second power of K arises because the number of 
subshells in a shell increases approximately linearly with the shell index. Finally, the third 
power of K arises because the number of particles in the largest subshell also increases with 
K. Then

yVA = aK* (49)

This qualitative argument is supported by theoretical calculations. W hen  the number o f 
electrons in the cluster increases, the number of electronic shells also increases. Even  so, 
calculations for large clusters have shown that groups of energy levels bunch together and 
leave sizable energy gaps between bunches. D F T  calculations reproduce this bunching effect 
and the N 1 /3 periodicity, giving magic numbers in close agreement with experiment [69-71]. 
The  results of calculations performed by Genzken [70] for large Na clusters in the spherical 
je llium  model are shown in Fig. 5. A  smooth interpolated function E llv( 7V) that averages out 
the shell effects has been subtracted from leaving the quantity

E shelt(N ) = EjelliuJ N ) - E lir(N ) (50)

which highlights the shell effects and is plotted in Fig. 5. E ai,(N) is well represented by a 
liquid drop model as a sum of volume, surface, and curvature terms

E„,.(N) = ehN + asN 2;* + </, ."V 3 (51)

The bulk energy per atom eh can be obtained from calculations on the homogeneous elec
tron gas, and av from the jellium  model for a planar surface. But a, and ac can also be obtained 
from a direct fit to the calculated data for E lcllitim(N), as was done bv Genzken [70]. The shell 
contribution E.fU,u(N) obtained in this way oscillates w'ith A\ displaying sharp minima at the 
shell closing numbers [69, 70]. This is the shell effect with periodicity A N 1 3 — 0.6, and there 
are just small differences between the predicted and observed magic numbers [67. 68].
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N1/3

Figure 5. Periodically varying contribution of valence electrons to the binding energy of spherical sodium clusters. 
Magic numbers are indicated. Adapted with permission from [70]. O. Gen/ken, Mod. Phys. Lett. H 7. 197 (1991). 
© 1991, World Scientific.

In addition, there is a supershell effect with the amplitude of the shell oscillations vary
ing periodically on a larger size scale A N 1/3 = 6. The first supershell node occurs in Fig. 5 
near N = 850. Calculations by Nishioka et al. [69] give N around 1000. This node has been 
observed, although the experiments are not in complete agreement: the first node is located 
near N — 1000 in [67], and near N =  800 in [68]. Supercell structure was predicted by nuclear 
physicists to be a rather general property of a system consisting of a large number of fermions 
in a confining potential, although supershells have not been observed in nuclei due to an 
insufficient number of particles. The supershcll structure of lithium clusters has also been 
studied [70, 71], and the agreement with experiment is even better than for sodium. The 
experimental and the theoretical first supershell nodes are both found near N = 820. Shell 
and supershell effects have been observed in clusters of the trivalent elements A l, G a and 
In [72]. but in order to explain the details it is necessary to go beyond the spherical jellium  
model.

The effect of temperature on the shells arid supershells of sodium clusters has been studied. 
Calculations of the free energies o f clusters were performed by treating the valence electrons 
as a canonical ensemble in the heat bath of the ions [73]. The spherical jellium model that 
was used for the ionic background is expected to be an even better approximation at finite 
temperature. The amplitudes of shell and supershell oscillations decrease with increasing 
T. This is particularly important in the region o f the first supershell node, which becomes 
smeared out at a temperature of 600 K. However, the temperature does not shift the positions 
o f the magic numbers.

3.1.3. Electronic Shell Effects in Noble Metal Clusters
Experiments on clusters o f the noble metals Cu, Ag, and Au have also shown electronic 
shell structure [74]. The mass spectra of C u J ,  A g^ , and A u y  clusters obtained by bom
barding the metal with inert gas ions show steep drops of the cluster intensities after 
N = 3, 9, 21, 35, 41, 5 9 . . . .  Because the outer electrons of the noble metal atoms have the 
configuration */llV ,  the features in the mass spectrum arc easily explained by a jellium  model 
applied to the outer .s-electrons only, provided it is recognized that in the sputtering experi
ments the clusters are ionized and so the number o f 5-type electrons corresponding to the list 
o f masses above is N — 1=  2, 8, 20, 34, 40, 5 8 . . . .  An ion ic clusters like Au^  display the same 
shell closings. For these clusters, the intensity drops after N =  7, 19, 33, 3 9 . . correspond
ing to the electronic shell closing numbers N + 1 = 8, 20, 34, 4 0 . . . .  The shell effects are
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confirmed by measurements of ionization potentials [75] and also from the electron affinities, 
obtained by electron detachment from the corresponding anionic clusters [76]. The observa
tion and theoretical analysis of anionic clusters has been extended to multiply charged cluster 
anions [77]. Silver di-anionic clusters, A g :v . were formed in a Penning-trap. The relative 
abundance shows very pronounced dips at N = 33 and N = 39, reflecting shell closings for 
34 and 40 electrons: Ag^" and Ag^~ have 35 and 41 electrons, respectively, one electron in 
excess of a closed shell. The mass spectrum of Au\ also showed evidence of shell closing at 
58 electrons.

The H O M O - L U M O  gap is another quantity that can reveal electronic shell closing. The 
gap for A u 2(h measured by photodetachment spectroscopy of the A u 1(l anion [78], was found 
to be 1.77 cV, even larger than the H O M O - L U M O  gap of C hn (1.57 e V ). This large H O M O -  
L U M O  gap has its origin in a shell closing, for D F T  calculations predict a very symmetrical 
tetrahedral geometry formed by planar facets [78, 79], shown in Fig. 6, and a calculated 
H O M O - L U M O  gap of 1.82 eV. Although the cluster is not spherical. 20 is a shell-closing 
number for clusters with tetrahedral symmetry.

The band structure of noble metals supports a picture of rather localized ^/-electrons, 
extended .s-elcctrons, and substantial s-d mixing [80], far removed from that of the free 
electrons in the alkali metals. It is. therefore, intriguing how well the shell model works for 
clusters of the noble metals. Fujima and Yamaguchi [81] have performed D F T  calculations 
for C u v clusters with sizes up to N = 19 and a variety of model structures. The analysis of 
the molecular orbitals (M O )  shows that these are of two types. The first type is formed by 
M O s built from atomic 3d orbitals. These span a narrow energy range of a width comparable 
to that of the J-band o f the solid and do not mix much with the second type o f M O s, which 
are derived from atomic 4.s-4/; orbitals. The 3d charge is localized around the atoms, whereas 
the sp charge is extended over the whole cluster. Fujim a and Yamaguchi related their results 
to the shell model. Disregarding the M O s with {/-character on the atoms, the sequence of 
the remaining M O s can be reproduced rather well by considering a spherical model potential 
with a small anharmonic term. This is essentially the form of the effective potential in the 
spherical jellium  model (however, when the cluster lacks a central atom, as is the case of 
the icosahcdral structure of C u ,2, a three-dimensional Gaussian potential barrier was added 
to simulate the effect o f the missing atom). Also important is the positioning of the </-band 
relative to the sp levels in the full calculation: for 3 < N < 8, the d-band is located in the 
energy gap between the molecular levels with overall symmetries comparable to those of the 
IS  and I P  jellium levels (here, the angular momentum quantum number of the delocalized 
jellium  levels are labeled with capital letters, to avoid confusion with the atomic s, p. and d 
orbitals), between the 1P  and ID  levels for 9 < N < 18, between the 1 D and 25 levels for 
19 < N < 20, and so on. The atomic d levels are always full. The combination of these two 
features— the good one-to-one correspondence between the energy levels of the model poten
tial and those of the full calculation, and the appearance of the d levels in the gaps between 
sp levels minimizing the sp-d mixing— explains why the simple shell model also works for Cu 
clusters.

Figure 6. Calculated ground state structure of An-,,. Adapted with permission from j7C>]. Wang et al.. Chen. Phys. 
(.ell. .'NO, 71ft (2003) O 2003. Elsevier.
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3.1.4. Clusters of the Aluminum Group
After the alkali clusters, aluminum clusters are among the most studied. Alum inum  is a 
nearly-free electron metal, so the electronic structure of these clusters is expected to be re l
atively simple. The electronic configuration of the valence electrons in the free atom is 3.v: 
3pl and the .s and /; levels are separated by an energy gap of 4.99 eV. A lum inum  behaves as a 
monovalent atom in very small clusters. However, experiments [82-84] and calculations [85] 
indicate that the gap is reduced as the cluster grows and s-p hybridization begins to develop at 
A IS. A lready for A ln the s-p hybridization is complete and photoelectron spectroscopy [82— 
84] confirms the validity of the jellium  model for the electronic structure of A l v clusters for 
N larger than 12. The calculated structures [86] up to A U  are planar and coincide with those 
of the alkali clusters, a result consistent with the monovalent character of the A l atoms in 
those small clusters. The geometries become three-dimensional starting with A l() (see Fig. 7). 
The first cluster that develops a pentagonal arrangement of atoms is A l„. Clusters with 11 
atoms or more contain at least one inner atom with a bulk-like coordination. The calculated 
evaporation energy suggests that Al- is very stable. This is because the cluster has 20 valence 
electrons. The high stability is also a property of neutral A l7, and, in fact, this has been 
reported as a magic cluster in the experiments of Jarro ld  et al. [87]. In general, the geometries 
of small charged clusters are similar to those of the neutrals, with small exceptions.

Special interest in A ln arises because this cluster has 39 valence electrons, one electron 
short of the 40 needed for a closed-shell cluster. For this reason, the doping of A1L> has been 
proposed as a way to force the shell closure and give a highly stable cluster that could be 
a possible candidate for cluster-assembled solids. The lowest energy structure of A l i;> is a 
distorted icosahedron but a distorted decahedron, in which two pentagonal caps join to form 
square faces, lies only 0.2 eV  above in energy [86, 88, 89]. The distortions are Jahn-Teller 
effects due to the open-shell electronic configuration. The distortion gives the icosahedral 
cluster a slightly oblate shape. The 40 electron anionic A l,, has closed electronic shells, and 
consequently a more regular icosahedral structure [90]. In contrast, for the cation, a larger 
distortion compared with the neutral, and a small volume expansion, are obtained.
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Figure 7. Calculated ground state geometries of neutral (a), eationie (b) and anionic (c) aluminum clusters with
6-10 atoms. Reprinted with permission from [<S6], Rao et al.../. Chem. Phys. I II. 1980 (1999). €) 1999. American 
Institute of Physics.
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3.2. Perturbed Clusters
3.2.1. Electric Polarizability of Clusters
The electric dipole polarizabilities of clusters can be obtained by measuring the deviation of 
a beam of size-selected neutral clusters traveling through a region where an inhomogeneous 
electric field has been applied perpendicular to the beam direction [57]. Measurements for 
Nayy and K,v showed that the polarizabilities per atom, a/N, follow a downward trend toward 
the bulk value with some abrupt drops related to electronic shell closing, and minima o f a/N 
at N = 2, 8, 18 [91]. Results for selected Na clusters are given in Table 1. The classical static 
polarizability o f a metallic sphere o f radius R , equal to R} [92], provides a useful reference. 
The table shows that the experimental results, given in units of R \ exceed the classical values. 
This enhancement over the classical value is due to the spilling out of the electronic charge 
beyond the classical cluster radius R in the field-free system.

The polarizability can be calculated using linear response within D F T  [93]. If  the electric 
field is characterized by a potential SV = '£()z, where 7() is small, and considering the dipole 
case only with / = 1, the cluster develops an induced dipole moment D o f magnitude D = a^{) 
in response to the field. To first order, the response of the system is characterized by a small 
change in the Kohn-Sham one-electron orbitals: *//,(r )  —> i/r#-(r) -f <5i//,(r). Using first-order 
perturbation theory, a set of equations is obtained for the changes Siffj(r):

W - +  ! / , , ( r )  -  e, Sif/ii r )  = ( r )<//.( r )  (52)

Flere, e, are the one-electron energy eigenvalues associated with the unperturbed (i.e., field- 
free) orbitals ifjh and

51/ ..(!-) = r  z + j ilr' + j  dr  ) (53)
J |r — r  | J on(r )

is the change in the self-consistent Kohn-Sham potential. The second term on the r.h.s. of 
Eq . (53) represents the change in the classical electrostatic potential of the electronic cloud, 
and the last is the change in the exchange-correlation potential Vxc. The calculation of the 
polarizability proceeds by first solving the Kohn-Sham equations for the ground state of 
the field-free cluster to obtain ijj, and Solving self-consistently Eqs. (52) and (53) yields 
the 8ipi(r)  from which the density change fin(v) can be obtained and used to determine the 
static dipole polarizability

a — — j  drzSn(r) (54)

as the ratio between the induced dipole moment and the external field strength.
The electric dipole polarizabilities of alkali clusters have been calculated using the L D A  and 

the spherical jellium  model ( S JM )  [60, 94, 95]. Results reported in the column L D A - S JM  of 
Table 1 show the expected enhancement over the classical value, but the theory still underesti
mates the measured polarizability by about 20% . The other columns show results of applying 
different corrections. The first one improves the treatment of exchange and correlation. In a

Table 1. Static dipole polarizabilities (in units of R\ the classical Mie. value of neu
tral NaA clusters in the jellium model using different descriptions of exchange and 
correlation (LDA. WDA. and SIC).

N

LD A  [60] 

S JM  D JM W D A  [97. 98] S IC  1941 Lxp. [91]

8 1.45 1.71 1.81 1.66 1.77
18 1.33 1.53 1.59 1.55 1.71
20 1.37 !.M 1 ,(i3 1.59 1.68
34 1.27 1,4(i 1.47 1.47 ! .61
40 1.32 1.5(i 1.53 1.56 1.51

R  is ihe  rad ius  o f  th e  sp h c iic a l positive  hackuroun tl.
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neutral cluster, the L D A  exchange-correlation potential decays to zero exponentially, out
side the cluster, whereas the exact asymptotic decay should be proportional to — I //*. The 
asymptotic behavior can be improved by using a nonlocal description of exchange and corre
lation effects known as the weighted density approximation (W D A )  [% ] .  The slower decay 
of Vxc produces a more extended electron density tail and a larger number of bound unoc
cupied states in the single-particle spectrum. These effects lead to higher polarizabilities [97. 
98], improving the agreement with experiment. Self-interaction corrections (S IC )  also include 
nonlocal effects beyond the L D A  by removing from the H artree potential the self-interaction 
of one electron with itself. The polarizabilities also improve [94]. A  further improvement 
smooths the sharp discontinuity of the positive jellium  background at the cluster surface. For 
this purpose the abrupt step density [see Eq. (43)] has been replaced by a continuous function 
modeling a surface with a finite thickness [60]. This diffuse jellium  model (D JM )  results in a 
more extended electron density and an increased polarizability (column labeled L D A - D JM  
in Table 1). This suggests that a better description of the polarizability per atom is obtained 
with the formula

(7? + § ) ’a j e l l i u m N 55)

where 8 measures the spatial extent of the electronic spill-out and is nearly independent of 
the cluster radius R.

Polarizabilities have also been calculated using a finitc-field approach [63] in which the 
Kohn-Sham equations are solved with and without a small applied electric field. The polariz
ability is then estimated from the difference in the dipole moments

A / ) ,C O  /),(/ ) - D,-(V =0)
a . (56)

where V. - is the magnitude of the electric field applied along the yth axis. The average polar 
izability is then

a xx +  « v v  +  a :z
3

(57)

Using this finite-field approach and the G G A  [99] to treat exchange-correlation effects, C h e 
likowsky and coworkers [63] have performed accurate calculations of the electric dipole polar
izability o f sodium clusters with sizes up to N = 20. The results are compared with experiment 
in Fig. 8. The calculations take into account the structure o f the ionic skeleton of the clusters
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Figure 8. Po larizab ility  o f  N a  clusters as a function o f  cluster size: squares, experim ental data [91]: circles, theory 
at 7 =  0 K : stars, theory at T = 750 K . R ep rin ted  w ith perm ission from  [63], K ro n ik  et al.. Phys. Rev. B  62, 9992 
(2000). ©  2000. A m erican  Ph ys ica l Society.
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and reproduce well the observed trend including minima of the polarizability for N a : , N as, 
and N a ,s. The closed-shell clusters, like the rare gas atoms, are less polarizable than those 
with open shells because of an energy gap to any excited states. The band o f calculated val
ues between Na,,, and N a2(, is due to the several isomers with energies close to the ground 
state. The figure also shows that the calculations for T = O K  underestimate the measured 
values of the polarizabilities. This was ascribed to the fact that the clusters in the experi
ment may have a temperature of several hundred degrees. To simulate this effect, Kron ik 
and coworkers performed molecular dynamics simulations at a temperature T = 750 K  for 
several different clusters ( N = 4, 11. 14, 17) and computed the average polarizability for each 
cluster by sampling several cluster structures. These values, shown in the figure as stars, are 
much closer to the measured values. It is fair to claim that not only the main features, but 
also the detailed variation of the polarizabilities with size N are reasonably reproduced by 
D F T  calculations, which include the cluster geometry [63, 64, 100, 101]. The polarizabilities 
also provide information on the atomic arrangement of the cluster. A  comparison between 
measured polarizabilities and calculations for several isomeric structures has been used to 
identify the most stable geometries [64. 102].

3.2.2. Reactivity
The association of high stability of a cluster with an electronic closed-shell configuration is 
very strong. Closed-shell clusters have a high ionization potential / and a low electron affinity 
A and are expected to be much less reactive than clusters with unfilled electronic shells. The 
change A E  in the energy of an atom, a molecule or a cluster due to a small change A N(. in the 
number of electrons, maintaining the nuclei at fixed positions, can be written as an expansion 
in powers of A N

d E  1 d~ L
A £ = ! ^  + 2 ^ W ) '  + -  (58)

where A/V. can be smaller than 1 when the system of interest is in contact with other species. 
Using D FT. and applying Eq. (58) to atoms, Parr and coworkers [ 103] have identified the 
coefficient of the first-order term with the electronegativity /x, which is understood in 
chemistry as the power of an atom to attract or lose electrons in a molecule. The coefficient 

o f the second-order term was identified with the hardness k  of the system [104] and 
gives the resistance to a change in the number o f electrons. Evidently, \/k is a measure of 
the reactivity of the system. These ideas can be extended to a cluster, to define its electroneg
ativity [105, 1(K ’ and hardness [106].

Using a finite difference approximation to estimate the derivatives, the energy of the cluster 
becomes

E(N C) = £ (/V„) -  l- (l  + A)(N, - A/„) + ]- (I - A)(N. - N{])2 + • • • (59)

where /V() is the number of electrons in the neutral cluster. The electronegativity and hardness 
are then given by

/*=  :,-(/ + /0 (60)

k — I - A ( 61)

respectively. Shell effects lead to structure in k (N). The value of / (.V ) drops between V and 
V( 4- 1, where N( indicates a shell-closing size. On the other hand. A drops between N, — 1 
and /V . Consequently, a cluster of size /V has a large / and a small A. and a large value of 
the hardness is expected. The results of calculations for Na clusters [I06L  shown in Fig. 9, 
predict local maxima of the hardness for the closed-shell clusters. These are the less reactive 
clusters.
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Number of Atoms

Figure 9. Effects of shell closing on the chemical hardness of sodium clusters described by the spherical jel
lium model. Reprinted with permission from |1()6|. Alonso and Baibas, Struct. Bonding 80, 229 (1993). O 1993. 
Springcr-Verlag.

In an exact D F T  treatment

/ = -€,■ (62)

where e,. is the energy eigenvalue of the highest occupied Kohn-Sham (K S )  orbital. 
Correspondingly, A is equal to minus the eigenvalue of the highest occupied orbital of the 
anionic cluster. For the usual treatments o f exchange and correlation, Eq. (62) is only approx
imate, but a reasonable measure o f the hardness is given by the difference between the ener
gies of the lowest unoccupied m olecular orbital and the highest occupied molecular orbital 
of the neutral cluster

K — €i.u\to ~  enoM o  (6-4))

Clusters with closed shells have large H O M O - L U M O  gaps, as shown in Fig. 9. These are 
chemically hard clusters. Their resistance to either donation or acceptance of an electron 
makes the closed-shell clusters relatively inert, and two closed-shell clusters are expected to 
interact only weakly.

Reactivity experiments verify the inert character of closed shell clusters. Leuehner 
et al. j 107] have reacted anionic and cationic A l clusters with oxygen in a flow tube reac
tor. An  etching reaction was observed and rate constants were reported. The most striking 
feature was the negligible reactivity o f Al- , A l, v  and Al;~v Not only were these clusters unre
active, they were also products of reactions of larger clusters. According to the jellium  model, 
also applicable to A l clusters, the three species are closed-shell clusters with 20, 40, and 70 
electrons, respectively.

3.2.3. Subshells and Distortion of the Cluster Shape
The spherical jellium  model is not quite correct for cluster sizes between two shell closing 
numbers because a partially filled outermost shell leads to a nonspherical electron density that 
induces a Jahn-Teller distortion of the ionic background. This leads to a splitting of the highly 
degenerate spherical shells into subshells, and these effects are reflected in the mass spec
trum [57]. To account for the shape deformations, the jellium  model has been modified [108] 
by allowing the positive background to have a spheroidal shape. The deformation, prolate or 
oblate, of the positive background is described by a distortion parameter ft = 2(a — b)/(a + b), 
with a and b denoting the lengths o f the semiaxes of the spheroid. The distortion is then inde
pendently optimized for each cluster size by minimizing the total energy. Clusters with closed
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shells remain spherical, whereas alkali clusters with /V = 3 and 4 become prolate and those 
with N = 5  — 7 arc oblate. Following the spherical cluster with N = 8, clusters are prolate 
for N = 9 — 13 and oblate for N = 14-19. and so on. The stability function A : (/V) o f Eq . 46 
predicts peaks at N = 8, 10, 14, 18, 20, 26, 30, 34, 40, 46. 50, 54, 58 . . .  reflecting the filling of 
subshells as well as the usual shell-closing numbers of the spherical model. The corresponding 
features in the mass spectra have been observed, although these are less pronounced than 
the main shell effects.

3.2.4. Collective Electronic Excitations
Photoabsorption experiments also provide evidence for the shell-closing and shape deform a
tions. By  exposing a beam of size-selected clusters to laser pulses of the appropriate wave
length, photons are absorbed that excite collective oscillations of the electrons against the 
ionic skeleton. For example, in small Na clusters, the energy of the collective dipole excitation 
is about 3 eV, while the energy required to evaporate one atom is less that 1.1 eV. The collec
tive electronic excitation decays by inducing the fragmentation of the parent cluster leading 
to a deviation of the daughter cluster away from the initial direction of motion of the m olec
ular beam. The ratio between the number of clusters o f a given size arriving at the detector 
with and without exposure to the laser gives the photoabsorption cross section cr(co) [109]. 
Using a statistical model and assuming that the energy of the collective mode is converted 
into vibrations, the time required to evaporate an atom is found to be several orders o f mag
nitude smaller than the time of flight of the m olecular beam in the spectrometer, which is 
about 1 ms. Consequently, it can be assumed that the photoabsorption and photoevaporation 
cross sections are equal. The collective excitation, or surface plasmon, of clusters is sim ilar to 
the giant dipole resonance in nuclei.

The dynamical response o f clusters can be investigated using the time-dependent density 
functional formalism (T D D F T )  [ 110-112]. An  external time-dependent electric field charac
terized by the potential Vt.x,(r\ co) — Jur'Yj'e"01 with multipolarity I (I — 1 for a dipolar field) 
induces a perturbation of the density

8n( r; to) = j </r>(l(r, r ; w)SKff(r'; 10) (64)

Here, ,Yo(r, r  ; w ) is the indepcndent-particle dynamical susceptibility, and to is the frequency 
of the electric field. This equation describes the electrons responding as independent particles 
to an effective Kohn-Sham potential

5 VcjJ ( r ; co) = l/.v/(r ';  w ) + I dr" + j dr" - ‘-~r  ̂  Sn(r": co) (65)J |r' -  r"| •' frn{r")

which is the sum o f the external potential and the electrostatic and exchange-correlation 
potentials due to the induced density. The parallel with the Kohn-Sham equations giving the 
orbitals generating the ground state density is evident. Equations (64) and (65) allow for a 
self-consistent calculation of the induced density 8n(r; o>) from which the dynamical electric 
dipole polarizability can be obtained

1 fa (w )  = —  / dr :8n(r: co) (66)
11 -

Using now the Golden rule, the photoabsorption cross section of the cluster becomes 
[110^111]

47TCO<r(co) -------Ini cv(to) (6/)c

where c is the velocity of light and Inicx(co) represents the imaginary part of the dynamical 
polarizability. In practice, the Vu. strictly appropriate only for the electronic ground state is 
used in Eq. (65).
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The classical theory for the dynamic polarizability dating back to M ie predicts a dipole 
frequency

Z t
....<68>

where Z  is the number of electrons taking part in the collective oscillation equal to the number 
of atoms in monovalent clusters, and R is the radius of the cluster. This gives for coMit, a value 
equal to l/\/3 o f the bulk plasma frequency. The experimental dipole resonance frequency 
of small clusters is reel shifted by 10—209f with respect to coslic and T D D F T  calculations using 
the jellium model and the L D A  indicate that this shift is due to the spill-out of electrons 
beyond the jellium  edge [112]. Often, the collective resonance is broadened by the temper
ature, and it can be fragmented due to interaction with particle-hole excitations. Fedrigo 
and coworkers [113] have measured the optical spectrum of silver clusters with sizes up to 
N = 39 trapped in an argon matrix. From the spectra they calculated the mean absorption 
frequency

/ w  a  ( i d ) d  to

(T(C0)d(0 (69)

The mean absorption energy hcomi.(ni shows oscillations as a function of /V, with a tendency 
to higher values for closed-shcll clusters. In particular, maxima were found for N = 2, 8, 18, 
and 34, the sizes at which the static electric dipole polarizabilities show minima. The optical 
response o f Ag  clusters has been simulated by a smooth polarizable background, with the 
dielectric function e(, o f the bulk metal, acting on the valence (5.v-typc) electrons [114]. The 
4d core electrons of Ag  have only an indirect effect on the optical response of the clusters at 
low energies. Intrinsic effects of the d electrons occur at higher energy [115).

The static deformation o f the cluster shape affects the photoabsorption spectrum. The 
splitting of the collective dipole resonance in two or three peaks that has been observed in 
alkali [116, 117] and noble metal clusters [118] is thought to be due to collective electronic 
oscillations in the directions of the principal axes o f a triaxially deformed cluster. This has 
motivated the further extension of the deformed jellium model to fully triaxial shapes [119]. 
The results are consistent with experiment and also support the findings of the spheroidal 
model, with prolate shapes predicted after the magic numbers N = 2 and N = 8, and oblate 
shapes before N = 8 and /V = 20. A  transition region of triaxial shapes is found separating 
prolate and oblate clusters. The only triaxial cluster in the region of the 1 p shell is N a5. but 
there are several triaxial clusters in the region o f the \d shell: N a n , N a l3, N a (5, and N a ,7. The
triaxial character was found to be strong for N a5, but very weak for the other clusters, and
thermal effects could easily wash out the triaxial signature in the dipole resonance spectrum.

3.2.5. Shell Effects in Cluster Fragmentation
A  striking manifestation o f the shell closing effects occurs in the fragmentation of multi
ply charged clusters. Soon after the discovery o f the shell effects in clusters, A lonso and 
coworkers [ 120] predicted that the most favorable fragmentation channel o f a doubly-charged 
cationic alkali cluster

A Y  -•  .v ;  ; .v ;  (70)

corresponds to the production o f a singly charged magic fragment with 2 or 8 electrons, that 
is p — 3 or p = 9. This prediction resulted from the analysis o f the heat o f fragmentation

A H, =  E(XX_/f) + E (X +p) -  E (X ln  (71)

calculated from the total energies of the parent and fragment clusters. Experiments for 
alkali [121] and noble metal clusters [ 122] confirmed this prediction. The dynamical process of 
fragmentation is, however, more complex. A  doubly charged cluster is, in general, metastable, 
and an energy barrier exists preventing fragmentation. The barrier arises when the shape of 
the cluster deforms from an initial compact shape to an elongated shape on its way along the 
dissociation path.
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Shape deformations arc a common feature of open shell clusters and have been discussed 
above. This tendency is enhanced in multiply charged clusters because o f the additional elec
trostatic repulsive energy. A  striking interplay between deformation and shell effects has been 
found in a number of calculations [123-125]. In some favorable cases, the magic fragments 
are preformed in the ground state of the charged X\+ cluster and the energy required to fur
ther elongate the cluster and overcome the barrier to dissociation following the path leading 
to a magic fragment is smaller than for other channels. As an example, the electron density 
distribution for the ground state of N a ;| ,  obtained in a calculation with a deformed jellium  
model, is given in Fig. 10 [126]. The charged cluster can be interpreted as a supermolecule 
built from two pieces, Na-!', and N a J , both magic clusters with 20 and 2 electrons, respectively. 
The most favorable dissociation channel is evidently

Na% — » Na2] + Nat (72)

and the dissociation barrier is only 0.14 eV. The lower panel of the figure shows a snapshot 
o f the electron density of the fissioning cluster after overcoming the fission barrier.

3.2.6. Ultimate Jellium Model
In an extension of these ideas, Manninen and coworkers [127] have introduced the ulti
mate jellium  model, in which the positive background charge is allowed to be completely 
deformable, both in shape and density distribution. In order to minimize the cluster energy 
the background adapts itself perfectly to the electronic profile and //^(r) — //(r ) vanishes 
everywhere. Consequently, the electrostatic Coulomb energy of the cluster vanishes due to
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Figure 10. Electron density in the ground slate of Na ' . The Na and Na; fragments arc already pret’ormoJ. The 
I owe! panel corresponds to a configuration when the fissioning cluster has surpassed the maximum of the furrier. 
Adapted with permission from j I2^|. Garcias ct al.. Ik w y  ion Phys. 1. 227 { { y<-)5}. ‘ ! W .  Akadcmiai KiaJo.
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the local charge neutrality and the electrons just move in their own exchange-correlation 
potential I [u (r ).  Qualitatively, the clusters follow the pattern of shapes described above. The 
shapes up to N = 8 can be simply understood in terms of the symmetries of the s. px, /;v, /?. 
orbitals, and a sim ilar explanation in terms of the filling of d and s orbitals is possible between 
IM = s and N = 20. An interesting outcome of the ultimate jellium  model is the appearance 
of some clusters as supermolecules built from magic clusters weakly bound to each other. 
A  few examples are shown in Fig. 11. N a4 is a supermolecule built from two Na dimers with 
a weak separation energy of only 0.10 eV. N a m can be viewed as a dimer attached to N a iS, 
with a separation energy of 0.15 eV. and N a j: has the appearance of two dimers attached 
to N as.

3.3. Clusters with Impurities
3.3.1. Monovalent and Divalent Impurities in Alkali Metal Clusters
The shell model provides a framework to interpret some experiments on mixed metallic clus
ters. Clusters with formula B X „ ,  have been produced by supersonic expansion of mixed atomic 
vapors [l 28]. Here, X  indicates an alkali element (N a  or K ) acting as the matrix and B is 
either an alkali (L i,  N a ) or a divalent (M g, Ca, Sr, Ba, Zn , Hg, Yb, E u ) impurity. For some 
impurity-matrix combinations, the usual magic number Nc = 8 disappeared and was replaced 
by N(, — 10, and the magic number N(. = 18 also disappeared. Baladron and Alonso [129] 
noticed that these changes occur for X  — B combinations where the difference

A/7,. = ii+(B) - n+(X )  (73)

between the jellium background densities of the B and X  metals is larger than a critical pos
itive value, prompting an extension of the spherical jellium  model. In this generalization, a 
B X „ ; cluster is modeled as a spherical matrix, characterized by a background density /7 + (A '),  
containing an impurity, described as a small jellium  sphere with background density /"/(B ), 
inserted in a cavity at the center of the matrix cluster. D F T  calculations for this jellium-on- 
jcllium  model show that as the difference A/7, increases the magnitude of the energy gap 
between the 2.v and \d shells is reduced because the s state, being finite at the center of the 
cluster, is more sesitive to the larger attractive potential in that region. W hen A/7, is large
enough, a reversal occurs in the order of these two shells. In such a case, the ordering of the
electronic shells becomes \s\p2s\d, and the shell closing numbers become 2,8, 10,20. The 
calculations predict, in full agreement with experiment, the particular impurity-host com bi
nations for which the transition to the new magic numbers occurs. Ab initio D F T  calculations 
confirm that small size impurities sit preferentially at the center of the matrix cluster [130]. In 
other cases, such as small M gN am clusters, the impurity does not sit at the center, although it 
becomes increasingly surrounded by Na atoms as the cluster grows. Even in these cases the 
jellium-on-jeUium model can be justified. Figure 12 shows the electron density in the ground 
state of the cluster P b L i4. The Pb atom is part o f the cluster surface, and one can observe that 
the contours of constant electron density are centered on the Pb atom [ 131]. Evidently, when 
an alkali cluster contains a single impurity atom with a pseudopotential substantially more

Figure 11. Molecular interpretation oi' some ground stale cluster shapes in the ultimate jellium model. Adapted 
with permission from [I27|. koskincn el al.. /  Phys. /) 35. 2S5 (1905). < 1995. Springer-Verlag.
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Figure 12. Structure of Li4Ph and contours of constant electron density in two planes: (a) common basal plane of 
the bipyramid, (b) vertical plane containing the Pb atom and the two apical atoms. Notice than the contours are 
centered on the Pb atom. Reprinted with permission from 1131], Alonso et al.. Chem. Phys. Lett. 289, 451 (1998). 
€> 1998, Elsevier.

attractive than that of the matrix atoms, the contours of constant electron density surround 
the impurity, and the location of the impurity defines the natural center of the electron density 
distribution in the cluster.

The optical response of alkali metal clusters containing an impurity has been studied using 
the jellium-on-jdlium model [132]. The calculated optical spectrum of N asZn is characterized 
by two closely spaced lines at 2.87 eV. carrying 2 6%  of the total strength, and a stronger line 
at 2.57 e V  carrying 4 2 %  of the strength. This is in good agreement with the experimental 
double peak, formed by a higher energy component at 2.97 eV, which carries less strength than 
the lower energy component at 2.63 eV  . The fragmentation is due to the near degeneracy 
between the plasmon peak and the 2s —> 2p and ip 3s particle-hole transitions. The 
calculations were performed for an impurity background density corresponding to rs(Zn) = 
1.15 a.u., a value that is substantially smaller than the usual value of r, = 2.31 a.u. for bulk 
Zn (/; is a parameter related to the average bulk electronic density n: it is the radius of 
a sphere which on average contains one electron). The small value o f rs indicates a strong 
attractive potential at the impurity site, which produces the shift o f those transitions required 
for the degeneracy to develop with the plasmon. The spectrum of N a (S contains a single line at 
2.53 eV, so the effect o f the Zn  atom on the optical response is evident. The need for such a 
small value of rs may be related to the application of the jellium  model to an element like Zn, 
at the end of the transition metal group. As another example of the influence of impurities 
on the optical response, one can consider the three clusters K ,(,Rb, K 20, and K )9Na, all of 
them having 20 valence electrons 1132]. The calculated optical spectrum of K 2() shows a split 
plasmon due to the degeneracy between the collective plasmon and a 2s —* 3p particle-hole 
transition. In the case of K ,4)Na the impurity shifts the 25 level downwards, so the energy 
of the 2s —> 3p transition increases. At the same time, the energy o f the plasmon remains 
unchanged, and a single line dominates the spectrum. The opposite effect occurs for a Rb  
impurity. The energy of the 2s —* 3/? transition is lowered and the plasmon splitting is more 
pronounced.

In order to test the reliability o f the model. Yannouleas et al. 1132] have performed parallel 
jeliium-on-jellium and molecular orbital calculations for K sMg, N asZn , and K ,M g , comparing 
the electronic structures resulting from the two methods. In the molecular orbital calculations, 
the geometry was assumed to be a body centered cube for K.sMg and N asZn, and a centered 
octahedron for K hMg. For these two geometries, the molecular orbital electronic configura
tions are of the type ( ! <7h,): ( 1 t];i ),y{2a., ){\ and ( \uiK): ( \ t respectively. Comparison with
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the jellium calculations is based on the correspondence Is —»* 1 p —> ltUr 2s 2a]}!.
and \d — (\ cl, -f  U/( ), which was validated. Both calculations reproduce the downward shift 
of the 2.v level below the 1 <7 level.

The location of the impurity is an interesting question that has been studied by comparative 
calculations for L i/wBe and L i/;)M g [133]. The ground state geometries of both systems are 
rather similar up to m — 5, at which point the growth patterns differ significantly. The struc
ture of L if,Be is an octahedron with the Be atom at the center. The Be atom is also trapped 
in the interior for larger clusters. In contrast, the Mg atom avoids internal positions and this 
affects strongly the structure of the clusters. Even for m — 12 , the Mg atom resides on the 
surface of the cluster. The different behavior can be explained on the basis of the atomic 
size of the constituent atoms and the relative strength of the bonds between them. The ionic 
radius of M g (2.57 a.u) is larger than that of L i (2.36 a.u.), while that o f Be  (1.68 a.u.) is 
substantially smaller. In addition, the L i-Be  bond (0.39 e V ) is stronger than the L i-M g  bond 
(0.26 eV ), and both are weaker than the L i—Li bond. The strain associated with positioning 
the larger Mg atom inside the cluster and the tendency to lower the energy by maximizing 
the number of stronger L i—Li bonds both lead to the Mg atom residing on the surface of the 
cluster.

3.3.2. A Full Description of the Cluster Structure
Experiments provide only indirect information on the geometrical structure of clusters. 
In contrast, ab initio calculations based on density functional theory can predict the structures 
directly although there are uncertainties because of approximations associated with exchange 
and correlation, the pseudopotentials, and the completeness of the basis set. In addition, such 
calculations require a substantial computational effort, in part because the number of isomers 
grows rapidly with size N and the identification of the lowest energy configuration between 
isomers with sim ilar binding energies becomes a hard task. Fo r this reason, the calculations 
are usually restricted to small clusters, but with improvements in the methods and in comput
ing power the scope of ab initio calculations is steadily advancing. For the prototypical case of 
sodium clusters, ab initio calculations have been performed for sizes up to N = 20 [64, 100, 
134-137]. Figures 13 to 15 show the results of calculations by Solovyov et al. [64]. For N up 
to 8, both D F T  and Moller-Plesset (M P )  many-body perturbation theory were used to opti
mize the geometries. The particular implementation o f D F T  employed by Solovyov et al. was 
the so called B 3 L Y P  developed by Becke [22]. This hybrid method expresses the exchange- 
correlation energy as a parameterized functional that includes a mixture of Hartree-Fock and 
D F T  exchange, along with D F T  correlation. The electronic wavefunctions are calculated in 
the standard D F T  way by solving Kohn-Sham equations. For clusters larger than N as, only 
the B 3 L Y P  method was used in the optimizations.

The point-symmetry group is indicated for each cluster in the figures, and several low- 
lying isomers are given for /V =  3, 4, 6, 10, 11, and 20. Clusters with sizes up to N = 5 are 
planar. M P  predicts the isosceles triangle, C2v symmetry, as the lowest energy structure of 
N a3, although the C2v structure with a broken bond lies only 0.008 e V  higher in energy. N a4 
illustrates how' the geometry can be influenced by the multiplicity of an electronic state: the 
rhombic geometry, with D2h symmetry, occurs for spin multiplicity 1, while a multiplicity of 
3 leads to a square; the former is more stable. Three-dimensional structures first appear for 
N ah: the flat pentagonal pyramid is more stable than the planar isomer, but only by 0.02 eV. 
N a3 and N a4 are prolate, and N a5 to N a7 oblate, in agreement with the deformed jellium  
models. B 3 L Y P  leads to some differences with respect to MP. The ground state of N a3 is the 
linear isomer, and the broken triangle lies 0.008 e V  above. The planar isomer is the ground 
state of Na(). This shows the difficulties in predicting structures by total energy calculations.

A  noticeable feature of the clusters larger than N a7 studied using B 3 L Y P  is that N a8 and 
N a 2,, have higher symmetry (Td) than others. This is consistent with the formation of closed 
shells in the jellium  model. The ground state of N a 1() has the C2 symmetry, and the DAd isomer 
lies 0.07 eV  above. The binding energies of the two isomers of N a n only differ by 0.03 eV. 
N a 1(), N a ,|. and N a i: are approximately prolate, and N a ,4 approximately oblate, again in 
agreement with the deformed jellium  models. For other clusters the triaxialitv is substantial. 
Nevertheless, N a ,7. N a ,s, and N a w appear close to prolate. This is at variance with the jellium
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Figure 13. Optimized geometries of sodium clusters with V = 2 to 10. Several isomers are given for N  --- 3. 4, 
6, 19. Reprinted with permission from [64], Solovyov et al.. Phys. Rev. A 65, 53203 (2002). 0  2002. American 
Phvsical Society.

models and originates in the underlying double-icosahedron structure o f these three clusters, 
complete for Na,,, and incomplete for N a )7 and N a )s. That structure, well-known for inert gas 
clusters, arises from atom ic packing effects, which are not captured by the deformed jellium 
models. These packing effects are especially important for very large clusters.

Ionization affects the geometry for the smallest clusters. The structure of Na-! is an equi
lateral triangle. M P  calculations predict that N a j is a near-equilateral triangle with the fourth 
atom attached to the apex and that the rhombus is close in energy (0.01 eV ); the order of 
these isomers is reversed by B3LYP. N a t can be viewed as two oppositely oriented isosceles
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Figure 14. Optimized geometries of sodium clusters with /V = II to IS. Reprinted with permission from [64], 
Solovyov et al., Phvs. Rev. A  65, 53203 (2002). ii- 2002. American Physical Society.

triangles sharing an atom along a common axis. The structure is planar, but one triangle can 
easily rotate about the axis so that the planes of the two triangles become perpendicular to 
each other. The structures of N arJ and Na* are also different from those of N a6 and N as. The 
structural changes become less drastic for N higher than 9.

Figure 16 shows the dependence of the binding energy per atom with the cluster size. Here 
the B 3 L Y P  energies are compared with the results of the M P  and configuration interaction 
(C l )  calculations [135, 137]. The three methods give results in reasonable agreement. One can 
observe that the binding energy per atom of the clusters N as and N a :„ are a little higher than 
the binding energies of clusters of similar sizes. The visibility o f the magic number effects 
would become enhanced by plotting, instead, the second derivative of the binding energy, 
given by Eq. (46).

Som e of the clusters plotted in Figures 13 to 15 have permanent electric dipole moments 
because the centers of gravity of the electronic and ionic charge distributions differ. 
The calculations indicate that only clusters with C point symmetry groups have dipole



82 Density F unctional Calculations ol C lusters and C luster Assem bly
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Figure 15. Optimi/ed geometries of sodium clusters with N  = 19 and 20. Reprinted with permission from [64], 
Solovyov et al., Phys. Rev. A 65, 53203 (2iH>2). €' 2002, American Physical Society.

moments with a magnitude up to 1 dcbye or a little higher [64]. For instance, the dipole 
moments of the two C2v isomers of N a3. labeled a and b in Fig. 13, are equal to 0.28 and 1.30 
dcbye, respectively. The sizable differences between the dipole moments of different isomers 
have led Solovyov and coworkers to propose a method for isomer separation by passing a 
mass-selected cluster beam through an inhomogeneous electric field. For a cluster with intrin
sic dipole moment I), the force acting on the cluster in an inhomogeneous electric held # ( r )  
is equal to

F ( r )  = V [D  • * ( r ) ]  (74)

If  the cluster spends a time / passing through the inhomogeneous electric field, the distance 
by which the clusters are deflected from the original direction of motion is estimated to be 
A = l:t2/2M , where M is the mass of the cluster. For typical values of the time period, 
/ = 10 \  and the inhomogeneity of the electric field V E  = 5000 V/cirr, the isomers with 
N = 3 and dipole moment difference of 1 debye become separated by A = 0.7 mm, which

Binding energy per atom for neutral sodium clusters

Figure1 16. Binding energy per atom of neutral sodium clusters as a function of cluster size. Circles: DFT cal
culations using the B3LYP method. Triangles: Moller-Plesset calculations. Squares: Configuration interaction cal
culations 1135. 137). Some clusters in the figure have labels indicating the point symmetry group of the isomers 
represented. Adapted with permission from [64|. Solovvov et al.. Phys. Rev. /! 65. 53203 (2002). £> 2002. American 
Physical Society.
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illustrates the capabilities of the proposed method. An analysis for clusters having quadrupole 
moments shows similar promise.

3.3.3. High Valence Impurities in Alkali Clusters
Impurities with a valence higher than two produce a stronger perturbation of a host alkali 
cluster. The calculated equilibrium structures of L i/;/A l clusters [138) are three-dimensional 
starting at L i3A I, which is in contrast to pure Li clusters, where two-dimensional structures 
prevail up to L i6. For m < 6, the A l atom does not occupy an internal position, but for 
larger clusters the A l atom is internally located, and surrounded by the L i atoms. The binding 
energy of the cluster, the evaporation energy of a L i atom E Viip(m) = E (L im_\Al) 4- E (L i ) — 
E (L imAl), and the ionization potential / increase monotonically up to m = 5. and then show 
a drop, indicating the high stability of L i5 A l which has 8 electrons. The structure of this cluster 
is similar to that of N a5Pb shown in Fig. 17, with the A l atom a little more distant from 
the plane of four L i atoms. The analysis o f the orbitals o f L i5A l shows a doubly occupied 
orbital at —7.5 eV  with s character about the A l site, and a manifold of three closely spaced 
and doubly occupied states with predominant p character at -3.5 eV. The charge density 
indicates that the bonding is covalent with charge accumulation in the regions connecting A l 
and Li ions. The electronic structure of L i„ ,A l clusters with m < 6 reflects the atomic-like 
nature of the orbitals, and the properties of L isA l are related to the closing of the A l 3p 
shell, albeit perturbed by the lithium environment. Addition of L i atoms to L i5A I leads to a 
picture consistent with the delocalized shell model, with the ordering of the 1 cl and 2s shells 
reversed from that corresponding to the homogeneous jellium  model, just as in the case of 
some divalent impurities already discussed.

The tetravalent impurities of group 14 (C , Si, Cie, Sn, Pb ) form another interesting case. 
The supersonic expansion of lead-sodium vapor from a hot oven source led to the observa
tion of an exceptional abundance of the Na,,Pb cluster [139]. Several D F T  calculations have 
been performed to study the nature of this species [140-142]. The calculated ground state 
geometries of N a „;Pb clusters are given in Fig. 17. U p  to m = 7, each added Na atom binds 
directly to the Pb atom and the coordination of the Pb atom increases. U p  to N a5Pb, the Pb 
atom is on the surface to allow the N a atoms to come in closer contact with one another and 
bind, albeit weakly. The lowest energy structure of N af)Pb is an octahedron with the Pb atom 
in the interior of the cluster. A  seventh N a atom also binds to Pb, but at this stage the Pb 
atom appears to be fully coordinated and an additional Na atom, in N asPb, begins to form a 
second shell and is not directly bound to Pb [140].

The electronic configuration o f the free Pb atom is 6s26p2 and the electronic structure of 
the occupied valence orbitals of Naf)Pb is ( l^|^)2( l / lu)6(2fl|i?) 2. The \cî  level, which is local
ized on the Pb atom and has dominant s character, is substantially deeper than the other 
cluster levels due to the very attractive 5-part o f the nonlocal Pb pseudopotential. This l « i(.

3.04
o ---- °

C-.v

Figure 17. Calculated lowest energy structures of Na„,Pb. m = 1 to 7. Small spheres represent Na atoms and 
the large one the Pb atom. Symmetries are indicated, and bond angles are given in angstroms. Reprinted with 
permission from [141]. Baibas and Martins, Phys. Rev. B  54, 2937 (1996). €> 1996, American Physical Society.
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level is associated with the 6s level o f the Pb atom. The H O M O  level 2a ̂  is doubly occupied, 
and there is a gap of 1 e V  between this level and the L U M O ,  which has symmetry. The elec
tron density is spherically symmetric, consistent with the close-shell character of N aftPb  [141]. 
The filling of the l/,„ levels in the series N a,„Pb  ending with N a ftPb can be viewed as the filling 
of the atomic 6p shell o f Pb, perturbed by the effect o f the surrounding N a atoms. In  sum
mary, the electronic structure of small N a„,Pb  clusters is dominated by the highly attractive 
potential of the Pb atom.

The closed-shell structure of N a(1Pb is responsible for the high abundance of this cluster, 
but a full explanation requires some analysis o f the formation process. The energy to remove a 
N a atom from the cluster, the evaporation energy, is plotted in Fig. 18. There is a pronounced 
odd-even oscillation of the evaporation energy as a function of m and the smallest value 
occurs for N a 7Pb. The explanation proposed for the high abundance of N a6Pb is based on 
a two-step mechanism [143]. For the experimental conditions with a Pb concentration in the 
mixed Pb-Na vapor o f the order 10%, growth o f mixed clusters containing a single Pb atom is 
favorable compared with other possibilities. Form ation o f pure Pb clusters is unlikely because 
of the small concentration of Pb. The gain in binding energy in the step

Nam_ , Pb + Na — > NamPb (75)

which might be callcd the capture energy, can be read from Fig. 18; it is equal to the evapora
tion energy o f one Na atom from N a ;„Pb . This is positive so the process is exothermic and the 
clusters tend to grow. This capture energy is higher than the capture energy for the growth 
of small pure N a clusters; consequently, mainly N a„,Pb  clusters will form if there is a supply 
o f Pb atoms. The competition between different Pb atoms to form Na„,Pb clusters and the 
fact that the capture energy quickly decreases as rn increases, suggest that most clusters will 
not grow larger than N a7Pb or N asPb, and this completes the first part o f the argument.

On the other hand, during the growth process the clusters become hot and cool down by 
evaporating Na atoms. The evaporation energy increases by a factor of more than 2 between 
the two consecutive evaporation events N a7Pb -» N a(1Pb + Na and N aftPb —> N a5Pb + Na, so 
the evaporation cascade is expected to stop after the first of these two reactions, and in this 
way the population of N a6Pb becomes highly enriched. Evidence for enormous differences 
in the abundance arising from relatively small differences in the evaporation energies is well 
documented from experiments for (C (,0) /V [61].

L i6C  and N a(,Pb are just two clusters in a broad class M 6X , where X  = C, Si, G e, Sn, 
and Pb, and M  is an alkali element. This fam ily has been studied by Marsdcn [144] and 
Schleyer [142] using DFT. Their calculated structure is the centered octahedron of Fig. 17. 
The single exception is L i6Sn; in this case the Sn atom is on the surface but coordinated to 
the six L i atoms [ 145]. This special location appears to be due to the sim ilar atomic radii o f Sn 
and Li. The bonding in the entire family is sim ilar, with considerable ionic character. Most of

1 2  3 4 5 6 7 8
m

Figure IS. Lnergy to remove an alkali atom 1'iom l.i,„Pb. Na,„Pl\ and K„,Pb. Reprinted with permission from [131],
J. A. Alonso et al., Chem. Phys. Leif. 280. 45! (1998). €> 1998. Elsevier.
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the clusters are quite floppy, and the most rigid one is L i(,C, which is exceptionally stable 
(1 108 K J mol, relative to separated atoms). The binding energy increases as the alkali atom 
changes from Cs to Li, reflecting the growth in alkali—alkali bonding. On the other hand, by 
changing the tetravalent atom, the binding energies decrease in the order M f)C, M ()Si, M ,,Ge, 
M (>Sn, and M,,Pb, an order that follows the variation of the electronegativity [146] down group 
14. The stability o f N a(1Pb is then relatively low compared to other M hX  clusters, and a large 
number of clusters in this family await experimental synthesis.

The charge transfer to the im purity weakens the bonds between the alkali atoms compared 
with the corresponding pure alkali clusters, and this affects their thermal properties. Com 
parative D F T  simulations of the therm al behavior of Li,,Sn and L i7 indicate that L i7 exhibits 
solid-like behavior at 100 K. showing only small atomic vibrations, whereas liquid-like behav
ior is predicted for L i()Sn at that temperature [145].

The ionization potentials of Cs clusters containing oxygen impurities display pronounced 
drops at some particular sizes [147] that reveal the occurrence of closed electronic shells. 
The electronic configuration of the oxygen atom is Ly225:2/;4. In the clusters, the 2p shell o f 
the oxygen atom becomes filled by electrons donated by the Cs atoms, forming O 2 anions. 
The remaining valence electrons of the cluster behave according to the shell model [ 148], and 
so clusters C s „,O v have m -  2x nearly free electrons. The drops in the ionization potential 
are reproduced by the D F T  calculations [148].

3.3.4. Impurities in Aluminium Clusters
A l h a s  a very symmetrical (icosahedral) structure and 39 valence electrons. One additional 
electron will produce a closed-shell cluster with 40 electrons, and as expected, the measured 
electron affinity of A l,3 is large, 3.6 e V  [84], a value similar to that o f the C l atom (3.61 e V ), 
the highest electron affinity of all the atoms of the periodic table. A l13 is then a very stable 
anion. A  configuration o f 40 electrons is also achieved by replacing one A l atom of the clus
ter by a tetravalent atom C, Si, G e , Sn, or Pb, and it has been conjectured that icosahedral 
A1]:X  clusters with X  = C, Si, G e , Sn, Pb could be candidates for cluster-assembled mate
rials. Calculations for A l l2C  have predicted that the icosahedral structure is preserved after 
substitution, with the C  atom located at the center of the icosahedron [149-151]. In addition, 
the electron affinity of A1,: C  is lower than for the clusters o f neighboring sizes A I, ,C  and 
A ln C, and the energy to remove an A l atom is larger. A  prediction of icosahedral structure 
was also made for A I ,2Si and A l12G e , but for A I12Sn the Sn atom was predicted to substitute 
for an A l atom on the surface of the icosahedron [151-153].

The electronic structure o f this fam ily has been probed by photoelectron spectroscopy 
( P E S )  [154]. The P E S  spectra of A I ,2X  , with X  = C, Ge, Sn, Pb, measured at two different 
photon energies, 193 and 266 nm, are shown in Fig. 19, together with the spectrum of Alj\. 
The spectrum of A l,, is well understood. Starting with the shell model and reducing the sym
metry by taking into account the icosahedral structure leads to the electronic configuration 
I# 2 1 t('Ul 1//J," 2a;, 1 t*iu I#* 2t(\u. D F T  calculations suggest that the features labeled A  and B  in 
panels (a ) and (b ) of this figure correspond to electron detachments from the l/2jr 1#H, and 
2tUi orbitals, which are closely spaced in energy [83]. The extra electron of the species A1,2X  
is expected to occupy the next level, 1 hir and a large gap should be observed in the spectra. 
The gap is observed in the spectrum of A l ) :Pb , with a weak feature ( X )  at lower energies 
followed by broad features (A  and B )  at higher energies. The close similarity with the A  and 
B  features o f A l n indicates a rigid filling o f the electronic shells for the icosahedral structure. 
Confirm ing this idea, features X . A , and B  are also evident in the spectra of A1,2S i t  and 
A lp G e " .  The weaker features observed in the spectrum of A ! 12Pb taken at 266 nm, and 
marked as solid bars, are interpreted as corresponding to a m inor isomer, which is more 
prominent in the spectra of A l12Sn and A l i :G e .  The relative intensities of the extra fea
tures in A lp S n  and A l i:G e  depend strongly on the source conditions [154]. Calculations 
for A lp S n  had predicted a structure in which the Sn atom substitutes for an A l atom on the 
surface of the icosahedron. The shape o f the P E S  spectrum indicates that both this isomer 
and the isomer with the Sn atom at the center o f the cluster are probably present in the 
experiments.
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Figure 19. Photoelectron spectra of Al,, and A1!3X (X  = C, Ge, Sn, Pb) taken at 193 and 266 nm. The continuous 
and dotted spectra in panel (a) correspond to vibrational temperatures of about 260 K and 570 K, respectively. 
The bar symbols represent nonicosahedral features. Reprinted with permission from [154], Li and Wang, Phys. 
Re\: B 65, 153404 (2002). © 2002, American Physical Society.

The P E S  of A1,: C  is completely different. It shows higher adiabatic and vertical electron 
detachment energies and a smaller gap. In this case, the spectral features are not depen
dent on the source conditions, indicating that a single isomer is responsible for the spec
trum. D F T  calculations have consistently predicted the icosahedral structure for neutral A l , : C 
[84. 151-153]. but the anionic species appears to have a lower symmetry C2v [84], accounting 
for the complexity of the spectrum.

Doping A l,3 with a hydrogen atom also leads to a cluster with 40 valence electrons. A113H  
clusters have been produced and exhibit a substantial H O M O - L U M O  gap o f about 1.4 eV, 
measured by photoelectron spectroscopy of the negatively charged species [155]. The 
calculated ground state structure of A113H  [90] preserves the icosahedral structure of A l ,3. 
This icosahedron has a small oblate distortion with two triangular faces closer to the central 
atom than the other faces, and the H  atom sits in a hollow position above the center of one 
of these two special faces. The distance from the H  atom to the cluster center is 5.68 a.u., and 
the distances between the central Al atom and those in the surface range between 5.00 and 
5.08 a.u. The density of electronic states for the predicted structure [90] is consistent with the 
measured photoelectron spectrum. The binding energy of the H  atom to A l !3 is 3.4 eV  [90, 
156] and the barrier for diffusion to another hollow position in a neighboring face is 0.08 eV.
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The state o f the FI atom can be described as a negatively charged impurity screened by the 
surrounding electron gas [157]. similar to a I I impurity embedded in a vacancy in the A l 
metal.

3.4. Cluster Melting
3.4.1. Orbital-Free Simulations of the Melting Transition
Apart from its scientific interest, the melting of small particles may have some technological 
implications. In sintering processes, fine powders are compressed and heated until the par
ticles coalesce. A  linear reduction of the melting temperature as a function of the inverse 
particle radius 1 /R has been observed, which is mainly due to the substantial fraction of 
atoms on the surface. Consequently, lower sintering temperatures are required for particles 
with very small radii. In addition, given the current trend toward nanoscale technologies, the 
extremely small size of the components will affect their mechanical stability at elevated tem 
peratures. The case of metallic clusters presents interesting features, and the alkali metals in 
particular present an intriguing case.

The melting temperatures of Na clusters measured by Haberland and coworkers [158-160] 
are shown in Fig. 20. The experimental method is based on the analysis of the temperature 
dependence of the photofragmentation pattern of a size-selected cluster, which is used to 
determ ine directly the caloric curve E  = E(T). Melting is then associated with a change of 
slope in the caloric curve. Large oscillations of the melting temperature Tm as a function of 
cluster size are observed in the figure. The trend in most properties of clusters is a rather 
rapid approach to the bulk value as the cluster size increases, but this is not the case for the 
melting temperature (the melting temperature of bulk Na is 371 K). Even more surprising is 
the absence of a correlation between the maxima of Tm and the magic numbers for the filling 
o f electronic or geometrical shells. The electronic magic numbers control the size dependence 
of a number of properties of sodium clusters. For the range of sizes in Fig. 20, the electronic 
magic numbers are N = 59,93, 139, 199,255, and 399 (notice that the clusters are singly 
ionized, so the number of valence electrons is N — 1). These are indicated by the vertical 
dotted lines. The magic numbers for having complete icosahedral structures, N = 55, 147, 
and 309, are indicated by the dashed lines.

Com puter simulations reveal a complex picture of the melting of alkali metal clusters. O ften 
in molecular dynamics simulations a simplifying assumption is to represent the interaction 
between the ions by a sum of pair potentials. This allows the simulation of large samples for

number of sodium atoms

Figure 20. Melting temperature of Nax clusters as a function of the number of atoms in the cluster. Sizes 
corresponding to electronic (doited lines) and geometric (dashed lines) shell closings are indicated. Adapted with 
permission from [160]. Schmidt et al., “ Physics and Chemistry of Clusters." p. 22 (2001). © 2001. World Scientific.
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long times. An  essential difficulty in the simulation of metallic dusters in general and alkali 
metal clusters in particular is that the interactions between the ions cannot be represented as 
the sum of two-body terms because of the itinerant nature of the electrons in metallic systems; 
this is especially so near a surface where the electron density decays from bulk values to zero. 
The unification of the Kohn-Sham form of D F T  and molecular dynamics (M D )  formulated 
by C ar and Parrinello [9] allows for an explicit treatment of the electronic degrees of freedom, 
and this technique has been used for modeling the melting of some clusters (see next section). 
However, in order to calculate the forces on the atoms, the Kohn-Sham equations have to 
be solved at each step, that is, for each geometrical configuration of the atoms in a M D  
trajectory, and this is very demanding of computer resources. At present, full Kohn-Sham M D  
simulations can only be performed for small samples of ions, typically fewer than 50 and for 
short simulation runs, usually less then 10 ps. Large computational savings can be obtained by 
using an orbital-free (O F )  energy functional in the O F T - M D  simulations, in which the kinetic 
energy of the electrons appears as an explicit functional o f the valence electron density //(r) 
as discussed in Section 2.1. The expression

r v[/i] = Tm + P 2) (76)

is a simple example of such kinetic energy functionals, retaining the first two terms in the 
expansion, Eq. (28), o f the kinetic energy in gradients of the density, appropriate for a system 
of slowly varying density. Adding to the kinetic energy the other contributions to the energy 
o f the system gives the total energy as an explicit functional o f the electron density n(r). 
Using a large plane wave basis to represent the density, the ground state energy for a given 
geometrical configuration of the atoms is obtained directly by minimization of the total energy 
functional.

Using this functional for the kinetic energy of the valence electrons, and replacing the 
ion cores by local pseudopotentials [161, 162], the melting of Na clusters has been stud
ied [35, 163] by constant energy M D  simulations. The melting transition was identified in the 
computer simulations by an analysis of the caloric curve and the bond length fluctuations. 
The caloric curve represents the thermal response to an increase in energy and is given as a 
plot of the total energy as a function of the internal temperature /'. In the M D  simulations, 
the cluster temperature is defined by the expression

T  =  2 r ^ r  <£ fci">' (7 7 )(3N - 6)kn

where ( ), represents the time average over the entire trajectory, E kin is the instantaneous 
kinetic energy of the cluster, N is the number of atoms, and k{i is the Boltzm ann constant. The 
specific heat C „ is given by the slope of the caloric curve. In a M D  simulation, the C , per atom 
can be conveniently obtained from the expression (in units of the Boltzm an constant) [164]

C ,.= k in>, (78)

A  quantitative measure o f the atomic motion is given by the relative root mean square bond 
length fluctuation

s =---- 1-----£  (79)
N (N - \ )f r ,  (r,j),

where r is the instantaneous distance between atoms / and /, and the sum runs over all the 
pairs of atoms in the cluster.

Fo r small clusters, a melting transition in stages is predicted [35]. For N as and N a:(1, the 
melting transition is spread over a broad temperature interval of 100 K. The specific heat of 
Nas, shown in Fig. 21, has a sharp peak at 7' — 110 K, coinciding with a jump in 8. This is 
followed by a steady increase of 8(7 ), until a leveling off occurs at T near 220 K. The tem
perature T — 110 K  marks the onset of isomerization transitions among the permutationa! 
isomers of the low-temperature structure. The orbital-free method predicts an octahedral
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Figure 21. Specific heat and rms bond length fluctuation of Nas as functions of the internal temperature. Adapted
with permission from [35), Aguado et al., ./. Chem. Phys. I l l ,  6026 (1999). <D 1999, American Institute of 
Physics.

low-tcmperature structure in agreement with the predictions of a number of Kohn-Sham cal
culations [62]. W ith  increasing temperature, the isomerizations become more frequent and 
induce progressively stronger distortions of the structure until, at T = 220 K, all the atoms 
diffuse across the cluster volume and its shape changes continuously, indicating a fully estab
lished liquid phase. Because this effect is progressive, it does not result in a peak in the 
specific heat. The specific heal of N a2() has two peaks at 110 and 170 K, correlating w'ith 
abrupt increases of 8 at 110 and 160 K, respectively. Then, 8 levels off at 220 K. The peak 
at 110 K  marks the onset of isomerization transitions between permutational isomers almost 
preserving the low-temperature structure, a capped double icosahedron. The peak at 160 K  
arises from the transformation of the double icosahedron to a new structure with a single 
central atom. The exchanges of this atom with one of the 19 surface atoms occur at a slower 
rate than the interchanges between surface atoms. The surface atoms are very mobile and 
the cluster shape fluctuates a great deal. Finally, at T = 220 K  the structure is very fluid.

Constant temperature M I )  simulations using a phenomenological interatomic potential 
found for N as a transition at T = 100 K  from the solid-like phase to one characterized by 
occasional atom interchanges while the atoms stay for relatively long periods close to their 
equilibrium positions [165]. M onte Carlo  (M C ) simulations by Calvo and Spieglemann [166] 
using an empirical potential, predicted melting at T = 80 to 100 K, while tight-binding M C  
simulations [ 167] predict Tm — 200 K. In view of the complex behavior revealed by the orbital- 
free simulations, the other results are not surprising. For N a :(), the tight-binding [167] and 
empirical potential simulations [165, 166] predict melting in two steps, the first one involving 
the surface atoms only. The occurrence of melting in steps has been associated with a soft 
repulsive, short-range interatom ic interaction and this is, indeed, the case for sodium [163].

D irect calorimetric measurements of the melting temperature of such small clusters have- 
not been performed, but the temperature dependence of the photoabsorption cross section 
has been reported [ 168. 169] for N a J ,  N — 4 to 16. Although the spectra do not show evidence 
of a sharp melting transition, comparison between theory and experiment is encouraging. 
There is no appreciable change in the spectrum of N as until T = 105 K, at which point 
it begins to evolve in a continuous way. It is noteworthy that this temperature is close to 
T =  110 K  predicted by the orbital-free simulations for the beginning of a broad melting 
transition.

The complex behavior of small sodium clusters can be expected, because most of the atoms 
lie on the surface. Larger clusters are required for the inner atoms to experience a bulk
like environment. The melting of N a55, N ag:, and N a 14: has also been simulated using the 
orbital-free method [163]. The precise low-temperature structure of these large clusters is not 
known. D F T  calculations predict a structure close to icosahedral for N a55 [170], and using 
empirical potentials Calvo  and Spiegelmann [166] predicted icosahedral structures for N a55, 
N ag:,, N a iv,, and N a U7. Consequently, complete or incomplete icosahedral structures were
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taken as plausible low-temperature structures to start the O F  simulations of the heating pro
cess for N a55, N a92, and N a 142. The specific heat of N a 14:, shown in Fig. 22, displays a main 
peak at T = 270 K  and a smaller one at T = 240 K. These two peaks are so close that 
only one slope change can be distinguished in the caloric curvc. A n  analysis o f the atomic 
motions suggests that the peak at T = 240 K  can be associated with surface melting. The 
diffusion coefficient D(T) shows a sharp increase in slope at this temperature. The peak 
at T = 270 K  represents complete melting. A t low temperatures, the radial atomic density 
distribution calculated with respect to the cluster center displays the atomic shells character
istic o f the icosahedron, and these shells broaden as T increases. Above the surface melting 
temperature, the shells gradually vanish, and further changes in the slope of D(T) are not 
detected. A t T = 270 K, the atomic density distribution is nearly uniform over the volume of 
the cluster. This theoretically predicted melting temperature is in excellent agreement with 
the observed melting temperature for N a 142 of 280 K. In addition, the latent heats of fusion, 
c/,„, estimated from the step at Tm in the caloric curve, ^ (ex p e rim en ta l) = 14 meV/atom and 
^ (th e o re t ic a l) = 15 meV/atom, are in good agreement.

Two-steps melting is also predicted for N at>:, with a small pre-peak in the specific heat 
at T = 130 K, and a large peak at 240 K  corresponding to homogeneous melting. In this 
case, the two features are well separated. The position of the large peak and the latent heat, 
qm = 8 meV/atom. are again in excellent agreement with the corresponding experimental 
values: T = 250 K and qm = 7 meV/atom. Once more the diffusion coefficient is very sensitive 
to the appreciable diffusive motion that begins when surface melting occurs. The results of 
the M C  simulations [166] for clusters with sizes in the range of 100 atoms are consistent with 
the O F  simulations, namely two step melting for N a ,,g and N aq3, with the two features close 
together in N a |V> and well separated in N atn.

The orbital-free simulations for N a55 predict melting in a single step at T = 190 K. Single- 
step melting is also predicted by the M C  simulations [166]. The experiments indicate a 
substantial enhancement of the melting temperature at N = 55 (see Fig. 20). The melting 
temperature of this cluster is even higher than that of N a ^ ,  which is a local maximum. N e i
ther the O F  simulations discussed above nor the M C  simulations reproduce this feature.
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Figure 22. Caloric and specific heat curves of Reprinted with permission from [103;. Aguado et al.. 7. Phys.
Chem. 105. 2386 (2001). &  2001. American Chemical Society.
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Blaise and Blundell [171] performed O F  calculations using for the V'(:i term of Eq. (76) an 
enhancement coefficient A = 1.44. The calculated melting points, shown in Fig. 23. give the 
melting temperature of N a^  as a local maximum, but again this temperature is lower than 
those of clusters in the size range of about 140 atoms. The figure also shows that the calcu
lated melting temperatures are substantially smaller than the measured ones and smaller than 
the melting temperatures obtained by the current authors [35, 163]. The main reasons for 
this discrepancy may be differences in the pseudopotential and the kinetic energy functional 
that were used in the calculations. There were also differences in the statistical mechanics 
prescription used to obtain Tm. C learly, further work is required to explain fully the trends of 
the measured melting temperatures.

3.4.2. Ab Initio DFT Simulations of Melting
The full Kohn-Sham formulation of D F T  has been used in molecular dynamics simulations of 
the melting of small clusters of simple metals. Blundell and coworkers [172] studied N as and 
N a :„ with the objective of testing ionic pseudopotentials and of comparing the results with 
those of the O F  simulations. The results o f all models are qualitatively similar, but the precise 
positions of the peaks in the specific heat are sensitive to the pseudopotential. N as, N a m, N a 14, 
N a2(), N a4(), and N a~ were studied by Rytkonen et al. [173]. The simulations for each clus
ter started from a low-temperature structure that was expected or known from other works. 
The melting transition was explored with two customary indicators: the caloric curve and the 
diffusion coefficient. A  melting region could not be identified for clusters smaller than N a 2(J. 
N a2() was observed to melt in the range 235-275 K. N a4U melted around 300-350 K. Melting 
was found to broaden the density o f electronic states of this cluster, but the H O M O - L U M O  
gap, approximately 0.4 eV  wide, remained open until higher temperatures were reached. The 
N a|s cluster was found to melt around 310-360 K. There were well defined deformations 
of the molten clusters: Na4„ exhibited an octupole deformation, and liquid N a2(, and N a~  
were prolate. The melting temperatures of this work appear to be too large compared with 
the measured values shown in Fig. 20. This discrepancy may be due to the fast heating rate 
used in the simulations which was necessitated by the time consuming Kohn-Sham proce
dure, but which was probably too rapid for thermal equilibrium to be achieved at a given 
temperature.

The clusters A lj,  and A l,4 behaved differently on heating [174]. There are no distinct tran
sitions, and isomerizations between the starting icosahedral structures and other structures, 
mainly decahedral, were seen frequently. The isomerizations led to peaks in the potential 
energy as a function of temperature and occur by a mechanism in which the atoms collectively 
twist between the different isomers. For instance, in the case o f A l ]4, the outermost atom does 
not move around the cluster; instead, the atom often inserts itself into the cluster, causing 
a “ new” outer atom to be expelled on the opposite side. Some of the isomerizations in A l^  
involve more drastic structural changes, and the behavior at the highest temperatures studied

cluster size N

Figure 23. Melting points calculated by orbital-frce simulations for singly charged sodium clusters. Reprinted with 
permission from [171]. Blaise and Blundell, Phys. Rev. B  63, 235409 (2001). © 2001, American Physical Society.
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(1500 K ) is consistent with a molten phase. The vibrational density o f states for A l13 shows 
a shift toward lower frequencies and a gradual smearing out as the temperature increases, 
supporting the interpretation of gradual melting above 1000 K. However, the melting o f bulk 
aluminium metal occurs at 933 K. and it is likely that the difficulties in perform ing long 
simulations may account for the overestimation.

3.5. Cluster Assembly
The ab initio D F T  calculational schemes provide the opportunity for simulating the assem
bling of a bulk material using stable clusters as the building blocks. The supercell geom e
try lends itself to positioning the clusters initially in an arrangement to be investigated in 
an expanded supercell, and then shrinking the superlattice in stages drawing the clusters 
together. A t each stage, the electronic structure can be relaxed into its ground state and 
atomic positions relaxed to the equilibrium arrangement. As the clusters become closer, the 
molecular orbitals will begin to overlap, the clusters will interact, and the atomic arrangement 
within a cluster will respond. As the shrinking of the superlattice continues and the interaction 
between clusters increases, the identity of the clusters may be preserved, or atoms or larger 
fragments may leave the clusters and occupy positions in the interstices, or if the interaction 
is strong enough the clusters may distort and merge so that the cluster building blocks cannot 
be identified in the bulk structure. The equilibrium structure of a given type is obtained when 
the total energy as a function of superlattice spacing is a minimum. A  few simulations o f this 
type have been reported. They provide insight into the interaction between clusters and the 
conditions for cluster assembly of solids.

3.5.1. Clustering in Crystalline Alloys of
Alkali Metals and Elements of the Lead Group

The equiatomic alloys of Pb with Na, K, Rb, or Cs contain tetrahedral Pb4 clusters surrounded 
by the alkali atoms. The structure of the alloys is shown in Fig. 24. The same clustering

..... for the alloys of the alkali metals with Si, Ge, or Sn, which are elements in the same
coinu s Pb in the periodic tabic [ l 75) (the exceptions are the L i alloys in which Pb 4 clusters 
do not appear). In these alloys, each tetrahedral Pb4 cluster is surrounded by alkali atoms 
capping the faces and edges of the tetrahedron. The free Pb4X 4 clusters, where X  denotes 
the alkali element, are the key for understanding the structure of the alloys and have been 
investigated by D F T  calculations [ I3 l| .  The calculations used the L D A , but tests performed 
for selected clusters with the generalized gradient approximation for exchange and correlation 
[ 176] support the conclusions obtained with the LD A . The calculated lowest energy structure 
o f all the free Pb4X 4 clusters is a Pb4 tetrahedron surrounded by another, oppositely oriented 
alkali tetrahedron with the alkali atoms capping the faces of the PbA tetrahedron. However, 
the ground state structure of the free Pb4 cluster is a planar rhombus, and the structural 
change to the tetrahedron is a result of a transfer of electronic charge from the alkali atoms. 
The outer electronic configuration of the Pb atom is 6s26/r, so the free Pb4 cluster has 16 
valence electrons. However, Pb4 has also a tetrahedral isomer, less stable than the planar 
rhombic one, but with an interesting characteristic: the L U M O  of the tetrahedral isomer is a 
fourfold degenerate level (including spin) and a substantial gap exists above this L U M O . A  
transfer of four electrons to Pb 4 would result in a total o f 20 electrons, which a shell-closing 
number for clusters of tetrahedral symmetry. Indeed, the higher electronegati o f Pb leads 
to electron transfer from the alkali atoms to the Pb4 unit, and the transferred elc-.rons fill the 
L U M O  o f the Pb4 tetrahedral isomer. The four alkali atoms added to Pb4 convert this cluster 
into a Pb4 polvanion with closed electronic shells. The calculations predict large H O M O -  
L U M O  gaps for this family of clusters: 2.54 eV  for Pb4L i ,, 1.92 eV  for Pb4N a4. and 1.36 e V  
for Pb4K 4. Even so, the presence of a large H O M O - -LU M O  gap in the free clusters is not by 
itself enough to explain the clustering in the bulk alloys, as Pb4 clusters do not form in the 
alloys when the alkali partner is Li. and interestingly, the exception occurs in the case of the 
largest H O M O - L U M O  gap.

A  cluster with a large H O M O - L U M O  gap is less reactive than others with small or no 
gaps. Chem ical passivity is, nevertheless, difficult to achieve in metallic clusters because the
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Figure 24. Unit cell of the crystalline compound PbNa. Tetrahedral Pb4 clusters are surrounded by the Na 
atoms.

molecular orbitals are less localized than in covalent clusters, and overlap between orbitals 
of adjacent clusters often leads to substantial interaction. For the family under study, the 
interaction is small when the size of the cations is large enough to prevent the clusters com 
ing close. This idea is illustrated by the map in Fig. 25, where a number of clusters have 
been represented in terms of two coordinates, the H O M O - L U M O  gap and the diameter of 
the alkali cation [177]. In addition to the Pb4X 4 clusters, other closed-shell clusters of com 
positions P b X 4 and P b X (, have been included. The clusters P b X 4 are also very stable. The 
structure of P b L i4 is shown in Fig. 17 and for other alkaline elements the structure becomes 
a pyramid with the Pb atom at the apex [143]. In spite of the high stability o f the P b X 4 clus
ters, crystalline alloys with compositions near 2 0%  Pb do not show any clustering features. 
The cluster Pb N aft was found to be extremely abundant in gas phase experiments 1139] and 
has been suggested as a candidate to form cluster-solids [178]. This cluster was discussed in 
Section 3.3. The boundary drawn in Fig. 25 separates clusters related to stable cluster solids 
from the rest. The conclusion is that both a high H O M O - L U M O  gap and a large cation 
size are stringent requirements for the occurrence of clustering in the solid alloys. Clusters 
of composition P b X (1 are, evidently, bad candidates. The emerging picture is that the alkali 
cations are not part of the cluster in the crystal. The Pb4~ polyanions are the clustered units, 
with the cations playing a secondary but important role by providing a barrier between the 
anions and donating electrons to them so that the polyanions survive in the solid. Clusters 
with compositions P b X 4 and P b X 6 do not lead to clustering in solid alloys because in these 
cases the cluster core reduces to a single Pb atom.
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Cation diameter (a.u.)

Figure 25. Map for clusters in terms of two coordinates: the HOMO -1 .UMO gap and the cation diameter. Solid 
alloys showing clustering effects are related to the clusters on the upper right corner. Reprinted with permission 
from 1177], Molina et al., “ Recent Advances in Density Functional Methods, Part II I , ” p. 234 (2002). © 2002, 
World Scientific.

3.5.2. Simulation of Assembling of Alkali-Lead Clusters
These ideas have been confirmed by computer simulations of the assembling of Pb4N a4, 
Pb4K 4, and Pb4L i4 clusters [179]. The calculations were performed using the ab initio method 
synthesizing the supercell geometry, plane wave basis, and nonlocal normconserving pseu
dopotentials described earlier. In the equiatomic P b X  solid compounds, the Pb4 clusters form 
a body-centercd-tetragonal (b.c.t.) lattice with axis ratio c/a = 1.676 as illustrated in Fig. 24. 
The simulations started by placing the free Pb4N a4 clusters on a b.c.t. lattice with the same 
c/a ratio but with dimensions c and a enlarged by a factor /  = 2. The factor /  was then 
reduced in steps maintaining c/a = 1.676, and at each step the electronic energy and all the 
atomic positions were allowed to relax to minimize the energy. Initially, the clusters were 
far enough apart for the interaction between them to be negligible, but as the cell size was 
reduced, the Pb4N a4 units were unable to maintain independent identities, and in order to 
achieve an efficient packing some rearrangement of the Na atoms occurred. However, each 
Pb4 tetrahedron remained surrounded by four cations capping its four faces. M ore precisely, 
each Pb4 tetrahedron is fully covered by alkali cations capping the faces and the edges of 
the tetrahedron, and each cation is shared by two Pb4 units. The structure obtained at the 
end of the simulation when the lattice parameters minimized the total energy is precisely 
the structure observed for the crystalline compound. The electron density in the regions of 
the crystal occupied by the cations is smaller than the average electron density in bulk Na, 
supporting the picture of the alloy as formed from charged polyanions surrounded by the 
alkali cations. The density of electronic states for the equilibrium structure has a small gap at 
the Ferm i level, so the crystal is a narrow gap semiconductor. The binding energy gained by 
assembling the clusters into a solid is 8(lsscmhlinf( = 4.09 eV per cluster, to be compared with 
the value 8chlslcrini, = 11.19 e V  of the binding energy of a single Pb4Na4 cluster with respect 
to the separated Pb and Na atoms. 8assemblint, is nearly one-third of Sril(ilcrinf,. The results are 
sim ilar for the assembling of the Pb K  solid, with the polyanions even more widely separated 
from each other because of the larger size of the K + cation compared with N a ' . In this case
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= 4.14 eV, and S(.lusll,nnf, = 10.54 eV, so the ratio of the two quantities is 0.39. In the 
fullerite crystal, which is the prototypical case of a cluster-solid, the ratio 8(lssemhUnK/8rhlsu,rini, 
is, however, much smaller.

The simulation of the assembling of Pb4L i4 clusters gives totally different results. As the 
cell size of the supercrystal is reduced the clusters interact strongly. Each Pb4 tetrahedron 
opens up forming a bent rhombus (o r butterfly), a shape midway between the tetrahedron 
and the planar rhombus, that reflects a lower charge transfer from the L i to the Pb atoms 
in comparison to the free cluster. Distances between Pb atoms in neighboring butterflies are 
sim ilar to bond lengths inside the butterflies. The strong interaction between clusters leads 
to metallic character for the assembled solid, whose structure, based on an interconnected 
network of Pb4 butterflies, is very different from that of PbNa (o r PbK, PbRb , PbCs) shown in 
Fig. 24. The assembled solid is metastable and cannot be characterized as a solid containing 
clusters. Furthermore, calculations for the Pb L i alloy with the experimental CsCl structure 
give a cohesive energy o f 2.4 eV/atom which is larger (Table 2) than the cohesive energy of 
the metastable Pb L i solid. A lso in agreement with experiment, Table 2 shows that the body- 
centered-tetragonal clustered solid is more stable than the CsCl phase for PbNa and PbK.

3.5.3. Assembling of Al-Based Clusters
It has been suggested that icosahedral clusters A l i :X  with X  = C, Si, Ge, Sn, Pb could be good 
candidates for cluster-assembled materials [180J. This family of clusters, which was discussed 
earlier, has a 40-electron closed-shell configuration, which is associated with high stability. 
Khanna and Jena [180] used D F T  methods to calculate the binding energy of two tetrahe
dral M g4 8-clectron closed-shell clusters and found weak binding. Based on this result, they 
speculated that similarly stable and symmetrical A l,2Si and A1,2C  closed-shell clusters might 
interact weakly when assembled into a solid.

This suggestion was investigated by Seitsonen et al. [181] using ab initio methods to sim 
ulate the cluster assembly. As a first step, A l 12Si rigid icosahedral clusters were assembled 
on a face-centered-cubic (f.c.c.) lattice and the equilibrium lattice was found by minimizing 
the total energy. A  cohesive energy with respect to separated clusters of 6.1 e V  per clus
ter was calculated for this minimum energy structure, but there was no energy gap in the 
density of states at the Ferm i level and the system appeared to be metallic. In addition, the 
equilibrium lattice parameter was so small that the shortest intercluster A l-A I distance was 
less than the intracluster A l-A l bond length. Next, full relaxation of the atomic positions was 
allowed, and when equilibrium had been achieved the shortest A l-A l bonds had increased to 
2.71 A  and open regions of the unrelaxed cluster lattice were more filled. The clusters had 
merged, and the short range atomic order indicated that the atoms had moved toward a close- 
packed arrangement. Sim ilar conclusions were reached for A1)2C  by Seitsonen et al. [150]. 
Again using ab initio methods, these authors found that although the isolated clusters were 
very stable, the f.c.c. solid composed of A1,2C  clusters was unstable against melting when the 
atoms were allowed to relax individually.

A  simulation that successfully achieved cluster-assembled A1,2C  and A l 12Si solids was 
reported by Gong [151]. The electron density of A1I2C  is not spherical; there are protrusions 
and indentations. Taking account of these asymmetries in the electron densities of the isolated 
clusters, Gong designed a cubic-like solid structure with 8 clusters per unit cell in which each 
cluster is oriented 90° with respect to all its near neighbors. The orientation of the clusters 
is illustrated in Fig. 26. In this structure, the overlap of the electron densities of neighboring 
clusters shown in Fig. 27 is reduced over the overlap for a f.c.c. structure. The equilibrium 
structure was found by minimizing the total energy, and the resulting solid had a very small

Table 2. Cohesive energy (eV/atom) for solid com
pounds in two structures.

Alloy Assembled from clusters CsCl

LiPb 2.325 2.415
NaPb 1.910 1.895
KPb 1.835 1.545
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Figure 26. The atomic structure of A II2C cluster dimer, and the relative orientation of A1,:C clusters in the solid. 
Big balls for Al atoms and the small balls for C atoms. Reprinted with permission from [151|, Gong, Phys. Rev. 
B 56. 1091 (1997). © 1997, American Physical Society.

cohesive energy of ~ 1.1 eV  per cluster implying that the A l !:C (S i)  clusters are condensed 
by a rather weak van der Waals force. The clusters retained their identity in the equilibrium 
solid with the shortest intercluster A I- A I distance being much longer than the A l- A l intra
cluster bond length or the nearest neighbor distance in bulk Al. A M D  simulation o f the solid 
at a temperature of —20 K  provided a further check of the stability. Apart from vibrational 
motion of the atoms, the icosahedral structure o f the A l i :C  clusters was unchanged during 
the 1.1 ps M D  run.

W e finally discuss the assembling of A1,3H  clusters, which also highlights the importance of 
the relative orientation of clusters in cluster assembly. These are clusters with 40 valence elec
trons and a sizable H O M O - L U M O  gap of 1.4 eV, and we recall from a previous section that 
the structure is an icosahedron with the H atom ehemisorbed on the center of a triangular 
face. The study of the (A I|3H )2 cluster-dimer provides insight on cluster assembling [ 183— 
185]. Two isomers characterized by different relative orientations of the two A l !3 units were 
studied. In the first dimer, the two clusters had parallel faces in contact, rotated 180° relative 
to one another. The potential energy o f the dim er was calculated, for frozen cluster geome
tries, as a function of the cluster-clustcr distance, and the energy minimum was obtained for a 
separation of 15.74 a.u. A ll the atom ic coordinates w'cre then relaxed for that separation. The 
new' atomic arrangement preserved the intrinsic structure o f the dimer. The binding energy of 
the cluster-dimer with respect to the separated clusters w'as 1.74 eV. The relative orientation

Figure 27. Contour map of the electron density in a (001) plane for Al. C. Reprinted with permission from [151],
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in the second dimer is such that the clusters have edges in contact, but one of the clusters is 
rotated 90° with respect to the other so that the contact edges are perpendicular to each other. 
In this configuration, the relaxed dimer structure has a binding energy of 3.03 eV. and the 
increase of 1.2S e V  with respect to the first isomer is a consequence of the favorable relative 
orientation of the two clusters, a point that has obvious implications for cluster assembling. 
A  sim ilar structure with perpendicular contact edges was also found to be the ground state 
of the dimer composed of two icosahcdral clusters in the pair potential calculations of Sun 
and G ong [186]. The stability of these dimers suggests that linear nanowires built from these 
clusters could be synthesized.

Simulations aiming to model the assembling of a nanostructured material from A1,3H  clus
ters were performed using ab initio methods [183-185]. The optimal relative cluster-ciuster 
orientation in the cluster-dimer suggested a favorable configuration for an assembled solid 
with neighboring clusters having edges in contact and perpendicular to each other. This con
dition leads to a simple cubic lattice. The energy of the assembled solid was first calculated 
while maintaining the structures of the individual clusters as frozen. A  curve with two minima 
was obtained. The less relevant outer minimum corresponded to a large lattice constant of 
32 a.u. and a small binding energy with respect to the isolated clusters of only 0.35 e V  per 
cluster. A  similar minimum was found by Gong [151] in the earlier simulations of the assem
bling o f A112C  and A l ,2S i clusters. The lattice constant of the inner minimum was 24.2 a.u. 
In this arrangement the A I-A I distances between atoms in neighboring clusters were com 
parable to the intracluster A I- A I distances. The solid was metallic but the density of states 
was very different from that of bulk Al. The binding energy of the assembled material was 
15 e V  per cluster, about one-third of the internal binding energy of the free A1,3H  cluster. 
This fraction is sim ilar to that found for the assembling of the Pb-alkali clusters, and seems 
to give the characteristic order of magnitude for the assembling of clusters formed by typical 
metallic elements. In contrast, the ratio for the fulleritc is one order of magnitude smaller. 
M olecu lar dynamical simulations at 150 K were performed to test the stability o f the clusters. 
During the 3 ps simulation, the assembly was stable with only mild distortions. However, the 
temperature was high enough for the H atoms to migrate toward the open regions in the 
assembled lattice between the A l,3 clusters.

W e should conclude from the theoretical work on the assembling of A i,3-based clusters that 
it is no simple matter to test the stability o f a cluster-assembled solid through a simulation. 
The internal structure of the clusters, the relative orientation o f the clusters, and the structure 
into which they are assembled are all factors that have to be considered.

4. CONCLUSIONS
Sim ulations based on density functional theory have provided a very useful theoretical tool 
for calculating and interpreting the electronic and structural properties of clusters. The most 
distinctive characteristic of small clusters of the simple s/;-metals is the existence of magic 
numbers in the abundance mass spectrum o f clusters formed by the usual supersonic expan
sion techniques. This and other evidence shows that the clusters with magic numbers arc 
particularly stable with respect to neighboring clusters. A  simple droplet-like model based 
on D F T  in which details o f the atomic structure are smeared out explains the magic number 
effect. E lectronic shells are formed, and enough electrons to completely fill a shell leads to 
a closed-shell structure and stability paralleling the rare gas atoms. Full ab initio calculations 
taking into account the detailed geometrical structure of the ionic skeleton of the clusters 
corroborate this interpretation. The existence of electronic shells has a strong influence on 
the variation of many electronic properties o f the clusters as a function of size. Structural 
properties are also influenced. For example, the geometrical structure of aggregates is closely 
related to their electronic structure, and in extreme cases, like some doubly ionized clusters, 
the structure can be viewed as supermolecules composed of interacting closed-shell fragments.

The chemical reactivity of the clusters with a closed-shell electronic structure is weaker 
than the reactivity of open-shell clusters. This provides motivation for a search for closed-shell 
clusters with exceptional stability that could form the building blocks of new cluster-assembled 
materials. However, a closed-shell and a large H O M O - L U M O  gap are necessary conditions,
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but are not enough for achieving a successful cluster self-assembling. The reactivity o f metallic 
clusters is normally large and we have from the simulations of the family o f alloys formed by 
alkali metals and elements o f the Pb group that an efficient way of passivating the clusters is 
by coating. For example, in the case of the PbNa alloy, the building blocks are Pb4N.i4 clusters, 
but on assembling, the coatings of Na* ions leave the clusters, move into the nterstices, 
and form a barrier separating the robust Pb4 cluster cores. In fact, experimentalists have 
already used this tool to produce assemblies of size-selected gold clusters coated by organic 
molecules [187].

The density functional-based a b  i n i t i o  methods can be useful in assessing the reactivity of 
clusters that are candidates for assembling. The simulation of cluster dimers as a function 
of the separation of the clusters can be used to estimate the strength of the cluser-cluster 
interaction, and the relaxation of the individual atoms is a measure of the degree to which 
the clusters retain their integrity. In addition, there are a few reports of the sinulation of 
the assembling of clusters into a solid [150, 151, 179, 181-183]. These provide understanding 
of the interactions between clusters as they are brought together to form bulk naterial. In 
particular, the work of G ong illustrates that the detailed electron distribution of the isolated 
cluster is an important factor in determining the sort of arrangement of clusters that can lead 
to successful cluster assembling.

Developments in the theory underpinning the ab initio simulation methods should be 
expected, and these will lead to a more refined calculational tool. In the density functional the
ory itself, steady improvements are being made to the exchange-correlation functio ial for the 
ground state, where the only approximations in the Kohn-Sham approach are made Although 
the discovery of the exact functional is a vain hope, approximate functionals are good enough 
to yield energies to chemical accuracy, which is necessary if the energies o f close-lying clus
ter isomers are to be ordered correctly. Theoretical effort in developing improved explicit 
electron kinetic functionals for use in the orbital-free approach would be very prifitable, as 
this approach is much faster and more efficient than the full Kohn-Sham scheme. Flowcver, 
first principles normconserving pseudopotentials cannot be used in the orbital-free approach 
as it is presently formulated and more work is needed to develop accurate and transferable 
pseudopotentials that can be used in the approach.
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1. INTRODUCTION
The combination of organic polymers and inorganic nanoparticles can lead to a nano
composite that is more useful than either of the individual components. For example, if 
the nanoparticles are metals or semiconductors, the nanocomposite can exhibit the mechan
ical, optical, or electromagnetic properties of the inorganics and the flexibility and pro- 
cessability o f the polymers. One of the critical challenges facing researchers in the area of 
nanocomposites is formulating fundamental nonempirical structure-property relationships 
for these materials. W ithout the aid of such basic relationships, the fabrication of nano
composites for specific applications remains a largely Edisonian and costly process. The 
stumbling block to the derivation of such fundamental correlations has been a lack of mod
els for predicting ( l )  the structure of these materials and (2) the properties of those specific 
structures. Such predictive models are crucial for establishing how changes in the character
istics of the components affect the morphology of the mixture and, similarly, how changes 
in the morphology affect the macroscopic behavior of the material.

O u r recent research efforts have been focused at addressing this issue. In particular, wc 
developed computational models for the structural evolution and final equilibrium mor
phology of mixtures of polymers and nanoparticles. We then used the specific morpholog
ical information obtained from these models as the input to com puter simulations for the 
mechanical, electrical, and optical properties of the composites. In this chapter, we describe 
a number of examples that illustrate this approach and then discuss our subsequent findings 
on the relationship between structure and properties in nanocomposites.

O u r general methodology is outlined schematically in Fig. J. W e start by specifying the 
size and shape of the nanoparticles and the composition of the polymeric matrix. These 
characteristics serve as parameters in our models for determining the mesoscale morphology 
of the mixture. Specifically, we recently developed two distinct techniques for modeling the 
structure of copolymer/nanoparticle mixtures. To predict the equilibrium  morphology, we 
derived a mean field theory for mixtures of soft, flexible chains and hard spheres [1-10J. 
Applied to mixtures of diblock copolymers and nanoparticles, the theory predicts ordered 
phases where the particles and diblocks self-assemble into spatially periodic structures [9). 
The model integrates a self-consistent field theory (S C F T )  for polymers and a density func
tional theory (D F T )  for particles. The S C F T  has been remarkably successful in describing 
the thermodynamics of pure polymer systems [11], whereas D FTs capture particle ordering 
and phase behavior in colloidal systems [12, 13]. The integrated S C F / D F T  approach provides

Iterate

Nanoscale Mesoscale
Characteristics of 
Polymers and Particles

Morphology

strain

Processing

^Temp.

Figure I. General methodology: Size and shape of constituents and composition of polymeric matrix are parameters 
fur morphological studies. The resultant morphologies serve as input to performance models, such as the LSM. 
which predicts the mechanical properties of the ssslem. This procedure can be iterated to optimize the constituent 
properties necessary for obtaining the desiied physical properties of the polymer composite.
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a powerful technique for determining the structure of a broad class of polymer-particle 
mixtu res.

It is noteworthy that experimental studies [14) have recently confirmed our S C F/D FT  
predictions on the entropically driven size segregation of binary particle mixtures within 
a diblock melt [6 ,7 ). Experiments [15] have also validated our observation that added 
nanoparticies can promote transitions between the different structures of the diblock 
copolymers [8].

W e also developed a dynamic model that allows us to capture the structural evolution 
of the system [16-25]. The model combines a Cahn-Hilliard (C H )  theory for the phase- 
separation dynamics of binary blends or diblocks with the Brownian motion of the nano
particies. W e subsequently refer to this technique as the C H /B D  (Brow nian dynamics) model. 
The technique allows us to probe the interactions in a system o f phase-separating polymers 
and mobile, wettable particles. Using this C H /BD  approach, we can elucidate factors that 
govern the dispersion of the particles, the growth of the fluid domains, and the structure of 
the solid-liquid and liquid-liquid interfaces [21]. Recent experimental studies [26] have con
firmed our predictions based on the C H /B D  simulations [24, 25] that nanoparticle additives 
effectively pin the sizes of the polymer domains within a phase-separating blend.

As indicated in Fig. 1, the output from these models was then used in the lattice spring 
model (L S M )  to obtain the response of the material to mechanical deformation [3, 16, 18). 
The L S M  is a network of nearest and next-nearest neighbor interactions, which are harmonic 
in nature [27]. These harmonic interactions, or “ springs,” result in linear forces between 
lattice sites (nodes); consequently, the simulation yields the linear elastic behavior of the 
composite. A  distinct feature o f the L S M  is the ease with which various heterogeneities can 
be incorporated through local variations in the characteristics of the springs.

To examine electrical properties, we use an approach sim ilar to the one outlined in 
Fig. 1 [16]. We now map the morphology of the mixture onto a finite difference model 
( F D M )  for the electrical conductivity of the material. In particular, to investigate the 
electrical conductivity o f the heterogeneous polymer/nanoparticle composites, we discretize 
Lap lace ’s equation for a static potential distribution onto a square or cubic lattice [28]. This 
is equivalent to solving Ohm 's law (potential difference is linearly related to current) and 
K irch o ffs  law of current conservation (total current flowing into any point is zero) for a net
work of resistors [29]. The resistor network model offers an expedient method for discretizing 
the electrical behavior o f a continuous medium, while allowing for the heterogeneous nature 
o f this material.

W e have also combined the S C F / D F T  morphological studies with a computational model 
for the propagation of light [30]. In particular, the finite difference time domain (F D T D )  
technique is used to simulate the propagation of light through this diblock/nanoparticle com
posite. The F D T D  method is a flexible, numerical means of analyzing interactions between 
waves and complex materials containing dielectric or metallic objects [31]. The technique 
involves approximating the integration o f Maxwell's equations in real space by the use of 
finite differences. Specifically, the F D T D  is a “ time marching" algorithm used to solve the 
wave equation at each point on a grid [32]. The field is set to zero at the initial time step, 
and at the next time step a source is turned on to generate an optical signal. From this 
initial condition, the wave fields at all points on the grid at any later time can be calculated 
through a simple, iterative scheme. The F D T D  technique is highly useful for examining the 
behavior of heterogeneous materials [33] because one can readily compute the propagation 
o f light in materials that include particles of arbitrary shape or interparticle distance [31]. 
The results of this study allow us to determine how the polymer-particle interactions affect 
the spatial distribution o f tillers within the polymer matrix and how this distribution in turn 
affects the optical properties of the nanocomposite.

By  integrating the morphological and mechanical, electrical, or optical models, we can 
isolate how specific modifications in the geometry or properties of the components affect the 
macroscopic behavior. Thus, we can establish how choices made in the components affect the 
ultimate performance of the system. In addition, we can perform trade-off analyses and com
pare the advantages of one choice over another. We can also iteratively optimize the system 
parameters to establish the ideal additives that will yield the desired, specified macroscopic
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properties. For example, we can ascertain the optimal polymer matrix or particle architecture 
for enhancing the reinforcing behavior of the nanoparticles and thus increasing the strength 
of the materials. We can formulate optimal mixtures of nanotubes and polymers that yield 
electrically conducting composites with only a very low volume fraction of nanotubes. We 
can also determine the optimal polymer-particle interactions for creating photonic band gap 
materials.

Finally, as indicated in Fig. 1, by introducing variations in temperature, pressure, or an 
imposed shear flow, the effects of processing on both the structure and properties of the 
system can be analyzed. W e recently focused on a pure binary polymer blend (without nano
particles) and used our computational models to examine how shearing this polymer melt 
affects the dynamic fracture mechanics of the final solid material [34]. W e do not discuss 
this paper here because our focus is on the structure and properties of polymer/nanoparticle 
composites. Nonetheless, we briefly note how these calculations were carried out. In partic
ular, the phase separation of the blend under an imposed shear is simulated through the 
Cahn-Hilliard method, where an advection term is added to introduce the flow field [35]. 
Using this model, we obtained the structural evolution and late-stage morphology of the 
sheared mixture. We coupled these morphological results to a dynamic L S M  to simulate 
crack propagation through the solid blend structure. In the dynamic L S M , the behavior of 
the nodes is dictated by Newtonian dynamics. In addition, in order to introduce a crack and 
model the subsequent degradation of the material, springs arc selectively removed from the 
system. The model allows us to simulate crack propagation through these heterogeneous 
structures and determine the strength and toughness of the material. Consequently, we could 
correlate the relative orientation of the interfacial regions to the overall mechanical behavior 
o f the system. W e also contrasted these results with our findings on the unsheared samples 
and thereby probed the effect o f processing on the performance of polymer blends. These 
studies are particularly important because the variations in processing could be exploited to 
create novel behavior, and ultimately new products, from off-the-shelf materials.

In the next section, we begin by briefly describing each of the models that we used to 
obtain the structure (SC F/D FT , C H /B D ) and macroscopic behavior (L S M . F D M , F D T D )  of 
the polymeric nanocomposites. We then describe our findings on the effect of such critical 
factors as the particle geometry and polymer architecture on the structural organization and 
properties of these complex materials.

2. MODELS FOR DETERMINING THE STRUCTURE OF 
NANOCOMPOSITES

2.1. Self-Consistent Field/Density Functional Theory Approach
To predict the equilibrium morphology of polymeric composites, we created a mean field 
theory for mixtures of flexible polymers and solid nanoparticles [ 1—10]. The model combines 
a self-consistent field theory (S C F T )  for polymers and a density functional theory (D F T )  for 
the particles. W e note that in the area of composites, the particles are commonly referred 
to as fillers and the polymers containing these fillers are referred to as filled systems. The 
S C F / D F T  is a powerful method for determining the phase behavior of filled systems because 
we are not constrained to make a priori assumptions about the structure of the phase or 
the distribution of particles. Here, we outline the fundamental equations of a system con
sisting of an incompressible mixture of molten A B  diblock copolymers and solid spherical 
nanoparticles. An  A B  diblock copolymer is composed of a block of A  monomers that are 
chemically linked to a block of B  monomers. For sufficiently low temperatures (discussed 
later), the A  and B  blocks are chemically incompatible, and this incompatibility drives the 
A  and B  blocks to “ microphase separate”  into an array of periodically regular morpholo
gies. (Because they are chemically linked, the fragments cannot undergo macroscopic phase 
separation.)

In the systems considered here, all the particles have the same radius R. Each A B  diblock 
consists of N segments, each of volume :. The fraction of A  segments per chain is denoted 
by / . The enthalpic interaction between an A  segment and a B segment is described by
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the dimensionless Flory-Huggins parameter, which is inversely proportional to tem
perature. As a function of (^ABN ) and /, a pure diblock melt can form spatially periodic 
microstructures with lamellar, cylindrical, spherical, or more complicated phases [36).

In S C F  theory, pair-wise interactions between differing segments are replaced by the inter
action of each segment with the average field created by the other segments. Here, wA( r )  
is the value at a point r o f the mean field felt by the A  segments, wu( r )  denotes the field 
for B  segments, and wp( r )  represents the field for particles. Using this approach, the free 
energy for our system is given by F} = Fe + F(l -f F/r The first term, F ,  details the cnthalpic 
interactions in the system:

F, = (l/V ) I ^lA 'AiiN<fA(r)¥3[j(r ) + ATBi>N>fR(r)^p(r)+^ApN<pA(r)(/Jp(r)] (1 )

where V is the volume of the system and <pA (r ) ,  <pB(r ) ,  and <pP( r )  are the local concentrations 
of A  segments, B  segments, and particles, respectively. The parameters ^AP and describe 
the cnthalpic interactions between the particles and the respective blocks.

The diblock entropic free energy F(, is [11]:

F,i = ( 1 -  <f)P )  ln [K ( l  -  4>V)/Qd\ - (\/V) j  dr[wA(r)tpA(r) + wB(r)<pH(r)] (2 )

where Qd is the partition function of a single diblock subject to the fields ?/>A( r ) and r). 
Here, the total volume fraction of particles in the system is given by </>,, and thus, the volume 
fraction of diblocks in the mixture is (1 — 4>P).

Finally, the particle entropic contributions to the free energy is given by

Fp = (<l>p/a)\n(V4>p/Qpa) - (l/V ) J  dr[wp(r)pp(r)\ + (1/1/) j  dr pp{ r )% s[ip(r)] (3 )

where Q is the partition function of a single particle subject to the field w ( r). The local 
particle volume fraction, <p (r ) ,  is related to the dimensionless center of mass distribution,
Pp(r), by

V’p (r )  =  [4a/(37T/?3)] f  dr’p  A r  +  r ')  (4 )

The parameter a = [4tt/? "p0/ (3 N ) ] denotes the particle-to-diblock volume ratio. Recall that 
the model is for an incompressible system and the mixture obeys the following incompress
ibility constraint: <jpA( r )  4- <pH(r )  4- <pP( r )  = 1. In a mean field manner, this incompressibility 
constraint prohibits significant overlap between the particles and monomers, as well as signif
icant overlap between the A  and B  components. However, to accurately capture the behavior 
of the system as the polymer concentration goes to zero, we must also include a term that 
explicitly describes the steric interactions (the nonideal term ) between the particles. The last 
term of F  describes the excess (nonideal) steric free energy of the particles through the 
D F T  derived by Tarazona [12]. In particular, the Carnahan-Starling equation of state for the 
excess free energy o f a hard-sphere fluid, is now evaluated with the “ weighted”  (locally 
averaged) particle volume fraction, <p(r) [9]. This density functional contribution is included 
so that the model can describe not only homogeneous (liqu id ) but also inhomogeneous 
(crystalline) distributions of the hard spheres. In the case of the spherical nanoparticles, we 
chose the Tarazona D F T  because it is a simple and physical approach specifically developed 
to reproduce the liquid-solid transition in hard spheres. Some D FT s  more accurately describe 
the liquid equation o f state but fail to predict the liquid-solid transition; other approaches 
are more computationally intensive.

This approach is valid for a finite range of particle sizes. I f  the particle radius is beyond 
the root mean-squared end-to-end distance of the chain— that is, R >  R{)— it may be more 
appropriate to view a particle as a substrate and include boundary conditions that charac
terize the polymer-substrate interactions. If, on the other hand, R <$c R{], where the particle 
is on the same size scale as a monomer, then it may be sufficient to treat the particle as a 
solvent molecule. In our studies [1-10], we have focused on cases w'here 0ARn < R < 0.3/?o,
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which clearly falls between these two extreme situations. In addition, we have focused on 
particle volume fractions that are less than 20% to ensure that mixture is not macroscopically 
phase separated into a two-phase mixture.

In addition to examining the behavior of mixtures that contained spherical r.anoparticle 
additives, we examined systems that contained rodlike nanoparticles. To introduce these 
rods, we modified the free energy functional F;) and adopted another form of DFT, which 
is called the fundamental-mcasure theory ( F M T )  [37-39]. Instead of the term 'J'csl^C1') ]  *n 
Eq. (3), we now have ^ FMT[^>(r)], where ^ FMT assumes a different functional form  than 

[9, 37-39]. A  distinct feature of F M T  is that the density functionals are constructed 
from the geometric features of the particles. This approach has recently been used to model 
the behavior of a system of parallel hard cubes (P H C )  [37-39]. Following this derivation, 
we extended the theory to parallel hard rectangles (P H R ) ,  the “ rods”  in our mixtures, and 
parallel hard platelets [3]. In these systems, the long axes of all the particles are assumed to 
lie parallel to each other. This is a rather stringent constraint that is, nonetheless, applicable 
to certain liquid-crystalline rods and clay platelets. In addition, this assumption might be 
appropriate for effectively high concentration o f rods that are confined within the nanoscale 
domains of the microphase-separated diblocks.

Each solid, rectangular particle is characterized by a cross section of 2a  x 2a and a length 
of la f . (In  other words, (7 is 1/2 an edge length.) The dimensions of the solids are given in 
terms in R{). To simplify the calculation and make it com putationally tractable, we constrain 
all the parallel particles to be oriented along one o f three possible directions, namely, the 
.v, y, or z directions. For each set of (<rt , o\), we carry out two distinct simulations,
allowing the particles to be oriented in or out of the plane of the mesophase. We compare 
the resultant free energies of the simulations and determ ine the equilibrium morphology as 
the one with the lowest free energy. Further details about the calculation can he found in 
Ref. [3].

In the mean-held approximation, wA(r), ? % ( r ) ,  and wp( r )  are determ ined by locating 
saddle points in the free energy functional Fr subject to the incompressibility constraint. This 
yields a system of equations that is solved numerically and self-consistently to give possible 
equilibrium solutions. To obtain these solutions, we implement the “ combinatorial screening” 
technique of Drolet and Fredrickson [40]. The advantage of this technique is that it requires 
no a priori knowledge of the equilibrium morphology; this is particularly important in our 
studies because polymer/nanoparticle systems can exhibit structures that are as yet unknown. 
We make an initial guess for the fields and calculate all the densities and the free energy at 
each step; the fields arc then recalculated, and the entire process is repeated until changes 
in the diblock densities at each step become sufficiently small. In addition, we minimize our 
free energy with respect to the size of the simulation box, as proposed by Bohbot-Raviv and 
Wang [41].

2.2. Cahn-Hilliard/Brownian Dynamics Model
We also developed a hybrid model that couples the phase-separation dynamics of binary 
homopolymer blends or diblocks with the Brownian motion o f the nanoparticles [16-25]. As 
noted in Section 1, we refer to this approach as the C H / B D  model. This model not only 
reveals the steady-state structure of the system but also allows us to capture the structural 
evolution of the system as it moves toward this final state.

Using this C H /B D  model, we considered an A/B binary blend or A B  diblock copolymers 
that contain particles, which have an affinity for the A  phase. This affinity is introduced via 
a poiymer-particle coupling term in the free energy (as described later). Thus, the phase- 
separation of the blend, or the rnicrophase separation of the diblocks, can affect the spatial 
distribution of the particles, and the particles can influence the size and morphology of the 
polymer domains.

O ur description of the blend is based on the Cahn-Hiiliard approach [42,43]. W e define 
a scalar order parameter ij/{r )  -- cbA(r) — c/>B(r ) ,  which is the difference between the local 
volume fraction of A  and B  at a position r. Note that i// = ±il/..(l corresponds to the equilib
rium order parameter for the A-rich (B-rich ) phase. In this model, i// a — 1 for the A  phase
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and «// = -1 for the B  phase. In the Cahn-Hilliard m odel the phase separation dynamics 
of a binary A/B blend is described by the following equation,

ch/j/dt — M \ 2( 8 H  { ^ } / 8 i l f )  + £ (5)

where M is a kinetic coefficient (taken as a constant for simplicity), is a free energy
functional, and £ is a conserved zero mean Gaussian white noise. Here, £ is set to zero. To 
describe the dynamics of microphase separation in a melt of A B  diblocks, the equation is 
modified in the following way [44]:

d i f r / d t  =  M V 2 ( 8 H { i P } / 8 i l / )  - F(i// - F) (6)

The variable F = 2/ -  1 describes the asymmetry of the diblock; for a symmetric diblock,
f  = 0.5 and F = 0. The param eter F  determ ines the thickness of the domain structure and
is related to the degree o f polymerization, N, of the diblock [44].

The free-energy functional H{ip} can be written as the sum of two terms [23]: =
HCM  + HCPl {i//}. The first term describes the local and gradient energy contributions and 
is given by:

W c ilW  = [  — A ln[cosh(i/0] + (1/2)i/r + (D/2)(V<//)2 dr (7)

where A and D are constants. Here, we set A — 1.3 and D — 0.5.
The second term, H c ? l  {(//}, takes into account the coupling between the particles and the

order parameter field and is given by [23]:

f ln n .W  = E  /  V (r -  R / M ( r )  -  dr (8)
i

Here, R, is the position of the center of mass o f the /th particle and iff, is the order param 
eter at the surface of the particle. The summation is over all particles. For short-ranged 
interactions, we can take

I/ (r )  = C exp ( —|r|/r()) (9 )

where /<> represents a microscopic length scale and C  captures the strength of the wet
ting interaction. A  variety of alternative choices for V ( r )  will yield the same qualitative 
features [23].

In the first set o f studies presented here, the particles in the system are spherical in shape. 
To describe their interaction with the background fluid, we impose the following boundary 
condition: the order param eter at the surface of each particle is set to a constant value, such 
as \jfs = 1. In this case, the particles are effectively “ coated”  by a layer of A  and thus are 
wet by the A  fluid. By varying C [Eq. (9 )] or *//s. we can modify the strength of the wetting 
interaction or the chemical nature of the particle.

The particles exert an influence on the binary mixture through this preferential wetting 
interaction. In addition, through Eq. (8), we see that the free energy o f the system is reduced 
when the value of i/y near a particle is sim ilar to the value of *//v. Thus, the nature and extent 
o f the wetting interaction plav a role in the evolution of the fluid domains.

The particles in the system undergo Brownian dynamics, and their motion is described by 
the following Langevin equation (in the high friction limit, where the inertial term can be 
neglected) [23]:

dRj/clt = Mp(fj - dHCPj a R ,) + r], (10)

where M p is mobility and r), represents a Gaussian white noise. The second term is the force 
from the polymer matrix that modifies the motion of the particles. In effect, ( —<WCT, /<9R,) 
represents a thermodynamic force that drives the particles into the compatible, wetting 
phase. The term f, is the force acting on the /th particle due to all the other particles; for 
example, such a force arises when a Lennard-Jones interaction or other potential is intro
duced between the particles. Here, we set f, equal to zero.
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In this version of the model, the particles in the system are “ soft”  or penetrable to the 
fluid because we neglect excluded volume interactions between the particles and the fluid. 
(Excluded volume interactions between the particles and fluid can be explicitly included 
in the model [24,25]; for the corresponding systems, both the “ hard”  and “ soft”  particles 
yield similar results for the particle distributions.) On the other hand, the excluded volume 
interactions are included for particle-particle interactions. In particular, if a move results in 
overlap between particles, the move is rejected.

In addition to examining A-like, spherical particles with this model, we considered A-like 
nanorods [16,22]. The free energy in Eq . (5 ) now contains an additional term Hrn
which represents the rod-rod interaction term. This term is taken to be repulsive and is 
dependent upon the distance and angle between two rods:

Hrr = x E U L -\n
i  j

= 0 for |r. — r.I > L

- cos-(fl, -  Oj) for |r, -  r-| < L
(11)

where the constant x characterizes the strength of the interaction, L  is the rod length, 
and r, and 0, are the respective position of the /th rod and its angle relative to a fixed 
direction. One way to simultaneously achieve the preferential wetting interaction described 
previously and the rod-rod repulsion is to anchor A  chains onto the surface of the rods. The 
compatibility between the anchored chains and the chemically identical A  phase will yield 
the desired wetting behavior, and the steric interactions between the grafted chains will lead 
to an effective repulsion between the rods. In the absence of the binary blend, Hrr leads to 
an isotropic-nematic ordering for the pure rod system [22].

The rigid rods are described as discrete entities [16,22], each of which has a center-of- 
mass position r, and an orientation angle ()r measured from a fixed direction. The position r, 
and angle 6l o f the /th rod is updated with the following Langevin equations

(h-j/dt — -M r(c)H/drt) -f ( r
( l2 )

( i f ) ,/ e f t — / O S ; )  -f £ fl

where M r and M 0 are the respective translational and rotational mobility constants, and £r 
and £0 represent thermal fluctuations that satisfy the fluctuation-dissipation relations.

The preceding differential equations for the evolution of the system are discretized and 
solved numerically. The model allows us to calculate how the characteristics of the polymer 
matrix (for example, blend versus diblock) and particles (for example, size, shape, wettability) 
affect the kinetics of structure formation. We can also include the effects of an applied flow 
field (such as simple shear) [45] and thus determine how processing affects the morphology 
of the system.

The arrays that hold the spatial information in the morphological models serve as the 
input to the L S M . W e illustrate this point through the schematic in Fig. 2. Consider a blend 
of two immiscible homopolymers, A  and B: the image on the left represents the output 
from simulations on the morphology of the mixture. The locations of these different polymer 
domains are superimposed onto the L S M  network of springs, which is represented by the 
biack mesh in the middle image. The springs that lie within the A  domains (in red) are 
assigned one set of force constants, and in a similar manner the springs that lie in the B  
phase (in b lue) are assigned separate characteristic values. The green circle in the central 
image encompasses springs at the interface between the A  and B  domains; one set of these 
springs is enlarged and shown on the right (where the dashed black line is the interface).

In mixtures involving nanoparticles, the particle positions are also mapped onto the L S M , 
and the particle regions are assigned distinct spring constants. This procedure is used to 
initiate the calculations described later. W e note that in these simulations, each filler particle 
is represented by several nodes of the L S M . Thus, the nanoparticles are sufficiently large 
that they can be assigned and characterized by an appropriate spring constant.

To examine electrical properties, we use a similar approach of mapping the morphology 
of the films onto a model for the electrical conductivity of the material. Here again, each
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Figure 2. Mapping data from morphological studies onto an LSM. The local properties of a material are assigned, 
depending on the local polymer concentration and the presence of nanoparticles, obtained from the output of the 
polyme r-processi ng simulation.

filler particle is represented by several nodes of the resistor network. Thus, the nanoparticles 
can be characterized by a macroscopic conductivity. In the next section, we describe the 
simulations o f both mechanical and electrical properties in greater detail. W e also describe 
the model we use to characterize the optical properties of the composites.

3. M O D E LS  FO R D E TE R M IN IN G  M A C R O S C O P IC  
P R O P E R T IE S  O F N A N O C O M P O S IT E S

3.1. Mechanical Properties: Lattice Spring Model
One variety o f the L S M  is the Born L S M  [27J; in this model, the extension of a spring is 
energetically penalized through a central force constant, k, while the restriction in rotational 
motion is imposed through the introduction of a noncentral force constant, c. W e begin by 
describing the Born  L S M  for simulating elastic deformation and then describe a method for 
extending this model to capture viscoelastic behavior. A t each iteration in the simulation, 
forces are applied to the boundary sites or “ nodes," and the equilibrated nodal displacements 
throughout the system are calculated. The method for obtaining stresses and strains from 
these displacements and forces are further detailed below.

As noted, in the L S M  a material is represented by a network o f springs, which occupy the 
nearest and next-nearest neighbor bonds of a simple cubic lattice (in a 3D simulation). The 
clastic energy associated with a site or node m in the lattice is taken to be:

£«. = O / 2) £ (U „ ,  “  U«) • M ».« • ( Um -  UJ  ( 13)
n

where the summation is over all the neighboring nodes, n, connected to m by a spring. The 
term u„, is the displacement of node m from its original position, and M mw is a symmet
ric matrix that sets the elastic properties of the springs, through k and c, the central and 
noncentral force constants, respectively.

It has been shown that this system of springs obeys, to first order in displacements, the 
equations of linear elasticity theory for an isotropic elastic medium [27]. The elastic constants 
for this medium can be determined from the elements of the matrices [27]. These elastic 
constants are the Young’s modulus, E , and Poisson’s ratio, v, which are of the form [27]

E  =  [5k(2k + 3c)]/(4k -F c) v = -(k - c)/(c + 4k) (14)

A  “ force constant” is initially assigned to each node. Nodes that lie within the boundaries of 
the particles or defects are assigned different force constants than nodes that lie within the 
bulk matrix. The force constants for the bonds (that is, the spring constants) are averaged 
from the “ force constants" assigned to the associated nodes.

The harmonic form of the energy results in forces linearly dependent upon the displace
ment of the nodes. I f  forces are applied to the nodes, and the spring constants specified,
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then the nodal displacements can be obtained through a set of sparse linear equations. 
These equations are solved by using a conjugate gradient method to find the equilibrium 
configuration that corresponds to no net force at each node [27].

Typically, in purely elastic LSM s, a stress or strain is applied to the system boundaries, and 
the system is equilibrated, giving the next nodal displacements. The applied stress may then 
be incremented iteratively, and the system subsequently equilibrated, thereby allowing the 
simulation to proceed through a series of equilibrium states. Because the system is relaxed 
to the minimum energy configuration at each iteration, each iteration is considered “ quasi- 
static."

As noted before, the equilibrium state of the system is determined by finding the dis
placements that result in no net forces. The stress and strain tensors are calculated from 
these forces and displacements. The strain tensor can be obtained through a finite difference 
approximation of the displacement field. In particular, a central difference approximation 
can be used to obtain this strain tensor [27]:

S vU| = ( ~u( , + 8uimi.,.m + Su</-i . , . m  + u(,-:.,.A))/1-/f (15)

where ,s displacement field at coordinates and h is the initial distance
between adjacent nodes; alternatively forward or backward approximations are considered 
at system boundaries. The stress tensor is directly obtained from the forces acting on a node 
(the center of a cubic unit cell) [46],

(16)
I'll

Here. represents a sum over the surfaces of an elementary cubic cell, Fm is the force on 
any surface m of the cubic cell, /?'" is a unit vector either normal or parallel to the surface m, 
and A  is the surface area. The scalar stress and strain values correspond to the normal stress 
(axx where .v is the tensile d irection) and strain components in the tensile direction.

To assess the effective reinforcement provided by the particles within the composite, we 
determ ine the relative quantities (F  — /7U)//^, where F  is the field in question and F{] is 
the homogeneous response of the unreinforced polymeric matrix. The average strain in the 
system can be determined through the average nodal displacements at the system bound
aries, in the tensile direction. The average strain and the applied stress can then be used 
to calculate the Young’s modulus (stress of a material divided by its strain). This allows the 
global stiffness of this locally heterogeneous material to be determined.

Finally, we note that viscoelastic effects can be included in the L S M ; although we do not 
discuss such simulations in this review, we have carried out viscoelastic L S M  calculations 
on filled polymer systems and refer the reader to Ref. [47] for further details. To include 
viscoelasticity, a Kelvin unit is placed in series with each spring. A  Kelvin unit is an elastic 
component that is connected in parallel with a viscous component, such as a dashpot (see 
Fig. 3) [47]. This configuration allows an instantaneous elastic deformation to be obtained 
while enabling full recovery of strain upon removal o f the applied stress. The total recovery 
of strain is particularly important in simulations o f fracture, where in the wake of the crack, 
the sustained stresses reduce significantly.

In the viscoelastic model, a relaxation time is introduced through the incorporation of vis
cous deformation. Investigations of the dynamics of elastic oscillations or elastic waves have 
been undertaken using LS M s  [48,49] and similarly using a Lattice Boltzmann model [50], 
but it should be noted that the time scale of interest here is considered to be significantly 
longer than the time scale for the damping of elastic waves. The simulation of a viscoelas
tic system can therefore be considered as proceeding through a sequence of equilibrium 
stales, where the equilibrium bond lengths are no longer constant but incorporate viscous 
deformations. The viscous deformations do not vary significantly between iterations in these 
simulations [47], and therefore the information from the previous iteration is considered 
adequate for describing the equilibrium bond lengths in the current iteration.
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Figure 3. A Kelvin unit consists of an elastic component that is connected in parallel with a viscous component. 
Viscoelasticity may be incorporated into the LSM by considering a Kelvin unit in series with each spring.

3.2. Electrical Properties: Finite Difference Model
In addition to investigating the mechanical properties, we examined the electrical behavior 
of the nanocompositcs [16]. The conservation of current, J ,  in a closed electrical circuit is 
written as ? * J  = 0. Ohm 's law relates the current to the electric field, J  = G E , where G is 
the conductivity. Thus, we can write in the bulk

V » ( C E ) = ( )  (17)

Because the electric field is the gradient of the electric potential, <l\ we obtain the following 
equation for an inhomogeneous system

V • (GV<1>) = 0 (18)

Taking a finite difference approximation results in the following set of discrete equations

j

where the summation is over the neighboring nodes on a square or cubic lattice, G /y is the 
conductance between nodes / and /, and <!>,■ is the potential at node i. Equation (19) is 
simply a combination of O hm ’s law and K ircho ff’s law of current conservation for a square 
network of resistors [29]. This system of equations is solved with constant voltages applied 
to the boundaries of the system in a specified direction.

Just as in the m icromechanical studies, the morphological information serves as input to 
the electrical model. Conductivities G} are assigned to the lattice nodes j  at the beginning of 
the simulation; the specific value at a node depends upon its location, that is, if it is situated 
in a polymer domain or a nanoparticle. To assign a conductivity to the bond connecting two 
neighboring sites, we take the sites to be in series. In other words, the conductivity between 
nodes i and j  is given by (1) G iy = [1 / (2 G ,) + 1/(20 ',)] l . The particles are assigned a higher 
conductance than the polymers.

M uch as in the mechanical studies, in these conductivity studies we enlarge the size of the 
simulation box relative to the size of the lattice in morphological studies by a specific factor 
(fo r example, a factor of 16); in this way, we more accurately capture the properties of each 
element and, consequently, the macroscopic properties of the system. W ith the voltage being 
applied at the system boundaries, we obtain the current flow through this heterogeneous 
system. In this manner, we obtain the global conductance as a function of the composition 
of the nanocomposite.
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3.3. Optical Properties: Finite Difference Time Domain Method
The F D T D  methodology [31] involves the discretization o f Maxwell's curl equations of elec
tromagnetism in three dimensions [51]. The differential form of Maxwell's equations is:

V x H  =  e i d E / d t )  + a E
(20)

V x E  = - f i ( d H / d t )  - a ' H

where E  is the electric field, H  is the magnetic field, e  and f i  are the perm ittivity and per
meability, respectively, and a  and a* are the respective electric and magnetic conductivities. 
Yee [52] introduced an efficient time stepping methodology for discretizing these equations, 
where the electric fields are given at the edges o f the “ Yee”  cell, the magnetic fields are 
given at the faces of the Yee cell (see Fig. 4), and the magnetic fields are calculated half a 
time step later than the electric fields. In other words, the equations are solved in a leap-frog 
manner; that is, the electric field is solved at a given instant in time, then the magnetic field 
is solved at the next instant in time, and the process is repeated over and over again. In 
the study described in Section 4.4, we used the results from the S C F / D F T  calculation in 
the F D T D  simulation and thus chose the dimensions of the Yee cell to correspond to the 
S C F / D F T  grid of points [30]. In this manner, the propagation o f electromagnetic waves can 
be simulated in systems that possess nanoscale domains.

These equations must be solved with the appropriate boundary conditions. To simu
late free space boundary conditions, the perfectly matched layer ( P M L )  was introduced by 
Berenger [53]. The P M L  was designed to absorb electromagnetic waves without reflection 
and thereby negate the system size effects that arise from the use of a finite computational 
domain (see Fig. 5). The basic principle arises from the reflectance of a wave passing from 
a medium A  into a medium B  being given by

r  =  ( V a  ~ 17b)/(1?,x + Vu) ( 21)

7.

Figure 4. Positions of the held components within a Yee cell. The cieetric fields are given at the edges of tic Yee 
cell, and the magnetic fields are given at tlie faces of the Yee cell.
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Figure 5. The structure of the FDTD simulation domain. Light is emitted toward both the tilled diblock copolymer 
structure and the PM L layer to the left of the figure. Upon reaching the PM L layer to the left, all waves are 
absorbed without reflection. Upon reaching the tilled diblock copolymer structure, some frequencies are reflected 
toward the PML. layer to the left, and some frequencies are transmitted toward the PM L layer to the right.

where rj = Jfi/e  is the impedance. If  e changes with jx between medium A  and medium B  
such that 77 remains constant, then the wave will pass through the interface between the two 
media without reflection. If  a series of layers is matched in this manner, then a wave will 
pass through the layered media without impediment. However, once the wave reaches the 
end of this layered medium, the wave will still be reflected from the simulation boundary and 
propagate back into the computational domain. To simulate an absorbing boundary, the wave 
must be absorbed as it propagates through the P M L  structure. This is accomplished through 
the introduction of anisotropic electric and magnetic conductivities. This is equivalent to 
introducing complex /z and £, the real part dictating the propagating part o f the wave and 
the imaginary part dictating the attenuating component [54].

Through the appropriate choice of parameters, the system will theoretically absorb inci
dent waves without reflection. The conductivities must increase from zero at the inner inter
face of the computational domain to a maximum value rrmaN at the outer edge of the layer 
at the system boundaries. A ll numerical computations reported here have been performed 
with conductivities of the form

(r(f>) =  ,t»uA p / 8)'' (22)

where p is the distance into the P M L  media, <5 is the thickness of the P M L  media (corre 
sponding to 200 cells), and 77 is taken as 3.5.

To carry out our studies, we first obtain the local volume fraction of the A-phasc. B-phase, 
and particles from the S C F / D F T  calculation [30]. These local volume fractions are then used 
to estimate the local dielectric constants of the media in the F D T D  simulation. W e employ 
a simple rule of mixture, linearly weighting the contributions of the different components 
from the respective volume fractions (that is, e(r) =  <£A£A -F <bb£ r  +  where s, charac
terizes the permittivity o f the material /). In the current simulations, the dielectric constants 
for the respective blocks arc taken to be 2.53 and 2.28; these numbers fall in the range that 
is typical for polymeric materials [55,56]. The dielectric constant of the particles is taken to 
be 10.2, which corresponds to the value for cadmium selenide [56]. The spatially distributed 
dielectric constants are assigned to the center of mesh cells. The material properties at the 
nodes of a Yee cell arc then averaged from the values in adjacent mesh cells.

W e focus on cases where the system exhibits a lamellar structure, as determined through 
the S C F / D F T  simulation [30]. Periodic boundary conditions are applied to the system bound
aries in the v and z directions (reflecting the translational invariance along y and z in the 
lam ellar structure). The periodicity of the S C F / D F T  results along x (perpendicular to lamellar 
structure) is used to construct 48 layers of the lam ellar structure in the ^-direction, which are 
then sandwiched between two homogeneous regions. The size of the system, including the 
P M L  boundaries, is 3401 x 51 x 51, although there are no variations in the v and z direc
tions in the lamellar systems studied here. To minimize the reflectance o f incident light from 
the interface between the homogeneous regions and the layered region, the homogeneous 
regions are assigned a dielectric constant equal to that of the pure B  phase material, and the

Initiation of light Diblock copolymer structure
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layered region begins and ends in the middle o f the B  domain. This ensures that the reflection 
of light when radiated on the multilayered structure depends upon the morphology of the 
layered structure. To establish a correlation between our simulation parameters and experi
mental values, and thus set up a physical length scale in our system, we equate the width of a 
lamellar domain obtained from the SC F /D F T  for the pure symmetric diblocks to 50 nm [55].

A  differentiated Gaussian pulse, encompassing a range of frequencies, is propagated 
toward the periodic structure of the diblock copolymer (see Fig. 5). Light of normal inci
dence (in the .v-direction) when reflected or transmitted from the structure will always prop
agate in the A-direction due to the ID  nature of the structure. The fast Fourier transform 
( F F T )  of the resultant transmitted and reflected signals then reveals the frequencies that 
were forbidden to propagate within the structure. The transmitted and reflected spectra can 
be presented relative to the F F T  of the original differentiated Gaussian pulse to give the 
normalized transmittance and reflectance. In the current simulations, the diblock copolymer 
structure is assumed to be nonabsorbing, and therefore all light is either reflected by the 
structure or transmitted through it (that is, reflectance + transmittance = 1).

4. RESU LTS AND DISCUSSION
The studies described next are presented in the following order. We first focus on a mixture 
of A B  diblock copolymers and spherical nanoparticles. W e couple the C H /B D  and LS M  
models to examine how the self-assembly of the diblocks affects the dispersion of the spheres 
within the system and how these dispersed particles affect the mechanical behavior of the 
polymeric matrix [18].

In the following study, we use the C H /B D  model to investigate the spatial organization 
o f rodlike particles in a phase-separating polymer blend [16]. This study illustrates how the 
C H /B D  technique can be adapted to model particles with high aspect ratios. In addition, 
the example reveals how immiscible blends can be exploited to direct the assembly of the 
rods within the polymer matrix. Using the results of this morphological study, we not only 
use the L S M  to determine the extent to which the rods reinforce the matrix material but 
also use the F D M  to calculate the electrical conductivity in these rod-filled materials. The 
latter calculations are particularly relevant to understanding the electrical performance of 
polymeric materials that contain nanotubes.

The beneficial effects of nanorod additives are also examined in the third study presented 
here, where we use the SC F /D F T  model to capture the structure of rod-filled diblock copoly
mers [3]. Un like the C H /BD  model, which yields the dynamics of the structural evolution, 
the SC F /D F T  is a purely thermodynamic model and yields the equilibrium morphology of 
the systems. This third study demonstrates another example of how morphological infor
mation can be coupled to the L S M  simulations to obtain the mechanical response of the 
material.

The S C F / D F T  technique is also used in the fourth study, where spherical nanoparticles 
are blended with diblock copolymers. In this case, we couple the structural information to 
the F D T D  model to obtain the optical properties of the composite [30]. These studies are 
useful in designing photonic bad-gap materials.

These examples were chosen to demonstrate the general approach outlined in Fig. 1. Fu r
thermore, the calculations highlight the fact that we do not make a priori assumptions about 
the structure o f the material; rather, this structure is allowed to evolve or self-assernble based 
on the polymer-particle interactions, the architecture of the polymers, and the geometry of 
the particles. The examples also indicate the range of properties that can be determined once 
we obtain the structure of the material. Finally, the studies pinpoint the clear relationship 
between the structure and properties of nanocomposites.

4.1. Properties of Mixtures of Diblock Copolymers and 
Spherical Nanoparticles

As noted previously, we first focus on a mixture of A B  diblock copolymers and spherical 
nanoparticles. One reason for focusing on mixtures of diblocks and nanoparticles is that the 
self-assembly o f the diblocks can be exploited to direct the distribution of the nanoparticles
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within the mixture [9. 10, 19] and thus achieve a degree of control over the morphology of 
the system. For example, if the particles are preferentially wetted by the A  blocks of a system 
of A B  diblocks, the particles will localize within the A  domains o f the microphase separated 
melt. In recent computational studies that involve our hybrid C H /B D  model, we showed 
that in the presence of the A B  diblocks, these A-like particles in fact form a percolated 
network at a significantly lower volume fraction (essentially half) than would be required 
in a homogeneous material [19] (that is, homopolymer melt). In this study [18], one of our 
aims is to determine how these percolating networks act to reinforce the copolymer matrix. 
M ore generally, we seek to tackle the issue of structure-property relationships for polymeric 
nanocomposites by relating the copolymer architecture, the wetting interactions between the 
copolymer and particles, the structure o f the mixture, and the mechanical behavior of the 
resulting material.

W e use the C H /B D  hybrid method in order to determ ine the structural evolution of 
the particle-filled copolymer melt. The approach allows us to specify the architecture of 
the chains and the nature of the polymer-particle interactions. The output of the C H /B D  
simulation then serves as the input to the L S M , the m icromechanical model. By  combining 
the C H /B D  and L S M  models, we can determ ine how the structural evolution, or the history 
of the material, affects the mechanical response [57]. Furtherm ore, we do not have to make 
ad hoc assumptions about the distribution of particles in the system; this distribution evolves 
naturally from the self-assembling interactions between the different components. Through 
the L S M , we can carry out three-dimensional (3D ) simulations that include as many as 1564 
particles. In particular, these investigations represent the first 3D  studies on the mechanical 
properties of such extensive filled copolymer systems [18]. The results allow' us to determine 
how changes in the nature of the components influence the macroscopic properties of the 
composite.

W e initially investigate the effects of varying the diblock copolymer architecture and par
ticle volume fraction on the morphological and mechanical behavior. The effects of size and 
polydispersity in the particle system are also investigated. In the following section, we first 
describe our findings for diblock copolymers that are filled with particles of uniform size and 
then discuss the results for diblocks that contain binary particle mixtures.

4.1.1. Uniform Particle Size
In the following simulations, the parameters M  and Mp (in Eqs. (5) and (10), respectively) 
are set equal to 1. The simulation box is 643 lattice sites in size, and periodic boundary 
conditions are applied along all three directions. Three different diblock copolymers are con
sidered, corresponding to the following parameters: (1) V = 0.004 and F  = 0.0, (2) V = 0.016 
and F  = 0.0. and (3) V =  0.004 and F = -0.2 [sec Eq. (6)]. The parameter V is inversely 
proportional to N 2, where N  is the degree o f polymerization of the copolymer. Thus, an 
increase in f  corresponds to a decrease in the domain size. Varying F  from 0.0 to —0.2 
changes the composition from a 50:50 to 40:60 A B  diblock copolymer. Through these vari
ations in F and F , we can examine the respective effects of altering the copolymer domain 
size and composition on the structure o f the nanocomposite. The particles are preferentially 
w'ctted by the A  blocks. A  range of particle volume fractions, varying from 5 %  to 25% , are 
also considered, where the particle radius is 3 unit lengths (6 unit lengths in the L S M ).  This 
range in volume fraction of particles corresponds to a variation in the number of particles 
from 116 to 580 in the simulations.

The morphology of a filled diblock copolymer system at late times (t = 50,000) is pre
sented in Fig. 6. The parameters of the diblock copolymer are V = 0.004 and F — 0.0, and 
the volume fraction of particles is 20% . The isosurface o f the diblock copolymer, at an order 
param eter of zero (m idway between phase A  and phase B ), is colored dark gray, while the 
regions where a negative order parameter intersects the system boundaries (termed isocaps) 
are colored light gray. In other words, the light gray regions mark the B  phase, and the trans
parent regions indicate the A  phase. The particles are colored black and arc clearly confined 
w ithin the transparent A  phase of the diblock. The system shows elements of lamellar order
ing on a short scale: however, the lamellae are interconnected, and the overall morphology
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Figure 6. Three-dimensional morphology of a filled dihloek polymer system. An isosurface between the A and B 
components is dark gray, isocaps are light gray, and the particles are black. The particles arc confined within the 
transparent A phase of the diblock copolymer.

is closer to a bicontinuous structure. Although the system will tend toward the thermody
namic limit of a perfect lamellar phase, the lime scales for reaching this state through a 
dynamic model are prohibitively large. In experimental systems, sim ilar morphologies are 
found because again it takes long times to reach perfectly ordered phases, and the system 
can get kinetically trapped.

To quantify the confinement of nanoparticies within the diblock copolymer domains, the 
particle correlation function is presented in Fig. 7. The particle correlation function adopted 
in this study is defined as g(r) = V ( £ ,  S(r - rll))/(47rr2N~), where V is the volume 
of the system and N/t is the number of particles. The results are averaged over three inde
pendent runs. For clarity, only two diblock copolymer systems are shown (T  = 0.004 and 
1 = 0.016 at F = 0.0), as the third exhibited similar results. There is only one discernible 
peak at a distance of 6 unit lengths, which corresponds to the diam eter of the particles.

Figure 1. The pair correlation function for particles confined in two diblock copolymer systems and for randomly 
dispersed particles. The particles within the diblock copolymer systems displax short-range order, which is not 
present in the homogeneous system.
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This reveals that the system of particles exhibits strong short-range order but does not dis
play long-range order. The particles are forced to lie within close proximity of each other 
due to the confinement within the diblock copolymer, but long-range order is suppressed 
because of the tortuous structure of the diblock domains. For comparison, the particle cor
relation function for an equivalent number of randomly dispersed particles, which exhibit no 
such confinement, is also presented. As can be seen, there is no local ordering of the particle 
positions, and the peaks observed in the diblock copolymer systems are no longer present.

To assess the consequences of such morphological variations on the resultant mechanical 
properties of the macroscopic material, we now use the output from our hybrid C H /B D  
simulation as the input for the L SM . The clastic deformation o f the structures is undertaken, 
with both the force constants of the A  and B  phases being set to unity, and the particles 
are assigned a force constant of 100. Thus, the effects of particle distribution are of primary 
interest in the current investigations, and the parameters are consistent with experimental 
values for filled polymers [58].

As noted previously, the elastic properties of the springs within an L S M  simulation are 
assigned values, depending on whether the node is situated within a particle or the polymer 
matrix, as dictated by the results of the C H /B D  calculation. To accurately capture the defor
mation fields in the vicinity of the particles within the L S M , the system size is doubled from 
that of the C H /B D  simulation. An  L S M  consisting of 1483 nodes is utilized; the central 1283 
nodes are assigned elastic properties as a function of the particle and polymer positions in 
the C H /B D  calculation. The system is extended by 10 unit lengths in all directions, taking 
values from the periodicity of the C H /BD  simulation, therefore ensuring that all areas of 
the C H /B D  model are represented by bulk nodes in the L S M  simulation.

The local relative strain field, as a result of the application of a constant stress at the 
simulation boundaries, for a system where the particles are confined within the domains of 
a diblock copolymer ( 1 =  0.004 and F = 0.0), is depicted in Fig. 8a. The corresponding 
relative strain field for a system of randomly dispersed particles is presented in Fig. 8b. The 
three-dimensional strain fields arc displayed as orthogonal contours through the simulation. 
In both systems, the volume fraction of particles is 20% . The particles are clearly apparent 
as the dark regions of low strain. In particular, the strain values within the particles are 
significantly lower than that of the matrix, due to the large disparity in elastic constants. The 
inability of stiff particles to deform to the same extent as the neighboring matrix results in 
strain concentrations at the particle-matrix interface. These strain concentrations lie along 
the tensile direction and emanate from the center of a particle. Perpendicular to the tensile 
direction, the lower deformations within the particle inhibit the deformation of the matrix 
and results in lower strain fields.

It is apparent from Fig. 8a that the diblock-confined particles are clustered together, 
whereas the particles in Fig. 8b are more randomly dispersed. It is this clustering of the 
confined particles that is of primary interest. To characterize the particle clusters and deter
mine whether geometric percolation occurs, we define particles that are closer than a cer
tain distance to be part of the same cluster. Here, we adopt a unit length in the L S M  
simulations as this characteristic distance. Using this definition, we find that the confined 
particle system in Fig. 8a forms a percolating cluster. (W e  note that Ginzburg, Qiu, and 
Balazs [19] found the percolation threshold for particles confined in a similar diblock matrix 
to be approximately 10%.)

The percolating structure inhibits the deformation of the entire material and results in 
significant reductions in the strain fields, as can be seen by the presence of the dark domains 
in Fig. 8a. A lternatively, the randomly dispersed system shows isolated regions of strain 
relaxation within the particles, but the inhibition of the neighboring matrix is less dramatic 
than in Fig. 8a. Consequently, the strain concentrations (shown as lighter regions) within the 
matrix of the randomly dispersed system are also more pronounced, as regions within the 
matrix attempt to deform to the same extent as domains that neighbor the scattered particles. 
Such areas of strain concentration are less apparent in Fig. 8a. These plots indicate that the 
confinement o f nanoparticles within one of the domains of the bicontinuous structure leads 
to a continuous network of stiff material, which reduces the overall strain field within the 
system.
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Figure 8. The relative normal strain fields (see text for details) for (a) a system where the particles arc confined 
within the domains of a diblock copolymer and (b) a system consisting of randomly dispersed particles. Light regions 
dcpicl regions of strain concentrations, and dark regions indicate regions of low strain.

To quantify the deformation of these confined and randomly dispersed particle systems, 
the cumulative distribution functions of the local strain fields are plotted in Fig. 9. The 
cumulative distribution function is defined as the probability that the field in the system 
takes a value less than or equal to a specific amount. A  comparison between confined and 
randomly dispersed particle systems is made for particle volume fractions varying from 5 %  
to 25% . The lower strains are invariably associated with the stiffer particles, whereas the 
regions of higher strains correspond to the matrix. At 5 % , there would appear to be little 
difference between the two systems, because the confined particles do not percolate at such 
a low value. At higher particle volume fractions, the disparity between the two systems 
becomes more apparent, with the confined particle systems possessing significantly lower 
strain fields. As noted previously, the geometric percolation inhibits the local strain fields 
and therefore stiffens the composite material.

In Fig. 10, we plot the percentage increase in the Young’s modulus relative to the unre
inforced polymer for the various systems described. This param eter is a measure of the 
macroscopic mechanical properties of these composites. The results are averaged over 
three independent runs, with the error bars indicating the standard deviation. The three 
cases involving particles confined within the domains of diblock copolymers are significantly 
stiffer than the system containing randomly dispersed particles. There is no clear difference



M o d e lin g  the S tru c tu ra l E v o lu t io n , Eq u ilib r iu m  M o rp h o lo g y , and M a cro sco p ic  B eh a v io r 121

Relative Strain

Figure 9. The cumulative distribution function of the relative local strain field for systems consisting of randomly 
dispersed particles and systems where the particles arc confined within the domains of a diblock copolymer. Curves 
are shown for 5rv. and 25 r/ particle volume fractions, and as the volume fraction of particles increases, 
there is an increase in the disparity between systems containing particles confined within the diblock structure and 
systems containing particles randomly dispersed in a homopolymer.

between the three dibiock-confined particle systems, with the error bars showing a clear 
overlap. For the systems studied here, it is not possible to distinguish effects that diblock 
copolymer architecture or composition may have on the reinforcement efficiency of the 
nanoparticle fillers. There is, however, a significant benefit to confining the particles within 
the diblock copolymer domains.

4.1.2. Binary Particle Systems
W e also investigate the effects of adding a binary particle mixture to the copolymer matrix. 
The particles in the binary mixture are chemically identical (that is, they both favor the 
A  phase), but they differ in size. The smaller particles have a radius of 2, and the larger 
particles have a radius of 3 unit lengths. These studies provide insight into the role that 
polydispersity in particle size plays in the mechanical properties of the composite. The total

Volume Fraction

Figure 10. The percentage increase in Young's modulus as a function of particle volume fraction. Systems contain
ing particles confined within the domains of different diblock copolymers are compared with a system consisting of 
particles randomly dispersed as in a homopolymer.
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volume fraction of particles is held fixed at 2 0 % , and the ratio of small to large fillers is 
varied between the limiting cases of all small (1564 particles) and all large (464 particles). 
A  comparison of the results for the purely large and small fillers yields insight into the 
effects of particle size on the behavior of the system. In these studies, the parameters that 
characterize the diblock copolymers are fixed at T = 0.004 and F  = 0.0.

Figure 11 shows the morphology for a system containing 10% large particles and 10% 
small particles. The particles are again clearly confined within the A  domains of the diblock 
copolymer. Note that the particles selectively swell these compatible A  regions, giving the 
diblock matrix in Fig. 11 an asymmetric appearance. However, here as in the other cases 
described in this section, the copolymer is a symmetric diblock.

It is also clear from Fig. 11 that the small particles can readily penetrate and localize 
in regions between the large particles. A t a fixed particle volume fraction, decreasing the 
size of the particles results in an increase in the total number o f particles and hence an 
effective increase in the particulate surface area. Consequently, there is a greater surface 
area available for possible polymer-particle interactions. To illustrate this point, we define V 
as the volume fraction of polymeric material (A  or B )  that is within a given distance (a unit 
length) of any particles and plot V as a function o f the volume fraction of small particles 
(see Fig. 12). The results are averaged over three runs and the standard deviations were 
found to be negligible. As the volume fraction of small particles is increased, the particles 
come in contact with and affect a greater volum e o f the matrix.

The fraction of particles that are a part o f the largest cluster, P, is plotted as a function of 
the volume fraction of small particles in Fig. 13. The data are averaged over three runs, with 
the error bars corresponding with the standard deviation. Geom etric percolation occurred in 
all systems. Because at a fixed volume fraction there are a greater number of small particles 
than large ones, these fillers would be expected to cluster to a greater extent than the larger 
species (as the characteristic distance used to indicate clustering is not radius dependent but 
is fixed at one unit in our studies). This is in fact the case, with the fraction of particles in 
the main cluster approaching one with an increasing number o f small particles. Even  though 
small particles are more dispersed (as indicated by Fig. 12), they still cluster to a greater 
degree within the domain structure of the diblock copolymer (in part, because there are 
a greater number of them than large particles). This increase in clustering is expected to 
translate through to the mechanical properties.

Figure 11. Three-dimensional morphology of ;i tilled dlblock copolymeric system. An isosurface between he A 
and B components is dark gray, isocaps are gray, and the small and large particles are colored black :inc light 
gray, respectively. Boih the small and large particles are conlined within the transparent A phase of the dblock 
copolymer.
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Volume Fraction of Smali Particles

Figure 12. The volume fraction of polymeric material that is within a given distance (a unit length in the LSM ) 
of any particles as a function of the volume fraction of small particles. This gives a measure of the amount of 
polymeric material that is directly affected (such as pinched) by the presence of the particles.

Figure 14 reveals the relative strain field for a system containing 10% large particles and 
10% small particles. The regions of low strain, corresponding to the stiffer particles, are 
clearly observed, as previously. Now. however, the clustering of particles is more apparent 
than in Fig. 8a. A  significant difference between Fig. 8a and Fig. 14 is the area over which 
these particles cluster. The smaller particles spread out over a greater volume of the material 
and inhibit the deformation o f the matrix to a greater degree than in the system containing 
just large particles. Effectively, a larger volume of polymer matrix is trapped or surrounded 
by the particles and therefore less capable of deforming.

Quantitatively, the effects o f particle size can be seen in Fig. 15, which depicts the cum u
lative distribution function o f the local relative strain, as the volume fraction of particles 
varies from being 20% large to 20%  small. The data is averaged over three independent 
runs. The plots show that 20% o f the system possesses lower strains because of the 20% 
of stiff particles present within the composite; however, in the upper 80%  of the system, a 
gradual trend is observed. The deformations in the matrix are increasingly inhibited as the 
volume fraction of smaller particles is increased.

Volume Fraction of Small Particles

Figure 13. The fraction of particles that makes up the largest cluster as a function of the volume fraction of small 
particles. The overall volume fraction of small and large particles is maintained at 2()r/. In the system containing 
all small particles, nearly all of the particles are connected.
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Figure 14. The relative normal strain fields (see text tor details) for a system containing a 10rr volume fraction 
of small particles and a \(Y< volume fraction of large particles, bolh confined within the domains of a diblock 
copolymer. Light regions depict regions of strain concentrations, and dark regions indicate regions of low strain.

The lower strain fields, due to the decrease in particle size, have a direct impact on the 
Young’s modulus of the macroscopic material. The percentage increase in Young's modulus 
is plotted in Fig. 16, as a function of the volume fraction of small particles. The data is 
averaged over three runs, and the error bars represent the standard deviations. A n  increase 
in Young’s modulus of more than 3 0 %  is observed as the particle size is altered from all large 
to all small. This is attributable to an increase in the total particle surface area, a greater 
degree of clustering, and an increase in the volume of polymeric material that is effectively 
trapped by the particles. These effects result in lower strains throughout the system and, 

an increase in the global Young’s modulus.

4.1.3. Summary
Through a combination of numerical techniques, we were able to interrelate the struc
ture and micromechanical behavior of the copolymer/nanoparticle composites. Through the 
C H /B D  calculations, we could determine the effects of the microphase separation of the

Relative Strain

Figure 15. The cumulative distribution function of the relative local strain field for systems containing v;. is 
volume fractions of small and large particles. The overall volume fraction of particles is maintained at 2 0 The 
volume fraction of small and large panicles varies from 20 small particles, through H)rr small particles and 10- / 
large particles, to 20'V large particles.
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Volume Fraction of Small Particles

Figure 16. The percentage increase in Young's modulus as a function of small particle volume fraction. The com
bined volume fraction of small and large particles is maintained at 2i)rv. As the system varies from all large particles 
to all small particles, there is an increase in the Young s modulus.

diblocks on the spatial distribution of the mobile particles. Through the L S M , wc could 
capturc the clastic deformation of the resultant hybrid material. Furthermore, we could 
investigate the behavior of systems that contain up to 1564 particles. For randomly dispersed 
fillers, simulations involving a relatively low number of particles can be sufficient to describe 
the overall stiffness of the material and thus be large enough to encompass a representa
tive volume element (R V E )  of the composite. However, the tortuous spatial arrangement of 
particles confined in diblock copolymers introduces an additional length scale, that of the 
domain size. To determine the mechanical behavior of such complex materials, it is impor
tant to consider the morphology of a sufficiently large system that captures both the unique 
structural characteristics of the copolymer domains and the particles' spatial arrangement, 
which is, in part, templalcd by these diblock domains.

The L S M  has proven to be ideally suited for simulating the micromechanies of such large 
systems. Although the utility o f the L S M  in analyzing two-dimensional R V E s  has recently 
been reported [59], it would appear that this technique might also prove useful in similar 
three-dimensional analyses.

Through the selective incorporation of nanoparticles into the domains of a diblock copoly
mer, three-dimensional bicontinuous nanoparticle structures were formed. As the volume 
fraction of particles was increased, geometric percolation of the particles occurred, and the 
particles effectively formed a rigid network throughout the system. The deformations within 
the polymer matrix are significantly suppressed by the presence o f this rigid nanostructural 
network, and the global stiffness of the material is notably increased. For materials contain
ing randomly dispersed spheres, rods, and platelets, the rods and platelets offer superior 
reinforcement over the spheres [47J. Therefore, the mechanical properties of diblock copoly
mers filled with such high aspect ratio particles may prove to be of particular interest, as we 
discuss in more detail in subsequent sections.

Varying the size of the monodispersed particles and introducing bidispersity in the particle 
size were shown to exert an appreciable influence over both the morphology of the diblock 
copolymer and the resultant mechanical properties of the solid material. Systems containing 
small fillers exhibited a greater degree of clustering between the particles. This behavior 
could explain the increased stiffness that was observed in the corresponding macroscopic 
material. Also of considerable consequence is the volume of polymeric material that is effec
tively trapped between neighboring nanoparticles. For a fixed volume fraction of particles, as 
the particle size is decreased, the number of particles increases. Consequently, the volume 
o f material in which the particles are dispersed increases, and the deformation of a greater 
volum e of interparticle polymeric material is inhibited.
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W e conclude that the inclusion of nanoparticles into a bicontinuous diblock copolym er 
structure results in a significant increase in the reinforcement efficiency of the fillers. As 
polymeric nanocomposites become increasingly important, such confinement effects will play 
a dominant role in optimizing their mechanical behavior and can be exploited to expand the 
utility of these materials in a range of applications.

4.2. Behavior of Nanorods in Binary Polymer Blends
In the next investigation, we make two modifications to the C H / B D  model to consider the 
behavior of another class of filled polymeric systems. First, we set F  = 0 and thereby model 
a blend of immiscible homopolymers. Through these studies, we examine how the phase 
separation of the blends affects the spatial organization and dispersion of the nanoparticles 
within the polymeric matrix. Second, we modify the aspect ratio o f the nanoparticles in 
order to consider rodlike particles. These rodlike fillers can represent carbon fibers, ceram ic 
whiskers, or nanotubes.

Nanoscale rods are becoming increasingly important additives in the fabrication of poly
mer composites [60,61]. The high aspect ratio (and high surface area) of nanorods results 
in polymer nanocomposites that can possess superior mechanical properties relative to poly
mers reinforced with an equivalent volume fraction of spherical inclusions [47]. Recently, 
Huyne, Dittmar, and Alivisatos [60] blended inorganic nanorods and polymers to fabricate 
solar cells that possess greater efficiencies than conventional organic photovoltaic cells. In 
this application, nanorods were preferable, in part because they naturally provide a direct 
pathway for charge transport. Peng et al. [22] showed that immersing nanorods into a binary 
phase-separating blend can drive the rods to form percolating networks at relatively low vo l
ume fractions. These extensive networks can potentially improve both the mechanical and 
electrical properties of the polymer/nanorod mixtures.

To facilitate the design of such high-performance materials, it is useful to correlate the 
microstructure of the filler network and the macroscopic properties of the polymeric compos
ite. To establish these correlations, in this section we simulate the morphological evolution 
of a binary blend that contains nanorods and the mechanical and electrical properties of the 
re s u 11 a nt nanoco mpos i te.

We first present the morphology results from the C H /BD  simulations. W e vary the volume 
fraction of the nanorods, which are incorporated into a 30:70 A B  polymer blend. The rods 
are preferentially wet by the minority A  phase. These morphological studies are very sim ilar 
to those carried out by Peng et al. [22]. Here, however, our aim is to extend these studies 
by relating the microstructure of the mixture to the macroscopic properties of the nano
composite. W ith this aim in mind, we contrast the local deformation fields and the global 
Young's modulus for two separate nanorod/polymer mixtures. In the first case, the rods are 
introduced into the binary, phase-separating blend. In the second case, the rods are dispersed 
in a homogeneous matrix (such as a homopolymer); here, we neglect the Cahn-Hilliard 
equation and simply numerically solve the equation of motion [Eq . (12)] for the rods. We 
find that the localization of the nanorods into the minority phase of the phase-separating 
blend leads to substantial improvements in the reinforcement efficiency of the rods. Finally, 
we compare the local current densities for these two cases and find a relative increase in the 
electrical conductivity in the system where the nanorods are selectively incorporated into the 
minority phase of the blend.

4.2.1. Morphology: Formation of Supramolecular Networks
The distribution of nanoscale inclusions within a polymer matrix can yield an appreciable 
influence over the macroscopic properties o f the nanocomposite. W e first consider the effects 
o f incorporating the nanoscale rods into the minority A  phase of the 30:70 A B  blend. In 
particular, we examine the effects of increasing the volume fraction of these rods on the 
microstructure of the complex mixture. The rods have a width W o f one lattice sire and 
a length L of 13 lattice sites. The size of the two-dimensional simulation box is 256 x 256 
lattice sites. In F igs. 17a-c, we present the respective morphologies of nanocomposites that 
contain rod volume fractions of 2 % , 4 % , and 6cr. The morphologies represent the system
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Figure 17. The morphology of nanorod/polymer blend system for (a) 2rr, (b) 4 and (e) (\c/< volume fraction of 
nanorods. White regions are the minority phase A, black regions are the majority phase B, and the rods arc black 
reclangles. For comparison, (d) depicts the morphology for a system off/# volume fraction of nanorods within a 
homoge neous ma t rix.

at the late stage of domain growth (/ = 600,000). The minority A  phase is shown as white 
domains, and the majority B  phase is shown as black domains. The rods are shown as black 
rectangles. As a basis of comparison, Fig. 17d shows the structure of a 6 %  volume fraction 
of rods in a homogeneous matrix (in the absence of the phase-separating blend).

Figure 17a depicts the structure of the system that is loaded with a 2% volume fraction of 
rods. The rods are clearly located within the minority A  phase. The A  domains are dispersed 
throughout the system, with smaller domains containing a single rod and larger domains 
containing multiple rods. The shapes of the smaller domains are perturbed from circular 
to ellipsoidal by the presence of the rods. The larger domains appear less affected by the 
presence of these fillers.

The consequences of increasing the volume fraction of the rods from 2% to 4 %  can be 
seen in Fig. 17b. Again the A  domains are dispersed throughout the system, but now the 
domain shapes are appreciably different from those shown in Fig. 17a. Sm aller domains 
containing a single rod are still ellipsoidal, but now domains that contain more than one 
rod have a tendency to be elongated. The coupling between the wetting interactions and 
the rod-rod repulsion has led to the rods being aligned end-to-end within the A  phase. 
Furtherm ore, the A  phase has been stretched by the presence of the rods. This cooperative 
behavior leads to the formation of "‘string!ike,”  reinforced A  domains. Further increases in 
the volume fraction of rods enhance these effects.

Figure 17c shows the morphology for a system containing 6 %  volume fraction of rods. 
Increasing the volume fraction of rods has increased the elongation of the minority domains 
to the extent that they now interconnect and form continuous domains across the system. 
The rods are “ corralled" into these elongated domains to such an extent that they percolate 
throughout these domains [22], The percolation of these nanoscale inclusions and the con
tinuous nature of the m inority A  phase result in a system that exhibits double percolation.

W ithin a homogeneous matrix, the 6%  volume fraction of rods is uniformly dispersed 
in the system, as shown in Fig. 17d. This volume fraction is below the critical value at 
which the rods display a nematic ordering [22], and the system is in the isotropic phase.
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This uniform distribution is in distinct contrast to the highly organized structure seen in 
Fig. 17c; the electrical and mechanical benefits o f having the nanorods distributed in this 
controlled manner are discussed next.

4.2.2. Mechanical Properties
Before presenting our results on the mechanical properties of the rod-filled polymers, we 
note that there have been previous computational studies on the m icromechanical behav
ior o f materials containing rodlike particles; these studies were prim arily focused on the 
properties of fiber-reinforced composites. The most prevalent computational technique for 
simulating fiber-reinforced composites is the finite element method ( F E M )  [62-67]. Complex 
nonlinear behavior, such as plastic deformations [64-66] and fracture [63], can be examined 
through the use of such F E M  simulations. However, the F E M  simulations are sufficiently 
computationally intensive that the time requirements for the calculations limit the range of 
materials that can be investigated. In F E M  studies, fiber reinforcements are often considered 
to be structurally periodic, simulated through the use of unit cells. The fibers are therefore 
often arranged unidirectionally in an equally spaced array; however, clustering effects have 
been investigated through the use of staggered cells [64,65]. In such models, the clustering 
effects are also assumed to be unrealistically regular, though recently multi-inclusion unit cell 
elastic F E M  simulations containing up to 25 fibers have been carried out [67]. To extend the 
size of the simulations that can be investigated, alternative, com putationally less intensive 
techniques may need to be considered.

Termonia [68—70) utilized a simple finite difference approach that enabled the three- 
dimensional simulation of systems with rodlike inclusions. The elastic deformation of cubic 
and parallelepiped multi-inclusion systems were simulated [61)]. Through the incorporation 
of a stochastic fracture criterion, the model was extended to the failure of such multifiber 
systems [70].

The L S M  has also been utilized in the simulation of liber-re in forced composites. Monette 
et al. [71,72] simulated the two-dimensional deform ation and fracture of a single fiber, 
whose aspect ratio and interfacial properties were varied [71]. A  transition between fiber 
fracture at larger aspect ratios and interfacial decohesion at lower aspect ratios was observed. 
Ostoja-Starzewski [73] investigated the size of the representative volume element of ran
domly oriented fiber composites by using a two-dimensional L S M . The one-dimensional 
fibers consisted of the orthogonal linkage of one-dimensional stiff bonds. Recently, we used 
the L S M  technique to examine the behavior of three-dimensional, multiparticle systems and 
compared the properties of composites containing rods with systems containing spherical 
and platelet inclusions [47].

In the L S M  simulations presented here, we assume that the rods are 10 times stiffer 
than the polymeric matrix (both the A  and B  components are assumed to have the same 
stiffness) and investigate the effects of rod distribution on the local and global elasticity of 
the nanocomposite. In particular, we fix the volume fraction of rods at 6c/ and compare 
the local deformations in a system where the rods are corralled by a polymer blend into 
percolating pathways with a system where the rods are allowed to evolve in a homogeneous 
matrix. W e also compare the global Young's modulus as a function o f the rod volume fraction 
for these two distinct systems. To can y  out these calculations, we apply a stress field at the 
L S M  boundaries in the .v-direction, thus defining the tensile direction.

The local relative normal stress field is defined as (rrvv -  (r{))/an where crjf is the stress 
tensor and <7,, is the normal stress field of an unreinforced polymer, that is, a homogeneous 
material that does not contain rods. Figure IN shows these stress fields for rods dispersed 
in a homogeneous matrix (F ig . 18a) and in a phase-separating blend (F ig . 18b). Stress con
centrations within the rods can be seen as lighter regions, corresponding to higher stresses. 
The darker regions correspond to lower stresses and can be seen within the polymer matrix 
surrounding the rods. Rods oriented in the tensile direction (.v-direction) have a greater 
effect on the stress field than rods oriented normal to a ;  in particular, rods oriented along 
.v exhibit greater stress concentrations and cause lower stresses within the neighboring poly
meric material. This can be seen in Fig 18b. which depicts the stress field for the phase- 
separating system. In regions where the local domains are aligned in the tensile direction, the
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Figure 18. The relative normal stress field contours for (a) (V< nanorods in a homopolymer and (b) (V nanorods 
in a phase-separating system. Light regions indicate stress concentrations, and dark regions depict stress relaxation.

rods arc clearly visible as regions of high stress; however, domains that arc aligned normal 
to the tensile direction exhibit lower stress perturbations (at the ends of the rods). Because 
the stiff rods prohibit the matrix from deforming, the polymeric material that is confined 
between neighboring rods exhibits particularly low stress. In other words, there is efficient 
stress transfer from the softer polymer matrix to the stiffer rods.

The local relative normal strain field is defined as (uxx — Z7n)/w 0, where iitJ is the strain 
tensor and u{) is the normal stain field of an unreinforced polymer. These strain fields are 
presented in Fig. 19. The positions of the stiffer rods are apparent from the dark regions 
of lower strains. W hat is o f most interest is the manner in which the matrix is prohibited 
from deforming. Figure 19a shows the local strains for a homogeneous system, where the 
rods are dispersed uniform ly throughout the system. Rods aligned with the tensile direction 
induce strain concentrations within the polymer matrix at the edges of the rods and induce 
strain reductions at the sides of the rods. In contrast, rods that are aligned perpendicular 
to the tensile direction show little perturbation of the strain field around these inclusions. 
Figure 19b depicts the local strain field for a polymer blend with the rods confined within 
the minority phase. Regions where the domains are aligned with the tensile direction induce 
severe strain reductions as the local ordering of the polymer domains, and hence the cor
ralled rods, prohibits the deformation of substantial regions of the polymer matrix. These 
regions of low strain have a macroscopic influence.

Figure 20 shows the percentage increase in the global Young’s modulus relative to an 
unfilled (no rods), homogeneous material; the data are averaged over three independent 
realizations from the C H /B D  calculations (at fixed volume fraction of rods), and the error 
bars represent the standard deviation. The solid line depicts data taken from the rod-filled

Figure 19. The relative normal strain field contours for (a) 6CA nanorods in a homopolymer and (b) 6% nanorods 
in a phase-separating system. Light regions indicate strain concentrations, and dark regions depict low deformation.
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Figure 20. The percentage increase in Young's modulus as a function of nanorod volume fraction. Systems where 
the rods are corralled into percolating pathways by the phase-separating polymer blend are compared with systems 
where the rods evolve isotropically within a homopolymer.

phase-separating systems, and the dashed line represents data from the equivalent rod-filled 
homogeneous material. A t lower volume fractions of rods, there is little difference between 
the two cases, as the rods do not appreciably affect the polymer blend morphology, and 
the polymer blend does not dramatically perturb the distribution of the rods. As the vo l
ume fraction of rods is increased, the polymer blend begins to form elongated domains, and 
when these domains are elongated in the tensile direction, significant improvements in the 
reinforcement efficiency of the rods ensue. This is especially the case at higher rod con
centrations. where the system becomes doubly percolating and the rods form a continuous 
backbone of stiff material throughout the nanocomposite.

Next, we consider the electrical benefits o f loading nanorods into a phase-separating sys
tem as opposed to a homogeneous system.

4.2.3. Electrical Properties
T he conductivity of the rods is taken to be 10 times greater than that for the polymer matrix. 
W e assess how the rod distribution affects both the local electrical behavior and the global 
conductivity. Figure 21 shows the current density for systems containing 6 %  of the rods; 
in Fig. 21a, the rods are dispersed in a homogeneous matrix, and in Fig. 21b the rods are 
corralled into percolating pathways bv the surrounding polymer blend. The current density 
at the /th node is defined as I t = |G //(4>/ -  cjx)! and reflects the amount of current flowing
through a given node. In Fig. 21a, the current density is greater in the higher-conductance

200 400 600 800 1000 200 400 600 800 1000
X  X

Figure 21. Current density contours for (a) 6rv nanorods in a homopolvmer and (b) 6( < nanorods in a phase- 
separating system. Light regions indicate high current flow, and dark regions depict low current flow.
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rods and is especially high for rods that are oriented in the direction of potential gradient 
( a -direction). The current density within the rods is appreciably higher in Fig. 21b than in 
Fig. 21a. The current flowing along the rods is greater when the rods are oriented in the 
same direction as the potential gradient. The percolating nanorods provide a direct pathway 
for electrical conductivity across the system. The effect that the percolating structure has on 
the global conductivity is considered next.

Figure 22 depicts the percentage increase in conductivity relative to an unfilled homo
geneous material, and the data are averaged over three independent runs, with the error 
bars reflecting the standard deviation. At lower volume fractions of rods, there is no benefit 
to incorporating them into a phase-separating polymer blend relative to adding them to a 
homogeneous polymer matrix. As the volume fraction of rods is increased, the elongated 
domains in the phase-separating system corral the rods into pathways, along which electri
cal transport is facilitated. As these domains span the system and the morphology becomes 
bicontinuous rather than dispersed, the increase in conductivity of the rod-filled polymer 
blend is roughly 8 %  greater than that of the rod-filled homogeneous system. This demon
strates a clear advantage to incorporating the rods into the phase-separating system. It is 
anticipated that a greater disparity between the two systems would be observed if there were 
a more significant difference in the conductivities of the rods and polymers.

4.2.4. Summary
The selective inclusion of nanorods into the minority phase of a phase-separating polymer 
blend results in the emergence of complex networks of both nanorods and polymers [22]. 
The nanorods stretch and perturb the domains of the polymer blend, and the polymer blend 
confines and corrals the nanorods, producing elongated domains that are reinforced by these 
fillers. A t a critical volume fraction of rods, the polymeric minority domains elongate to the 
extent that they coalesce with neighboring domains and form a continuous structure. The 
continuity of the minority domains and the percolation of the nanorods within these domains 
results in a system that is doubly percolating.

W e compare the mechanical behavior of such doubly percolating composites with materials 
where the rods are uniform ly dispersed in a homogeneous matrix. In the former case, the 
nanorods form a continuous backbone of stiff, reinforcing material, which spans the system 
and results in a significantly stiffer nanocomposite. We also consider the electrical benefits 
o f percolating nanorod networks for systems where the nanorods are more conductive than 
the polymer matrix. The nanorods provide a continuous path o f high conductance across the 
composite, thus facilitating electrical transport.

35

> 30
o3
"O
c 25
o

O
c
CD 20
(r.)
03a>
b 15
_c
<D
o>
03 10
C
a>o
a5 5

Cl

0

Volume Fraction (% )

Figure 22. The percentage increase in conductivity as a function of nanorod volume fraction. Systems where the 
rods are corralled into percolating pathways by the phase-separating polymer blend are compared with systems 
where the rods evolve isotropically within a homopolymer.
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The electrical and mechanical benefits of including nanorods are found to be direction 
dependent, with rods oriented in the tensile direction imparting greater stiffness and rods 
oriented with the potential difference gradient improving the conductivity. Controlling the 
direction in which these rods are oriented (for example, through the application o f an electric 
field during processing) could lead to even greater improvements in macroscopic properties.

4.3. Properties of Mixtures of Nanorods and Diblock Copolymers
Having considered the behavior of the nanorods in a polymer blend, we now examine 
the properties of nanorods in diblock copolymers [3]. This system is of interest because 
the blending of rodlike particles and block copolymers can potentially yield a system 
where the rods effectively form "colum ns” that provide significant reinforcement of the soft 
matrix material. For example, if the rods were preferentially wetted by one block of an A B  
diblock, the microphase separation of the copolymer could promote the localization o f rods 
into cylindrical cores or lam ellar layers that extend throughout the material. The extensive 
particle-filled domains can enhance the mechanical behavior of the entire system. To design 
such self-reinforcing materials, it is important to be able to predict both the morphology 
of the copolymer/particle mixture and the macroscopic behavior of that specific composite. 
In this section, we use the S C F / D F T  methodology for calculating the structure o f rod-filled 
diblock copolymers and couple this method with the L S M  for simulating the m icrom echan
ical behavior of composites.

W e note there is considerable interest in the morphological and mechanical behavior of 
mixtures of block copolymers and clay platelets [74-76]. The D F T  adopted in the approach 
presented here allows us to consider such platelet architectures and consequently to use the 
modified S C F / D F T  to examine the self-assembly of thin platelets and diblocks. The com 
bined SC F/D FT -LSM  approach would then allow us to investigate the mechanical properties 
o f these nanocomposites.

W ith  respect to studies of diblock and rodlikc particles, Sevink et al. [77] used a dynamic 
density functional theory (D D F T )  to examine the morphology of a symmetric diblock copoly
mer melt that contains thin parallel rods, which are infinite in length. In the later model, 
the behavior of the diblocks is described by the same S C F  terms as in our method; however, 
the particles are immobile and thus do not self-assemble because of the presence of the 
copolymers. In effect, in the Sevink et al. model, the particles act as an additional stationary 
surface in the system. Nonetheless, the immobile rods are found to have a significant effect 
on the structure of the neighboring diblocks [77]. As we describe later, this is also observed 
in the case of our finite-length, mobile rods.

Next, we describe the effects that varying the rod aspect ratio and the rod-block inter
action energies have on the self-assembly of the hard and soft components and on the 
mechanical properties o f the resultant hybrid system.

4.3.1. Morphological Studies
As we noted previously, we simplify the calculation (to make it computationally tractable) by 
constraining all the parallel particles to be oriented along one of three possible directions, 
namely, the .v, v, or r  directions. For each set of (ax. <rv., cr: ), we carry out two distinct 
simulations, allowing the particles to be oriented in or out of the plane of the mesophase. 
W e subsequently compare the resultant free energies of the simulations and determ ine the 
equilibrium morphology as the one with the lowest free energy.

4.3.1.1. Selective Interactions We first consider the case where the particles have a 
selective interaction between the A  and B  blocks; namely, we focus on the case where the 
particles are preferentially wetted by the A  chains. In this case, the \ parameter between the 
particles and the A  block is zero, ~ 0, and =  Xa\^ ~ 20. The particle volume 
fraction is fixed at 4>r — 0.15. In all the examples considered here, a — 0.1 R(] and a l is 
systematically varied; in this way. we consider particles of fixed cross section but different 
length (o r aspect ratio trL/a). The invariant polymerization index N = a('p(:>N is set to 1000, 
and the fraction of A  sites per chain is given by f 0.30.
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As a basis of comparison, we initially compared the behavior of small cubes (<r — (r, = 
().!/?,,) in the diblock matrix with the behavior of comparably sized spheres in the same 
diblocks (fixed / ). The density profiles for the cube-containing systems were comparable 
to profiles for the diblock/sphere mixtures [3]. W e then modified <r, to simulate rodlike 
particles. Figure 23 shows the two-dimensional density profiles for this system when <tl —
O.o/?„, and it clearly reveals that the system forms a lamellar morphology, where the particles 
are localized within the A  domains.

Figure 23. Lamellar phase of the composite. The particle size is given by (a.<r. rr, ) = (0.1. 0.1. 0.6)/f,„ and the 
particles are preferentially welted by the A-block. where ,V-\»N = 20. .vm,N = 20, ,vA i>N = 0. The volume fraction 
of particles is 15'/. and the diblock composition is characterized by /  = 0.3. The images on the left are the two- 
dimensional density plots; the light regions mark the presence of a given species, and the dark regions indicate the 
absence of that species. The images on the right are surface plots. The distributions depicted are (a) the A-block 
volume fraction, (b) the particle density, and (c) the particle centers.
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The details o f the particle distribution are more readily visualized in the one-dimensional 
density profiles for the system shown in Fig. 24. The long axes o f the particles are oriented 
perpendicular to, or coming out of, the page. W ith in  the A  domains, three peaks in the parti
cle center distribution are clearly visible, indicating that essentially three particles lie parallel 
to each other to fill the A  phase. Figure 25 shows similar profiles for the shortest rods, 
(tl — 0.2/?,„ and the longest rods, aL = 1.2R{). A  comparison of these density profiles shows 
that as the rods increase in aspect ratio (and hence size) from the aL = 0.2/?,, case to the 
crL = 1.2/?0, the particles become more localized in the center of the A  phase. Sim ilar effects 
are seen in mixtures o f diblocks and spherical A-like particles when the size of the spheres 
is increased [8]. This phenomenon can be understood by considering both the translational 
entropy of the particles and the conformational entropy of the chains. The smaller particles 
possess a higher degree of translational entropy than the larger ones, and the chains do 
not have to undergo significant stretching to circumvent the smaller solids; thus, the smaller 
particles are distributed in a relatively uniform manner within the A  domain. In mixtures 
containing the larger rods, the conformational entropy of the chains plays a significant role. 
If  the larger particles were uniformly distributed in the A  region, these rods would exclude 
a significant volume that could not be occupied by the A  subchains. In effect, the conforma
tions that could be sampled by the A  blocks would be diminished, and the entropy of the 
system would be lowered. On the other hand, if the larger rods arc localized in the region 
between the A  subchains (in the center of the domain), the conformational entropy of the 
chains is not significantly affected. Localized in the center, the particles do lose translational 
entropy; however, the loss in translational entropy of the large particles is small compared 
with the corresponding loss in the conformational entropy of the A  chains. Consequently, 
the large rods become localized in the center of the A  phase. In practical terms, the results 
indicate that it is possible to control the distribution of A-like rods within the A  region by 
tailoring the length (aspect ratio) of the particles.

4.3.1.2. Nonselective Interactions M ore dramatic changes in the structure of the com
posite can be seen if we examine the same parameters (/ ,  N , <f>/), <j, aL) as previously given 
but vary the polym er-particle interactions. W e now focus on the case where the particles have 
a nonselective interaction with both the A  and B  blocks; here, we set ^aPN = ^ p N  = 0.02 
and maintain A a rN  = 20. Figure 26 shows the morphology of the system for <rL = 0.6R{). In 
contrast to the image in Fig. 23, the system now displays a cylindrical morphology. Figure 27 
shows that a cylindrical morphology is also observed for crL = 0.2/?u, whereas a lamellar 
structure is observed for cr, =  1.2R{). Thus, increasing the aspect ratio of the particle drives 
a transition from a cylindrical to lamellar mesophase.

In the case o f the smaller solids, the particles have significant translational entropy and 
are dispersed relatively uniformly in the A  and B domains. (This principle is illustrated in 
the top plot in Fig. 28b for a slightly different / .) A  small concentration is localized at the

Figure 24. One-dimensional density profiles for the system in Fig. 23. The solid lines represent if v  the dot-dashed 
lines mark ipLi. the dashed lines indicate *pv. and the dotted lines indicate p,>, the particle center distributor..



M o d e lin g  the S tru c tu ra l E v o lu tio n . Eq u ilib r iu m  M o rp h o lo g y , and M a c ro s co p ic  B e h a v io r 135

Distance

Figure 25. One-dimensional density profiles that reveal the location ol particles for <r, = 0.2ft,, in the lop plot and 
(Ti — 1.2f t , ,  in the bottom plot. The parameters are the same as in Fig. 23. The solid lines represent tpA% the dashed 
lines indicate <£,, and the dotted lines indicate pv. the particle center distribution.

A/B interlace and effectively reduces the interfacial tension between the two blocks. On the 
other hand, translational entropy plays a smaller role in the behavior of the larger particles; 
now the particles are highly localized at the A/B interfacial regions (see the bottom plot 
in Fig. 28b). Confined at the interface, the particles swell the polym er domains; however, 
because the width of the A  domains is smaller than the B  regions, the A  phase is more 
strongly affected and swollen to a relatively greater degree. This selective swelling shifts 
the effective composition of the mixture, essentially enhancing the value of f  and thereby 
stabilizing the lamellar phase.

Again, the results provide practical guidelines for tailoring the structure of the rod/diblock 
mixture. In the case of nonselective particles, an increase in the aspect ratio of the rods can 
be harnessed to promote transitions between the mesophases (fo r example, from cylindrical 
to lam ellar at small / ).

4.3.1.3. Comparison of Particle Distributions in Selective and Nonselective Cases
W e shift our focus to the case of f  = 0.41 because in this ease both the selective and non
selective particles for the range of (iL considered here form a composite with a lamellar 
morphology. By comparing the one-dimensional density profiles for the selective and non
selective cases for both (T, — 0.2/?,, and (tl — 1.2/?„, as shown in Fig. 28, we can clearly see 
that the particle distribution within the lamellar phase is dependent on both the aspect ratio of 
the solids and interaction parameters between these particles and the matrix. By  contrasting 
the selective and nonselective cases at fixed trL, one can see that the distribution of parti
cles can be manipulated by tailoring the particle-polymer interactions. Experim entally, these 
interactions can be varied by coating the surface of the particles with different chains [78].

As we noted in Section 1, Sevink et al. [77] used a dynamic density functional method 
to examine the morphology of chains in the presence of fixed (im m obile) rods of 
infinite length. Thus, in contrast to the studies presented here, the location of rods is not 
affected by the self-assembly of the copolymer matrix. Furtherm ore, only a small number of 
rods were considered; the number of rods was varied from one to six. Because of significant 
differences between the cases studied, it is not meaningful to make a quantitative comparison
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Figure 26. Cylindrical phase of the composite. The particle size is given by (<r, <r, a, ) = (0.1. 0.1. 0.6)/?,,, and the 
particles are nonselective. with ,v.0,N — 20. \ xl.N — ,\m.N = 0.02. The volume fraction of particles is 15%. and 
the diblock composition is characterized by f — 0.3. The images on the left are the two-dimensional density plots; 
the light regions mark the presence of a given species, while (lie dark regions indicate the absence of that species. 
The images on the right are surface plots. The distributions depicted are (a) the A-block volume fraction, (b) the 
particle density, and (c) the particle centers.

between the respective findings. Nonetheless, it is worth noting that Sevink et al. [77] find
that even the presence of a few immobile fillers can perturb the geometry of the system. In
particular, the six rods cause a local bending of the lamellae in the vicinity o f the rods.

O f particular interest is understanding the relative role of the interaction energies and the 
aspect ratio of the particles on the mechanical behavior o f the composite To obtain insight 
into the influence of these parameters on. the macroscopic behavior, we now turn to the 
results of the L S M  simulations on the structures described previously.
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Figure 27. Two-dimensional density plots for <r, = 0.2/?,, in (a) and ir, = 1.2R{, (b). The remaining parameters are 
the same as in Fig. 26. The system is shown to form (a) a cylindrical structure for the shorter rod and (b) a lamellar 
morphology when the rod length is increased.

4.3.2. Micromechanical Studies
As noted previously, the elastic properties of the springs w ithin the L S M  simulation are 
assigned values depending upon the phase in which they appear, as dictated by the output of 
the S C F / D F T  method. The L S M  simulation box in these simulations is 100 x 50 x 50 lattice 
sites in size, with the longer dimension corresponding to the direction of both the applied 
tensile stress and the orientation of the rods. Just as in the S C F / D F T  model, all the rods in

Distance Distance

Figure 28. Comparison of the particle density profiles for selective cases in (a) and nonselective cases in (b). The
top images are for (.r, = 0.2Rn in the top plots and <r, = 1 . 2 in the bottom plots. Here, the diblock composition 
is characterized by f  = 0.41.
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the L S M  are aligned in one direction and are aligned parallel to each other. To limit possible 
surface effects within the simulation, only the central region of 90 x 40 x 40 lattice sites 
contains rods. The spatial dimensions are normalized such that the unit length in the L S M  
is equivalent to the width of the rod in the S C F / D F T  model. The distribution of particle 
centers that is calculated in the SC F /D F T  simulation is utilized in the random positioning 
of the rods in a L S M  simulation. Recall that the SC F /D F T  calculations do not involve an 
integer lattice, while the undeformed lattice in the L S M  is in itially a regular, cubic lattice; 
thus, we must incorporate a linear interpolation scheme to precisely determ ine the particle 
distribution in the L S M . Specifically, the probability distribution, ph for each node / in the 
L S M  is linearly interpolated from the S C F / D F T  values of the particle center distribution p/;, 
and subsequently normalized. In particular, the probabilities are given by

P, = (23) 
£ / P , ,0 )

where p /,(/‘) is the linearly interpolated particle distribution function at node i and the sum
mation is over al! the nodes within the system. The cumulative distribution function is defined 
as being

Ci = T ,P j  (24)
/  - 1

A  random number, R, is chosen in the interval [0, 1]. A  node /, which satisfies the condition 
C, | < R < C,, is chosen to represent the center of a rod. This guarantees the selection 
of a node at random, while enabling the distribution of rods throughout the system to be 
consistent with that of the S C F / D F T  simulation. These rods are not allowed to touch or 
overlap (a new value of R is chosen if this condition is not satisfied). Once a central node is 
selected, bonds in the [100] direction about this node are assigned a stiffness 100 times that 
o f the neighboring matrix. In this manner, we capture the structure o f the three-dimensional 
distribution of a large number of rods (up to 10,800 in the lower aspect ratio runs). We 
note that in this description, the rods are associated with the [100] bond, and thus have no 
relative width. Un like our previous simulations 116], where the rods had a finite width, we 
revert to this coarse-grained description of the rodlike particles in order to incorporate a 
larger number of these fillers.

W e now assume that the material is rapidly quenched to form an elastic solid and hence 
the spatial distribution of the particles and of the polymeric domains is the same as in 
the thermodynamically stable melt described previously. Through the L S M , we can readily 
obtain the stress and strain distribution throughout this composite. Recall that we plot the 
relative quantities (F  — F{))/F0l where F  is the field in question and F{) is the response of 
the pure matrix material. Figure 29a shows the relative strain in the material that contains 
the selective particles with a, = 0.2/?„, and Fig. 29b shows the relative stress for the same 
system. Corresponding images are shown for the al = 1.2/?,) case in Figs. 30a and 30b.

0.5

-0 .5

-1

Figure 29. The relative elastic fields for a system containing selective inclusions whose aspect ratio (defined as 
--r ; it ) is equal to iwo. Both the (a) relative normal strain lie Ids and (b) relative normal stress fields are presented.
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Figure 30. The relative elastic fields for a system containing selective inclusions whose aspect ratio (defined as 
(r, Ur) is equal to 12. Both the (a) relative normal strain fields and (b) relative normal stress Helds are presented.

(The total volume fraction of particles is held fixed in these systems at 4>/) — 0.15; thus, the 
system had a greater number o f small particles than large particles.) Note that the L S M  
simulations reflect the spatial localization of the selective particles (that is, confinement in 
the A  domains). In the case of the nonselective particles. Figs. 31 and 32 display the local 
elastic fields for both the short and long particles, respectively. A  glance at these figures 
shows that the nonselective particles are more uniformly distributed within the matrix than 
the selective solids, capturing the spatial arrangements found in the S C F / D F T  calculation.

In the following discussion, we first focus on the mechanical properties of the system that 
involves the selective particles, shown in Figs. 29 and 30. The most remarkable feature of 
these plots is the significant changes in the elastic properties as the length of the particles is 
increased. The long, stiff particles cannot deform as much as the softer matrix; thus, the rods 
reduce the overall strain in the material, especially in the vicinity of the particles. This is 
clearly visible in Fig. 30a, in which the matrix exhibits significant strain relaxation. Figure 29a, 
which contains the shorter rods, also shows strain relaxation in the bulk, but to a lesser 
degree than that seen for the longer rods. Furtherm ore, the figure shows strain concentra
tions, which occur at the particle edges lying perpendicular to the tensile direction. These 
edge effects are significantly more prevalent for the small particles (at fixed cfip, there are a 
greater number of shorter rods than longer ones) and can ultimately lead to an increased 
probability of debonding between the small rods and the polymers. In both Figs. 29a and 30a, 
the reduced relative strain indicates that the presence of the rods enhances the stiffness of 
the material.

The mechanical properties of a composite also depend on the efficient transfer of stress 
from the matrix to the solid particles [71], Figures 29b and 30b show the relative stress for 
the short and long rods, respectively. As anticipated, the stress concentrations are greater 
in the longer rods, and consequently the stress relaxation is greater in the matrix containing 
these a, — 1.2R{) additives. In other words, the efficiency of stress transfer is greater in the

Figure 31. The relative elastic Helds for a system containing nonselective inclusions whose aspect ratio (defined as
ir ,Jir ) is equal to two. Both the (a) relative normal strain fields and (h) relative normal stress Helds are presented.
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Figure 32. The relative elastic fields for a system containing nonselective inclusions whose aspect ratio (defined as 
(T, j(r ) is equal to 12. Both the (a) relative normal strain fields and (b) relative normal stress fields are presented.

(tl = 1.2/?,, case than the (rL = 0.2/?„ example. It is important to note, however, that the 
large stress concentrations in the longer rods imply that these inclusions will more readily 
fracture than the shorter species.

The same general conclusions apply to the behavior of the composites containing the 
short and long nonselective rods (sec Figs. 31 and 32). In Fig. 33, we plot the cumulative 
distribution function (C D F )  for the relative stress for various rod lengths in the case of 
the nonselective particles. The C D F  indicates the percentage of the material that exhibits 
a relative stress less than the specified amount; the plot provides a quantitative description 
o f the qualitative observations that can be deduced from Figs. 31b and 32b. As the length 
o f the rods is increased, the curves in Fig. 33 shift to the left, indicating that the stress in 
the overall composite is decreased. The upper right hand of the curve indicates that a small 
fraction of the material— namely, the rods themselves— exhibits greater stress concentrations 
as the rod length is increased. As can be deduced from Figs. 29b and 30b, and the previous 
discussion, quantitatively similar plots can be drawn for the case of selective particles.

W hat emerges from a comparison of Figs. 29 and 30 with Figs. 31 and 32 is the fact 
that for the rod lengths and volume fraction considered here, there is no substantial dif
ference between the mechanical properties of the composites that contain the selective or 
nonselective particles. In effect, the nanoscale differences in the distribution of particles in 
the two cases (at this relatively high c/>/; of 15% ) do not contribute to dramatic differences 
in macroscopic behavior. The overriding effect on the macroscopic properties is the length

Relative Stress

Figure 33. The cumulative distribution function of the local relative stress field in systems containing nonselective 
inclusions whose aspect ratio varies between 2 and 12. The higher stresses correspond to stress concentrations 
within the rods.
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(aspect ratio) of the rods. This conclusion can be readily seen in Fig. 34. where we plot the 
percentage increase in the Young's modulus for the selective and nonselective cases as a 
function of rod length. Each point represents an average over three different L S M  calcu
lations (using the same S C F / D F T  as input but different random numbers to determine the 
location of the particle centers). W hat is striking is the dramatic increase in the modulus due 
to the presence of the particles and how this quantity increases with the increasing aspect 
ratio of the rods.

W hat is intriguing, however, is the small (but statistically significant) difference in the 
values for the selective and nonselective cases at large aspect ratio, with the selective particles 
yielding slightly less reinforcement than the nonselective species. The plot indicates that such 
differences in behavior become more pronounced at higher aspect ratios. We can hypothesize 
that the situation is in some ways analogous to the behavior o f intercalated and exfoliated 
polymer/clay composites. That is, as the selective rods get longer, they become more and 
more localized and crowded in the center of the A  domain (see Fig. 28). Consequently, 
only small regions of the material can benefit from the reinforcing properties of these rods. 
In contrast, the long nonselective rods remain more uniformly distributed, even as the rod 
length is increased. Here, more extensive regions o f the matrix are affected by the presence 
of the solids, and the overall stiffness of the material is enhanced. In a similar vein, at 
fixed volume fractions, exfoliated platelet particles provide better reinforcement than the 
intercalated species.

4.3.3. Summary
We determined how the self-assembly of the copolym er matrix affects the spatial distribu
tions of the rodlike fillers and how the fillers affect the mesophase of the mixture. W e then 
predicted the elastic properties of the resultant solid composite. In these studies, we did 
not consider the effects of varying the elastic properties for the different blocks, though this 
could be readily done by assigning different spring constants to the A  and B  components. In 
addition, we do not allow for the locally anisotropic behavior o f the polymer at the domain 
interface as a consequence of chain stretching. However, local variations in polymeric elas
tic moduli are assumed to be relatively small in comparison with the differences between 
the polymer matrix and the rodlike particles. It is this elastic mismatch that is prim arily 
responsible for the increase in the global Young's modulus and the reinforcement efficiency 
of the rodlike nanoparticles. We have accounted for the effects of varying the aspect ratio 
and spatial distribution of the fillers. The large increases in Young's modulus reported here 
as a consequence of incorporating rodlike fillers are far in excess of what might be expected 
because of the local variations in polymer composition and chain-stretching effects.

Aspect Ratio

Figure 34. The percentage increase in Young's modulus as a function of particle aspect ratio for equivalent particle 
volume fractions. Systems containing both selective and nonselective inclusions are compared. The effects of aspect 
ratio are significant and the percentage increase in Young’s modulus ranges from 2()rr to 1.40%.
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To carry out these studies, we modified the density functional component of our previous 
S C F / D F T  [4-10] model to incorporate solid, parallelepiped particles. In this way, we can 
examine the influence of rodlike fillers or platelets on the self-assembly of block copolymers. 
In the present study involving rodlike particles, we find that for fixed values of the aspect 
ratio of the rods influences the spatial distribution of these fillers within the copolymer 
matrix. Furtherm ore, in the case of the nonseleetive particles, changes in the length o f the 
rods can be exploited to induce phase transitions between different mesophases. Here, we 
observed that increasing the length of these nonseleetive rods drives a transition from a 
cylindrical to lamellar morphology.

The results of these S C F / D F T  studies then served as the input to the L S M , a m icrome
chanical simulation. W e focused on a case where both the selective and nonseleetive particles 
yielded a composite with a lamellar morphology. W ith in  this mesophase, the high aspect 
ratio, selective particles were largely localized between the A  brushes of the A  domain. 
On the other hand, the nonseleetive rods o f com parable length were localized at the inter
face between the A  and B  domains. Nonetheless, the Young's moduli of the two systems 
were comparable. Thus, for the values of a, and </> considered here, these differences in 
the spatial distribution of the particles did not have a substantial influence on the overall 
mechanical properties of the composites. The dominant effect was the aspect ratio of the 
rods: the high aspect ratio fillers yielded a dram atic increase in the Young modulus relative 
to the pure diblock.

4.4. Structure and Optical Properties of
Nanoparticle-Filled Diblock Copolymers

In the next study, we again utilize the S C F / D F T  methodology to determine the self
assembled structure of particle-filled diblock copolymers. However, in this investigation, we 
focus on spherical nanoparticle fillers. O u r aim is to correlate the morphology of these 
nanocomposites to the optical properties of the system [30]. Such correlations are vital for 
designing novel polymer/nanoparticle photonic crystals. In photonic crystals, the dielectric 
constant of the material is a spatially periodic function. In such systems, forbidden frequency 
bands can exist for incident electromagnetic waves. These photonic band gaps are caused by 
the interference of waves as they are reflected and scattered by regularly spaced regions of 
varying dielectric properties.

B lock copolymers have the potential to form promising photonic crystals because they 
self-assemble into spatially periodic materials [36]. Because of lim itations on the molecular 
weight of the polymer species (and therefore the domain sizes) and the dielectric contrast 
between different blocks, the range of forbidden frequencies and the size of the photonic 
band gaps are severely restricted. Thomas et al. [55, 79] have successfully swollen domain 
sizes through the addition of homopolymers in order to shift photonic band gaps from the 
ultraviolet to the visible region of the spectrum. It was also shown that the width of the band 
gap could be increased through the selective sequestering of inorganic nanocrystals within 
one of the phases of the microphase-separated diblock copolymers [79-81].

O ur recent computational investigations into the self-assembly of nanoparticles and 
diblock copolymers have provided significant insight into the possible morphologies of such 
structures [1-10]. Here, we extend this work by combining the S C F / D F T  morphological 
studies with a computational model for the propagation of light and thereby determine the 
optical properties of the self-assembled composite [30]. In the present study, we assume 
that the diblock copolymer structures are perfectly aligned, periodic lamellae. Such regular 
structures can more readily be attained in thin films [80]. W e find that even for this simple 
ID  photonic band gap material, a rich variety o f phenomena can be observed.

4.4.1. Relation of Morphology to Optical Properties
The initial case that we consider involves a symmetric diblock copolym er without the addition 
of the fillers. The volume fraction profiles corresponding to the A  and B  phases are pref-ented 
with respect to distance in the v-direction in Fig. 35a. As is typical in diblock copolymers, the 
dielectric contrast between the two phases is relatively small. If  we assume that the tr arsition
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Figure 35. Symmetric unfilled diblock copolymer; ^ABN = 20: (u) volume fraction profiles of constituents (A  blocks 
anJ B blocks of the diblock copolymer) and (b) transmittance spectra (a transmission of 1 corresponds to the total 
transmission of light, and a transmission of 0 corresponds to the total reflection of light).

between the A  and B  phases is instantaneous (that is, a sharp change in the dielectric 
contrast between A  and B ), we can use a simple theory that takes into consideration the 
optical paths of the domains to estimate the frequencies at which reflection will occur [82] 
and, consequently, transmission will be reduced. The mth order frequency is given by

= cm/(l(dAnA + dunB) (25)

where c is the speed of light, cl is the width of the domain, and n is the refractive index of
the domain; the subscripts A  and B  correspond to the A  and B  phases, respectively. For this 
case, the principal frequency (m =  1) is estimated from theory to be 0.89 x 10b Hz, which 
corresponds to a wavelength of 337 nm (ultraviolet).

In our calculations, we use the volume fraction profiles in Fig. 35a to assign the appropriate 
values of the dielectric constants in the F D T D  simulation; consequently, the variation in the 
dielectric constant between the A  and B  phases is relatively smooth. Nonetheless, in our 
studies Aa b N  = 20, and thus there is only a relatively small overlap between these domains.

Figure 35b depicts a F D T D  calculation for the transmission of light as a function of the 
frequency of the incident light. In this plot, a value of 1 in the vertical axis corresponds 
to 100% transmission. W e do, in fact, observe a decrease in transmission in the region 
corresponding to the principal frequency of reflection predicted from Eq. (25).

A lso  of interest is the absence of even orders of reflection. The relative intensities of the 
various orders depend upon the ratio between the optical thicknesses of the two domains 
(where >?//, is the optical thickness of species / = A , B ). The variable

g = >K\dJ{ih\dA + nBdH) (26)

can be used to estimate these relative intensities [82]. A  value of (1/2) corresponds to equiv
alent optical distances, as is the case for a symmetric diblock with little dielectric contrast, 
and this results in the suppression of all even orders. This can be seen in Fig. 35b as the 
high degree of transmittance in regions that correspond to even multiples of 0.89 x 10L\

Because of the small dielectric contrast in this system, the reflectance is small, and the
frequency band over which this reflectance occurs is also small. To increase the magnitude
of the reflectance and the size of the band gap. the dielectric contrast between the domains 
must be increased. W e next consider a melt o f symmetric diblock copolymers that contains 
A-like particles. In particular, we set X\\> = 0 an(J  XupN = 20. Here, and in all subsequent 
cases, we fix ^ABN — 20. In addition, the radius of the particle. R r , is set to 0.15/?(), where R{] 
is the root mean-squared end-to-end distance of the diblock. The total volume fraction of 
particles is fixed al 10% (</>,, = 0.1).

As can be seen from the volume fraction profiles in Fig. 36a, these fillers become localized 
w ith in the A  domains, which are swollen by the particles. The transmission for this system
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Figure 36. Symmetric filled diblock copolymer with particles localized in A phase: ^A|{N = 20. y^ N  — 20. ^A|»N = 0: 
(a) volume fraction profiles of constituents (A  blocks and B blocks of the diblock copolymer and nanoparticles) 
and (b) transmittance spectra (a transmission of 1 corresponds to the total transmission of light and a transmission 
of 0 corresponds to the total reflection of light).

is presented in Fig. 36b. This ease may be distinguished from the previous unfilled case 
in a number of ways. First, the reflectance of light at certain frequencies is 100% (that is, 
transmission is 0 % ),  as opposed to roughly 6 0 %  in the previous system. Second, the width 
of the band gaps is larger, especially those corresponding to the higher orders of reflection. 
Third, the principal frequency of reflectance now overlaps the optical range (marked by 
dashed vertical lines in Fig. 36b). which corresponds to light in the visible spectrum. The 
dielectric constant associated with the A  phase is now increased because of the presence of 
the particles. This behavior, combined with the swelling of the A  phase, gives rise to a larger 
optical path, dAnA. From  Eq. (26), it can be seen that this has the effect of decreasing the 
frequency at which principal reflectance occurs, as is the case for the simulation results in 
Fig. 36b.

The following and more interesting case involves a symmetric diblock copolymer melt 
that contains nonselective particles. Specifically, we set Xav^ = XnpN = 20. Since Xau^  is 
also equal to 20, all of the species are equally incompatible. The volume fraction profile for 
this ^AB system is given in Fig. 37a. As can be seen, the sizes o f the A  and B  phases are 
comparable, and the particles are confined at the A/B boundary. In such a mutually incom
patible system (x,\n = X,\\> — A'bp)* the minority component is expelled to the interface [83] 
prim arily because it is energetically more favorable for the A  component to be surrounded 
by A  and. similarly, for the B  component to be immersed in B. A t the A / B  interface, the

D i s tan c e/i n F re q ue ne y/H /

Figure 37. Symmetric tiiled diblock copolymer with particles localized at interface: ,vxhN — 20. A'ai.N = Jti>i>N = 0.02: 
(a) volume fraction profiles of constituents (A blocks and B blocks of the dibiock copolymer and nanoparticles) 
and (b) transmittance spectra (a transmission of 1 corresponds to the total transmission of light, and a transmission 
of 0 corresponds to the total reflection of iight).
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particles increase the dielectric heterogeneity of the structure. The optical consequences of 
this morphology can be seen in the transmittance in Fig. 37b. The gap associated with the 
principal frequency corresponding to the periodic structure of the diblock copolymer is nar
row, and a reflectance of only 4(K7 is observed. The more defined and much wider band gap 
occurs where the second order of reflection is expected to occur. This is because the rela
tive differences between the A  and B  phases are small, and the principal frequency is now 
associated with the polymer-particle layers. The principal dielectric contrast occurs between 
the particles at the interface and the unfilled polymer domains. Hence, the periodicity of 
high dielectric contrast is now roughly half of that associated with the diblock copolymer 
structure. The A  and B  domains are slightly different, however, and small decreases in 
the transmittance are still observed at frequencies associated with the diblock copolymer 
periodicity.

W e now consider the case where the diblock copolymer is no longer symmetric but the 
system still displays a lam ellar morphology. Figure 38a depicts the volume fraction profiles 
of a 37:63 diblock copolymer with the A-like particles embedded in the A  phase. In this case, 
* apN  = 0 and ^BpN = 20. Despite the swelling o f the minority phase by the confinement 
of the particles, the B  phase is still thicker. The transmission for this system is presented in 
Fig. 38b. The presence of the particles increases the dielectric contrast within the system, 
and, as in the filled systems above, wide band gaps are present with reflectances of 100%. The 
principal frequency of reflectance is clearly associated with the dielectric contrast between 
the filled A  phase and the unfilled B  phase. As in Fig. 36b, the principal frequency band gap 
crosses from the violet to the ultraviolet regions of the spectrum (either side of the dashed 
line on the right). An interesting consequence o f increasing the dielectric constant within 
the minority phase is that the optical path of the A  phase is also increased. This results in 
optical paths in both phases being comparable, and, like the unfilled symmetric system, the 
even orders of reflectance are suppressed.

In the final case, we investigate the inclusion of nonseleetive fillers at the interface of a 
nonsymmctric (37:63) A B  diblock copolymer. Here, XA\>N = ^upN = 20. The volume fraction 
profile associated with this system is presented in Fig. 39a. Although the particles are clearly 
localized in the interfacial regions, there is also a small volume fraction of these fillers in 
the minority A  domain. Because the B  block is longer, the overall contact energy would be 
greater if the particles were to leak into the B  rather than the A  phase. The effect that this 
has on the optical properties is revealed in Fig. 39b, which depicts the transmittance for 
this system. Because of particles in A . the dielectric contrast between the A  and B  phases 
is substantial, and therefore the principal band gap is associated with the periodicity of the 
diblock copolymer and not the periodicity of the polymer-interface regions, as was the case 
in the equivalent symmetric system (see Fig. 37). It is also worth noting that the principal 
band gap occurs outside the visible range of the spectrum. An interesting consequence of the

F igure 38. Asymmetric filled diblock copolymer (37:63) with panicles localized in A phase: x,v^  — 20, ,Vhf’N = 20. 
^ a|,N = 0: (a) volume fraction profiles of constituents (A  blocks and B blocks of the diblock copolymer and 
r.anoparticles) and (b) transmittance spectra (a transmission of I corresponds to the total transmission of light and
a transmission of 0 corresponds to the total reflection of light).
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Figure 39. Asymmetric filled diblock copolymer (37:63) with particles localized at interface; ^ABN = 20, ^APN = 
A'bi.N = 0.02: (a) volume fraction profiles of constituents (A blocks and B blocks of the diblock copolymer and 
nanoparticles) and (b) transmittance spectra (a transmission of I corresponds to the total transmission of light, and 
a transmission of 0 corresponds to the total reflection of light).

clustering of particles at the interface is a decrease in the domain size. (A  greater particle 
volume fraction at the A/B boundary results in a reduction of diblock junction points across 
this interface. This, in turn, results in a lower number of chains within a given domain and 
hence a reduction in domain size.) The decrease in domain size has the effect o f increasing 
the principal frequency of reflection into the ultraviolet range of the spectrum.

4.4.2. Summary
The combination of techniques described here allowed us to determine both the morphology 
and the optical properties of filled diblock copolymer systems. W e found that the addition of 
particles result in more defined band gaps, with 100% reflectance and a wider frequency gap. 
In addition, the increase in optical distances results in a decrease in the principal frequencies 
of reflectance. Furtherm ore, by combining the S C F / D F T  and F D T D  methods, we can see 
that changes in the chemical nature of the particles (selective versus nonselective) result 
in different spatial distributions o f the particles and, hence, significantly different optical 
properties. In effect, this hybrid approach allows researchers to determ ine how choices made 
in the components (polymers, particles) affect the macroscopic performance of the material.

The frequencies at which light was reflected were within the violet range of the visible 
spectrum for certain systems containing particles. In the current simulations, the size of one 
lamellar domain within the pure symmetric diblock system was assumed to correspond to 
50 nm. Note, however, that domain sizes up to 100 nm are possible [80], and therefore 
the values of the frequencies could essentially be halved. This would result in band gaps 
in the infrared and near-infrared ranges of the spectrum, which would be useful in the 
telecommunications industry.

5. CONCLUSIONS
A  specific focus of our research has been to develop fundamental relationships among 
the following: (1) characteristics of the components in filled blends and copolymers, 
(2 ) microstructure of the mixture, and (3) macroscopic properties of the material. To estab
lish correlations between items (1) and (2), we took advantage of our C FI/BD  and SC F/D FT ' 
models. Through these models, we can readily assess how variations in the features of the 
particles and polymers affect the morphology of the complex mixtures. Effects of tempera
ture and pressure can be examined with both our C H  B D  and S C F / D F T  models, while the 
effects of imposed flows can readily be investigated through the C T l/BD  method. Thus, we 
can determine how processing conditions influence the final microstructure of the system.

To develop relationships among items (1) through (3 ). we first combined our morpholog
ical models with the L S M , which allows us to simulate the deformation of the mixtures and
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determ ine the macroscopic material response. In other words, the output from the C H /B D  
or S C F / D F T  models served as the inpul to the L SM . In subsequent studies, we combined 
the output of morphological studies with F D M  to obtain the electrical conductivity of the 
material and with the F D T D  to obtain the optical properties of the nanocomposite.

By integrating the morphological and mechanical, electrical, or optical models, we can 
isolate how specific modifications in the geometry or properties of the components affect the 
macroscopic behavior. Thus, we can establish how choices made in the components affect the 
ultimate performance of the system. Finally, we can explore vast regions of the design space 
to rapidly assess promising avenues from unprofitable excursions. Such investigations would 
be far more challenging and costly through experimental explorations. Thus, these studies 
can result in the efficient development o f materials with optimal properties for specific 
applications.

In future studies, we will extend our theories to explicitly include the presence of chains 
or “ hairs" that are grafted to the surface of the nanoparticies. Particles used in experimental 
studies are commonly coated bv such hairs. In formulating a theory for coated particles, we 
recently modified the S C F / D F T  formalism to model particles that contain just one anchored 
hair [84]. and already with this extension, we observed unique behavior in the self-assembly 
of the species. In particular, we investigated the self-assembly o f amphiphilic molecules that 
are composed of a hard, spherical, nanoparticle "head" and an attached polymeric “ tail." 
W e considered the case where the tail is A-like and the incompatible head is B-like, as well 
as the situation where an A B  diblock is tethered to a B-like head. Because of the steric 
interactions between the solid head groups, the equilibrium morphology of a melt o f the A B  
tadpoles was found to be significantly different from that of an A B  diblock melt having the 
same effective composition. Sim ilar observations were found through molecular dynamics 
studies on nanoparticies that contained short oligomeric tails [85]. In addition, we found 
that the A B B  species (an A B  diblock tethered to a B  head) organize in a way that is distinct 
from the A B  tadpoles (with a pure A  chain tethered to a B  head).

W e also observed that the single-tailed tadpoles display distinct interfacial activity when 
blended with diblock copolymers. If  the heads were covered with multiple, uniformly dis
tributed hairs, the species would preferentially localize in the hair-compatible phase. H o w 
ever, with a single hair, the tadpole behaves like a surfactant, with a head localized in one 
phase and the tail in the other.

W ith  the morphological output from our studies on the self-assembly of the tadpoles and 
tadpole/diblock mixture, an intriguing question is how the mechanical behavior of these 
systems would differ from that of a mixture of uncoated nanoparticies and diblocks. The 
physical attachment of the chains to the nanoparticies could contribute to enhancing the 
mechanical properties of the nanocomposites. Such studies will be carried out in the future 
by coupling the results of these S C F / D F T  calculations to the L S M  simulations. The findings 
can provide guidelines for creating novel nanostructured composites with improved structural 
integrity.

By  coupling these S C F / D F T  studies with the F D T D  calculations, we can also determ ine 
if a linear copolymer that is anchored to a solid nanoparticle with a specific, desired index 
o f refraction would display novel optical properties. These intriguing questions will form the 
basis of future work.
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1. INTRODUCTION
Thin polymer films find ample applications as dielectric materials in microelectronics, protec
tive coating, adhesives and lubricants [1-5]. As the length scale o f devices becomes smaller 
and smaller, effects of boundaries and surfaces become increasingly important. In many 
cases, the stability of the film against rupture or the morphology of the film in a m ulticom 
ponent system is of key importance. These properties are determ ined by a variety of factors, 
which m irror structure on vastly different timescales and length scales. For illustration, let 
us consider a one-component polymer film on a solid substrate.

On the atomistic scale, specific interactions between the polymer and the substrate dom 
inate the behavior— there might be chemisorption or physisorption of small portions o f the 
polymer onto the substrate. In principle, atomistic modeling and quantum chemical cal
culations can provide much insight into these local structural properties (e.g., the specific 
adsorption of chain ends to surfaces [6|). It is important to realize that the energy scale for 
these interactions is on the order of eV — this is the largest energy scale to be considered. It 
is large compared to thermal fluctuations ( kBT ^  0.025 e V )  or typical liquid-vapor interface 
tensions (y  = 10 22 J/ A 2 ~  0.006 eV /A 2). Therefore, these interactions have a substantial 
influence on the stability o f thin films, but by the same token, they are very sensitive to 
specific chemical substances and preparation methods (e.g., the cleaning of surfaces [7]).

On the mesoscopic scale, which is larger than a few atomistic monomeric units, other 
interactions play an important role in polymeric materials: the conform ational entropy o f the 
extended molecules and the van der Waals attractions between constituents; the correspond
ing energy scale kHT , where kn is Boltzm ann's constant and T denotes the temperature, 
is characteristic for soft-condensed matter and it is about two orders o f magnitude smaller 
than the energy of a chemical bond.

On even larger length scales, one can describe the system by the location of the liquid- 
vapor interface of the polymer film. The interaction of this interface with the substrate per 
unit area is described by the interface potential g [8]. The latter quantity is o f paramount 
importance for the wetting properties of the polymer film. The typical free-energy scale only 
is a small fraction of the interface tension y.

Thus, as one proceeds to longer length scales, the effective interactions become softer 
and the concomitant timescales longer. Obviously, a seamless description that spans all the 
different length scales is computationally not feasible, but much progress has been achieved 
in specific areas. For instance, combining Car-Parincllo  density-functional calculations with 
molecular dynamics simulation of a coarse-grained polymer model, the conformations of 
polycarbonate in the vicinity of a nickel surface have been studied [6]. The quantum mechan
ical density-functional calculations provided inspiration for the interaction potentials that 
were used as input for the simulation of the coarse-grained model to study the behavior on 
larger length scales. This is one example o f bridging the length scales by combining different 
techniques tailored to address problems on specific length scales. In the following text, we 
focus mainly on coarse-grained, particle-based, and field theoretic models because they can 
address phenomena on the length scale o f a few nanometers. W e investigate the relation 
between these two approaches, and on the other hand, we will discuss them in context to 
experimental systems.

W e will describe the application o f coarse-grained models to study the structure and ther
modynamics of one- and two-component polym er films. W e do not focus on deriving these 
models for a specific system but, rather, investigate the generic properties on the length 
scale from nanometers to a micrometer. Contact to experimental realizations is established 
via a few coarse-grained parameters (e.g.. H am akcr constant, m olecular extension, Flory- 
Huggins parameter or interface,surface tensions). M ore details o f m olecular architecture 
can be incorporated (e.g., stiffness via bending and torsional potentials, chain branching), 
and coarse-grained models can investigate the qualitative dependence of the behavior on
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larger length scales (e.g.. contact angles and morphology of phase separation in films) on 
the molecular architecture. 'They also are an ideal testing bed for phenomenological con
cepts. Moreover, coarse-grained models can investigate systems containing interfaces and 
self-assembled structures that cannot be studied by atomistic simulations with present-day 
computers [9].

Sim ulation of polymer films is a rapidly developing research area. We have made no 
attempt to be comprehensive, and we have drawn examples from our own work. W e restrict 
ourselves to properties of fluid films in thermal equilibrium and do not discuss other inter
esting properties like the glass transition [10] and the mechanical properties [11] of thin 
films or the kinetics of phase separation [12] or dewetting [13, 14].

2. COARSE-GRAINED MODELS
Rather than "deriving”  a coarse-grained model for a specific system, one can ask the question 
of which interactions are necessary to bring about a specific behavior on large length scales. 
Including only those relevant interactions, one obtains a computationally effective, minimal 
model and learns a great deal about the ingredients that cause the qualitative behavior on 
large length scales. If  need bc, these models can be successively refined to incorporate more 
structural details.

Coarse-grained models have a longstanding history in polymer physics. They were the 
first to investigate the structure of polymers in good solvent, where polymer conformations 
adopt self-avoiding walk statistics [15). In this case, the use of a coarse-grained model can 
be formally justified by the self-similar structure on a large range of length scales from 
the statistical segment length b to the polymer's end-to-end distance R(t. The structure of 
polymer solutions corresponds to the critical behavior of a field theory with //-component 
order parameter in the limit n —> 0 [16]. Sim ilar to critical phenomena in the theory of phase 
transitions, the universal behavior on large length scales does not depend on the detailed 
implementation of the relevant interactions— connectivity along the polymer and repulsion 
between segments (excluded volum e)— on short length scales.

In the following text we shall describe two popular coarse-grained models for dense poly
mer melts and solutions. In these coarse-grained models, one lumps a small number of 
monomeric units together to form an effective segment. In addition to the connectivity of 
monomeric units along the backbone and the excluded volume of the monomeric units, a 
finite energy scale describes the attraction between segments of the same type or a repul
sion between segments of different types in a mixture. Comparing this finite energy to the 
thermal energy knT, we introduce a temperature T in our model.

Two representations will be employed in the following: the bond-fluctuation model [17] 
and a bead-spring off-lattice model [18, 19]. In the bond-fluctuation model (cf. Fig. la ) 
monomeric units are represented by unit cubes on a three-dimensional simple cubic lattice.

elA, e —£

wall

Figure 1. Schematic representation of two coarse-grained polymer models. Left, bond fluctuation model, right, 
bead-spring model. See text for further explanations.
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Each monomeric unit blocks the eight corners of the unit’s cell from double occupancy. This 
represents the excluded volume of the monom eric units. M onom eric units are connected by 
one of 108 bond vectors with lengths 2. v 7̂ , \/6, 3, and v/TO in units of the lattice spacing u 
[namely, (2 ,0 ,0 ) ,  (2, 1,0), (2, 1 ,1), (2 .2 , 1), (3 ,0 ,0 )  and (3. 1 ,0 ) and all symmetry-related 
ones]. This represents the connectivity along the backbone of the polymer. W e  shall use 
this model to investigate the phase behavior of a binary polymer blend in Section 6. The 
mixture comprises two species, denoted A  and B. Monom eric units of the same species 
attract each other via a square-well potential that is extended over the nearest 54 lattice sites. 
This roughly corresponds to the first neighbor shell in the density pair correlation function. 
Each contact between monomers of the same type decreases the energy by an amount e, 
and each contact between monomers of different types increases the energy by the same 
amount. The ratio between this energy scale and the typical energy of thermal fluctuations 
kBT determ ines the phase behavior.

In the bead-spring model (cf. Fig. lb ) monom eric units are represented by Lennard-Jones 
interaction centers that live in three-dimensional continuum space. Le t r denote the distance 
between two monomeric units, and then their interaction is given by

and Vu (r) = 0 for distances larger than the cut-off rc. V. is a constant chosen such that 
I/u (/V) = 0. In our simulations we use rc = Is/lfr. The Lennard-Jones potential is charac
terized by two parameters, the energy scale e and the monomeric size a. The harsh repulsive 
contribution mimics the segmental excluded volume, whereas the 1 //*•' term describes the van 
der Waals-like attraction between monomers. Monom eric units that are nearest neighbors 
along the chain are bonded via a finitely extensible, nonlinear elastic ( F E N E )  potential

This interaction represents the connectivity along the backbone of the polymer. W e represent 
the wall or substrate as an impenetrable structureless wall, but the interaction between the 
monomers and the wall is lon^-ranped.O O

Lennard-Jones type of interactions between the constituents of the polymer fluid and the 
substrate. The strength Aw plays the role o f the Flamaker-constant.

Mapping atomistic representations onto these coarse-grained models, one aims at roughly 
retaining the molecular geometry, which is characterized by the radius of gyration of the 
polymers and the distance between neighboring chains. The latter quantities can be con
ceived as the “ thickness" of the polymer. In an atomistic model, the van der Waals radii 
of the chemical repeat units strongly overlap, whereas the bond length and the size a o f a 
monomeric unit are comparable in the coarse-grained description. In an atomistic model, a 
torsional potential imparts some persistence onto the direction along the backbone of the 
polymer, and in the coarse-grained model, typically torsional potentials are omitted and the 
monomeric units are flexibly bonded together. Therefore, one can roughly estimate that a 
mononieric unit of the coarse-grained model corresponds to 3-5 chemical repeat units in an 
atomistic model. These considerations can be made more quantitatively by comparing inter- 
and intram olecular pair correlation functions between atomistic models and coarse-grained 
models and adapting the potentials in the coarse-grained model to faithfully represent their 
atomistic counterparts [20, 21].

In the same spirit, one can roughly identify a lattice unit u of the bond fluctuation model 
with a length scale of 2-3/4. G iven  that the typical linear dimensions of the lattice used in 
M onte Carlo  simulations are on the order of 200 u, this model can explore the behavior on

( 1)

(2)

(3)

where z denotes the distance from the planar substrate. These interactions stem from the
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scales of up to 50 nm. The length scale cr of the Lennard-Jones model corresponds to about 
5 A. Because a typical simulation cell has a linear extension of about 20 o\ the model captures 
the behavior on the length scale of about 10 nm. O f course, we would like to emphasize that 
these values are just very rough estimates: The system size that can be investigated within 
reasonable computer resources depends on the specific question and algorithm. The coarse- 
graining procedure sketched above has been carried out for specific substance, but we shall 
not pursue this interesting issue further [21]. Rather than modeling a specific polymer, we 
shall concentrate on the generic properties of polymeric liquids.

In both models, the interactions between nonbonded monomeric units comprise two qual
itatively different contributions: the harsh, short-ranged repulsion determines the packing of 
the monomers and gives rise to a local fluid structure. The fluid structure manifests itself in 
pronounced oscillations in the density pair correlation function at short distances and high 
densities. The packing effects significantly contribute to the compressibility of the liquid. 
They are somewhat stronger in the off-lattice model than in the bond fluctuation model, but 
they are nevertheless present in the lattice model because of the size difference between 
monomers and vacancies. G iven the fact that a monomer in the coarse-grained model cor
responds to a small number of repeat units in a chemically realistic model, one expects that 
the effective interaction between a small group of repeat units in a chemically realistic model 
is softer than the harsh repulsion in the coarse-grained models, and that the coarse-grained 
models systematically overestimate the structuring of the fluid.

The longer-ranged attractions set the temperature scale. In  a one-component system, they 
mimic the effect of the solvent. Rather than considering the solvent explicitly, one can con
ceive these monomer-monomer interactions as a result o f integrating out the degrees of 
freedom corresponding to the solvent. This yields a faithful description of thermodynamic 
equilibrium properties of incompressible polymer+solvent mixtures, but it might lead to 
quite different dynamical properties [22] and fails even for the statics if the system is not 
incompressible [23]. These effective attractions between monomeric units cause an isolated 
chain to collapse from a self-avoiding structure at high temperature to a dense globule at 
low temperature. For an infinitely long chain, this collapse transition occurs at the H  tem
perature. Below  this temperature, a multichain system (a polym er solution) phase separates 
into liquid and vapor (16].

The functional form of the potential in the off-lattice model mimics van der Waals inter
actions. Typically, the interaction is cut off at a finite distance for sake of computational 
efficiency. The value of the cutoff does affect the equation o f state of the polymer liquid and 
the liquid-vapor coexistence quantitatively, but these differences can be accounted for by 
tail corrections to the chemical potential or pressure. The cutoff can also modify qualitative 
features of the wetting behavior, and we shall discuss this issue further in Section 4.1.

Both models are well-suited to investigate the universal properties of polymeric materials 
on the mesoscopic length scale: Each one offers distinct advantages and drawbacks. The 
major advantage of lattice models is their computational efficiency. Taking advantage of 
the lattice structure, energies can be calculated faster, and more complicated M onte Carlo  
moves are more easily formulated and more efficiently implemented on the lattice than 
in continuum space. As computer simulations of polymeric materials are computationally 
much more exacting than simulations of simple liquids, computational speed is a major issue. 
O ne disadvantage of lattice models is the possibilities of lattice artefacts. These are particu
larly important for phases with nematic order or at very high densities. Lattice artefacts are 
strongly reduced in the bond fluctuation model compared with simple lattice models that 
represent monomeric units by a single lattice site. The large number of bond vectors (108) 
allows for 87 distinct bond angles and provides a much finer approximation of continuum 
space than simple lattice models. In this sense, the bond fluctuation model is a compromise 
between simple lattice models and a continuum description (cf. also Ref. [24] for a com par
ison between “ fine-grained”  lattice models and continuum models).

The major advantage of models in continuum space is the presence of forces. This pres
ence allows for molecular dynamics simulations in which one propagates the particle posi
tions according to Newton’s law of motion and obtains a realistic description of the dynamics. 
These simulations are also well suited for parallel computations, as one can partition the
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calculation of forces between particles onto different processors. Forces can also be used to 
calculate the pressure via the v irial expression, and the velocity correlations can be employed 
to determine viscosities.

In general, one should use the model and computational technique that is computationally 
the most efficient if there are not artefacts in the model that alter the qualitative physics. 
Therefore, we will discuss the stability o f one-component polymer films in the framework of 
the bead-spring model. E a r lie r studies o f the bond fluctuation model [25-27] have shown that 
under very bad solvent conditions, the polymers form a very dense liquid, the properties of 
which are dominated by the structure of the underlaying lattice and that is extremely difficult 
to equilibrate. A lso in the off-lattice model, the liquid condenses into a dense structure 
at low temperatures or high pressures, which, in turn, exhibits interesting glassy behavior. 
However, at moderate meltlike densities, the bond fluctuation model is very efficient, and 
we shall use it to discuss the properties of binary polymer films in Section 6.

3. MONTE CARLO  SIMULATION AND SELF-CO NSISTENT  
FIELD  TECHNIQUE

3.1. Simulation Techniques for One-Component Polymer Liquids
In the following we describe M onte C arlo  simulations to investigate the structure and ther
modynamics of thin polymer films [28]. To illustrate the simulation technique, we will focus 
on one-component polymer films within the bead-spring model. W e consider polymers that 
consist o f N monomers. W e work in the grandcanonical ensemble (i.e., we fix the volume V 
of our simulation cell, the temperature T and the chemical potential o f the polymers). 
The number of polymers n fluctuates. This ensemble is particularly advantageous: First, we 
directly determine the relation between the chemical potential and the density, and we can 
efficiently determine the liquid-vapor coexistence and the properties of the liquid-vapor 
interface (see following). Second, the longest relaxation time of the system corresponds to 
o. w of density fluctuations. Fo r instance, the equilibration of the thickness of wet
ting layers at the surface in the canonical ensemble would require an exchange of polymers 
between the vapor phase and the liquid layer at the wall via polym er diffusion, whereas in 
the grandcanonical ensemble, polymers are removed at one location and inserted at another. 
Moreover, to act as a particles reservoir, the vapor phase in a canonical simulation would 
have to be enormously large to accommodate sufficient polymers to observe, for instance, 
the dependence of the wetting layer on the monomer wall interaction.

To realize the grandcanonical ensemble, two types of elementary M onte Carlo steps or 
moves can be distinguished: canonical moves that relax the spatial conformations of the 
polymers, and moves that alter the number of polymers. In  our simulations, canonical moves 
consist o f local random displacements o f monomers and slithering snakelike movements [29]. 
In the latter moves, one chooses an end m onom er at random and tries to attach it to the 
opposite end of the molecule. These moves relax the global chain conformation a factor 
of the order N faster than local random displacements. O f  course, they become inefficient 
when the liquid is so dense that one cannot insert even a single monomer, but we shall use 
only moderately dense liquids in our simulations. In very dense liquids, molecular dynamics 
might offer advantages to equilibrate the polym er conformations and mole. *r dynamics 
simulations can be integrated into a M onte Carlo  simulation via a hybrid algoi ,im [30]. In 
addition, other moves that a lter the connectivity o f monomers have been efficiently imple
mented and are well suited to  equilibrate dense polymer liquids [31].

To insert and remove poly mers, one can use the configurational bias algorithm [32-34]. 
This scheme uses a biased insertion method to “ grow" a polymer successively into the system. 
A t each step, a small number (typically 25) of segment positions is examined, and a position 
for inserting of the next m onom er along the chain is chosen according to its Boltzmann 
weight. This choice biases the insertion towards nonoverlapping/low-energy chain contor- 
mations. Once a chain has b«een grown, the bias in the construction is compensated in the 
M onte Carlo lottery.
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The key quantity in our simulations is the probability distribution PG( (//|/x, K , T) of the 
number of chains in the simulation cell at a given chemical potential, volume, and tempera
ture. A  typical example for a bulk system in which we employ periodic boundary conditions 
in all three directions is presented in Fig. 2a. W e plot the negative logarithm of the distribu
tion, which corresponds to the canonical free energy, as a function of the monomer number 
density </> = nN/V. The free energy exhibits two minima, which correspond to the vapor and 
the liquid. As they have equal weight, the two phases coexist at this value of the chemical 
potential [35, 36].

One way to obtain this equal weight criterium for phase coexistence is to relate the sta
tistical weight in each peak of the distribution PG(\n) to the pressure p = V , T)/V*
where ft = —kBT In 1GG is the grand potential

—  = In T  
7 ~
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where the first summation is only extended over all number o f polymers //, which corre
spond to the vapor phase (V). R, y denotes the coordinate of the j th monomer of chain /, 
{ R } is the set of all polymer coordinates and specifies a configuration of polymers, ry [ { R } ] 
denotes a sum over all polymer conformations, and E  is the sum of the Lennard-Jones 
and F E N E  interactions in the multichain system. A  sim ilar expression holds for the pres
sure in the liquid phase (L). If  the system is large and the transition of first order, the 
peaks in PGC are describable by Gaussian distributions. The wings of the distribution yield 
only an exponentially small contribution to the pressure, such that the detail of how to 
divide the /2-range into the two phases— vapor (V ) and liquid ( L )— imparts only a negligi
ble error. In practice, we divide the distribution around the average value [i.e., we define
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Figure 2. (a) Illustration of the simulation technique for a polymer liquid of N  = 10 monomeric units at tem
perature k , t T / e  — 1.68 and /xLOCX/e = 106.897. A cuboidal system geometry 13.8a x 13.8(7 x 27.(hj with periodic 
boundary conditions in all three directions is used. The solid line corresponds to the negative logarithm of the 
probability distribution P{(f>) in the grand canonical ensemble. The two minima correspond to the coexisting phases, 
and the arrows on the (/>-axis mark their densities. The height of the plateau yields an accurate estimate for the 
interfacial tension y. The dashed line is a parabolic tit in the vicinity of the liquid phase employed to determine 
the compressibility. The typical system configurations are sketched schematically, (b) Free energy as a function of 
the density of a system, which is confined between walls of attractive strength A ir. The grand canonical simulations 
at A/, 7 /6 = 1.68 and coexistence chemical potential in the bulk are performed in a geometry 13.8<r x 13.8cr x 27.6cr. 
The curves are shifted such that the free energy of the liquid phase vanishes. The horizontal arrow on the left 
marks the value of the interfacial tension y, whereas the vertical arrow marks the difference in the surface tension 
between the vapor/wall and the liquid/wall for A „ .  =  3.15. Typical system configurations are sketched schematically. 
Adapted from Ref. [28], M. Muller and L. G. McDowell, Macromolecules 33, 3902 (2000).
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//* = Hn n^Gc(n\fJLcoc\'» systems with lower than ft polymers belong to the vapor
phase, and all configurations that contain more polymers are identified with the liquid phase. 
This definition can also be applied in the vicinity o f the critical point.

In the grandcanonical ensemble, liquid and vapor coexist at a fixed temperature T and 
chemical potential /xcnex if the pressure in both phases is equal: coex ) = P (L)(P'cocx)-
Using Eq . (4), one obtains the equal-weight-rule of phase coexistence

E n  = E  Pgc( " i / w v , t ). (5)

The search for phase coexistence is facilitated by histogram extrapolation techniques 
[37, 38]. Having collected the joint histogram Pq{\ i i , E\/jl, T, V) of the number of polymers 
n and energy E  at a given state characterized by parameters /x and T , we can extrapolate 
the probability distribution to neighboring values T' and fi' in parameter space via

Pg c (/7, E\fi\T , V) -  PGC(n, E\fi, 7\17 )exp ')-£f J___ L)1
\kBT' k„T  J  \kuT  kuT) (6)

This is a very efficient method for accurately determ ining phase coexistence from near
coexistence data. The method is only reliable if the distributions that correspond to the 
parameters /x, T and /i\ T' significantly overlap. Therefore, it works best around the liquid- 
vapor critical point, where fluctuations are very large and one can extrapolate the data of 
smaller systems over a w ider parameter range than those of larger systems. Verification of 
this extrapolation by a control simulation is also a fine validation of the simulation program 
because it directly assesses the statistical weight of the configurations generated in the course 
of the Monte Carlo  simulation.

To establish that the statistical weight of the vapor phase equals that of the liquid at 
coexistence, the simulation has to “ tunnel.”  often between the two phases. The error in the 
weight o f the phases decreases roughly as the square root of these tunneling events. Below  
the critical point, this tunneling between the two phases becomes increasingly difficult; the 
probability of finding the system in an intermediate state is strongly suppressed. The typical 
configurations around n* correspond to the coexistence of the liquid and the vapor inside 
the simulation box. If  both phases are present at roughly equal volume fraction, there will 
be a slab of liquid that spans the simulation cell via the periodic boundary conditions in 
two directions and that is separated from the vapor by two interfaces along the remaining 
direction. As sketched in Fig. 2a, those configurations have excess free energy because of 
the presence of the two liquid-vapor interfaces. The data presented are obtained from an 
elongated simulation box, which is advantageous for separating the two interfaces [39]. The 
plateau in the free energy indicates that one can change the density, and thereby vary the 
distance between the two interfaces, at no cost in free energy. Therefore, the interactions 
between the two interfaces across the liquid or vapor are negligible, and the excess free 
energy can be used to estimate the liquid-vapor interface free energy y [40]

2yL
k b T

In
P in ,)
P(n>) (7)

This simulation scheme can also be used to extract the surface tension [28]. To this end, 
one performs a grandcanonical simulation at the bulk coexistence value of the chemical 
potential /xcoex in the presence of two walls (cf. Fig. 2b). The figure contains data for walls 
that attract the polymers with different strengths Aw. The free energy as a function of the 
density exhibits two minima that correspond to the vapor and the liquid in contact with the 
wall, respectively. As the liquid phase benefits more from the attraction between substrate 
and polymer, it has a lower free energy than the vapor. At phase coexistence in the bulk, the 
free-energy difference is solely the result o f the difference of surface free energies between 
the wall and the vapor yu , and the wall in contact with the liquid y,r / . Therefore, we can 
directlv read off the difference

\L~ A y
TitT

2 / - “ (y ,, i -  y „ ,.)
k j

> 1 (S)



M o n te  C a r lo  S im u la t io n s  and  Se lf-C onsis ten t F ie ld  T h e o ry  fo r T h in  P o ly m e r F ilm s 159

Thus, the probability distribution in the grnndcanonical ensemble provides a wealth of infor
mation: From the equal-weight rule, one obtains the density of the coexisting liquid and 
vapor and the chemical potential o f coexistence. From the fluctuations of the density in each 
phase, one estimates the compressibility of the liquid and the vapor. The “ valley”  between 
the peaks yields an estimate of the interface tension, and in the presence of walls, one 
obtains the surface free-energy difference.

As those configurations that contain interfaces are strongly suppress, the probability of 
finding the system in such is state is vanishingly small in the grandcanonical ensemble; in this 
specific example, we find P(n*) ~  10-14. Hence, a straightforward M onte Carlo sampling is 
not feasible. To sample states with a useful rate, a reweighting technique has been devised 
to overcome this problem [41]. To this end, one adds to the original Ham iltonian £’[ { R } ]  of 
the system a weight function knTw(n) that only depends on the number of the particles in 
the system, but otherwise not on the detailed configuration. Therefore, different configura
tions containing the same number of particles are still sampled with the Boltzmann weight 
that corresponds to the canonical ensemble. The probability distribution P(n), however, is 
modified to

£ r w [ {R } ]  = £ [ { R  }} + kfJw (n )  and Pm (n) = PGC(n)exp[-w(n)] (9)

Hence, if one chooses the weight function w(n) ^  In PG( (//), the simulation will sample 
all states with roughly equal probability. The crux is that PGC(fi) is just the result of the 
simulation and is not known a priori. Several schemes to overcome this dilemma have been 
proposed.

First, histogram-reweighting techniques [37] alleviate this problem by performing a 
sequence of weighted simulations and extrapolations starting at a point at which barriers are 
small and the system explores a broad range of// (i.e., close to the liquid-vapor critical point). 
Those results can then be extrapolated to lower temperatures via Eq. (6), where barriers 
are larger. M ore sophisticated methods combine results of multiple histograms [38]. Second, 
weight factors can be obtained from the transition probabilities between macrostates [42, 43]. 
Third , multicanonical recursion [44] conducts a series of short trial runs. A fter each run, w(n) 
is adjusted until the simulation can access all relevant slates. Fourth, the weight function can 
also be self-adjusted during the simulation [45—48]. One starts with an initial guess of the 
weight function w(n) and incrementally increases its value by A w\ each time, a state with n 
particles is visited in the course of the simulation. This procedure tends to “ push" the system 
out of states that it has frequently visited and allows it to explore all pertinent states. If  the 
histogram of visited states is approximately flat (i.e., all states have been visited with nearly 
equal probability), the increment A w is decreased and the histogram of visited states reset. 
This method works in many practical cases, however, it requires some fine-tuning of the initial 
value of the increment A w. M oreover, for any A w > 0, detailed balance [49] is violated and 
separation o f statistical and systematic errors becomes difficult. Fifth, alternatively, one could 
use successive umbrella sampling [50] to generate the probability distribution PGC(n). To this 
end, one divides the interval o f particle numbers into smaller windows that overlap at their 
boundaries. Each window is sampled consecutively, and the results are linked together at the 
boundaries of the window. Ideally, the statistical error for a given total amount of computation 
time is independent from the window size. Hence, choosing a small windows size is benefi
cial because the difference in the PGc (//) within a single window becomes small and one can 
simulate without weight function or use a rather crude estimate for w(n) (e.g., a polynomial 
extrapolation of the results from previous windows). Choosing a window size that is too small, 
however, might inflict sampling difficulties.

In principle, one can also measure the interface free energy by monitoring the anisotropy 
o f the pressure tensor across the interface [51, 52]. Close to liquid-vapor coexistence the 
pressure is very small, but in our model this small value stems from a cancellation of a 
large positive contribution resulting from the Lennard-Jones interactions and a large nega
tive contribution caused by the bonding interactions. Accurate measurement of the interface 
or surface tension via the pressure tensor would require extremely good statistics [28]. For 
our parameters, the error from the analysis of the anisotropy of the pressure tensor is at
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least one order of magnitude larger than from the reweighting method discussed above 
(using a comparable computational effort). This is an agreement with the results of indepen
dent studies [53]. As the error o f the pressure tensor results from a cancellation of rather 
noisy data, it might not be proportional to the value of the tension (but, rather, to the value 
of the virial o f the Lennard-Jones or F E N E  forces), and the method might become more 
useful when the tension is larger [28, 53].

In addition to these thermodynam ic properties, com puter simulations also provide detailed 
inform ation about the structure of the polymeric fluid both in bulk as well as at interfaces 
and surfaces. These simulations are typically performed in the canonical ensemble (i.e., at a 
fixed number of particles).

3.2. Self-Consistent Field Technique for One-Component 
Polymer Liquids

3.2.1. General Formalism
In principle, computer simulations provide exact results on the statistical mechanics of a spe
cific model apart from statistical errors and finite sizes effects, which can be controlled via 
sophisticated and efficient techniques. Nevertheless, they are com putationally very demand
ing and, in particular, for applications that involve an interplay of phenomena on different 
length scales the computational resources, they are often not sufficient to investigate a wide 
range o f parameters. Therefore, it is useful to explore approximate, but computationally less 
demanding approaches.

One promising and widely used approach is the self-consistent theory. In the following 
text, we use the notation o f self-consistent theories [54-58], although a completely equivalent 
description can be obtained using the density-functional theory formalism [59-63]. The start
ing point of the self-consistent field calculations is the canonical partition function ?£ of n 
polymers in a volume V [28, 64, 65):

;̂ [ { R } ]  denotes the probability distribution o f chain conformations, f cx is the excess free 
energy functional, and c/> denotes the microscopic monomer density generated by the specific 
polymer configurations; that is

where the first sum runs over all n polymers and the second sum runs over all N  monomers 
of a chain. ^ [ { R } ]  is given by

where - ^ ^ [ {R H  is the probability distribution o f chain conformations in the melt (cf. fol
lowing) and Kvaii(r ) is the external interaction potential between a monom eric unit and the 
surface or surfaces. To quantitatively compare simulations and self-consistent field calcula
tions, one has to find a suitable approximation to the interaction free-energy functional Fcx, 
and to solve the partition function [see Eq. (10)]. In this paragraph, we describe the latter 
problem and defer the form er to the next subsection.

The derivation of a mean field approximation to the partition function Eq. (10) follows 
the development of self-consistent theories of polymers [54-58]. Introducing auxiliary fields 
U and ct\ we rewrite the multichain partition function in terms of noninteracting chains

( 1 0 )

n V
cM r|{R}) = £ £ S ( r - R , y) (11)

(12)
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t \ U \  is the single-chain partition function in the external field U \  that is

f'AU\ = ~  / ' y [ R i k 1 R il c x p ( - f  &'rU(r)<j>(r\R])\

^ [R 1l y [ R i] e x p ( - i : t / ( R 1.y) j  (14)

' l U.Lt>] = h i  in h i  + _  1  / > r  U(r)<t>(r) -  % I n ^ [ ( 7 ]  (15)
VkHl N cN V k H 7 1/ J ' y N 1 J

where </>.lv = ^  is the average monomer density.
The functional integral Eq. (13) cannot be evaluated explicitly, and we resort to a saddle 

point approximation. At this stage, the problem of many interacting molecules is replaced 
by that of a single molecule in an external field. The latter mimics the effect o f the other 
molecules and depends, in turn, on the local density. The self-consistent relation between 
the fields and the densities are obtained by minimizing the functional .?[£/, <!>]. Those values 
are denoted by lowercase letters.

rJ> F  [<t>(r)1

and

(/>:î / ' y [ R 1].y'[R1jc/,(r|Rl )exp( —/ d 'r  //(r)4>(r'|R,))
N /Cy|R, l^/'fR,] cx p (— / d-V w (r ')^ i(r '|R ,) )

(17)

The last expression identifies c/>( r ) as the Boltzmann average of the density that a single 
chain in the external field //(r ) produces; it is also the estimate for the monomer density 
profile of the polymer fluid.

G iven an approximation for Fux as a function of the density </>(r), Eqs* (16) and (17) form 
a closed set o f self-consistent equations for the densities and fields </>(r) and i /(r )  Once the 
density profile c/>(r) and the effective field u ( r), which solve the self-consistent equations, 
have been obtained, all single-chain properties (e.g., segment profiles, orientation) can be 
calculated from the properties of a single chain in the external field u. Substituting the saddle 
point values u and c/> into the free-energy functional [Eq . (15)], we obtain the free energy. 
The chemical potential fi is given by

j l  = = i  ,„* !!_  11„ oi„(0]] UK)
k„T kB T r!/.<b( r) N N N 

and the grand potential, 11, is given by

n  f  4>m , flA4>\ i
VknT VkHT kt)T

One could also choose the grandcanonical ensemble from the outset. Then one would fix /x 
instead of </>uv, and Eq. (17) would be replaced by

M r)  = -V  exp(n/kHT)j2 jj(>i[U ] (20)

The numerical procedure of the self-consistent field calculations is straightforward but 
computationally intensive. G iven an initial guess for the field w(r), the monomer density 
profile is calculated from Eq. (17). This procedure is iterated until Eq . (16) is fulfilled. 
Computing the density profile given the field is the most com putationally intense part of
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the calculations. It is often repeated in the self-consistent scheme. Two major schemes have 
been devised: First, the sum (/v y ,|R ]  / 1[R ]) over the single-chain conformations is approx
imated by a partial enumeration over a large number of explicit chain conformations [28, 
66-69]. Ideally, these conformations have been extracted from a computer simulation of the 
liquid phase, or they are obtained from a m olecular modeling approach. Typically, 106-107 
single-chain conformations are employed in our calculations. The longer the chains and the 
stronger the changes o f the chain conformations in the spatially inhomogeneous field, the 
more conformations have to be considered. The sample size should be large enough that 
sufficiently many chains significantly contribute to the Boltzm ann weight. The enumeration 
over the chain conformations conveniently is performed in parallel. To this end, a small 
fraction of single-chain conformations is assigned to each processor. Then, each processor 
calculates the Boltzmann weight of its conformations, the corresponding density profile, and 
the weight of its fraction of chain conformations. Subsequently, the total density profile is 
constructed by summing the weighted results o f all processors. Typically, 64 or 128 proces
sors have been employed in parallel, and a self-consistent held calculation of a profile takes 
a few' minutes on a C R A Y  T3E .

The advantage of this scheme is that is can deal with arbitrary chain architectures and 
incorporates the details o f the molecular structure on all length scales, (i.e., not only the 
Gaussian behavior on large length scales but also the conformational statistics on the length 
scale of bond vectors). These properties become important if the length scale of the spatial 
inhomogeneity (e.g., interfacial w idth) is com parable to the statistical segment length b == 
R Jy fN ,  or the size of a monomeric unit a. Th is is the typical situation for liquid-vapor 
interfaces, and it also might occur in blends of very incompatible polymers.

Second, if interfaces are not extremely narrow, the conform ational statistics of the polymer 
can be described by the Gaussian chain model on the length scale of the variation of the 
density profile. A  Gaussian chain is completely characterized by its end-to-end distance 
In this case, one can calculate the properties o f a single chain in an external field analytically. 
To this end, one introduces the end-segment distribution function q(r, s) that describes the 
probability of finding the end of a chain of length sN at position r,  given that the starting 
point is uniformly distributed in space.

c/{r.l)--= J ^ [ R l ] i / ' [ R l ] 5 ( r - r ( 0 ) c x p  -N   ̂ t l r / / ( r ( T ) ) J  (21)

The W ien er measure ^‘[R ] — exp[- ~ r  /{) d s ( ^ ) : ) denotes the probability distribution of 
the chain conformations. The end-segment distribution function of a single Gaussian chain 
in an external field obeys a modified diffusion equation

dq R-
= -r&q ~ Nuqat 6

with q( r , /  =  0)  =  I (22)

The single-chain partition function (ri and the monom er density can be expressed in terms 
o f q

 ̂ ~  V  I  ^rc^ r ' *) = T/ I d r q ( r , s ) q ( r ,  1 - .s) V 0 < s < 1

d>(r )  -  — I d/ q(r, t)q(r, 1 - t)
(r .’ .'i

(23)

(24)

The modified diffusion equation can be solved many times faster than the partial enumera
tion over explicit chain conformations. Hence, this method should be preferred if the local 
chain architecture does not mattei. Equation (22) can be solved efficiently in real space, 
using a Crank-Nicholson scheme or pseudospectral algorithms [70]. I f  one is interested 
in self-assembled phases with iong-ranged periodicity (e.g., self-assembled structures), it is 
advantageous to expand the spatial dependencies o f the fields and densities in eigenfunctions 
of the Laplace operator, which possess the symmetry of the phase under consideration [71].
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Then the modified diffusion equation becomes a linear matrix equation for the Fourier 
coefficients.

Alternatively, other chain models have been used. Some applications of the self-consistent 
theory have used the worm like chain model [72]. It captures the crossover between the stiff, 
rodlike behavior of a polymer on short length scales and the Gaussian statistics on large 
length scales in the melt. In this case, the end-segment distribution q depends on the spatial 
coordinate r as well as on the orientation u, defined by the tangent vector of the space curve 
at position r  [73. 74]. The worm like model is a compromise between the computationally 
intense, partial enumeration scheme and the simple Gaussian chain model. It captures some 
non-Gaussian structure on short length scales and still allows for a analytical treatment.

3.2.2. An Approximation for the Excess Free-Energy 
Functional F ex[c/>]

An important ingredient of the self-consistent field calculations is the excess free-energy 
functional /\,x[<£]. Naively, one could depart from a particle-based model (e.g., the head
spring model of Section 2) and identify the excess free-energy functional via

Then, the partition function [Eq. (10)] o f the self-consistent field theory before the saddle- 
point approximation and the partition function o f the bead-spring model would coincide. 
Unfortunately, the self-consistent theory invokes a saddle-point approximation. The effect 
of this approximation is twofold. On the one hand, fluctuations that determine the local 
structure of the polymeric fluid (i.e., packing effects and chain structure on the scale of the 
monomer size) are disregarded. O n  the other hand, fluctuations on the length scale of the 
whole molecule (i.e., density fluctuations in the vicinity of the critical point and capillary 
waves at interfaces) are omitted.

In many circumstances, the saddle-point approximation becomes better lor the latter, 
long wavelength fluctuation if one molecule interacts with many neighbors. This can be 
characterized by the invariant degree of polymerization \

volume interactions are screened and the conformational statistics on large length scales is

Unfortunately, there is no such parameter that controls the strength of the fluctuation on 
the monomeric scale (fluid structure). For instance, if we used Eq. (26), the self-consistent 
field theory would predict the chain conformations in the bulk (i.e., a spatially homogeneous 
system) not to depend on density or temperature. They would not agree with the simulation 
data for any temperature or density. The bond length would be determined by the F E N E  
potential, but the repulsion of bonded monomeric units via the Lennard-Jones potential 
would not be accounted for. Clearly, such a literal identification of the ingredients of the 
partition function [Eq . (10)] is not useful for a comparison between Monte Carlo simula
tions and self-consistent theory. Therefore, we identify '/ '[{R }] so as to reproduce the chain 
conformations characteristic o f a spatially homogeneous, concentrated solution or melt that 
coexists with the vapor phase. A ny  dependence o f chain conformations on temperature or 
density cannot be described; the change of chain conformations in the vicinity of a surfaceJ - O  J
or an interface, however, is captured by our calculations (cf. Fig. 3).

By the same token, we shall not identify Fcx with the interaction energy but with an 
(unknown) density functional chosen as to reproduce (at least approximatively) the local

(25)

and use // :V - I
(26)

(27)

where Rc denotes the end-to-end distance of the molecule, and vvV1 is the number of mole
cules in the volume that corresponds to the extension of a chain. In a dense melt, excluded

Gaussian R2 ^  /V, and, hence, the square of the number of neighbors grows like V' N .
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z /g  z /g

z/g

Figure 3. (a) Relative density of chain ends and chains' center of mass as a function of the distance from the wall 
at klfT/€ — 1.68 and Aw = 3. (h) Parallel (.vv) and perpendicular (z) components of the bond vector for the same 
parameters, (c) Parallel and perpendicular components of the end-to-end vector for the same parameters. Adapted 
from Ref. [65], M. Muller, et al., /  C'hern. Phys. 1 18, 2929 (2003).

fluid structure on minimization. Unfortunately, the results of the calculation depend sensi
tively on the specific choice for Fcx. In the following |28, 64, 65], we use a weighted density 
approximation. Previous density functional calculations [75] and integral equations [76, 77] 
for Lennard-Jones monomeric fluids close to attractive walls demonstrated that the inter
face properties may be described in terms of two different interactions. On the one hand, 
the harsh repulsive interactions, whose range is set by the effective hard core diameter of 
the monomers, determ ine the packing of the monomeric units. On the other hand, the 
attraction, whose range is set by the range of the attractive Lennard-Jones potential (i.e., 
/"max =  2 • \/2a) do not modify the packing to a large degree but may considerably affect the 
value of the free energy. Because the effects of attraction and repulsion are qualitatively d if
ferent, an explicit decomposition o f the functional into contributions from a harsh repulsion 
and a weak attraction turns out to be important for obtaining quantitative agreement with 
the M onte Carlo  results.

We use the same decomposition of the excess free-energy functional for our polymer 
model [65]

=  j  cl;> < M r ) { s hc[ < i v ( r ) ]  + & m [ < M r ) ]  j (28)

where ghc and gatl represent the free energies per monom er resulting from the repulsive 
interaction and the attractive interaction, respectively, where and c/>,K (r )  and $ alI(r ) are 
weighted densities, defined by

< V ( r ) =  / d ‘ r< 'Au U' -  r ' )cA(r ' )

<Aa„ ( r )  = j  d ’r !().,„(r - r )d>(r )
(2 9 )
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?/;,,.(/ ) and w.lU(r) are (as yet undetermined) weighting functions that satisfy the normaliza
tion condition

I  d'r?/>h, ( r )  =  j  d ’ r w all( r )  =  I. (30)

Phenomenologically, the weighting functions and w.M parameterize the spatial extent 
of the monomer-monomer interactions. The theory is specified by the two thermodynamic 
functions of state ghc and galt and the two weighting functions whc(r) and Approxi
mate expressions for these four functions are discussed in the next paragraph.

Note that within the weighted density approximation, we can obtain a closed form expres
sion for //(r )

“ ( r ) =  £ h c [ < M r ) ]  +  f  d Y  Whc( r  -  r ' ) < / > ( r ' ) ^ j ^ ( r ' )

+  &, . i |Ai<(r )] +  / d V  HJ.llt( r  -  r ' ) < / > ( r ' ) ^ p - ( r  ) (31)

Substituting the saddle point values of the fields [cf. Eq . (31)) into Eq. (15), we obtain

p  < t> ,s  , K  <l>m  t  f i  i  , 1 [  O  d S h c  u
7 7 7---  = —  1 n ------- —  1 n t  a --- d r d r  w hi. ( r -  r ) ——  o( r ) (f){ r  )VkHr  N N N V J  lu

do.
f  d 3r d 3r'w;aIt( r  -  r ' ) — 0( r) c/>( r ' ) ( 3 2)

V j  d(/)a

Because we consider only one-dimensional profiles across interfaces or in the vicinity of 
surfaces, we replace integrals of the form / d 'r  ir>(r)</>(r) by f  dz w: (z)<l>(z) with

w .(z ) = 2ttI dppw(^/z2 + f>2) (33)

3.2.2.1. Thermodynamic Properties of the Homogeneous System As input into 
the theory7, we require the thermodynamic properties of the spatially homogeneous fluid. 
Because we divide the free-energy functional into contributions from the repulsive and 
attractive parts, we require estimates for the two free-energy densities £hc(</>) and £utt($ ) .  
The thermodynamics of the homogeneous system are completely determ ined by the free- 
energy densities and are independent from the weighting functions. First, we use thermody
namic perturbation theory (T P T l )  [78-83] to calculate the total free-energy density #(</>) = 
ghc((/>) + gatt(<£), and we subsequently consider the free-energy density caused by repulsive 
interactions. Then, the attractive contribution to the free-energy density is obtained from
&att —  &TPT1 “  £hc*

We briefly summarize the salient features of W ertheinvs perturbation theory of first 
order [78-80]; details regarding the implementation of the T P T l  theory to this model are 
given in Refs. [84, 85]. Using the monomer fluid of Lennard-Jones particles as a reference 
system, we determ ine the total free-energy of the polymer solution by calculating the effect 
o f the bonding potential P/| ,.NE as a thermodynamic perturbation. The free-energy difference 
between the polymer solution and the monomeric reference system ( L J )  is given by

F - F u _  |n ^ /^MR}Jexp(-^ l|K̂ ' r 1̂ ) 
k»T "  ^ y . f rA {  R } ]e x p ( —

where Z:Lj [ { R } ]  denotes the sum over all Lennard-Jones interactions and Z:F[:NE[ { R } ]  rep
resents the sum over the n(N — 1) bonding potentials. The last average (• • • ) u  refers to the
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reference system of Lennard-Jones monomers. To first order the last term can be approxi
mated in the form (T PT 1 )

where gLJ( r l2) denotes the pair correlation function of the Lennard-Jones monomeric refer
ence fluid. This approximation yields the following relation between the free-energy density 
o f the Lennard-Jones monomer fluid and the polymer solution

In principle, we could determ ine the pair correlation function in a separate Monte Carlo 
(M C )  simulation of the monomer fluid. Flowever, the self-consistent field (S C F )  calculations 
require the knowledge of the gLJ for many different densities and temperatures. M o re 
over, the bonded distance in our model is slightly smaller than the typical distance between 
Lennard-Jones monomers, such that we would have to generate very accurate data for gu 
at small interparticle distances for the evaluation of the above integral. W e determ ined 
the structure and the thermodynamics of the reference system from an integral equation 
approach. Two closures to the O rnste in-Zcrn ike equations of the reference system have 
been considered: the mean spherical approximation (M S A ) and the reference hypernetted 
chain (R H N C ) .  Both closures were found to give sim ilar results (84].

The applicability o f TPT1 is mainly limited by two conditions: first, being a mean field 
theory, TPT1 does not properly account for critical density fluctuations and overestimates 
the critical temperature of the polymer fluid; second, the perturbative treatment of the effect 
o f the bonding potential is poor if the structure o f the Lennard-Jones reference fluid differs 
strongly from the structure of the polymer solution. In the concentrated regime, the fluid 
structure is determined by the density and is only weakly perturbed by the bonding potential. 
Hence, TPT1 gives a good description o f the melt. Close to the critical point o f the reference 
fluid [TC(N  = 1 )^ 1 ]  and at low densities, the structure o f the monomer and polymer fluids 
differs more strongly, so that the agreement is less satisfactory. In addition, T P T l neither 
predicts the density dependence of the polym er structure nor properly distinguishes between 
inter- and intramolecular interactions.

In spite of these caveats, T P T l yields for our model a good description of the binodals (not 
too close to the critical point) and the equation o f state without any adjustable parameter. 
Most important, it also provides the free-energy for the unstable homogeneous state inside 
the miscibility gap without any ad hoc extrapolation procedure. In addition, the scaling of the 
critical point parameters with chain length has been investigated [84]. T P T l agrees with the 
scaling predictions of the FIory-Huggins model in the long chain-length limit [86], which are 
correct because the critical point exhibits tricritical behavior in the limit N -» oc, and T P T l 
captures qualitatively some o f the deviations observed in simulations of short chains [84]. 
M oreover, this approach can be generalized to mixtures [85].

The same T P T l scheme can also be used to obtain the free-energy of the repulsive interac
tion £hc((/>), which we approximate by using those of a system of tangent hard-sphere chains 
o f diameter dhc. W e obtain the hard core diam eter J h.. using the Barker-Henderson [87] 
recipe; that is

(b (j)
= — In ---h d>z((b)N N (36)

(37)

where the integration is extended to the minimum rmjn — v  2(7 of the Lennard-Jones poten
tial and Fw ca ( )  = L u (/•) -j- I ] } ( /*min) for r < rmin. For the hard core contribution, we also
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use the thermodynamic perturbation theory, which is known to be quantitatively accurate 
for the equation of state of hard-ehain fluids [78. 80).

For tangent hard chains, Eq. (36) simplifies to

**<*'- - M H  «*»
where F^/nN is the excess free energy per particle of a reference fluid of non-bonded 
hard spheres, and 5hs is the contact value of the pair correlation function of the reference 
fluid. The contact value 5hs can be obtained from the hard-sphere pressure using the virial 
theorem; that is, 8hs = 3/(2iT(t>cl\K)[p/(kBTcj)) -  1]. Using the Carnaham -Starling equation 
o f state [88] for hard spheres, we obtain [78]

477 — 3 T72 / 1 \ 1 — r?/2g, (d)) = — '---------------------------------------------- L  _  i --- in ----- ( 3 9 )
V N )  (1 - 7 7 ) '

where r\ = denotes the packing fraction.
The difference g - g\K yields then the attractive contribution gaIl. O ver the pertinent range 

of densities, the attractive contribution resembles a linear function of density. This behavior 
is expected from a van der W aals theory and shows that the decomposition into repulsive and 
attractive contributions is physically reasonable. In our numerical calculations, we expand 
the free energy per particle in a fifth-order polynomial in the density.

3.2.2.2. Choice of Weighting Functions The other ingredient in the theory is the choice 
of weighting functions. In previous work on hard chains [89] and Lennard-Joncs chains [28), 
it has been shown that the theoretical predictions are rather insensitive to the choice of 
weighting functions. This suggests that some very simple choices for the weighting functions 
might be adequate. Some guidance in the choice of weighting functions can be obtained 
from the relation between the second functional derivative of Fcx with respect to c/>(r) and 
the direct correlation function

r*4>(rY*4>{T') = -kHTc( | r - r | )  (40)
</>( !•) = (/>( r') — </>

where c (|r  — r | )  is the direct correlation function of the homogeneous fluid. Using Eqs. (16) 
and (31), we obtain

kHT :y.<£(r)ry</>(r') </.>( r )-(/>( r' )=</>

= + 2wV-(r -  + I d r" -■ O w v - O "  -
d K  1 d^hc

+ 2u).lll(r  -  + / dr" w,u( r  -  r")w.M (r"  -  (41)
d d>Ml J df-„

where we have assumed our weighting functions wm do not depend on density.
O u r first choice, which we will refer to as approximation (1 ), is to separate the direct 

correlation function into two contributions: now c ( r )  = c0( r )  + c.m(r), where the first term 
is the result of repulsive interactions and the second is the result of attractions. In the low- 
density limit w(r) — c ( r ) ,  we can identify whc(r) — c{)(r) and w.ai(r) — cMt(r) [65]. The 
polymer reference interaction site model (P-R1SM ) theory [90] is used to calculate the direct 
correlation functions [65]. The theory requires, as input, the single-chain structure factor for 
the chain fluid, which one obtains using the semiflexible chain model with the semiliexibility 
adjusted so that the chain size is the same as in the simulations. The P- R ISM  equations 
are solved with the Percus-Yevick closure [65]. The full interaction is employed to calculate 
c ( r ) ,  and only the repulsive interaction potential is employed to calculate cn(r ) .
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A  much simpler ansatz is to ignore the fluid-fluid correlations altogether and assume that 
the weighting function merely has the same range as the interaction potential. O u r second 
choice, which we refer to as approximation (2), considers the following

^ L i t 'm in )  for r < r mm = </2<t

Vu (r) for rmi„ < r
(42)

w hc( r )  ~  (1 -  \ r \ / d i K ) < d ( d hc -  | r | ) (43)

where 0  is the Heavyside step function, and the weighting functions are normalized as 
before. The simple form reproduces the qualitative features of the P- R ISM  results for the 
direct correlation function.

In both approximations, wh{.(r) is a roughly linear function of r for distances less than 
the hard core diam eter and almost zero for larger distances. O n the other hand, wiltl(r) 
is roughly constant for distances less than the hard core diam eter and proportional to the 
interaction potential for larger distances. These results are quite sim ilar to what is seen in 
density functional theories of simple liquids.

3.2.3. Comparison Between Monte Carlo Simulations and 
Self-Consistent Field Calculations

In the following text, wc present a quantitative comparison between the self-consistent field 
scheme outlined above and the M onte Carlo  simulations discussed in Section 3.1. This com 
parison serves to explore the potential and lim itations of the self-consistent field calculations.

W e begin our comparison with the density profile in the vicinity of a wall that attracts 
monomers at temperature knT/e = 1.68. This temperature is well below the (H) point 
k/fT /̂e = 3.3(2) for our model, and the polymer solution phase separates into a liquid of 
density (/kj3 = 0.611 and a vapor (with </><r3 = 0.0083). The temperature was chosen because 
the vapor density is negligible but the density of the liquid phase is not too large to allow 
for an efficient insertion and deletion of chains via the configuration bias algorithm.

The density profile in the vicinity of the wall is shown in Fig. 4. It is very sim ilar to what one 
would expect for a fluid of nonbonded monomers. The density vanishes at the impenetrable 
surface, and on the distance of a few monomeric length scales cr. it reaches the density of 
the liquid in coexistence with the vapor. Note that this width is comparable to the extension 
of a monomeric unit and that on this short length scale, the chain conformations cannot 
faithfully be de ibed by the Gaussian chain model. As the attractive strength of the wall Aw

Figure 4. Monomer number density profile al an attractive wall. Au. ~ 2 anu 4. for temperature kHT/€ = 1.68. 
Thick lines with circles correspond to Monte Carlo results, dashed lines with diamonds show the results of weighting 
functions (I), and dashed lines present the results obtained with weighting functions (2). Adapted from Ref. [65]. 
M. MiiHer, ct a!.,./. Chem. Phys. 118, 2929 (2003).
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is increased, the liquid approaches the surface, and oscillations in the density profile gradually 
bu Id up. These qualitative features are well described by the self-consistent field theory. 
The details of the packing effects al the wall depend sensitively on the excess free-encrgy 
functional employed in the self-consistent field calculations. As can be observed in Fig. 3, 
the scheme outlined above provides a reasonably good description of the density profile [65].

In Fig. 3 we discuss polymeric aspects of the fluid in contact with the surface. As the 
molecules are extended, they can use their internal degrees o f freedom to minimize the 
free-energy costs the surface imparts to them. In the left panel, we show the relative density 
of the chain ends and the center of masses. The chain ends are enriched at the surface, and 
there is a concomitant depletion region further away from the wall. Likewise, the density of 
the center of masses is depleted in the ultimate vicinity of the surface [28].

The packing of the chains close to the surface goes along with their orientation. As 
expected, the chains align parallel to the surface, and the alignment effect is larger the larger 
the length scale (i.e., the orientation of bond vectors is fairly small and decays faster than the 
orientation of the end-to-end vector of the polymer). The self-consistent field calculations 
even capture fine details of these orientational profiles, such as the overshooting of the chain 
extension perpendicular to the surface at intermediate distances. The excellent account of 
the configurational statistics of the polymer in the vicinity o f the surface is largely indepen
dent from the choice of the excess free-energy functional, but it is the result of the partial 
enumeration scheme. Note that there are no orientations of bond vectors and no depen
dence of ihe parallel chain extension on the distance from the wall within the framework of 
the Gaussian chain model.

In addition to structural quantities, both Monte Carlo simulations as well as self-consistent 
field calculations provide information about the thermodynamics of spatially inhomogc- 
neous systems. In Fig. 5 we present the liquid-vapor interface tension y, obtained from 
grandcanonical Monte Carlo  simulations and self-consistent field calculations. The inter
face tension y vanishes at the critical point and increases as we reduce the temperature 
and the miscibi 1 ity gap opens. As expected from any mean field theory, the self-consistent 
field calculations overestimate the critical temperature, as they cannot cope with the strong 
critical fluctuations of the density in the ultimate vicinity of the critical point. The tension 
vanishes like y  ~  (7  ̂ — 7')^, where the critical exponent fi adopts its mean field value 3/2. 
Accordingly, the self-consistent field calculations also overestimate the interface tension, but 
the relative deviations become smaller at lower temperatures. This is a very fine test o f the 
free-energy functional, as it involves estimates of the free energy o f hypothetical, homoge
neous states inside the miscibility gap. In fact, the estimates for the interface tension depend
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Figure 5. Interface tension as a function of temperature. Circles denote the result of grandcanonical Monte Carlo 
simulations [28]: the dashed line with diamonds depicts the calculations with weighting functions (1). the dashed 
line corresponds to weighting functions (2), and the thin dashed line shows the result of a single weighting function 
(M G M ) |2<S). Adapted from Ref. [h5|. M. Muller, et al.,./. Chem. Phys. 118, 2929 (2003).
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very sensitively on the choice o f /\.x [</>)• W hereas the versions (1) and (2 ) yield good agree
ment with the Monte Carlo simulation data, the version (M G M ) ,  in which we use the same 
free energy density but only a single weighting function, yields significantly worse results. In 
particular, it underestimates the tension at lower temperatures.

4. WETTING OF POLYM ER LIQUIDS
4.1. Locating the Wetting Transition in Monte Carlo Simulations
4.1.1. Contact Angle of Microscopic Droplets
As a first application, let us discuss the wetting behavior o f polymeric liquids. The most 
intuitive way to locate the wetting transition is to observe the contact angle of a drop. 
This is a routine experimental procedure, in which one determ ines the contact angle of a 
macroscopic drop with great precision. Below  the wetting transition temperature Twet there 
is only a microscopically thin layer of liquid at the surface, and the excess material forms a 
drop. Far away from the three-phase contact between the substrate, the liquid and the vapor 
the liquid-vapor interface makes a contact angle 6 with the plane of the substrate. Young's 
equation [91] describes the balance of lateral forces at the contact line and relates the 
difference between the surface tensions A y  and the interface tension y  to the contact angle 0.

A y
cos 0 = — - (44)

7

Observing the dependence of the contact angle on temperature, solvent pressure, or other 
external parameters tells a great deal about the tensions. On increasing the temperature, 
the contact angle typically decreases, and it vanishes at the wetting transition temperature. 
Above 7WC1, a macroscopically thick liquid film will be stable on the surface.

Although in principle the simulation of droplets is straightforward [92], some care must be 
taken. In a grandcanonical ensemble, for example, a droplet is unstable, and one will rather 
find the system forming a microscopically thin, homogeneous liquid film below 7’wcl, but no 
drop. To observe the droplet as a stable state, one must constrain the number of particles 
to a fixed value (i.e., work in the canonical ensemble).

The chosen geometry of the simulation box and the total number of molecules turn out 
to be crucial for the droplets to be stabilized [92], because drop and vapor will exchange 
particles, and the chemical potential will be shifted away from the liquid-vapor coexistence 
value in the bulk. On the one hand, if the volume of the simulation cell is much larger 
than the droplet, the simulation cell will mimic the effect o f a grandcanonical reservoir, and 
rather than forming a droplet the particles will distribute homogeneously in the volume. 
On the other hand, the surface gives rise to an adsorption of liquid and shifts the chemical 
potential by an amount ~1 /L ( L , being the linear extension of the simulation ce ll) away 
from the coexistence value of the chemical potential in the bulk.

Bv carefully choosing the number of particles, a drop can be the thermodynamically stable 
configuration in a simulation cell o f finite size. The properties of the nanoscopic droplet 
that can be observed in the simulations, however, differ considerably from the macroscopic 
drops studied experimentally [92].

Let us consider T < 7'uct. The shape of the droplet (cf. Fig. 6a) is determ ined by 
the interaction of the liquid-vapor interface with the substrate. This interaction can be 
phenomenologically characterized by the interface potential g(l) that describes the free- 
energy it costs to place a unit area of the liquid-vapor interface a distance / away from the 
substrate [8j. Following common notation, g(l) —* 0 for / —> sc (i.e., there is no interaction 
between the substrate and the liquid-vapor interface if they are infinitely apart). The generic 
form of the interface potential in the vicinity of a first-order wetting transition is presented 
in Fig. 6b. g(l) exhibits a minimum at finite, microscopic film thickness, that is separated by 
a free-energy barrier from the minimum g{l) for / —» oo. Le t /mm denote the thickness of 
the stable microscopic film on the substrate; then the difference in the surface free energies 
is given by A y  = g (/min) -f- y. Below the wetting transition temperature 7wc:, the value of the 
interface potential at its minimum is negative, £ (/min) < 0. O n  increasing the temperature,
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(a) (b)

1.5

Figure 6. (a) Illustration of the three-phase contact, (b) Sketch of the interface potential. For explanations, see text.

#(/min) increases, and right at 7vvcl, a film of thickness /mjn < oo and an infinitely thick, macro
scopic film have the same free energy g (/min) = 0. On increasing the temperature, we make 
the thickness of the polymer layer jump from a microscopic value to a macroscopic one, and 
a first-order wetting transition occurs.

Slightly above the wetting transition temperature, there is a coexistence between two 
microscopic films of different thickness— the so-called prewetting coexistence. Those two 
coexisting film thicknesses, /_ and /+, are related by a double tangent construction in Fig. 6b. 
Recently, it has been suggested that this prewetting transition is related to anomalously low 
friction [93]. This surface phase coexistence occurs at slight undersaturation compared to the 
liquid vapor coexistence in the bulk, which corresponds to the slope of the double tangent. 
On approaching 7wcl from above, the thickness of the thinner layer decreases and the thick
ness of the thicker layer diverges. On increasing the temperature, the difference between the 
thicknesses of the two layers decreases and vanishes at the prewetting critical point at 7jwc.

The macroscopic contact angle 0 depends only on a single value of the interface potential, 
and it only determines the asymptotic behavior of the liquid-vapor interface far away from 
the substrate (as indicated by the dashed line in Fig. 6a). The profile o f the droplet probes, 
however, all distance / between the interface and the substrate, and therefore it contains 
much more information in principle. In the vicinity of the three-phase line, the shape of the 
drop will differ significantly from the behavior of a macroscopic drop. The length scale on 
which those deviations occurs is set by the range of the interface potential.

Intriguingly, one can even observe “ flat droplets" above the wetting transition temperature 
in the range Twci < T < 7pvvc. In this interval, there are nonstable finite film thicknesses. If  the 
number of particles in a finite-sized simulation box is such that a homogeneous film would 
have a film thickness between the microscopically thin and thick layers, /_. and /( , coexisting 
on the prewetting line, it will phase separate laterally into a domain with thicknesses I and / ,. 
O f course, the formation of such structures is not in contradiction to Young’s equation. On 
the contrary, “ flat droplets” have a finite height and not a spherical cap shape; hence, if one 
measured the contact angle 0 o f a (laterally) large “ flat droplet” far away from the three-phase 
contact line, one would obtain 6 = 0. If  the lateral extension of the droplet is comparable 
to l + (note that /+ —► oc for T  —> 7^.,), however, one cannot observe the flat portion of 
the domain. There is a gradual crossover from “ true spherical” droplets for T < Twcl to 
those “ flat droplets”  slightly above the wetting transition temperature. Hence, those “ flat 
droplets” are not easily recognized as lateral phase separation due to prewetting coexistence.

In Fig. 7 we present radially averaged drop profiles, which have been extracted from sim
ulations at knT/6 = 1.68 and various attractive strengths of the surface. The box considered 
had a size of 68(7 x 68rr x 68(7 and contained 1000 polymer molecules of length N = 10.

For the weakest attraction, A w = 2.6, shown in left panel, a well-defined droplet forms. 
From the profile we read off an apparent contact angle 0d = 81(4)°. This value is com
parable with the contact angle of a macroscopic drop as estimated by Young's equation 
(cf. following), which was found to be 0 = 70°. As we increase the value of the attractive
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Figure 7. Radially averaged density profile of droplets for the various strengths of the monomer-wall attraction: 
A lr = 2.6 (a) 3.2 (b), and 3.4 (c). Adapted from Ref. [92]. L. G. MacDowell, et al.. Colloids ami Surfaces A 206. 
277 (2002).

strength of the substrate Aw, the apparent contact angle decreases gradually. For Aw = 3.2 
(m iddle panel), we obtain 0llrop = 52(4 )°, and for Aw = 3.4 (right panel), we estimate 0drop — 
44 (4 )n. Note that, qualitatively, the shape of the small droplet is sim ilar for all three values 
o f Aw, and from an analysis o f the apparent contact angle, one would estimate the wetting 
transition to occur significantly above Aw = 3.4. However, the accurate location of the wet
ting transition is Aw — 3.22, and the contact angle of a macroscopic drop at A w = 3.2 is 
only 6 =  12°. The droplet observed for A w = 3.4 is therefore a “ flat droplet" whose height is 
dictated by the equilibrium film thickness of the prewetting coexistence. Note that these con
siderations of microscopic droplets in the canonical ensemble also might have consequences 
for polymeric droplets in nanofiuidic devices.

Un like the experimental situation, which relies on the observation of macroscopic drops, 
the apparent contact angle of microscopic drops yields only a very inaccurate estimate of 
the macroscopic behavior, in particular, it tends to severely overestimate the contact angle 
in the vicinity of the wetting transition [92].

4.1.2. Measurement of the Liquid Film Thickness in 
the Grandcanonical Ensemble

The cruxes of estimating the wetting transition from the contact angle is twofold: First, the 
measurement relies on the observation of a spatial inhomogeneitv (drop), and only for very 
large drops does the apparent contact angle agree with the macroscopic one. Second, the size



M o n te  C a r lo  S im u la t io n s  and Se lf-C onsis ten t F ie ld  T h e o ry  for T h in  P o ly m e r  F ilm s 173

and geometry of the simulation box matters, because the droplet and the surrounding vapor 
exchange particles (e.g.. the vapor can condense on the surface), such that the system is not 
exactly at the liquid-vapor coexistence chemical potential. Both issues can be avoided in the 
gr a n cl ca n o n i c a 1 e n se m b I e .

The simplest approach consists of performing grandcanonical simulations at the liquid- 
vapor coexistence chemical potential and to monitor the thickness /min of the liquid film on 
the surface. In the nonwet situation, we have either A < ASKV[ or T < 7wcl, depending on 
whether the transition is approached by changing Au. or 7\ respectively. In this situation, 
a thin, liquid film is stable at the wall. On approaching a first-order wetting transition, the 
layer thickness diverges discontinuously from a microscopic value to a macroscopic one. 
Above the wetting transition, a macroscopically stable film is stable. Thus, starting below 
the wetting transition with a finite liquid layer, one can increase Aw or T and estimate the 
location of the transition by the divergence of the film thickness. At a first-order wetting 
transition, there are, however, two caveats: first, even above the wetting transition, a thin, 
liquid layer might be metastable (because of the free-cnergy barrier that separates /min from 
the macroscopically thick film ), and thus, one estimates the location of the wetting spinodal 
instead of the wetting transition. A t a strong first-order wetting transition, this might result 
in a significant overestimation of the location of the wetting transition. Second, if one uses 
a simulation cell with two symmetric walls, as we do in our simulations, and further sets 
the chemical potential to its coexistence value, the most stable configuration consists of a 
simulation cell filled with liquid. The monitored state made of two liquid films adsorbed on 
the wall is metastable, and it becomes thermodynamically stable only at a lower value of the 
chemical potential (capillary condensation). This metastability o f the starting configuration 
severely limits the length o f the simulation runs. Indeed, using such a scheme, we estimate 
the divergence of the wetting layer for kBT/e = 1.68 to be at Aw = 3.4 [28]. As expected, 
this value is larger than the accurate location of the wetting transition Awcl = 3.22.

The first caveat might be overcome by monitoring the probability distribution P(I)  of 
the layer thickness /. This gives direct information about the interface potential g (l)L2 = 
—kBT In P (/ ),  where L 2 denotes the surface area. A t a first-order wetting transition, the free- 
cnergy barrier between the thin and the (macroscopically) thick layer might be overcome by 
reweighting techniques.

The second problem could be alleviated by choosing an attractive and a repulsive wall, thus 
stabilizing a single liquid-vapor interface in the simulation cell. Ideally, one could choose 
antisymmetric surface interactions such that the contact angle of a liquid drop on the wall 
equals the contact angle of a bubble at the opposite wall, and no capillary condensation 
would occur. Although this is a promising route for symmetric mixtures (cf. Section 6), 
it might not be straightforward if the coexisting phases— such as the liquid and the vapor 
phases— are not related by symmetry.

4.1.3. Young’s Equation
By  exploiting the ability of the grandcanonical ensemble to measure free-energy differ
ences, the problems with capillary condensation and metastability may be avoided altogether 
[28, 69J. In  one simulation with standard periodic boundary conditions, one calculates the 
liquid-vapor interface tension, as described previously. In another set of simulations, one 
considers a cell made of two parallel walls and periodic boundary conditions in the remaining 
directions. By monitoring the density fluctuations, one directly obtains the interface tension 
y and the difference of the surface tension A y  (cf. Fig. I).

In Fig. 8a, we plot cos0 = A y / y  at kBT/e = 1.68 as a function of the attractive strength 
Aw o f the surface. Unlike the measurement of the effective interface potential # (/), one does 
not regard the free energy of a liquid film bound to the wall, and hence, one need not choose 
the system size large enough that both the interactions of the liquid-vapor interfaces with the 
walls and among themselves can be neglected. The ratio A y / y  crosses l with a finite slope; 
a fact that indicates that the wetting transition is of first order. The intersection point yields 
the accurate estimate /luvl = 3.22 for the wetting transition at temperature kBT/e = l.68.

A t small values of A„„ the ratio A y / y  approaches the value —l with a very small (possibly 
vanishing) slope. This marks the drying transition at a hard, impenetrable wall. In  accord
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Figure 8. (a) Ratio between the difference in the surface tension Ay = y „ , — yWL and the interface tension y as 
a function of the attraction between monomers and wall at k,tT/e = 1.68. The location of the wetting transitions 
are shown at the bottom. Filled circles and the thick solid line represent the MC results. The dashed line with 
open diamonds corresponds to the calculations with weighting functions (1), the thick, dashed-dotted line depicts 
the results with weighting function (2). and the thin, dashed line is the result of using a single weighting function 
(M GM ). From Ref. [65]. (b) Wetting and prewetting at khT/e = 1.68. The horizontal, dashed line marks the liquid 
vapor coexistence, and the solid curve presents the results for the prewetting line. A fit of the prewetting line 
according to the Clapeyron equation [Eq. (46)] is shown. The wetting transition and the prewetting critical point 
arc marked. The filled square marks the simulation point used for patterned substrates in Fig. 11. The inset displays 
the probability distribution of the layer thickness normalized to zero mean and unit variance for the system size 
L/a — 13.8, 27.6 and 54 at T = 1.68 and for our estimate of the prewetting critical point A w = 3.96. At this 
critical point, the normalized distribution depends only on the universality class, and the corresponding function 
for the two-dimensional Ising model is also shown. Adapted from Ref. [28], M. Muller and L. G. McDowell, 
Macromoleculcs 33, 3902 (2000).

with observations of Lcnnard-Jones monomer fluids [94, 95], this transition is very weakly 
first order, and we cannot rule out a second-order transition. A  careful study o f finite size 
effects is necessary [95] to accurately pinpoint the location of the drying transition and its 
order.

To investigate the wetting behavior of the polymer liquid in the S C F  theory, we calculate 
the surface free energy as a difference between the grandcanonical potential o f the system 
in the presence of a wall and that of a homogeneous system

J  -  ^hom =  + p V )D
kpT ~ kBTA ' VkHT '

where l l hom is the grand canonical free energy o f a homogeneous system and A denotes the
area of the wall. The results of the self-consistent field calculations are compared with the
M onte Carlo  simulations in Fig. 8a. I f  one uses a simple weighted density functional (M G M ),
one obtains only qualitative agreement. The versions that decompose the interaction free- 
energy density into a short-ranged, repulsive and a longer-ranged, attractive contribution 
yield a better, quantitative agreement with the simulation data.

4.1 A. Extrapolating the Prewetting Line toward Coexistence
If the wetting transition is of first order, there will be a concomitant jump in the layer thick
ness above the wetting temperature away from the coexistence curve in the A w-/jl plane. 
A t this prewetting line, a thin, absorbed layer coexists with a thick layer, in the vicinity of 
the prewetting line, the probability distribution of the layer thickness is bimodal, and we 
can accurately locate the prewetting coexistence by the equal-weight rule (cf. Section 3.1). 
The prewetting line is presented in Fig. 8b and it terminates in the prewetting critical point. 
Here, the difference in the layer thicknesses vanishes. This transition is believed to belong 
to the two-dimensional Ising universality class [% ) .  Because the correlation length of density 
fluctuations parallel to the surface diverges at this point, effects of the finite lateral extension 
of the simulations cell have to be carefully investigated. The normalized probability distri
bution o f the layer thickness at our estimate for the prewetting critical point is presented in
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the inset of Fig. <Xb. As a result of field mixing effccts [97], the distribution is asymmetric. 
As expected from a correction to the leading finite size scaling behavior, on increasing the 
system size, we decrease the asymmetry of the distribution. Adjusting the attractive strength 
of the substrate to map the normalized distribution onto the universal scaling function of 
the two-dimensional Ising universality class, we obtain the estimate ApWL. = 3.96(6) for the 
prcwetting critical point. This value is also marked in the wetting phase diagram Fig. 8b.

The approach of the prewetting to the coexistence curve has been studied by Hauge and 
Schick [98]. Using a Clapeyron equation along the prewetting coexistence line, one obtains 
for the approach of the prewetting line toward the bulk coexistence curve [98].

d A/x
~dA p re wet

A W L - 3 / / ^ _  1  ( 4 6 )

t̂liick t̂hick

Above r wet, the layer thickness increases like /thick ~  |A/x|~1/3 (complete wetting). ( I f  we 
used only short-ranged forces, there would only be a logarithmic divergence.) Integration of 
Eq. (46) yields A/i|prcwet ^  (A w -  /4wet)3/2 [98]. This dependence can be used to extrapolate 
the prewetting line toward the coexistence curve and to estimate the location of the wetting 
transition. The approach of the prewetting line in the M C  simulations and the S C F  calcula
tions is presented in Fig. 8b. The extrapolation agrees very well with the estimate obtained 
from the Young equation.

To summarize, the self-consistent field calculations describe the conformational proper
ties o f polymers in the vicinity of surfaces and interfaces quantitatively, but thermodynamic 
properties and the details of density oscillations in the vicinity of the surfaces depend on 
the approximation for the interaction free-energy functional Fex. Two versions of the the 
self-consistent field calculations have been discussed that use a weighted density-functional 
decomposing the interactions into short-ranged, repulsive and longer-ranged, attractive con
tributions. Having assessed the accuracy of the self-consistent approach by quantitatively 
comparing it to Monte Carlo  simulations, we demonstrate its usefulness by discussing in the 
following sections some applications of the self-consistent field calculations to slightly more 
complicated but experimentally relevant situations.

4.2. Nanodroplets on Layered Substrates
Dewetting experiments can probe the subtle features of the interface potential. The m ini
mum of the interface potential is related to the contact angle 0 via gmin = y (co s0  -  1), and 
the kinetics of the dewetting process tells a great deal about the curvature of the interface 
potential: If  the curvature is negative, the spinodal dewctting occurs that is characterized 
by a dominant lateral length scale. If  the curvature is positive, the film is locally stable, and 
dewetting (if  it occurs) proceeds via nucleation of holes [13].

A  standard experimental system is polystyrene (P S )  on a silicon (S i)  wafer that is coated 
by a thin oxide layer of thickness c/ox. Such a situation is sketched in Fig. 9a. Experiments by 
Muller-Buschbaum et al. [101] reveal a rather intriguing dewetting behavior, as illustrated 
in Fig. 9. At high temperature, T = 165°C, the polymer dewets the substrate and forms 
drops. These macroscopic drops sit on a mesoscopic film of thickness /* = 2.2(6) nm. On 
cooling below the glass transition temperature T̂, %  100°C, this mesoscopic film between 
the macroscopic drops dewets and forms nanodroplets of diam eter ~70 nm. As the polymer 
film becomes glassy, these nanodroplets do not coalesce further into macroscopic drops, and 
one observes a dewetting morphology with two distinct drops sizes: macroscopic drops and 
nanodroplets.

Assuming that the dewetting morphology observed in the experiments is a thermodynamic 
equilibrium phenomena, we can rationalize this two-stage dcwetting process by an interface 
potential that exhibits two minima— one that corresponds to the mesoscopic film that is 
stable at high temperatures, and one that corresponds to a microscopic, vanishingly small 
thickness / %  0, which is stable at lower temperatures. Flow can we explain the occurrence 
o f two minima in the interface potential?

In  general, the interface potential comprises a long-ranged and short-ranged contribution. 
The long-ranged forces stem from the van der Waals interactions inside the fluid and between
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Figure 9. (a) Sketch of the polymer Him on lop of a bilayer substrate, consisting of Si and a thin oxide layer. The 
variable / denotes the thickness of ihe polymer film, and d,tx the thickness of ihe oxide layer. At high temperature, 
macroscopic drops sit on top of a mesoscopic film. At low temperature, the mesoscopic film becomes unstable 
and breaks up ink) smaller drops. (The relative size of the nanodroplets and the macroscopic drops is not to 
scale.) (b) Schematic illustration of nanodewetting: Weak but long-ranged van der Waals interactions determine the 
interface potential at long distances. They repel the interface at large distances / > /vUW and attract the interface 
at intermediate distances. Strong but short-ranged contributions to the interface potential arise from the distortion 
of the density profile in the vicinity of the substrate. These forces tend to stabilize a microscopically thin film, and 
they repel the interface at intermediate and large distances. The interplay between van der Waals and short-ranged 
interaction might result in two competing minima. (The relative magnitude of the short- and the long-ranged forces 
is not to scale), (c) Effective interface potential #(/) lor various oxide layer thicknesses obtained from self-consistent 
field calculations. The contact interaction Vc has been chosen such thai the minima at / %  0 and / -> o o  have 
almost equal free energy: \ \ — 3.26c for */„x = 9.4. V( = 1.4e for dm ~  24A. and Vr = 0.89e for dox = 191/1. The 
dashed-dotted line, labeled [SHJ], corresponds to the results of Ref. |99], The inset presents an enlarged view of 
the minimum at the mesoscopic film thickness. Adapted from Ref. (100], M. Muller, et al.. J. Chem. Phys. 115, 9960
( 2001).

the fluid and the wall. The H am aker constant Atj > 0 parameterizes the strength of attrac
tive. long-ranged interactions between atoms of species / and j: V ( r „ )  = — >1 /;/ (7r2 ,r6) , 
where <£, and </>, denote the number densities o f species / and y, respectively. The contribu
tion of these long-ranged attractions to the energy E  in a situation that is depicted in Fig. 9a 
is given by

E (l)  = --- ^  f  d 'r  I d ' r --- -------~ ! ^ -  I d 'r  I d V  -— ----
77- J  - x ; • -f!os I ( r - r ' ) (l 77" ( r  — r ' ) h

d ’r / d ;r  — -—  (47)2 77- J ( r  — r ' ) °
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whore ,4psps, '4pSSp aiK' ^pso\ denote the Ham aker constants inside the polymer fluid, 
between the polymer and the substrate, and between the polymer and the O v coating layer. 
The integrations arc extended over the volumes of the materials. The factor 1/2 in the last 
contribution takes account of the double counting of interaction pairs in the polymer layer. 
Wc have assumed a rectangular shape for the density profile (sharp-kink approximation). 
This :s a reasonable assumption for large film thicknesses, where the major contribution to 
the interface potential comes from the bulk-like liquid layer on the substrate.

Bo.li in the Monte Carlo simulations and in the self-consistent field calculations, the inter
actions inside the fluid are strictly short-ranged. Therefore, when we want to describe a 
speciric experimental system, the monomer-wall interaction A )r also has to account for the 
cutoff in the Lennard-Jones interactions between the fluid particles (tail correction), and the 
monomer-wall interaction comprises both the long-ranged portion of interactions between 
the monomeric units and the wall and those among the monomeric units inside the fluid. 
(In  principle, there are also contributions from the Si-Si interaction and the S i- O v interac
tions. but these do not depend on the thickness / of the polym er film and can therefore be 
omitted.) The integrals are elementary. Keeping only / dependent terms, we obtain, for the 
long-ranged contribution to the interface potential. g(l) = E (l)/ L 2 [102]

//. 1 / ^ PSPS  ~  ^PSO.v . y4pSSj “  ^PSO.v \ ,/iov

■lr = TT77V------------------ r-— + <r+,u; ) ( 1
Specifically for PS  on an oxide-coated Si wafer, the Ham aker constant of the oxide coating is 
smaller than the H am aker constants of the polymer and the substrate, and both terms in the 
equation above tend to cancel. In this case, the long-ranged part of the interface potential 
alone exhibits a maximum at a film thickness /Vllw ~  </ox of a few nanometer, as sketched in 
Fig. 9b.

The expression (48) is based on the sharp-kink approximation and holds only for large 
film thicknesses /. It cannot, however, be applied for film thicknesses on the order of the 
width of the liquid-vapor interface: the density profile o f a thin film is nontrivial (cl. Fig. 4) 
and differs from the rectangular profile assumed in the sharp-kink approximation (most 
notably, the density gradually vanishes in the vicinity of the surface); and the interaction 
between the monomeric units and the surfaces at short distances is not describable by 1 /re
type attractions. These two facts lead to an unphysical divergence of this approximation for 
the long-ranged contribution at small distances. The long-ranged contribution has to remain 
constant in the lim it / —> 0 because there is no fluid to interact. Therefore, the long-ranged 
contribution has be cut off at a microscopic distance.

The other contribution to the interface potential stems from the distortion of the liquid - 
vapor interface profile resulting from the presence of the substrate. Its characteristic length 
scale is set by the decay of the interface profile in the wings o f the profile (i.e., the correlation 
length of density fluctuations in the bulk). For a polymer melt, this is a microscopic length 
scale on the order of a few Angstroms. The strength of the short-ranged contribution is set 
by the interface tension y. The  short-ranged contribution to the interface potential is also 
shown in Fig. 9b. In the vicinity of the wetting transition, it exhibits a minimum for small 
film thicknesses that is separated by a barrier from the plateau for / -> 00.

Balancing short- and long-ranged contributions, one finds that the short-ranged contribu
tion dominates for

/ «  f  InT — 7?— r ")  (49)
<fi7|[ ( ̂ cross )

Hence, short-ranged forces are important for extremely thin polymer films or when the 
Ham aker constant, which controls the strength of the long-ranged interaction, is small. The 
latter fact holds true for the specific experiment because the long-ranged interactions of 
the Si and O v have opposite signs, and this cancellation leads to a very weak effective (i.e., 
thickness-dependent H am aker constant).

Adding both contributions to the interface potential, we obtain two minima: the m ini
mum at microscopic film thickness is only caused by short-ranged forces. The corresponding
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barrier signals the free-energy costs of form ing a (hypothetical) homogeneous film that is 
thinner than £. The second minimum, at a mesoscopic film thickness /* < /vdW, arises from 
the interplay of both contributions: The short-ranged part repels the liquid-vapor interface 
from the substrate, but it rapidly decays as the film thickness grows. The long-ranged con
tribution attracts the liquid-vapor interface for thickness I < /vdW.

This qualitative explanation relies on two assumptions: first, the phenomenological form 
of the short-ranged contribution neither specifies the length scale £ of the short-ranged 
interaction, nor its strength. Additional contributions that might arise from the entropy 
loss of the polymers because of the confinement into a thin film are neglected. Second, 
the way the long-ranged contribution to the interface potential has to be cut off at small 
distance remains unclear— it depends on the details of the density profile in the vicinity 
of the substrate. In the following text, we use self-consistent field calculations, which do 
not invoke these assumptions, to corroborate the explanation o f the experimental finding. 
Starting from the interactions between the liquid and the substrate, we calculate the detailed 
form of the density profile and the free energy of the liquid film.

To compare the self-consistent field calculations to the experiments, we chose the param e
ters of our computational model to be com parable to the experiments on PS. The Lennard- 
Jones chains of N beads do not capture details o f (S.7 k P S  on an atomistic scale, nor do wc 
adjust the equation of the state of our model to experimental data for the pVT  behavior 
o f PS . Therefore, we cannot expect agreement between our computational model and the 
experiments on all quantities simultaneously, and we identify the model parameters to match 
quantities pertinent to the wetting behavior.

W e use chain length N = 84, which corresponds to the number o f repeat units in the exper
iment [101]. As the number of single-chain conformations increases exponentially with chain 
length, the partial enumeration scheme would require a very large number of single-chain 
conformations to capture the orientation and deformation of the chains at the substrate 
and the liquid-vapor interface. Therefore, we use the Gaussian chain model, for which the 
single-chain partition function can be calculated exactly numerically. The statistical segment 
length b = 1.3(7 is chosen so as to reproduce the chain extension of the bead-spring model. 
The length scale in the calculations is set by the the radius o f gyration ~ by/N/6. In the 
calculations, ~  4.8r/ while the experimental value is Rr = 2.54 nm. Hence, we identify 
(7 = y/f>Rg/[b/ (r\s/~N  = 0.522 nm. Not including any architectural details on the segmental 
length scale, we use a local density functional [i.e., u\K(r) = tvm(r) = S ( r ) ]  in junction with 
the TPT1 equation of state (em ploying the M S A  closure for the monomer reference fluid). 
The density of PS  at T = 413 K  is </> = lg/cm3. This corresponds to 6.9 • 10"5 molecules per 
A \ or a segment density o f cb, = 6.9 ■ 10 5( s/SR^/A)3//r3>//V — 0.83(7~3 in Lennard-Jones 
units. W e adjust the temperature kBT/e such that the density of the liquid (in coexistence 
with the vapor) matches the experimental density. This yields knT/e ^  0.96 in Lennard- 
Jones units (o r e = 0.57 • 10~2{iJ).  The critical temperature Tc ^  2.96e/kBT for chain length 
N = 84 corresponds to 1300° K, which is well beyond the thermal stability limit. For these 
param eter values, the self-consistent field calculations yield, for the interface tension, the 
value y = O JO e /a 2. Using the estimates for a  and 6 , we find this value to be about a fac
tor of four smaller than the experimental data y = 0.031 • lO~2(,.///42 at T — 140°C. If  we 
used a nonlocal density functional with different weighting functions for attractive and repul
sive interactions, the self-consistent field calculation would yield a larger interface tension 
(cf. Fig. 5). W e emphasize, however, that no experimental input about the pVT  behavior 
has been used to parameterize the free-energy density, and no specific information about 
the atomistic structure of PS  has entered the calculation. As a result, we consider the self- 
consistent field result for the interface tension y  as an estimate of a typical interface tension 
of a polymer liquid in coexistence with its vapor, rather than a prediction for the specific 
system at hand.

The long-ranged part of the effective interface potential has been extracted from a careful 
analysis o f dewetting experiments [99]. A lthough the experiments of Seemann et ai. employ 
shorter chains (2k P S ) [99]. we do not expect the van der Waals interactions (or the phase
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diagram far below the W temperature) to exhibit a strong dependence on chain length. The 
experimental data can be parameterized by

with parameters A = ( A PSPS -  A PSOX)/ l27 ry  =  1.88A2, r = (A ,,ss, -  - 4 P S o x ) / M p s p s  “

two terms represent the long-ranged interaction according to Eq. (48). The value of the 
coefficients are compatible with estimates obtained from the Ham akcr constants of the pure 
materials [101].

To describe the experimental finding, the description o f the interface potential has been 
augmented by an additional (long-ranged) term, which decays like l//s. This term dominates 
£e\p at small distances, and its strength has been adjusted to yield the measured contact angle 
of the polymer drops for each thickness of the coating layer. The form of the potential has 
a single minimum at short distances.

Using the sharp-kink approximation, we can calculate the monomer-substrate interactions 
that would correspond to the interface potential above:

With /lifoycrs = 2A/<f>t.
So that the inaccuracy of our model and the approximation of our self-consistent field 

calculations in predicting the interface tension do not upset the comparison with the exper
iment, we choose the strength of monomer-wall potential I/waM such that the dimensionless 
ratio of the van der Waals contribution to the effective interface potential and the interface 
tension takes the experimental value. Using Slavers ~  2A/<f>, with A = 1.882/42 = 0.069(72, 
we find A2) s = 0.167<r\ The additional term f~i} in the interface potential could be 
(form ally) conceived as a strong I//*12 attraction between the polymer segments and the 
constituents o f the substrate, but it should instead be considered as an effective description 
of the attraction between the polymer and the substrate at short distances.

The monomer-wall potential [Eq . (51)] is appropriate for intermediate and large distances 
of /, which is the actual range of film thickness the dewetting experiments are able to probe. 
If  we used Eq. (51) for all film thicknesses, we would seriously underestimate the contact 
angle of the polymer drops on the substrate. Unfortunately, details of the monomer-wall 
potential at short distances are not known. W e expect Kvvall to be repulsive in the ultimate 
vicinity of the wall, because of the short-ranged repulsion (hard core interaction) between 
the polymer segments and the constituents of the oxide layer. A t short distances, there is an 
attraction between the polymer segments and the wall. This contribution to the free energy 
is partially the result o f van der Waals interactions between polymer and oxide and partially 
caused by specific interactions between PS  and the S iO v layer on the atomic scale. This 
short-ranged behavior of cannot be faithfully modeled in the framework of our coarse
grained model; an accurate modeling of the liquid and the surface on the atomistic scale 
would be required.

As a minimal model, we use the monomer-wall potential [Eq . (51)] up to distances at 
which Kwal| < —Vc. For smaller distances, we set VWiil] = — Vc and Kwa), = oo for z < 0 (i.e., 
inside the oxide layer). The value of the contact potential V(. determines the contact angle of 
droplets on the bare substrate; the contact angle of drops on the mesoscopic film is inde
pendent from Vc. The values Vc used in our calculations (cf. Fig. 9) are comparable to the 
energy scale of thermal fluctuations knT but about two orders of magnitude low'cr than the 
energy of a chemical bond— it would be very difficult for an ah initio calculation to predict 
those small free energies accurately. One should instead conceive of this quantity as an 
effective, mesoscopic parameter that has been adjusted to reproduce the experimentally 
observed behavior. A  rather small change in the contact interaction Vc can change the w et
ting behavior— this points to a strong dependence of the wetting behavior on the preparation 
o f the surface (e.g., the cleaning process [7]).

/ lrsox) = 6.9. and c ( J ox) = 3.5 ■ \Q'A(' for an oxide layer of dox = 2.4 nm [99]. The first

(51)
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The dependence of the interface potential g(l) on the thickness of the oxide layer is 
shown in Fig. 9c. Indeed, the interface potential exhibits two minima in agreement with the 
phenomenological considerations above. The local minimum at mesoscopic thicknesses is 
stabilized by an increase in the thickness of the oxide layer, and its thickness /* grows. The 
thicker the oxide layer, the further out is the mesoscopic minimum and the more the short- 
ranged interactions gsr have decayed. In fact, for a thick oxide layer (r/ox = 19.1 nm ), our 
calculations are by construction in good agreement with the mesoscopic film thickness /* = 
1.3(2) nm and the contact angle of 7.5° measured by Seemann et al. [99]. If  the thickness of 
the oxide layer dox becomes too small, however, the mesoscopic film becomes unstable with 
respect to a macroscopically thick film or a microscopically thin film. This is an agreement 
with experiments [101]: A  thin oxide layer (d = 0.9 nm) cannot stabilize a mesoscopic film, 
and no nanodroplets can be observed.

Hence, the self-consistent field calculations corroborate the qualitative explanation that 
the field formation of nanodroplets mirrors the interplay between short-ranged and long- 
ranged contributions to the interface potential. The calculations also illustrate the relative 
magnitude of both contributions.

4.3. Wetting on a Polymer Brush
G rafting or adsorbing chains to the substrate is another route to tune the wettability 
[103-106]. The grafted polymers may “ tie down” [104] the liquid film and prevent rupture. 
The ir stabilizing effect is twofold: Grafted chains might inhibit dewetting kinetically, or they 
modify the interface potential as to form a thermodynamically stable wetting layer. W e 
shall discuss only the latter effect and constrain ourselves to the most symmetric case of an 
oligomeric liquid on top of a chemically identical brush.

According to Young’s equation [91] the polymer liquid will wet the brush if

Jin  - y«i + y < <) (52)

Typically, the tension at the liquid-vapor y and brush-vapor yliV interface are large but of 
comparable magnitude, whereas the free-energy cost yHl o f the interface between the brush 
and the liquid of free chains is small. Hence, wettability is controlled by a subtle balance of 
all three contributions.

Much effort has been focused on the calculation of the surface tension yBl between the 
brush and the liquid, which stems from the interplay between the translational entropy the 
liquid gains by penetrating into the brush and the configurational entropy loss that follows 
when the chains of the brush are swollen by the free chains. Scaling considerations [107, 108] 
and self-consistent field calculations [109-113] of incompressible melts with purely repulsive 
interactions have been applied with success to the manner in which a concentrated solution 
o f free chains penetrate into the brush. A t low grafting densities, the penetration is large 
and ylu is negative, but there is little penetration at large grafting densities, and yBL is 
positive. This dependence on the grafting density partially rationalizes the experimental 
observation that a polymer liquid does not wet a brush o f identical monomers at high grafting 
densities [105, 114, 115]— a phenomenon termed “ autophobicity.”

The properties of the liquid-vapor or brush-vapor interface, however, cannot be described 
by models that invoke an incompressibility constraint, and the effect of long-ranged van 
der Waals interactions between the liquid and the substrate is often neglected. In our self- 
consistent field calculations, we capture compressibility effects and can calculate al! three 
interface tensions within a unilied framework. Moreover, the self-consistent field scheme 
[64, 116] captures the chain conformations on all length scales, whereas the parameters of 
a hypothetical, noninteracting Gaussian chain might be difficult to identify for experimental 
or simulational realizations of brushes [117]. In the following text, we illustrate the quali
tative behavior at temperature k HT / e  = 1.68 and chain length N — 10 using the simplified 
interaction-free functional (M O M , cf. Section 3.2). The average area per grafted chain is 
denoted as The first monomer of the grafted chains is placed a distance Az — 1.2d away 
from the wall, whereas free chains sample all spatial positions. W e investigate the wetting
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properties under conditions in which the liquid coexists with its vapor in the hulk (i.e.. we do 
noi discuss the prewetting transitions).

Three regimes of the reduced grafting density R'./~ can he distinguished.

4.3.1. Low Grafting Density
In Fig. 10a, we present the interface potential as a function of the average area 1 per grafted 
chain in the absence of long-ranged interactions Aw = 0 (i.e., a hard repulsive wall). For 
low grafting densities, the minimum of g(I) occurs close to the wall. The film thickness that 
corresponds to this minimum is independent of the amount of grafted chains, but its depth 
decreases as we increase the grafting density. Free chains penetrate into the collapsed brush 
(cf. Fig. 10c), but the attraction between the brush and the polymer liquid is not strong 
enough to make the liquid wet the substrate. A n  attractive long-ranged interaction A > 0 is 
necessary to bring about a first-order wetting transition at Awcl. As we increase the grafting 
density the wetting transition occurs at smaller values of Awel. The dependence of the
wetting transition on the grafting density is presented in Fig. 10b.

layer thickness l/Re

z/Re

Figure 10. (a) Interface potential g(l)<r-/knT for various grafting densities R~./1 as indicated in the key. There 
are no long-ranged interactions (A lr = 0) between the substrate and the monomers, (b) Wetting phase diagram 
in terms of the effective Hamaker constant /twcl and the grafting density R:c/~. Dashed lines denote lirst-order 
wetting transitions, the solid curve denotes transitions between a microscopic thin and a mesoscopic thick layer, 
and the horizontal line at /fttcl = 0 marks second-order wetting transitions. The line of transitions between the thin 
and thick layers terminates in a critical endpoint (C EP) at low grafting densities and in a critical point (CP) at 
high grafting densities. Second-order and first-order wetting transitions at high grafting densities are separated by 
a tricritical point (TCP), (c. d) Density profiles at intermediate ft2/- = .̂69 (c) and high R;/~  =3.35 (d) grafting 
densities for Aw — 0. Film thicknesses are indicated in the key: the lowest value corresponds to a dry- brush. The first 
monomer of each grafted chain is excluded from the profiles; its position is indicated by the vertical arrow. Thick 
lines present the total density profile (!) = (f)̂  + <f>f. For the two larger thicknesses, lines with symbols represent 
the profiles of grafted chains, and shaded areas correspond to free chains. Adapted from Ref. [64], M. Muller and 
L. G. Mac Dowel I. Europhys. Ecu. 55. 221 (2001).
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4.3.2. Intermediate Grafting Density
On increasing the grafting density further, the brush creates enough attraction to make the 
fluid wet the substrate at /lwcl = 0. The line of first-order wetting transitions terminates 
in a critical endpoint (cf. panel 10b). For larger grafting densities, wetting transitions are 
of the second order (i.e., the thickness o f the wetting layer increases continuously as A —> 
Avei — 0 " is approached). For negative values A < 0, the liquid cannot wet the substrate, 
and the contribution o f the brush to the effective interface potential is short-ranged, and 
cannot outweigh the long-ranged interactions for large (macroscopic) film thicknesses. The 
behavior resembles the experimental observations ( ‘‘frustrated wetting” ) o f alkanes at the 
water-air interface [118-121]. The short-ranged interactions favor a thick liquid layer, but 
the long-ranged interactions A < 0 inhibit the growth of a macroscopic liquid layer. The 
line of first-order wetting transitions at low grafting densities y4wel > 0 continues into the 
regime of second-order wetting in the form of a transition between a microscopically thin 
and a mesoscopically thick layer at Att < 0. This behavior is different from the prewetting 
behavior because it occurs at liquid-vapor coexistence A/i = 0 and not at undersaturation 
A/x 0. For A c  A .̂ a d iop  sits on top of a microscopically thin layer, while for A  ̂ <c A < 0, 
the drop sits on top of a mesoscopically thick layer. Such a jump in the film thickness at 
coexistence, which precedes the second-order wetting transition, is also in agreement with the 
experiments of alkanes at the water-air interface [118-121]. The line of thin-thick transitions 
An term inates in a critical point at which the difference between the microscopically thin 
and the mesoscopically thick layer vanishes.

4.3.3. High Grafting Density
On increasing the grafting density even further, a stable minimum of the interface potential 
in the absence o f long-ranged interactions A w = 0 develops. The larger the grafting density, 
the deeper the m inimum, and the further away from the substrate it occurs. The density 
profiles at a high grafting density are shown in Fig. lOd. W ithout any free chains, the brush- 
vapor interface resembles a narrow liquid-vapor interface. Adding a small amount of free 
chains, we allow the collapsed chains of the brush to relax, and the free chains allow the 
brush profile to adopt a broader profile, which resembles the profile o f a brush in contact 
with a melt. Those free chains are localized at the brush-vapor interface. The free chains 
cannot penetrate into the brush, because its density is comparable to the density of the liquid 
that coexists with the vapor. Increasing the amount of free chains does not significantly 
alter the liquid-vapor interface or the brush-melt interface. The additional free chains are 
confined into a liquid layer on top of the brush, defined by the brush-melt interface and 
the liquid-vapor interface. The addition o f more free chains than necessary to relax the 
brush-vapor profile increases the free energy, because these chains, confined into the layer 
on top of the brush, have a reduced configurational entropy. There is a minimum in the 
interface potential, which shifts to larger thickness as the grafting density is increased. Thus, 
in the absence of long-ranged attraction, the liquid does not wet the dense brush of identical 
chains. This autophobicitv has been observed on polymer brushes and crosslinked polymer 
networks. The minimum also becomes deeper at higher grafting density, because the chains 
can penetrate less into the brush. O n making the substrate attract the liquid A w > 0, we can 
overcome the autophobicity and make the liquid wet the brush. The wetting transition on 
the dense brush is o f first order, and Awcl > 0 increases with grafting density.

Experim ents [1221 at intermediate grafting densities yield evidence for evidence for the 
stability o f a thin and a mesoscopically thick film (at phase coexistence between the liquid 
and the vapor). M ore recently, experiments [ 123, 124] on the wetting of PS  on a P S  brush 
indeed observed two wetting transitions: at small and very large grafting density, the polymer 
film dewets the brush, whereas at moderate grafting density, the PS  film remains stable.

At even lower temperatures, the brush in a bad solvent does not collapse into a laterally 
homogeneous dense layer, as we have assumed implicitly in our one-dimensional self- 
consistent field calculations, but the chains gather into clusters that have a lateral distance 
comparable to the m olecular extension [125]. Such lateral structure formations shall be dis
cussed in Section 5.
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4.4. Adsorption on Laterally Structured Substrates
Ar.other way to modify the wetting and adsorption properties [ 126] is to exploit the influence 
of geometrical surface patterns. Bauer and Dietrich have investigated the wetting behavior 
o f a planar substrate containing a stripe [127-129]. that consists of a chem ically different 
material than the remaining substrate. A  particularly intriguing adsorption behavior is found 
in the vicinity of the prewetting coexistence of the stripe material, where at A fi < A/apw <  0
the infinitely extended stripe material would be covered by a thin liquid layer, whereas for 
A/.pw < A /i < 0, a thick (but finite) layer would build up. S im ilar to capillary condensation, 
the transition between the thin and thick adsorption layers on the stripe is rounded off, 
because the stripe is quasi-one-dimensional, and shifted away from the prewetting line of the 
infinite stripe. The magnitude of the shift depends both on the widths o f the stripe and on 
the adsorption properties of the substrate bordering the stripe [129]. M aking the substrate 
more attractive to the fluid, one induces a change from a thin liquid layer adsorbed on the 
stripe to a thick film, and vice versa. This phenomenon is termed “ morphological transition" 
or “ interface bending/unbending transition’’ (cf. sketch on the left-hand side of Fig. 11), 
because it implies a transition between two different density profiles (a snapshot showing 
the two different states is shown on the right-hand side of Fig. 11).

To observe such a morphological transition in our M onte C arlo  simulations, we have to 
adjust the wetting properties of the stripe and the neighboring substrate carefully. In our 
simulations, we use periodic boundary conditions in the two lateral directions such that
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polymer areal density R|/I

Figure 11. (a) Sketch of the two coexisting phases at the interface bending/unbending transition, (b) Probability dis
tribution of the total thickness as a function of the fraction of the polymer brush a * — L , J ( L A + L l{) (cf. sketch in the 
inset) at temperature kHTe — 1.68: A u, = 3.5, and undersaturation fx - /xc<KX — —0.156. (cf. Fig. S). Around .v ^  0.27 
there is a morphological transition. The dashed lines mark the adsorption on the stripe and on the brush, as well 
as the linear superposition. The panels on the right present snapshots of configurations at a = 0.266. The simula
tion box and three periodic images are shown. The upper and lower panels correspond to /?: ./~ = 1.38 and 5.67. 
respectively. Adapted from Ref. [126], M. Muller and L. Ci. Mac Dowel I. J. Phys. Condens. Mailer 15. R609 (2003).
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we look at alternating stripes A and B. W e again work at temperature kRT/e = 1.68 and 
undersaturation A /jl  =  —  0.15e and use long-ranged attractions between the fluid and the 
wall according to Eq . (3 ) with A w = 3.5. U nder these conditions, a thin liquid layer adsorbs 
on the stripe A (cf. Fig. 11), and this stripe is close to its prewetting transition. Fo r the 
second stripe B  (o r substrate), we use the same long-ranged attraction between the fluid 
and the wall, but we increase the fluid adsorption by grafting chains to the surface with 
/?“ / !  = 0.837. The self-consistent field calculations in Fig. 10 indicate that the adsorbed 
amount on the brush B can be tuned easily, because brush B exhibits a second-order or very 
weakly first-order wetting transition.

In the following we vary' the width of the (first) stripe L A and fix the width of the brush- 
covered second stripe to L h = 8cr. In the inset o f Fig. 11 we present the adsorbed amount per 
area as a function of the fraction a* = L B/ (LA -f L B) of the brush. For x < 0.2 the adsorption 
increases linearly with the brush fraction. A round  x ^  0.27 the average adsorption develops 
an S-shaped dependence on the brush fraction x, and for x > 0.35 the adsorbed amount 
on the patterned substrate almost reaches the value of the brush substrate. The average 
adsorption on the substrate is more than twice as much as the linear superposition would 
indicate. In the side panels, we show two snapshots at the same brush fraction x = 0.266. In 
the upper snapshot, there is hardly any adsorption on stripe A, and the liquid condenses onto 
the brush-covered stripes B. The total adsorption is what one would expect to achieve by 
adding the adsorption on stripe A and brush B . weighted by their areal fraction. In the lower 
snapshot, the liquid forms a uniform thick layer on the substrate, and the total adsorption is 
comparable to the adsorption on an infinitely extended brush B. The snapshots illustrate the 
two states separated by the morphological transition. Because the system is two-dimensional 
(i.e., neighboring stripes of the same type are coupled), the transition can be truly first order. 
During the simulation, the system o f finite size switches from one state to another; therefore, 
we do not observe a sudden increase of the adsorption at the morphological transition. It 
is instructive to look at the probability distribution of the adsorption. For small and large 
values of x, the distribution f * (S )  has a single peak centered around the average value 
of the adsorption. Close to the transition, however, the distribution is bimodal; Each peak 
corresponds to the two states at the morphological transition. Around x ~  0.27, both peaks 
have equal weight, and this criterium yields an estimate for the location of the transition. In 
the inset, we have also indicated the average adsorption that corresponds to the individual 
peaks. The lower value follows the weighted average of stripe A and brush B , whereas the 
higher value is close to the adsorption of brush B. This gives an estimate for the adsorption 
one would observe in a larger system. W hen  studying the ability o f the stripe to modify 
the wetting behavior of the substrate, it is interesting to compare the above mentioned 
results with a sim ilar adsorption simulation in which the chains are grafted uniform ly on 
the substrate, rather than form ing stripes. Fo r example, the stripe with an areal fraction 
x = 0.267 may be uniform ly distributed to form a brush with grafting density 1/2, =  * / 2 stripc. 
In  this case, we find that the stable state of the system consists of a thick layer o f polymers, 
with total adsorption of /?■/£ = 4.9 polymers. The adsorption onto a patterned surface is 
slightly larger /?~/2 =  5.1.

5. BINARY PO LYM ER B R U SH ES : SELF-A SSEM BLED
ST RU C TU RES WITH SW IT C H A BLE  WETTING PR O PER T IES

Instead of patterning the surface on the m olecular scale “ by hand," one can employ self- 
assembly to create structures on the nanometer scale. In many applications, one uses diblock 
copolymers (i.e.. linear polymers that consist o f two distinct blocks or more complicated 
molecular architectures; e.g., multiblock copolymers or graft copolymers [130]. The two 
monomeric species want to separate to reduce the energetically unfavorable interactions 
between unlike species. The  connectivity along the backbone of the molecule, however, 
prevents them from segregating into macroscopical domains, and they phase separate into 
periodic microstructures with a characteristic length scale set by the molecular extension. 
Those microstructures have many fascinating thermodynam ic and rheological properties. 
Most notable, those systems are promising candidates for templating nanostructures. In this
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section, we briefly describe the self-assembly that occurs in mixed polymer brushes f 131, 132]. 
If  one grafts two incompatible polymers with their ends irreversible onto a surface and 
thereby immobilizes the grafting points, one also can avoid macroscopic segregation of the 
two species, and by the same token, the chains phase separate on the length scale of the 
molecular extension [133].

Surfaces covered with those mixed brushes have proven to be practically useful. Com bin
ing polymers with different properties (e.g., hydrophilic and hydrophobic species), one can 
fabricate structured surfaces with tunable wetting and adhesion properties [134]. Exposing 
the brush to a hydrophilic solvent, the hydrophilic chains segregate to the top of the brush 
ard make the surface hydrophilic after the solvent has quickly evaporated. Likewise, the 
exposure of the mixed brush to a hydrophobic solvent caused the hydrophobic component to 
errich at the brush's outmost layer. A fte r the solvent has evaporated, the brush-coated sub
strate is hydrophobic. This change in the wettability of the substrate is reversible. Although 
a flat substrate coated with a mixed polymer brush leads only to a change of the contact 
argle by a few tens of degrees, this change in the wettability can strongly be amplified by 
using a rough substrate and results in quite a significant control over the surface properties 
[ 134, 135]. "

Measurements of the contact angle of a liquid on top of the brush provide only information 
o 'e r a large macroscopic patch of the surface. To investigate the structure and the molecular 
conformations on the nanometer scale, special experimental techniques [132] have to be 
employed (e.g., x-ray photon emission spectroscopy, X P E E M ) .  It is on this length scale that 
coarse-grained models are most valuable, and self-consistent field calculations can provide a 
detailed picture of the structure and the thermodynamics.

Two limiting types of morphologies into which chains arrange to avoid unfavorable inter
actions between different species can be envisioned [132]: (1 ) The two species segregate 
perpendicular to the substrate (layered phase, sandwich-like structure), with one species 
being enriched at the substrate while the other segregates to the top of the brush. The 
n ixed brush remains laterally homogeneous. This homogeneity is advantageous for design
ing surfaces with reversiblv tunable wettability. (2 ) A lternatively, the two species can laterally 
self-assemble into two-dimensional structures with a well-defined lateral length scale, which 
is on the order of the molecules' extension.

To investigate the universal behavior on the length scale larger than a few monomeric 
units, we model both types of chains—A and B— as ideal Gaussian walks with end-to-end 
distance Rr. Restricting ourselves to the large length scale properties of the molecular con
formations, we also disregard packing effects and employ a very simple, local density func
tional for the interactions of the two monomer species, which takes the form of a virial 
expansion in the two monomer number densities </>., and 4>B

dr \ + vab4>.Ah \ (53)k j

r  =  ( i ; +  vHB +  2 va b )/4  characterizes the average strength o f the excluded volume inter
action between monomers. The equation x — (~vab ~ vaa ~~ vbb)/-v denotes the mutual 
attraction(repulsion) between (un)like monomers. It is related to the commonly used Flory-  
Huggins parameter via \  =  VX- Increasing x, we increase the incompatibility between the 
two species and reduce the solvent quality. The quantity C = (vAA — v[ifi)/2v specifies the 
solvent selectivity toward the A and B species. It is obvious that this crude approximation 
neither includes any local structure of the monomeric units nor faithfully describes the ther
modynamic properties o f a compressible binary polymer mixture. It should just be regarded 
as a minimal model that captures some of the universal, qualitative properties of the struc
ture and the thermodynamics of binary brushes, but not as a faithful model of a specific 
experimental realization.

Even  though our computational model is extremely simplified, it still poses a challenge 
to describe the immobility of the grafting points within the fram ework o f the self-consistent 
field theory. To this end, we formally identify each chain by its grafting point r () and regard 
the systems as a mixture consisting of infinitely many components. W ith in  the framework of
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the self-consistent theory, the free energy takes the form F  = E  -  T(SA + SB), where SA 
and SB denote the conformational entropies of A polymers and B polymers, respectively. 
The configurational entropy of all /4-polymers, SA, is given by

where QAT{\wa] is the single-chain partition function of the A polymer (cf. Section 3.2), 
which is grafted at position r(h in an external field wA. The sum runs over the grafting points 
r() for all A chains. The variable Ar denotes the monomer density of the A polym er that 
is grafted at r(). The fields and densities satisfy the self-consistent set of equations

In accord with intuition, the field wA is independent from the grafting point r„ (i.e., the inter
action an A segment experiences does not depend on the grafting point). Sim ilar expressions 
hold for SB, wB, and (l>Brr

To calculate the single-chain partition function and monomer density, it is again useful to 
define end-segment distributions c/Ar)(r, t) and q ,(r, /). There are two distinctions compared 
to the case of a polymer film at a surface. First, because of the inequivalence of the two chain 
ends, there are two types of propagators: qAru(r, t) describes the probability that a chain of 
length //V, grafted at r„, terminates at r, whereas qA(r,t) is the probability that a chain 
o f length tN, starting anywhere in the bulk, terminates at r. Second, formally, there is one 
propagator £//Jri)(r, /) for each grafted chain.

Both end-segment distributions satisfy the diffusion equation •—1 == 7f Ac/., — NwAqA 
[cf. also Eq. (22)]. One chain end is grafted at r = r(l and, hence, q l r (r ,0 )  = <5(r -  r0), 
and the other chain end is free, <y.,(r, 0) = 1. The monomer density <f)Ar and single-chain 
partition function t  AVu can be expressed as

W e obtain the total A monomer density </>., by summing over all grafting points of A chains

with qA = Z!.ir„ /̂/ir(l/^.irn- Because qA is a linear combination of qArr it also obeys the 
diffusion equation with initial condition

to calculate the propagator q lr for each grafting point individually, but we can simply use 
the effective propagator for the total A monomer density. O f course, the density distribution 
o f the Oth segment reproduces the grafting points <t>A(r , f —• 0) — qA{rA))qA(i\ N) = 
H  u,, ~  r„).

The equations above describe a binary brush with an arbitrary distribution of grafting 
points within self-consistent theory. At this stage, correlations and inhomogeneities of the 
grafting densities could be explicitly incorporated into the description. In the following text, 
however, we assume that the grafting is laterally homogeneous and denote the relative con
centration of A chains by <t>, also replacing the summation over the grafting points by an

(54)

and (f) Ari

^ , i r „ ( r ) =  ^—  I  d '  ‘7, lrn( r ’ r .  I -  I )  w i th

(56)

(57)

(58)

where we have employed Eq. (5b) with s — 0. Hence, to calculate the density w'e do not have
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integral Yl,iru ^ (T ! ^( vo)- W e measure the degree of stretching [136] by the dim en
sion I ess parameter

vN21 _  3
8>  ~  2 R} aR  f  (59)

Intriguingly, the two dimensionless parameters crR2„  which measures the overlap of the 
chains inside the brush, and the Fixmann parameter vN2/R:'„ which describes the strength of 
the excluded volume interaction, do not enter the self-consistent theory independently, but 
only as a product. W e define a rescaled A monomer density r/>., = vN8<t>d)A and measure 
all length scales in units of Rc.

Qualitative insight into the physical origin of phase separation can be gained in the 
limit o f strong stretching 8 —* 0, where the situation is sim ilar to the binary brush in the 
melt [133]. Then, the dominant contribution to the free energy stems from the interplay 
between excluded volume interactions and chain stretching (sim ilar to the one-component 
brush). Using the fact that the height of the brush scales like h — Re/y/8, we find that this 
contribution is of the order kBT/8 per chain. It controls the density profile. On increasing 
the incompatibility x, there is a transition from the disordered phase to the “ ripple” phase to 
reduce the energy of mixing. For 8 —> 0, only the composition pA = </>.,/(</>̂  + 4>B) becomes 
laterally inhomogeneous, but the total density, = <f)A -j- 0^, is not affected by the phase 
transition. The energy of mixing is on the order of xkBT/8 per chain. Lateral demixing 
reduces the entropy of mixing of the free chain ends, which is on the order of kHT per 
chain. A t the transition, this entropy loss is comparable to the energy of mixing, and we 
obtain ;fdjS_ rjPP|e ~  8 (in agreement with our self-consistent field calculations). As the incom
patibility increases or the stretching decreases, the decoupling of density and composition 
breaks down. Figure 12 illustrates the variation of the total density at intermediate stretch
ing and a rather large incompatibility. (Sm all values of stretching 8 correspond either to a 
small overlap of grafted chains (tR~ <<c 1 or to a solvent of marginal quality vN2/R]. 1;
in the former case, correlations of the grafting points are very important in experiments, 
and in the latter case they are not.) In this parameter region, we investigate the interplay

Figure 12. Left-hand side: Contour plots of the total density and the density of the /1-component for the "ripple" 
morphology (upper panel), the checkerboard-like 'dimple S” morphology (middle panel), and the hexagonal 
“ dimple” structure (bottom panel). Right-hand side: Phase diagram of a symmetric brush (<l> = 1/2) as a function 
of inverse stretching and incompatibility Adapted from Ref. [131], M. Muller, Phys. Rev. E  65, 030802(R) 
(2002).

inverse stretching 6
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between the energy of mixing and conformational entropy via numerical self-consistent field 
calculations. Additional morphologies arc found to be stable, and lateral and perpendicular 
segregation occur simultaneously.

First, in Fig. 12, we investigate the phase behavior for symmetric composition (<$> = 1/2) 
as a function of stretching 8 and incompatibility The relative stability of five phases 
is explored: the disordered phase (dis) that is neither laterally nor perpendicularly segre
gated; the layered phase (one-dimensional, ID ) ,  in which the symmetry between A and B is 
spontaneously broken and the two components segregated perpendicular to the surface; the 
“ ripple”  phase in which the two components laterally segregated into symmetrical cylinders; 
and two “ dim ple" phases. In one phase, denoted as “ dimple S ," both species segregate sym
metrically into clusters, which arrange as on a checkerboard. In the other phase ( “ dimple A ” 
or “ dimple ET), one of the components— A or B— segregates into clusters, which form an 
hexagonal lattice in the lateral direction, whereas the other component is less dense and 
fills the space between the clusters. The symmetry between A and B is broken. The (total) 
density profiles of the laterally structured phases are shown in Fig. 12. The size o f the lateral 
repeat units is about 1.9R( for the ripple and symmetric dimple phases and 2.2Rc for the 
hexagonal dimple phase in the range of \ close to the order-disorder transition. Note that 
the length scale of the spatial ordering is somewhat larger than in diblock copolymers; 1.32Re 
at the onset of ordering in the lamellar phase 1137].

The phase diagram is presented in Fig. 12. On increasing the incompatibility, we find a 
second-order transition from the disordered phase to the “ ripp le”  phase. As discussed above, 
the incompatibility \  at which the “ ripple”  structure forms increases linearly with 8 in the 
limit of strong stretching 8 —> 0. For small values of 8 and stronger incompatibility (x > 2, 
bad solvent), we encounter a transition from the “ ripple”  phase to an hexagonal “ dimple”  
phase. For larger values of <5, we first encounter a transition from the “ ripple”  phase to the 
symmetrical “ dimple S ”  phase, and at even larger incompatibilities we find a transition to 
a hexagonal “ dim ple”  phase. There is a triple point at 8 = 0.46 and x = 2.83, where the 
“ ripple,”  the symmetrical, and the hexagonal “ dim ple" phases coexist. A l the triple point, 

•' -'sent the contour plots of the density and composition in Fig. 12.
u i,  lculations omit a repulsive, third-order virial coefficient. Fo r \ > 2 the solvent is 

bad for the pure components, but the average segment interaction would be repulsive for 
X\<1> 1/2| < 1 if the brush was homogeneously mixed. The density inside the “ dimple”
structure at large \  is limited by chain stretching rather than by packing effects. Including 
third-order virial coefficients in our calculations, we have explicitly verified that the qualita
tive features of the phase behavior remain unaltered. A  third-order virial coefficient w'ould 
stabilize phases with smaller density variations (i.e., the disordered phase would gain stabil
ity with respect to the “ ripple” phase, and the transitions from the “ ripple”  to the dimple 
phases would shift to slightly larger values o f x).

The phase diagram for symmetrical composition as a function of the incompatibility \ 
and selectivity f  of the solvent is presented in Fig. 13 for m oderate stretching, 8 = 0.46. 
The solvent properties have a profound influence on the self-assembled structures [138]. On 
increasing the incompatibility in a nonselective solvent (  = 0, we find a transition from a 
laterally homogeneous phase (dis) to the “ ripple”  phase. As we decrease the solvent quality 
for the A component, £ < 0, the “ ripple” phase transforms to a “ d im ple" structure, in which 
the A component segregates into clusters that arrange on an hexagonal kit!ice. Likewise, 
we find a hexagonal “ dim ple”  structure with a collapsed B brush when the . 'nt is poor 
for the B component ( f  > 0). A t higher incompatibility (o r poorer solvent quality), only 
“ dim ple”  structures are stable. I f  we increased 8, the region o f stability o f the “ ripple”  phase 
would increase and the transition from the laterally homogeneous phase to the structured 
phases would occur at low'er incompatibility.

In the inset o f Fig. 13, we present the laterally averaged composition profiles at x — 2.4. 
As we increase the selectivity, the B component segregates to the top of the brush, whereas 
the relative density of A is higher at the substrate. Contour plots o f the composition at 
small and large solvent selectivity are presented in the lower panels. Note that the hexag
onal “ dim ple" morphology exhibits in addition to the two dimensional lateral structure a 
pronounced perpendicular segregation. Even in the absence of a solvent preference, f  — 0,
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Figure 13. Phase diagram of a symmetric mixed brush as a function of solvent selectivity and incompatibility al 
£ = 0.46. The inset shows the laterally averaged composition profile for \ = 2.4 and solvent selectivities f  = 
—0.3, —0.2, —0.1, and -0.03. In the lower row. we show contour plots of the composition for £ = -0.03 in the 
“ ripple” phase and f  = -0.3 in the "dimple” phase. Adapted from Ref. (132], S. Minko, et al., Phys. Rev. Lett. 88, 
035502 (2002).

the symmetry between A and B is spontaneously broken and the hexagonal “ dimple”  phases 
exhibit a laterally averaged perpendicular segregation. Therefore, a transition between the 
two “ d im ple" phases leads to a significant variation in the surface properties, which can then 
experimentally be exploited to tune the surface properties [132, 135]. This perpendicular 
segregation can be enhanced bv a solvent that selectively attracts the matrix component.

In addition to the solvent, external interactions can also trigger transition between the 
different morphologies of mixed binary brushes. Those interactions might comprise a prefer
ence of the grafting surface to one component or the interaction o f the mixed polymer brush 
with an external surface (i.e., stamp, or possibly electrical fields in the case of a mixed poly
electrolyte brush). The interplay between morphology of the brush and external fields might 
allow for a control of practically important surface properties (i.e., wettability and adhesion) 
over a wide range, and we anticipate a rather rich phase behavior. W e shall illustrate the 
effect of preferential surface interactions on the morphology of mixed polymer films for the 
much simpler example of a homopolymer blend in the next section.

6. IN C O M PR ESS IBLE  BINARY POLYMER FILM S
6.1. Generalization of the Computational Techniques to 

Binary Polymer Blends
The fact that confining surfaces can profoundly alter the miscibility behavior is well 
known [ 139—141 ]. For instance, if the walls of a slitlike pore attract the fluid, it will condense 
in a pore at a lower pressure than in the bulk— a phenomenon termed capillary condensa
tion. If  the pore is o f finite cross-section, the system is quasi-one-dimensional, and there is 
no true phase transition at finite temperatures [142]. The condensation transition is rounded 
off— the correlation length far below the critical point o f the bulk is only finite, but it grows
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exponentially with the cross-section of the pore. The condensation o f fluids or the phase 
behavior of binary AB  mixtures in pores, slits, and films has attracted interest from theorists 
and experimentalists [143] alike. In the following text, we shall illustrate these effects for 
an incompressible, binary homopolymer mixture (i.e., we consider a thin polymer film that 
contains two types of polymers— denoted A and B— on top of a substrate). The qualitative 
features o f phase transitions with a single scalar order parameter (e.g., the composition of 
the mixture) in confined geometry are rather universal and are shared by polymer mixtures 
as well as small molecules. Sym m etric binary polymer blends are, however, particularly well 
suited to study the interplay between wetting and miscibility, because, first, the wetting tran
sition temperature typically is much lower than the critical temperature, where the demixing 
occurs in the bulk [69], and second, because fluctuations can be controlled by the degree 
o f polymerization [68, 144] [cf. Eq . (27)]. The more extended the molecule the larger the 
number of neighbors it interacts with is, and the smaller the effect o f fluctuations. Third, 
the spatial extension of the molecules also facilitates experimental investigations. Indeed, 
the interface localization/delocalization transition (to be discussed later) was first experimen
tally observed in polymer blends [145], and wetting transitions have been studied in recent 
experiments [146, 147]. Fourth, the vapor pressure of polymers is negligible, and evaporation 
effects can often be neglected. F ifth , polymers offer much control over the miscibility and 
wetting behavior. Changing the chain length, one can alter those properties without affecting 
the interactions between the monomeric units. Sixth, polymers tend to form a glass rather 
than a crystal at low temperatures, and hence, the wetting transition might not be preempted 
by a crystalline phase, as happens in many simple fluids.

In the following text, we consider a symmetric blend (i.e., a blend in which the two types 
o f polymers contain the same number of monomers N and have the same extension /?,,). 
The polymers involved are confined into a thin film; the bottom substrate ( W ) might be a 
silicon wafer, whereas the other surface might be the interface to the vapor ( V ).

In the case of a binary compressible polymer blend that consists of components A and B, 
the homogeneous state is characterized by two independent-order parameters, total density 
(/> and composition pA, or the number densities </> ., and cf>,{ of the two species. For instance, 
the dense polymer melt on the substrate is separated from its vapor of vanishingly low density 
by a liquid-vapor interface. The dense polymer film might be mixed, or the two com po
nents might laterally phase separate into macroscopically large domains. Those compressible 
mixtures exhibit a rich interplay between liquid-liquid immiscibility and liquid-vapor phase 
separation. In fact, six qualitatively different types of phase diagrams can be distinguished 
according to the classification o f Konynenburg and Scott [23].

In principle, the simulation methodology and the self-consistent field technique can 
straightforwardly be carried over to multicomponent systems. In the simulations, one uses 
the grandcanonical ensemble and inserts or deletes both species via configurational bias 
M onte Carlo moves, with the chemical potential of each species being fixed. To establish 
phase coexistence, one has to adjust one chemical potential (e.g., f i  A) for a given chemical 
potential of the other species p fi, temperature, and volume so as to fulfill the equal weight 
criterium. Sim ilar to the one-component system, one determines the interface and surface 
tensions by analyzing the joint probability distribution of and [148].

In the self-consistent field calculations, one needs the excess free-energy functional as a 
function of two densities, <f> A and To a first approximation, one can use a virial expansion 
in both densities sim ilar to that o f the previous section on mixed polymer brushes. TPT1  
calculations have also been carried out for coarse-grained models o f a compressible binary 
mixture [85 ]. I  PT 1 calculations yield more accurate estimates for the free-energy density 
o f the spatially homogeneous state of a specific model system. In fact, both M onte Carlo  
techniques and self-consistent field calculations have been applied to the general case of a 
compressible polymer mixture or polym er-f solvent systems [149]. In the following text, how
ever, we restrict ourselves to symmetric mixtures with negligible volum e change on mixing. 
Then, fluctuations of the composition </>., — (f)n, are much larger and approximately decou
pled from fluctuations of the density </>,, H- d>B, and we can characterize the system by a single 
scalar order parameter— the composition.
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Symmetry between the components imparts a great simplification onto the simulation 
methodology. By virtue of the structural symmetry with respect to exchanging the species, 
A B . phase coexistence occurs at j iA = fiB. In this case, it is convenient to choose the 
semigrandcanonical ensemble [ 150] (i.e., one fixes the volume, the total monomer density <£, 
and the exchange potential A/x = /x , — fxB and observes the fluctuation o f the composition 
p ,). In the M onte Carlo  simulations, one can try to relabel an ,4-polymer into a B-polymer 
and vice versa without altering the chain conformations. Obviously, such a move is com
putationally much less demanding than configurational bias insertion/deletion tries, which, 
generally, would have to be performed in an asymmetric blend.

In the following text, we will focus on the interplay between wetting and phase separation 
in thin films. To this end, we assume that the attraction between the wall and both monomeric 
units is strong enough to make both the blend as well as each component wet the substrate. 
Then, depending on the ratio between the interface tension yAB between the segregated 
bulk phases and the surface tension y •, yBV o f the components and the vapor, the upper 
film surface might be rough. The qualitative behavior is illustrated in Fig. 14. If  the AB  
interface tension is comparable to the liquid-vapor tension, it will “ drag" the film surface 
toward the substrate so as to reduce the length L AB of the AB  interface. If  the liquid-vapor 
tension exceeds the AB  interface tension by about two orders of magnitude, yA B  «  y .A V  

or yB l-, however, the surface will be almost flat and the situation is equivalent to a binary 
mixture between two hard walls a distance D apart. This condition is closely related to the 
incompressibility assumption. W hen there is only a negligible volume change on mixing, 
the repulsion between the different monomeric units \  is much weaker than the attractive 
forces that hold the fluid together. U nder these conditions, it is also reasonable to expect 
that yAB would be much smaller than all other tensions and comparable in magnitude to the 
differences yM - ym- and yAS -  yHS.

Typically, these conditions can be realized if all binary interactions are strongly attractive, 
but the difference that determines the energy of mixing is small. The strongly attractive 
interactions inside the fluid are necessary to bring about the liquid-vapor coexistence. U n fo r
tunately, the incompatibility between the species A and B (i.e., the energy change on mixing) 
results from a subtle cancellation of large negative contributions to the total energy. To avoid 
this complication, one can confine the blend from the onset between two hard walls and 
reconsider liquid A liquid B miscibilily at large pressure. The large pressure reduces the 
volume change on mixing in the dense polymer liquid, but the binary interactions can be of

lateral coordinate

Figure 14, Interfaces in a laterally segregated two-component film. The shape of the interface is obtained by min
imizing the effective Hamiltonian H = y .WL A,t + T.iir^.m + Jmv ^«n + 7n ^ ir + L m :it fi-xcd volume of the 
components. /., denotes the length of the interface between substances i and j. and y„ is the corresponding inter
face tension. A :  A component of the mixture, B: B  component of the mixture, W\ wall, V: vapor. The following 
parameters were used: y.n — ym - y „ ,  - y/iM = 0.5y.,w, y fl„ = y.J/f, and y.„ /y.,w, as indicated in the key. Adapted 
from Ref. (139). M. Muller, Comp. Phys. Comm. 147, 292 (2002).
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the same order as their difference, which determ ines the energy change on mixing. If  there 
is no volume change on mixing and one neglects the differences between the liquid-vapor 
interface profile and the density profiles in the vicinity o f the wall, both situations are equiv
alent, because only the local composition of the blend— the order parameter— is important. 
W e have chosen the latter setting in our M onte Carlo  simulations of the bond fluctua
tion model (cf. Section 2), which mimics most closely the self-consistent field calculations 
(cf. following). As interactions between m onom eric units, we use a square-well potential 
that is extended over distances r < >/b with depths e = eAB = -eAA = -eBB. Sim ulations 
of interfaces between the /1-rich and £-rich phases reveal only a small reduction o f the 
total density at the center of the interface for (p = 1/16, demonstrating that the model can 
well be approximated by an incompressible mixture [151]. In our simulations, we model the 
surfaces as hard structureless walls that interact with the monomeric units via a square-well 
potential o f depth A that extends over the nearest du> = 2 lattice layers. A  positive value of 
A corresponds to an attraction for A segments and a repulsion for B segments.

Sim ilar to Section 3.2, the free-energy functional of the self-consistent field calculations 
can be decomposed into two contributions Fcx[(f)A, (j>B] — ^ v l^ . i^ / * ]  + K u [</>/!> $/?]> cor_ 
responding to the harsh short-ranged repulsions and the longer-ranged attractions. In  a 
symmetric blend, the specific volumes of both types of monomeric units are identical, and 
we denote them by l/</>. Thus, we can define the compositions pA = >̂A/<t> and pB = <t>B/4>. 
In the following text, we assume no volume change on mixing, and hence the liquid density 
(j) does not depend on the composition.

The harsh repulsions determ ine the equation of state of the fluid, and we can use an 
expansion of the free energy around the density <£ of the liquid

(!>h \ = *  I  <-lr ( P a +  Pit -  1): (60)

In the limit of large k . one obtains an incompressible liquid, and one can alternatively use

CXP(-'flu.[<£,!> <t>n\/k„T ) ~  H p .-i +  P h -  1) (61)

In a binary polymer mixture, the scale of variation in the composition pA is typically set by 
the chain extension Rc. On this length scale, the fluid is incompressible and the constraint 
[Eq. (61)] provides a good description. Packing effects (i.e., fluctuations of the density </>) 
occur on the scale of the monomeric units. Hence, the decoupling of composition and den
sity fluctuations is often justified. Qualitatively, compressibility effects can be modeled by 
Eq. (60), but generally, the spatial extension o f the monomeric units has to be accounted 
for via a nonlocal functional to be quantitatively accurate.

The attraction between like segments and the repulsion between unlike ones can be 
approximated by a b ilinear expression in the local compositions, p A and pB

Fm [</>,,. <M = ( < t > / N ) x N k HT  I  dr p .,(r )p B(r )  (62)

where \ denotes the Flory-Huggins parameter. Note that both contributions to the excess 
free-energv functional are local (i.e., packing effects or spatial correlations in the composition 
are not explicitly captured by this approach).

Equations (61) and (62), in junction with the Gaussian chain model, constitute the stan
dard self-consistent theory for binary polymer blends. The excess free-energy functional 
comprises one parameter ^/V. To identify this parameter, we regard the thermodynamics of 
the homogeneous, incompressible binary polym er blend

F
'(& /^ R * (V /R*)knT = pA ln pA + pH ln P11 + x NPaPb + hnear tcrms 111 pA and Pli ( 63)

This is the Fiory-Huggins free energy of mixing [152]. The variable \'N can be determined 
by a comparison of the predictions of the Flory-Huggins theory for the phase behavior in 
the bulk to experiment or simulation.
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If the two polymer spccics are structurally symmetric, the changes of the molecular con
formations on mixing are small (fo r large chain lengths) (67), and the entropy of mixing is 
ch eliy determined by the translational contribution. Then the Flory-Huggins parameter can 
be identified by the energy of mixing [153, 154]. Only interm olecular interactions contribute 
to the energy of mixing, and the \ parameter can be related to the structure of the polymeric 
fluid via

where eu denote the interaction between the different m onom er species. Specifically for 
the symmetric square-well interactions in the bond fluctuation model, the Flory-Huggins 
parameter takes the simple form [153]

w'here z(. is the equivalent of the coordination number of the original treatment by Flory 
and Huggins. This identification o f the Flory-Huggins param eter according to Eq. (65) has 
proven successful in describing the bulk phase behavior in the limit of large chain length and 
interface properties, and we shall also employ it for incompressible binary mixtures confined 
into thin films.

If  the two polymer species are not structurally symmetric (e.g., they differ in stiffness 
or shape/packing of the monomeric units), the excess free energy of mixing also comprises 
cntropic contributions. This is commonly observed in experimental systems, where the tem
perature dependence o f the Flory-Huggins parameter can be described by % = a -f  b/knT , 
with a and b being constants. Such a temperature dependence can also stem from a tempera
ture dependence o f the chain conformations or the fluid structure, and therefore it is difficult 
to separate contributions to the Flory-Huggins parameter into enthalpic and entropic parts. 
Although the relation between the Flory-Huggins parameter and the structure of the poly
meric fluid is of great practical importance [155], we shall restrict ourselves in the following 
to symmetric blends and use the simple estimate, Eq. (65).

To model the confinement into a film within the self-consistent field calculations, we 
impose the total density profile </>„(z) across the film of width D „. A t the center of the film, 
the density reaches the bulk density c/> while it smoothly decays to zero at the surfaces in a 
boundary region o f width A,„ = 0.15/?(> [156]

The shape of the profile and, in particular, the width of the boundary region A U! is chosen 
for computational convenience, but A„, Rr. To describe a film, we replace Eq. (61) by

The density profile in the vicinity of the surfaces results from a subtle interplay between 
packing effects of the monom eric units, the entropy loss the extended molecules suffer at a 
spatial inhomogeneity, and the equation of state. Obviously, an imposed density profile <£,, 
cannot account for these effects, and one should instead use a generalization of the methods

the vicinity of the surface and the concomitant surface tension. Here, we shall argue that 
the assumption of a density profile will impart a large, uncontrolled error onto the surface 
tension, but that it does not seriously affect our estimate o f the free energy of mixing in 
confined geometry: First, by virtue o f the negligible volume change on mixing, the density

(64)

(65)

1 — cos( ~ )
0 < z < A

</>
(66)

A ) -  A„, < z < D,?

e x p [- Fhc(</»,,, 4>H)/kBT\ ~  S[pA(r) + pB(r )  -  4>„(r)/4>] (67)

employed in Section 3.2 to binary compressible blends for calculating the density profile in
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profile does not depend on the local composition, and second, both types of chains suffer 
the same entropy loss as they pack against the wall, because they are structurally symmetric.

Som etimes an even bolder choice for the density profile is used; namely, a uniform density 
throughout the film and reflective boundary conditions at the surfaces. This corresponds to 
the limit A„, —> 0. The advantage of this choice is mainly computational, because one does 
not have to resolve the rapid spatial variation in the boundary layer. The reduction of the 
density in the vicinity of the wall, however, also gives rise to a reduction o f the incompatibility 
in the boundary layer. This mimics the effect o f “ missing neighbors”  in models (e.g., the 
bond fluctuation m odel) with spatially extended interactions.

The interactions between the surfaces and the monomeric units are catered for by short- 
ranged interactions that extend only in the boundary layer of width A u,. Variables A , and A 2 
denote the strengths at each surface in the self-consistent field calculations [156]

The prefactor is chosen such that the strength of the monomer-wall interaction is indepen
dent from the width Sir of the boundary region. The integrated strength of the interaction 
at one wall is fd z  VWilll(z)(/>n(z) = 4>\Rr.

6.2. Wetting Transition in Incompressible Binary Polymer Blends
Let us first consider the semi-infinite system, in which the phase that is attracted by the sur
face might exhibit a wetting transition. S im ilar to the wetting transition o f a one-component 
polymer liquid, one can use Young’s equation [91] to accurately determ ine the wetting tran
sition (c.f. Section 4.1). The /1-rich phase wets the surface, if y AW -f- y AB =  y m v. Using the 
scmigrandcanonical ensemble in junction with preweighting techniques, one can determine 
the probability distribution o f the composition o f the mixture and thus accurately measure 
phase equilibria and interface tension y AB as a function of temperature. In principle, one 
could also use the same simulation technique for a slitlike simulation cell to determine 
the difference in the surface tensions, A y  = y BU — y AW (c.f. Section 3.1). Because of the 
strict symmetry between the /4-rich and #-rich phase however, we can exploit the fact that 
y AW( A )  =  y BW( — A ) ,  and therefore, we can measure the difference of the surface tensions 
via Ref. [69]

This method is very accurate and convenient if the wetting transition is o f first orcer. In 
this case, the microscopic enrichment layer of the A -component at the wall in the vicinity 
o f Awct > 0 is vanishingly thin (i.e., for any value of A < Awe{, the configurations ar? very 
sim ilar). O f  course, one can also formulate this thermodynamic integration in terms of an 
expanded ensemble, where the strength of the monomer-wall interaction A is a M onte Carlo 
variable.

This observation also allows us obtain an analytical estimate for the wetting transition. 
Because of the strict A ^  B symmetry, both polymer species suffer identical loss in con
formational entropy, such that the difference in surface free energies is dominated by the 
energy. I f  the microscopic enrichm ent layer of the A component did not exist at cil, we 
could estimate the difference in surface energies per unit area to A y  — 2dwA<j>, where we 
have assumed that the blend is strongly segregated such that (pA)huik ^  0. in this :trong

0 < z < A
A

(68)

4A2/?( j 1 + c o s ( ^ ^ )
Du -  A„, < z < D t

Ay(/0 = ym (A) - 7„, (••'!) = y,m {A) - yBA ~ A )

(69)
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segregation limit, the interface tension can be describe by yAHR:- = knT((l)R'./N )yj6\N for 
large \N  [157]. Hence, we obtain for the contact angle [69, 144]

cose = -2d" A=__ (70)
ki,TbJxlb

where b = R J sTn  denotes the statistical segment length. The results are shown in Fig. 15. 
The crossing points of the yAB interface tension and the difference A y  of surface tensions 
yield an accurate estimate of the first-order wetting transition. Most notably, this estimate 
of the contact angle does not depend on the chain length A\ which is in marked contrast 
to the critical temperature of the blend, %CN = 2 or Tc — N . Increasing the chain length 
N . we can increase the critical temperature, and hence, the wetting transition temperature 
is well separated and much lower than the critical temperature of unmixing. This behavior 
contrasts with the behavior of small molecules, where wetting typically occurs close to the 
critical point [158].

6.3. Interplay Between Wetting and Phase Behavior in 
Confined Geometry

If  the mixture is confined into a thin film, two limiting surface interactions can be consid
ered: symmetric surfaces, where both surfaces of the film (e.g., the waver and the vacuum) 
prefer the same component with the same strength and the equivalent o f capillary conden
sation occurs, or antisymmetric surfaces, where one surface attracts one component of the 
symmetric mixture with exactly the same strength as the opposite surface attracts the other 
component. These two opposite limits result in qualitatively different miscibility behaviors 
[159, 160].

In the first case— capillary condensation— the phase diagram qualitatively resembles the 
miscibility behavior in the bulk. The shift of the critical point o f the mixture has been studied 
within G inzburg-Landau theory by Nakanishi and Fischer [142, 161, 162]. Typically, the

e/kBT

Figure 15. Interface tension yAB and difference in surface tensions Ay as a function of inverse temperature e/kHT 
obtained from simulations. Approximations for the interface tension y.lft — b(b\ X/h and Ay = 2<t>elwMA = A/4 in 
the strong segregation limit are also shown. Adapted from Ref. [69], M. Muller and K. Binder. Macromolecules 31, 
8323 (1998). The inset shows the dependence of the contact angle of droplets of the .4-component on the monomer 
wall interaction .1 = e}J k nT for the two temperatures.
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critical temperature is shifted to lower temperatures and the critical composition is enriched 
in the component that is attracted by the wall.

In the second case of antisymmetric boundaries [163-165], enrichm ent layers of A and B 
gradually build at the corresponding surfaces in the vicinity o f the critical temperature o f the 
bulk. These enrichment layers stabilize an interface, which is delocalized in the middle of the 
film. The phase behavior can be rationalized by the effective interface potential that acts on 
this interface. I f  the film thickness is sufficiently large, it results from a superposition o f the 
interface potentials from the surfaces. This superposition is sketched in Fig. 16 in the vicinity 
o f a first-order wetting transition. A  double tangent construction relates the two coexisting 
phases. Far below Twct, the interface is localized either at the right or the left wall (i.e., there 
is a two-phase coexistence between an almost pure /l-rich phase and an almost pure 5-rich 
phase). Those phases coexist laterally, and the interface between those two coexisting phases 
is an AB  interface that runs straight across the film and makes the macroscopic contact 
angle with each surface (see, too, Fig. 19) [159]. In the vicinity o f 7WC(, o f the semi-infinite 
system, the interface potential has three minima corresponding to an /1-rich phase, a 5-rich 
phase, and a phase with symmetric composition, where the interface is delocalized in the 
middle of the film. Slightly above this triple temperature, the prewetting transitions at each 
surface give rise to two two-phase coexistence regions. On the /1-rich side, a surface with a 
thin and a surface with a thick enrichment layer of B coexist. As we reduce the temperature, 
the thick enrichm ent layer becomes thicker and the thin layer becomes thinner. W hen the 
AB  interface in the phase with the thick enrichment layer reaches the middle of the film 
(delocalized state) a triple point forms, where this phase coexists with an /1-rich and a 5-rich 
phase (localized states). As wc increase the temperature, the difference between the thin 
and the thick enrichment layer decreases and each two-phase coexistence terminates in a 
critical point. W hen  the film thickness grows, the critical temperature converges toward the 
temperature o f the prewetting critical point o f the surfaces, and the triple point corresponds 
to the wetting transition of the semi-infinite system [159].

The prewetting lines of first-order wetting transitions in semi-infinite systems give rise 
to lateral phase coexistence in a thin film. If  the film thickness becomes of the order of 
the thickness of the enrichment layer at the prewetting coexistence, the qualitative phase 
behavior is altered [144, 166]. This is illustrated in Fig. 17. As we decrease the film thickness 
o f an antisymmetry film, the two critical points move toward the symmetry axis of the phase 
diagram. For one film thickness Dlr] the two critical points merge and form a tricritical point. 
Reducing the film thickness further, we find only a single critical point (i.e., a second-order 
interface localization/delocalization transition [159, 166]).

The dependence o f the phase diagram on the surface interactions w ithin the self-consistent 
field calculations is presented in Fig. 18 [159]. Panel (a ) presents the binodals, and (b ) shows

Figure 16. Sketch of the superposition of the interface potential that originates from each wall for strictly antisym
metric boundary conditions. The interface potential of a single wail in the vicinity of a first-order wetting transition 
is depicted in Fig. 6b.
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Figure 17. Phase diagram of an antisymmetric film ( A = A, = — \: ) for \N  = 0.5 and various film thicknesses 
D„. For — 2.6/?,. and 0.9/?,. the interface localization/delocalization transition is lirst order, /),, = 0.605Rr cor
responds to a tricritical transition, whereas the transition is second order for l)„ = 0.5/?,. Adapted from Ref. 1144). 
M. Muller el al., Phys. Rev. L  62. 5281 (2000).
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the coexistence curves as a function of the temperature 1 /\N  and exchange potential A /i. 
The bottom surface attracts the A component of the symmetric mixture, while we vary the 
interaction at the top surface from attracting A to attracting B. I f  both surfaces attract the A 
component with the same strength, capillary condensation [141] occurs. The critical point is 
shifted toward higher A concentration and lower temperatures compared to the bulk (</>,. — 
1/2 and \CN = 2). The coexisting phases have almost uniform composition across the film 
and differ in their average composition p ,. As we reduce the preference of the top surface 
for species A, the critical point and the critical composition tend toward their bulk values 
(i.e., the critical temperature increases and the critical composition becomes more symmetric 
[159]). The coexistence curve in the l/^N-A/x plane approaches the symmetry axis. On 
making the top surface attract the other component B , we gradually change the character of 
the phase transition toward an interface localization/delocalization transition. In this case, 
there are enrichm ent layers of the A component at the bottom and the B component at 
the top, and the two coexisting phases differ in the location of the AB  interface, which 
runs parallel to the surfaces. As the preferential interaction o f the top surface increases, 
the critical temperature decreases and the critical composition becomes richer in A. W hen 
the coexistence curve in the AjU — l/^N-plane intersects the prewetting line of the bottom

composition pA A|a/kBT

Figure IS. (a) Binodals for Du = 2.6R c and \ l N = 0.5. The ratio -WA, varies, as indicated in the key. The dashed 
curve shows the location of the critical points. Filled circles mark critical points; open circles/dashed horizontal lines 
denote three-phase coexistence for A : N = -0.3675 and —0.5. The inset presents part of the phase boundary for 
antisymmetric boundaries, (b) Coexistence curves in the plane. The “ quasi-prewetting" lines for Afx < 0
and A: /V = - 0.3675 and -0.5 ;ire indistinguishable, because they are associated with the prewetting behavior of 
the surface with interaction A, A1 = +0.5. Adapted from Ref. 115l>], M. Muller et al.. Europhys. Lett. 50. 724 (2000).
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Figure 19. Phase diagram of a binary polymer blend of A' — 32 monomers in a thin film of width D = 48 ^ 
IR^ (in units of the lattice spacing u). The miscibiliiv gap in the bulk, a film with symmetric and a film with 
antisymmetric boundaries A — 0.16A/{7\ is shown. The sketches depict typical configurations above and below 
the 7̂ ., for capillary condensation (left) and interface localization delocalization (right). Adapted from Ref. f 160], 
M. Muller and K. Binder, Phys. Rev. E  63, 021602 (2001).

surface at A/x < 0, a triple point forms at which an /4-rich phase and two B-rich phases 
with a thin and a thick /1-enrichment layer coexist. W hen  the bottom surface attracts A with 
exactly the same strength as the top surface attracts B (antisymmetric surfaces), the phase 
diagram becomes symmetric, as in Fig. 17. It comprises two critical points, below which there 
are two two-phase coexistences.

The qualitative features o f the phase behavior are confirmed by M onte Carlo  simulations 
o f the bond fluctuation model (cf. Fig. 1.9) [160). Fluctuations, which are ignored in the self- 
consistent field calculations, result in two modifications of the mean field result: in the vicinity 
o f the critical points, we observed two-dimensional Ising critical behavior, and capillary waves 
renormalize the effective interface potential, which, in turn, leads to a stabilization o f the 
delocalized state and a systematic overestimation o f the triple temperature by the mean field 
approximation [160].

7. O U T L O O K

In  this chapter, we have discussed some aspects of thin polymer films within the framework 
o f coarse-grained models. Those models provide information on the length scale of a few 
nanometers— they do not explicitly account for details o f the atomistic structure, and even 
on state-of-the-art computers they can reach only length scales of a few tens of nanometers. 
This length scale is characteristic for the extension of a polymer molecule R t., and it is on 
this length scalc where many fascinating phenomena occur in thin polymer films and where 
coarse-grained models can contribute to understanding of materials behavior.

W ith in  the framework o f a coarse-grained model, Monte C arlo  simulations and self- 
consistent field calculations provide detailed information about structure and thermodynam
ics. One can investigate the dependence o f the behavior on coarse-grained parameters (e.g., 
the Fiory-Fluggins parameter or the Ham aker constant) and thereby make rather close con
nection to experiments.

The self-consistent field calculations invoke approximations, both in the form ulation of 
the free-energy functional that describes the interactions between monomeric units and in 
the solution of the statistical mechanics of the many-chain problem. Nevertheless, they often 
capture the qualitative behavior, and they are computationally fast enough to explore a wide 
range of parameters. Com puter simulations do not invoke these approximations, and they 
provide essentially exact results, apart from well-controlled finite size effects and statistic
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uncertainties. Comparing computer simulations and self-consistent field calculations quan
titatively for the same model system, we can gauge the accuracy of the approximations 
involved in the self-consistent treatment. Typically, simulations are computationally much 
more demanding than self-consistent field calculations, but this drawback can be reduced 
by sophisticated techniques. Some of the advanced simulation methods have been described 
(e.g., reweighting techniques to determine phase equilibria and free energies of spatially 
inhomogeneous systems), but many other, significant techniques have been devised to make 
simulations more efficient. For instance, there arc special techniques to deal with long- 
ranged electrostatic interactions [167, 168], or M onte Carlo  moves that alter the chain con
nectivity [31] to equilibrate the macromolecular conformations faster.

Both methods— Monte Carlo  simulations and self-consistent field calculations— are versa
tile enough to tackle a variety of interesting questions. To connect with atomistic modeling, 
one can use more realistic chain models both in the simulations and in the self-consistent 
field calculations. To predict material properties, one challenging problem consists of map
ping a specific chemical substance onto the coarse-grained model. Then one also has to 
address the question of which interactions on the coarse-grained scale are necessary and 
how to transfer atomistic interactions to a coarse-grained model.

To make connection with methods on larger length scales, one has to extract parame
ters from coarse-grained models [e.g., the interface tension y and the interface potential 
g(l)\ that can subsequently bc used in phenomenological models (e.g., effective interface 
Ham iltonian, Landau-Ginzburg models). In this context, it is also interesting to investigate 
kinetic phenomena (e.g., dewetting or kinetics of phase separation), because many materials 
properties depend on their history (e.g., morphology of a blend).
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1. INTRODUCTION
1.1. Properties of Conjugated Organic Polymers
Conjugated organic polymers (C 'OPs) combine remarkable optical and clectrical properties 
with typical properties of plastics such as light weight, flexibility, and low cost [1, 2]. In 
contrast to traditional plastics, C O Ps are polyunsaturated organic polymers with conjugated 
7r-systems. The 7r-systems give rise not only to desirable properties but also to problems 
with environmental stability, stiffness, low solubility, and nonprocessibility [1-3]. C O Ps  are 
semiconductors with band gaps ranging from almost 0 to about 4 eV. Depending on band 
gaps, the full range of colors is observed, but C O Ps  may also be transparent or black [3]. 
Polyacetylene (PA ), the prototype of COP, consists o f carbon and hydrogen only and has the 
formula ( C H )V (Scheme 1). In 1977 it was discovered that oxidizing (or p-doping) increases 
the conductivity of PA by many orders o f magnitude [3, 4], transforming it from an insulator 
into a metal. W ithin 10 years, the conductivity o f p-doped PA was optimized and is now
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1.5 x HP S/cm [5], close to that of copper, 5 x HP S/cm [6]. In theoretical investigations, it was 
predicted that PA should be able to reach conductivities of at least HP S/cm if the crystalline 
order of the samples is improved and the intrinsic value approached (6, 7]. The discovery 
of COPs opened a completely new field of research, and the number of publications dealing 
with conducting polymers reached several tens of thousands by 2004. In 2000, the Nobel 
Prize in chemistry was awarded to Shirakawa, MacDiarmid, and Hceger for the discovery 
and development of conducting polymers [8-10].

Although PA in its p-doped form holds the record in conductivity among all COPs, and 
although it has the lowest band gap of all parent (unsubstituted) systems, 1.4 eV [3], PA is 
not suitable for commercial applications because it is not stable enough under environmental 
influences and insoluble in common solvents [ 1 J. COPs based on small aromatic ring systems 
like thiophene, pyrrole, benzene, and aniline are more stable and offer the possibility of 
modifying their properties through chemical substitution [11, 12]. Polyaniline (PAn), polypyr
role (PPy), polythiophene (PT), polyparaphenylene (PPP), polyisothianaphthene (P ITN ), 
and poly (ethylenedioxythiophene) (PED O T ) (Scheme 1) have band gaps between 1.0 and
3.5 eV and conductivities between 102 and 104 S/cm on p-doping [1, 2, 13-19]. Whether 
the lower conductivities compared to PA are caused by intrinsic differences or the differ
ent quality of the materials, different crystal packing or a different response to doping is 
not known to this date. Substituting hydrogen atoms with alkyl groups, halogens, and cyano 
groups can be used to increase solubility and to manipulate ionization potentials (IPs) and 
electron affinities (BAs) [11, 12]. Fusing ring systems to the backbone of hcteroaromatic 
polymers as in PITN and in PED O T  was used to decrease band gaps, to prevent mislinking, 
and to increase planarity [11, 12].

Conductivity of COPs is caused by the delocalized nature of the 77-electrons. Conductivity 
is therefore a property intrinsic to the individual polymer chains. This is a big difference to 
metals, where conductivity arises as a property of the bulk. Because properties of small metal 
clusters differ substantially from those of the bulk, conductivity in metals requires a minimum 
number of atoms. In contrast, the intrinsic conductivity [20] of fibers or single-polymer chains 
in COPs is expected to be proportionally higher than that measured for bulk samples, as 
electrons travel most easily along the chains, whereas the overall macroscopic conductivity 
is limited by the need for hopping between chains. Thus, with COPs, miniaturization is 
possible down to the single-molecule level. The width of a polymer chain is only a couple 
of Angstroms and is thus of subnanometer dimension. The length of the polymer chains is 
not limited in principle. Being able to manipulate individual molecules and to create nano
structured materials [20-89], self-assembled mono layers [90-92], and molecular wires [49, 
92—106] is investigated with the aim of constructing a new generation of molecular electronic 
devices. Smaller dimensions allow for lower charge consumption and faster switching times 
[107], which are important properties for future computer architectures.

Optical properties also arise from the delocalized 77-systems. Occupied and unoccupied 
conjugated 77-orbitals are lying energetically between the (7-orbitals. As the size of the conju
gated 77-system increases, conjugated 77-orbitals tend to form energy bands with decreasing 
energy gaps (Scheme 2). Thus, ultraviolet spectra are dominated by 77- 77* transitions and 
show bathochromic shifts with extensions of the 77-system. When a sufficient number of

Scheme 2.
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double bonds is conjugated, visible light can excite 77-electrons, and the compound is colored. 
Excitation of electrons from the valence to the conduction band creates charge carriers, gives 
rise to a transient photocurrent [108-118] and opens the way to photovoltaics [41, 69, 83, 
84, 113, 119-147]. The reverse process, charge injection from electrodes, leads to electron 
and hole pairs that travel toward one another and recombine. When the electron falls from 
the conduction band into the hole in the valence band, the energy difference is emitted as 
light. Electroluminescence is the basis of the construction of organic light emitting diodes 
(O LED )s  [126, 148-171] and colored displays [172-175]. Other possible applications arising 
from electrical and optical properties of COPs are organic field effect transistors [17, 176— 
179], lightweight conductors, batteries [173, 180-198], supercapacitors [61, 199-203], sensors 
[71, 204-225], lasers [165, 226], and smart fabrics [227, 228], to name just a few.

The onset of a photocurrent in PA was observed at about 1.4 eV [109]. The coincidence 
of the onset of absorption in the optical spectrum and the onset of photoconductivity may 
be taken as proof that the band model is adequate for COPs and that free charge carriers 
are produced by a simple band transition. There is evidence, however, that photoexcitation 
in COPs differs from that in inorganic semiconductors because molecular organic solids 
form bound electron hole pairs rather than free charge carriers upon excitation [229, 230]. 
An important issue in this regard is the energy difference between a bound and a separate 
electron hole pair, the so-called “ exciton binding energy.” Exciton binding energies for COPs 
were claimed to be between 0 and well above 1 eV. The issue is still discussed controversially 
(118]. Theoretical calculations indicate that exciton binding energies decrease with increasing 
conjugation length and decrease when interchain interactions are accounted for [231]. The 
size of the exciton binding energies therefore seems to be influenced by the nature of the 
polymer and by the presence of impurities or defects, which influence the conjugation length. 
Because COPs may have rather short conjugation lengths, their properties could be closer 
to those of molecular crystals than to those of polymers; hence the large exciton binding 
energies. Maybe if the quality of the materials is improved, exciton binding energies will 
decrease and more band-like transitions will be observed. Therefore, the controversy in the 
experimental studies may be partially a result of short conjugation lengths.

To reach a permanently conducting state, COPs have to be oxidized or reduced. Because 
changes in electron distribution are coupled with geometry distortions in organic molecules, 
ionization alters the band structure. Therefore, injection of charges influences optical spec
tra, and therefore the color of the systems [3, 232-235]. This process is called elec- 
trochromism [41, 133, 172, 175, 236-243]. If the band gap of the neutral polymer is large, the 
polymer is transparent. Doping shifts the absorption into the visible range, and the polymer 
is colored in the conducting state. If the band gap of the neutral polymer is small, optical 
absorption of the doped form occurs in the infrared region, producing transparent conduc
tors [13, 16, 157, 233, 244, 245]. To explain the effects on doping, localized defects such as 
solitons, polarons, and bipolarons have been invoked [3, 246-255].

1.2. Theoretical Approach
Theoretical research on conjugated 7r-systcms [247, 256-259] started long before the discov
ery of the conductivity of PA. as conjugated 77-systems are the crucial part of organic dyes 
[260]. The orange color of carotene (Scheme 3). for instance, is caused by I I  conjugated 
double bonds [261]. Optical properties of conjugated 77-systems arc important in biochem
istry and are crucial for processes such as vision and light harvesting. The bathochromic 
shift with an increasing number of conjugated double bonds in polymethine dyes and of 
polyenes was investigated by Kuhn in the late 1940s [2o2, 263]. One important question was

Scheme 3.
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whether an infinite conjugated chain has a hand gap: that is, whether an infinitely long conju
gated 77-system is a metal or a semiconductor. Peierls [264) showed theoretically that a one
dimensional system with equal bond distances and a half-filled energy band (singly occupied 
orbitals) is unstable with respect to a geometry distortion that introduces bond alternation 
(dimerization). In this process, half of the orbitals is lowered and the other halt is increased 
in energy, and an energy gap opens up (Scheme 4). T he total energy of the system is lowered 
by dimerization because the electrons doubly occupy the lower-lying orbitals. Thus, single, 
isolated, infinitely long PA  chains are semiconductors with finite band gaps rather than met
als. Bulk C O Ps  may still be metals because interchain interactions are strong enough that 
the materials are not strictly one-dimensional [6]. Therefore, part of the research on C O Ps 
is devoted to band gap reduction with the aim of producing “ synthetic metals" [265]. To 
this date, zero-band gap C O Ps  with metallic conductivity (w ith decreasing conductivity on 
increase in temperature) have not been produced, although systems with vanishingly small 
electrochemical band gaps have been reported [19, 266-273].

The aim of theoretical investigation of C O Ps  is, in principle, twofold. First, theory is 
employed to understand the physics of electrical and optical properties. Second, theoreti
cal insights can be used to design new systems with specifically tailored properties [ I I ,  12, 
265]. The crucial properties of C O Ps are geometric and electronic structures of neutral 
and ionized (doped) forms, excitation energies (band gaps), order of allowed and forbidden 
excited states, luminescence (wavelength and life-time), IPs, EA s , polarizabilitics, mobility of 
charge carriers, and conductivities. Ideally, theor}' should be able to reproduce and predict 
properties with sufficient accuracy to guide experiments. In general, the quality o f theoret
ical methods should not be judged by accidental agreement with experiment. The proper 
approach is to first converge the basis set and then the theoretical level. This alone is usu
ally difficult for systems the size of COPs. If experimental data are obtained in condensed 
phases, solvent or interchain interactions have to be included in the theoretical treatment. 
Finally, effects like disorder, the presence of counter ions, and so forth have to be accounted 
for before agreement with experiment can be claimed. Because the systems under consid
eration are large and some of the required properties are hard to treat, a clever choice 
of methods based on experience with smaller systems has to be made to achieve meaning
ful results. Unfortunately, good theoretical practices are not always applied, and much too 
often “ excellent agreement”  with experiment is claimed even when gas phase calculations 
are compared to condensed phase data. Analyzing the accuracy of available methods is one 
major emphasis of this chapter.

Geom etries and electronic structures are easy to obtain with a number of theoretical meth
ods. The accuracy is generally good, even with inexpensive methods. Thus, geometries can 
be obtained for large oligomers or for polymers. In contrast, excitation energies require high 
levels of theory. For small molecules in the gas phase, excitation energies can be calculated

Scheme 4.
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with rather good accuracy by calculating the wave function of the excited state explicitly. 
For accurate determ ination of the order of different types of excited states and of their 
energy differences, highly correlated ab initio calculations with large basis sets are necessary. 
Therefore, excitation energies of large oligomers or of polymers have to be obtained at the
oretical levels that arc not necessarily very accurate. IPs  and E A s  are calculated as energy 
differences between neutral species and the corresponding ions. This procedure requires two 
calculations. IPs are comparatively easy to obtain because cations can be described w ith high 
accuracy. E A s  are notoriously difficult calculate because the extra electron causes large elec
tron repulsions and diffuse electron clouds. Therefore, large basis sets and a good treatment 
o f the electron correlation are required for the anions. A lternatively, excitation energies, IPs, 
and E A s  can be determined approximately with a single calculation on the ground state if 
the frozen orbital approximation is applied. W ith in this approximation, IPs are the negative 
energies of the highest-occupied molecular orbital (H O M O ),  E A s  are the negative ener
gies of the lowest-unoccupied molecular orbital ( L U M O )  [274], and excitation energies are 
H O M O - L U M O  energy differences. This approach neglects all relaxation effects of the elec
tron density on changing the number o f electrons or their distribution [275]. Thus the frozen 
orbital approximation introduces errors but is widely applied in band structure calculations 
for comparing properties of chemically different conducting polymers [256, 259].

Polarizabilities are needed to understand nonlinear optical properties of C'OPs. Polar- 
izabilities are so-called first-order properties. They are obtained by calculating the wavc- 
function in the presence of an electric field. Applying an electric field ( E ) to a molecule 
leads to a change in dipole moment (yu), which can be expanded in the following way:

/j. = /x(, + otLL -|- j3 E E  -b yEEh  -j- • • ■

The last three components are nonlinear in the field strength and are the so-called nonlinear 
optical properties. The first is the polarizability, followed by the first and second hyperpolar- 
izability [276]. C O Ps  show very large linear and nonlinear optical responses because of their 
extended 7r-systems.

Conductivities and electron mobilities in bulk C O Ps  are probably the most complicated 
properties to treat theoretically because they are influenced strongly by factors beyond the 
intrinsic properties of the molecules. Because even the longest polymer chains are small com
pared to macroscopic dimensions and because bulk polymers are disordered [277], interchain 
hopping is crucial for transport. Conductivity o f bulk polymers was investigated with classical 
models [6, 278, 279]. Transport through mesoscopic devices composed of individual molecules 
and metal contacts that act as reservoirs for electrons is a complicated problem still. The 
current (/ )  through a molecule is a highly nonlinear function o f the applied voltage ( V ). 
Calculation of / (V )  curves requires quantum statistical methods and many-body theory [280].

Experim ental data on polymers are generally obtained for films, crystals, or solutions. It is 
difficult to predict bulk properties o f C O Ps  not only because of theoretical problems but also 
because these properties depend on a variety o f factors that are hard to control experimen
tally. For instance, optical absorption and conductivity depend on conjugation length and 
interchain interactions. If  the band gaps of two systems are supposed to be compared, one 
would ideally want to do this under identical conditions: that is, equal conjugation lengths 
and identical crystal structures. Polymers, however, are difficult to crystallize and consist of 
crystalline and amorphous regions [277]. The extent of these regions crucially influences the 
properties. Depending on the nature o f the polymer chain and the substituents, crystal struc
tures may differ. Theoretical calculations can be carried out for three-dimensional arrays of 
infinite poiymer chains. The results, however, correspond to ideal systems that can never be 
realized experimentally.

Because well-characterized polymers are difficult to make, chemical as opposed to elec
trochemical syntheses for oligomers of defined length were developed [34. 39, 281-284]. 
Monodisperse oligomers have much sharper spectral bands and allow for better com pari
son between theory and experiment. Oligomers can also be crystallized much more easily 
than polymers. Single crystals were obtained, for instance, of sexithiophene, octithiophene, 
and tert-butyl capped dodecahexaene [283. 285j. Monodisperse polyenes and thiophene 
oligomers were investigated spectroscopically in liquid solution [94. 26!. 281. 282, 286-295]
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and in matrices at low temperature [293, 296-307). Interestingly, optical properties of crystals 
o f oligomers as short as sexithiophene do not differ much from those of bulk polythiophene 
[301s], indicating that conjugation lengths in C O Ps might he far from infinite, justifying the 
oligomer approach [309].

In this chapter the following approach is used; section 2 deals with the accuracy of quan
tum chemical methods for excitation energies of polyenes for which gas phase data are 
available. The first part shows how accurately the highest levels of theory can reproduce 
experimental data under the best of circumstances. Then the results with various lower level 
approaches and with density-functional theory (D F T )  are described and compared with the 
high-level ab initio calculations. F inally the frozen orbital approximation is introduced. In 
Section 3, extrapolation of oligomer data is investigated. In Section 4, absorption energies 
in solution are analyzed. In Section 5, the influence of interchain interactions is considered. 
Section 6 summarizes the evolution of polymer band gaps starling from excitation energies of 
single chains in the gas phase. In Section 7, the conducting state of polymers is investigated. 
Polarizabilities are treated in Section 8. In Section 9, theoretical treatment of conductivity 
through mesoscopic devices is reviewed. Section 10 contains a summary of the results.

2. ACCURACY OF THEO RETICAL EXCITATION EN ER G IES  
FOR PO LYEN ES IN THE GAS PH A SE

2.1. High Level Ab Initio Calculations
In this section, a detailed analysis of ab initio calculations of polyene excitation energies in 
the gas phase is presented because polyene excitation energies extrapolate to the band gap 
of an isolated PA  strand in the infinite chain limit. A ll o f the problems discovered for these 
comparatively simple cases are also present in the treatment of optical properties of COPs. 
For C O Ps  a number of additional problems arise that make comparison between theory and 
experiment even more complicated. Therefore, knowledge about the accuracy of theoretical 
data regarding isolated well-defined molecules is extremely useful in the assessment of the 
additional effects arising in condensed phases and for polydisperse materials.

The first two low-lying singlet excited states of polyenes are the most important in connec
tion with C O Ps. The 11 B u state is optically allowed and corresponds, in the infinite limit, to 
the band gap in PA. Transition from the ground state to 11 B u involves mainly the excitation 
of one electron from H O M O  to L U M O . The other low-lying singlet state 2 'A g has the same 
symmetry as the ground state and is therefore one-photon forbidden and o f very low inten
sity. The 2'Aj. state cannot be described by a single-electron configuration but arises from a 
mixture o f three electronic transitions: H O M O  -- 1 L U M O ,  H O M O  —> L U M O  + 1, and 
a two-electron excitation from H O M O  to L U M O  [310]. Experim ent shows that the allowed 
15 B n state lies lower in energy for butadiene and hexatriene [311-313). The  crossover occurs 
near hexatriene and octatetraene. For all longer polyenes, the one-photon forbidden 2‘A g 
state lies below 11 B u [288, 293, 296, 303, 304, 306, 307, 310, 314-316]. Thus, 2 'A g is S, and 
11 B u is S 2 in polyenes longer than octatetraene.

The relative order of the two excited states is important for understanding optical proper
ties o f C O Ps, as fluorescence occurs from the lowest excited state [310]. Absorption of energy 
in longer polyenes yields a S0 —► S : transition to the allowed 11 B u state. The excited state 
quickly relaxes to the lower-lying 2’A , state, and fluorescence occurs from 2!A g. Because the 
2 'A l> state decreases faster in energy than l 1B ll on chain length increase, the S, —> S 2 gap 
increases and the S, —► S0 gap decreases. Thus, nonradiative relaxation from S2 decreases 
and nonradiative decay from S, is enhanced [310]. Fluorescence decreases gradually as the 
chain length increases but disappears abruptly in going from octatetraene to hexatriene [303]. 
The transition to 2 'A U is visible in the electroabsorption spectrum of carotene [317]. Because 
polyenes are important for biological processes such as vision and light harvesting and for 
electronic and optical properties of CO Ps, excited states o f polyenes have been investigated 
intensively, experimentally [261, 283, 288, 293, 296, 301, 303-307, 310-326] and theoretically 
[101, 262,” 263, 327-362]/

Theoretical treatment o f the 11 B u excitation might be expected to be relatively simple, as 
it is dominated by a one-electron H O M O - L U M O  transition. However, even the highest-level
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ab initio methods such as the complete active space self-consistent field method 
with correlation energy treatment using second-order M0ller-Plesset perturbation theory 
(C A S P T 2 ) [346, 347, 351], multireference configuration interaction (M R C I )  [332, 345, 352], 
and high-level single-determinant configuration interaction [328, 329, 337, 339-341, 343] 
have difficulties with obtaining this excitation energy with high accuracy. For small systems 
such as ethene and butadiene, the 11 B u excited states are strongly distorted out of planarity 
and the electron density is diffuse [363]. The diffuse character leads to a mixing o f valence 
and Rydberg character that is hard to describe accurately [329, 331, 332, 335, 343, 364]. 
Analysis of the experimental data has shown that the valence Rydberg mixing is a physical 
fact and not an artifact of the calculations [325]. Extensive treatment of a — tt correlation 
is therefore required [351]. A  natural choice is to start with a complete active-space self- 
consistent field (C A S S C F )  wave-function, which can account for multiconfigurational char
acter. The C A S S C F  wave-function, however, was shown to be plagued for small molecules 
by overestimated interactions between valence and Rydberg states, and a second B u state 
was incorrectly found below 11 B tl. Low-level perturbation theory, as in the C A SP T 2  method, 
has problems recovering the correct order o f the excited states. A ll high-level ab initio cal
culations converge toward excitation energies between 6.2 and 6.3 e V  for the 11 B u state of 
butadiene. This is 0.3-0.4 e V  higher than the observed absorption at 5.92 e V  [311, 312].

Fortunately, valence Rydberg mixing decreases for longer polyenes, and the agreement 
between theory and experiment for hexatriene and longer systems improves [346]. H ow 
ever, even for longer polyenes, high-level treatment of nondynamic and dynamic correlation 
effects was proven necessary, l b  avoid problems with intruder states, state-averaged wave- 
functions have to be used [347]. Recently, a restricted active-space S C F  (R A S S C F )  method 
was developed that in combination with a specially designed basis set that includes optimized 
3p-orbitals, led to more satisfactory results than C A S S C F  [361]. Because of the multiconfigu
rational nature of the 21 A u state, theoretical treatment might be expected to be even harder. 
In contrast, apart from the fact that single-electron theory cannot be applied, the treatment 
of the 21 A g state proved to be less difficult. Because of the problems with determination of 
the l ' B u excitation energy, calculating the energy difference between 11 B u and 2 'A g even 
for short polyenes remains challenging. For long polyenes, high-level treatments are still out 
of the question.

For checking the accuracy of theoretical calculations, reliable vertical excitation energies 
are required. However, assignment of the excitation peaks is difficult. A t room temperature, 
broad absorption bands with little resolution are observed. For this reason, low-temperature 
techniques were applied. Absorption spectroscopy of jet-cooled butadiene, hexatriene, and 
octatetraene [323] indicates that vibrational progressions for longer and shorter polyenes are 
similar. It was concluded, therefore, that no significant out-of-plane distortion, as in ethene 
and in butadiene, exists for longer polyenes. The very presence o f a vibrational progres
sion, however, indicates that geometries of ground and excited states differ. The spacing 
between the peaks is around 0.2 e V  for hexatriene and octatetraene. This coincides with 
the vibrational energy for stretching C -C  double bonds. According to the Franck-Condon 
principle the 0-0 peak should correspond to the adiabatic excitation. The vertical transi
tion should occur at a higher energy and have the highest intensity. Experim entally, the 0-0 
transition can be determ ined more easily. Theoretical calculations, however, correspond to 
vertical transitions. For hexatriene, the 11 A ^ - l1 B u transition measured with electron impact 
spectroscopy shows vibronic bands at 4.95, 5.13, and 5.30 e V  [313]. Both the 4.95 and the 
5.13 e V  peaks have high intensity. The peak positions are confirmed with ultraviolet (U V )  
spectroscopy [323], but the relative intensities of the peaks (4.93 and 5.13 e V  in the U V  
spectrum) are inverted. Thus, Amax lies ai 5.13 e V  with electron impact spectroscopy and at 
4.93 e V  with U V  spectroscopy. This shows that the higher-energy peak in the U V  spectrum 
may correspond to a vertical transition in these systems, even if it does not have the highest 
intensity. Theoretical vertical transition energies for hexatriene lie between 5.0 and 5.15 eV  
[340, 341, 346, 351]. Because the difference obtained with different methods is as large as 
the experimental difference between the two lowest peaks, theory can not resolve the prob
lem with the peak assignment. Because it is so difficult to determ ine the precise nature of 
the peaks experimentally, it is hard to make decisions about which theoretical method is the
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most adequate. The difference between vertical and the adiabatic excitation was calculated 
to be 0.46 eV  [341) and 0.39 e V  [361), which is twice as large as difference between the first 
two vibrational peaks in the spectrum.

Octatetraenc is the first system in the polyene series that shows fluorescence. If fluores
cence originates from the same excited state that is reached during excitation, fluorescence 
and excitation peaks coincide. The presence of a Stokes shift in condensed phase octate
traenc spectra was one of the indications that the 2!A U state lies below 11 B u. In the gas 
phase, the Stokes shift is absent and the fluorescence life time is shorter than 2 ns [315]. 
The lowest-energy peak of the 11 A e-11 B u vibrational progression occurs at 4.41 e V  [314, 
323). This peak has the highest intensity in the gas phase [288, 303, 305, 314, 315, 324] 
and corresponds, therefore, to Amax. For this reason, the 0-0 excitation of octatetraene and 
longer polyenes is usually supposed to be a vertical transition. A  second peak at 0.2 e V  
higher energy and with substantial intensity exists in the spectra for octatetraene (and for 
the longer polyenes as well). For octatetraene in matrix, the intensity of this second peak is 
slightly higher than that of the 0-0 transition [305]. This raises doubt about the assignment 
of the 0-0 peak to a vertical transition in the gas phase. Theoretical results find a 0.2-eV 
energy lowering when the geometry of the excited state is optimized [339]. Thus, it appears 
that theory and experiment indicate that the 0-0 transition does not correspond to a vertical 
transition and that the correct vertical excitation energy is about 4.61 eV. Ab initio values for 
adiabatic and vertical excitation energies were calculated to be 4.56 and 4.76 eV, respectively, 
with configuration interaction (C I) .  W ith C A SP T 2 , values of 4.42 [347, 350] and 4.66 e V  
[351) were obtained for the vertical transition. Thus, the difference in the theoretical results 
amounts to 0.34 eV. Again, the difference in the theoretical values is too large to reach 
a decision about the nature of the Amax peak. Because the excited state of octatetraene is 
planar, and as valenee-Rydberg mixing is small, the accuracy o f the best of the available 
theoretical methods is somewhat disappointing.

The longest polyene for which gas phase data [288] and high-level ab initio (M R M P )  
results [351] are available is decapentaene. The 0-0 transition occurs at 4.02 eV  with direct 
measurement and at 3.98 e V  when solution data are corrected for solvent effects [288]. The 
second peak in the spectrum is shifted from the 0-0 transition by 0.19 eV. For the M R M P  
treatment, the size of the basis set and the active space had to be reduced compared to those 
for the shorter homologuoes. The final value for the excitation energy was obtained with an 
extrapolation scheme that was tested on the shorter systems. The corrected theoretical value 
for the vertical excitation 11 B u excitation energy is 4.05 eV. The 2'A^ state is placed 0.4 e V  
below J 1B U. Geom etry optimization of the excited states lowers the excitation energies and 
increases the splitting between the 2'A^ and l l B ll states to 0.9 e V  because the former is 
more sensitive to geometric relaxation.

The gas phase excitation energies and the most reliable theoretical values for ethcnc 
through decapentaene are summarized in Table 1 and plotted against experimental values 
in Fig. 1. W ith  any given method, the errors differ depending on chain length. The general 
tendency is for the energy of the l ' B ll state to be slightly overestimated for small systems. 
For longer polyenes, theoretical results are very' close to or below the experimental values. 
The general trend is thus that theoretical values either approach or fall below experimen
tal values in the long-chain-length limit. Unfortunately, calculations on larger polyenes are 
not available that would allow for checking this issue. Care must be taken when values are 
extrapolated, as the trend to underestimate excitation energies with increasing chain length 
will lead to a significant underestimation of the gap in the infinite limit. Because the best 
ab initio calculations produce differences of 0.2-0.35 e V  among each other, usually brack
eting the experimental results, and as the assignment of the spectral bands is not entirely 
certain, perfect agreement between theory and experiment has not been achieved even for 
these relatively small, isolated molecules.

2.2. Single-Electron Methods
As the size of the systems increases, lower levels of theory have to be employed. Fortunately, 
larger systems are somewhat easier to treat theoretically, as the electronic relaxation extends 
over a larger volume, making choice of basis set and treatment of electron correlation less
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c , h 4 c 4h „ QHs Q H ln c ,„h 12

exp. 7.65(363] 5.92 [311] 5.13 [313] 4.41(0-0) [314] 4.02 (0-0) [288]
est. 8.0 5.90[312] 4.38(0-0) [288] 

4.61 (vert, est.)
4.21 (vert, est.)

CI 7.96 [329] 
8.38 [331] 
8.06 [335] 
8.17 [343]

6.39 [343] 5.15 [340] 4.76 [339]

M RCI 7.95 [332] 6.2 [337] 
6.48 [345]

CASCI 8.01 [352]
CASPT2 8.40 [346] 6.23 [346] 5.01 [346] 4.42 [347]
M RM P 6.21 [351] 5.10[351 ] 4.66 [351] 4.05 [351]
C IS [357] 6.22 5.40 4.78 4.33
T D H F 7.56 6.08 5.15 4.53 4.10
TDLSDA 5.62 4.51 3.81 3.23
TDB3LYP 5.70 4.65 4.00 3.51
TDB3LYP [357] 5.59 4.64 3.98 3.52
TDB3P86 5.75 4.68 4.00 3.52
TDB386-30% 5.81 4.77 4.09 3.62

W h e re  no  re fe re n ce  is g iven , the  d a ta  a re  o b ta in e d  fo r th is w o rk , e m p lo y in g  th e  C E P - 3 1G * p se u d o p o te n tia l and basis set 
ih ro u e h o u l.

critical. Time-dependent Hartree-Fock (T D H F )  theory, which is also known as the random 
phase approximation (R P A ) ,  is an inexpensive method for calculation of excitation energies. 
Configuration interaction including single excitations (C IS )  [365J is another method that can 
be used for large systems. T D H F  and C IS  are not suitable for calculating the energy differ
ence between the 2 'A U and 11 B u states because the 2 'A  state requires a linear combination 
of several electronic configurations involving double excitations. However, both methods are 
well-suited for describing the 11 B u state. C IS  can actually be considered to be T D H F  in 
the Tamm-Dancoff approximation [366]. Thus, T D H F  is more complete, and therefore the 
11 B u and a number of other excited states are obtained with very good accuracy [348, 367]. 
In this chapter, T D H F  results for butadiene through decapentaene are compared with ab 
initio values and experiments. The geometries o f the ground states were optimized with D F T  
employing Becke’s three-parameter hybrid functional (B 3 ) [368], modified to include 3 0 %  of 
Hartree-Fock exchange and Perdew ’s 1986 correlation functional (P86) [369] (B3P86-30%). 
D F T  will be discussed in more detail in the next paragraph. As basis sets, Stevens. Basch, and
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Figure I. Theoretical excitation energies for polyenes (C4H.i-C|„Hj : ) at various levels of theory plotted versus 
experimental excitation energies measured in the gas phase. All values are given in eV. Squares: MRMP. Ref. [35! j. 
circles: CASPT2. Ref. [346]. up triangles: Cl. Refs. [339]. j340|. and |343). down triangles: C IS. Ref. [357]. diamond: 
T D H E C EP o lG * , this work. '
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Krauss pscudopotentials and split valence basis sets including polarization functions [370] 
(C EP-31G * keyword in G98 [371]) were used. TDHF/CEP-31gV/B3P86-30%/CEP-31G* data 
and the C IS  results obtained by Hsu et al. [357] are included in Table 1 and in Fig. I. 
Both the C IS  and TDHF/CEP-31G*//B3P86-30%/CEP-31G* results reproduce experimental 
excitation energies to the l ' B u state with very good accuracy. T D H F  values are closer to 
experiment than the C IS  ones. This is in agreement with earlier investigations [348, 367, 
372]. In fact, the TDHF/CEP-31G*//B3P86-30%/CEP-31G* results are closer to experiment 
than the high-level ab in itio  data presented in the last paragraph, with the deviations between 
theory and experiment being 0.16 eV  or less. Moreover, the errors are fairly constant on 
increasing the chain length. This gives confidence that longer polyenes can be treated re li
ably. This is an important conclusion from a practical point view, as T D H F  is an affordable 
method that can be used to deal with much longer chains than high-level ab initio methods.

To check for possible error cancellations because of the choice of basis set and geometry, 
T D H F  calculations for C P H 14 with different geometries and basis sets (6-31G *, 6-31+G*, 
6-311+ G*, 6-311+ + G**, C C - P V D Z , and C C - P V T Z  as provided in G98 [371]) were per
formed. Vertical excitation energies based on H F  ground-state geometries decrease only 
slightly on increasing the basis set. The values are 4.35, 4.26, 4.25, 4.24, 4.30, and 4.24 e V  
with the above basis sets. The difference between the smallest (6-31G*) and the largest 
(C C - P V T Z ) basis sets is only 0.11 eV. Including a diffuse function with the 6-31+ G * basis 
set recovers 0.09 eV  compared to 6-31G*. Thus, almost no further improvement is achieved 
in going beyond 6-31+G*. W hereas the choice o f basis set is obviously not crucial here, the 
choice of ground-state geometry is. Using the Hartree-Fock (H F )  instead of the B3P86-30% 
geometry increases the excitation energy of C ,2H ,4 by 0.52 eV. This can be attributed to 
the fact that H F  overestimates bond-length alternation ( B L A ) .  Because the excited states 
of polyenes have less B L A  than the ground states, the B3P86-30% ground-state geometry is 
closer to the excited-state geometry and the vertical excitation energy is smaller. To make a 
decision which geometry is more appropriate, calculations at the M P2  level o f theory were 
done. M P2  stands for M0ller-Plesset perturbation theory truncated at second order [365]. 
The MP2/6-31G* level is generally accepted to produce very accurate geometries and is 
therefore one of the most widely used methods for geometry optimizations. The B L A  of 
C |2H 14 at the MP2/6-31G* level is 0.075 A, almost identical to that at B3P86-30%/CEP-31G*, 
0.074 A. A t the HF/6-31G* level, B L A  is too large, 0.123 A. Thus, the use of B3P86-30% 
geometries is to be preferred. Finally, the TDHF/6-31 +G*//MP2/6-31G* excitation energy 
of C 1:H ,4 was computed and compared to that at TDHF/CEP-31G*//B3P86-30%/CEP-31G*. 
The two values, 3.78 and 3.80 eV, respectively, are almost identical. This shows that the 
choice of basis set and geometry at the TDHF/CEP-31G*//B3P86-30%/CEP-31G* level are 
adequate to obtain reliable excitation energies.

2.3. Calculation of Excitation Energies Employing 
Density-Functional Theory

As an alternative to T D H F , time-dependent density-functional theory (T D D F T )  has been 
developed and tested on a number of molecules [357, 366, 373-385]. L ike D F T  for ground 
states, T D D F T  were exact for excited states if the exact exchange-correlation functional were 
known [376]. This includes excited states that have significant two-electron character such 
as the 2 'Ay state of polyenes. Two significant approximations have to be made for practi
cal calculations. One is the use of approximate exchange-correlation functionals, the other 
one is the so-called adiabatic approximation that arises when the time-dependent exchange 
correlation action functional is approximated by a time-independent exchange correlation 
functional [373]. The adiabatic approximation does not seem to cause severe errors. The 
use of approximate exchange-correlation functionals is problematic. A ll o f the commonly 
used functionals lead to an incorrect description of the exchange-correlation potential in the 
asymptotic region [376]. This results in the underestimation of excitation energies of Ryd- 
berg states. In contrast, two-electron excited states are reproduced very well [376]. Overall, 
T D D F T  was shown to be a substantial improvement over T D H F  if the whole excitation 
spectrum is considered [385]. Unfortunately, for theoretical research on conducting poly
mers. the most problematic excited states for T D D F T  are the 11 B u states of conjugated
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77-systems whose excitation energies arc underestimated by several tenths of an e V  [357, 
385]. Analysis shows that this is a result o f the ionic nature (in the valence bond picture) of 
the 11 B u states [384], which cannot be described well with the present approximate function
als. Excitation energies to the covalent 2'A^ states are reproduced quite accurately despite 
their multiconfigurational nature. Because the 21 A u excitation energies are accurate but the
11 B u excitation energies are too low, T D D F T  has problems with determining the order of 
the two most important excited states of polyenes and C O Ps [385].

Comparison of T D D F T  calculations of l ' B u excitation energies with a variety o f popular 
functionals are included in Table 1 and plotted versus experiment in Fig. 2. Considered are 
the local spin density approximation ( L S D A )  as implemented in Gaussian 98 employing 
Slater exchange [386-388] and the Vosko-Wilk-Nusair ( V W N )  [389] correlation functional, 
Becke’s gradient corrected hybrid functional B3 [390] in combination with the Lee-Yang- 
Pa rr’s ( L Y P )  [391] and Perdew's 86 (P86) [369] correlation functionals. T D L S D A  excitation 
energies are consistently too low. T D B 3 L Y P  values of Hsu et al. [357] and the present ones 
with the CEP-31G* pseudopotential and without diffuse functions are virtually identical. 
Only for the smallest molecule, butadiene, there is a small difference. The values with hybrid 
functionals are all practically identical and closer to experiment than with pure D FT , but the 
excitation energies are still underestimated by about 0.5 eV. Increasing the contribution of 
H F  exchange from 20% to 30%  increases the excitation energies by 0.1 eV. Thus, the 11 B u 
excitation energies improve with increasing amount of exact H F  exchange. However, at the 
same time the 21 A,, excitation energies increase even stronger [384]. Thus, there is no way to 
adjust hybrid functionals to reproduce the relative energies of both excited states [384]. To 
aggravate the situation, the underestimation o f the 11 B u excitation energies increases with 
increasing chain length. The same holds for the data o f Hsu et al. [357]. It was shown that 
D F T  has problems with extended systems [380] and that the excitation energies collapse in 
the infinite chain length limit to the band gap values [366]. which suffer from the band gap 
problem, as discussed below. Despite its overall success with the calculation o f excited states, 
T D D F T  is therefore problematic for the specific application of calculating band gaps of 
long polyenes and CO Ps. It will be shown later that D F T  also has problems with describing 
polaron sizes and polarizabilities.

2.4. Frozen Orbital Approximation
2.4.1. Hartree-Fock Orbitals
For infinite systems, excitation energies are usually obtained with band structure calcula
tions [256, 259]. Band gaps of infinite systems obtained with band structure calculations
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Figure 2. TDDFT excitation energies tor polyenes (C ,H ()-C!(,n ,. ) with different exehange-correlation functionals 
plotted versus experimental excitation energies measured in the gas phase. All values are given in eV. Circles: 
83LYP. Ref. |357J. up triangles: B3LYP CEP-31G*. down triangles: B3P86/CF.P-31G*. diamonds: LSDA/CEP-31G*, 
plus signs: BP38(v3(Kr/CEP-3!G*.
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correspond with H O M O - L U M O  gaps o f finite systems. Thus, band structure calculations use 
orbital energy differences to estimate excitation energies. Using H O M O - L U M O  energy dif
ferences as excitation energies is justified at the H F  level of theory by Koopmans’s theorem 
[274]. Koopmans's theorem proves that the negative H O M O  energy of the neutral molecule 
corresponds to the difference between the total energies of the neutral molecule and the 
ion, and therefore the IP, w'ithin the frozen orbital approximation. Frozen orbital approxi
mation means that the M O s are optimized for the neutral molecule and that the same M O s 
are used for the ion, deleting only the orbital from which the electron is removed from the 
Slater determinant. The energy difference between these two Slater determinants is equal to 
the negative energy of the removed orbital. Likewise, the L U M O  energy corresponds to the 
E A  [365] within the frozen orbital approximation. Using frozen orbitals is an approximation 
because the M O s of the ions were different, if they were optimized, lowering the total ener
gies of the ions. If  electronic excitation is thought to result form removing one electron from 
the H O M O  and adding it to the L U M O . the excitation energy can be approximated by IP  
minus E A  or by the H O M O - L U M O  gap within the frozen orbital approximation. Although 
this procedure is mathematically exact at the H F  level, the analogous approach, using D F T  
orbital energy differences as excitation energies, is highly controversial [392-403]. It is gen
erally agreed on that within D FT , the negative energy of the highest-occupied Kohn Sham 
orbital corresponds to the IP, provided that the exact exchange-correlation functional is used 
[393]. Only recently an analog of Koopm ans’ theorem was proved for D F T  (see Ref. [403] 
and references therein).

The errors in the frozen orbital approximation are well established at the H F  level. 
The results for IPs are usually quite good because of error cancellation. Because H F  the
ory neglects the correlation between electrons o f opposite spin, the error is larger for the 
molecule than for the ion, as a neutral closed-shell molecule has one electron pair more 
than the corresponding ion. Thus, the energy of the molecule is too high compared to that 
of the ion because of the correlation error. Because the wave function of the cation is not 
optimized within the frozen orbital approximation, the energy o f the cation is too high com
pared to that of the optimized ion. Because the correlation error raises the energy of the 
molecule and the frozen orbital approximation raises the energy of the cation, the energy 
difference between the two is about correct. For EA s, the correlation error raises the energy 
of the anion more than that of the neutral molecule, and the frozen orbital approximation 
raises the energy of the anion additionally. Thus, both errors add up and negative L U M O  
energies yield very poor EA s . As a result, H O M O - L U M O  gaps and band gaps are too large 
at the H F  level [259, 404-407]. Band structure calculations are still useful for obtaining 
relative band gaps of different systems, as the source of error is well known and the size 
of the error is quite systematic. Inclusion of correlation at the M P2  [404, 408, 409], M P4 
[409], and M R C I [410] levels of theory decreases band gaps, but experimental values are 
not reached. H O M O - L U M O  gaps for polyenes al the H F/CEP-31G * level of theory are 
given in Table 2 and plotted versus experimental results in Fig. 3, together with D F T  results, 
which will be discussed below. The huge overestimation (5-6 e V )  of the excitation energies 
is visible. C loser inspection shows that the error decreases on chain length increase.

2.4.2. DFT Orbitals
D F T  band structure calculations have been applied for a long time, and the errors are 
established empirically. W ith in  L S D A , H O M O s  are very poor approximations for IPs [399],

Table 2. HOMO-LUMO gaps at H F and various DFT levels.

C\H, c 4h „ C„Hs c sh 1m C mH i:

HF 14.01 11.65 10.30 9.44 8.87
LSDA 5.44 3.73 2.82 2.28 1.90
B3LYP 7.19 5.31 4.26 3.61 3.17
B3P86 7.28 5.35 4.28 3.62 3.17
B3P86-300*
E ,m . 1419]

8.19 6.15 5.03 4.33 3.84
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Figure 3. HOMO-LUMO gaps plotted versus experimental excitation energies measured in the gas phase. All 
values are given in eV. Circles: HF/CEP-3IG*, squares: 113PK6-30cy/CEP-31G*, open diamonds: B3P86/CEP-31G*, 
crosses: B3LYP/CEP-31G*, up triangles: LSDA/CEP-3lG*.

and band gaps are underestimated by about 50%  (com pare Table 2). This is known as the 
band gap problem of D F T  [392-399, 402, 411-414]. The origin of the band gap problem 
was heavily debated over the years. The crucial question is whether the band gap problem 
is caused by the use of approximate exchange-correlation functionals or is intrinsic to D F T  
Several authors came to the conclusion that the band gap problem is intrinsic to D F T  
[394, 397]. An extreme point of view is that D F T  orbital energies (with the exception of 
that of the H O M O ) have no physical meaning whatsoever [415]. Nonetheless, evidence is 
accumulating that the band gap problem can be overcome by improving the functionals and 
that D F T  orbital energies can be used as a good first approximation to excitation energies 
[398, 403, 416, 417]. A  lot of effort has been devoted to overcome the problem with the 
incomplete cancellation of self-interaction [393] and with the wrong asymptotic behavior of 
the approximate exchange functionals [401, 412, 418]. Figure 3 shows that D F T  H O M O - 
L U M O  gaps are much closer to experimental excitation energies than are H F  orbital energy 
differences.

Mixing some H F  exchange into the exchange correlation functional increases the D F T  
H O M O - L U M O  gaps and brings D F T  orbital energies with hybrid functionals in close agree
ment with Amax from U V  spectroscopy [399, 419-421]. W e tested several functionals and 
adjusted the amount of H F  exchange em pirically so that H O M O - L U M O  gaps of polyenes 
are reproduced Amax [399, 419, 420]. H O M O - L U M O  gaps for butadiene through decapen- 
taene with L S D A , B3LYP , B3P86, and B3P86-30% functionals are given in Table 2. Figure 3 
reveals that D F T  H O M O - L U M O  gaps obtained at the B3P86-30% level reproduce excita
tion energies of polyenes with fairly good accuracy, in general, B3P86-30% H O M O - L U M O  
gaps overestimate the excitation energies for small polyenes and fall off too fast with increas
ing chain length. This is the same problem that was observed with T D D F T  However. Fig. 3 
shows that DFT-hybrid H O M O - L U M O  gaps are a huge improvement compared to H O M O -  
L U M O  gaps at H F  and L S D A  levels. Thus, H O M O - L U M O  gaps with hybrid functionals 
range in quality behind high-level ab initio calculations and T D H F  but allow for a first 
estimate of excitation energies.

2.4.3. Semiempirical Methods
Sem iempirical methods have a long history in band structure calculations, mainly for infinite 
one-dimensional systems. Because parameters are used, very good agreement with exper
iment can be achieved. The focus in this article is on ab initio methods and D FT, and 
therefore semiempirical methods are discussed only briefly. H iickel theory [422-429J in its 
basic form does not predict a band gap for PA  [426]. Extended H iickel [422, 424, 428] 
or perturbationally corrected [426] versions arc very successful in predicting band gaps of
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conjugated 7r-systems. Because the H iickel method is a single-electron theory, the doubly 
excited, multiconfigurational 2 'A , state is beyond the scope of H iickel theory [430]. A  sec
ond widely applied method is the effective valence Ham iltonian ( V E H )  technique [431-433]. 
Tlr.s method is kind of a curiosity. It was parametrized to reproduce H F  results without 
employing experimental parameters. In contrast to HF, however, V E H  fails to produce good 
IPs and succeeds with band gaps. The reason for this was never discovered. Nonetheless, 
the V E H  method was applied successfully to analyze and predict band gaps of C O Ps [258, 
431-434]. The M N D O  (modified neglect of differential overlap) method has been developed 
for cluster-type solid-state calculations [435-437]. M N D O  is an approximation to the H F  
method and suffers from the same overestimation of band gaps as H F. As with HF, the error 
is systematic so that trends can be established. Another popular semiempirical method is 
the Pariser-Parr-Pople approximation (P P P )  [438-441].

3. EXTRAPOLATION TO INFINITELY LONG CHAINS
The underlying idea of a polymer is that its properties are determined largely by the prop
erties o f infinitely long chains, or at least by molecules that are long enough to be close to 
the infinite limit. Theoretically, either solid-state calculations with periodic boundary condi
tions or molecular calculations on oligomers with increasing chain length can be performed. 
On extrapolation, results from m olecular calculations should be identical to those from 
solid-state calculations. W ith both methods, properties of perfect, defect-free, infinitely long 
isolated chains are obtained. One interesting question is how long an oligomer has to be to 
approach the infinite limit. The band model implies that band gaps decrease with each addi
tional repeat unit. The changes per additional repeat unit get smaller with increasing chain 
length because the effect on a short oligomer is stronger than on a long chain. It is usually 
assumed that a plot of energy gaps versus inverse chain length is linear over the whole range 
of chain lengths [263, 283, 426, 427, 442]. Band gaps are an approximation for optical absorp
tion energies. A  linear dependence of absorption energies on inverse chain length requires 
the 7r-systems of ground and excited states to be completely delocalized. There is evidence, 
however, that polymers do not obey the prediction of band theory and that ionization as well 
as excitation produces localized defects [230]. Therefore, analogies have been drawn from 
comparison with molecular crystals. The issue is, however, whether ideal polymer crystals 
would behave similarly to molecular crystals or whether the band model would be correct 
at least in the ideal case. The difficulty in answering this question arises from the fact that 
polymers do not crystallize well. Therefore, intrinsic properties of ideal polymers cannot be 
determ ined experimentally. If  the investigated samples are disordered and have short con
jugation lengths, their properties must resemble those of molecular crystals. The size of the 
so-called exciton binding energy is therefore subject to a long-standing controversy [230, 231, 
443-449]. If  excitation is localized, a saturation of excitation energies with increasing chain 
length should occur when the chain length exceeds the size of the exciton.

Convergence limits were investigated experimentally for polyenes and thiophenes in solu
tions and in matrix. For a polydisperse solution of a polymer with 880 double bonds, absorp
tion starts at 1.86 eV, and Amax occurs at around 2.2 e V  at 80 K  and at 2.44 e V  at 300 K  [450]. 
The absorption profile was explained with a distribution of conjugation lengths and a statis
tical preference for shorter chains. This means that the onset o f absorption at 1.86 eV  corre
sponds to Amax of the longest chains. Polyene spectra for medium-sized oligomers recorded 
for 77 K  glasses [451] give a lim iting Amax value of 1.77 e V  on linear extrapolation. The 
longest soluble oligomer with more than 100 conjugated double bonds has a Arnax value of 
1.96 eV. Because the low-temperature spectrum was well resolved, polydispersity was excluded 
as the reason for the higher Ama>. compared to the extrapolated value. Instead, the authors 
suggested that the discrepancy reflects at least in part the inadequacy of the 1/N fits in the 
long polyene limit. The theoretical results presented below confirm this point of view'.

Saturation has also been observed experimentally in solutions of monodisperse samples 
o f alkyl substituted thiophenes with up to 48 rings [94, 281, 452] Although Amax values for 
monom er through hexamer (see Table 3) extrapolate to a lim iting value of 2.27 eV, the 
excitation energy of long oligomers does not decrease below a value of 2.69 eV. Saturation is
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Table 3. Comparison between experimental and theoretical excitation energies tor 
thiophene oligomers.

2-1 3 - T 4-1 5-T 6-T

exp. [299] matrix 3.67 3.08 2.75
exp. [287, 292] solution 4.05/4.13 3.49/3.50 3. J 6/3.18 2.99/2.98 2.85/2.86
CASPT2 [465] 3.88 2.86
T D H F 4.25 3.60 3.26 3.05 2.92
C I S 4.50 3.83 3.47 3.25 3.12
TDLSDA 3.76 2.99 2.55 2.25 2.05
TDB3P86 3.92 3.20 2.80 2.54 2.37
B3P86-30rv E, ,_| 4.81 4.01 3.58 3.32 3.15

A l l  c a lc u la tio n s  have  been ca rr ie d  out w ith  the  CEP-31G* basis set an d  a re  based  on  B3P86-
30 r / /CEP-31G * get>meities.

reached for a chain length of 20 rings. Because the data were obtained in solution, disorder 
was thought to be the reason for the saturation. Fo r comparison, T D H F  excitation energies 
of 20-thiophene and 28-thiophene differ by only 0.02 eV, and H O M O - L U M O  gaps of 20- 
thiophene and 40-thiophene differ by only 0.05 eV  in the absence of any disorder. Therefore, 
the experimental data might reflect the intrinsic convergence limit. W ith  the aim of increasing 
planarity, thiophene vinylene oligomers with 16 thiophene rings and 15 ethylene groups 
(corresponding to 47 conjugated double bonds) were synthesized [282]. Absorption energies 
of thienylvinylene oligomers are lower than those of thiophene oligomers. Nonetheless, a 
deviation from linearity was observed on chain length increase, and the saturation limit was 
predicted to occur around a 20-mer. For thiophene ethynylene with triple bonds between the 
thiophene rings instead of double bonds, saturation was observed after the octamer stage 
(23 conjugated double bonds) [34, 453].

The assumption o f a linear dependence of excitation energies on inverse chain length 
stems from early investigations based on a modified particle in a box model and on semiem- 
pirical methods [263]. The approach is applied widely to obtain polymer properties from 
small numbers (often only four or five points) o f oligomer data. A  second approach accounts 
for the experimentally observed saturation. H ere the band gap is determ ined as [454]

/:(/;) = + (£ ,  -  E jc\p [- a (n  - 1)]

where E ,  is the excitation energy o f the monomer, E x that of the polymer, and E(n ) cor
responds to an oligom er with n repeat units. The parameter a determ ines how fast E(n) 
saturates. This equation predicts a deviation o f small oligomers from linearity and includes 
a linear regime for medium-sized oligomers. (The deviation for small molecules from lin
earity is well known from theory. Usually, the shortest oligomers are left out when the data 
are plotted.) Theoretical analysis indicates [454] that observed excitation energies depend 
on the intrinsic size o f the exciton and on the size of the oligomer segment. Therefore, 
excitation energies o f short oligomers deviate from linearity because the oligomer is shorter 
than the exciton. A  linear regime is reached for medium-sized oligomers because quadratic 
intrinsic behavior shows up only at longer chain lengths and because of linear decrease 
resulting from disorder. The longest oligomers give rise to quadratic saturation. Although 
disorder enhances the saturation, saturation is also present intrinsically becausc o f the finite 
exciton size.

To find out whether there is a linear dependence of excitation energies on inverse chain 
lengths for ideal, p lanar oligomers in the absence of any disorder, oligomers of acetylene, 
thiophene, and pyrrole up to C ,hllH u>:. 40-thiophene. and 40-pyrrole were optimized at the 
B3P86-30%/CEP-31G* level o f theory. H O M O - L U M O  gaps of these systems arid T D H F/  
C EP-31G* excitation energies for oligomers up to C mH gs, 24-thiophene, and 24-pyrrole are 
plotted versus inverse chain lengths in Figs. 4 and 5. As discussed in section 2.2, on the basis 
o f results for shorter oligomers. T D H F  is expected to give very accurate results for polyenes. 
A t both theoretical levels, and tor all three systems, the dependence o f excitation energies 
on inverse chain length is S-shaped, as is observed experimentally. Fo r H O M O - L U M O  gaps 
this is surprising because saturation was attributed to finite exciton size [454]. whereas energy
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Figure 4. B3P86-3U<%/CEP-31G * PIOMO-LUMO gaps versus inverse chain lengths. Squares: acetylene oligomers, 
butadiene-C,w,Hlh:, circles: thiophene oligomers. 1-T-40-T. triangles: pyrrole oligomers, l-Py-40-Py.

gaps obtained for ground-state systems cannot account for excitonic effects in the excited 
state. As observed before, H O M O - L U M O  gaps arc too high for small oligomers, and fall off 
too fast. For acetylene oligomers, this leads to an underestimation of the excitation energy 
compared to T D H F  in the long-chain limit. For thiophenc and pyrrole oligomers, H O M O -  
L U M O  gaps overestimate excitation energies of small oligomers more strongly and converge 
toward T D H F  excitation energies for long oligomers. T D H F  values converge to 2.2 eV  for 
PA, 2.5 eV  for PT, and 3.3 e V  for PPy. These values were obtained by extrapolating the last 
five points with second-degree polynomial fits and comparing the results with those for the 
longest oligomers. Because extrapolated band gaps increase slightly with every additional 
data point for a longer oligomer, the extrapolated values are assumed to be lower limits. 
Convergence is assumed when there is no difference (correct to two significant Figures) 
between the extrapolated band gap and the calculated value o f the longest chain. H O M O -  
L U M O  gaps converge to 1.7, 2.6, and 3.5 eV  for PA. PT, and PPy, respectively.

An important difference between H O M O - L U M O  gaps and T D H F  excitation energies is 
that T D H F  predicts smaller excitation energies for short thiophenc than for small acetylene 
oligomers. This is in agreement with matrix isolation studies [297-299]. Because the smaller 
slope of the thiophenc excitation energies, a crossover occurs near 4-T and octatetraene. 
The correct description o f this crossover confirms the reliability o f T D H F  excitation ener
gies. The smaller slopes o f the thiophene and pyrrole data are associated with an earlier 
onset of saturation, as predicted by the equation above. This is visible from both H O M O -  
L U M O  gaps and T D H F  excitation energies. The different slopes and earlier saturation onset

1/num ber of doub le  bonds

Figure 5. TD H F excitation energies versus inverse chain lengths. Squares: acetylene oligomers, butadiene-C% H»>s, 
circles: thiophene oligomers, 1-T-24-T triangles: pyrrole oligomers. I-Py-24-Py.
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for thiophcne and pyrrole oligomers indicate that conjugation is less efficient for aromatic 
polymers than for PA. Therefore, the lower conductivities o f polythiophene and polypyrrole 
might be caused by intrinsic differences in the electronic structure and not only by disorder 
or mislinking.

As another example for nonlinearity o f absorption energies, H O M O - L U M O  gaps (at the 
B3P86-30%/CEP-31g* level) o f four kinds o f oligomers up to hexamers of thieno[3,4-i>]- 
thiophene (T T ) that differ only in their connectivity (Schem e 5) are plotted versus inverse 
chain length in Fig. 6. The H O M O - L U M O  gaps o f the 2,4-isomer fall o ff almost linearly with 
1/number of double bonds. In contrast, the energy gap decreases faster with chain length for 
the 4,6-isomers, and those of 2,6- and 3,6-isomers decrease slower. Thus, the chain length 
dependence and the chain length at saturation depend on the connectivity and reflect the 
strength of conjugation. For the weakly conjugated 3,6- and 2,6-TT, the band gaps saturate 
quickly, whereas for the 4,6 conformer, no saturation is seen at the hexamer stage. This is 
in line with experimental results that show that poly(4,6-TT) has a much smaller band gap 
than P T  and poly(2,4-TT), 0.8 e V  [455).

Apart from simulating polymer calculations, it would be desirable to use oligomer cal
culations and extrapolation in connection with experimental data to determine conjugation 
lengths in C O P  samples. The longer the chains are, the more disordered they are assumed 
to be. Therefore, chain lengths (o r molecular weights) do not coincide with conjugation 
lengths. Calculations that reproduce excitation energies accurately could therefore help to 
establish conjugation lengths. T D H F  calculations show that such an approach is probably 
futile. Because excitation energies fall o ff very fast for small systems (up to about 20 dou
ble bonds) but changes are very small beyond medium-sized oligomers, the differences in 
excitation energies in the interesting range are too insensitive to chain length to allow for a 
precise determ ination of conjugation lengths. Fo r example, chains with between 14 and 22 
thiophcne rings have the same Amax value, 2.7 eV. The difference between Amax of oligomers

2
3C^S1

4,6-TT 2.4-TT

3.6-TT 2.6-TT

Scheme 5.
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1/number of double bonds

Figure 6. B3P86-3(Kv-/CEP-3lG* HOMO-LUMO gaps versus inverse chain lengths for thieno[3.4-/?]-thiophene 
(TT) monomer through hexamer. Squares: 4,6-TT, circles: 2,4-TT. down triangles: 2.6-TI'. up triangles: 3,6-TT.

with 14 rings and the saturation limit is only 0.2 eV. Thus, a huge range of chain lengths leads 
to very' sim ilar Amax values and estimates of conjugation lengths can be ballpark estimates 
at best.

This paragraph shows that neither experimental nor theoretical excitation energies depend 
linearly on inverse chain length. O n ly for a small subset o f medium-sized oligomers is there 
a region in which the dependence is close to linearity. Therefore, linear extrapolation is 
wrong in any case. The size of the error depends on how many data points are used and 
where the data points lie on the S-shaped curve. Linear extrapolation underestimates the 
absorption energies in the infinite limit because saturation is not accounted for. It seems that 
investigation of the deviations of the dependence from linearity for oligomers can give useful 
information about strength of conjugation. If  polymer properties are needed, calculations on 
long oligomers are to be preferred over extrapolation. This is feasible nowadays for even for 
the longest chains presented here, employing single-processor PCs. Because H O M O - L U M O  
gaps show the same nonlinear dependence on inverse chain length as excitation energies 
at the T D H F  level, exciton formation cannot be the reason for the intrinsic deviation from 
linearity.

4. EXCITATION EN ER G IE S  OF O LIGO M ERS IN LIQUID 
AND SOLID  SOLUTIONS

Theoretical calculations on isolated molecules correspond to gas phase data. Equilibrium  
structures are valid for the low-temperature limit o f 0 K. Before a comparison with exper
iment can be made, temperature and media effects depending on the type of experiment 
have to be estimated and removed. A lternatively, temperature and solvent effects may be 
considered explicitly in the calculations. Differences between gas and condensed phases, 
however, are not accounted for in the majority of calculations. Therefore, theoretical gas 
phase calculations should not reproduce experimental values exactly. Any exact agreement 
between theory and experiment without accounting for media effects can only be coinci
dental. Additional effects resulting from disorder depend on the system and may cause 
additional deviations or partial error cancellation.

Ionization and electronic excitation lead to rearrangement of the electron density. Media 
effects help to distribute the distortion over a larger volume. Thus, in condensed phase, IPs 
are expected to be lower, E A s  to be higher, and excitation energies to be reduced compared 
with those in the gas phase. In one study, IPs of medium-sized 7r-conjugated molecules in 
the gas phase and in the solid state were compared. The so-called solid-state polarization 
energy was shown to lower IPs o f planar polycyclic aromatic hydrocarbons by 1.7 eV, more 
or less independently of the system [456]. The effect on E A s  was not investigated, but the 
combination of solid-state polarization for IPs o f this magnitude plus the unknown effect on 
E A s  should lead to huge effects on band gaps.
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4.1. Polyenes
O nly for short polyenes are data available for gas phase (as discussed in section 2.1), solu
tions [288], solid solutions (matrix isolation) [288], and crystals [283]. These data show that 
excitation energies of unsubstituted polyenes are about 0.4 e V  [288] lower in dilute liquid and 
solid solutions than in the gas phase. Cooling leads to improvement o f the resolution w ith 
out shifting the onset of absorption. Thus, polyenes are planar in the gas phase. Excitation 
energies of carotenoids [261] in solution are about 0.1 e V  higher than those of the unsub
stituted polyenes. The close agreement is probably a result o f two opposite effects: methyl 
groups lowering excitation energies through hyperconjugation but increasing nonplanarity. 
Differences between oxidation and reduction potentials o f tert-butyl-capped polyenes [283] 
are 0.8-0.9-eV smaller than excitation energies of unsubstituted polyenes in the gas phase. 
The data are plotted in Fig. 7. Because no experimental gas phase data are available for other 
systems, it is assumed in the remainder of this account that solvent effects are similar in size, 
about 0.4 eV, for other oligomers and polymers. This is a crude guess, of course.

4.2. Thiophene Oligomers
Thiophcne oligomers were studied extensively. Experim ental data are available for solutions 
[281, 286, 287, 291, 292], for isolated molecules in matrix [297-300, 457], for films [458, 459], 
for self-assembled monolayers (S A M s ) [460], and for single crystals [285, 308, 457, 461, 462]. 
Cooling of solutions of thiophene oligomers leads to a red shift in the absorption of about 
0.4 e V  [297-300, 457]. This is in contrast to polyenes, where no such effect was observed. The 
red shift on cooling has been attributed to a transition from a twisted to a planar structure, 
as thiophene oligomers are known to be nonplanar in the gas phase and in solution [299, 463, 
464]. The excited states, however, are planar because they have quinoid structures. Quiniod 
structures are less prone to out-of-plane distortions, as the interring bonds are double bonds 
(Schem e 6). Thus, excitation energies decrease on cooling as the matrix forces the oligomers 
into a geometry closer to that of the excited state. As a result, absorption and emission 
onset o f thiophene oligomers coincide in matrix and are identical to the emission peaks 
in room-temperature solutions. The common origin of absorption and emission is another 
important difference between thiophene oligomers and polyenes. As discussed in section 2.1, 
in longer polyenes, emission occurs from the 2!A g rather than from the 11 B u state. For short 
thiophene oligomers (up to hexamers), the 2‘A g state lies above l ' B u [297, 299, 300]. Thus, 
for thiophene oligomers, absorption, and emission involve the 11 B u state. Therefore, the 
energy of the most intense emission peak can be used to estimate the vertical excitation 
energy. Note that for thiophene oligomers the estimated solvent effect is o f the same size 
as the effect resulting from nonplanarity, M ).4  eV. Therefore, the two effects cancel, and

Number of double bonds

Figure 7. Experimental Anlax values in gas and in condensed phases versus the number of double bonds. Squares: 
gas phase as discussed in Section 2.1. down triangles gas phase 0-0 transitions, up triangles carotenes in solution. 
Refs. [261] and |426]. circles: matrix isolation of polyenes. Ref. [288]. diamonds: electrochemical gaps of ter butyl - 
capped polyenes, Ref. [283j.
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Scheme 6.

experimental excitation energies for nonplanar thiophene oligomers in solution, and planar 
ones in the gas phase, should be about same. As a result of this coincidence, solution data 
can bc compared directly to theoretical gas phase data obtained for planar oligomers. There 
is no guarantee that such a cancellation holds for other systems.

In Table 3 and Fig. 8, Amax values of thiophene oligomers in room-temperature solutions 
arc compared to gas phase excitation energies at various theoretical levels. The highest 
level of theory that has been applied is C A SP T 2  [465]. Excitation energies for 2-T and
3-T are 3.88 and 2.86 eV, respectively. These values are above and below the experimental 
ones, 3.67 and 3.08 eV, obtained for planar molecules in matrix. Because solvent effects are 
neglected, the theoretical values should lie above the experimental matrix data and be closer 
to the R T  solution values of about 4.1 and 3.5 eV. That something must be wrong with the 
C A SP T 2  values is confirmed by the fact that they are almost identical to the T D L S D A  values. 
T D H F  is in better agreement with experiment, overestimating the experimental values by 
about 0.1 eV. C IS  excitation energies are systematically too high. D F T  H O M O - L U M O  gaps 
overestimate excitation energies and fall off too fast, approaching the experimental values 
for long oligomers. T D D F T  consistently underestimates excitation energies, and the results 
deteriorate as the chain length increases. The use of a hybrid functional (B3P86 rather than 
L S D A )  ameliorates the problem somewhat, but the improvement is rather small. Increasing 
the weight of the H F  exchange to 3 0 %  in T D D F T  calculations has a much smaller effect on 
excitation energies than on H O M O - L U M O  gaps.

4.3. Pyrrole Oligomers
Pyrrole oligomers are less intensively investigated than thiophene oligomers. I am aware 
of room-temperature solution data involving monomer, dimer, trimer, pentamer, and hep- 
tamer [466], and of a matrix isolation study of 2-Py [299]. These data are used for compar
ison with T D H F  and B3P86-30% H O M O - L U M O  gaps in Fig. 9. As for polyenes and for 
thiophene oligomers, H O M O - L U M O  gaps are too high for small systems and fall off too 
rapidly. The error between experiment and T D H F  excitation energies is clearly larger than
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Figure 8. Theoretical excitation energies for thiophene dimer through hexamer at various levels are plotted versus 
experimental excitation energies measured in solution. All calculations are based on B3P86-30% geometries. Cir
cles: B3P8b-30rr , CEP-31.G* HOMO-LUMO gaps, diamonds: CIS/CEP-3 IG*. down triangles: TDHF/CEP-31G*, up 
triangles: CASPT2, Rel'. [465], open up triangles: TDB3P86/CEP-31G *, open down triangles: TDLSDA/CEP-31G\
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Experimental excitation energies

Figure 9. Theoretical excitation energies for pyrrole dimer through hexamer versus experimental excitation ener
gies measured in solution. All calculations are hased on B3P86-309f geometries. Circles: B3P86-309r/CEP-31G* 
HOMO-LUMO gaps, triangles: TDHF/CEP-3IG*.

for thiophenc oligomers. Excitation energies are overestimated by about 0.4 eV, independent 
of the chain length. It is not possible at this point to decide whether this is a result o f a 
larger error of T D H F  for pyrrole oligomers or of less-efficient cancellation of solvent and 
geometry effects.

5. INTERCHAIN INTERACTIONS
5.1. Experiment
If C O Ps  were ideal, that is, if the chains were infinitely long and perfectly packed, C O Ps  
would behave like huge single crystals. Depending on the distance and the mutual orienta
tion of the chains, the wave-functions overlap, and the electronic states split into as many 
branches as there are distinct species in the crystal. This so-called Davydov splitting [467] 
increases with decreasing distance between the chains and depends on the chain length, 
but it is always smaller than the splitting of the levels caused by intramolecular interactions 
between the repeat units. Sm aller interaction between chains than within chains gives rise 
to low-dimensionality and anisotropy of C O Ps. Real samples of C O Ps are paracrystalline 
and comprise of polydisperse chains. It is hard to analyze the precise effect of interchain 
interactions, as too many factors like orientation of crystallites, grain boundaries, and am or
phous regions influence the properties as well. In contrast to polymers, oligomers can be 
crystallized. The longest thiophene oligom er for which single crystals could be grown is 
octithiophene (8-T) [291]. The best-investigated of all oligomers is sexithiophene (6-T). Spec
tra o f 6-T have been analyzed and compared for single crystals [78. 81, 308, 457-459, 461, 
462, 467-469], for polycrystalline films [78, 81, 457, 459, 469], for matrix-isolated species 
[294. 297-300], and for solutions [287, 292, 470].

As discussed in section 4.2, the lowest excited state of thiophene oligomers is the allowed
11 A u —» 11 B u transition that is dominated by an electronic configuration in which one elec
tron is removed from the H O M O  and added to the L U M O . The same excitation is consid
ered to give rise to the band gap in PT. The following analysis will concentrate, therefore, on 
the l 1 A,. -> 11 electronic transition. In crystals, 6-T molecules are planar (C :/j symmetry) 
and are packed in herringbone fashion with space group P2 ,/// [285]. A  second phase that 
differs only in a translation of the chains with respect to each other has space group P2,/c/ 
[471]. As a result of the packing structure, the crystals have pronounced two-dimensional 
character [461]. Thiophene oligomers crystallize with either two or four molecules in the unit 
cell [457]. In most studies [78, 457], samples with four distinct species were analyzed. In this 
case, the 1!B U excitation splits into four Davydov components of £/,,, au, /?„. and t\ symmetry. 
Gerade and ungerade states are nearly degenerate. The au and bu states are one-photon 
allowed and can be observed in optical spectra [78]. Thus, two peaks designated as lower
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an J higher Davydov components arising from the same molecular state are expected to be 
seen in spectra of 6-1' crystals.

>T polycrystalline films and 6-T single crystals have been analyzed with a variety of spec
troscopic techniques such as absorption [78, 81, 308, 457, 459, 468], polarized absorption 
[457, 462, 467], fluorescence excitation [4571, emission [457], photoluminescence [461, 469], 
and electroabsorption spectroscopy [78, 81, 308, 459]. Furtherm ore, photoluminescence and 
photocurrent action spectra [461] have been recorded. Absorption starts for films and single 
crystals with a weak feature at 2.27 eV, followed by several peaks at around 2.4 eV. The Amax 
occurs at around 2.6-2.7 eV. In thin films, a broad band at around 3.1-3.2 e V  is observed 
that is absent in single-crystal spectra. Spectra of films are not well resolved, and peaks have 
been assigned with the help of electroabsorption spectroscopy [81, 308]. For single crystals, 
sharp optical spectra are observed at low temperature [462]. There was some controversy 
with the detailed peak assignment over the years. It seems that the results are most consis
tent with the following analysis. The weak feature at 2.27 e V  arises from the au state and 
corresponds to the lower Davydov component of the 11B L1 exciton. Because the exchange 
coupling for this excitation is weak, it was assumed that the au peak is close to the excitation 
of an isolated molecule [81 ]. The excitation at around 2.6-2.7 e V  is the higher Davydov com 
ponent of the 11 B u exciton. Thus, the Davydov splitting in 6-T is about 0.3-0.4 eV, and the 
exciton binding energy (the difference between the low Davydov component and the energy 
to create free charge carriers) is also about 0.3-0.4 e V  in 6-T because C T  states lie close to 
the higher Davydov component [308]. The broad peak at around 3.2 e V  that is absent for 
single crystals is a result o f coupling of excitons into a polariton mode [78, 81, 459].

The longest oligothiophene that has been crystallized is oetithiophene [291]. The data for 
8-T and 6-T are very similar. In dimethylformamidc, Amax for 8-T occurs at 2.82 eV, slightly 
below that of sexithiophene at 2.88 eV. The maximum emission is observed at 2.40 e V  
(compared to 2.45 eV  for 6-T). Unoriented films show a broad band peaking at 3.13 eV  
with satellites at 2.27, 2.50, and 3.44 eV. Fluorescence excitation and emission spectra show 
the 0-0 transition at 2.19 eV. For single crystals, absorption spectra were recorded with light 
polarized parallel and perpendicular along the main m olecular axis b. For light polarized 
parallel to />, absorption onsets at 2.07 e V  and peaks at 2.21 and 2.58 eV. Using the same 
peak assignment as in 6-T, the Davydov splitting is 0.37 e V  for 8-T.

The size of the Davydov splitting, depending on chain length, was investigated by com 
paring polarized absorption spectra of 4-T and 6-T [472]. The splittings of the au and bu 
states in the /^-polarized spectrum are 0.36 and 0.32 e V  for 4-T and 6-T, respectively. It was 
therefore concluded that Davydov splitting decreases with increasing chain length. The result 
was confirmed with IN  D O /SC I calculations. The Davydov splitting for polythiophene was 
estimated to be about 0.25 eV. Combining the data for 4-T and 6-T [472] with those for 8-T 
[291] does not support this conclusion. The peak splitting between the au and bu excitons in 
the spectrum polarized parallel to b is 0.37 e V  and is therefore, almost the same as in 4-T 
and larger than in 6-T. The splitting is smaller (0.23 e V )  with polarization perpendicular to b.
4-T and 6-T splittings were obtained for polarization parallel to b and correspond therefore 
to the higher value for 8-T. Thus, experiment docs not indicate unambiguously decreasing 
Davydov splitting with increasing chain length.

5.2. Theory
The differences between 6-T spectra in solution and in crystals show that interm olccular 
interactions are important and that calculations on individual molecules miss major effects. 
Therefore, oligomers and polymers were investigated theoretically with three-dimensional 
solid-state calculations. A lternatively, oligomers were studied in clusters of increasing size. 
The main issues that are addressed with these investigations are the effect of interchain 
interactions on the band gap, the nature of the lowest excited state, the amount of Davydov 
splitting, the size of exciton binding energies, and the stability o f localized defects such as 
solitons, polarons, and bipolarons.

Three-dimensional band structure calculations are usually carried out employing D F T  
with the L D A  functional [231, 471, 473-481]. As described in section 2.4.2, L D A  F IO M O - 
LU iM O  gaps underestimate excitation energies, and the error increases with increasing chain
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length. Therefore, L D A  band gaps for infinite systems are too small. The 1-D band gap 
o f PA, for instance, is 0.74 e V  at the L D A  level [479]. Inclusion of gradient correction 
leads to little improvement [479]. The error is the result of the incomplete cancellation 
of the self-interaction and may be corrected by calculating the self-energy w ith the G reen  
function (G W )  approach, using the L D A  wave-function as input [481]. The results are true 
quasiparticle energies and quasiparticle bands [475]. Quasiparticle excitations or one-particle 
excitations are the energies required to add or remove one electron to or from the sys
tem [480]. For many materials the quasiparticle bands differ from the L D A  bands by a 
k-independent rigid upward shift of the conduction bands [475]. Interactions between quasi
particles correspond to exciton-binding energies. These so-called two-particle excitations can 
be calculated by solving the electron-hole Bethe-Salpeter equation ( B S E )  [480] or with the 
density matrix formalism [482, 483]. The difference between the one-particle and the two- 
particle energies is the exciton-binding energy [481]. The difference between the one-particle 
or quasiparticle gap and the exciton-binding energy is the optical gap [478].

At the L D A  level, interchain interactions lead to unsymmetric splitting of valence and 
conduction bands, and therefore to loss o f electron hole symmetry [471, 473, 474]. The band 
gaps of PA and P P V  are reduced by about 0.2 eV  because of interchain interactions [471, 
473, 474, 479]. As D F T  for polyenes, L D A / G W  does not reproduce the correct order of 
dark and optically active excited states for PA  [477]. Although quasiparticles or polarons 
are localized when isolated chains are considered, self-trapping is strongly reduced or com 
pletely suppressed when interchain interactions are included [471, 473]. The same trend is 
reported for two-particle excitations. For single isolated P T  chains, a binding energy for 
the ' B u exciton of 1.85 eV  was calculated [477]. W hen interchain screening is included via 
the dielectric constant of neighboring chains, the exciton-binding energy reduces to 0.76 eV  
[477, 478]. W ith  interchain effects calculated explicitly, the exciton-binding energy in P T  is 
only 0.15 eV  [481]. Sim ilar results are obtained for PPV . The exciton-binding energy for an 
isolated chain amounts to 0.9 eV. Screening reduces the value to 0.54 eV. and explicit calcu
lation of interchain interactions, including wave-function overlap, yields 0.35 eV. For PA, the 
exciton-binding energy of the lowest-lying singlet state was found to be reduced from 0.6 to 
0.05 e V  with three-dimensional calculations [231]. Interchain effects were claimed to strongly 
influence the quasiparticle gap and the exciton-binding energies and to have very little effect 
on the optical gap [478]. In contrast, the same quasiparticle gap is predicted with one- and 
three-dimensional calculations for PA [479]. The  similar optical gaps obtained with one- and 
three-dimensional calculations result from the cancellation o f one- and two-particle energies.

To obtain the Davydov splitting, the energy difference between excitons that arise from 
the same molecular state has to be evaluated. In the case of P T  and other polymers crys
tallizing in the herringbone structure, these excitons have au and bu symmetry. W ith the 
three-dimensional L D A /G W 7 B S E  approach, very small Davydov splittings are obtained. For 
PT, Davydov splitting is below 0.01 eV, for P P V  it amounts to 0.09 e V  [481]. Applying the 
density matrix formalism, which is equivalent to the B S E  method, a Davydov splitting of 
0.12 e V  was computed for P P V  [482] and 0.01 e V  and 0.06 e V  for the two different crystal 
structures of P T  [484]. Because it was shown that the state ordering for PA  and polydi- 
acetylene (P D A )  is qualitatively wrong with the L D A /G W / B S E  method [480], the Davydov 
splittings quoted above might be unreliable. This problem reminds us o f the wrong ordering 
o f the states obtained with T D D F T  for long polyene chains, as discussed in section 2.3. 
If  the energy difference between excitons is not necessarily correct with this approach, the 
exciton-binding energies themselves might also be subject to error.

An alternative to three-dimensional band structure calculations is the supermolecular 
approach [442, 485-493]. The calculations are carried out for oligomers of different chain 
lengths and for clusters of oligomers of different size. Sem iem pirical methods are applied 
because the size of the systems is prohibitive for ah initio calculations. Geom etries may 
be obtained using the Austin model-1 ( A M I )  Ham iltonian [435]. Excitation energies are 
usually calculated on the basis of intermediate neglect of differential overlap ( IN D O )  and 
subsequent singles configuration interaction (S C I )  between the occupied and unoccupied 
77 orbitals to obtain the excitation energies. The LN D O /SC I method was parametrized to 
reproduce optical absorption spectra of organic molecules [487, 489-492].
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F.gerstrom and Stafstrom tried to model interchain and intrachain electroluminescencc 
processes in oligothiophcnes. Because injection o f a hole and of an electron creates a positive 
and a negative polaron, respectively, the geometries of separate cation and anion of 8-T were 
obtained employing the A M I  method. Then a dimer was formed by bringing the 8-T cation 
and anion together. Two configurations of the dimer were tested. The first was a model for 
interchain electron transfer between two separate molecules, the second was a model for 
intrichain recombination in which the positive and the negative polaron reside on the same 
cha n. For both models, excited states were calculated at the IN D O /S D C I level [485]. For two 
separate parallel 8-T chains at a distance of 3.7 A . an allowed excited state with no charge 
separation (according to Mulliken population analysis) was obtained. The excitonic state lies 
2.37 e V  above the ground state and has a lifetime of 1.6 x 10“  ̂ s. A  dark state was found at 
lower energy, ~  1.86 eV. Singlet and triplet states are close in energy. Two separate polarons 
on :he same chain are not stable and can only be obtained when the two chain segments 
are twisted with respect to each other. For a p lanar chain, a nonradiative recombination was 
predicted. W ith three instead of two parallel chains, the symmetry properties are different. 
The Sj —S () state is dipole allowed and has a very short lifetime, whereas the S : -S„ transition 
has very long lifetime [488].

Cornil et al. [442, 487, 489-493] applied the superm olecular approach to stilbene, 
polyenes, para-phcnylenevinylene, and thiophene oligomers of different chain lengths, in dif
ferent orientations, and with varying distances. Geom etries were obtained with the A M  1/Cl 
method, and excited states were calculated at the IN  D O /SC I level o f theory. The results 
can be summarized as follows. For cofacial dimers or clusters, Davydov splitting results in a 
symmetry-forbidden first excited singlet state and a symmetry-allowed second excited singlet 
state. Because luminescence occurs from the lowest excited state, Davydcw splitting leads 
to luminescence quenching. Davydov splitting is strongest for the highly symmetric cofacial 
arrangement, increases with decreasing interchain distance and increasing cluster size, and 
decreases with increasing chain lengths of the oligomers (after a peak for medium sized 
oligomers) [472, 490]. In addition, electronic excitations with different character start mixing 
at small interchain distances, which leads to a transfer of oscillator strength to C T  states and 
almost complete luminescence quenching [442]. For homooligomers, C T  states are higher 
in energy than the strong Davydov component. For copolymers, the higher Davydov com
ponent moves closer to the C T  states. This should be desirable when high conductivity is 
aimed at. In the herringbone arrangement (the crystal structure o f polyenes and of thiophene 
oligomers), the molecules arc almost cofacial. The lowest excited state is weakly allowed, 
and the Davydov splitting is slightly reduced [442]. For sexithiophene, it was shown that the 
Davydov splitting saturates quickly with cluster size and is predicted to be 0.32 e V  for the 
single crystal [491]. For bisdithicnothiophene (B D T ) ,  which prefers a different crystal struc
ture with one-dimensional stacks, a Davydov splitting of 0.61 eV  and an intense C T  band that 
lies 0.62 e V  higher than the high Davydov component were predicted for a 12-unit cluster.

Hartree-Fock as well as density-functional theory do not account for dispersion effects or 
van der Waals interactions. The lowest level of theory that does is M P2  [408]. M P2  correc
tion to the band gap of PA  single chains, dimers, trimers, and two-dimensional arrays was 
investigated with extended basis sets. The band gap for a single chain is about 3.6 eV. In ter
chain interactions lower the band gap to 2.98 e V  for the dimer, 1.95 e V  for the trimer, and 
2.59 e V  for the two-dimensional array [408]. Thus, interchain interactions are substantially 
larger with M P2  than with D F T  and scmiem pirical methods.

6. COMPARISON BETW EEN  THEORY AND EXPER IM EN T  
FOR PO LYM ERS

The calculations described in the last paragraph are the most accurate and realistic that are 
presently possible for C O Ps  in the solid-state. The L D A / G W / B S E  approach is the domain of 
solid-state physicists, and the supermolecular approach is the method o f choice for theoret
ical chemists. In this chapter an attempt is made to assess the accuracy of both approaches 
compared to experiment. In Fig. 10 the evolution of absorption energies in going from gas 
phase to crystal is shown for 6-T and PT. The first and the last entries are T D H F  excitation



228 C o n ju g a te d  O rg a n ic  Po lym ers : F ro m  B u lk  to M o le c u la r  W ire

3.0

2.8

2.6

3.2

E? 2.4 <D
l5 2.2

2 .0 -

1 .8 -

------* _ absorption
TDHF \

6T

emission \  ------ \  //T D H F

absorption _v '----- '  ! ^
and \  I

emission \  »
v I

RT single \ ___ /
solution matrix crystal film PT PMeT

Figure 10. Evolution of excitation energies form gas phase to polymer.

energies of the perfectly planar 6-T and 28-T molecules in the gas phase. A t a chain length of 
28 repeat units, the excitation energy has converged to 2.5 e V  and is considered to be iden
tical to that of an infinite isolated P T  chain. For 6-T T D H F  yields an excitation energy of 
2.92 eV. In room-temperature solution, absorption occurs at 2.86 eV, and emission at 2.45 eV. 
The difference of 0.4 e V  between absorption and emission disappears on cooling and is there
fore attributed to a disorder of the ground state in room temperature solution. It was argued 
in Section 2.2 that T D H F  is accurate for gas phase absorption energies. Therefore, the dif
ference between gas phase calculations and matrix absorption energies of planar molecules 
is attributed to the solvent effect, and the match between room temperature results and the
ory is a result o f the cancellation of the effects of solvent and of nonplanarity, as discussed 
in Section 4.2. In the crystal, the 1 B n exciton splits into two optically active Davydov com po
nents. The dashed lines connect the ‘B u absorption energy in matrix with its two Davydov 
components in the crystal. The lower Davydov component at 2.27 e V  lies —0.2 e V  below 
the absorption and mission peak in matrix; the higher Davydov component at 2.6-2.7 eV  
lies —0.2-0.3 e V  above. Absorption in polycrystalline films onsets at higher energy and the 
higher Davydov component is part of the collective polariton state at higher energy. PT  
shows only a broad absorption feature. The onset of absorption occurs at 2.2 eV, Amax at 
about 2.7 eV. Comparison with 6-T single crystal spectra indicates that the onset of absorp
tion in P T  corresponds to the lower-lying, low-intensity Davydov component, and Amax to 
the higher-lying, intense Davydov component. Both absorptions of P T  occur at slightly lower 
energies than those of 6-T, and therefore P T  should have somewhat increased conjugation 
lengths compared with 6-T. The last experimental entry is for regioregular polymethylthio- 
phene (P M e T ). The lower absorption energy compared with P T  was attributed to increased 
order and not to hyperconjugation [494]. Therefore, P M e T  may serve as a model for a well- 
ordered PT, and the 0.4 e V  lowering of the absorption onset reflects increased conjugation 
length. Thus, ideal three-dimensional P T  should have an onset of absorption of about 1.8 eV, 
Amax of 2.2 eV, Davydov splitting of 0.4 eV, and exciton-binding energy > 0.4 eV.

Several conclusion can be drawn from this comparison. First, gas phase absorption ener
gies differ from the lowest absorption in the crystal by a com bination of the medium effect 
plus the state splitting. The difference between T D H F  gas phase values and the experi
mental onset of absorption amounts to about 0.6 eV  for o-T and to 0.7 e V  for PT. The 
similar difference between theoretical gas phase excitation energy and experimental solid- 
state absorption onset supports the conclusion that the T D H F  excitation energy is reliable 
not only for molecules but also in the infinite chain limit. Second, onset of absorption of P T  
arises from the lower, and Amax from the higher Davydov com ponent of the same molecular 
excited state, and not from molecules with different conjugation length. Third, both onset 
of absorption and Amax of P T  are closer to those of 6-T than to those of PM eT. Thus, the 
conjugation length in P T  is probably far from the infinite limit. Fourth, as Davydov splitting 
is about 0.3-0.4 e V  for 6-T, 8-T, PT, and PM eT , there is no indication from experiment that 
Davydov splitting decreases with increasing conjugation length. There is also no indication 
that larger separation resulting from the substituents as expected for P M e T  decreases Davy
dov splitting. This is in contrast to predictions obtained with the supramolecular approach at
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the IN  D O /SC I level. Fifth. There is a substantial discrepancy between experimental Davydov 
splittings and those predicted with the L D A /G W / B S E  method for solids. Finally, the opti
cal gap with the LD A /G W /B S E  method was found to be 1.74 e V  for one- and 1.49 eV  for 
three-dimensional PT. If  the analysis above is correct, both values as well as the difference 
between them are too low.

7. CONDUCTING STATE OF CONJUGATED ORGANIC PO LYM ERS
Because C O Ps  have finite band gaps, they do not conduct unless free charge carriers are 
produced either by excitation of electrons from the valence into the conduction band [495] 
or by chemical or electrochemical oxidation or reduction [496]. The latter two processes 
are referred to as p- and n-doping, respectively. In practice, doping is done chemically, by 
exposing neutral samples to electron-accepting or electron-donating substances, or electro- 
chcmically, by charging films at electrodes in electrolyte solution. W ith  both methods, the 
charges introduced into the polymer are balanced with counter ions that move into the 
polymer lattice. Thus, all experimental results are obtained in the presence of counter ions.

Although the same terminology is used for organic and inorganic semiconductors, doping 
of C O Ps  differs substantially from that of inorganic semiconductors. Inorganic semiconduc
tors consist of rigid lattices o f individual atoms, whereas C O Ps  consist o f more or less crys
talline arrays of organic molecules. Inorganic semiconductors are doped by replacing atoms 
of one element with those of another having either one electron less or one electron more. 
For instance, silicon may be replaced by boron or phosphorus. This kind of doping does 
not lead to ionization and does leave the band structure unaltered. If  the doping element 
has one electron less, holes are created in the valence band; if it has one electron more, 
free electrons are added to the conduction band. In contrast, doping of C O Ps is achieved by 
ionization of the polymer chains. This kind of doping leads to ion formation with associated 
geometry relaxation and alters the band structure [3J. Counter ions are needed to balance 
the charges. The presence of counter ions influences energy levels, geometries, and crystal 
structures.

Because doping of C O Ps  alters the band structure, it influences optical spectra [3]. Neutral 
PA has a strong absorption at 1.9 e V  and an onset of absorption of 1.4 eV. On doping, 
the interband transition at 1.9 e V  decreases and a new intense absorption appears in the 
infrared region at an energy of about half that of the original transition. This behavior is 
independent of the dopant ion and of whether PA is oxidized or reduced [3]. For P T  and 
PPy, doping leads to two new transitions below the interband transition. The intensity of 
the original interband transition is reduced, and its energy is blue shifted. The experimental 
results have been explained successfully in terms o f solitons, polarons, and bipolarons [255].

Theoretical investigations indicate that two kinds of C O Ps  have to be distinguished, in 
principle [255]. The first class comprises systems with degenerate ground states. The most 
prominent member is PA. Degenerate ground state means that it makes no difference 
whether the positions of single and double bonds change place. I f  the chain is infinite, the 
energy and all other properties remain the same. If  such a system develops a defect or is 
doped, two fragments are obtained on both sides of the defect, in which the positions of dou
ble and single bonds are switched with respect to each other (Schem e 7). Such defects are 
called solitons [246, 247, 255, 497-501]. Individual solitons may be produced on imperfect 
chains. On excitation or doping, soliton-antisoliton pairs must form [3].

The second class of conducting polymers has a nondegenerate ground state. The majority 
of C O Ps  fall in this category. Consider polythiophene (P T )  (Schem e 8), for instance. Th io 
phene rings are aromatic. Therefore, the rings contain two double bonds and are connected 
with single bonds. If  the positions of double and single bonds are switched, the thiophene 
rings are quinoid and the interring bonds are double bonds. Because thiophene is a 6-77- 
electron aromatic ring, thiophene prefers the aromatic over the quinoid form. Thus, the 
ground state of P T  is nondegenerate, with the aromatic being lower in energy than the 
quinoid form. Because of this energy difference, thiophene rings next to the defect cannot 
simply adjust the positions of double and single bonds to bind the lone electron that is left
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Scheme 7.

behind when its bonding partner is removed. Hence, the cation (o r anion) site is coupled to 
a radical electron. Such a defect is called a polaron [250-252, 502, 503].

Rem oving a second electron may create a second polaron, or a so-called bipolaron. 
Schem e 9 shows bipolaron formation in polymers with nondegenerate ground states.

Scheme 8,
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Scheme 9.

Because two unpaired electrons are produced, pairing of all electrons can be achieved by 
switching the positions of single and double bonds between the two charges. This requires 
a quinoid segment to be formed between the two charges. The size of the bipolaron can 
be understood to be a compromise between minimizing Coulomb repulsion between the 
two charges by moving them as far apart as possible while keeping the high-energy quinoid 
segment as short as possible. This results in charge confinement. The doping processes were 
shown to be similar in bulk and in dilute solution. Thus, charge storage in the form of bipo- 
larons is not a solid-state effect but a property intrinsic to the molecules [3]. In polymers 
with a degenerate ground state, there is no energy cost associated with switching the position 
of single and double bonds. No confinement is required, and a soliton-antisoliton pair may 
form.

Theoretical treatment of optical spectra of doped bulk C O Ps  is a complicated problem. 
Macroscopic disorder, actual conjugation lengths, and effect of counter ions on the crystal 
packing and on the energy levels are hard to determine experimentally, and they are difficult 
to account for theoretically. Because doping leads to open-shell structures, calculation of 
optical spectra is even more complicated than for neutral species. In Section 2 important 
aspects regarding calculation of a much simpler problem, calculation of polyene spectra in 
the gas phase, are summarized. Because of the size of the systems and the more limited 
computer recourses from 25 years ago, much simpler approaches had to be developed at the 
time. The next paragraph describes these efforts in more or less chronological order.

The first theoretical treatment o f solitons, polarons, and bipolarons was done employing 
the Su-Shrieffer-Heeger (SSF1) Ham iltonian [246-248, 255, 498). The S S H  method is essen
tially a H iickel method that takes into account bond length alternation. It does not treat 
Coulomb repulsion between electrons in a self-consistent way. Counter ions and interchain 
interactions were not considered. W ith  the SSH  method, solitons extend over about 15 car
bon atoms in PA. A t the center of the soliton, B L A  is absent. The localized defect introduces 
a midgap state in the band gap. On doping, the singly occupied midgap state becomes empty 
or doubly occupied. P- and n-doping require the same energy, because relaxation effects and 
Coulomb repulsion are not accounted for. Despite the simplicity o f the approach, the midgap 
state leads to optical transitions in agreement with experimental observations. For polymers 
with nondegenerate ground states, polarons and bipolarons were found that are associated 
with two new energy levels in the band gap [3j. Sim ilar to solitons, positive polarons and 
bipolarons extend over a certain fragment of the chain and lead to reduced B L A  or bond- 
length inversion within that fragment. Bipolarons were found to be more stable than two 
separate polarons.
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Restricted H F  calculations on infinitely long Li-doped PA  chains [249] were carried out 
with subminimal Christofferson basis sets. L i atoms were positioned equidistant from three 
carbon atoms. The model corresponds to a doping level o f 33% . Charge transfer was ana
lyzed with M ulliken population analysis (M P A ).  Even at charge transfer of only 0.1 e V  per 
C H  unit, B L A  was absent. The charge transfer might actually be underestimated as a result 
o f known problems of M PA  with polar bonds, and especially with L i [504]. The presence of 
L i introduces two 2s bands in the gap, that mix strongly with the 7r* band, pulling it down 
in energy [249]. Using an adiabatic H iickel Ham iltonian with cr-bond compressibility [250], 
without considering interchain interactions and counter ions, the separation of the radical 
ion pair in PA was found to be small. Such a closely spaced radical ion pair is a polaron 
rather than a soliton. Thus, the soliton picture was found to be not unique for PA. A t higher 
doping levels, interaction between the radical electrons of two polarons led to recombination 
and the formation of two charged solitons carrying no spin. In poly(paraphenylenevinylene) 
(P P V ) ,  defects were predicted to be correlated in pairs as a result o f the absence o f a degen
erate ground state. The lattice distortion was found to involve about five rings. A t higher 
doping levels, uncorrelated solitons form in PA. and bipolarons or correlated charged soli
ton antisoliton pairs appear in PPV. Overall, PA and P P V  were found to be more similar 
than generally thought. Partial geometry optimizations were carried out with the restricted 
H F  method and STO -3G  basis set on quatermers of phenyl, pyrrole, and thiophene with Li 
and Na counter ions [5051. Band structure calculations were done employing V E H  on the 
R H F  geometries. Because about 8 0 %  of the charge was found on the two inner rings, it was 
concluded that bipolarons extend over about four rings in PPP. Two new states at 0.74 eV  
above the valence band and at 0.88 e V  below the conduction band appeared in the gap. 
For 4-Py only with Na charge transfer observed. Again, two new states appeared in the gap; 
4-T behaves very sim ilar to 4-Py. A lthough individual molecules with only four rings were 
considered, excellent agreement with experimental data for bulk P T  was claimed. Likewise, 
band structure calculations with a quantum mechanical version of the SSH  Ham iltonian on 
individual PPy  chains yielded quantitative agreement with experiment. Bipolaron binding 
energies with respect to two separate polarons were calculated to be 0.45 e V  in PPy  and
0.34 e V  in P P P  [253].

H igher levels of theory lead to much less consistent results. Investigation of the basis set 
dependence of charge transfer complexes showed that minimal basis sets are not adequate 
[506]. Correlation effects were shown to be important as well [506]. Polaron sizes increase 
when going from semiempirical to an initio methods and depend strongly on the presence 
of counter ions [506]. Explicit calculation o f the excitation energies of doped thiophene 
oligomers at i ? IN D O /S C I level [507] led to underestimation of transition energies of
0.6 eV. The second peak from H O M O  to the first polaron level was overestimated, and the 
transition from the first to the second polaron level was underestimated by 1 eV. In  contrast, 
good agreement with experiment was obtained between V E H  band energies and experiment. 
However, bipolarons led to only a single subgap absorption feature. P P V  and PT  were 
shown to behave similarly. A t the HF/6-31G* [508] level, quinoid structures in dications of 
thiophene oligomers were predicted to disappear and benzoid structures to develop with an 
increasing number o f rings. Optim ization at the C I  level [509] of polarons and bipolarons on 
thiophene oligomers indicated that bipolarons are only stable for short chains. Starting with 
the hexamer, triplet and singlet states are degenerate, which means that the two polarons 
do not interact. Two quinoid regions are separated by an aromatic region in the middle. 
The charge is located near the ends. The same conclusion was drawn from calculations at 
the H F  and R O H F  levels [510]. The excitation spectrum of the bithiophene radical cation 
was investigated at the C A S S C F  level [511]. The resulting transitions were compared to 
those predicted by the polaron model, where two new levels in the gap give rise to three 
intergap transitions. A ll transitions were found to be muiticonfigurational at the C A S S C F  
level. Two transitions were dominated by configurations that correspond to those predicted 
by the polaron model, but one additional excitation was obtained that has no counterpart in 
the polaron model.

Three-dimensional band structure calculations on PA employing D F T  showed that inter
chain interactions strongly reduce localization o f defects, destabilizing polarons and probably
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bipolarons [473]. For reasonable ranges of lattice distortions, no states were found in the 
band gap [471). D F T  has a tendency to underestimate localization, but the presence of local
ization on individual chains and the absence of localization in the crystal at the same level 
of theory shows that localization is overestimated if interchain interaction are neglected. 
Gradient-corrected D F T  calculations [512, 513] result in planar PPy  chains in the crystal, 
although 6-Py has an out-of-planc distortion at the same level o f theory. Doping of infinite 
chains in the crystal with chlorine atoms and molecules leads to out-of-plane distortions 
and quinoid deformations that extend over two rings. Charge transfer is incomplete, and 
the interactions are partially covalent. 6-Py cations are almost planar. Positive charges are 
found at the ends, whereas excess spin density occurs in the middle. Because bipolarons 
were shown to be unstable with respect to two polarons for thiophene oligomers, 77-dimers 
were invoked to explain conductivity in the absence o f an E S R  signal [514]. In the gas 
phase, dimers are unstable or metastable according to D F T  calculations. However, stability 
increases when medium effects are included. Stacks o f 4-T cations dimerized on geometry 
optimization. Thus, a metallic stack bccomes semiconducting as a result o f Peierls distortion. 
Three-dimensional band structure calculations employing D F T  on P P P  in the presence of 
sodium ions [515] showed that a phase transition to a hexagonal channeled structure occurs 
in which columns of sodium ions are surrounded by three P P P  chains. Doping left the rela
tive energetic positions of the carbon 77-bands almost unchanged. However, the Ferm i level 
was shifted upward because Na 3s electrons partially filled previously unoccupied 7r-bands. 
A  transition to the metallic state was predicted.

D F T  calculations, including those employing hybrid functionals, lead to complete delocal
ization of all defects in the absence of counter ions [516-518]. O n ly one hybrid functional 
that includes 5 0 %  of Hartree-Fock exchange seems to reproduce localized defects [519]. The 
highest-level calculations on the longest chains performed so far [516] show that H F  theory 
overestimates localization, predicting a polaron size in PA  of 15-16 units. A t the M P2  level, 
the defect extents over 36 C H  units. In the presence of counter ions, HF, M P2, and D F T  
agree that a positive defect extends over nine C H  units (counter ion C l) and a negative 
defect (counter ion L i)  over five C H  units [516]. The different size of positive and negative 
defects may partially be a result of different amounts of charge transfer.

In summary, the nature and the extension of charged defects depends strongly on the 
theoretical level, the basis set, the presence of interchain interactions, and especially the 
presence of counter ions. There is experimental evidence for localization, but these results 
were obtained in the presence of counter ions. There is, therefore, no experimental evidence 
that localization occurs in the absence of counter ions. The strong localization obtained 
with semicmpirical methods may well be a result o f the approximate treatment of Coulomb 
interactions. Localization decreases from semicmpirical to H F  to correlated methods. There 
is very little localization with D F T  methods unless a substantial amount of H F  exchange is 
used, although DFT/hybrid methods are usually very successful for geometry optimizations. 
This problem is probably related to the difficulty of D F T  in treating long-range interactions. 
Because a large dependence of the results on the level of theory quite often indicates very 
small energy differences, the underlying reason for the theoretical problems might be that 
energy differences between localized and delocalized defects are small. This possibility is 
investigated in the following paragraphs.

C „ ):H 104. C 1(i2H ^ ,  24-T, 24-T:+r22-Py, and 22-Py24 were optimized at the HF/CEP-31G* 
and at the B3P86-30%/CEP~31g* levels of theory. D ifferences in bond lengths were evalu
ated by comparing bond lengths in neutral chains with those in the charged systems. The 
results for C ,()2H ^ 4 and for 24-T:+ are plotted in Figs. 11—14 at the H F/CEP-31G* and 
B3P86-30%/CEP-3 IG* levels of theory. A t the H F  level, the geometry of the C 1U2H ^ M ion 
corresponds to a soliton-antisoliton pair. Starting from the ends, single bonds decrease and 
double bonds increase in length, going through a region with no B L A .  In the middle part of 
the molecule, changes in bond lengths are constant and correspond to a complete inversion 
of single- and double-bond positions. In this region, B L A  is exactly equal to that in the neu
tral chain. W ith  DFT, the trend is similar, but the fragment in which B L A  is equal to that 
of the neutral system but single- and double-bond positions are switched is much shorter 
because the extension of the solitons is wider.
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Figure 11. Bond length changes on double ionization in C,(rl l lu4 at the H F level.
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Figure 12. Bond length changes on double ionization in C m,H 1((4 at the DFT level.
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Figure 13. Bond  length changes on double ionization in 2 4 T  at the H F  level.
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Figure 14. Bond length changes on double ioni/ation in 24-T at the DFT level.

The 24-T:+ ion behaves very similar to C ,()2H j({4 at the H F  level, with two charged defects 
at the ends of the chain. The difference is that the middle part of the molecule shows 
no switching of single- and double-bond positions. Thus, 24-T2 develops two polarons on 
charging. It is noteworthy that this happens although the calculation of a bipolaron was 
attempted and a closed shell singlet state was defined. The proper treatment of two polarons 
would require multireference calculations involving at least four electronic configurations 
[509]. Thus, the two polarons formed, although the calculation is strongly biased toward 
bipolaron generation. This confirms that bipolarons are unbound in the absence of counter 
ions at ab initio levels, when long enough chains are considered. D F T  also produces two 
polarons, but the extend is again much wider, and the changes in bond lengths in the middle 
o f the molecule are larger.

To examine the energy cost associated with the differences in geometries at H F  and D F T  
levels, single-point calculations were carried out at the F IF  level on the D F T  geometries 
and at the D F T  level on the H F  geometries. Because total energy differences increase 
with chain length, the differences were evaluated per repeat unit. The proper repeat units 
for P T  and PPy  are two rings in transconformation. For comparison a segment of sim ilar 
size, C SH S, was considered for PA. The energy differences between the two geometries 
are 3.02 and 2.44 kcal/mol for PA  at H F  and D F T  levels, 1.30 and 1.10 kcal/mol for PT, 
and 1.26 and 0.97 kcal/mol for PPy. Especially for P T  and PPy, the energy differences are 
so small that even the highest levels of theory would be challenged. To reach “ chemical 
accuracy”  with errors o f about 1 kcal/mol, highly correlated calculations with extended basis 
sets are required. This explains the sensitivity o f the geometries to the level o f theory and 
the difficulties encountered during the geometry optimizations, which require 10-20 times 
as many optimizing steps as with more “ well-behaved”  molecules.

Theoretical results thus indicate that the geometries of long-conjugated ions can adjust to 
very different geometries at a small energy cost. W hen potential energy surfaces are that flat, 
exact values of bond lengths and angles have much less meaning than for stiff molecules. 
This is exactly what is required for efficient charge transport. The discussion about exact 
polaron sizes in the gas phase is thus fairly meaningless. Any external influence such as 
interchain interactions or counter ions will have a profound influence on the final structure. 
This explains nicely why all levels of theory agree about the width of polarons when counter 
ions are considered.

8. POLARIZABILITY
To calculate polarizabilities, molecules or polymers have to be exposed to an electric field. 
In the finite field approach for molecules, the operator (-cE r) is used to represent the 
potential of the electric field. Calculating polarizabilities of infinite systems in the same way
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is problematic because the operator for the potential o f the electric field is unbound and 
destroys the translational symmetry of the polym er [520]. The oligomer approach has been 
used extensively [407, 521-532], but the problem here is that polarizabilities first increase 
and then reach an asymptotic limit [533]. Therefore, extrapolation can not be applied using 
small oligomers. Because the convergence is very slow, required system sizes are often 
prohibitive.

The first method that has been worked out for treating infinite systems was based on the 
tight-binding approximation [534, 535]. The chains were assumed to be independent, and 
infinite, electronic repulsions and geometry relaxations leading to excitons were neglected. 
Another approach to solving the problem is to average the polarizabilities from various 
energy-band structure calculations for periodic systems with different but constant potentials
[536]. Partitioning the electric-field operator into two components, one describing the polar
izing effect and the other one describing the acceleration of the electrons, allows preservation 
o f translational symmetry by taking into account only the first term [407, 520]. The method 
was implemented at the H F  level. M ore recently it was suggested that the perturbation is 
only unbound if the interaction with the electronic or nuclear dipole is treated separately
[537]. H F  calculations with this approach showed good agreement with literature values. An  
approximated method at the uncoupled H F  level was implemented and used to establish 
trends because polarizabilities were underestimated [533]. The most complete treatment of 
static and dynamic non-linear optical effects for polymers was developed employing R P A  
without neglecting any terms [538-540]. The results with this method agree well with those 
of oligomer calculations.

The uncoupled sum over states (S O S ) scheme [533] was compared to R P A  polarizabilities 
of oligomers of increasing size [541]. The S O S  approximation underestimated the R P A  values 
by 30-50% but reproduced the trends correctly. Polarizability was shown to increase in the 
order PPy, polyfuran (P F u ), PT, polydiacetylene, PA. For all systems investigated, the highest- 
occupied 7r-orbital makes the largest contribution to the polarizability [542]. Inclusion of 
relaxation effects at the coupled H F  level o f theory [523] showed similar trends as with 
R PA . increasing polarizabilities compared to uncoupled HF. Interm olecular interactions were 
examined employing hexatriene as a model fo r PA  [543]. The polarizability was reduced by 
5 0 %  and second hypcrpolarizability by 9 5 %  compared to single-molecule values.

Inclusion of electron correlation effects with M P2-M P4, C C S D , and C C S D (T )  decreases 
the polarizability, a [544, 545]. The first hypcrpolarizability /3 increases at the M P2  level 
[546]. Basis sets have to be much larger than for H F  calculation, or the correlation effect 
is overestimated. For ccntrosymm etric acetylene oligomers, (3 vanishes because of symme
try, a decreases, and the second hypcrpolarizability y increases when correlation effects 
are included at the M P2 , M P4, and C C S D (T )  levels of theory. Because correlation was 
shown to be important, the performance of D F T  was investigated [531]. W ith  all common 
D F T  functionals, both a and y increase substantially for acetylene oligomers. Inclusion of 
H F  exchange ameliorates the problem somewhat, but unreasonably large amounts of H F  
exchange are needed. As with excitation energies, the problem increases with increasing 
chain length. Thus, D F T  with currently available functionals fails in computation of nonlinear 
optical effects.

So far, only static polarizabilities have been discussed. Dynamic polarizabilities take into 
account the frequency dependence [407, 547]. For 7r-conjugated molecules, the importance 
of the vibrational part to the first hyperpolarizability depends on the nature of chemical 
system [530]. The smaller the B L A ,  the larger the contribution of the vibrational compared 
to the electronic part. Fo r polymers, dynamic polarizabilities have been calculated, tak
ing interchain interactions into account [548]. Compared to literature values, the frequency 
dependence tends to lower the polarizability. Dynam ic hyperpolarizabilities of PA, OH- and 
F-substituted PA, PPy, P Fu , PPP, P T  and PAn were evaluated [549]. At the H F  level, parent 
PA is more polarizable than the substituted forms. W hen  correlation is included, polyfluo- 
roacetylene is the most polarizable. In the series of polymers with aromatic rings, polyaniline 
is twice as polarizable as P T  followed by PPP. PPy. and PFu. Calculation of dynamic polar
izabilities at the R P A  levei confirms that vibrational contributions can be very important
[538],
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9. CONDUCTIVITY
Macroscopic conductivity through hulk C O Ps  is a complicated process that is strongly influ
enced by heterogeneous disorder [277]. Because C O Ps are made of very long conjugated 
molecules, conductivity is largest in chain direction and is lim ited by the need for hop
ping between chains. It is therefore interesting to investigate conductivity through small 
bundles o f well-aligned polymer chains [20, 56] or through individual molecules. It is now 
possible to measure conductivity of individual molecules in self-assembled monolayers with 
scanning-tunneling microscopy and with atomic force microscopy [49, 90, 91, 97, 99, 105, 
106, 550]. M any theoretical studies are done on mesoscopic and nanoscopic devices [38, 50, 
98, 100, 101, 103. 104, 107, 280, 550-575] consisting of conjugated molecules connected to 
jellium  or gold contacts, usually via sulfur bridges. Charge is transferred under the influence 
of an external field. Transport through the molecular wire bridge is a many-body problem 
that depends on the electronic structure of the molecule, the coupling between the molecule 
and the contacts (leads), the energy difference between the molecular energy levels and the 
Ferm i energy of the leads, geometry changes resulting from charges entering or leaving the 
molecule, and the polarizability of the molecular wire. In the operation of the molecular wire 
device, at least two regimes can be distinguished [280]. If the energy of the tunneling particle 
coincides with a resonance of the wire, electrode system, the molecule may behave like an 
ideal macroscopic wire, and the current is independent of the distance between electrodes 
(neglecting the usual resistivity contributions). In the other regime (at low bias), the parti
cle has to travel through a barrier and the current decreases exponentially with electrode 
distance.

G = G°e yl

where G  is the elastic conductance, G ° is a prefactor that depends on the electronic inter
actions between the molecular wire and the contacts, y  is a damping factor that depends 
on the electronic structure of the molecular wire, and L is the length of the molecular wire. 
The above equation holds for tunneling currents when the bias voltage is lower than the 
H O M O - L U M O  gap. The current through such tunnels is low [38[, but the tunnel path is 
more transparent to electrons than vacuum [554].

Because of the complexity of the problem, approximations have to be made. If  the one- 
electron approximation is used and geometry relaxation is neglected, the current can be 
described as a scattering process during which the electron that resided initially at one elec
trode is detected at the other electrode at a different time [280j. The stationary current is 
the total electron transfer rate times the electronic charge. The current is as highly non
linear function of the applied voltage. I (V )  curves can be calculated with the Landauer 
formula, which relates the conductance to the electron transmission probability [38, 280, 
551, 552]:

The quantum unit conductance 2c2//i equals about 77 /xS [562[. The transmission function 
T (E t ) can be obtained with Green function techniques [280, 551, 552] or by solving the 
Schrodinger equation directly for the scattered wave function using the one-electron tight- 
binding [38] or Hubbard [550] Hamiltonians. Different approaches to calculate transmission 
functions have been reviewed and compared [556]. The efficiency of a tunnel path is mea
sured in units o f transparency. Because transparency controls the intensity of the measured 
current of the macroscopic circuit outside the junction, this is called electronic conductance 
G o f the molecules, although the major part of the measured dissipation is a result of the 
macroscopic part o f the junction [554]. A  major factor in the conductance is the energy of 
the leads relative to those of the molecule in the junction. Therefore, the I ( V )  curves show 
a staircase behavior, each step being associated with the opening of a resonant channel as 
the bias shifts the energy levels of leads and molecule with respect to one another [280], If  
resonance is encountered, the enhancement in conductivity is dramatic [98].
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I f  the transmission function is calculated from the electronic structure of the molecule 
in the ground state, geometry relaxations that are expected to be important in organic 
molecules on charging are neglected. The influence of vibrations was examined by calculating 
the current for different geometries [553]. Geom etry distortions that influence the electronic 
structure have a strong influence on the current. Localized geometry changes on charging, 
such as polarons, can be explicitly examined with the Marcus theory [563, 571, 576-578].

The influence of the contact geometry was investigated for the p-benzene dithiolate 
molecule between gold contacts, treating the molecule cluster complex as a single entity in an 
extended H iickel tight-binding scheme [38]. Fo r a weakly coupled system, the transmission 
was shown to be dominated by the energy levels of the free molecule. For strong coupling, 
the energy levels of the molecule are distorted and the transmission reflects this. Transmis
sion was shown to be sensitive to geometry and bonding. The more cluster states interact 
with the molecule, the greater the transmission. However, calculated conductivities overes
timate the experimental values.

The superposition law was examined for tunnel junctions operating in the tunneling trans
port regime [554]. Superposition law means that the conductance of n molecules is n times 
the conductance of a single molecule, just like in macroscopic devices. If  both ends of the 
molecules are absorbed independently on the electrodes, as a first approximation, the total 
junction conductance is the summation of all the conductances in the junction. A  correction 
can be made considering the coupling of the molecules through the surface of the electrodes. 
If  the molecules are connected in the junction, the superposition law becomes quadratic.

A  more realistic description of conductance was achieved using the Landauer formula but 
describing the molecule and the contacts with the H F  method [98]. This approach accounts 
for polarization of the molecule and for the charge transfer caused by contact between 
molecule and leads. Because charge transfer changes the molecular energy levels, it has a 
major influence on the conductance. The main conclusion of this investigation is that the 
Ferm i level o f the leads does not necessarily occur in the middle o f the H O M O - L U M O  gap 
o f the molecule, as previously assumed. The injection level is the work function of the metal 
and lies, for p-benzene dithiol, close to the H O M O  level o f the molecule. Because the H F  
method was used, the energy of the H O M O  level is reliable, and hole conductivity is well 
described. In contrast, unoccupied orbitals lie at unrealistically high energies, and electron 
conductivity cannot be examined.

The opposite problem exists with D F T  applying L S D A , as the H O M O - L U M O  gap is 
underestimated. A  p-benzenedithiolate molecule was placed between two jellium  electrodes 
in the presence of an external field [555]. The  electron wave-functions were computed 
by solving the Lippman-Schwinger equation (which is equivalent to the Landauer formula 
[568]). Exchange and correlation were included because L S D A  was employed. Geom etry 
relaxation was not accounted for. The differential conductance was computed as the deriva
tive of the current with respect to external bias. The shape of the I ( V )  curve was the same 
as the experimental one, but the current was found to be two orders of magnitude too high. 
The insertion of a gold atom at each metal molecule contact lowered the current by one 
order of magnitude; replacing the gold atoms with aluminum atoms raises the current by one 
order of magnitude. In a comment on this work [560] it w'as suggested that the experimental 
junction might actually consist o f two individual molecules absorbed on each side of the 
junction, rather than one single molecule attached with both ends to the two leads. Theoret
ical treatment of such a model explained the experimental results very well [50]. However, 
the overestimation of the conductance with L S D A  may very well be a result of the known 
problem of D F T  with underestimation of band gaps and overestimation of delocalization.

The transmission function was calculated employing G reen  functions based on the 
B3PW 91 hybrid density functional to compute the conductance of p-benzene dithiol 
monomer [561], and for monom er through hexamer [559]. In contrast to H F  and L S D A , 
the B3PW 91 functional should reproduce roughly the correct energy gap— one requirement 
for a reliable description of the conduction process. However, the problems detected with 
D F T  for polarizabilities might influence the calculation of conductivities of extended sys
tems. In contrast to what might be expected. H F  overestimates conductance compared to 
D F T  by one to two orders o f magnitude [561]. This could be because D F T  shifts H O M O
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and L U M O  energies of 7r-systems compared to H F  and experiment by about I c V  [399, 
419). Therefore, a resonance that is present at the H F  level may vanish with D F T  and vice 
versa. A  strong correlation was found between the density of states and the transmission 
function [559]. Delocalized orbitals were shown to allow for better transmission than local
ized ones. E lectronic levels shift non uniformly through contact with the leads and may switch 
energetic order [559, 562]. D ifferent M O s of the isolated molecule may combine on interac
tion with the contacts and open a conduction channel with high transmission function [559, 
569]. Conduction was shown to be largest when the molecule was connected to a single gold 
atom [559].

10. SUMMARY
There are two approaches to deal with extended systems. One is based on using the transla
tional symmetry of infinite polymers. Polym er properties are calculated for repeat units using 
periodic boundary conditions. It was assumed for a while that this is the only proper treat
ment of polymers. However, computer power has improved, and algorithms became more 
efficient, allowing calculations on oligomers with a couple hundred atoms. As experiments 
showed that polymer properties are quite similar to those of relatively short oligomers, the 
oligomer approach gained acceptance. Theoretical data presented in Section 3 for thiophene 
oligomers show that starting with oligomers with 14 rings, the excitation energies are only
0.2 e V  higher than at the saturation limit. Beyond 21 rings, the difference is 0.1 eV. These 
numbers were obtained in the absence of disorder. Thus, the oligomer approach is reliable, 
employing moderately sized oligomers.

C O Ps can be used as bulk materials, as nanofibers, or as individual molecules. In all cases, 
the properties are dominated by those of the polymer chains, but the influence of disorder, 
medium, and interchain interactions is very different. Bulk materials are usually mod
eled as idealized cases with three-dimensional band structure calculations, neglecting disor
der. Individual polymer chains can be examined more easily and realistically with oligomer 
calculations.

Theoretical levels may be divided into three categories: semiempirical, ab initio, and D F T  
methods. A ll three approaches are used extensively in oligomer and polymer calculations. 
Basis set evaluations showed that the size o f basis set becomes less crucial the larger the sys
tems are. Polarized valence double zeta basis sets are adequate for almost any application. 
Sem iempirical calculations are usually successful for the property for which they are param
etrized. HF' calculations are a substantial improvement over semi-empirical methods, espe
cially over approaches in which Coulom b repulsions are not treated self-consistently. DFT, 
which is extremely successful in molecular calculations, has to be handled with care when ext
ended 7r-systcms are involved, as currently available exchange-correlation functionals have 
difficulties with describing long-range interactions. This causes problems with excitation ener
gies, with the extent of solitons and polarons in the absence of counter ions, and with polariza- 
bilities. It is expected that the calculation of conductivities suffers from this deficiency as well.

The relationship between band gaps and excitation energies was evaluated for polyenes 
in the gas phase, and the performance of theoretical methods was analyzed. It turned out 
that even the highest-level ab initio methods have difficulties with obtaining accuracies better 
than ±0.2 eV. They are successful, however, in determining the correct order of the excited 
states. I f  only the band gap is required, it is sufficient to calculate the energy of the lowest 
allowed excited state accurately. For this purpose, T D H F  turns out to be more accurate 
than higher-level approaches. The advantage with this method is that no configuration space 
has to be selected and that small and large systems can be treated on equal footing. The 
geometries have to be optimized at a level of theory that produces accurate B L A ,  as there is 
a large influence of B L A  on the band gap. T D D F T  is, in general, superior to T D H F  for the 
calculation of spectra but has difficulties with the lowest allowed excitation of conjugated 
7r-svstems, especially for long chain lengths. T D D F T  is therefore not reliable for obtaining 
polymer band gaps.

Because the lowest allowed optical transition in C O Ps  is dominated by a single
electron configuration that is characterized by excitation of one electron from H O M O  to
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L U M O , H O M O - L U M O  gaps can bc used as an approximation of the excitation energies. 
H O M O - L U M O  gaps for oligomers are the equivalent of band gaps o f polymers. To pro
duce reliable band gaps, orbital energies have to have reasonable values. Huckel theory was 
parametrized to produce the band gap of PA  and is also successful for other Tr-systems. A t 
the H F  level, the negative energy o f the H O M O  gives a quite accurate estimate of the IP. H F  
theory overestimates band gaps substantially because the virtual orbitals lie very high. V E H  
was parametrized to reproduce H F  results. Interestingly, it produces good band gaps and 
bad IPs. Pure D F T  methods suffer from underestimating band gaps and do not give reliable 
estimates for IPs. Hybrid functionals describe H O M O - L U M O  energy differences correctly, 
whereas IPs and E A s  are shifted relative to experiment [399, 419]. M oreover, calculations 
on oligomers show that the energy gaps decrease too fast compared to experiment.

Medium effects have pronounced effects on band gaps. Solvents lower excitation ener
gies, and interchain interactions cause splitting of the excitons into lower and higher lying 
components. For thiophene oligomers the combined effect is a lowering of the lowest exci
tation energy o f about 0.6 e V  compared to the gas phase value. The  lower excitation is 
weakly allowed and corresponds most likely to the onset of absorption of the polymer. The 
higher-lying component is strongly allowed and gives rise to Amax. Because medium effects 
lower excitation energies and splitting caused by interchain interactions raises the energy of 
the higher component, partial cancellation occurs and Amax of polymers lies relatively close 
(±0.2 e V ) to the gas phase value. This explains why band structure calculation on single 
chains appears successful for obtaining bulk polymer band gaps.

There is experimental evidence that charged defects in C O Ps  are localized in the presence 
of counter ions. Crude semicmpirical methods reproduced these findings even with gas phase 
calculations in the absence of counter ions. H igher levels of theory produce defects that 
are much more delocalized and show no evidence for the existence o f bipolarons on long 
chains in the absence of counter ions. H F  theory still overestimates localization compared to 
M P2, and D F T  underestimates it. The energy differences between the structures obtained at 
different levels o f theory are so small that the final conformations are probably determined 
by the position and the nature o f the counter ions.

Polarizabilities of oligomers can be calculated with most quantum chemical program pack
ages. The convergence with increasing chain length is slower than for band gaps. Therefore, 
several approaches were developed to implement methods to calculate polarizabilities of 
polymers. This turned out to be difficult because the application of the potential that repre
sents the electric field destroys the translational symmetry of the polymer. The difficulty has 
finally been overcome, and codes exist that em ploy coupled perturbed F IF  theory and T D H F . 
D F T  was tested as well but shown to be unsuitable. Because o f the problems with long-range 
interactions, D F T  substantially overestimates polarizabilities and hypcrpolarizabilities.

Finally, conductivity through mesoscopic devices is receiving increasing experimental and 
theoretical attention. Theoretical treatment o f conductivities is influenced by practically all 
of the issues discussed in the preceding chapters. Single molecules are connected to contacts, 
and a voltage is applied. A t low bias, when the Ferm i level o f the contacts lies in the band 
gap, charge transport occurs via tunneling, and currents are in the p A  range. As the bias is 
increased, energy levels move with respect to each other, and resonant channels open with 
a dramatic increase in conductance. A  theoretical description requires the exact knowledge 
o f the energy levels and band widths of the oligomer in contact with the leads. Because 
chemical potentials o f different systems tend to equilibrate on contact, electron densities 
change. Thus, charging occurs with its associated geometrical rearrangements. This situation 
involves charging in the absence of counter ions. The above description of charged defects 
shows tiiat the theoretical level has to be chosen carefully. Applying a bias polarizes the 
molecule. Therefore, polarizability and hypcrpolarizabilities should be accounted for. Current 
implementations use Huckel and Hubbard Ham iltonians, H F  and D F T  The shapes of the 
I (V ) curves are usually reproduced well, but currents tend to be overestimated by several 
orders of magnitude.

In conclusion, there has been intensive theoretical research on describing all aspects of 
C O Ps. Theory has contributed a great deal toward understanding the physical processes that 
govern electrical and optical properties of C O Ps. Reaching quantitative agreement between
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theory and experim ent is still not easy. O n  the one hand, experim ental data are influenced 
by a num ber o f factors that are hard to control. O n  the o th e r hand, theoretica l m ethods 
are approxim ate and biased e ithe r toward too m uch localization (as sem iem pirica l m ethods 
and H F  theory) or toward too  much delocalization (as D F T ) .  N onetheless, w ith  a c lever 
choice o f methods, im portan t insights and reliab le com parisons between d ifferent systems 
can be achieved.
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1. IN TR O D U C T IO N

The past decade has seen an explosion of research at the nanoscale, and polymer nanocom
posites have been one of the early material success stories. Research in the area of 
nanocomposites has progressed based on interdisciplinary interactions between multiple 
branches of science and engineering as shown in Fig. I. W h ile  the interactions between 
the branches are sometimes binary (e.g., finite elements represents an intersection of com
putation and mechanics, often without significant input from materials science and chem 
istry), for nanocomposites much greater interaction among these different areas is becoming 
increasingly necessary and, to a large extent, realized. The macroscale behavior of polymer 
nanocomposites is due to the local, mesoscale, and macroscale interactions and mechan
ics of polymer chains and the nanoinclusions, requiring the use of sophisticated computa
tional modeling tools at scales from quantum mechanics to structural mechanics, and careful 
experimental analysis ranging from X-ray photoelectron spectroscopy (X P S )  and atomic 
force microscopy (A F M )  to classical fracture mechanics. In this chapter, we will introduce 
the fundamentals of polymer-based nanocomposites with an emphasis on nanomechanics 
and the modeling strategies currently used. W hile  we attempt to cover nanocomposites 
very generally, our frame of reference is grounded within the mechanics and materials sci
ence disciplines. In addition, emphasis will be given to nanotube reinforcements over other 
forms of nanoscale reinforcement due to our more extensive background in this area. W h ile  
other nanoparticle types will be discussed in general terms and with some limited exam
ples, many of the modeling issues highlighted for nanotubes translate directly to the other 
nanoparticle forms.

The remainder of this section will review the different types of nanoparticle reinforcements 
and their specific characteristics, and highlight the unique properties of and potential for 
nanoreinforced polymer systems. In addition, while an understanding of basic mechanics is 
presumed throughout this chapter, a brief introduction to viscoelasticity and the mechanical 
behavior of polymers will be presented in Section l .3 to assist readers who may be unfamiliar 
with these areas.

1.1. Motivation for Nanoreinforced Materials
Polymer matrix composites evolved as a structural material in the i% ()s ,  emanating from 
the pursuit o f advanced lightweight, high-strength, corrosion-resistant materials for high- 
performance defense applications. The advantages o f composites are many; they combine 
light, easily formable polymers with stiff and strong fibers into a highly tailorable structural 
material. Traditional composites contain a high volume fraction (usually ^ 6 0 % ) of fibers, 
which can be oriented and constructed to provide materials with directionally-tuned proper
ties. W ith  these advantages, however, comes a complexity of material response significantly 
beyond that of monolithic materials. The complex m icrostructure, coupled with the time-and

Modeling
• Q uantum
• M D
• M ic rom echan ics
• Continuum  m ech an ics

Experimental testing
• P ro cess in g
• K inetics
• A F M
• N ano indentation
• Viscoelasticity
• T herm a l deg radation

Figure I. Contributions to the study of polymer nanocomposites hinge on interactions between several fundamental
fields of science and engineering.
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cnvironmental-dependence of the matrix polymer, makes prediction of long-term perfor
mance and assessment of damage evolution challenging [1). Nevertheless, the performance 
gains of traditional polymer composites outweigh the uncertainties in the design process 
and have led to revolutionized structural concepts in aerospace vehicles, sports equipment, 
medical implants, and automotive parts.

A  precursor to nanocomposites, carbon black-filled polymers have been used for decades 
with primary emphasis on creating electrically conductive polymers with filler particle load
ings on the order of 10% [2]. Carbon black particles are agglomerates of amorphous car
bon, with typical particle dimensions on the micron scale and have been typically employed 
in rubbery polymer matrices, where some improvement o f mechanical properties was also 
observed.

The transition to true nanocomposites began in the 1980s with Toyota engineers seek
ing ways to increase the temperature range of inexpensive plastic materials to replace 
metal parts in car engines. A  layered silicate clay (m ontm orillonite) was modified via ion 
exchange, decreasing its hydrophilic nature and swelling the galleries, and then mixed with 
e-caprolactam. Ring opening polymerization was then activated which formed nylon-6 re in
forced with well-exfoliated clay plates creating a “ molecular composite” [3]. At clay loadings 
of 4 % , mechanical properties were significantly improved, and the heat distortion tem
perature increased by 100°C, enabling the new nanocomposite to be used in the engine 
compartment for belt covers and other applications. In the United States, General Motors 
introduced the first commercial automotive exterior application for nanoclay-polymer com 
posites in the 2002 C M C  Safari and Astro  vans; the use of polymer-clay nanocomposites was 
later expanded for use on body side molding in the 2004 Chevrolet Im pala and the cargo 
bed of the 2005 Hum m er H2 sport utility truck. A t this time it is estimated that General 
M otors is using 660,000 pounds of nanocomposites in its vehicles per year [4j.

Around the time that Toyota's work on clay nanocomposites became known, interest in 
carbon nanotubes exploded just as the technology to create, view, and manipulate nanoscale 
objects was rapidly ripening [5]. These factors, together with funding availability for explo
ration of nanomaterials, led to intense development and study o f a variety of nanocompos
ites. In itial results on nanoparticle reinforcem ent were inconsistent with respect to changes 
in fundamental thermal and mechanical properties. The assembled work began to indicate 
the numerous parameters influencing overall nanocomposite performance: dispersion and 
distribution of inclusions, load transfer from inclusion to matrix, geometric arrangement of 
nanoparticies, mechanical response o f the nanoparticies at the nanoscale, interphase poly
mer formation and properties, and chemical modification of the nanoinclusion. The most 
significant factor initially was nanoparticle dispersion: reducing nanoparticle clustering so as 
to increase the surface area o f contact between polymer and nanoparticies. W ith improved 
processing methods, modulus increases in nanocomposites are more consistent for well- 
dispersed systems; however, improvements in strength and toughness remain more elusive.

In addition to mechanical property improvements, nanocomposites offer several strate
gic multifunctional targets. As with carbon black, some nanoparticies are electrically con
ductive (e.g., carbon nanotubes), leading to electrically conductive composites. For platelet 
shaped nanoparticies, thermal and diffusional barrier properties are important, with dra
matic decreases in perm eability coefficients for water vapor, helium, and oxygen consistent 
with a model of increased tortuosity o f the diffusing vapor particles [6, 7]. These multifunc
tional considerations are a huge driving force for continued nanocomposite research and 
development. To summarize, a list o f major motivations for using nanoscale reinforcement 
for nanocomposite applications in c lu d e d

1. Mechanical properties of the inclusion materials. Num erical simulations predict tensile 
moduli on the order o f 1 T Pa  for nanotubes, making them perhaps the ultimate high
stiffness filler material. Num erical simulations and experimental findings also suggest 
large elastic (recoverable) strains for nanotubes. O ther forms of nanoreinforcement, 
such as nanoclays and graphite nanoplatelets, also have high modulus values for rein
force m ent enhancement.

2. Extremely high strength- and stiffness-to-weight ratios. G iven the exceptional mechan
ical properties and low densities associated with typical nanoreinforcements,
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nanocomposites with high volume fractions of nanoinclusions may result in strength 
and stiffness weight ratios unachievable with traditional composite materials, offering 
substantial weight savings for weight-critical applications. Hybrid multiscale compos
ites, where nanoreinforcement is added to the matrix material in traditional m icron
sized fibrous composites, have also been proposed.

3. Multifunctionality. In addition to their outstanding mechanical properties, nanotubes 
and other forms of nanoreinforcement have also been shown to have exceptional 
electrical and heat-related properties, suggesting materials that may be designed to 
meet mechanical as well as secondary material property specifications. For example, 
low volume (weight) fractions of nanoreinforcement have been used to enhance the 
electrical conductivity, increase the working temperature, and (prim arily for platelet
shaped reinforcement) improve the barrier and diffusion properties of polymers.

Despite these potential benefits, a number o f critical issues must be overcome before the 
full benefit of such materials can be realized. Such issues include:

1. Understanding and control of load transfer between the nanoreinforcement and the poly
mer. W h ile  several examples of excellent load transfer between nanotubes and a 
polymer have been demonstrated, comprehensive models o f load transfer for these 
and other nanocomposite systems are lacking. Functionalization of the nanotubes 
(and other nanoparticles) is also being pursued as a way to improve load transfer 
and between the nanoparticles and the polymer, and models of how functionalization 
impacts the nanocomposite mechanical response would be desirable.

2. Dispersion of the nanoreinforcement within the polymer. Proper dispersion will be nec
essary for optimal and uniform material properties. Efforts to model the impact of 
imperfect dispersion on nanocomposite response are ongoing. For nanoplatelet rein
forcement. issues related to intercalation and exfoliation of the individual platelets 
are critical for optimal property enhancement.

3. Orientation and geometry of the nanoinclusions within the polymer. W h ile  methods have 
been developed to orient free-standing and as-grown nanotubes, methods to con- 
trollably orient nanotubes and other nanoparticles in bulk polymers are still under 
development. Methods utilizing mechanical load, electrical and magnetic fields, and 
nano- and micropatterning are being explored to attain morphological control of 
nanoparticles within the polymer.

4. Effective properties and behavior of nanocomposites at the nanoscale. W h ile  the prop
erties of nanotubes are known to be dependent on the method of production, 
reinforcement will depend on the form of the nanotube (single-walled nanotube, 
multi-walled nanotube, or nanotube bundle). The relationship between these variables 
and mechanical properties needs to be further elucidated. Further, models of the 
local nanoscale changes in polymer behavior due to interactions with the embedded 
nanoparticles also need to be developed.

These points illustrate the need for accurate models o f nanocomposite behavior necessary 
to aid in the interpretation of experimental results; this will lead to a more comprehensive 
understanding of the key mechanisms underlying the nanocomposite thermomechanical- 
electrical behavior. Such models in the long term will enable aggressive material and struc
tural design strategies that fully leverage the benefits o f such materials. However, modeling 
of these systems is challenging due to the small length scale of the nanofiller elements. In 
addition, the need to understand interactions between nanoparticle and polymer chains at 
the nanoscale, between neighboring nanoparticles, and over regions o f many nanoparticles, 
imply that mechanisms to bridge length scales in modeling are essential.

An  example of the need for a multiple-Iength scale modeling approach is the formation of 
a nonbulk interphase region in nanocomposites. The interphase is a region of polymer near 
the nanoparticle that exhibits properties different from the bulk polymer. W h ile  experimental 
work has estimated the interphase thickness for traditional carbon fiber-epoxy composites 
to be on the order of 1 urn for a 25 /xni d iam eter fiber [8., 9], there is growing evidence that 
the zone of altered polymer behavior in nanocomposites is much more extensive. From the 
extensive thin film literature, it is clear that the behavior of polymers near substrates and free



N an om ech an ics  o f  N a n o re in fo rc ed  Po lym ers 257

surfaces is dramatically altered and that the influence of the surfaces extends on the order of 
10 nm into the polymer [10. 11], suggesting that nanoclay-polymer nanocomposites present a 
unique opportunity to study the behavior of polymers in confined spaces [12]. Additionally, 
recent molecular dynamics simulations (discussed further in Section 5.1.1) indicate that the 
polymer structure and dynamics are affected at least a radius of gyration of the polymer 
chain away from the nanoparttide surface [13-15].

The fraction of the interphase polymer in nanocomposites may be estimated from simple 
geometric considerations for a given nanoparticle morphology. For nanotubes (see Fig. 2), 
the volume fraction of the interphase region Vt is related to the volume fraction of the 
fiber/nanotube inclusion Vf and the thickness o f the interphase region t as [16]

V, = vr = p vr (1

where rf is the radius of the nanotube (or fiber) and / is the thickness of the interphase 
region. Likewise, the ratio o f the volume fraction of the nonbulk polymer phase (interphase) 
to the total volume fraction of viscoelastic phases within the composite (interphase and 
matrix) can be expressed as

- 3 - - - £ 3 l  ,2 ,
K + K, I - V f

These expressions are shown graphically in Fig. 2 as a function of fiber/nanotube volume 
fraction for various ratios of interphase thickness t to fiber radius rf. Representative values of 
(t/rA are M).05 for carbon fiber composites [8] and ~1.0 for nanotube-reinforced polymers 
[17], respectively. From Fig. 2, we see that for the case of nanotube-reinforced polymers a 
significant portion of the nanocomposite can be characterized as the interphase region. In 
this case, the nonbulk polymer behavior of the interphase region is expected to contribute 
to the overall thermomechanical and electrical response of the material. For the case for 
traditional micron-sized fiber polymer composites, the interphase region is much smaller and 
can often be neglected in micromechanical predictions of effective properties. W h ile  fiber 
sizings are known to significantly enhance the fiber-matrix interface in traditional polymer 
matrix composites, the sizings in such systems are typically small and often neglected in 
micromechanical predictions for the effective modulus of these materials. However, for well- 
dispersed nanocomposites, the volume fraction o f interphase is substantial and its effect on 
overall thermomechanical properties is much larger than that for a traditional micron-sized 
composite and cannot be neglected. Thus Fig. 2 suggests that the interphase volume fraction 
will be appreciable for even relatively low loadings of nanotube inclusions; the properties and 
extent of this interphase is an ongoing topic o f research being pursued from both “ bottom- 
up”  and “ top-down”  approaches as discussed further in Section 3.

bulk polymer

nanotube

non-bulk polymer/ 
interphase'

0.

Figure 2. Significance of surface area per unit volume for nanotube-reinforced polymers, (left) Schematic of the 
interphase region, (center, right) Interphase volume fraction iV,) and ratio of the interphase (nonbulk) to matrix 
(bulk) volume fraction ( V/n) as a function of fiber volume fraction Vr  Note that t/r, is ~1 for nanotubes and on 
the order of 0.05 for micron-si/ed fibers. Reprinted with permission from 116], F. T. Fisher and L. C. Brinson, in 
"Society for Experimental Mechanics Conference Proceedings,” Milwaukee, 2002. © 2002. Society for Experimental 
Mechanics.
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For classification purposes it is perhaps easiest to group nanoinclusions based on their geom
etry, such as the number of dimensions that are nanoscale in length as shown in Fig. 3. In 
many cases, such a classification is useful as many issues related to processing and m odel
ing are common among nanoinclusions of the same geometry or aspect ratio, L/d, where L  
and d are the characteristic length and cross-sectional dimension, respectively. Nanospheres 
(L/d %  l; Section 1.2.1), which we will also refer to as three-dimensional (3D) nanoparticies 
or equiaxed nanoparticies, can be characterized by having all three dimensions of nanoscale 
length; nanotubes or nanorods ( L/d >  1; Section 1.2.2) have a cross section on the order 
of nanometers but are characterized by lengths on the order of microns; and nanoplatelets 
(L/d 1; Section 1.2.3) have one dimension (the thickness of the plate) on the order of 
nanometers while the lateral dimensions may be on the order of microns. Even  within these 
classifications further distinctions can be made, and in many cases definitions can become 
somewhat arbitrary as the size scale of the inclusion approaches an upper limit where nano
scale effects become negligible. For example, nanorods generally refer to solid (as opposed 
to hollow) cylindrical inclusions, whereas nanofibers (or nanofibrils) typically denote ‘la rg e r” 
cylindrical inclusions with diameters on the order of 100 nm.

1.2.1. Equiaxed Nanoparticulate Reinforcement
A  variety of equiaxed nanoparticulate fillers have been added to polymers to enhance the 
physical properties of the unfilled polymer, dating back to the earliest work with carbon 
black (see Ref. [2]). O ften such composites exploit the size-dependent properties of the 
nanoparticle while using the polymer as a binder. Exam ples of equiaxed nanoparticies that 
have been widely used and studied in nanocomposites include titania (T iO : ), silica ( S i0 2), 
and alumina (A l20 3). One of the benefits o f this form of inclusion is that they can be 
added and processed at relatively high weight (volum e) loadings, while the surface chemistry 
of the nanoparticle can be tailored for a particular application. Com m ercially, for exam
ple, equiaxed nanoparticies have been used to drastically alter the optical and refractive 
properties of commodity plastics and paints (see, for example, Ref. [18]); however, the use 
of spherically shaped nanoparticies for mechanical property enhancement o f polymers is 
less common (particularly in comparison to the nanotube and nanoplatelet reinforcements 
described in the next sections). W h ile  a brief discussion of relevant experimental data for 
equiaxed nanoparticulate polym er composites will be presented later in this chapter (see 
Section 2.1), in many cases mechanical property enhancement is secondary to other property 
improvements and thus beyond the scope of the present chapter. The reader is referred 
to the chapter by Schadler for a more complete description of equiaxed nanoparticulate 
polymer composites [19].

1.2.2. Nanotube Reinforcement
As shown in Fig. 3, nanotube reinforcement refers to a general class of nanoscale-sized 
cylindrical inclusions with very large aspect ratios (from a mechanics standpoint such aspect

2D Plate-like Filler (b = c » a ) 3D Particulate Filler (a~b~c)

1.2. Forms of Nanoscale Reinforcement

-1 OOnm

1D Cylindrical Filler (c » a - b )

Figure X  Types of nanoscale reinfoiwment fillers.
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ratios can often be treated as "infinitely long"). Carbon nanotubes (discussed in detail in 
Section 1.2.2.1) are by far the most popular and most studied material to date, motivated 
by the potential of exploiting the outstanding physical properties of the nanotubes within a 
host polymer material. Related structures such as bone-shaped carbon nanotubes [20] (see 
Section 1.2.2.2) and carbon nanocoils [21] (Section 1.2.2.3), which may find particular use 
for novel applications within an polymer matrix, have been introduced within the literature. 
In addition there has been a recent renewed interest in the electrospinning process, a ver
satile method that has been used to create a variety of polymer and composite nanofibers 
with potential applications as nanoscale reinforcement fillers (Section 1.2.2.4). Other forms 
o f nanofibers, such as boron nitride (B N )  [22], which have mechanical properties similar to 
those of carbon nanotubes but are electrically insulating and have higher oxidation temper
atures, and inorganic/ceramic nanofibers electrospun from sol-gcl precursors [23], are also 
being investigated as potential nanoinclusions for nanocomposites applications. Undoubt
edly, the list of candidate nanofibers will continue to grow as methods to fabricate unusual 
nanofibers with potentially interesting properties continue to be developed.

1.2.2.1. Carbon Nanotubes. The outstanding properties that are predicted (and in some 
cases verified experimentally) for carbon nanotubes are the result of their structure; due to 
the inherent strength of the carbon-carbon bond and the potential of a defect-free structure, 
it has been suggested that nanotubes may approach the theoretical limits for many important 
mechanical properties, including axial stiffness and tensile strength. The desire to exploit 
these physical properties has resulted in the large research effort currently ongoing within 
academia and industry to use carbon nanotubes as a reinforcing phase within polymeric 
materials. A  detailed presentation of the state o f the art with respect to carbon nanotubes is 
certainly beyond the scope of the current work; however, a number of excellent reviews can 
be found in the literature, including general discussions of carbon nanotubes [24-26], physical 
properties of carbon nanotubes [27], mechanical properties of carbon nanotubes [28], the 
mechanics of carbon nanotubes [29-31], and potential applications of carbon nanotubes [32].

Carbon nanotubes can be classified into three broad categories: single-walled nanotubes 
(S W N T ),  multiwalled nanotubes (M W N T ),  and nanotube bundles or ropes. Here we will use 
the abbreviations S W N T  and M W N T  to refer to single-walled and multiwalled nanotubes, 
respectively. In some instances in the literature, S W C N T  and M W C N T  are used as well. 
Unless otherwise specified, S W N T  and M W N T  should be taken to refer to carbon nano
tubes. SW N T s  consist of a single layer of carbon atoms wrapped into a cylindrical shape, 
which may or may not be capped on each end by one half o f a fullerene molecule (see 
Fig. 4) [33]. Because the graphene hexagonal lattice can be rolled at different angles, the 
geometry of a particular nanotube is best described in terms chiral vector, which is defined 
as Ch = nci\ -f m a where <?, and a2 are unit vectors on the hexagonal lattice and n and 
m are integers; nanotubes with different chiral vectors (/?, m) will have different atomic

(5.5) armchair nanctube

%
(9,0) zigzag nanotube

(10,5) chiral nanotube

Figure 4. (left) Unit cell and chiral vector for a (4, 2) carbon nanotube, (right) Examples of nanotubes with different 
chirality. Reprinted with permission from |33|, M. Dresselhaus et al.. Phys. World 11. 33 (1998). <D 1998, lOP 
Publishing.
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configurations as shown in Fig. 4. Certain nanotubc properties have been found to be 
strongly dependent on the chirality o f the nanotube, including electrical resistivity and frac
ture behavior. For example, a carbon nanotube will be metallic when the chiral vector sat
isfies the relationship n — m =  3q. where q is an integer, while all other nanotubes will be 
semi-conductive.

However, other properties, particularly the axial stiffness, have been found to be relatively 
independent of chirality. W h ile  recent work has been able to identify the chirality of an 
individual nanotube based on S T M  atom ic resolution images [34], at present methods to 
control nanotubc chirality via appropriate processing and to isolate nanotubes of a given 
chirality are still under development [35]. Thus at this relatively early stage of nanotube- 
polymer composite mechanical modeling it is premature to consider chirality as a design 
feature. Typical diameters for S W N T s  are on the order of 1 nm, while lengths are often on 
the order of /xm, resulting in very large aspect ratios which in traditional composites theory 
are desirable from the perspective of load transfer. Both the diameter and the length of the 
SW N T s  are typically dependent on the particular technique used to crcate the nanotubes.

M W N T s  consist o f several concentric layers (o r shells) of individual carbon nanotubes 
that are weakly coupled to each other through van der Waals forces. A  high-resolution 
transmission electron microscope (T H M ) image of a M W N T  is shown in Fig. 5 [25]. The 
spacing between these individual shells is on the order o f 0.34 nm, which is slightly larger 
than the interlayer spacing between graphene sheets. The diameter and number of shells 
comprising a M W N T  is dependent on the fabrication process, although outer diameters 
on the order of 15 to 30 nm may be considered as somewhat common [36, 37]. As shown 
in Fig. 6, there can also be a large variation in diam eter within a given batch of M W N T , 
and only recently has this been taken into account with respect to the interpretation of 
experimental data [38].

Perhaps more critical is the open question regarding the efficiency with which the inner 
walls of the M W N T  provide reinforcement to the nanocomposite. For example, early Ram an 
spectroscopy measurements found evidence that while all shells of the M W N T  are strained 
under compression, only the outer shell o f a M W N T  is loaded in tension (due to the weak 
coupling between the shells) [39]. It has been suggested that such poor load transfer is 
responsible for the inability to date to experimentally obtain effective mechanical properties 
for nanotube-polymer composites matching those predicted from standard micromechanics 
and composites models. In addition, it is becoming increasingly evident that the mechanical 
properties of M W N T s  are dependent on the method of fabrication of the M W N T s ; this is 
directly related to the level o f defects in the M W N T  atomic structure.

Typically, nanotubes are found to have self-organized into crystalline bundles [40, 41], 
consisting of several to hundreds of S W N T s  or M W N T s  arranged in a closest-packed two- 
dimensional lattice, with adjacent tubes weakly coupled via van der Waals interactions. O p ti
mal reinforcement will likely necessitate complete dispersion of these bundles to maximize the 
available surface area of the nanotubes w ithin the polymer matrix. From the perspective of 
structural reinforcement, optimal behavior will be dependent on the proper transfer of load 
from the matrix to the inclusion (and among the shells or tubes in the case of M W N T s  or N T  
bundles, respectively). W h ile  S W N T s  are more susceptible to bending due to their extremely 
small cross sections, for M W  NTs and N T  bundles interlayer sliding (so-called “ sword and

Figure 5. High resolution T EM  image of a M W N T with an interna! cap highlighted by the arrow. Reprinted with 
permission from [25], P. J. F. Harr s. "Carbon Nanotubcs and Related Structures: New Materials for the 21st
Century." Cambridge University Press, Cambridge. [999. C 1999, Cambridge University Press.
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Figure 6. Bimodal hislogram of outer diameter for C’VD-grown MWCNTs. Reprinted with permission from [38], 
F. T. Thostenson and 'l'. W. Chou../. Phys. /) 36. 573 (2003). © 2003. IOP Publishing Ltd.

sheath" slippage [42)) and weak intertube coupling, respectively, could hinder load transfer. 
Thus, explicit differences in the structural behavior of these various N T  forms will need to 
ultimately be included in future models of nanotube-related materials.

W h ile  a complete discussion of the various processing methods to create carbon nano
tubes is beyond the scope of the present chapter, a brief description of some methods is 
warranted here. For a more complete analysis, the reader is referred to other sources in the 
literature [19, 25]. In early work, arc discharge [43] and laser vaporization [40] processes 
were the most common forms of nanotube production, typically resulting in nanotubes with 
low structural defects and thus excellent physical properties. In  these techniques SW N T s  
are typically formed in the presence of a metal catalyst, which seems to preclude the for
mation o f M W N T s . One difficulty associated with these techniques is the need to process 
the end product, which is typically found to be quite entangled (see Fig. 7) [44]; in many 
cases amorphous carbon and other contaminants on the surface of the nanotubes need to 
be removed via various purifying techniques. An  additional problem with these techniques

5 15 25 35 45 55 65
Diameter (nm)

Figure 7. SL’M image of SW NT bundles formed via the arc discharge method. Reprinted with permission from 
144j. C . .lournct el al.. Nature 388. 756 (1997). © 1997. Nature Publishing Group.
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is that production yields from these methods are rather limited, and do not seem suited to 
satisfy the long-term goal o f ton-quantitv production. A  recent advance in the fabrication of 
high structural quality single-walled nanotubes is the high-pressure C O  conversion process 
(H iP C O )  developed at R ice University [45].

In  the interest of developing a process that can be scaled for industrial production, a 
great deal of work has been devoted to techniques that may be classified as chemical vapor 
deposition (C V D )  [46, 47]. W h ile  C V D  processes have been used to create a wide variety 
o f carbon structures [48], the major drawback o f these methods is the reduced structural 
integrity of the nanotubes. For example, experimental work has suggested that the tensile 
moduli o f C V D  nanotubes may be more than an order of magnitude lower than those 
measured for nanotubes created via other methods due to a greater number of structural 
defects [49]. However, promising C V D  techniques that seem to produce nanotubes with 
fewer defects (and hence better physical properties) are currently under development [46].

One bottleneck currently hampering nanotube-related research is the high cost and low 
availability of the raw nanotube material. W h ile  significant progress has been made address
ing the purity and production yields from nanotube processing techniques, this work is quite 
challenging because detailed models of nanotube growth are not well developed at present. 
However, as interest from scientific com m unity continues to expand it is expected that 
nanotube fabrication techniques will continue to develop, and future advances in nanotube 
processing are likely to increase the availability of these materials.

The motivation for using carbon nanotubes is based on the ultimate theoretical proper
ties predicted for defect-free nanotubes, as summarized by Collins and Avouris for single
walled carbon nanotubes and presented in Table I [26]. Much of the initial work studying 
the mechanical properties of nanotubes has consisted of computational methods such as 
molecular dynamics and ab initio models. A lthough prim arily used to study SW N T s  because 
of the increase in computational resources necessary to model systems comprised of a 
larger number of atoms, analyses for larger M W N T  systems are increasingly more com
mon. Typically, these computational studies have found nominal values for the axial Young’s 
modulus on the order of 1000 G P a  (assuming a shell thickness of 0.34 nm), with values 
for the Poisson ratio approximately 0.20 to 0.30 [50-52]. Ab initio calculations have found 
that the mechanical properties o f nanotubes are sim ilar to those o f graphite down to small 
nanotube radii (on the order of 3 nm), at which point the properties increase due to the 
enhanced curvature of the tubes [52]. Because strength is closely related to the presence of 
defects within a material, it has been hypothesized that nanotubes (particularly low defect 
NTs formed via carbon arc and laser vaporization methods) may approach theoretical limits 
in terms of strength. For example, in a recent m olecular mechanics simulation, N T  fracture 
strains between 10% and 15% were reported, with corresponding tensile stresses on the 
order o f 65 to 93 G Pa  (com pare to the values for other common filler materials listed in 
Table 2) [53].

In addition, a great deal o f progress has been realized in the manipulating and testing 
of individual nanotubes and nanotube bundles [54-57]. In  general, the experimental results

Table 1. Ultimate theoretical properties for carbon nanotubes and comparison with other materials.

Property SWNTs By comparison

Density 1.33g/cm' Aluminum has a density of 2.7 g/em'
Tensile strength 45 GPa 2 GPa for high strength steels
Resilience Very high elastic strains: can be High stiffness materials generally have

bent al large angles without very low elastic strains
permanent damage

Current carrying capacity< Estimated at 1 billion A/cm2 Copper wires burn out at ! million A/cnr
Field emission Can activate phosphors at 1-3 V if Molybdenum tips require fields of

electrodes are spaced 1 jj.m apart 50-100 V//tm and have limited lifetimes
Heal transmission Predicted to be as high as 6000 W/m K. Pure diamond transmits at 3320 W/m K
Temperature stability Stable at 2N001 C in vacuum. 750°C in air Metals wires in microchips melt 

at 600-1000°C

S o u rce . R e p r in te d  w ith  p e rm iss ion  from  126], P. ( j .  C o llin s  and  P  A v o u r is . S ci. A m .  »i2 (2000 ). £> 20(H). S c ie n tif ic  A m e r ic a n .
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Table 2. Meehan:ical propertie:s for filler materialIs for structural p<ilymers.

Diameter Density Tensile Modulus
Fiber (Aim) (g/em ’) strength (GPa) (GPa)

Carbon 7 1.66 2.4-3.1 120-170
S-glass 7 2.50 3.4-4.6 90
Aram id 12 1.44 2.8 70-170
Boron 100-140 2.50 3.5 400
Quartz 9 9 3.4 70
SiC fibers 10-20 2.3 2.8 190
SiC whiskers 0.002 2.3 6.9 —
Carbon NTs 0.001-0.1 -1.33 Up to ~~50 Up to -1000

S o u rc e : R e p r in te d  w ith  p e rm iss ion  from  [69], L . J .  M a t ien z o  et al., in “ C h a ra c te r iz a t io n  o f 
Po lym e rs "  (N .  J .  C h o u , S . P. K o w a lezyk , R .  S a ra  I’, and H .- M . Tong, Ed s .).  B u lte rw o rth - H e in n m a n n , 
B o s to n , 1994. ©  1994, E'.lsevier.

have validated the computational predictions. For S W N T  bundles the maximum tensile strain 
was measured to be 5 .3% , with the tensile strength of the individual SW N T s  estimated to 
be 13 to 52 G Pa  [56]. Related tests on M W N T s  found that failure occurred via a “ sword-in- 
sheath” mechanism at tensile strains up to 12%, with the tensile strength of the outer shell 
o f the M W N T  estimated to be between 11 and 63 G Pa  [57]. The tensile strength of NTs 
has been estimated to be 3.6 G Pa  for CVD-grown M W N T s  using a miniature stress-strain 
puller to test long ( —2 mm) N T  ropes, with the order of magnitude decrease in strength 
attributed to an increase in defects [37, 58]. The reader is referred to a recent review of 
nanomechanical testing of nanotubes and related nanostructures for further discussions of 
these testing methodologies [59].

In many cases, approaches based on continuum mechanics have been applied successfully 
for simulating the mechanical responses of individual or isolated carbon nanotubes [60-62]. 
Flowever, we note that some researchers have suggested that to properly model the bending 
behavior o f nanotubes, values of 5 TPa  and 0.067 nm for the Young’s modulus and the shell 
thickness, respectively, of the nanotube should be used [63, 64]. W h ile  treating the nanotube 
as a continuum may be suitable for modeling the linear elastic behavior of the nanotube, 
other mechanical behavior (such as crack propagation and fracture) will undoubtedly be 
more dependent on atomic structure and may be ill-suited for such an assumption. In addi
tion, recent theoretical work has developed the appropriate transverse plane (in the plane 
perpendicular to the axis of the N T ) properties for SW N T s  [65], M W N T s  [66], and S W N T  
bundles [67], respectively. A  set of self-consistent relationships for the physical properties of 
SW N T s  has also been developed [68].

To place the nanotube moduli and strength predictions into proper perspective, represen
tative values for common types of filler materials for structural reinforcement are given in 
Table 2 [69]. W h ile  the predicted properties of carbon nanotubes compare quite favorably to 
those materials listed here, a greater understanding of the nanotubes themselves, and issues 
related to their use within a polymer matrix, must be developed to fully utilize the properties 
of the nanotubes in structural composites.

1.2.2.2. Bone-Shaped Carbon Nanotubes. The template-based synthesis approach was 
pioneered in the early 1990s as a means to create uniform nanotubcs (or, if completely 
filled, nanorods) [70]. The original approach entails synthesizing the desired materials within 
the nanochannels of a suitable membrane (e.g., anodic aluminum oxide film, track-etch 
m embrane) by decomposition of a suitable precursor gas. Because the nanochannels in the 
membranes have monodisperse diameters, analogous monodisperse nanostructures can be 
obtained, with the smallest carbon nanotube (diam eter of 0.4 nm ) being synthesized inside 
porous zeolite [71]. The tunable geometry of the template-synthesized nanostructures are 
ideal model structures for studying the size-dependent physical, chemical and electronic 
properties at the nanometer scale, although their use for nanocomposite applications has 
thus far been limited due to the inherent batch process necessary to fabricate nanotubes in 
such a manner.
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Anodic aluminum oxide (A A O )  films have been used previously as templates for C V D  
growth of carbon nanotubes [72, 73]. One can fabricate A A O  films with an extremely uni
form nanochannel array using a standard two-step anodization process [74]. Electro lyte, 
anodization voltage, anodization time, and reaction temperature are four important fabri
cation factors. For C V D  growth of CN Ts using A A O  as templates, two different synthesis 
approaches have been developed: catalytic C V D  growth [72, 75, 76]. and non-catalytic C V D  
growth [73, 76]. In the latter case, the through-hole A A O  film is placed such that nanochan- 
nels are running horizontally, in the direction of the gas flow. A t elevated temperatures, 
hydrocarbon gases will be therm ally decomposed, resulting in carbon deposition on the wall 
of the nanochannels. Depending on the deposition time, nanotubes or solid nanorods can 
be synthesized [76]. The as-synthesized carbon-related nanostructures can be readily freed 
by etching away the A A O  films using H F  acid or 6 M  N a O H  solution, and exhibit a tur- 
bostratic structure characteristic o f a large number of defects within the nanotube lattice 
(see Fig. 8). As shown in Fig. 9, by varying the C V D  deposition time, template-grown C N Ts 
with different wall thicknesses can be obtained.

A  novel four-step extension of this template-based deposition technique has been devel
oped to create the bone-shaped templated carbon nanotubes morphology shown in Fig. 10,
[20]. Such a bone-shaped morphology has been used in the short-liber composites community 
to promote enhanced load transfer via mechanical interlocking o f the enlarged ends [77, 78]; 
the reader is particularly referred to the comprehensive review article by Zhu and co-workers 
for a complete description of the state-of-the-art [78]. W h ile  yet to be investigated in detail, 
for nanotube-polymer composites such morphology may provide an alternative method to 
increase load transfer to the C N Ts without overly strengthening the interface, providing a 
means to increase load transfer to the nanotube while maintaining the energy-dissipation 
mechanisms necessary to maintain (or im prove) the toughness of the material.

1.2.2.3. Carbon Nanocoils. Another recent development in the synthesis of carbon 
nanostructures is the carbon nanocoil [79]. Because of their unique helical structure, carbon 
nanocoils have been proposed for a variety o f applications, including resonating elements 
[80], nanoscale springs, and novel reinforcement in high-strain composite materials. Using a

Figure 8. SEM  micrograph.') of (a) lop view of as-fabricated AAO Him. (h) top view of CNTs grown inside AAO 
films: TEM  micrographs of (c) low magnification of two template-grown CNTs. (d) corresponding URTEM  showing 
the turhostrntic structure standard for CVD grown nanotubes. Images courtesy of Professor T  Xu, University of 
North Carolina at Charlotte.
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Figure 9. TEM  images of turbostratic template-grown CNTs synthesized by (a) 2 hours deposition, and (b) 4 hours 
deposition. Images courtesy of Professor T. Xu, University of North Carolina at Charlotte.

custom nanomanipulator operated within an S E M ,  characterization of the mechanical prop
erties of these carbon nanotubes was achieved by direct tensile loading as shown in Fig. 11
[21]. The shear modulus G  of the nanocoil was determined based on the spring constant 
of the nanocoil K and the geometric parameters of the nanocoil. A t low-strain levels, the 
nanocoil behaves as an elastic spring with a spring constant K =  0.12 N/m, with a charac
teristic upturn in the spring constant at higher strain levels as the nanocoil straightens. In 
addition, it was determined that the nanocoil could be extended up to 4 2 %  strain without 
evidence o f plastic deformation, such that the nanocoil returned to its relaxed geometry 
after loading. The effective shear modulus of the coils was determined to be approximately 
2 G Pa , which is much lower than the shear modulus estimated for high-quality carbon nano- 
tubes. W h ile  we are currently unaware of such work, these unique nanostructures might be 
o f particular interest in high-strain polymeric material applications, where, for instance, the 
electrical conductivity of the polymer could be increased without adversely compromising 
the elongation of the host polymer.

1.2.2.4. Electrospun Polymer Nanofibers. A  promising emerging technology is the elec
trospinning of polymer nanofibers (excellent review articles are provided in the literature; 
see Refs. [81, 82]). Depending on processing conditions, electrospinning has been shown to 
produce nanofibers with diameters ranging from a few microns down to less than 10 nm. 
Electrospinning technology enables production of continuous polymer nanofibers (and rein
forced polymer nanofibers) from polymer solutions or melts when a high electric field induces 
an electric force on a polymer liquid strong enough to overcome surface tension. The result
ing polymer jet can be collected and dried in what is typically a random mat. There is

t\ ~75nm

Figure 10. Bone-shaped templated carbon nanotubes. Outer diameter of the widened ends and stem are 70 and 
40 nm, respectively. The length and wall thickness are /jm and 10 nm. Reprinted with permission from (20], 
T. T Xu et al.. A7mo Leu. 3. 1135 (2003). €> 2003. American Chemical Society.
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Figure 11. Tensile loading of a carbon nanocoil, (a) Carbon nanocoil damped between two AFM cantilevers. The 
left cantilever is stiffer than the right cantilever, (b) Relaxed nanocoil prior to loading. Nanocoil at a relative 
elongation of (c) 2()rr and (d) 33%. Reprinted with permission from [21), X. Q. Chen et al.. Nano Lett. 3, 1299 
(2003). €) 2003, American Chemical Society.

considerable interest in using these electrospun polymer fibers in a number of applications 
ranging from protective textiles to sensors to biomedical applications. Because fiber prop
erties typically increase as the diam eter decreases, there is also potential in using such 
nanofibers as a reinforcement material in composites applications.

A  review of the recent advances in the electrospinning of polymers is beyond the scope 
of this chapter. However, these electrospun polymer nanofibers and electrospun nanocom
posites are of interest here as appropriate modeling will be necessary to understand and 
capture:

(1 ) How the properties of the electrospun nanofibers are dependent on the electrospin
ning process and resulting nanofiber structure.

(2 ) How the incorporation o f nanoparticles, including montmorillonite [83] (see 
Fig. 12(a)), graphite nanoplatelet [84, 85], and carbon nanotubes (see Fig. 12(b)) 
[86-88], change the properties o f the nanofibers.

(2 ) The resultant mechanical properties should these nanometer diameter fibers be 
incorporated as a reinforcement phase in a matrix material.

The interested reader can pursue this topic beginning with selected references from the 
literature [81, 82, 89].

Figure 12. TF.Vl images o!'electrospun polymer nanocomposite fibers showing alignment of the nanoinclusion along 
the fiber axis, (a) Exfoliated montmorillonite in nylon 6. Reprinted with permission from [83]. H. Fong et al.. 
Polymer 43, 775 (2002). C 2002. Elsevier. (I')) SW NT in PAN liber Reprinted with permission from [86J. F. Ko 
et al.. Adv. Mater. 15. llfSi (2003). 0  2003, WilcyA’CTl.
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1.2.3. Nanoplatelet Reinforcement
As shown in Fig. 3, nanoplatelet reinforcement refers to a general class of 2D platelike filler 
material with lateral dimensions on the order of microns with thicknesses of the individual 
platelets on the order of nanometers. The interest in using nanoplatelet reinforcement in a 
polymer matrix composite was initiated by the pioneering work with nanoclays by researchers 
at Toyota [3, 90]. Since that time, research into clay nanocomposites has exploded; the reader 
is referred to a number of recent review articles for an in-depth discussion of the current 
state of the art [91-99]. M ore recently, a number of researchers have looked to extend this 
work on nanoplatelet reinforcement using graphite nanoplatelets (which, if exfoliated down 
to individual sheets are referred to as graphene sheets), which have dimensions similar to 
the nanoclays but in many ways combine the chemistry and properties of carbon nanotubes 
due to the similarity of the carbon bond network.

Layered silicate clays are an inexpensive material that produced the first commercially 
successful nanocomposites. The clay particles are easily broken by mechanical forces into 
micron-sized particles composed of many layers o f silica sheets that are bound by van der 
Waals interactions to one another. The interlayer spacing is on the order of 1.85 nm and 
contains cations to electrically balance the structure (see Fig. 13) [100]. The individual silica 
sheets are microns in lateral dimensions and often assigned an in-plane modulus value of 
170 G Pa  (on the basis of experimental measurements made on bulk m ica) [101]. However, 
a recent A F M  study found that exfoliated individual clay layers with a thickness of 1 nm 
were extremely compliant and behaved as “ wet tissue paper” in conform ing to a porous sub
strate [102]. Such results call into question the proper mechanical properties that should be 
assigned to these inclusions in continuum-level models; this is an open topic in the nanocom
posites community.

W ith  proper processing the nanoclay can be intercalated with polymer or exfoliated to 
produce nm thick reinforcing sheets throughout the nanocomposite (see Figs. 14 and 15). In 
general, the incorporation of the nanoclays into various polymers has been shown to result in: 
increases in tensile properties (elastic modulus, tensile strength), decreased thermal expan
sion coefficients and improved thermal stability, increased swelling resistance, decreased gas 
permeability, and improved flammability properties. A  new class of nanoclay-polymer com
posites, based on the layer-by-layer assembly of individual clay nanoplatelets and appropriate 
polymers, is also under development [ 103-105]. Because of the large surface area of the clay

O  and f  Silicon, occasionally aluminum

Figure 13. Structure of montmorillonile. Reprinted with permission from (100], M. Kawasumi, J. Polym. Sci. A 42, 
819 (2004). 0 2004, John Wiley and Sons.
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Conventional Tactoids Intercalated Partially Intercalated and
partially Exfoliated

Ordered
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Figure 14. Microstructures of clay-filled polymers from conventional microscale tactoids to fully exfoliated 
nanocomposite.

nanoplatelets within the nanocomposite, an understanding and control of the clay surface 
is expected to play an important role in the optimization of these material systems. Models 
of the mechanical properties of the individual clay nanoplatelets, as input parameters into 
models of effective clay nanocomposite behavior, will also be critical.

Another interesting platelike nanofiller is exfoliated graphite [106]. Sim ilar to clay, 
graphite is a layered structure with very strong in-plane covalent bonds within the individ
ual graphene sheets and weak van der Waals bonding between the layers (see Fig. 16(a)). 
Also similar to clay, graphite is a commodity product with a very low cost of approximately 
$2/pound. In contrast to clay nanoparticies, the inherent properties of a single nanosheet 
of graphite approach those o f carbon nanotubes, with Young’s modulus in the 1 T P a  range, 
and significant electrical and thermal conductivity: resistivity o f ■ 10”°  Ohm-cm and ther
mal conductivity o f —2000 W/m-K (equal to that of type Ha diamond). Such characteris
tics suggest that exfoliated graphite forms could provide equivalent or superior property 
enhancements compared to nanotubes but at a fraction of the cost.

As with clay reinforcements, in order for a graphite-based polymer nanocomposite to 
exhibit superior response, the graphite plates must be properly exfoliated, potentially down to

Figure i 5, Transmission electron micrograph of 5 \vt'.; well-dispersed, exfoliated aluminosilieate in nylon. Reprinted 
with permission from [1()0|. M. Kawasumi,./. I'olynt. Sci. 1 42. <X 19 (2004). <D 2004. John Wisev and Sons.
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Figure 16. (a) Structure of natural graphite, hexagonal arrangement of covalently bound carbon atoms in-plane 
with AB stacking of planes held together by van der Waals forces. Reprinted with permission from [107], D. D. 
L. Chung, / Mater. Sci. 37, 1475 (2002). © 2002. Springer Science and Business Media, (b) the wormlike structure 
of thermally expanded graphite. Reprinted with permission from [108], A. Yasmin et al., in “ Proceedings of the 
11th Annual International Conference on Composites/Nano Engineering (lCCIi-11)," Hilton Head Island, South 
Carolina, 2004. © 2004, I. M. Daniel.

individual graphene sheets, to maximize the surface area interactions between the nanosheets 
and the host polymer matrix. Expansion of acid intercalated graphite is well established, 
producing characteristic worm like structures (see Fig. 16(b)) and increasing the volume by 
several hundred times [107]. Natural graphite has a c-spacing of 3.35 A  (see Fig. 16(a)), 
which is increased several times by acid intercalation. By heating intercalated graphite to 
over 900°C, rapid thermal expansion occurs in which pockets of intercalant vaporize, causing 
shearing o f the graphene planes with respect to each other. The resultant wormlike structures 
of expanded graphite are increased hundreds of times in volume and can be used in poly
mers to create nanocomposites. Additional processing including pulverization and sonication 
methods have also been pursued to reduce the nanographite to separated nanosheets [109].

1.3. Introduction to Viscoelasticity
The small size scale and surface to volume ratio of nanoparticles causes their interaction 
with the polym er chains in nanocomposites to be significant and extensive. As the polymer 
radius of gyration is also on the nanometer length scale, polymer mobility in the vicinity 
of the nanoparticles can be fundamentally altered from that o f bulk polymer. W ith good 
dispersion of nanoparticles, a vast amount of surface area interacts with the polymer chains 
and at even low volume fractions can cause a dramatic change in the macroscopic m ani
festations of polymer mobility. Properties such as the glass transition temperature, thermal 
degradation temperature, time-dependent relaxation modulus, frequency-dependent storage 
and loss moduli, diffusion coefficient and relaxation times of the nanocomposite all differ 
from that of the bulk homopolymer. To set the stage to understand and be able to model 
these properties in the context of nanocomposite response, in this section we outline some 
fundam ental concepts in viscoelasticity theory. The reader is referred to more detailed texts 
[ 110—113] for additional background and information.

The classical theory o f linear elasticity assumes that the stress and strain within a material 
are directly proportional in accordance with H ooke’s Law. a = Ce, where C is the stiffness 
tensor of the material and <x and s are the stress and strain in the material, respectively. The 
response o f an elastic material is independent of strain rate (and thus time and frequency) 
and temperature (other than thermal expansion effects). For an elastic material, removal of 
the applied stress (o r strain) implies the material will return to its pre-deformed shape, such 
that the energy required to produce the deformation is recovered. Elasticity theory properly 
describes the mechanical behavior of a wide range of solids, particularly at low temperatures
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and low levels of strain. On the other hand, for a wide range of fluids, the state o f stress 
is proportional to the strain rate of the m aterial but is independent of the strain, and is 
described for a Newtonian fluid as r  = r]£, where 77 is the viscosity of the fluid and t  and s 
are the stress and the rate of strain of the fluid, respectively. The energy required to deform 
a Newtonian fluid cannot be recovered.

The Hookean law for elastic solids and the Newtonian law for viscous fluids are each 
idealizations of material behavior, however, and do not represent accurate mechanical mod
els for a wide range of materials. In particular, these models are insufficient to describe 
the mechanical behavior of most polymer systems, whose behavior can be described as hav
ing both elastic and viscous characteristics. Specifically, given an applied deformation some 
of the energy input into the system is stored within the material (elastic response), while 
some of the energy is dissipated as heat (viscous response). M aterials that demonstrate such 
behavior are better described by viscoelastic models, which incorporate both elastic-like and 
viscous-like response characteristics. For such materials, the mechanical response is time- 
dependent and can be described in terms of an integral equation of the form

"/>(') = ‘ I t  (3)

where crii and eki are the standard stress and strain tensors and Cilk/(t) is the time-dependent 
stiffness tensor. The viscoelastic behavior demonstrated by polymers is a direct consequence 
of the com plicated molecular motion that must underlie any mechanical deformation, as is 
described further in the next section.

1.3.1. Molecular Theory of Polymers and Viscoelasticity
A  polymer can be defined as a substance composed of molecules that have long sequences 
o f one or more species of atoms or groups of atoms linked to each other by primary, usually 
covalent, bonds [I 14]. Whereas deformation o f a solid can be simply thought of as displace
ments of the atoms from an equilibrium position, polymer deformation requires highly coop
erative motion amongst adjacent polymer chains (and perhaps between different segments 
o f the same polym er chain). When subject to a given load (or deform ation), instantaneous 
rearrangements o f the polymer chains result in an initial configuration of the local polymer 
chains that represents the (m om entaiy) m inimum free energy of the system. However, if the 
state of load (o r deform ation) is maintained over time, long-range cooperative motion of 
the polymer chains will result in different m inim al free energy configurations. W h ile  rear
rangements on a local scale are relatively rapid, the long-range cooperative motion among 
the polymer chains can be quite slow; this results in the range of relaxation times that typ
ically characterize viscoelastic behavior. It is this continual rearrangement of the polymer 
chains that results in the viscoelastic behavior demonstrated by most polymers. The critical 
parameter describing how the polymer will respond to an applied strain (or stress) is the 
mobility o f the polymer chains. The mobility of the polymer chains is influenced by both the 
chemical and geometric structure (e.g., the length of the chains, the size of the side groups 
which are attached to the backbone chain, and entanglements and/or cross-links among the 
chains) and the available thermal energy. Thus, polymers demonstrate both time-dependent 
(based on the range of time scales that describe various configurational rearrangements of 
the chains) and temperature-dependent properties.

The glass transition temperature is a characteristic temperature for a given polymer 
below which t hermal motions of the individual chains are greatly restricted [111). This glass 
transition tem perature can be considered using the concept of free volume. Free volume is 
the unoccupied “ empty space" on the nanoscale within which the polymer chains can accom
modate their configurational rearrangements. A t sufficiently high temperatures, enough free 
volume is present such that the chains can instantaneously achieve their equilibrium volume 
and thus the m aterial is in thermodynamic equilibrium. Polymers at such temperatures are 
soft and this state is referred to as the rubbery region of the mechanical response (for ther
moplastic polym ers the material may be in the melt state). However, as the temperature 
is reduced, the amount of free volume within the polymer decreases, until eventually the
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molecular motion of the chains is impeded due to a lack of available free volume. Becausc of 
an insufficient amount of free volume (or alternatively, thermal energy), chain motion is 
restricted and the viscoelastic properties of the polymer are largely independent of time (or 
frequency). This is referred to the glassy or pseudo-elastic state of the polymer. The tem 
perature marking the critical free volume at which this transition occurs is called the glass 
transition temperature, and as shown schematically in Fig. 17 is characterized by a disconti
nuity in the coefficient of thermal expansion (and also by a discontinuity in the heat capacity) 
of the material. W h ile  it is common to treat 7" as a discrete temperature, in reality slight 
deviations in the chain configurations at the nanoscale will result in a continuous transition 
from glassy to rubbery behavior). Polymers below the glass transition temperature are in 
thermodynamic nonequilibrium and over time will undergo a reversible process known as 
physical aging to gradually evolve toward the equilibrium state [111, 115].

The difference in mechanical behavior between the glassy and rubbery regimes is most 
evident when these material properties are measured as a function of temperature (see 
Fig. 18). The glassy regime of behavior (here for T < ~ 1 5 0 °C ) is characterized by a stiff 
material response and a relatively constant storage modulus (see Section 1.3.2). As the test 
temperature passes through TK, the storage modulus quickly decreases. For temperatures 
greater than 7̂ (, the polymer response is described as rubbery, and displays a storage modulus 
that is orders of magnitude less than that of the glassy region. The behavior o f the storage 
modulus in this region is strongly dependent on the chemical structure of the polymer. 
For thermoplastic polymers, the storage modulus will continually decrease as a function 
o f temperature as the polymer softens and ultimately melts at the melting temperature. 
For a thermoset system, the rubbery region storage modulus will plateau at a relatively 
constant value until the polymer begins to degrade at sufficiently high temperatures. A lso 
note that the viscoelastic behavior of polymers is frequency-dependent, with testing at higher 
frequencies providing more elastic-like (short timescale) behavior relative to testing done at 
lower frequencies.

1.3.2. Mechanical Response of Viscoelastic Materials
The molecular structure of polymers results in their viscoelastic mechanical properties. The 
viscoelastic time-dependent modulus can be characterized by a Prony series representation 
of the form

where £ ^ is the rubbery asymptotic modulus, E-f are the Prony series coefficients, and r- are 
the relaxation times. Taking the half-sided Fourier transform of Eq. (4) yields

E(t) = Eni + Y, Ej e ' (4)

0
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Figure 17. The glass transition temperature and physical aging.
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Temperature (°C)

Figure 18. Temperature dependence of the storage and loss modulus for polycarbonate at to = 1 Hz and a heating 
rate of 3°C7min.

where / is the imaginary number. The frequency-domain response is described by the com
plex modulus £ * ( oj), which is defined as

E * ( ( o )  =  E ' ( o j ) -f i E " ( ( o )

*  E  (xT 
E'(co) = E % + L  7 7 ^ ---- -

\ V '  ( £ A >t  (o>) = ^  — —j-

(6)

(7)

£  Wrj + u-

The terms defined in Eq. (7 ) are referred to as the storage modulus E'(co) and loss mod
ulus E'(co), respectively. Exam ple data for the storage and loss modulus as a function of 
temperature for a polycarbonate sample tested at co = 1 Hz is shown in Fig. 18. The storage 
modulus is a measure o f the energy stored and recovered by a viscoelastic material per cycle 
o f sinusoidal deformation, while the loss modulus E" is a measure of the energy dissipated 
during a sim ilar cycle [112]. Note that as written in Eq. (6 ) both the storage and loss moduli 
are real quantities. The ratio o f the loss modulus to the storage modulus is referred to as 
the loss tangent tanS, such that

L (8)tan 8 = E'
The ioss tangent is the ratio of energy lost to energy stored in the deformation cycle and is 
a dimension less parameter.

Note that as the number of the Prony series elements N representing the time-dependent 
modulus £ ( 0  *n tiq. (4 ) goes to infinity, one obtains a continuous spectrum of relaxation 
times describing the viscoelastic response o f the polymer. In this case, the time-dependent 
modulus can be expressed as

E(t)  = + j H (r)e l/Td(\n T) (9)

where H ( r )  is referred to as the relaxation spectrum. The relaxation spectrum represents 
the infinitesimal contributions to the modulus from relaxation times lying in the range from 
7 to r + dr and as such is useful in qualitatively gauging the distribution of relaxation 
mechanisms at different time scales [ i l l ] .  A lfrey 's  first-order approximation of the relaxation 
spectrum, which is defined as the negative slope of the time-dependent modulus [111], can
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be written as:

//(r) *  “ 7T7 V  (IU)d In (/ ) |

Assuming a Prony series representation of the time-dependent modulus as given in Eq. (4), 
the relaxation spectrum can be approximated via the analytical expression

H ( T ) * Y t -EjL> 7/r' ( 11)
j — I Ti

Equation (11) has been used by the authors to obtain the changes in relaxation spectra for 
different nanotube-polymer composites as a function of nanotube loading, using the Prony 
series elements determ ined from curve-fitting experimental frequency domain data using the 
procedure described in Section 2.4.1.2 [116, 117].

W hile  experimental measurements of the polymer response can in theory be performed 
for any length of time, time scales on the order of months or years are typically impractical. 
To circumvent this difficulty, one can use the principle of time-temperature superposition, a 
method of reduced variables, to extend the time scales (by many orders o f magnitude) of 
the response at a particular temperature of interest. The basic premise of time-temperature 
superposition is that the material behavior at different temperatures can be superposed
via horizontal shifting in log-log space to form a reference (or master) curve at a given
temperature. Mathem atically, the shifting of material response data collected at different 
temperatures can be expressed as

1- ( i , T , )  =  e ( J - ,  7;cl.) (12)

where a T is the temperature shift factor and T rcf is the reference temperature of the master 
curve. The reader is referred to any classical book on viscoelasticity for a more precise 
treatment; see for example [ 110, 111, 113].

Frcquency-domain data collected at different temperatures can be shifted in an equiva
lent manner, providing the material response at a given temperature over a large range of 
frequencies. A n  example of the application of time-temperature superposition as applied in 
the frequency domain is shown in Fig. 19. Here experimental data using dynamic mechanical 
analysis (D M A )  can only be obtained over a rather limited frequency range spanning approx
imately three orders of magnitude. Using time-temperature superposition, data collected 
over an experimentally accessible range at constant temperatures can be used to assemble 
a master reference curve at a single temperature spanning a much larger range of frequen
cies. Consider a reference temperature Trcl- for which the frequency domain response of the

1000 tr
I  H 130'C iF 13 5C 1
[ UO-C 1
| 145 C

100 fc- 150 c. 4
E • 155‘ C 3160'C 

165C 170C

0.1 1 10 100
Frequency (Hz) s h if te d  f r e q u e n c y  ( r a d / s )

Figure 19. Time-temperature superposition, (left) Raw data (only storage modulus shown) for polycarbonate over 
a frequency range of 0.1 to 200 Hz limited by the range of a dynamic mechanical analysis machine, (right) Shifted 
experimental data to provide a master curve of the frequency domain response at a single temperature (here 
Tk( = 150 C ).



2 74 N an o m ech an ics  o f  N a n o re in fo rce d  Po lym ers

polymer is desired. A t temperatures greater than the reference temperature, the m olecu
lar response of the polymer chains will be accelerated as more thermal energy is available 
for polymer chain reorientation; thus the mechanical response at this elevated temperature 
represents the behavior of the polymer (at the reference temperature) corresponding to 
longer timescales (o r inversely, smaller frequencies). Likewise, at a temperature below Tref, 
molecular reorientation is correspondingly slower than that at the reference temperature, 
thus representing the shorter timescale (o r larger frequency) behavior of the polymer (see 
Fig. 19).

Occasionally slight vertical curve shifting will be required (this is true for both the time 
and frequency domain experimental data); often the basis of this vertical shifting is the 
temperature-dependence of the polymer density. Because time-temperature superposition 
is only discussed here as a means to extend the range o f frequencies available for the col
lection of experimental data, further discussion of topics associated with time-temperature 
superposition (such as the standard W illiam s-Landis-Ferry (W L F )  representation of the tem
perature shift factors) is not warranted here. The reader is referred to the literature for 
further reading in this area [110, 111).

2. NANOREINFORCED PO LYM ER S— EXPER IM EN TAL RESU LTS
The focus of the chapter is the modeling of polymer nanocomposites; however, it is important 
to consider experimental results that guide the modeling efforts. In the following sections we 
will highlight key experimental work for the different classes of nanoscale inclusions, with a 
focus on nanotube reinforced polymers. W e will also present experimental evidence for the 
formation of a nonbulk phase in these materials due to interactions between the polymer 
chains and the nanoinclusion surfaces. A n  excellent review of experimental results on many 
types of polymer nanocomposites may be found in a book chapter by Schadler [19]. W h ile  
only a few results are mentioned explicitly in the text below, the Appendix presents a more 
complete summary of the polymer nanocomposites literature.

W h ile  many of the experimental results on polymer nanocomposites to date rely on meth
ods borrowed from traditional polymer experimental characterization (e.g., D M A , D SC , 
T G A ,.. . ) ,  a number of researchers are developing newer experimental techniques to allow 
nanoscale mechanical characterization of these materials. In addition to these methods to 
determine the mechanical behavior of these materials over multiple length scales, a number 
o f experimental techniques from analytical chemistry (X P S ,  F T IR .  N M R , . . . )  and material 
science (X R D ,  S E M , T E M , . . . )  are also necessary for complete understanding of nanocom
posites. As discussed earlier, there are also a number of issues related to the fabrication 
o f these nanocomposites, such as dispersion and alignment, that must be addressed when 
fabricating nanocomposite samples. A  great deal of progress has been made in this area; the 
reader is referred to Ref. [19].

2.1. Equiaxed Nanoparticulate Reinforcement
The most commonly used equiaxed nanoparticulate fillers include silica (S iO : ), titania 
( T i0 2), and alumina (A120 0 ,  although a large number of equiaxed nanoparticles are avail
able [19]. In many applications, these equiaxed nanoparticles are used to impart improve
ments in thermomechanical and wear properties over those of the unfilled polymer. In other 
applications, optical and/or electrical properties are the target enhancement. H ere, we briefly 
present selected experimental results published in the literature regarding property enhance
ments for equiaxed nar.oparticle-polymei composites (additional references arc provided in 
Table A .l in the Appendix). The reader is referred to these articles, and the references 
contained therein, for additional inform ation and discussion.

As discussed previously, nanoparticle dispersion and surface chemistry are critical issues 
for these nanoreinforced systems. In one study of nano-Si02 (70-110 nm particle size) 
in P M M A . it was reported that appropriate surface treatment to make the S i0 2 more 
hydrophobic greatly enhanced the dispersion and led to substantially higher TVs (as mea
sured by D M A ) of the nanocomposite as shown in Fig. 20 [! 181. Another study (10 nm silica
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Figure 20. Change in glass transition temperature as a function of nanosilica loading in PM M A (designations in 
legend refer to slightly different chemistries with strong interactions with the polymer). Reprinted with permission 
from [118]. Y. H. Hu et al., Polym. Degrad. Stabii <S4, 545 (2004). €> 2004, Elsevier.

particles in a thermoplastic copolym er) found sim ilar improvements in dispersion and prop
erties with surface treatment, such that a 10 v o l%  treated nanoparticulate formulation 
resulted in a forty-fold increase in storage modulus at 170°C [119]. The impact of the 
size of the nanosilica agglomerate and the amount of bound rubber (controlled via sur
face chemistry) on the mechanical properties o f a nanosilica-filled rubber have also been 
analyzed [120].

Consistent with the earlier discussion, surface area and interphase formation can cause 
significant differences in the temperature and mechanical behavior of these nanocomposites. 
For example, 9 nm S iO : particles (with an apparent diameter of 25 nm due to agglom
eration), loaded up to 55 w t%  in styrene-butadiene, were characterized by a 2 nm bound 
interphase as characterized by a bimodal glass transition behavior (see Ref. [121] and refer
ences therein for an excellent discussion). In another study, 39 nm A120 3 particles in P M M A  
resulted in an effective Tj, decrease of 25 °C  at only 0.5 w t%  loading; however, this Tj, depres
sion could be suppressed by coating the spherical nanoparticles to make them compatible 
with the P M M A  matrix [122]. Tsagaropoulos and Eisenberg conducted a comprehensive 
study of surface interactions and interphase formation for 7 nm diameter nanosilica in a 
number of polymers [123], identifying a dual glass transition temperature due to the inter
phase. Huang and co-workers investigated the impact of nano-SiO: (particle size 10-15 nm) 
on the dynamic mechanical properties of linear low density polyethylene ( L L D P E )  [124]. 
O ther workers have studied the nonlinear viscoelastic behavior of fumed nanosilica in P V A  
[125, 126] and nano-SiO: in a rubber elastomer [127].

The use of nano (as opposed to m icro) particulates can in some cases fundamentally 
change the underlying mechanisms governing thermo-mechanical behavior of the system, 
although in many cases a detailed understanding of this process is still lacking. As an exam
ple, while in traditional composites applications increases in stiffness (modulus) due to the 
incorporation of stiff fibers often results in losses of ductility and impact resistance due to 
stress concentrations caused by the fillers; it has been proposed that such stress concentra
tions can be reduced when nanosized fillers are used [19].

In one case, a large increase in ductility with nano-Al20 3 (39 nm) dispersed in P M M A  
has been reported (see Fig. 21) [128]. As indicated earlier, the interfacial characteristics 
between the nanoparticles and the matrix largely control the property enhancements; par
ticles that have weak interfaces with the matrix tend to have lower moduli and decreased 
glass transition temperatures, while stronger interfaces lead to increased moduli and stable 
or improved thermal properties. Analysis o f toughness is more complex, but as with tradi
tional composites a weak interphase can lead to significant improvements in toughness. The 
mechanisms for equiaxed nanoparticle reinforcement differ however from conventional fiber 
composites, where toughness arises in the energy dissipated in debonding, frictional sliding
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Figure 21. Example of increased nanocomposite toughness clue to change of the failure mode for particles with 
a weak interface. Reprinted with permission from [128], R. Siegel et al.. Scripta Mater. 44, 2061 (2001). © 2001, 
Elsevier.

and pullout. Here, there is evidence that a weak intcrphase leads to cavitation around the 
cquiaxed nanoparticlcs, re lief o f local triaxial stress states, and the participation of material 
in shear yielding rather than crazing. In well-dispersed nanocomposites, this ultim ately leads 
to homogenous shear yielding and can result in an order of magnitude increase in toughness 
as demonstrated in Fig. 21 (128].

Other studies have also investigated the impact of equiaxed nanoparticulates on nanocom 
posite thermo-mechanical behavior. The addition of a low concentration o f nano-Si02 
(20 nm) to a rubber-toughened epoxy led to a significant increase in the toughness o f the 
structural adhesive [129], while the addition of nano-Ti02 was found to improve the creep 
resistance of PA6,6 [130]. Low  loading of surface-modified nanosilica (7 nm) in polypropy
lene led to an improvement in tensile properties, attributed to a double percolation of 
yielded zones [131]. Epoxy-silica nanocomposites (particle size 10-20 nm) were fabricated 
with loadings up to 70 w t% , leading to improved thermal stability but a decrease in the glass 
transition temperature, attributed to a plasticization effect 1132].

Another application of equiaxed nanoparticles in polymers of particular interest is wear- 
resistant coatings. An excellent review of various experimental results regarding the wear 
resistance of polymer nanocomposites is given in Ref. [133]. In many cases, equiaxed 
nanoparticles have been shown to simultaneously increase the wear resistance and decrease 
the coefficient of friction, whereas for larger-sized particles an increase in wear resistance is 
typically accompanied by an increase in coefficient of friction [19]. For example, P E T  filled 
with 1 to 10 w t%  nanosized A L 0 3 (38 nm average diam eter) found the wear resistance 
doubled compared to that of the pure P E T  with a decrease in average coefficient of friction 
(fo r loadings less than 5 w t%  A LO ^ ) [134].

A  comparison of micron- and nanosized copper particles found the fundam ental wear 
mechanisms o f the composite changed when nanosized particles were used (125 fim vs. 10 
nm ) [135]. Figure 22 shows that a number of studies have found that the incorporation 
of equiaxed nanoparticulates within polymers have shown improved wear rates compared 
to those of the pure polymer (please see the original reference for further discussion and 
the citations for the work references in the figure [133].) For example, abrasion-resistant 
nanocomposites based on nano-CaCO* and P M M A  found that the average abrasive weight 
loss was halved with respect to neat P M M A  by adding only 2% nanoparticulate [136]. In 
another study, the addition of 1-2 v o I%  of nano-ALO^ to an epoxy was found to simul
taneously increase the stiffness, impact energy, and failure strain, in addition to a slight 
improvement in wear resistance attributed to different wear mechanisms for the compos
ites with nano- and micron-sized inclusions [137]. A  recent work reported that an improved 
wear resistance for a modified epoxy was found bv combining nano-TiO: with conventional 
microsized solid lubricants [138].

The sampling of results presented here suggests that the use of equiaxed nanoparticulate 
reinforcement within a polymer matrix may result in nanocomposite materials with enhanced 
thermomechanical and wear properties for technological applications. In many cases, the 
enhanced properties are believed to be due to changes in the fundamental mechanisms
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Figure 22. Normalized wear ratio improvements for various equiaxed nanoparticulate composites. Please refer to 
the original article for citations of work referenced in the figure. Reprinted with permission from [133]. W. G. 
Sawyer et al.. Wear 254. 573 (2003). €> 2003, Elsevier.

governing the response of the nanocomposite compared to those mechanisms controlling the 
behavior of the pure polymer. Further elucidation of the governing mechanisms at the nano
scale, and their relationship to the exhibited macroscale behavior, are necessary to enable 
control o f these mechanisms and ultimate optimization of these materials and their response. 
Continued experimental efforts, in conjunction with molecular and multiscale modeling, will 
enable progress to continue in this direction.

2.2. Nanotube Reinforcement
Research in the area of nanotube-reinforced polymers has exploded in the last several years 
motivated by the desire to leverage the outstanding physical properties of nanotubes as a 
multifunctional nanoscale filler in polymeric materials. Despite both the amount and quality 
o f work that has been performed in this area to date, it may be unsettling (although not 
surprising) to consider that many of the fundamental mechanisms underlying the effective 
response of these nanocomposites arc still the subject of debate. Such a state of affairs can 
be attributed to the complexity of interpreting experimental results for these materials, which 
are often dependent on the source of the nanotubes and, more critically, on the processing 
steps used to produce samples for experimental testing. D ifferences in polymer chemistry 
and the complexity of the viscoelastic response o f polymers (see Section 1.3) also complicate 
the slowly emerging picture of nanotube-polymer composite behavior. Thus the authors feel 
that the timing of the current chapter is appropriate, as we are approaching the stage in 
nanocomposite development where further advances in this field will be dependent on a 
stronger coupling of modeling efforts with experimental programs in order to elucidate the 
basic principles governing the material response.

In this section, we will present a brief sampling of representative experimental work 
reported in the literature regarding nanotube-polymer composites. W here  appropriate, we 
will focus the discussion on our own experimental efforts. In general, while experimental 
results achieved to date are promising, the large scatter in data and the inability in many 
cases to achieve the level o f property improvement predicted by straightforward modeling 
highlight the need for continued development in this field. As one example consider the 
experimental data shown in Fig. 23 for CVD-grow n M W NT-reinforced polystyrene. H ere the 
experimental data is compared with simple predictions for the effective composite modulus 
Ec obtained using the standard rule of mixtures approximations (E c = ciE, and = 
Y ,ci/E, for parallel and series models, respectively) and the Mori-Tanaka method (assuming 
a 3D random orientation o f the nanotube inclusions; the Mori-Tanaka method is described 
in detail in Sections 3.2.1.1 and Appendix A . l ) .  Assuming a nanotube modulus of 450 G Pa  
(to account for the level o f defects expected in CVD-grown M W N T s ; see Ref. [37]), the 
modulus enhancement observed experimentally is much less than predicted by this simple
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Nanotube volume fraction

Figure 23. Comparison of experimental data for MWNTs in polystyrene 1139] with rule of mixtures and Mori- 
Tanaka predictions assuming a nanolube modulus of 450 GPa. Reprinted with permission from [140], F. 7'. Fisher, 
Ph.D. dissertation. Northwestern University. 2002. €> 2002.

modeling. This again emphasizes the need for better mechanical models to assist in the 
interpretation of nanotube-polymcr composite experimental results, as a better understand
ing of the effective response of these systems will lead to improved fabrication processes and 
chemistries to further push the observed effective properties towards their optimal values.

The organization of the remainder of this section is as follows: in Section 2.2.1 we will 
discuss three critical issues related to nanotube-polymer composites: dispersion and align
ment of the embedded nanotubes and load-transfer in nanotube-polymer composites. A  
brief sampling of experimental results for the mechanical properties of these systems will 
be presented in Section 2.2.2, and a summary of experimental efforts focusing on electrical 
and thermal properties of nanotube-reinforced polymers will be presented in Section 2.2.3. 
A  discussion of the viscoelastic properties o f these nanocomposites, with a focus on the 
interactions between the nanotubes and the polymer chains, will be delayed until Section
2.4. W h ile  not comprehensive, we hope that the references assembled by the authors in the 
Appendix (see Table A . l )  will provide the interested reader a useful resource with which to 
peruse the literature. Additional information on nanotube-polymer composites can be found 
in a number of excellent review articles [141-144].

2.2.1. Issues Related to Processing of Nanotube-Reinforced Polymers
W h ile  there are a number of difficulties associated with fabricating nanocomposite samples, 
over the past several years a great deal o f progress has been made in this area (see the 
book chapter by Schadler for a more complete discussion of fabrication and processing 
of nanocomposites [19]). One issue of critical importance, common for all nanocomposite 
applications, is obtaining better dispersions o f the nanoparticles within the polymer, and 
progress in this area for nanotube-polymer composites has been realized. Further techniques 
and chemistries to more thoroughly separate NTs to maximize the nanotube surface area 
available for interactions with the polymer are continuously under development. In addition, 
significant efforts arc underway to better control the alignment of the nanotubes within the 
polym er as discussed in Section 2.2.1.2.

Finally, a significant open question is whether, for a particular polymer system, the inter
face between the embedded nanotubes and the polymer is sufficient for full load trans
fer to the reinforcement nanotubes; more work from both an experimental as well as a 
modeling perspective is needed in this area. Thus several groups are attempting to uti
lize chemical functionalization to covalently tether the nanotubes to the polymer matrix to 
enhance load transfer between the phases; while such functionalization has been shown to 
result in enhanced mechanical properties (in comparison to the unfunctionalized nanotube- 
polym er samples), predictive modeling o f the impact o f functionalization is at the moment 
lagging the developments in functionalization chemistry. The impact of functionalization on 
viscoelastic behavior and nonbulk interphase formation in nanotube-polymer composites will
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be diseussed in Section 2.4. W h ile  the experimental results covered within are promising, 
continued advances in the areas of fabrication and experimental testing highlight the need 
for more accurate modeling techniques to better understand the fundamental mechanisms 
at the nanoscale which govern the behavior of these materials.

2.2.1.1. Nanotube Dispersion within the Polymer. One issue o f practical importance 
for nanotube-reinforced polymers (N R P s ) is the separation and dispersion of the nanotubes 
within the matrix, which is critical as the nanotubes tend to assemble into ropes or bundles 
due to van der Waals interactions between the individual tubes. W h ile  some researchers 
have been able to separate individual nanotubes from the bundles via ultrasound and polar 
solvents, maintaining separated nanotubes during the processing of N R P s  is still the sub
ject o f ongoing work. Some results suggest that the use of a surfactant as a coupling agent 
may overcome the van der Waals attractive force and allow good dispersion of the nano
tubes within the polymer [ l 45]. However, it is unclear whether such processing agents can 
be employed to promote nanotube dispersion without compromising the nanotube-polymer 
interface. W h ile  the use of harsh acid treatments and chemical functionalization of the nano- 
tube has been shown in several cases to promote nanotube dispersion, such improvements 
must be balanced with the reduced nanotubc properties which result from the creation of 
defects in the pristine nanotube structure. Because nanotube dispersion is closely related to 
the van der Waals interactions predominant at the nanoscale, nanotube dispersion is typically 
more difficult as the diameter decreases.

A  number o f studies are available in the literature related to the improved dispersion of 
nanotubes within host polymers. For example, a recent study of the effect o f different sol
vents on the dispersion of S W N T s  in epoxy via sonication found solvent effects were most 
pronounced for, in order, dimethylformamide (D M F )  > ethanol > acetone; the effect of 
solvent choice on the extent of cure reaction was also noted [ 146]. Noncovalent function
alization of SW N T s  with poly(phenyleneethynylene) ( P P E )  has been shown to drastically 
improve the dispersion of S W N T s  in both polycarbonate and polystyrene [ 147], whereas 
plasma coating of Pyrograf I I I  carbon nanofibers (with diameters from 70-200 nm) with 
pyrrole [ 148] and polystyrene [ 149], respectively, has also been used to improve dispersion. 
Dispersion has also been enhanced by coating SW N T s  with poly(vinyl pyrrolidonc) ( P V P )  
and sodium dodecyl sulfate (S D S )  [ 150]. Considerable improvement of the dispersion of 
SW N T s  in epoxy based on an acid treatment-flourination treatment has also been reported 
f 15 1 ]. A  coagulation method has also been found to enhance the dispersion of S W N T s  
in P M M A  [152], while shear mixing using a Haake Poly lab bowl mixer has been reported 
to yield excellent dispersion [ 139]. As shown in Fig. 24, the level of nanotube dispersion 
depends strongly on the processing parameters.

One issue complicating the evaluation of dispersion within a polymer is an appropriate 
method with which to quantify the nanotube dispersion within the polymer. W h ile  optical 
methods are limited to rather large length scales governed by the wavelength of light, S E M  
techniques are typically limited to fracture surfaces (see Fig. 25). A F M  methods, to our 
knowledge rarely used for dispersion evaluation, arc at best only able to probe to very small

Figure 24. Photomicrographs of (left) poor and (right) good dispersion of CVD-grown multiwalled carbon nano
tubes in a polymer. Reprinted with permission from | 139], R. Andrews et al.. Mucromol. Muter. Hug. 287, 395 (2002). 
© 2002, Wiley A CH.
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Figure 25. SEM  image of M WNT-polycarbonate fracture surface showing excellent nanotube dispersion. Reprinted 
with permission from (I 16], A. Eitan et al.. Compos. Sci. Technol. (2006). © 2006, Elsevier.

sub-surface depths. W h ile  T E M  methods are most suitable for the highest resolution study of 
dispersion, such analysis requires tedious T E M  specimen preparation to microtome sample 
thickness thin enough for electron transparency. Even if such an analysis is undertaken, it is 
necessary to justify that the dispersion obtained over an extremely small area of the sample 
is representative of dispersion throughout the entire sample. In addition to smaller diameter 
nanotubes being more difficult to disperse in polymers, the evaluation of their dispersion 
is likewise more complicated; consider, for example, that SW N T s  are typically below the 
resolution of scanning electron microscopy.

2.2.1.2. Controlled Orientation of the Nanotubes. M ateria l properties may be opti
mized if the orientation of the nanotubes w ithin the polymer can be controlled, and several 
techniques have been proposed to address this issue. One group found that cutting thin slices 
(on the order of 100 nm ) of a nanotube-reinforced epoxy film introduced preferential orien
tation via shear flow [153]. This flow orientation method has also been used to orient small 
amounts of NTs (0 .1 %  w t) in a urethane acrylate polymer to thicknesses up to 150 fxm [154, 
155]. An alternative method that may be more suitable for larger samples is tensile loading 
of the N R P  at temperatures above the glass transition temperature of the polymer [156, 
157]. A  combination of solvent casting and melt mixing was also found to produce a high 
degree of nanotube alignment [158], while spin casting [159] and extrusion have also been 
used to induce nanotube alignment within the nanocomposite [160, 161]. W h ile  individual 
SW N T s  and S W N T  ropes have been aligned in the presence of electric [162] and magnetic 
[163] fields only recently has this work been extended to nanotube-reinforced polymers; see, 
for example, [164] and [165. 166], respectively.

Recent work has used a melt-spinning process to create PM M A/nanotube fibers in which 
a high degree of alignment of the nanotubes is obtained; larger samples are then made from 
hot pressing a sheaf of aligned P M M A / N T  fibers [158, 167]. W h ile  one might anticipate 
higher stiffnesses for aligned samples, this work shows a decrease in the low frequency 
storage modulus for these samples with the explanation that alignment leads to decreased 
tube-tube interaction and consequently decreased effectiveness of the nanotube network 
to stiffen the composite. Additional work, described in more detail in Section 1.2.2.4, is 
seeking to exploit the electrospinning process to create polymer nanocomposite nanofibers 
with alignment along the axial direction induced during the electrospinning process; see, for 
example, work with carbon nanotubes [86] and m ontm orillonitc [83]. A lignm ent within a 
polymer via stretching has also been used as a prelim inary step to create aligned fibers of 
SW  NTs (postalignment the polymer is removed by annealing of the nanocomposite at 1000°C 
in hydrogen) [168]. Based on these results, one could foresee using such polymer/aligned 
N T  fibers to weave a composite with controlled, but non-uniaxial N T  alignment, which could 
them mimic traditional composites in terms o f ply layup to achieve desired isotropic to 
directionaliy preferred property values.
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These efforts at alignment emphasize that models o f nanotube-rcinforced polymers must 
account for the orientation distribution of the nanotubes within the polymer for proper com 
parison between the model and experimental results. It is unlikely that nanocomposites will 
evei see the extreme control over orientation obtained in traditional continuous fiber com 
posites, where pre-preg lamina or unidirectional aligned fibers are selectively stacked for a 
given application. However, the differences between random orientation, partial alignment 
or controlled network structure of nanotubes within a polymer nanocomposite will dram ati
cally affect the overall composite thermal, mechanical and electrical properties and must be 
appropriately reflected in modeling strategies.

2.2.1.3. Load Transfer Across the Nanotube-Polymer Interface. Another area of con
siderable interest is the NT-polymer interface and load transfer between the polymer and the 
nanotubes [36, 39, 157, 169-173]. Poor load transfer for M W N T s  and S W N T  ropes embed
ded in a polymer has been attributed to the relative slipping of individual tubes within the 
M W N T  [39] and the S W N T  rope [171], respectively. However, other researchers have found 
evidence of promising nanotube-polymer interactions in composite materials. For example, 
a strong interface between M W N T s  and polystyrene (P S )  [36] and polyhydroxyaminoether 
( P H A E )  [156] has been reported. Analysis of S W N T  bund le-PM M A  thin films found that 
P M M A  was able to intercalate within the bundles, which would likely enhance the inter
face between the nanotube and polymer phases [174]. Significant wetting and interfacial 
adhesion for S W N T  bundles embedded in an epoxy resin has also been reported [175]. In 
another system, S E M  images of fracture surfaces show that the nanotubes are wrapped with 
P M M A  layers, believed to indicate a strong interface between the phases and attributed to 
the initiator used within the polymerization process [170]. O ther researchers found that NTs 
aligned parallel to the direction o f crack propagation tended to break between the crack 
faces (rather than pullout from the matrix), leading to the conclusion that a relatively strong 
interface exists between the two phases [36].

A  value of 500 M Pa  has been obtained experimentally for the interfacial shear strength 
for a polyurethane-NT system based on a fragmentation experiment, which is an order 
of magnitude larger than typically measured in conventional fiber-based composites [176]. 
(Com pare with the value for the interfacial shear stress for a polystyrene-nanotube compos
ite of 160 M Pa  calculated using molecular mechanics [177].) Because of this demonstrated 
adhesion within the urethane matrix, the use o f NTs as nanoscale strain sensing devices has 
been suggested, where low fractions of nanotubcs (0 .1 %  wt) make the host polymer Raman- 
active, allowing changes in the Ram an spectrum to be related to strain within the material 
[154. 178].

In addition, recent work by the Wagner group has demonstrated a novel AFM -based 
testing methodology to probe the interfacial shear strength of nanotube-polymer compos
ites [179, 180]. In these experiments, a nanotube attached to an A F M  tip was first placed 
into a heated (softened) polymer that was then cooled below the I\ as shown in Fig. 26. 
Subsequently, the A F M  was used to pull the nanotube out of the polymer layer and the 
force-displacement monitored, providing an estimate of the shear strength of nearly 50 M Pa. 
In addition, as the nanotube interface sustains stresses greatly exceeding the bulk polymer 
yield stress during the experiments, it was concluded that the properties of local polymer 
near the nanotube differ substantially from the bulk properties.

In situ Ram an spectroscopy measurements o f a nanotube-polymer sample under load 
were used to qualitatively measure the strain in the nanotubes as the samples were loaded, 
and it was reported that the Ram an peak position only shifted significantly in compression. 
It has been suggested that this is evidence that only the outer layer o f the M W N T  was 
loaded in tension, whereas all layers of the M W N T  are loaded in compression [39]. More 
recently, Ram an spectroscopy has been used to quantify the impact of functionalization on 
load transfer in a M W NT-polycarbonate system [116]. As shown in Fig. 27, the epoxide- 
functionalization increases the load transfer from the PC  to the M W N T  resulting in a greater 
shift in the Ram an peak as a function of strain applied to the composite. The differences 
in the Ram an response for different sources of SW N T s  and M W N T s  dispersed in the same 
epoxy has also been reported [181].
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Figure 26. AFM-based pullout test for measurement of interfacial shear stress in nanotube-polymer composites. A 
nanotube pre-attached to an AFM  tip is pushed into a healed (soft) polymer which is then rapidly cooled. Pullout 
force is measured based on the deflection of the AFM  canitlever. (left) Representative plot of pullout force versus 
time, (right) Pullout force versus the embedded area of the nanotube within the polymer. The slope of the curve 
was used to calculate an interfacial separation stress of 47 MPa. Reprinted with permission from [ ISO], A. I I. Barber 
et al.. Appl. Phys. Leu. 82. 4140 (2003). C:: 2003. American Institute of Physics.

To our knowledge the results shown in Fig. 27 represent the first report o f a semi-direct 
experimental method to characterize the load transfer enhancement due to nanotube func- 
tionalization. M ore typically, load transfer enhancements are inferred based on improve
ments in bulk macroscopic experimental data; see, for example, an amide functionalization 
technique resulting in dramatic property improvement for 1 w t%  loading o f SW N T s  in 
P M M A  [182] and the in situ polymerization o f chem ically functionalized M W N T s  in M M A  
monom er [183]. Characterization of the load transfer behavior in nanotube-polymer com 
posites, and how it can be altered via functionalization strategies, is perhaps one of the most 
important questions presently unanswered in this area. W e believe that the convergence 
of the expansion o f the experimental methods described here with continued advances in 
com putational modeling techniques such as those discussed in Section 3 (see, for example, 
Refs. [177, 184]) will result in significant advances in our understanding of the interface and 
load transfer in these systems. Such an understanding will be necessary to tailor the interface 
in these systems for optimal effective properties.

2.2.2. Mechanical Properties of Nanotube-Reinforced Polymers
A s discussed in the previous sections, despite considerable recent progress there are still 
a number of issues related to the processing of nanotube-polymer composites that need

Strain applied on the composite:

Figure 27. Shift in Raman peak as a function of composite applied strain. A R  — as-received MWNTs. HP — 
epoxide-modified MWNTs. Reprinted with permission from [116]. A Eitan et aL Compos. Sci. Technol. (2006). 
■D 2006. Elsevier.
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to be addressed. Additional complications hampering experimental interpretation include 
differences in properties and behavior between various sources o f nanotubes, the complex
ity of the chemistries of the host polymers (often making it difficult to generalize results 
obtained for different polymers), differences in the chemistry of the fabrication technique, 
and differences in sample processing (which may impart various degrees o f alignment in the 
sample). Such a state of affairs again emphasizes the need for the development of com 
prehensive nanomechanical models to go hand-in-hand with these experimental programs. 
Both the shear quantity and continually increasing number of papers presented in the lit
erature prevents a thorough review of all experimental results here; thus the goal o f the 
current section is to simply provide a summary o f the current level o f mechanical prop
erty enhancements that have been achieved to date using nanotubes as a reinforcing phase 
within a polymer matrix. The interested reader is referred to the collection of references 
provided in Table A . 1, as well as a number of recent reviews [141-144], for additional work 
in this area.

Representative experimental values of the glassy, elastic-like modulus (typically elastic 
testing at room temperature; in all cases data was collected at temperatures well below the 
glass transition temperature of the host polymer) for miiltiwalled carbon nanotube-reinforced 
polymers are shown in Fig. 28. A ll data was normalized with respect to the modulus of the 
polymer. Also shown in Fig. 28 are 3D Mori-Tanaka micromechanical model predictions 
for the nanocomposite effective modulus assuming isotropic properties for each of the con
stituent phases with modulus ratios E rM = £ NT/ E malrix ° f  500 and 100 (see Section 3.2.1.1 and 
Appendix A .l for further description of the Mori-Tanaka method). For clarity only data up 
to a volume fraction of 5 %  are shown on the plot; thus for some o f the references additional 
results for larger volume fractions of M W N T s  were truncated. In Fig. 28 data points that 
are characterized as “ aligned” arc done so based on claims made within the original refer
ence; typically in such work the alignment is processing-induced and the degree of alignment 
is relative (com pared to other samples processed using a different technique) rather than 
absolute. To date, true unidirectional alignment of nanotubes in a composite has not been 
achieved.

Two conclusions are readily apparent from analysis o f Fig. 28: there is a large degree of 
scatter amongst the data, and most modulus enhancements are significantly less than those 
predicted using a modulus ratio of 500. Assuming a modulus of 1000 G P a  for the nanotube, 
and given that structural polymer moduli are on the order of 1 to 3 G Pa , a modulus ratio 
E 1M — 500 is considered representative o f nanotube-polymer composites, whereas £ ra, = 100
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Figure 28. Representative experimental data for glassy modulus of MWNT-reinforced polymers normalized with 
respect to the modulus of the polymer. Alsu shown are Mori-Tanaka predictions assuming a 3D random orientation 
of nanotubes for two values of /Tlat == £’nt/ jE'ii,.ii. Key: (A ) Ref. ( 13C>J. (B ) Ref. [185]. (C ) Ref. [145]. (D ) Ret. [186]. 
(E ) Ref. [187]. (F ) Ref. [159]. (G ) Ref. [188]. ( I I )  Ref. [189|. ( I) Ref. [39]. (J) Ref. [183]; f-MWNT refers to 
functionalized MWNTs. (K ) Ref. [160].
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is shown for purposes o f comparison. Note that in most cases the experimental data is below 
that of the model predictions even though the model applied here assumes 3D random 
orientation o f the nanotubes and thus could be considered conservative.

W h ile  the data included in Fig. 28 are but a small sampling of published experimen
tal values, the following generalizations can be made which are consistent with additional 
interpretations found in the literature. Data points from (A )  in Fig. 28 show that partial 
alignment of the embedded nanotubes (accomplished through spin-coating the nanotube- 
polymer samples) led to comparatively higher modulus enhancements [139]; see also data 
points from reference (K )  in the figure [160]. Data points labeled ( B )  in Fig. 28 show that the 
enhanced crystallization of P V A  (as opposed to P V K )  due to the presence of the nanotubes 
led to higher modulus enhancement [185]; such increases are consistent with the hypothesis 
o f an additional reinforcement mechanism provided by the embedded nanotubes, namely 
the nonbulk properties of polymer in close proximity to the nanotubes. Such an effect is 
also apparent from data point (C ), which shows a large increase in modulus slightly above 
the 3D M T  prediction for E rM =  500; while this result is much higher than many of the 
other published data for M W N T  composites, those researchers also saw a very significant 
increase in the T of the nanocomposite (145], consistent with the formation of a nonbulk 
interphase polym er region which, as above, has been attributed to additional reinforcement 
enhancement of nanotube-polymer composites [116]. This effect will be discussed in much 
greater detail in Section 2.4.

As discussed previously, another question is whether the inner walls of the embedded 
multiwalled carbon nanotubes actually provide reinforcement to the nanocomposite. Such a 
point was raised by analysis of data points from references (G )  [188] and ( I )  [39] as presented 
in the original references; see also Ref. [38]. Lastly, an in situ polymerization process for 
M W N T - P M M A  composites showed large levels of modulus improvement, an effect that was 
further enhanced by functionalization of the M W N T s  as demonstrated by data points ( J )  
in Fig. 28 [183]. That these points lie above the 3D  M T  predictions is consistent with the 
existence of an interphase region of altered polymer properties and higher modulus, which 

iccounted for in the simple two-phase M T  predictions considered in Fig. 28.
As wn in Fig. 2C), those researchers also found that the functionalization also results in 

increases in toughness of the nanocomposite (defined as area under the stress-strain curve) 
[ 183]. O ther researchers point out the complexity for toughening enhancements of polymers 
via the incorporation o f nanotubcs; while some researchers have found significant toughening 
of the nanocomposite in comparison to the base polymer, for example with P M M A  (see 
Fig. 30) [190] and U H M W P E  [191], recent work with vapor-grown carbon nanofibers found 
an absence o f toughening attributed to enhanced crystallization of the polypropylene matrix 
[172]. C learly, the details o f the polymer matrix chemistry and structure, and its interaction

Strain (mm/mm)

Figure 29. Strcss-strain curves for in situ polymerized carbon nanotube-reinforced PMMA. A ~ PMMA: B = i 
MWNTs; C - 1 vvtfunelior.alizcd MWNTs: L) = 1.5 wt'v functionalized MWNTs. Approximate areas under the 
curves as a measure of toughness: A — 0.15 MPa: B = 0.116 MPa: C —- 0.219 MPa; D — 0.262 MPa. Reprinted with 
permission from [1N3|, C. Velasco-Santos et al.. Chem. Mater. 15. 4470 (2003). (O 2003. American Chemical Society.
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Figure 30. Toughening of MWNT-PMMA nanocomposiics. (left) Tensile toughness as a function of M W NT orien
tation (relative alignment achieved via melt drawing at a 10:i draw ratio), (right) Tensile toughness as a function 
of draw ratio for 1 wl'r MW NT samples. Reprinted with permission from |I90|, R. E. Gorga and R. E. Cohen. 
./. Poly. Sci. 42. 2h90 (2004). © 2004, John Wiley and Sons.

with the nanoparticles, can lead to improvements or reductions in toughness depending on 
the different mechanisms activated by the reinforcement. This topic represents a rich area 
for future research efforts.

W h ile  less work has been published on single-walled carbon nanotube composites, a pic
ture similar to that presented above for M W N T s  is emerging. The importance of dispersing 
the SW N T s  within the polymer, more difficult than encountered for M W N T s  due to the 
increased surface area of the SW N T s, cannot be overemphasized. For example, recent work 
found that while the S W N T s  affect the crystallization rates of the polypropylene matrix, little 
change in mechanical properties was attributed to micron-sized aggregates of the S W N T s  
[192]. On the other hand, increases in modulus up to 3 0 %  based on ultrasmall loadings 
(<0.25 vvt( ( )  o f SW N T s  in polycarbonate suggest that the entanglement o f the S W N T s  may 
enhance the reinforcement effect [ 193]. A  sampling of representative modulus data for vari
ous SW NT-polym er systems is shown in Fig. 31. As was the case for M W N T s , results reported 
w ith chemical functionalization tend to result in better modulus enhancements (see also 
Fig. 32). W hile  fewer data points are available for S W N T  reinforcement, it appears that in 
comparison to the m icromechanical predictions assuming a 3D random orientation of inclu
sions, the results for S W N T  reinforcement are higher. W e stress that such an observation
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Figuire 31. Represc ntative experimental data for glassy (elastic) modulus of SWNT-reinforced polymers normalized 
with respect to the modulus of the polymer. Also shown are Mori-Tanaka predictions assuming a 3D random 
oriemtation of nanotubes for two values of E ral = E NT/Emar f-SWNT refers to functionalized SWNTs. Key: (A) 
Ref. [194|. (B ) Ref. [15S|. (C) Ref. f 150]. (D ) Ref. 1152]. (E ) Ref. [195]. (F ) Ref. [196). (G ) Ref. [151]. (H ) 
Ref. |1X2|.
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Figure 32. Tensile stress versus strain curves for SWNT-cpoxy nanocomposites. I -SWNT-COOH refers to a car- 
hoxylation functionalization of the SWNTs. Reprinted with permission from [151]. J. Zhu et al.. Nano Lett. 3, 1107 
(2003). © 2003, American Chemical Society.

must be considered in the context of several critical issues: (1) work with S W N T s  has in 
general appeared later in the literature than work for M W N T s , and thus may indirectly 
benefit from previous work done in this area; (2 ) the inherent modulus of the S W N T s  
may be much greater than that of the M W N T s  (particularly when considering CVD-grow n 
M W N T s ); and (3) the much larger surface area available within the nanocomposite for the 
case of the S W N T  will enhance the effects and reinforcement provided by the interphase 
(see Section 2.4).

W e end this brief section by noting that recent results have also shown that soaking S W N T  
buckypapcr with various polymers enhances the mechanical properties of the buckypaper 
1197], and that improvements in toughness with the incorporation of S W N T s  in P M M A  
have been observed [161]. The mechanical characterization of SW N T s  incorporated within 
a thermoelastic elastomer have also been reported [198].

2.2.3. Electrical and Thermal Properties 
of Nanotube-Reinforced Polymers

For many applications, the addition of low volume fractions of NTs is being pursued as a 
means to increase the conductivity o f insulating polymers to levels required to provide elec
trostatic discharge and electromagnetic radio frequency interference protection [196, 199— 
201]. Consider the experimental data for C V D  grown M W N T s  in an epoxy shown in Fig. 33, 
[199]. It is clear that the nanotubes are much more efficient than the carbon black filler 
which is currently added to improve polymer conductivity. This is attributed to a percolation- 
type process, which is achievable for relatively low volume (weight) fractions of the nano
tubes due to their high aspect ratio and outstanding conducting properties. Sim ilar results 
have been reported for arc grown M W N T s  in poly(m-phenylenevinylene-co-2,5-dioctoxy-p- 
phcnyleneviylene) (P m P V ) [202], S W N T s  in P M M A  [ 152, 203|, M W N T s  in a polycarbonate 
masterbatch processed via melt-mixing [204] and diluted with P E  [205], M W N T s  in a rub
bery epoxy resin [206]. M W N T s  in polyaniline (PAN 1) [207]. and S W N T s  in a polyimide 
investigated for electrostatic charge mitigation [200]. These results demonstrate that elec
trical percolation can be obtained at extremely load nanotube concentrations within the 
polymer. For example, percolation was obtained for 0.05 vo l^  M W N T s  in polyfpropylene) 
[139], 0.0025 \vtrr M W N T s  in epoxy [208]. and 0.1 voK r loading of S W N T s  in a polyimide. 
resulting in a 10 order of magnitude increase in electrical conductivity [196] in agreement 
with a percolation model for those systems [209]. However, for P m P V  and P V A  polymer



N an om echan ics  o f  N an o re in l'o rce il Po lvm crs 287

Figure 33. Electrical conductivity of CVD grown NTs in an epoxy, (a) CVD grown NTs. (b) Carbon black with 
copper-chloride, (c) Carbon black only. Reprinted with permission from [199], J. Sandler et al. Polymer 40, 5967 
(1999). © 1999, Elsevier.

systems, the presence of a thick polymer coating surrounding the nanotubes may lim it the 
electrical conductivity obtainable for ultra-high loadings of nanotubes [210].

Sim ilar to electrical conductivity, significant increases in thermal conductivity using small 
amounts of nanotubes have also been reported. For example, increases in both thermal 
and electrical conductivity were found for an industrial epoxy reinforced with up to 1 w t%  
SW N T s, with the improvements in thermal conductivity observed over a wide range o f tem 
peratures (see Fig. 34) [211]. A  loading of 1 w t%  S W N T  in epoxy increased the thermal 
conductivity o f an epoxy by 120%, a much larger increase than exhibited for vapor-grown 
carbon libers [212]. The thermal conductivity enhancement of a silicone elastom er was found 
to be greater with CVD-grown M W N T s  than a corresponding weight loading of carbon 
black [2 131. Recent work for (  VD-grown M W N T s  in a rubber found thermal conductivity 
enhancement for unmodified nanolube filler, and that while moderate chemical function- 
alization improves the thermal conductivity of the composite, excessive chemical treatment 
decreases the effective conductivity [213, 214]. M odeling efforts have suggested that the 
effective thermal conductivity of the nanocomposite is strongly influenced by the thermal 
interface resistance of the system [215-217].

Figure 34. Thermal conductivity enhancement for epoxy as a function of SWNT and vapor-grown carbon fiber 
weight loadings. Reprinted with permission from [211). M. J. Biereuk ct al. Appi. Phys. Leu. 80. 2767 (2002). © 2002, 
American Institute of Physics.
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W c note one factor that distinguishes the use of nanofillers for mechanical property 
enhancement is the existence of a “ critical threshold" (i.e.. percolation) for electrical and 
thermal properties at which substantial improvements in these properties are observed. 
Often these improvements result in satisfactory performance improvement being achieved 
at an extremely small nanofiller loading (see, for example, a recent M onte Carlo  study of the 
level of nanotube loading necessary for percolation in nanotube-polymer composites [218]). 
For mechanical property enhancement, however, desired mechanical properties should con
tinue to increase as nanofiller loading is increased, and concerted efforts are underway to 
continue to push the level o f nanofiller that can be loaded into polymer nanocomposites for 
these applications. Readers interested in the use of nanotube fillers for electrical and ther
mal property enhancement are directed to the references provided above, and references 
contained therein, for further discussion o f research in this area.

2.3. Nanoplatelet Reinforcement
A s discussed in Section 1.2.3, interest in the use of nanoclays as nanoscale reinforcement 
materials has greatly increased since the initial published work by researchers at Toyota 
in the early 1990s [3, 90]. A  comprehensive review of nanoclay-polymer composites work 
is beyond the scope of the current section; the reader is referred to a number of review 
articles for focused reading in this area [91-99]. Our goal here is to simply highlight some 
of the experimental work that has been published in this area, beginning with nanoclays 
and later focusing on graphite nanoplatelets (alternatively referred to as graphite, expanded 
graphite, and graphene reinforcement), to set the stage for the discussion of the nanom e
chanical modeling of such nanocomposites beginning in Section 3. Discussion of changes in 
the viscoelastic behavior o f clay-nanocomposites (in comparison to the behavior o f the unre
inforced polymer) will be postponed until Section 2.4. Additional papers describing work in 
this area are also provided in the Appendix.

As discussed in Section 1.2.3, the mechanical properties of nanoclay-polymer compos
ites are strongly dependent on the degree of dispersion and intercalation/exfoliation of the 
nanoclay within the polymer, and processing methods have been predominantly focused in 
these areas. In general, increases in elastic modulus and yield strength are accompanied by 
decreases in ultimate strain (i.e., strain to failure). Representative examples of experimen
tally measured nanocomposite mechanical properties are shown in Figs. 35 [219] and 36 
[220]. The blending of polyimide with organically modified montmorillonite found increases 
in tensile modulus up to 110% in comparison to the pure polyimide for 2 w t%  loading of 
nanoclay, with decreases in the thermal expansion coefficient and increases in the glass tran
sition temperature and decomposition temperature also noted [221]. O ther results show a

Clay Content (wt.%) Clay Content (wt. % )

Figure 35. (A ) Tensile modulus and (13) yield strength and strain at yield as a function of clay loading tor a 
polyamide-nanoclav composite. Reprinted with permission from [2 59}. T. X. Liu et al.. Compos. Sci. Technol. 63, 
331 (2(103). €> 2003, Elsevier.
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C la y  content, (w t .% ) C la y  content, (w t .% )

Figure 36. E ffe c t o f  c lay content on the m echan ical p roperties o f a three-roll m ill com pounded  epoxy-nanoclay 
com posite. R ep rin ted  w ith perm ission from  [220], A. Y asm in  et al., Scripta Mater. 49. SI (2003). © 2003, 
E lsev ier.

factor of three increase in fracture toughness at 1 w t%  nanoclay loading without decreasing 
strength [222].

However, it is difficult to make sweeping generalizations with regards to the effective 
mechanical properties of nanoclay-polymer composites, as the structure and hence properties 
can be sensitive to the processing of the nanocomposite. For example, a collapse of the 
exfoliated structure of the nanoclay based on mechanical processing of the nanocomposite 
has been noted [223], and decreases in cross-linking of a cross-linked polyester matrix have 
been attributed to greater levels of exfoliation of the nanoclay [224).

Issues related to the impact of processing on nanoclay composite properties have also 
been studied. Nanoclay exfoliation in nylon 6 has been found to be more effective using 
a twin-screw (as opposed to a single screw) extruder; the resulting nanocomposites were 
found to have mechanical properties similar to those obtained for similar in situ polymer
ized systems [2251. The impact of molecular weight on the melt mixing of a masterbatch 
nylon 6— nanoclay composites has also been studied, with higher molecular weights gen
erally leading to higher levels of nanoclay exfoliation [226, 227]. While the difference in 
moduli between the low molecular weight (L M W ) and high molecular weight (H M W ) nylon 
6 was small, the moduli of nanocomposites based on H M W  nylon 6 are 10-15% higher than 
those based on the LM W  nylon 6. Differences in the thermomechanical properties of the 
skin and core of injection-molded nylon 6— nanoclay composites have also been observed 
[228]. A  non-solvent compounding using a three-roll mill found enhanced elastic moduli 
up to 80% in comparison to that of the pure epoxy at 10 wt% nanoclay loading, although 
the rate of enhancement decreased at higher clay contents attributed to the aggregation of 
clay particles at higher loadings [220]. Epoxy-aided dispersion of nanoclay in PM M A  has 
been found to result a three-phase nanocomposite structure with significant improvements in 
tensile modulus and impact strength compared to those of the pure PM M A  and the PMMA- 
nanoclay composite [229]. Such results emphasize the need for continued development of 
the processing-structure-property relationships for this class of nanocomposites.

Recently, a new class of nanoclay-polymer composites has been explored using the layer- 
by-layer assembly method to create thin nanoeomposite films with much higher loadings of 
nanoclay than can be achieved using other methods [104, 105]. Such processing is based on 
the sequential absorption of polyelectrolytes, producing a nanocomposite structure that has 
been referred to as "artificial nacre.”  While typical film thicknesses were found to be on 
the order of 1 j im  for 50 polyelectrolyte/nanoclay bilayers, modulus values on the order of 
10 GPa have been measured experimentally [104, 105].

In addition to mechanical property enhancement, the use of nanoclay reinforcement has 
been proposed to enhance the barrier properties of polymers. The reduced permeability 
of nanoclay-filled polymers to both liquid and gas diffusion is of interest in areas such as 
membranes and packaging applications. An example is shown in Fig. 37, where water vapor 
permeability is significantly reduced as a function of nanoclay content; similar results were 
also reported for the diffusion of oxygen and helium gas [6]. Decreases in diffusivity have
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Figure 37. Pe rm eab ility  coeffic ien t o f  w a ter vap o r in a polyim ide-clav hybrid. R e p rin te d  w ith  perm ission from  [6).
K . Yano  et al., /  Polym. Sci. 31. 2493 (1993). CO 1993, Jo h n  W ile y  and Sons.

been attributed to the increased of tortuosity of molecules diffusing through the polymer 
[230]. As shown in Fig. 38, the ratio of the permeability coefficient of the composite Pc to 
that of the pure polymer P can be expressed as

Pp 1 + ( L /2 W )V f

emphasizing the importance of exfoliation (to increase the value of L /2 W )  in decreasing 
the permeability. Interestingly, such changes in permeability may impact the processing of 
nanoclay composites; for example, the importance of adequate degassing to reduce nano- 
and microvoids in an epoxy-nanoclay nanocomposite has been identified (see Fig. 39) [220]. 
Other property enhancements, such as decreased flammability (231, 232] and increased ther
mal and dimensional stability, have also been observed [19, 92, 99].

While carbon black has been used in polymers for decades as a filler to impart electrical 
conductivity, and research into nanoclay as a filler material exploded in the early 1990s, 
more recent work has examined the use of expanded graphite as a nanoscale tiller. While 
natural graphite flakes have a surface area of —4 m:/g, expanded graphite ranges from 
40 nr/g to 1500 irr/g depending on the intercalant chemistry and processing conditions 
[107, 233]. Consequently, if proper dispersion of the graphite nanoplates in the polymer is 
obtained with the higher surface area material, the potential for improved properties in the

d'jFr=?

Total path of a diffusing gas

... d' = d + d-LVf / 2W
| j d : thickness of a film
j L : length of a clay

W: width of a day 
w  W volume fraction of a clay

Tortuousity factor

j! t  = d ' / d
• = 1 + L-Vf / 2W

y  Equation for a permeability coefficient

Pc = Pp/ x
= Pp / (1 +L Vf / 2W)
Pp : permeability coefficient of 

a matrix polymer

F igure 38. Tortuous path o f  d iffusing  m olecu les through a p latelet tilled m aterial. R e p rin te d  w ith  perm ission from  
[6], K . Y ano  et a I.../. Polym. Sci. 31, 2493 ( !993). O  1993, Jo h n  W ile y  and Sons.
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Strain, (%)

Figure 39. E ffe c t  o f  degassing on the tensile strength o f  a 3 vvtr f clay nanocom posite. R ep rin ted  w ith  perm ission 
from  [220]. A . Yasm in et al.. Scripta Mater. 49, S I (2003). ©  2003. E lsev ier.

composites is significant. The first steps in this area were focused on electrical properties, 
with several sources noting that the percolation threshold for expanded graphite ( — 1 w t% ) 
is significantly less than that for graphite (~3 w t% ) or carbon black (~8 w t% ) (see Fig. 40) 
[234, 235].

Enhancements of thermo-mechanical properties have also been reported for graphite 
nanocomposites. Elastic modulus or storage modulus increases of 25% at 2 w t%  have been 
reported [236]. In addition, several methods for exfoliating the expanded graphite have been 
examined, each resulting in different platelet dimensions. It was found that the larger plate 
diameter tended to correspond to better nanocomposite properties [109]. Changes in glass 
transition temperature have also been noted, with increasing Tj, for the thinner and wider 
nanoplate 1 et torms.

A  recent paper has compared the impact of graphite, expanded graphite (EG ), and 
graphite nanoplatelet (G N P) on nanocomposite properties under identical processing condi
tions for loadings from 1 to 5 w t%  [237]. The graphite nanoplatelet material was created via 
sonication of expanded graphite before being incorporated into the host polymer (PM M A ) 
via a solution based processing method. The sonication increased surface area from 20 nr/g 
for EG  to 30 nr/g for the GNP. This work demonstrated substantial increases in glassy elas
tic stiffness, 60% at 1 w t%  and 135%; at 5 w t%  for the GN P reinforcement, exceeding that

1 .OOF+09 
1 .OOE+OS 
1.00E+07 
1.00E+06 
1 .OOE+05 
1.00F.+04 
1.00E+C3 
1.00E+02 
1.00E+01 
1 .OOE+OO 
1.00E-01 
1.00E-02

2 3 4
Filler content (w t% )

Figure 40. E le c tr ic a l conductiv ity  o f  P  M M  A/graphite (■ )  and PM M A /e x p an d cd  graphite (• ) as a function o f  weight 
fraction . R ep rin ted  w ith perm ission from  [235), W . Z h e n g  and S. C . W ong . Compos. Sci. Technol. 63, 225 (2003). 
©  2003. E lsev ie r .
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of both the as-received graphite and the E G  forms. All cases also showed a change in the 
Tj, of the material, with a maximum increase of 38°C for G N P at 5 wt%. In addition to the 
increased surface area, the GNP exhibited better adhesion with the PM M A  matrix as seen 
in Fig. 41. While these results are promising, some effects could not yet be fully explained, 
including a decrease in the for the EG  composites at 5 wt%. Modeling of the interaction 
of the surface chemistries of the different graphite forms with the polymer matrix and the 
morphologies of the in situ platelet forms will be helpful to untangle the complex behavior 
of these systems.

While the experimental results highlighted here demonstrate the successful use of nanoin
clusions (nanoparticles, nanotubes, and nanosheets, respectively) within polymers, in many 
cases interpretation of these experimental results is hampered by lack of a detailed modeling 
approach suitable to relate these experimental results to the fundamental principles gov
erning the mechanical response. As modeling efforts progress and a more complete picture 
of the nanoscale mechanisms governing the effective behavior of the material is developed, 
this information will feed back into the processing and chemistry of these nanocomposites 
to enable even greater property enhancements to be realized. In addition, as discussed in 
the next section, one characteristic that is common to all nanoinclusion forms is the impact 
of the embedded nanoinclusions on local polymer in the vicinity of the nanoinclusion.

2.4. The Interphase Region and Viscoelastic Behavior 
in Nanoreinforced Polymers

Because the nanoinclusions are on the same length scale as the radius of gyration of the 
polymer chains, local polymer morphology will differ from that of the bulk polymer. W'e 
refer to this region of nonbulk polymer behavior as the interphase, borrowing a term used in 
the composites community that refers to the region separating the fiber and matrix phases. 
While in traditional composites research the interface region is generally attributed to a host 
of factors (such as the use of fiber sizings, mechanical imperfections, unreacted polymer 
components, etc.), as discussed in Section 1.1 such regions are generally much smaller (in 
terms of volume fraction of the composite) than the interphases present in nanocomposites 
(see Fig. 2). Here we limit our discussion specifically to the change in molecular mobility of 
the polymer chains in this region due to the presence of, and interactions with, the nanoscale 
inclusions. We note that in addition to the experimental work discussed in this section, 
similar findings have been presented based on computational studies of nanocomposites (see 
Section 3.1.1).

2.4.1.1. E xpe rim en ta l E v idence  o f  N o n b u lk  In te rphase  Polym er. A  number of exper
imental studies have show n changes in the viscoelastic behavior of polymer nanocomposites 
compared to the behavior of the pure polymer. In most early reports such changes were 
noted as shifts in the glass transition temperature of the nanocomposite, however recently

F ig u re  41. Plates protruding  fro m  a fracture surface of I IG / P M M A  (le ft )  and G N P / 'P M M A  (r ig h t) nanocom posites 
a i 5 w  l' ( o f partic le  loading. C le a r  evidence o f better polym er adhesion  to the n a nopart id es  is seen for the 
case o f  G N P . R ep rin ted  w ith  perm iss ion  from  |237j. T. R am an u th an  et a!., subm itted to Po lym er (2006). ©  2006, 
E lsev ier.
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more complete analyses of the property changes are common, with the interphase generally 
recognized to he a primary mechanism causing such changes in viscoelastic behavior. As dis
cussed previously, generalizations of the interphase phenomena in nanocomposites is com
plicated due to the number of parameters (e.g.. nanoinclusion type, nanoinclusion-polymer 
interactions, and polymer chemistry) that are expected to influence the size and properties 
of the interphase. Here we will present a few examples from the literature demonstrating 
the significance of the interphase in polymer nanocomposites, with a focus on our own in- 
depth study of the interphase in MWNT-reinforced polycarbonate. Many of the results focus 
on viscoclastic measurements to probe the nanoparticle-polvmer interactions as these tech
niques are especially sensitive to changes in polymer mobility [238]. Additional literature 
references can be found in the Appendix.

A number of studies have looked at the viscoelastic behavior of nanosilica-reinforced 
polymers. In one particularly extensive study, the effective mechanical behaviors of various 
nanosilica-filled polymers were characterized as demonstrating two glass transition tempera
tures [ 123]. Such behavior was attributed to the morphological changes in the nanocomposite 
systems as the loading of nanoparticles increased in terms of tightly and loosely-bound poly
mer. The change in the loss tangent of nanosilica in S B R  was also attributed to an interphase 
formation, despite the agglomeration of the 9 nm equiaxed nanoparticles into clusters with 
an apparent diameter of 25 nm [121]. However, the effective behavior of the interphase and 
its impact on the overall nanocomposite properties can be complex due to the sensitivity 
of the interphase on the chemistry of the system: for example, despite each system showing 
improved thermal stability, the glass transition temperature has been found to increase for 
nanosilica-reinforced PM M A  [118] and decrease for an epoxy system [132]. A  recent study 
has examined the change in dynamic mechanical properties of nanosilica-filled L L D P E  as 
a function of surface treatment [124]. Other modes of viscoelastic response, such as creep 
resistance, have been shown to change upon the addition of nanoparticles; for example, by 
the addition of 21 nm diameter nano-TiO: to nylon 6 [ 130].

Similar changes in viscoelastic behavior have also been observed in nanoclay-polymer com
posites. Here changes in the glass transition temperature seem to be particularly sensitive 
to the interaction chemistry, as both increases and decreases in T,, are often reported. For 
example, even for nanoclay-reinforced epoxy, both lower [239] and higher [240] glass transi
tions have been observed. Similar results have been observed for polymer thin films, where 
the nature of the chemical interactions between the polymer chains and the substrate dic
tate whether increases or decreases in 7J, occur [241]. Changes in viscoelastic behavior due 
to nanoclayreinforcement have been reported for a number of polymer systems, including: 
polyimide [221], polysiloxane [242]. nylon [243], PEO  [244]. PM PS [245], and diblock copoly
mers [246]. Changes in the creep behavior of nanoclay-filled nylon have also been reported 
[247]. Similar alterations in the viscoelastic behavior have also been reported for expanded 
graphite-reinforced nanocomposites [235, 248, 249].

Early experimental testing of the viscoelastic behavior of nanotube-reinforced polymers 
has also found that the addition of NTs to the polymer can result in changes in viscoelastic 
behavior of the nanocomposite. For example, a 25°C shift in the glass transition temperature 
(from 63 to 88°C ), as measured bv the peak of the loss tangent curve, has been measured for 
an epoxv reinforced with 1 w t%  MWNTs [145]. However, the changes w'ere only achieved 
when surfactant was used within the processing of the nanocomposite; non-surfactant sam
ples showed smaller increases in T', attributed to poorer dispersion of the NTs within the 
sample, highlighting the importance of surface area on the changes in viscoelastic behavior. 
Shifts in Tj, have also been observed for polyimides [196], A B S  [250], and PM M A  [186], 
while broadening of the loss peak has been reported for PVO H  [169]. Interphase formation 
may also be related to changes in polymerization and crystallization due to the incorporation 
of the nanotubes within the polymer [170, 185, 192], and has been described as acting as 
effective crosslinks in a polvimide system [188].

We have recently conducted a comprehensive characterization of interphase formation 
in MWNT-reinforced polycarbonate, the details of which are available elsewhere [116]. 
Figure 42 shows the temperature-dependent viscoelastic response of the polycarbonate (PC ) 
control sample as well as samples created with as-received (A R ) and epoxide-functionalized
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Figure 42. Tem perature-dependent v iscoelastic p roperties o f M W N T -p o lyca rh o n a te  sam ples, (a )  S torage  modulus, 
(b )  Loss modulus, (c )  Loss tangent. A R  = as-received M W N T s ,  E P  =  epoxide-m odified M W N T s .  R ep rin ted  w ith 
perm ission from  [116]. A . E ita n  et al., Compos. Sci. Technol. (to  be published, 2006). €) 2006, E lsev ier.

(E P ) MWNTs. For the unfunctionalized samples we see slight increases in the glassy storage 
modulus (analogous to the elastic-like improvements demonstrated during elastic testing), 
with corresponding shifting and broadening of the loss modulus and loss tangent peaks to 
higher temperatures with increasing nanotube loading. However, the functionalized sam
ples exhibited more dramatic shifting of the loss peak for the same weight percent loading, 
indicating a greater influence of the interphase on the effective response for this system.

Figure 43 schematically illustrates the difference in the extent of the interphase in the 
unfunctionalized and functionalized cases. The formation of an adhered layer of polymer 
for the case of the unfunctionalized samples can be enhanced by controlling the processing 
of the MWNT-polycarbonate samples via solvent selection [116]. Functionalization and sub
sequent tethering of short chain epoxide modules to the M W N T  enable covalent bonding 
of the nanotubes to the polymer matrix, which further enhances interphase formation, such 
that eventually the viscoelastic properties of the interphase dominate those of the bulk poly
mer matrix. Experimental characterization of the relaxation spectra of the nanocomposite

B u lk  p o ly m e r

A d s o rb e d  la y e r

N a n o tu b e

F ig u re  43. Proposed  m echanism s for influence of absorbed layer on in ierphase form ation in nanotube-polym er 
com posites, (a )  U n functiona lized  nano lube and absorbed layer fo rm ation , (b ) Functionalized  nanotube with short- 
ehain polym er tether link ing  nanotube to matrix. R ep rin ted  w ith perm ission from  [116], A . E ita n  et al., Compos.
Sci. 'Technol. (to  be published. 2(HJf>). <<■) 200f\ E lsev ier.
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samples (see Section 2.4.1.2) confirm the decreased mobility of the interphase polymer, 
and are consistent with the significant enhancement of the interphase effect in the case of 
the functionalized samples. Such results suggest that some tailorability of the interphase 
and its properties may be achievable upon careful control of the nanocomposite process
ing conditions. Extensions of this work to investigate the effect of the interphase region on 
other mechanical properties, such as strength and toughness, will be the subject of future 
efforts.

Further evidence of the interphase region for this system was found upon examination of 
high-resolution SEM  imaging of the fracture surface of unfunctionalized M W N T  samples 
[251]. As shown in Fig. 44, protruding from the fracture surface are nanotubes coated (or 
sheathed) by a layer of polymer. The presence of this polymer sheathing is consistent with 
models of a nonbulk polymer interphase region proposed for nanotube-polymer composites 
[16, 117, 140, 169, 252]. In the process of probing these structures with an A FM  tip, the 
polymer sheathing suddenly contracted and balled up, exposing a much thinner structure 
that may be either a bare nanotube or a M W N T  coated with a much thinner layer of polymer 
(see Fig. 45). While the M W N T  shown in Fig. 45 fractured, either due to contact with the 
A FM  tip or the subsequent balling of the polymer coating, in other cases the M W N T  did 
not fracture during this experiment. Of the 26 structures protruding from the same MWNT- 
PC fracture surface examined, 22 demonstrated a similar “ balling up” response [251]. From 
video recording of these in situ SEM  experiments, the apparent outer diameters of the 
coated MWNTs before and after this balling up phenomenon were measured; the volume of 
the newly formed globules matched the apparent decrease in volume of the coated M W N T 
within experimental error. Estimates for the thickness of the polymer sheathing based on 
this balling up observation were similar to the sheathing thicknesses directly measured from 
SEM  images similar to those shown in Fig. 44.

For those cases where the balling up of the polymer sheath did not occur, the coated 
tubes were clamped to the A FM  tips and nanopullout tests from the polycarbonate matrix 
conducted. At the end where the coated M W N T  was pulled from the fracture surface, 
high-resolution SEM  images reveal what appear to be two distinct polymer layers coating 
the fractured M W N T  [251]. This suggests that here there may be two interfaces that influ
ence the effective mechanical properties of the system: the MWNT-inncr polymer layer and 
inner polymer layer-outer polymer layer interfaces. Efforts to further elucidate this poly
mer sheathing phenomena, and the impact of this sheathing on the mechanical behavior of 
nanotube-polymer systems, are ongoing.

Figure 44. High-resolution S E M  images o f A R - M W N T  fracture  surface, (a )  Far-fiekl image o f  the A F M  lip  
approach for nanotube pu llou t experim ent, (b .e ) N ano tub e  structures coated  w ith  a po lym er sheath protruding 
from  the fracture  surface. R ep rin ted  w ith  perm ission from  [251], W . D ing  e l al.. Nano Lett. 3, 1593 (2003). ©  2003. 
A m e ric an  C h em ica l Society.
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Figure 45. S E M  time-lapsed images o f  balling  up o f  the polym er sheath afte r contact w ith  the A F M  tip. (a )  T h e  
A F M  tip approaches a coated M W N T  (h ) T h e  A F M  tip is brought into contact w ith the coated  M W N T .  (c )  A fte r  
contact, the M W N  T fractures and the polym er coating  balls up on each side o f the con tact po in t as highlighted 
by the arrows, (d ) H ig h e r m agnification image o f the upper po lym er g lobule iden tified  in (c ) . R ep rin ted  w ith  
perm ission from  1251 J. W . D ing  et al.. Nano Lett. 3. 15V>3 (2003). €  2003. A m erican  C h em ica l Society .

We complete this section by highlighting our recent work studying the effective viscoelastic 
behavior of single-walled carbon nanotube— PM M A  nanocomposites [182]. Because of the 
smaller diameters (and hence greater surface area available) for the single-walled nanotubes, 
interphase effects are expected to be enhanced. This is indeed the case as shown in Fig. 46 
and Table 3, where the storage and loss modulus of the pure PM M A  and the nanotube- 
reinforced samples are shown as a function of temperature. In addition to increases in the 
storage modulus at low temperatures, 1 w t%  of SWNTs is shown to result in a broadening 
of the loss tangent response around the glass transition temperature. Additionally, amino- 
functionalization of the SWNTs results in further property enhancements, with a notable 
shift in the loss tangent of almost 40°C. Similar results for other SWNT-reinforced polymer 
samples have also been reported [194, 196, 250], including ~50 /xm solution spun PAN 
fibers with embedded SWNTs as shown in Fig. 47 [253]. As discussed in Section 3.1, recent 
computational models support these findings (see, for example, Refs. [254, 255]).

Results such as those presented in this section suggest that interphase formation may pro
vide an additional reinforcement mechanism within nanocomposites [116, 256]. For example, 
recent results imply that the polymer matrix in close vicinity to the carbon nanotube is able 
to withstand stresses that would otherwise cause considerable yield in a bulk polymer spec
imen [180], while for PVA it was found that the reinforcement provided by the nanotubes 
scaled with the nanotube surface area [257]. As discussed in Section 3.2.1.1, we are currently 
developing a c .iplementary experimental and modeling program to assess changes in the 
viscoelastic behavior of the interphasc based on macroscale experimental data. Such char
acterization of the interphase properties will also be supported by continued development 
of bottom-up and hybrid modeling approaches as described in Section 3. Development of
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F ig u re  46. D ynam ic m echan ica l analysis results for ( le ft ) storage m odulus and (r ig h t) loss tangent as a func
tion o f tem perature  for P M M A ,  S W N 'I- P M M A .  and an iino-functio in ilizcd  S v V N T P M M A  com posites. D uring  the 
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T  Ram an ath an  et ai.. /  Polym. Sci. H 43. 22(>{) (2005). o  20(15, Jo h n  W ile v  and Sons.
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Table 3. Lxperim enta l results for I w i ' y P M M A  reinforced  w ith as-received and amide- 
funetionalized (a - S W N T ) nanotubes.

Sam ple I'g by D M A  ( ( ) S torage  M o d u lus  (C iP a ) at R T

P M M A 105 ± 2 2.1 ±0.1
S W N T - P M M  A 105 ± 3 3.1 ± 0 .3
a - S W N T - P M M A 138 ± 2 3.9 ± 0.6

S o itr c c : R e p r in te d  w ith  p e rm iss ion  from  (182). T. R a m a n a lh a n  et al., J .  P o ly m . S c i. B  43. 2269 
(2005). <C' 2005. Jo h n  W ile y  and  Sons.

accurate models across a number of length scales will be necessary to better understand, and 
ultimately control and optimize, interphase formation in polymer nanocomposites.

2.4.1.2. E ffec tive  R e laxa tion  S pectra  o f  N ano tub e -P o lym er C om posites. Although 
the observations noted in the previous section are qualitatively sensible based on the hypoth
esis of a reduced mobility polymer phase surrounding the nanotubes, quantitative predictive 
models of how the mobility of the polymer chains influences the glass transition temperature 
are not available. Thus we were led to investigate the frequency-domain behavior and relax
ation spectra of MWNT-reinforced polycarbonate using dynamic mechanical analysis [117).

Starting with a reference curve obtained using time-temperature superposition (see 
Fig. 19), the storage and loss moduli data were fit to a 30-term Prony series using a linear 
least squares solver DYNAM F1T [258]. D Y N A M F IT  assumes that the relaxation times t ; 

are equally spaced in log time and then calculates the Prony coefficients and E j that best 
fit the data, equally weighing storage and loss moduli contributions to the root mean square 
(rms) error of the solution. An extra constraint imposed within the code forces all Prony 
coefficients E f to be greater than zero; while such a constraint does slightly increase the rms 
error describing the fit. negative Prony coefficients are not physically reasonable and thus 
were not considered.

Once the Prony series terms for the nanocomposite samples have been found, the relax
ation spectra can be approximated using Alfrey’s expression given in Eq. (10). Examples 
of relaxation spectra for pure and MWNT-reinforced polycarbonate samples are shown in 
Fig. 48. Two sets of data are shown, with the data in Fig. 48(a) for unfunctionalized MWNT- 
PC and the data in Fig. 48(b) including functionalized MWNT-PC (same specimens as shown 
in Fig. 42). In Fig. 48(a), the change in relaxation spectra as a function of unfunctionalized 
nanotube loading shows an increase in the relaxation spectrum at longer times with increas
ing nanotube volume fraction. Also apparent is a slight broadening of the primary relaxation 
peak towards longer times. The broadening of the primary relaxation peak and the increase 
in the relaxation spectrum al longer times are indicative of an increased number of relax
ation modes and the introduction of longer time relaxation processes within the reinforced 
samples, respectively. These changes are consistent with the hypothesis of a reduction in 
molecular mobility within the interphase. However, the location of the primary relaxation
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F ig u re  48. Re laxation  spectra for M W N T - re in l’orced 
alized samples. R eprin ted  w ith  perm ission from  [1 17] 
A dvanced  Com posites Le tters , (r ig h t) Change in rc la 
pies. R eprin ted  w ith  perm ission from  [116]. A . E itan

Relaxation time (s)

’ C  samples, ( le ft ) Change in re laxation spectra fo r unfunction- 
, E  T. F ish e r et a\.,Aciv. Compos. Lett. 13, 105 (2004). ©  2004, 
nation spectra for epoxide-functionalized ( E P - M W C N T )  sam 
el al. Compos. Sci. Technol. in press (2006). ©  2006, E lsev ie r .

peak does not appreciably change with the addition of the nanotubes, suggesting that the 
primary relaxation mechanism within the nanocomposite is the same as that within the bulk 
polymer sample. This suggests that the nanotubes reduce the molecular mobility of the inter
phase region, and that polymer chains well separated from the nanotubes are not affected by 
the presence of the nanotubes and retain the mobility of the bulk polymer sample.

More recent work, which used the relaxation spectra as a means to characterize the impact 
of functionalization on MWNT-polycarbonate nanocomposites, is shown in Fig. 48(b). The 
slight shift in the location of the main peak of the relaxation spectra for the data shown in 
Fig. 48(a) versus 48(b) is due to changes in the solvent used for sample processing. Similar to 
the earlier discussion, an increase in the longer time relaxation processes for the unfunction- 
alized MWNTs is observed. Noteworthy in this case, however, is that upon functionalization 
the peak of the effective relaxation spectra has shifted an order of magnitude, suggesting that 
in this case functionalization has had a much more dramatic impact on the primary relax
ation mechanisms of the nanocomposite. Such results indicate that for the functionalized 
sample the entire matrix behavior can now be characterized as different from the behavior 
of the pure polycarbonate matrix polymer. Additional methods for more quantitative char
acterization of the change in mobility of the nonbulk polymer interphase currently under 
development are described in Section 3.2.1.1. These results again highlight the need for fur
ther modeling developments across (and between) multiple length scales in order to better 
understand the nature and extent of the changes in polymer mobility in nanocomposites as 
a function of synthesis and composition.

3. NANOMECHANICAL MODELING
From the standpoint of modeling, polymer nanocomposites are challenging because of the 
vast range of length scales that are relevant and need to be considered for such materi
als. Modeling at atomistic scales using the principles of quantum mechanics and molecular 
dynamics has been developed to model collections of atoms, but these methods remain com
putationally expensive and to date have been limited to looking at the behavior of individual 
nanoparticles and collections of short polymer chains. For larger length scales, the fields of 
micromechanics and continuum mechanics are well established but cannot directly capture 
details at the atomistic level that are important for nanostructured materials. The area of 
nanomechanics is the bridge between these length scales, which is necessary to develop accu
rate models of nanocomposites and related materials. The development of nanomechanics 
into a well-grounded area of study will require contributions from these length scales as 
shown in Fig. 49.

At present, there are two major approaches that have been used to describe material 
response of nanocomposites at the nanometer length scale as indicated in Fig. 49. The 
“ bottom-up" approach is based on quantum and molecular dynamics with full atomistic detail 
and typically addresses either individual nanostructures or a small number of short polymer
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chains interacting with a nanoinclusion. The "top-down" approach is based on continuum 
mechanics, treating the nanoinclusions as continuum elements in methods that attempt to 
account for the morphology of the nanocomposite. Each of these areas and the various 
modeling strategies within will be described in detail in the sections below. What is missing 
in the existing literature is a seamless connection between the molecular level simulations of 
a single nanoinclusion with a few short polymer chains to the large domain/long time scale 
simulations of a realistic nanocomposite. Multiscale modeling is a topic of intense current 
interest and is needed to properly address the changes in properties of the polymer chains 
near nanoinclusions, including the chemistry between NT and polymer, and its impact on 
macroscopic properties over many such interacting nanoparticle-polymer domains.

In the following sections, we will describe the major current approaches to modeling of 
nanocomposites and mention a few specific papers and their results as concrete illustrations 
of the accomplishments, complications and issues that arise (see also the recent review in 
Ref. [259]). Space limitations preclude a detailed summary of all the work in this area. 
However, in Table A .l in the Appendix provides a more exhaustive summary of the existing 
nanocomposite models as of the time of this writing.

3.1. Bottom-up Approaches
The bottom-up approaches all start with the consideration of the atomistic description of the 
nanostructure and surrounding polymer chains. A reader interested in a thorough descrip
tion of the underlying fundamental principles of these atomistic simulations is referred to 
a number of articles and books in this area [260-263]. Bccause polymers are long-chain 
molecules of high molecular weight, the number of degrees of freedom required to model 
realistic systems is daunting. For example, a 10 nm radius sphere of low molecular weight 
polystyrene (15,000 M W ) contains about 160 PS chains, each chain consisting of about 2500 
atoms. A 10-10 carbon nanotube (~1.3 nm diameter) has ~  150 carbon atoms per nm in 
length and a typical SW N T  can be 1 micron (1000 nm) long. To begin to model polymer- 
nanotube interaction therefore requires at least one nanotube and a large set of sufficiently 
long polymer chains to capture the local density changes and conformational alterations in 
the polymer chains near the nanoparticle. As the typical radius of gyration {R K) of polymers 
is on the order of 10 nm, even simulations using short nanotubes and sufficient polymer 
chains to achieve a model size to encompass a realistic Rg can involve millions of atoms. 
Consequently, most simulations using molecular dynamics consider very short nanotubes 
(on the order of 10 nm long) and short polymer chains (~  10—50 atoms long). Additionally, 
a united atom model is often used for the polymer chains in which hydrogen atoms are 
not explicitly included. Another approach uses polymer bead-necklaces, where each bead is 
representative of a small number of monomer units as shown in Fig. 50.

3.1.1. Molecular Dynamic Modeling
While molecular simulations studying the mechanical behavior of individual nanotubes 
have appeared in the literature [50, 52, 53, 264-266] and atomistic modeling methods 
have been used since the mid 1980s for polymers [261], atomistic simulations of nanotube 
and nanoparticulate-reinforced polymers are much less developed [13, 173, 254, 267-270].
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a)

b)

c)

F ig u re  50. Severa l approxim ations to represent a ehain o f  polyethylene in a m o lecu lar s im ulation; (a )  fu ll atom istic 
d eta il w ith hydrogen atom s explicitly  included; (b ) un ited  atom  m odel where hydrogen atom s are im p lic itly  included 
in each carbon backbone atom ; (c )  bead-necklace representation where  each head represents four CH> m onom er 
units.

As previously mentioned, because of the high molecular weight of polymers, the size of sim
ulations required to truly represent bulk polymer response is prohibitively large. At present, 
research uses small nanoparticle segments and modest collections of short polymer chains 
together with coarse graining strategies to generate atomistic simulations for nanocompos
ites. However, shorter polymer chains may lose some detail for configurational possibilities 
and entanglements critical for accurate modeling of nanocomposites.

Several papers have used classical molecular dynamics methods to examine changes in the 
mobility of polymer chains near nanoparticles. The results of these studies help to elucidate 
the type and extent of polymer modification and can be used in a hierarchical modeling 
scheme to incorporate an interphase region or graded properties of the polymer near the 
vicinity of the nanoparticles. While elastic properties may not be greatly altered, the vis
coelastic mechanical properties, diffusion characteristics, and thermal properties of the poly
mer chains within a few radii of gyration of the nanoparticle can be significantly affected. 
For example, recent work examined polyethylene chains near nanotubes using a multibody 
Tersoff-Brenner potential for the C-C bonds within the nanotubes and a truncated Lennard- 
Jones ( I J )  potential for the interactions between the polymer chains and the NTs [254]. A 
united atom model was used for the polymer chains, where the C H : and C H 3 groups are 
the individual units, and interactions between chains are considered with an intra-polymer 
potential. Small model cells were equilibrated then cooled to obtain density-temperature 
plots and the glass transition temperature of the polymer was inferred from the slope discon
tinuity. The results demonstrated a 20°-60°C increase in the Tj, for the cell containing the 
nanotubc (see Fig. 51). depending on the size of the simulation and related to the molecular 
weight of the polymer. It is noteworthy that this work also accurately captured the increase 
in Tg with increasing molecular weights of the polymer chains. In addition, the coefficient of 
thermal expansion (C T E ) for the cell with the nanotubc was significantly higher than that of 
the polymer alone due to the additional excluded volume introduced by the nanotube [254]. 
This latter result is in contrast to data for traditional fiber composites in which for typical 
laminates, the C T E  of the composite is reduced over that of the neat polymer, and zero 
C TE configurations have been designed [271].

Smith et al. have examined interactions of polymer with spherical nanoparticles via molec
ular dynamic simulations. In their studies, polymer and nanoparticle interactions were 
examined using a coarse-grained bead-necklace representation of the polymer chains and a 
truncated LJ potential for polymer-polyrner interaction [15. 272). Nanoparticles created of a 
rigidly bonded bead network and having a neutral, repulsive or attractive interaction with the 
polymer were studied by appropriately assigned potentials, with neutral potentials identical
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F ig u re  51. M o le cu la r  dynam ics ca lcu la tion  o f  density as a function o f tem pera tu re  and increase in glass transition 
tem perature  ( / ,) .  R ep rin ted  w ith perm ission from  [254]. C. W e i et al.. Nano Lett. 2. 647 (2002). ©  2002, A m erican  
C hem ical Society.

to the polymer bead-polymer bead potential. The results revealed that the shear modulus 
and viscosity of the polymer increased for both neutral and attractive systems and decreased 
in repulsive systems. Repulsive systems led to faster polymer dynamics, while neutral and 
attractive systems resulted in slower polymer dynamics. The difference between neutral and 
attractive systems could be related to an effective corregation of the nanoparticle surface due 
to the significant barriers for polymer motion along the attractive surface in the interfacial 
polymer. It was also shown that weak polymcr-nanoparticle interactions promoted aggrega
tion of the nanoparticles, while stronger interactions promoted adsorbed polymer layers on 
the particles and better dispersion [272]. These results are consistent with recent experimen
tal work showing an increased thickness of adsorbed polymer sheathing for functionalized 
nanotubes [116, 251 ].

In similar work, molecular dynamics were used to simulate bead-spring unentangled poly
mer chains near equiaxed nanoparticles approximately 10 nm in size [14]. The simulation 
consisted of 400, 200, or 100 polymer chains, each 20 monomer units long. For attractive 
interactions, Tj, increases near the particle, while for non-attractive interactions, TK decreases 
near the particle. For all cases, the polymer chains are flattened and elongated near the 
nanoparticle surface, persisting for a distance RK radially from the particle, compared to 
bulk polymer chain configurations. Since the flattening does not depend on interaction type, 
it is suggested that the change in morphology is due to a geometric constraint of the nano
particle on the polymer chains. A characteristic relaxation time of the melt is defined based 
on the radially-averaged intermediate scattering function. This relaxation time is shown 
to increase near the nanoparticle for attractive systems and to decrease slightly for non- 
attractive systems.

Nanoparticle clustering was examined by M D  of bead-spring polymer chains in a 
melt with polyhedral nanoparticles [273]. Consistent with [272], this study showed that 
the nanoparticle-matrix interaction strength controlled clustering, with higher interaction 
(between the polymer and nanoparticle) leading to more dispersed states. Weaker inter
actions. increased particle concentration, and decreased temperature led to clustering. 
Although not conclusive, results also indicated that clustering was not a first order phase 
transition behavior. Rheology simulations showed that viscosity increased for dispersed sys
tems, which is inconsistent with colloidal suspension behavior, but consistent with the concept 
of an altered polymer region surrounding the nanoparticles affecting the dynamics of the 
polymer chains more substantially in a dispersed system. These results are useful to help 
understand the origins and effects of nanoparticle clustering, however, there could be addi
tional geometric effects for platelike and tubelike nanoparticles that were not addressed in 
this study.
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Kumar and co-workers investigated the solidification of a polymer melt in the presence of 
nanoplatelets [274]. They showed that the unusual relaxation behavior of these composites 
could be traced to the attractive interactions between polymer chains and filler which create 
a percolating polymer-filler transient network. The lifetime of this network then controls the 
mechanical properties of the resulting nanocomposite, especially at low frequencies. More 
recent work has considered polymer-spherical filler composites and attempted to address the 
role of this transient network on the mechanical behavior of the composite [275]. The work 
suggests that the presence of the interface zone leads to an increase in the local segmental 
relaxation times of the chains, but that the long time behavior of these composites is directly 
attributable to the presence of this transient network.

While not specifically for nanocomposites, some recent molecular simulation work has 
focused on the properties of nanosized polymer structures. For example, Boehm and De 
Pablo have examined nanosized thin films and beams with reference to the types of structures 
formed in lithography for features in semiconductor fabrication [276]. Their results on the 
dynamics and mechanics of confined polymer arc very relevant for confined polymer regions 
in nanocomposites. While most other molecular simulations reviewed here use Lennard- 
Jones potentials, this work uses discontinuous molecular dynamics (D M D ), in which the 
particie-particle interaction is a discontinuous square well form based on distance between 
interaction sites. The DM D form saves an order of magnitude of computation time com
pared to continuous interaction potentials such as the Lennard-Jones potential.

The results for the DMD calculations on polymer nanostructures indicate that the TK 
decreases for freestanding films due to enhanced segmental mobility near free surfaces, con
sistent with experimental data [10]. However, 7, increased for all simulations of films on 
a substrate, of which there were several interaction potentials, including covalent grafting 
to the substrate. Uniquely, their simulations include explicit calculation of the mechanical 
response of the nanostructures based on results for bending of small-scale beams. The sim
ulations show that the Young’s modulus decreases for thinner cantilever beams, which is 
consistent with the result of a decreased TK and increased polymer mobility for the situ
ation of a freestanding film. The results are attributed to the rapid stress relaxation that 
can occur in the vicinity of the polymer-air interface. Unfortunately no mechanical results 
for the films on substrates were reported. Magnitudes of molecular strains are calculated 
in the nanobeam bending scenario and compared to classical continuum calculations. It is 
seen that the more disperse, localized nature of the plastic strains seen in the molecular 
model is lost in the continuum model that predicts continuous high strains at the root of 
the cantilever (see Fig. 52). In contrast, the molecular simulation shows plastic strains much 
more diffuse and associated near the free surface of the nanobeam. It is pointed out that 
continuum analyses that account for the density and stress fluctuations might be able to 
better capture the results for nanoscale structures. The implication of these simulations for 
nanocomposites is clearly that the constraint of the nanoparticle surfaces within the polymer

Figurt- 52. Residual m olecu lar strain ( le ft )  and residual con tinuum  plastic strain (r ig h t) in a nanocan tilever beam  
bending sim ulation. N ote  that the residual strain is m ore pronounced  and concentra ted  in the co n tinuum  sim ulation 
that does not account for local fluctuations in density and stresses. <r is a d im cnsionless p aram eter re lated  to the 
potentia l cu to ff d istance used in the s im ulation. R ep rin ted  w ith perm ission from  [276]. T  R . Bo h m e  and .1. J .  de
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will significantly alter not only the T;< of the material, hut also the mechanical properties of 
the nanocomposite, with results depending on the nature of the interactions between the 
particle and the polymer chains.

Frankland et al. [184, 277] used molecular dynamic simulations of a nanotube in a 
polyethylene matrix to study the shear strength and pullout of a nanotube in a polymer 
matrix. The model was a single nanotube in either a crystalline or amorphous PE  matrix, 
with aligned chains of PE  taken as the initial state for the crystalline matrix before equili
bration. To simulate functionalization, a low density of crosslinks were added between the 
NT and the polymer chains. All nonbonded interactions were treated with L J potentials. 
Results for interfacial shear strength indicate little change in the initial t (  for an amorphous 
matrix with cross-linking, a doubling for the crystalline matrix case, and an order of magni
tude increase in the effective t c  due to restricted sliding of linked polymer chains for the 
crosslinked cases. Simulation of complete pullout was done for the nonbonded case only 
[277], where a periodicity in the velocity profile scales with the width of the carbon ring in 
the nanotube. A simple frictional model was developed in which an effective viscosity can 
relate the pullout force to the velocity.

Molecular mechanics simulations and elasticity calculations were used to quantify some 
of the important interfacial characteristics that control the performance of a nanocomposite 
material. In the absence of chemical bonding between CNT and the matrix, it was found 
that the nonbond interactions, consisting of electrostatic and van der Waals forces, result 
in CNT-polymer interfacial shear stresses (at 0 K) of about 138 and 186 MPa, respectively, 
for CNT/epoxy and CNT/PS (see Fig. 53) [278]. The high interfacial shear stress calculated, 
about an order of magnitude higher than traditional micron-sized liber reinforced compos
ites, was attributed to intimate contact between the two solid phases at the molecular scale. 
Simulations and calculations also showed that local nonuniformity of the CNT and mismatch 
of the coefficients of thermal expansions between CNT and polymer matrix also promote 
the stress transfer ability between the two [278]. Other work found that morphological irreg
ularities in the NT structure, such as kinks due to surface defects and changes in outer 
diameter due to the interior NT structure, in addition to chemical functionalities at defect 
sites on the NT surface, could lead to increased interaction with the host polymer without 
explicit chemical functionalization and covalent bonding. This type of NT surface roughness 
has been shown to increase the energy required for nanotube pullout [278]. Additionally, a 
fundamental elasticity model was used to illustrate that thermal mismatch between nanotube 
and host polymer could lead to residual stresses in the polymer inhibiting pullout.

F ig u re  53. M o le cu la r  s im ulation  o f a single-walled carbon nanotube being pu lled  from  a polystyrene matrix. 
R ep rin ted  w ith  perm ission from  [ 27S |. M . W ong  et a I.. Polymer 44. 7757 (2003). <D 2003, E lsev ie r .
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These various molecular dynamic simulations to date show the extraordinary impact that 
nanoparticles can have on polymer mobility and intrinsic properties and that such effects 
permeate for several R,, away from each nanoparticle surface. The changes in mobility 
depend on the nanoparticle surface, geometry, and chemical interaction with the surround
ing polymer, and correspond to changes in glass transition temperature, viscosity, modulus 
and strength. These changes in turn will impact the associated macroscopic behaviors as well 
as global properties such as damage tolerance and fracture toughness. While such results 
provide great insight, many simplifications were made in each case to enable realistic com
putation times. Notably, polymer chain length, nanoparticle size and shape and interactions 
with other nanoparticles all need further attention. In addition, although one paper has 
demonstrated use poly(m-phenylenevinylene) as a coupling agent to enhance the interfacial 
characteristics of nanocomposites due to helical wrapping around the nanotube [173], the 
details of bound functional groups on the nanoparticles and their influence on surrounding 
polymer behavior have yet to be addressed. Some of these issues will be best tackled with 
multiscale simulation strategies as described in Section 4.

3.1.2. Monte Carlo Methods
In contrast to molecular dynamics, Monte Carlo (M C ) approaches have been less utilized to 
examine polymer and nanocomposite properties. A detailed description of the fundamental 
principles of the Monte Carlo method can be found in a number of sources in the literature; 
see, for example. Ref. [260]. The fundamental limitation to MC is that it is inherently a static 
calculation, and thus evolution or dynamics cannot occur. In an M C simulation, all atoms 
are moved randomly in each trial step, and a move is accepted if the resulting energies 
are within certain defined ranges. Many such random moves are made in order to probe 
the parameter space, but configurations are not walked through time, whereas molecular 
dynamics solves Newton's equations explicitly, so true dynamics arc calculated. With M D one 
can obtain relaxation times, observe stress relaxation, change temperature and obtain density 
changes— these are all dynamic problems that M C approaches cannot address. Nevertheless, 
information on static response can be obtained with MC, such as equilibrium configurations 
and response to static load. In addition, while M D simulations typically examine short chains 
(N  20) and a single small particle (average particle diameter nearly three times that of 
the polymer chain bond length), MC simulations can examine long chains and many larger 
particles, thus approaching more realistic polymer systems.

One example of a Monte Carlo-based approach examined the chain conformations in 
polymers filled with nanoparticles based on the influence of the excluded volume and the 
distribution (random versus periodic) of the nanoparticles in the polymer [279]. The study 
looked at N  =  50.000 polymer chains with the nanoparticle volume fraction varying from 
0.2% to 60%. With increase in volume fraction or decrease in inclusion size, there is a 
decrease in the free volume available for the chains, leading to increased effective stiffness.

A more in-depth study used Monte Carlo simulations of polymer chains and nanosized 
particles to elucidate polymer-partiele interactions, where an offsite lattice MC method is 
used to account for polymer-partiele interactions [280]. Those authors discuss two compo
nents to the interaction: a stcric repulsion effect that dominates with high density and an 
attractive bridging effect that dominates under more dilute conditions. This effect has been 
seen in the case of polymer chains confined between two parallel walls, and the concepts 
carry over to nanocomposites with the exception that the repulsion effects are less intense in 
the nanocomposite due to particle curvature. Particle aggregation is observed, though par
ticles remain protected by a layer of interacting polymer. In the polymer, a layering effect 
was observed due to an oscillatory component of the polymer-partiele interaction force. This 
oscillating component results n layers of dense chains near nanoparticles, with decreasing 
density moving away from particle.

From the standpoint of modeling the mechanical properties of polymer nanocom
posites, it appears at this time that molecular dynamics is favored due to its versatil
ity and the direct incorporation of interatomic forces that simplifies the interpretation of 
mechanical properties. By comparison, Monte Carlo methods are more suitable for the
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determination of equilibrium structures; for example, atomic scale structure of intercalated 
PEO/montmorillonite nanocomposites 1281 ] and the structure of polymers in the presence of 
impenetrable surfaces [282]. However, hybrid techniques are currently under development, 
where MC-type approaches are used to prevent solutions from becoming trapped in local 
energy minima are complemented with fully atomistic models of the polymer chain to enable 
modeling of relevant length and time scales; see, for example. Refs, [262, 283-285] and ref
erences therein. Such methods may increasingly find use in the modeling and simulation of 
polymer nanocomposites.

3.1.3. Equivalent Continuum Models
An approach initiated by Odcgard and co-workers called the “ equivalent continuum model” 
can be considered to be a pseudomolecular mechanics approach [268, 286-288]. While all 
the final calculations are done in the continuum domain, close examination of molecular 
mechanics is used in the development of the model to account for nanostructures and nano- 
structural features including nanotubes and polymer chains, classifying it in the “bottom- 
up” category rather than the “ top-down” side. Similar pseudo-MD continuum approaches 
have been developed by other researchers, most notably a “ structural molecular mechanics” 
method by Li and Chou [289]. Other papers have utilized aspects of this method in the 
context of nancomposites [290, 291]. In this section, we will briefly describe the approach 
based on Odegard's work in order to place the method and its contributions relative to other 
bottom-up and top-down approaches. For the interested reader, a separate chapter in this 
handbook describes the equivalent continuum method in more detail [288].

The equivalent continuum method is developed based on equating energies of molecular 
mechanics, truss mechanics, and continuum mechanics for the nanostructure(s) of interest. 
For molecular mechanics, the most general form of the expression for the total molecular 
potential energy, U " \ is

um = J2 us + E  u° + E LJl + E  u” + E  u"‘lw + E  ues (14)

where U \  U H, U y, U l0< U cs are the energies for bond stretching, bending, torsion,
inversion, van der Waals interactions and electrostatic interactions, respectively. In practice, 
only the most dominant of these terms are included, with Lennard-Jones potentials typically 
used for the van der Waals interaction terms. For the nanostructure of interest, appropriate 
force fields are used and the total molecular potential energy determined by summing over 
all interacting atoms as indicated.

The equivalent continuum method thus relates the molecular model to an equivalent truss 
system. Figure 54 shows an example for a unit cell of a graphene sheet: the chemical bonds 
on the left are represented in molecular mechanics by the equation above. An equivalent

F ig u re  54. E q u iva le n t con tinuum  approach for the unit cel! o f a graphene sheet. R ep rin ted  w ith perm ission from  
[268!. Ci. M . O d cg a rd  et al.. Compos. Sci. Technol. 62. 1869 (2002). 'O 2002, E lsev ier.



306 N a n o m ech a n ic s  o f  N an o re in fo rced  Po lym ers

truss (center image) is formed, in this case with a rods representing the direct bond stretch
ing between atoms and b rods representing the bond angle distortion (torsional springs could 
alternatively be used). The strain energy of the truss can be easily calculated based on the 
elastic moduli of the rods and the geometry and deformation of the truss [268]. The energies 
of the truss and the molecular mechanics models are equated, resulting in expressions for the 
Young’s moduli of the rods based on the force constants from the molecular model. Alter
natively, the strain energy of the truss is expressed in terms of geometry and the molecular 
force constants.

In the last step of the method, the truss model is replaced by an equivalent continuum 
model by equating the elastic strain energies of the truss and the continuum element under 
identical loading conditions. Elastic strain energies for continuum structures can be found 
by consulting any traditional elasticity book in terms of the continuum elastic constants of 
the material [292]. These can be rewritten to include geometric measures of the structure 
in question, and such is done in this example in order to determine the relevant contin
uum thickness for a graphene sheet. The result from the analysis of the graphene sheet 
demonstrated that to model a graphene sheet as a continuum, the appropriate thickness to 
use is between 0.57 and 0.69 nm, which is double the commonly used interlayer graphene 
spacing of 0.34 nm. A similar result is obtained in the equivalent continuum analysis of 
a SW N T as illustrated in Fig. 55; again the relevant thickness to use for a continuum 
description of the SW N T (0.65 nm) is approximately double that typically assigned in the 
literature.

The equivalent continuum method can be applied also to nanoparticles in the presence 
of polymers as has been done in several papers [286, 287]. For example, in Ref. [286] an 
M D simulation was used to determine the equilibrium positions of polymer chains surround
ing a SWNT. An equivalent truss model was built for the polymer and nanotube, and then 
an equivalent continuum model was built for a cylindrical continuum domain to represent 
the NT and local polymer (see Fig. 56). The transversely isotropic moduli of the contin
uum were then found by equating strain energies of the systems as before. In this manner, 
the moduli of a unit cell consisting of a nanotube and polymer were created. From this 
point, a traditional micromechanics approach (see Section 3.3) was used to develop effective 
properties of a nanocomposite with many intereacting inclusions by using the moduli of the 
polymer-NT unit cell (referred to as an effective fiber) together with additional bulk matrix 
material.

A  recent application of the equivalent continuum model for nanoparticulate-polymer com
posites is highlighted in Fig. 57 [287]. Initially, similar to the work of Smith, Glotzer, and 
others [13-15, 272, 273], a molecular dynamics simulation involving coarse-grained simula
tions and a reverse-mapping technique is used to determine the molecular structure of the

F ig u re  55. Eq u iva len t con tinuum  represen tation  o f a carbon nanotube. R ep rin ted  w ith perm ission from [268],
C». M . Odegard  et al.. Compos. Sci. Tcchnol. 62, 1.X69 (2002). €> 2002, E lse v ie r
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Fig u re  56. Equ iva lent-continuum  m odeling  o f  an effective fiber applicab le fo r nanotube-polym er composites. 
R ep rin ted  w ith  perm ission from  [286|, G . M . O d cg ard  et al.. Compos. Sci. Technol. 63, 1671 (2003). ©  2003, 
E lsevier.

polymer and interphase region surrounding the equiaxed nanoparticle. In this work, a vari
ety of specific silica-polyimide interfacial conditions were modeled, including (a) no surface 
treatment, (b) hydroxyl groups bonded to the silicon atoms, (c) phenoxyhenzene (-C6H 4- 
0 - Q H 5) chemically bonded to the silica, and (d) a hydroxylated surface as in (b) covalently

(a) Silica nanoparticle (b) Hydroxylated silica 
nanoparticle

S i l i c a  n a n o p a r t i c le  

*  F u n c t i o n a l i z a t io n

p o l y m e r

S i l i c a  n a n o p a r t i c l e  C o m p o s i t e  S i l i c a  n a n o p a r t i c l e  C o m p o s i t e

(c) Phenoxybenzene silica (d) Functionalized hydroxylated
nanoparticle silica nanoparticle

F ig u re  57. R ep resen ta tive  vo lum e e lem en t ( R V E )  o f  the m o lecu lar structure o f  four types o f  silica nanopartic les 
and the ir incorp o ration  into a po ly im ide matrix. Reprin ted  w ith perm ission from  [287], G . M . O degard  et al.. 
Polymer 46, 553 (2005). ©  2005, E lsev ie r .
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R a d i a l  d i s t a n c e  (A)

F ig u re  58. R ad ia l density profiles fo r silica-polyim ide nanocom posites. T he  density o f the core structure o f  the silica 
rem ained  constant (2.65 g/cm '). T h e  density o f the pure bulk polyim ide was 1.33 g/cm \ R ep rin ted  w ith perm ission 
from  [2X7], G . M . O d cgard  et al.. Polymer 46. 553 (2005). ©  2005, E lsevier.

bonded to the surrounding polyimide. Only in the last case (d) was the nanoparticlc explicitly 
bonded to the surrounding polyimide molecules.

The impact of the surface chemistry of the embedded silica nanoparticle on the sur
rounding polyimide matrix is evident upon inspection of the radial density profiles shown 
in Fig. 58. For the non-functionalized composites (see Fig. 57) an approximately 33% 
increase in the maximum polymer density compared with the “ far-field” radial density at 
1.8 nm is noted; a corresponding value of only 6%  is observed for the functionalized sample 
(Fig. 57).

The equivalent continuum method as described above was used based on the final molec
ular equilibrium configurations of each case. Results showed a decrease in effective com
posite modulus in all cases that was attributed to the decreased polymer densities near the 
nanoparticle (see Table 4). However, the differences in local polymer density/structure as 
a function of surface treatment also resulted in changes of the overall properties, with the 
functionalized system resulting in the smallest decrease in stiffness due to the direct bonding 
with the matrix polymer. This effect was found to be more important to the stiffness than 
the local polymer density.

From a continuum sense, this decrease in moduli for the nanocomposites as a result of sil
ica nanoparticle “ reinforcement” was attributed to the formation of an effective third phase 
(interphase) of polymer surrounding the nanoparticle with mechanical properties less than 
that of the pure polymer. The properties of this interphase polymer were determined based 
on the solution of the inverse three-phase micromechanical problem; given the properties 
of the silica nanoparticles and the effective properties of the composite (determined from 
the molecular simulations), the volume fractions of the phases 1.7%. 45.2%, and 53.1% for 
the silica nanoparticle, interphase, and polyimide matrix), and assuming that the interphase

Tab le 4. E ffe c tive  isotrop ic p roperties fo r the o vera ll com posite R V E  and the non-bulk interphase fo r silica-based 
nanocom posites w ith various surface  treatm ents. T h e  e ffective  vo lum e fraction o f  the silica nanopartic le  w ith in  the
R V E  was \.1%. E  — Young 's m odu lus, G  — shear m odulus. (D a ta  from  [2871.)

Pu re
silica

Pu re  Sii 
poly im ide (1

iiea N l ’( 
; ig. 58a'

H ydroxylated  
silica N P C  

) ( Fig. 58b)

Phenoxybenzene 
silica N PC  
(F ig . 58c)

Functionalized  
silica N P C  
(F ig . 58d)

Com posite  R V E E (G P a ) NK.7 4.2 3.4 3.3 i 4.0
G (G P a ) 41.0 1.5 1.2 1.2 0.8 1.5

Inte l phase E (G P a ) — — 2.4 0.3 3.5
m odulus G (G P a ) — — 0.c> O.S 0.1 1.3
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material is isotropic with a Poisson ratio equal to that of the pure polyimide. The effective 
properties of this interphase polymer based on this model are given in Table 4, which again 
highlights how surface chemistry and interactions at the nanoscale can alter local mechanical 
properties of the host polymer matrix, leading to perhaps unanticipated changes in mechan
ical properties at the macroscale continuum level. Note that while the interphase properties 
in the case of the functionalized silica nanoparticle are still less than those of the bulk poly
imide, these properties are greater than the interphase properties for the un-functionalized 
case, suggesting that here functionalization was successful (in a relative sense) in increasing 
the mechanical properties of the nanocomposite. Such examples illustrate the utility of the 
equivalent continuum approach to begin to effectively bridge between molecular simulations 
and higher order continuum approaches. Further discussion of this approach is discussed 
elsewhere in this handbook [288].

3.2. Top-down Approaches
In contrast to bottom-up approaches that directly account for atomistic information for the 
nanoparticles and polymer chains, classical continuum mechanics offers methods to study 
these materials without atomistic level discretization. A number of papers have assessed 
nanocomposite properties from the continuum side, including methods involving structural 
mechanics such as beam theory, micromechanics, finite elements, and density functional and 
field methods used in complex fluids [38, 61, 268, 289, 294-305]. Most common have been 
estimates of nanocomposite elastic moduli based on simple rule of mixtures and microme
chanics approaches such as the Mori-Tanaka or Halpin-Tsai methods. Initial work typically 
greatly overestimated modulus due to an inherent assumption of straight, aligned inclusions, 
which was not representative of the experimental materials. Recent papers have illustrated 
better agreement with experimental data on elastic moduli by using the classical Mori-Tanaka 
micromechanics approach with randomly aligned inclusions [298-300]. As will be shown in 
this section, these and other methods are being expanded to encompass more critical fea
tures of nanocomposite microstructure to improve predictions and understanding of material 
behavior.

For all of the top-down approaches mentioned below, a critical assumption is that the 
components of nanocomposites all behave as a continuum and can be treated with tradi
tional elasticity, viscoelasticity and other constitutive relations developed for continua. Since 
the nanoparticles have a dimension on the order of nanometers, such an assumption must 
bc carefully considered. For example, a 10-10 single-wall carbon nanotube has only 20 atoms 
around ils circumference, and its behavior is best treated by atomistic simulations that can 
include quantum effects and interatomic potentials. In addition, as described earlier the 
confined polymer chains in the vicinity of the nanoparticles have different molecular config
urations from polymer chains in the bulk as interactions with the nanoparticles affect their 
behavior. Nevertheless, continuum approaches have been used quite successfully to explain 
some larger scale mechanical behavior of nanoparticles, and interpretation of experimental 
results for nanotube properties have in many cases used basic continuum theories since the 
initial work in this area [60, 306]. For example, it was found that a bending analysis modeling 
a M W N T as a continuum was satisfactory if the wall-thickness of each layer of the M W N T 
was considered [61 ].

With the understanding that the explicit molecular-level interactions between nanoparticle 
and local matrix are not well represented, continuum approaches offer a clear way to 
systematically examine macroscale nanocomposites and their properties as a function of 
rnicroslructure. The most useful methods are in the micromechanics domain where either 
analytical or numerical approaches allow discretization of a unit cell of matrix material and 
nanoparticle(s) that can then be used to obtain global properties for nanocomposites of 
many inclusions via homogenization methods. In this section, we will discuss micromechan
ics approaches first, with an emphasis on the Mori-Tanaka method. This is followed by a 
section on the use of the Halpin-Tsai equations and a section on finite element approaches. 
Then hybrid methods which couple two or more approaches as a start to multiscale mod
eling to enable more accurate incorporation of local behavior are discussed. Perhaps the
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most promising methods under current investigation are multiscale methods which couple 
molecular dynamics approaches locally with continuum methods globally.

3.2.1. Micromechanics modeling
Micromechanics methods have been applied with great success to traditional composite 
materials to understand and predict material thermomechanical response as a function of 
microstructural features. Theories are typically based on classical solutions for a single inclu
sion in an infinite medium [307], with a variety of assumptions introduced to create predictive 
models for composites with dilute to high volume concentration of interacting inclusions. 
Such methods include the self-consistent and generalized self-consistent methods [308], the 
Mori-Tanaka method [309-311], the Halpin-Tsai method [312, 313], and method of cells 
[314]. Very rudimentary methods are the Voigt and Reuss upper and lower bounds, respec
tively, which assume two phases arranged in a parallel or series fashion, respectively. A  
critical evaluation of these and other micromechanics approaches are discussed by Chris
tensen [315] and more recently by Tucker [316).

All of the micromechanics methods predict response of the composite based on volume 
fraction of inclusion plus individual properties of the matrix and inclusion phases and can 
typically account for inclusion shape and orientation distribution within the composite. In 
general, most established micromechanics approaches provide similar results for modulus 
predictions at relatively low volume fractions, with these differences becoming more pro
nounced at higher volume fractions or as the modulus of the inclusion decreases towards 
zero (for the case of voids) [315, 317]. These methods all predict the effective modulus of 
heterogenous materials, but cannot provide results for stress or strain localization due to the 
effective medium averaging approach.

Given the success and utility of micromechanics models for traditional composites, many 
have been applied to the study of nanocomposites to interpret and predict mechanical 
response for these complex materials. Micromechanics are based on a continuum approach, 
and thus the results are subject to the accuracies of that assumption for the particular case 
of consideration. Early attempts for nanocomposites often used elementary micromechanics 
approaches based on the assumption of unidirectional alignment of fibers and thus predic
tions were often in great discrepancy with experimental data. However, more recent applica
tions have taken into account random orientation of nanoparticles, nanoparticle aspect ratio, 
nanoparticle clustering, and effects of an interphase, with the resulting predictions now in 
closer agreement with experimental data and becoming increasingly useful for interpretation 
of microstructural influences. In the sections below, we will outline how micromechanics 
methods have been applied to nanotube and nanoparticle composites, with special emphasis 
on how these methods have allowed better insight into nanocomposite structure-property 
relationships.

3.2.1.1. M ori-Tanaka M ethod. Many micromechanics methods are based on the classical 
Eshelby inclusion analysis for a single inclusion in an infinite matrix. A  key concept is that 
of the dilute strain concentration tensor, which relates the average strain in inclusion 
i \  s r, to the far field strain tensor e:

er -  A f i  (15)

Using the concept of eigenstrains [310, 311, 314, 318, 319], it can be shown that

i f - | i  - s x . V  , - < .)! (16)

where Sr is the Eshelby tensor accounting for inclusion shape, C0 and Cr are the stiffness 
tensors of the matrix and inclusion materials, and I is the fourth order identity tensor. Use 
of the Eshelby approach and Eq. (16) generalizes the methods for any ellipsoidal inclusion 
shape, ranging from spheres to cylinders to needle- and plate-shaped inclusions. For the 
“dilute" case were the volume fraction of inclusions is small enough that interaction between
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inclusions is negligible, the dilute approximation for the effective composite modulus is 
given by

C = C0+ /r(Cr - C 0)A rdil (17)

where f r is the volume fraction of the inclusion.
To consider non-dilute concentrations of inclusions, the various micromechanics methods 

diverge in their analytical approach to account for the interaction of the inclusions. The 
self-consistent method assumes that a single inclusion is embedded into an infinite effective 
medium of as yet unknown properties and an algorithm is developed to yield implicit for
mulae for the effective moduli that can be solved numerically. On the other hand, the Mori- 
Tanaka method assumes that each inclusion feels an average matrix strain s0 as opposed to 
the far field applied strain.

o — 4dl>o — . t r t ()

which results in closed form explicit expressions for the effective moduli,

(18)

N-\ N- 1
c =  f,cn +  £  f rC , A f  f , I + £  f r A«dil 19)

where there can be N  different types of inclusions, with volume fractions f r and each with 
distinct moduli, Cr. For additional derivation details for the Mori-Tanaka method, see the 
Appendix or a basic reference [310, 311, 314, 318]. The expression in Eq. (19) is valid for 
unidirectionally aligned inclusion phases. In order to account for other orientation distribu
tions, orientational averaging must be performed. For a random orientation of inclusions, 
Eq. (19) becomes

N I N - 1
C = /(1Q  + £  ,fr {C rA M } f ,  I + £  f , \ A r ) (20)

r- I

where brackets { } represent the average of a quantity over all possible inclusion orientations.
Figure 59 shows traditional Mori-Tanaka predictions for the enhancements to elastic stiff

ness for a composite with nanotube (fiber) or graphite plate reinforcement. The predic
tions assume the inclusion modulus is 500 times that of the matrix material, reasonable for 
nanotubes or graphite platelets. Note the large difference between aligned versus randomly
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F ig u re  59. Illu s tra tio n  o f  baseline M ori-Tanaka m odulus pred ictions for vary ing  inclusion vo lum e fraction w ith an 
inclusion m odulus 500 tim es the m atrix  modulus, E„. (a r  — aspect ratio ).
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oriented inclusions. As most nanocomposites have randomly oriented nanoparticles at rela
tively low volume fraction. Fig. 60 shows the same data for less than 15% volume fraction 
inclusion. Also in Fig. 60 is the prediction for inclusion stiffness 100 times that of the matrix 
for comparison. Note the large difference in reinforcing effect due to the change in the fiber 
modulus alone. While uniaxially aligned fibers have a slightly higher stiffness than those for 
high aspect ratio plates, the 3D random orientation of plates is more effective at increasing 
stiffness for the same volume fraction. Note also that spherical particles do not provide much 
stiffness enhancement. The predictions shown here assume perfect dispersion of nanopar
ticles, straight/flat nanoparticles, no clustering, elastic matrix properties, a perfectly bonded 
interface, and no alteration of matrix properties near the nanoparticle. Thus, they repre
sent the simplest possible assessment of composite moduli. As will be demonstrated in the 
sections below, many modifications to this simple picture have emerged to address some of 
these individual issues and have shed light on the underlying mechanisms of nanoparticle 
reinforcement in composites.

While the MT predictions in Figs. 59 and 60 illustrate the effect of different shapes 
of nanoinclusions on the elastic properties of nanocomposites, investigation of viscoelas
tic behavior can provide a richer set of information due to its sensitivity to the impact of 
nanoparticles. Many viscoelastic characterizations are performed in frequency or temper
ature space, resulting in the storage and loss moduli as shown in Sections 1.3.2 and 2.4. 
The M W N T  reinforced polycarbonate system considered earlier (see temperature domain 
data in Fig. 42) was also tested in the frequency domain at multiple temperatures and the 
results shifted via time-temperature superposition (TTSP; sec 1.3.2 and Fig. 19) to obtain 
master curves for the storage and loss moduli as a function of frequency. As shown in 
Fig. 61, the addition of small weight fractions of nanotubes to the polycarbonate produces 
significant broadening of the loss moduli and increase of the loss response at low fre
quencies, in addition to the enhancements in elastic stiffness demonstrated in the storage 
modulus.

One of the advantages of analyzing the frequency domain response of nanotube-reinforced 
polymers is that micromcchanical models are available for the analysis and interpretation of 
results. Micromechanics methods developed for elasticity can be applied to linear viscoelastic 
behavior in a straightforward manner using the Dynamic Correspondence Principle [113]. 
In this approach, a direct analogy between elasticity solutions and viscoelasticity solutions in 
the frequency domain is used in which the elastic moduli are replaced by their corresponding 
complex viscoelastic moduli of the form E* =  E ' +  iE '\  and associated field quantities are 
allowed to be complex [320]. Thus the Mori-Tanaka solution for a multiphase composite with
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F ig u re  61. F req uen cy  dom ain data obtained  using dynam ic m echan ical response fo r M W N T -re in fo rce d  p o lycarb on 
ate. T he  pure PC ’ response was obta ined  using the T T S P  data shown in Fig. 19. R ep rin ted  w ith perm ission from  
[140|, F. T. F isher. Ph .D . d issertation. N orthw estern  Un ivers ity . 2002. ©  2002.

viscoelastic phase materials can he written as

r  = ^ E c V{ c ; ^ }  + c0c * ^ f : c r{ ^ }

In this form, the Mori-Tanaka method has been employed to investigate viscoelastic and 
interphase effects in microcomposites, nanocomposites and block copolymers [252, 311, 319, 
321, 322J. Results for two and three phase viscoelastic composites showed that the Mori 
Tanaka method captures the essential features of the storage and loss moduli as a function of 
frequency when compared to a finite element simulation, though some discrepancies in the 
magnitudes of the moduli values exist, especially with extreme property differences between 
the phases [252, 321 ].

Using this approach, the transverse viscoelastic response of a two phase composite with 
a viscoelastic matrix (using the Prony series elements for the polycarbonate found from the 
analysis of Fig. 19) and 1 and 5 vo l%  of cylindrical isotropic inclusions with E = 500 GPa 
and v — 0.3 (appropriate for MWNTs) can be obtained as shown in Fig. 62. Here the 
transverse modulus is considered because it is a matrix-dominated property. While the model 
predictions show an increase in the storage modulus of the composite (analogous to the 
increase in elastic modulus that would be obtained for an elastic micromechanics analysis), 
there is almost no change to the transverse loss modulus response of the system. Since 
the loss modulus is a measure of the viscous behavior of the composite, the presence of 
an elastic inclusion (nanotube) should not affect E" significantly. However, such a result 
is not the case for NRPs as is clearly seen in Fig. 61 above, in which the loss modulus is 
profoundly affected by just 1 and 2 weight percent (0.5 and 1 volume percent) of M W N T  
inclusions. The obvious discrepancy between Fig. 62 and Fig. 61 is due to the existence 
of a substantial interphase region with altered polymer properties in nanocomposites. For 
a micromechanics model prediction to match the experimentally observed changes in the 
loss moduli, a viscoelastic interphase region with properties differing from the bulk matrix

L

F ig u re  62. Two-phase frequency dom ain  M ori-Tanaka pred iction for transverse m odu lus assum ing aligned  cy lin d ri
cal e lastic in-clusions and a viscoelastic matrix.
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properties must be included. The interacting effects of two viscoelastic phases of differing 
properties will influence the effective viscoelastic response of the composite, resulting in 
frequency behavior that differs from that of the bulk matrix material alone.

Application: partially exfoliated nanoplatelets. While the ideal situation for a clay nanocom
posite is individually dispersed nm thick clay sheets, current processing methods typically 
lead to composites that are considered partially intercalated and partially exfoliated as shown 
in Fig. 14. Thus for nanoclay-reinforced polymers, the idealized model of a two phase com
posite is clearly inappropriate. Recent work by Luo and Daniel [296] has addressed this issue 
by developing a three-phase model to account for the intercalated and exfoliated nature of 
many clay nanocomposites. In their work, the model accounted for the microstructure in 
a successive fashion as shown in Fig. 63. First, the anisotropic modulus properties of the 
multilayer intercalated clay were calculated based on a parallel layered plate theory using 
basic elasticity theory (a similar approach for the effective particle was developed by Boyce 
and co-workers [301]). The properties of the silicate plates were taken to be 170 GPa and 
the polymer nanolayers were assigned the matrix modulus multiplied by a factor to account 
for the confinement effect. Secondly, the effective property of the exfoliated region was cal
culated for a specific volume fraction of individual silicate layers randomly dispersed in the 
polymer matrix using the Mori-Tanaka method. Finally, the exfoliated effective modulus was 
used as the matrix phase with inclusions of the intercalated multilayer clay in a subsequent 
Mori-Tanaka calculation to yield the overall effective properties of the nanocomposite with 
inclusions at dual length scales.

Luo and Daniel’s work compares their three-phase model to experimental data from 
two different epoxy clay nanocomposites at several different volume fractions with good 
results [296]. They then examine the effect of the degree of exfoliation, clay cluster aspect 
ratio, intragallery polymer modulus and poisson ratio on the effective modulus (see Fig. 64). 
They found that the fraction of exfoliated clay had the most influence on overall modulus, 
and that intercalated clusters with high aspect ratios were also effective at providing modulus 
enhancement to the nanocomposite.

Application: inverse problem for the interphase behavior. The viscoelastic Mori-Tanaka 
approach has been used recently to explore the nonbulk polymer phase near nanotubes in a 
nanocomposite [140, 323]. The procedure solved an inverse problem to determine appropri
ate properties of an interphase region given experimental data on the polymer and nanocom
posite behavior and a micromechanics model including the interphase. In that work, the 
nonbulk polymer phase is assumed to be a distinct interphase region, within which inter
actions between the nanotubes and the polymer chains alter the characteristic relaxation 
times of the material. Recalling the Prony series form for a viscoelastic modulus discussed 
previously, the change in relaxation times of the interphase region can be modeled via the 
introduction of a mobility parameter a, which relates the mobility (and hence the mechanical 
properties) of the interphase to that of the pure polymer matrix [16, 140], such that

v
E (t)  =  + £  E je - 'taTt (22)

M o d e l
Intercalated

Ph ys ic a l Sys tem

Exfoliated cla\ 
platelets it. matrix

F ig u re  63. M o d e lin g  schem atic fo r Lu o  and D an ie l ap proach  to account for partia lly  in terca la ted  and p artia lly  exfo
liated c lay  nanocom posites. C u rren t processing m ethods typ ica lly  result in m icrostructure  sim ilar to that shown here.
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F ig u re  64. Young 's m odulus o f epoxy/clay nanocom posite as a function o f  c lay concentra tion  for d ifferen t ex fo lia 
tion ratios. R ep rin ted  w ith perm ission from  |2 % ] .  J .  J .  L u o  and I. M . D an ie l, Compos. Sci. Technol. 63. 1607 (2003). 
(D 2003, E lsev ie r .

It is also likely that interactions between the polymer chains and the nanotubes will result in 
changes in the magnitude of the time and frequency domain moduli of the interphase region 
with respect to that of the pure polymer. While not included in Eq. (22), such changes could 
be incorporated into this model via multiplication of the Prony coefficients

The effect of the mobility parameter a on the time domain modulus of the material is 
shown schematically in Fig. 65. In this manner the mobility parameter a can be used to 
qualitatively characterize the change in mechanical properties of the nonbulk polymer phase. 
For a < l the polymer chains are more mobile, representative of a repulsive interaction 
between nanotube and polymer, which shifts the transition region of the time-dependent 
response to shorter times. For a > 1, the polymer chains are less mobile, representative of 
an attractive interaction between nanotube and polymer, and the response of the nonbulk 
phase is stiffer than the bulk polymer. By definition, a =  1 describes the bulk polymer 
response. Assuming such a form for the mechanical properties of the nonbulk polymer 
interphase region, one can use various micromechanical models to interpret experimental 
data for carbon nanotube-rcin forced polymers.

Viscoelastic data in a form similar to that shown in Fig. 42 for a MW'NT reinforced poly
carbonate were examined, where the broadening of the loss peak was postulated to be due 
to decreased mobility polymer interphase near the nanotubes. Mori-Tanaka modeling results 
for the effective frequency domain response for a 2 w t%  nanotube-reinforced polycarbonate 
sample are shown in Fig. 66. It is noted that in the three-phase model, the interphase is
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F ig u re  65. T im e-dependent m odu lus as a function o f the m obility  param eter a.
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frequency

F ig u re  66. Experim enta l data and viscoe lastic M nri-Tanaku pred ictions fo r 2 \\tci  M W N T  sam ple loss modulus, 
assum ing an interphase vo lum e fraction  /int o f  10 % . ( le ft )  M o b ility  p aram ete r a  o f the interphase =  100. (r ig h t) 
M o b ility  p aram eter <x o f the interphase =  1000. R e p rin te d  w ith perm ission from  [140]. F. T. F isher, Ph .D . d isserta
tion. N orthw estern  U n ive rs ity , 2002. <D 2002, F. T. F isher.

a separate inclusion phase and is not geometrically constrained to surround the nanotubes. 
Extensions of this approach to account for arbitrary inclusion shape using a hybrid modeling 
approach are discussed in Section 3.3.

For the nanocomposite model, the viscoelastic matrix properties were equal to those 
obtained for the bulk polycarbonate samples tested, and a 3D random orientation of NTs 
was assumed. A  nanotube (elastic) modulus of 200 GPa was chosen by fitting the high fre
quency portion of the Mori-Tanaka effective storage modulus to the experimental storage 
modulus of the nanocomposite. The weight fraction of the nanotubes from the experimen
tal data was converted to volume fraction for the model based on a 2:1 relationship, and 
the interphase volume fraction was chosen as 10%. As described, the interphase viscoelastic 
properties were modeled as the bulk matrix material with a simple shift in relaxation times 
using the mobility parameter approach. Using an iterative approach, a mobility parameter 

*' — 1000, corresponding to a three decade shift in interphase relaxation times was deter
mine ’ should be noted that the prediction of nanocomposite response with no interphase 
(all bulk matrix properties) is very close to the pure matrix response (see Fig. 62) for the 
loss modulus, as the nanotube does not contribute to the damping response. These results 
agree with molecular dynamics simulations showing a three order of magnitude change in 
chain mobility [324] and relaxation times [325] near physioabsorbing surfaces [326].

Figure 67 compares the Mori-Tanaka prediction and the experimental data for the effec
tive loss modulus for the 1 w t%  MWNT-PC sample. Using the same values for the inter
phase volume fraction (10%) and the mobility parameter (a  =  1000), we again see very 
good qualitative agreement between the Mori-Tanaka model and the experimental data.

fre q u en cy  (Hz)

F igure 67. Experim enta l data and M ori-Tanaka p red iction  fo r 1 wt'.-r M W N T  sam ple lo.vi m odulus, assum ing f m — 
U)c/t and c y  — 1000. R ep rin ted  w ith p erm iss ion  from  [140]. F. T. F isher. P h .D . d issertation. N orthw estern  Un iversity, 
2002. ©  2002. F  T. Fisher.

Matrix (Polymer from DMA) 
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While many assumptions are made in this initial modeling effort to capture interphase prop
erties, the results show that presence of a substantial interphase zone is essential to capture 
the nanocomposite properties. Additionally, the results predict a 10’ decrease in the mobility 
of the interphase that is consistent with an increase of long time-scale relaxation modes for 
polymer chains in the vicinity of an attractive nanoparticle interface.

The work described here represents our initial efforts to adapt a "top-down'* approach 
using established micromechanics analyses to model the mechanical response of nanotube- 
reinforced polymers. Eventually, we foresee a more multiscale approach, where the vis
coelastic properties of the interphase are based on molecular dynamics simulations of the 
NT-polymer system and/or nanoscale experimental data. The extension of such modeling 
efforts for other nanoparticle-reinforced polymer systems is underway. These initial mod
eling efforts are illustrative of the type of future research directions necessary to better 
understand the fundamental nanomechanics of nanoreinforced polymer systems as discussed 
further in Section 4.

3.2.1.2. H a lp in -T sa i M ethods. Another micromechanical method that has been used to 
model the mechanical response of nanoreinforced polymer composites is the Halpin-Tsai 
approach [312, 313); see. for example, work with nanoclay-reinforcemcnt [297, 327] and 
nanotube-reinforcement [38, 194, 257]. The expressions below are taken from the Halpin- 
Tsai description provided bv Tucker [316]; for a more complete discussion, the reader is 
directed to an original review of the method by Halpin [313].

It is to be emphasized that the Halpin-Tsai equations are derived to represent composites 
consisting of continuous, aligned fibers. As nanocomposites do not contain continuous fibers 
(continuous from one end to another of a part), nor are the fibers typically aligned, the HT 
expressions should be used with extreme caution. Three of the five transversely isotropic 
properties of the composite are of the form

P , u (P f /P m) -  1—  — -------  with 77 = —:------------------------------  (23)
P,n I ~ r ,V f 1 (P f / P J +  1

where P is one of the properties given in Table 5, Pf and P,„ are the corresponding fiber and 
matrix property, V, and Vm are the volume fractions, and £ is a parameter that is a function 
of the matrix Poisson ratio and is dependent on the properties under consideration (see 
Table 5). For a continuous, aligned fiber composite, two additional properties are needed to 
provide the five independent material properties and are given below as

L I, — V f E f  4 -  V m E m — 4  

v [2 =  Vf vr + Vmv,

1 / k r -  \/k,
J _  __ Y± _  Yjsl
k  23 k j k m

Vf -  Vm 1 1
^

i V i ~

r 1 i V k 23 k ,■ k m )

(24)

where the underlined terms in Eq. (24) are often assumed negligible.

Table 5. Param eters for the Halpin-Tsai relations.
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The original Halpin-Tsai expressions for continuous aligned fibers given in Eq. (23) were 
then modified to account for finite fiber lengths by an empirical approach [313]. Here it was 
noted that as I  goes to infinity Eq. (23) reduces to the standard rule of mixtures (Voigt) 
upper bound, whereas for £ approaching zero the Reuss lower bound is obtained. Thus £ 
was treated as a geometric parameter describing the shape of the fiber, and via comparison 
of the Halpin-Tsai relations with the results from a 2D finite element analysis, appropriate 
values of f  selected for various properties for short fiber composites determined as shown in 
Table 6. In addition to the three properties listed in Table 6, standard Voigt approximations 
are used to determine the effective Poisson ratio vX2 and the transverse shear modulus 
G 23 using the parameters for continuous fibers in Table 5, providing the five independent 
properties necessary to describe transversely isotropic behavior. For spherical reinforcement, 
the composite response is isotropic and is completely specified by the bulk and shear modulus 
expressions given in Eq. (23) using Table 5.

While the Halpin-Tsai approach may be appealing due to the simplicity of the expres
sions, w7e note that a recent comparison of the Halpin-Tsai and Mori-Tanaka methods 
found that Mori-Tanaka provided better predictions in comparison to a finite element-based 
solution even for aligned short-fiber composites [316]. As described in Appendix A .l, the 
Mori-Tanaka method can readily be derived for multiple inclusion phases and accounts for 
particle-particle interaction. In addition, the Mori-Tanaka method can directly account for 
random orientation of the inclusions via appropriate orientational averaging inherent within 
the derivation, whereas Halpin-Tsai relations for randomly oriented fiber composites are 
derived by averaging the Halpin-Tsai relations for the unidirectional composite properties to 
account for orientational distribution of inclusions as described below (see Fig. 68).

For example, for a two-dimensional random orientation of inclusions the in-plane com
posite tensile and shear moduli E( and G ( based on the Halpin-Tsai approach can be written 
as [328]

E =
3 1 + 2 ( l / d ) r i LVj 5 1 + 2rjr Vj- 
8 1 - r h V, +  S I -  V j VV

1 1 +  2(1 / d)r}L Vr 1 1 +  2rj, Vj

8 1 — Vi.Vf 4 1 -  r)r Vf _

E

E

(25)

wher

V i . =
( E f /  Em) — 1 

( e T / E J  +  2 (1 / d ) Vr =
( E f / E J  -  1 
( E f / E m) +  2

(26)

Such an expression for the tensile modulus has been used previously to model nanotube- 
polymer composites [36]. However, such a procedure to account for a distribution of fiber 
orientations is a simplification that in actuality models a composite with randomly oriented 
small domains of aligned fibers as shown in Fig. 68(a). A more physically representative 
model of random orientation, such as that shown in Fig. 68(b), can be accounted for within a 
Mori-Tanaka approach [311] as shown in Appendix A .I. Further discussion of the differences 
between these methods of accounting for the orientation of the nanotubes can be found 
elsewhere [140].

It is for these reasons that the authors believe the Mori-Tanaka approach to be a more 
suitable micromechanics analysis for nanocomposite materials.

Tab le 6. Pa ram eters for the Halp in-Tsai re la tions fo r a ligned  short fibers o f length / 
and d iam eter d.

p P />„

e , 2 (//</) Lo ng itud in a l m odulus
/.;• I: /■;„ T ransverse m odulus
C , : G, G m 1 Lo n g itu d in a l shear modulus
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(a) (b)

Fig u re  68. M o d e ls  to account for random  o rien ta tion  o f em bedded inclusions, (a )  R an dom  o rien tation  o f un id i
rectional com posite  p roperties (H a lp in -T sa i). (b )  Phys ica lly  approp ria te  m odel o f  random  orien tation  o f inclusions 
(M ori-Tanaka ). R ep rin ted  w ith perm ission from  [140], F. T. F isher. Ph .D . d issertation, N orthw estern  Un ivers ity , 
2002. ©  2002, F. T. Fisher.

We end this section by noting that in earlier work other semi-empirical expressions have 
been borrowed from the composites community and applied to nanotube-polymer systems 
[169]. For example, the Krcnchel expression for the effective composite modulus [329], 
developed for short-fiber composites, can be written as

£ = 17|>7?I V fE f + (1 - I/ ) )E m (27)

where r/() and r?, are efficiency factors related to the fiber orientation and length, respectively. 
Using this expression, researchers have attempted to characterize the embedded nanotube 
orientation by fitting r/() to experimental data [169, 330).

3.2.2. Finite Element Approaches
Given the power of finite element simulations to simulate structural response, the method 
is often used to examine the response of materials, explicitly considering the impact of var
ious aspects of their microstructure, such as inclusions, voids or grain structure. With the 
emerging interest in nanocomposites, a number of researchers have begun to apply this 
approach to characterize nanocomposite properties. In the simplest cases, a single unit cell 
of nanotube and polymer is considered [289, 302, 303], whereas in other cases larger rep
resentative volume elements (RVEs) are considered in which many nanoparticles interact 
[301, 304]. To date, most analyses focus on linear elastic properties and simple interface 
conditions, ultimately providing predictions for the elastic stiffnesses of nanocomposites as 
a function of loading fraction, nanotube properties, and in some cases nanotube orientation. 
The results obtained to date in the finite element simulations are thus not much different 
than those obtained using the more sophisticated micromechanics methods such as the Mori- 
Tanaka technique discussed earlier. However, even in the simple elastic analyses, the finite 
element simulations allow one to examine local shear stresses near the nanoparticles and 
the effects of strain shielding in multi-inclusion cases, aspects that cannot be studied with 
homogenization methods. In the future, finite clement simulations will enable more sophisti
cated examination of the role of the interphase, particle morphology, load transfer and even 
damage and failure mechanisms within the nanocomposite. In the discussion below, a few 
examples of current work using finite element approaches are summarized.

In Liu and Chen [302], the finite element method is used with traditional elasticity mechan
ics to determine the response of the smallest representative volume element (RV E ): a unit 
cell consisting of one nanotube and its surrounding polymer. Using a simple micromechanics 
approach in which that unit cell is considered to be part of a periodic array, the effective 
properties of a composite constructed of an aligned arrangement of nanotubes is devel
oped. Results for longitudinal and transverse elastic properties including poisson ratio are 
presented. The method has recently been extended to consider a unit cell of square cross 
section [303]. In both cases the nanotube and matrix phases are assumed to be perfect linear



320 N a n o m e ch a n ic s  o f  N an o re in fo rced  Po lym ers

elastic materials, homogeneous and isotropic, and perfectly bonded to one another. It is 
shown that due to the inherent nanotube stiffnesses, appreciable increases in nanocomposite 
stiffness can be obtained at relatively low volume fractions. As will be presented later in the 
hybrid modeling section, this simple approach can lead to significant errors with respect to 
experimental data.

Another finite element approach to study nanotube-polymer composites employed con
ventional three dimensional finite element models to model large RVEs of a polymer matrix 
containing 50 nanotubes with a range of aspect ratios [304] (see Fig. 69). Both aligned and 
randomly oriented configurations were considered at a low loading of 0.5 vo I%  to predict 
the effective stiffness and coefficient of thermal expansion for the nanocomposites. Model 
comparisons were made with traditional carbon fibers assigned appropriate anisotropic prop
erties. Additionally, the CNTs were assumed to be solid cylinders, whereas their hollow 
nature may impact the results, especially for random orientations. Results for aligned nano
tubes were compared directly to Halpin-Tsai (FIT ) and composite cylinders micromechanics 
methods, and it was shown that the HT approach has significant errors. As discussed ear
lier in this chapter, as the HT method is a semi-empirical method designed for short fibers 
and thus the inadequacy is not surprising. Improvements in properties are demonstrated 
for CNT composites over conventional fiber composites, however the improvement is based 
solely on the inherent properties of the nanotubes themselves. Thus, the critical issue of the 
alteration of the surrounding matrix polymer due to the interaction of the nanoparticle at 
the molecular chain level is not considered.

The finite element method has also been used in an interesting approach that infuses some 
aspects of molecular level modeling of the nanotube to an overall continuum finite clement 
approach [289]. Here a molecular structural mechanics procedure is developed equating the 
energies for stretching, bending and torsion modes of chemical bonds to equivalent beam 
structures for the nanotube. The interfacial condition between the nanotube, created out of 
the equivalent structural beam elements, and the polymer matrix, created from traditional 
isoparametric elements, is taken to have either weak van der Waals interactions or strong 
covalent bonding. The former is simulated by connecting matrix and nanotube with truss ele
ments that are governed by a force-displacement curve matching a Lennard-Jones potential. 
The latter is accounted for by direct connection of the matrix and nanotube nodes. Similar 
to other work [302, 303], the model has been used to study the response of a single nanotube 
surrounded by a cylindrical shell of matrix material. In this manner, the effective Young’s 
modulus of a unidirectionally oriented nanocomposite is predicted and found to agree well 
with simple rule of mixture calculations. Analysis of the stress distributions reveal that stress

F ig u re  69. Sam p le  unit ce ll o f ma ny nanotune inclusions, random ly o rien ted  in a po lym er matrix m aterial. Reprin ted  
with perm ission from  [304]. H . R .  J.usti and  A . A . G usev, Mod. Sim id. Maur. Sci. Eng. 12, S I 07 (2004). ©  2004, 
IO P  Publishing  Ltd.
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concentrations occur near the ends of the nanotubes and that the van der Waals bonding 
reduces the shear stresses in the matrix near the nanoparticle.

Another example of the finite element approach has modeled clay-based nanocomposites, 
taking into account the interphase region of polymer in close contact with the nanoparticle 
[305]. Here it was recognized that both structural and chemical properties of the material 
can be altered by the nanofiller. Structural enhancements are due to the filler and its orien
tation, while chemical enhancements are the altered characteristics of the interphase zone 
near the nanoparticles or intercalated into the galleries. Another unique feature considered 
in this work is the influence of the degree of overlap of the platelets in the composite. 
The interphase was explicitly considered, though modulus enhancement of the region was a 
modest factor of 2 based on previous MD results [262]. Interphase thickness was correlated 
to the radius of gyration (/?,,) of the polymers, but was taken such that the interphase vol
ume fraction was only six times the filler volume fraction. The model is developed initially 
for unidirectionally oriented nanoparticles, though the importance of off-axis orientations is 
recognized and addressed by a second level of modeling. In this additional consideration, 
upper and lower bounds for the effect of orientation are evaluated by considering a series 
of cells with a Gaussian orientation distribution that are mechanically connected in either a 
series or parallel fashion. Only static elastic modulus of the overall nanocomposite is con
sidered, and the modeling illustrates that clay volume fraction, degree of exfoliation, and 
orientation were the most critical parameters. Influence of the interphase was also found 
to be important, but at the modest quantity and altered properties for the interphase used 
here, its role was secondary in determining overall response.

A finite element approach has also been employed by Boyce and co-workers to exam
ine the local properties of nanoclay polymers [301]. This is an extensive work, which also 
initially examines the comparison between traditional micromechanics approaches and the 
numerical approach for stiffness of conventional particle composites as a function of volume 
fraction, aspect ratio, and particle/matrix stiffness ratio (sec Fig. 70). The advantages of 
the numerical approach are evident at that point, as examination of the local stress and
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F ig u re  70. E ffe c t o f  strain sh ie ld ing  caused by overlapp ing  p latelet re in fo rcem ents in a po lym er com posite: 
(a )  isolated, (b ) partly  overlapped, and (c )  com p lete ly  overlapped  partic les and the ir associated stress d istributions. 
Rep rin ted  w ith  perm ission from  |3 0 I). N . Sheng  et al.. Polymer 45. 487 (2004). <D 2004, E lsev ie r .
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strain fields provides insight into the strain shielding of high aspect ratio particles that leads 
to a nonlinear reinforcing effect with increasing aspect ratio. The clay nanocomposites are 
considered to be composed of multilayer intercalated clay particles that are aligned in a 
polymer matrix. The presence of fully exfoliated particles interdispersed with the interca
lated particles as studied by Luo and Daniel (see Fig. 63). A representative unit cell for a 
random microstructure of aligned clav particles is developed in finite elements to study the 
local and global response of the nanocomposite. Several cases are considered to model the 
clay nanoplatelets, ultimately resulting in an elasticity approach in which the fully anisotropic 
moduli of parallel multilayered plates are used. The properties of the silicate are obtained 
from molecular dynamic simulations and the properties for the intercalated polymer are sim
ilar to the matrix for tensile modulus, but weaker in shear. These anisotropic properties for 
the intercalated clay particle are then used in the RV E  to determine nanocomposite response 
and compared to experimental data for nylon-clay systems. The effect of semi-crystalline 
and transcrystalline matrix material was also thoroughly investigated. Their work demon
strates that models must capture the intrinsically hierarchical microstructure of the nanoclay 
reinforcements to adequately represent the nanocomposite response. They note that to pre
dict the out-of-plane response for aligned composites, replacing the discrete stack with an 
effective pseudoparticle is not accurate due to the low shear modulus of interlayer galleries.

There is still an enormous potential for finite element simulations to provide understand
ing and guidance to nanocomposite properties and research. While a few of the papers to 
date have considered some aspects of interfacial interaction [289, 301, 305], none to date 
have considered the critical effect of the extended interphase region of altered polymer 
mobility and altered polymer properties surrounding the nanoparticle. Nearly all consider 
only uniaxially aligned nanoparticles, which is not representative of the configuration of cur
rent nanocomposites. For platelet-based nanocomposites, some consideration has been given 
to account for the intercalated polymer layer, but in situ morphologies including nanotube 
or nanoplatelet curvature have not been explicitly addressed. Additionally, at present all 
the finite element studies have examined only linear elastic response and not yet addressed 
viscoelastic, local plasticity, or fracture and damage. As these issues are critical for further 
progress in nanocomposites, they are ripe for new modeling simulations to assist in intel
ligent design of these materials. In addition, the coupling of finite elements to molecular 
and micromechanics approaches is an area of much-needed development. The hybrid model 
mentioned next is one step in that direction, accounting for interacting particles, interphase, 
viscoelasticity and through use of finite element unit cells and a micromechanics approach.

3.3. Hybrid Modeling Methods
While traditional micromechanics techniques have been used extensively to model the 
mechanical behavior of polymer nanocomposites as discussed in Section 3.2.1, there are a 
number of differences between polymer nanocomposites and their microscale counterparts 
that are not accounted for in traditional micromechanies approaches. Recognizing this lim
itation. a number of efforts are underway to adapt these techniques to make them more 
suitable for nanocomposites studies. In this section we will define hybrid techniques as those 
that couple traditional micromechanics with other approaches to more accurately address 
issues specific for polymer nanocomposites. We mention briefly first a method by which the 
equivalent continuum model is coupled to micromechanies, and then the remainder of the 
section is devoted to a hybrid finite elcment-micromechanics approach.

In Odegard et al. [286], molecular dynamics and the equivalent continuum model [268] 
(see Section 3.1.3) are used to determine the transversely isotropic properties of an effec
tive fiber that is then used within a Mori-Tanaka model to describe bulk nanocomposite 
behavior. Significant differences are predicted for random versus aligned effective fibers and 
for different nanotube lengths. Specifically, it is shown that increasing the aspect ratio of 
the nanotube results in increased moduli, though very small gains are achieved after about 
200 nm in length. While the use of the effective fiber approach here accounts in some sense 
for an interphase region around the nanoparticle, additional work can be done to more 
fully explore the role of the interface and interphase by this method. Due to the significant
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computational time-savings over MD simulations, this type of hybrid method is indicative 
of the type of multiscale simulations necessary to advance our understanding and design of 
nanocomposites.

In a series of papers by the authors and co-workers [298-300, 331], a hybrid micro
mechanics-finite element approach was developed to adapt micromechanics analyses to 
account for inherent nanoparticle curvature and the extensive interphase region. We will first 
discuss two methods developed to account for nanotube waviness in the elastic regime and 
then mention more recent work on incorporating the interphase and full viscoelastic represen
tation. As shown in the SEM  images in Fig. 71, nanotubes in polymer composites appear to be 
wavy (not straight), a feature not typically associated with traditional fiber reinforced compos
ites. Note that this waviness is inherently distinct from the uniform and controlled waviness 
of the yarns in traditional textile composites, as the curvature distributions are random and 
the volume fraction of the fibers is quite low in nanocomposites. Note that wavy cylindri
cal inclusions cannot be accounted for directly in a traditional micromechanics approach, 
as the Eshelby tensor (see Eq. (16)) is not available for such non-ellipsoidal inclusions. In 
order to better understand the influence of the nanotube curvature distributions on overall 
nanocomposite response, hybrid finite elcment-micromechanics models were developed. As 
discussed below, using experimental data, we demonstrate that nanotube wavincss can limit 
the modulus enhancement of the nanotube-rcinforced polymer, suggesting that this waviness 
may be one reason why the modulus enhancements for N RP systems measured to date are 
typically less than anticipated using standard micromechanics models.

Two related methods have been developed to utilize the solution of a finite element 
analysis to incorporate the effects of this waviness into subsequent micromechanics models 
[298-300]. Each method uses the finite element unit cell shown in Fig. 72 with appropriate 
boundary conditions. The waviness of the nanotube is assumed to be sinusoidal in shape with 
an embedded geometry of the form y = f/cos(27rz/A), where A is the sinusoidal wavelength 
and z is the fiber axial direction (see Fig. 72). The sinusoidal nanotube is then embedded 
within an infinite matrix material such that a convergent solution for the dilute approxima
tion case is obtained. (A  proof that this infinite matrix condition is satisfied is presented 
elsewhere [299]; typically, the finite element cells shown in Fig. 72 contained greater than 
99.5% matrix.) The response of such a finite element cell, assuming that the Poisson ratios 
of the inclusion and matrix phases arc equal, is dependent on three dimensionless ratios: 
the waviness ratio a/K,  the wavelength ratio A/tL and the ratio of the phase moduli E r;ll = 
E v/ /£mal. Further details of the finite element modeling are given elsewhere [300].

F ig u re  71. M icrographs show ing the wavincss o f  nanotuhes em bedded in polym ers, (a )  T E M  image o f 1 w tCA 
M W N T s  in polystyrene. R ep rin ted  w ith perm ission from  (36). D . Q ian  et al., Appl. Phys. Lett. 76. 2868 (2000). 
©  2000, A m erican  Institute o f  Physics, (b ) S E M  image o f  50 vvtr f  M W N T s  in p o ly (v in y l a lcoho l). R ep rin ted  with 
perm ission from  |169j, M . S. P. S h a ffe r  and A . H . W in d le , Adv. Mater. 1 I. 937 (1999). ©  1999. W ile y - V C H .



324 N an o m ech an ic s  o f  N a n o re in fo rc e d  Po lym ers

y

F ig u re  72. F in ite  e lem ent cell m odel o f an em bedded w avy nanolube. Fo r the model shown, w = a/\ = 0.1 and 
A/d = 35. R ep rin ted  w ith  perm ission from  |299], F. I'. F ish e r et al.. Compos. Sci. Technol. 63, 1689 (2003). ©  2003, 
E lsev ie r .

Such a model implicitly introduces two simplifications into the analysis: the treatment 
of the nanotube inclusion as a solid cylinder neglects the hollow nature of the nanotubes, 
and modeling the nanotube as a continuum disregards the specific form of the nanotube 
(SWNT, MWNT, or bundle) and any possible relative motion between individual shells or 
tubes in a M W N T  and an NT bundle, respectively. In each case the reduction in modulus 
due to waviness estimated from such an analysis can be viewed as conservative, in that 
accounting for the hollow nature of the NTs or modeling relative sliding of the tubes or 
shells would further reduce the effective stiffness of a wavy nanotube. In addition, in this 
work the individual phase materials were modeled as linear elastic and isotropic, and perfect 
bonding between the phases was assumed.

In the first model, which we refer to as the effective reinforcing modulus (E R M )  model,
the unit cell shown in Fig. 72 was constrained in the y  direction at a single point to prevent
free body translation, and an infinitesimally small axial displacement, A, prescribed to all 
nodes on the plane z = A/2. The effective modulus of the finite element cell is defined as

E ^ A = (28)
te" 2AA

where F[ol is the sum of all nodal resultant forces on the displaced plane and A  is the cross- 
sectional area of the cell. To extract the effective reinforcing moduli of the embedded wavy 
inclusion (as it exists in the matrix) from Eq. (28), a parallel model of the effective cell 
response, independent of the previous analysis, was assumed of the form

d ;,ild = C n t^ Rm + (1 - c NT )E mau.a (29)

where cNT is the nanotube volume fraction within the finite element cell and £’malrix is the 
matrix modulus. From Eqs. (28) and (29), the £ ERM of the embedded inclusion can be 
calculated as

,  - _  l ^ \ \  —  (  1 —  N T )  £  matrix
^ERM — WU/L NT

Thus /:r RM represents the modulus of a straight inclusion that, under identical loading con
ditions, would yield the same effective finite element cell response as that obtained with the 
wavv inclusion.
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Figure 73 shows the l\\ KM as a function of waviness for several different values of E ratio 
and a wavelength ratio of 100. For all simulations a matrix modulus of I GPa was used. 
As expected, for zero waviness we obtain the straight nanotube results £ r KM = /:NT. We 
note that is strongly dependent on the waviness and quickly decreases with increas
ing nanotube curvature. This drop in E ]RM is less pronounced for smaller Eri{[n) values 
because the mechanical constraint of the surrounding matrix material in this case is more 
significant.

During the development of the E erm model, an alternative solution was conceived to 
incorporate inclusion waviness into micromechanical predictions of effective stiffness. In 
this alternative model, which we call the Numerical Strain Concentration Tensor (NSCT) 
method, the complete dilute strain concentration tensor A ^  (see Section 3.2.1.1) for a wavy 
cylindrical inclusion is found via the solution of six separate finite element models with 
appropriate boundary conditions, a procedure that is described in detail in the literature 
[300]. Once the dilute strain concentration tensor A f* has been determined, it can then be 
used directly in the Mori-Tanaka solution (see Eq. [20]) to predict the effective modulus of 
the nanocomposite. The major difference between these two models is that the E R M  model 
solves a single finite element model, analogous to a numerical tensile test, and then treats 
the wavy nanotube as an isotropic ellipsoidal inclusion with a reduced modulus EllRM. For 
the NSCT model, the solution to the six independent finite element models (each with the 
geometry of the embedded wavy nanotube) yields an orthogonal effective response such that 
the isotropic simplification used in the E R M  model is unnecessary. A comparison of the 
unidirectional (in the direction parallel to the long axis of the nanotube) effective response 
of the unit cell by each of the two models as a function of nanotubes waviness is illustrated 
in Fig. 74.

For both the ER M  and NSCT models, the distribution of nanotube waviness within a 
nanocomposite can be accounted for by using a multiphase micromechanics approach as 
shown in Fig. 75, where a waviness distribution is chosen based on qualitative examination 
of SEM  micrographs, resulting in the percentage of nanotubes exhibiting different curvature 
magnitudes in the composite. Each curvature magnitude is then treated as a separate phase 
in an N - phase Mori-Tanaka analysis to account for the coexistence of the various nanotube 
curvatures in the composite. For the E R M  model, given the effective reinforcing modulus 
and Poisson ratios of the phases, the Mori-Tanaka method described in Section 3.2.1.1 was 
used where the nanotube is treated as a continuum and the standard Eshelby tensor for a 
cylindrical inclusion used for each NT phase (as the waviness is factored in via the reduction 
in modulus via the ER M ). For the NSCT model, as the dilute strain concentration tensor A J1'1 
is found explicitly based on the finite element model, it is substituted directly into Eq. (20) 
for each value of nanotube waviness.

w = a/?.

Figure 73. /•.,;KNI as a function o f  nanotube waviness ratio  (a/A ) for d iffe ren t ratios o f  phase m oduli w ith  w ave 
length ra tio  A Ul = 100. /:maIrix =  1 G P a . R ep rin ted  w ith perm ission from  [140], F. T. F isher. Ph .D . d issertation. 
N orth w este rn  U n ive rs ity , 2002. ©  2002, F  T. F isher.
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F ig u re  74. E ffe c tive  com posite m odulus (in the z d irection  o f Fig. 72, para lle l to the N T  axis) w ith increasing  
w aviness ratio  (a/A) for the F .R M  and N SC ''!' models. Reprin ted  w ith perm ission from  [3001, R . D . B rad sh aw  et al..
Compos. Sci. Technol. 63, 1705 (2003). © 2003, E lsev ie r .

Given such an approach, the effective nanocomposite modulus can be determined if the 
distribution of nanotube waviness shown in Fig. 75 is known. To simply illustrate the pro
cedure, two waviness distributions were assumed (see Ref. (299]), where distributions 1 and
2 represent minimal and more significant level of nanotube waviness within the polymer. 
The E R M  model predictions obtained using these two assumed waviness distributions, for 
various orientations of the nanotubes, are shown in Fig. 76 and compared with experimental 
data for MWNTs in polystyrene [139] and epoxy [39], respectively.

What is most striking about the results presented in Fig. 76 are the large discrepancies 
between the Mori-Tanaka predictions assuming straight nanotubes and the experimentally 
measured moduli. While the experimental modulus has been enhanced with the addition of 
the NTs, the realized improvements in modulus are significantly less than what the microme
chanics predictions with straight nanotubes would indicate. Integrating moderate nanotube 
waviness into the effective moduli predictions is shown to significantly decrease the moduli 
predictions, suggesting that NT waviness may be one factor limiting the modulus enhance
ment of nanotube-rcinforced polymers.

The E R M  and NSCT predictions for a two-phase nanocomposite with a 3D random orien
tation of wavy nanotubes arc shown in Fig. 77. Here isotropic constituent phases, a 10% NT 
volume fraction (where all NTs have the same waviness), and E rali0 = 400 were assumed. We 
see that for shorter wavelength ratios ( k / d  — 10), the difference between the models is mini
mal until very large values of the waviness ratio a/A are considered, at which point the NSCT 
model predicts a stiffer effective response as it more appropriately accounts for stiffening 
in the direction perpendicular to the long axis of the nanotube (the y-dircction in Fig. 72)
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F ig u re  75. M o d e l o f a nanotube-rcin forced  polym er using a m ultiphase com posite analysis to account for a given 
w aviness d istribution function com patib le with both hybrid  m icrom echanies-finite e lem ent m ethods described. 
R ep rin ted  w ith perm ission from  [299|, F. T. Fi.sher et al.. Compos. Sci. Technol. 63. J68V) (2003). ©  2003, E isev ic r.
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Figure  76. ( le ft ) Experim enta l data lo r  M W N T s  in polystyrene [ 139] and (r ig h t) 5 wt^f M W N T s  in epoxy [39]. A lso  
shown are m icrom echan ica l p red ictions o f the N R P  effective m odulus assum ing d ifferent random  orien tations o f 
straight and wavy ( E R M  m ethod ) nanotubes. R eprin ted  w ith perm ission from  [299], F. T. F isher et al.. Compos. 
Sci. Technol. 63. 1689 (2003). ©  2003. E lsev ier.

within the 3D randomly oriented composite. For larger wavelength ratios (A/ d  =  100), the 
difference between the two models is more significant, although it should be noted that this 
difference is exaggerated here given the large NT volume fraction modeled. We also note 
that Fig. 77 assumes that all of the nanotubes have identical values of a / A. As discussed 
previously, there is likely to be a distribution of NT waviness within the material, such that 
only a fraction of the nanotubes would be characterized by a / k  and \ / d  parameters for 
which the difference between the E R M  and NSCT results is significant.

Thus motivated by micrographs showing that nanotubes embedded within polymers often 
exhibit significant curvature, a hybrid model was developed that incorporates this curvature 
into traditional micromechanical methods via a multiphase composite approach. Using mate
rial properties representative of nanotube-reinforced composites, it was shown that nanotube 
waviness can reduce the predicted effective moduli of these materials, and may be one rea
son why the modulus enhancement of nanotube-reinforced polymers, while significant, is 
somewhat less than predicted using standard micromechanical techniques. For samples with 
moderate waviness, the differences in moduli predictions given by the two models may be 
minimal and likely masked by other factors, such as a poor NT-polymer interface, inade
quate NT dispersion, and nanotube degradation due to the nanocomposite processing; in 
this case the E R M  model may be preferable due to its simplicity. For cases where significant 
nanotube waviness is expected or has been observed, the NSCT model is preferred because 
it more accurately models the full impact of the wavy nanotube on the effective moduli of 
the nanocomposite. While for some applications and property targets (such as impact resis
tance, energy absorption and fracture toughness) nanotube waviness may be beneficial, the
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F ig u re  77. Young's m odulus p red ictions for a nanotube-reinforced  po lym er w ith 3D  random ly orien ted  wavy N Ts 
using the E R M  and the N S C T  m odels for E lMXO — 400. R eprin ted  w ith perm ission from  [300], R . D. B radshaw  
et al.. Compos. Sci. Technol. 63, 1705 (2003). ©  2003, E lsev ier.
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FE unit cell
Nanocomposite

Figure  78. H yb rid  FE-m icrom ech an ics  m odel. L e ft unit cell enables strain  concentra tion tensor for non-ellipsoidal 
inclusion geom etries and nonbu lk interphase p roperties to be ca lcu lated .

deleterious effect on modulus enhancement provided by the nanotube inclusions must be 
considered.

While such results demonstrate how waviness of the embedded nanotubes may reduce 
the effective reinforcement provided by the nanotubes within the nanocomposite, at the 
moment it is impossible to differentiate the impact of nanotube waviness from compet
ing reinforcement-limiting mechanisms when examining experimental data. Complementary 
“ bottom-up" modeling techniques such as those described in Section 3.1 will in the future be 
useful to clarify these effects. While the work reported here is an application of a microme- 
chanics method to a nanostructured material, the integration of atomic scale modeling could 
readily be adapted into such an analysis, including atomic scale information such as the 
transversely isotropic nature of the NT mechanical properties and inter-layer (M W NTs) and 
intertube (NT bundles) sliding. In the future a fusion of true nanoscale and microscale mod
eling will provide even more insight, and quantitatively accurate predictions, of this material 
behavior.

In a more recent application of the hybrid micromechanics-numerical approach, both vis
coelasticity and the effect of the interphase have been considered (see Fig. 78) [331]. In 
this work, a finite element unit cell was constructed containing a nanotube or nanoplatelet 
that was surrounded bv a discrete interphase domain of polymer which was then embed
ded in the bulk polymer matrix material. The properties of the interphase is assumed to 
be related to the properties of the matrix material by a time shift to correspond to altered 
mobility of the polymer in the vicinity of the nanoparticle. After determination of the dilute 
strain concentr *;on matrices (via the NSCT approach) for the inclusion and the interphase 
separately, the Mori-Tanaka method is employed to provide overall viscoelastic property 
predictions. Although the standard three phase Mori-Tanaka method can account for an 
interphase domain as described earlier and be performed in the viscoelastic domain, the 
annular morphology of the interphase surrounding the inclusion is lost in that approach, 
adding a significant level of approximation. While methods for coated inclusions [332] could 
be employed to obtain effective moduli, they cannot also consider the effects of nano
particle curvature. The hybrid finite clement-micromcchanics approach is also amenable to 
approaches to incorporate gradient interphases with spatially varying properties. To date 
the hybrid method has been implemented for the case of aligned inclusions for transverse 
and longitudinal properties and results compare qualitatively well with experimental data. 
In particular the influence of the intcrphase is observed in a broadening of the loss peak 
and ii was illustrated that curvature of nanoparticles can reduce the anisotropy of aligned 
nanocomposites [331 ].

4. CURRENT ISSUES IN NANOMECHANICS OF 
NANOREINFORCED POLYMERS

While the previous section has reviewed the contributions of a number of approaches to 
nanomechanical modeling for nanorcinforced polymers, it is clear that there arc several 
fundamental issues that need to be addressed to enable more accurate modeling and deeper
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understanding of nanocomposites. In this section, we will discuss these major issues, many 
of which are under intense investigation by research teams across the world. While the 
widespread interest and efforts invested in nanomechanics spur rapid progress, at the same 
time many ongoing investigations also unveil new phenomena that must be further explored. 
Thus the topics presented here represent the cutting edge of nanomechanics research in 
polymer nanocomposites today. While some of these issues will require a number of years 
of continued study, others will either evolve or be eclipsed bv new insight over time.

One issue with continued uncertainty is the inherent properties o f the nanoparticles them
selves and how to best represent these at either the molecular or continuum level under 
various conditions. On the molecular side, while the bonding potentials used for the carbon- 
carbon bonds in the nanotubes are considered accurate at present, the nature of how to 
model, for instance, the reinforcement effect provided by the inner shells of MWNTs and 
the interactions between layers in clay and graphite nanoplatelets are less mature. In addi
tion. for the platelet forms, the intercalants used in processing result in interlayer species 
where the bonding potentials can be less standardized. For all nanoparticle forms, the role 
of defects needs to be elucidated [53, 333-335]. The type and density of defects needs to 
be quantified as a function of processing methods and the impact on inherent nanoparticle 
properties described. In addition, as chemical functionalization has been demonstrated to 
be a successful strategy to improve load transfer between particle and matrix, the influence 
of functionalization on nanoparticle properties needs further investigation. The magnitude 
of the changes in inherent nanoparticle properties with different types and quantities of 
functionalization is not currently well understood [53].

Ideally, these issues can be addressed at the molecular level with MD and MC simulations 
that can provide information on continuum properties to be used in higher length scale simu
lations. New nanomechanical experiments could also provide insight into nanoparticle prop
erties under these different conditions. Currently, many micromechanies and finite element 
approaches do not account for the nanotube geometry explicitly, ignoring the hollow nature 
of nanotubes and the intricacies of the inner shells in MWNTs. Additionally, ideal isotropic 
properties are often used for the nanofiller given the uncertainty in the changes caused by 
defects or functionalization and the lack of knowledge of out-of-plane properties. For exam
ple, new work has sought to develop relationships for the transversely isotropic properties 
that would be more appropriate to represent elastic properties of SWNTs, MWNTs, and 
SW N T bundles [65-68].

Beyond the inherent nanoparticle properties, much more work needs to be done on the 
nature of the interfacial and interphase regions in polymer nanocomposites. The molecular 
modeling to date described in Section 3.1 has focused on the influence of idealized nanoparti- 
elcs on the dynamics of relatively small numbers of short polymer chains. While this informa
tion has provided great insight, the extent of the changes in polymer properties both spatially 
and quantitatively is still unclear. Here again, the role of functionalization needs further 
examination. The optimal density of functional groups and the ideal length and properties 
of the functional group all remain to be explored. To improve modeling at the molecular 
level, additional enhancements in atomistic modeling and multiscale methods need to be 
addressed as discussed below. For continuum approaches to modeling, information either 
from atomistic modeling or from new experimental data on the interphase region could be 
incorporated. Currently, experimental efforts are underway to probe the nature of the inter
facial bonding through nano-pullout experiments. In addition, methods akin to those used in 
the polymer thin film community to study changes in polymer dynamics near substrates and 
free surfaces could be used to probe changes in the glass transition and polymer mobility 
near nanoparticles [10, 11]. Results of these types of experiments and molecular modeling 
should yield information on the property gradient in the polymer near nanoparticles that 
could be used in continuum modeling. The manifestation of these property changes in the 
polymer according to various functionalization strategies will be critical.

Another area of emerging interest is that of strength and toughness modeling for polymer 
nanocomposites. To date, the modeling in this area has been quite limited. Several MD 
papers mentioned in Section 3.1.1 address some aspects of nanotube pullout from a polymer. 
However, a number of simplifying assumptions have been made that need to be addressed.
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On the continuum side, recent work has modified the classic shear lag model to account for 
the hollow nature of a nanotube and obtained expressions for the interfacial shear strength 
as a function of nanotube diameter [336]. The results are in good agreement with experi
mental pullout data from the same group. In different work, a local density approximation 
model and classical elastic shell theory are used to describe nanotube pullout for multiwall 
nanotubes [337], and the distribution of the interfacial shear stress along the length of the 
nanotube obtained. In another approach [290], the molecular structural mechanics method 
of Li and Chou [289] (see Section 3.2.2) is used to create a continuum fiber equivalent to 
a nanotube. This fiber is then subjected to a classical shear lag analysis to determine the 
interfacial shear stress and normal stress in the fiber. While these first efforts to address 
pullout are notable, a vast amount of work remains to be done to understand the origins of 
toughness and strength in nanocomposites. Issues to be addressed include the roles of nano- 
particle morphology (e.g., curved nanoparticles, interaction and entanglement with other 
nanoparticies), the properties of the interphase zone surrounding the nanoparticle, pullout 
for platelet forms, and extending information from force-displacement response on a single 
nanoparticle to address fracture toughness for a multi-nanoparticle composite.

The limitations of atomistic simulation and continuum mechanics, along with practical 
needs arising from the heterogeneous nature of many materials, have motivated research on 
nmltiscale simulations that bridge atomistic simulations and continuum modeling. Multiscale 
modeling is a critical area for current and future study in polymer nanocomposites. To date, 
the multiscale approaches that have been applied to nanocomposites still reside ultimately 
on the continuum side and are merely informed by some smaller length scale modeling. 
This is true for the equivalent continuum approaches in which molecular models are used to 
develop the energies from which continuum elements are derived for the nanostructures of 
interest. It is also true for the hybrid micromechanic-finite element approaches, which use 
some information from either experiments or modeling to define interphase or nanoparticle 
properties, but the entire simulation takes place on the continuum realm. In one sense, these 
approaches may be considered as hierarchical multiscale modeling.

In contrast to these efforts, the leading edge of multiscale modeling is in concurrent mod
eling approaches which link modeling from quantum or atomistic levels to the continuum 
level simultaneously [338-340]. Typically, the smaller length scale modeling is performed 
only in local areas of interest or activity, and these are linked directly to a surrounding con
tinuum modeling of the entire structure. It has been found in these methods that a critical 
issue is the nature of the overlap between atomistic and continuum regions. In particular, 
sharp boundaries between the domains lead to spurious nonphysical results, and thus an 
overlap region which can accommodate the transition is essential.

These approaches have been developed for study of fracture events in materials, where 
atomistic modeling is present only at the crack tips. Concurrent modeling has also been used 
to study the deformation of nanotubes, where areas of locally high deformation or defect 
sites are modeled with atomistic algorithms, while areas away from these sites use traditional 
finite elements [341, 342]. This scheme has been used with M D only in regions of flaws to 
determine the effect of missing atoms on NT strength. Further work has employed molecular 
mechanics, molecular dynamics and interlayer potentials to study the deformation of single- 
and multiwall NTs [341]. The results from these studies suggest that intertube corrugation and 
surface tension are two factors that contribute to load transfer in NT-polymer composites.

While multiscale modeling is an emerging area of research and has been applied to nano- 
tubes, this approach has not yet been extended to polymer nanocomposites. As mentioned in 
Section 3.1.1, molecular modeling of polymers alone often uses coarse graining approaches, 
which are a form of multiscale modeling in that monomer groups arc lumped together in 
order to create longer effective chains. Ideally, future research will focus on connecting these 
types of coarse graining approaches for polymers near nanoparticies to traditional finite ele
ments to enable study of a larger scale polymer nanocomposite but retaining atomistic detail 
in the vicinity of localized deformation events such as microcracking, nanoparticle buckling, 
or pullout. Improved multiscale simulations will also allow for consideration of larger num
bers of effectively longer polymer chains at the molecular level, interacting with realistically 
sized nanoinclusions and will allow for bond breaking and reformation. Such simulations
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will provide more information on the polymer dynamics and properties near nanoparticles 
with different surface chemistries and the impact of these interaction zones around many 
nanoparticles on macroscopic material response.

An example of the role of the different length scales in nanocomposites is shown in 
Fig. 7C). Here a hierarchical strategy is shown where the MD simulations are performed for a 
single nanoinclusion and its surrounding polymer, providing input on the characteristics and 
extent of the interphase zone in a micromechanics model. The micromechanics model then 
accounts for the network of interacting nanostructures and feeds into a fracture mechanics- 
type model to evaluate strength and toughness of a hulk nanocomposite. In contrast, in 
a concurrent strategy, the simulation for fracture toughness would consist of simultaneous 
calculations of fracture events at different length scales. While the bulk nanocomposite 
would be a continuum mesh, increasing level of detail would replace the continuum analysis 
near the crack tip and nanotube pullout regions.

An area of modeling not covered in detail in this chapter and also not yet addressed 
substantially in the nanocomposite literature is modeling o f  m ultifunctional properties of 
nanocomposites. While the improvements in thermo-mechanical properties of nanocompos
ites show great promise, the real advantage to these systems is in being able to take advantage 
of improvements in thermal conductivity, electrical conductivity, and diffusion barrier prop
erties in addition to thermomechanical properties. A few modeling efforts have suggested 
that despite the intrinsic thermal conductivity and aspect ratio of carbon nanotubes, ther
mal conductivity enhancement for nanotube-polymer systems is limited by the large thermal 
interface resistance in these systems [215]. Molecular dynamics simulations have suggested 
that this thermal interface resistance can be reduced by chemical functionalization and sub
sequent bonding of the nanotubes to the polymer, although the functionalization leads to a 
decrease in the NT conductivity [216, 217].

In a different approach, the percolation threshold of polymer nanocomposites has been 
studied using a Monte Carlo statistical method [218]. MC theory was used to explain the 
low percolation threshold of NTs in a low conductivity medium by showing that the critical 
volume fraction is inversely proportional to the aspect ratio of the filler. Thus for nanopar- 
licles with aspect ratios on the order of 1000 or more, the percolation threshold can occur 
at volume fractions as low as 0.01%. Both thermal and electrical conductivity were exam
ined and compared to experimental data. It w'as found that in polymer nanocomposites, the 
resistance of the contacts of the percolating network can be quite large and can significantly 
reduce the expected nanocomposite conductivity. These results indicate a need for function
alization strategies to reduce this contact resistance in nanocomposites [218]. These limited 
modeling efforts to date indicate the potential to tunc nanocomposite composition and mor
phology to achieve better multifunctional properties. When performed hand-in-hand with 
thermomechanical modeling strategies, it will be possible to optimize nanocomposite design 
to achieve the balance of properties desired for a given application.

t
C oarse graining
MD Sim ulations

• Characterize interphase
•Polymer conformation 
•Relaxation characteristics 
•Interfacial shear strength

_i

• Changes with chemical functionalization M icrom echanics
• E!astic/VE properties
• Effect of interphase on composite

•Elastic properties 
•Relaxation spectra

1• Effects of morphology
•Tube morphology 
•Tube geometry

F ig u re  79. O ve rv iew  o f a m ultisca le m odeling strategy fo r po lym er nanocom posites.
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Figure 80. Tensile loading of an individual MWNT'. (A,B) SE:M images of two AFM  tips holding a MWNT. 
(C. D) High magnification SEM  images showing the remnants of the MWNT on both AFM  tips after fracture. 
(E ) Plot of stress versus strain curves for individual MWNTs. Reprinted with permission from [57]. M.-F. Yu et al.. 
Science 287, 637 (2000). © 2000, A A AS.

To complement these modeling developments, continued advances in the ability to per
form quantitative mechanical experiments at the nanoscale are necessary. For example, while 
work has been reported using various types of scanning probe microscopy (SFM s) such as 
atomic force microscopy (A FM ) to probe the mechanical properties of nanostructures [49, 
55, 60, 343]. extensions of these techniques for polymer nanocomposites are at a much earlier 
stage. One success to date, however, has been the AFM-based nanoscale measurement of the 
interfacial shear strength of a nanotube-polymer composite (see Fig. 26) [180]. MEMS-based 
testing systems to probe the mechanical properties of nanomaterials and nanocomposites 
are also under development [344].

Finally, within the last several years there has been a push to develop 3D nanoma
nipulation systems which can operate within an electron microscope [345J. Attachments 
and clamping of nanostructures for mechanical loading can be accomplished via meth
ods such as focused ion beam (F IB )  deposition and electron beam induced decomposi
tion [346]. Using such nanomanipulators, researchers have been able to subject individual 
MWNTs (see Fig. 80) [57] and single-walled carbon nanotube ropes [56] to tensile loading, 
realize the sliding between nested shells of a MWNTs [42], and load carbon nanocoils in 
tension (see Fig. 11) [21]. Such nanomanipulation systems are particularly well-suited to 
probe the mechanical properties of nanocomposites on the nanoscale, and the extension 
of nanoscale tests that have been developed for individual nanostructures to characterize 
polymer nanocomposites is envisioned.

5. CONCLUSIONS
In this chapter we have discussed the current state of modeling and future directions for 
polymer nanocomposites. The inherent properties of various nanoparticles and their size 
scale make them attractive candidates as a reinforcement filler material in polymer-based 
structural composites. The size scale is crucial for two reasons: ( I )  the radius of gyration 
of typical polymers is on the nanometer length scale and (2) the nanometer size increases 
the surface to volume ratio of the nanoparticles orders of magnitude over that of conven
tional polymer filler materials. Together, these two facts indicate that with good dispersion 
of the nanoparticles in a polymer, tremendous impact on overall polymer nanocomposite 
properties can be achieved at very low volume fractions. With good dispersion nearly all 
of the polymer will be within a R,, or two of a nanoparticle such that the conformation, 
mobility and properties of the polymer is altered. In addition to changing mechanical prop
erties, the thermal stability, electrical and thermal conductivity, and diffusion properties are 
of the nanocomposite can also be greatly altered. The potential of multifunctional materials 
with controllable electrical and thermal properties, in addition to large enhancements in the 
mechanical behavior, has driven the tremendous amount of work dedicated to these material 
systems that continues today.
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We have reviewed the experimental data in thc held for polymer nanocomposites and 
showed evidence of the impact of equiaxed nanoparticles, nanotuhes. and nanoplatelet rein
forcements on the mechanical, thermal, electrical and diffusion properties. The work has 
also highlighted evidence for the existence of an extensive interphase region of nonbulk 
polymer behavior in nanocomposites even at very low (less than 1 vo l% ) loading. The char
acterization and extent of this interphase region is still a challenge, and a number of efforts 
are being directed toward nanotube pullout and other experiments to provide more detailed 
information on the interfacial load transfer.

Because of the complexity of nanocomposites and the difficulty of experimentation and 
data interpretation on the nanometer length scale, there is a critical need for accurate mod
els of these systems. Modeling can be used not only to predict properties of a particular 
composite composition, but perhaps more importantly to assist in the analysis and inter
pretation of experimental data. However, modeling the behavior of nanoparticle reinforced 
polymers is inherently difficult because of complexities related to: the structure and prop
erties of the nanoparticles, the orientation and dispersion of the nanoparticles within the 
polymer, the characteristics of the interface and load transfer between thc nanoparticles 
and the polymer, a lack of understanding of the impact of the nanoparticles on the molec
ular mobility of the polymer chains, and the range of length scales characteristic in these 
materials.

We have presented the current range of models, divided into the bottom-up approaches 
that begin with atomistic detail, and the top-down approaches that are based on contin
uum assumptions. In each of these areas, significant strides have been made identifying key 
issues in nanocomposites and explaining the impact of specific structural features on prop
erties. The molecular modeling approaches have demonstrated how the structural, thermal, 
and mechanical behavior of the polymer in the vicinity of nanoparticles is affected by the 
nanoinclusion and how the chemical interactions between the polymer and the nanoparticle 
play a key role in these areas. The continuum approaches have been able to account for 
microstructural issues such as intercalated polymer in nanoplatelet systems or the in situ 
geometry of nanoparticles to illustrate their impact on overall behavior of systems of many 
such inclusions. However, there are significant limitations with these approaches: pure atom
istic simulations are still for small unit cells (small nanoparticles and a limited number of 
very short polymer chains) that neglect the details of realistically sized systems, while pure 
continuum approaches lack information regarding thc nanoscale behavior of the nanoparti
cles and do not account for the gradients of properties present due to nanoparticle-polymer 
interactions.

Future modeling efforts should be focused toward multiscale approaches in which dif
ferent length scales, from atomistic simulations to continuum theories, work in concert to 
accurately model the response of nanocomposites. Some strides have been made in this 
direction, with the development of some initial multiscale or hybrid modeling approaches. 
These methods have led to better understanding of the influence of the interphase and 
the morphology and arrangement of the nanoparticles on nanocomposite properties. How
ever, much work remains to be done. More explicit coupling across the length scales and 
application of concurrent modeling approaches to examine large-scale nanocomposites with 
localized molecular and atomistic detail will bring needed accuracy and ensuing insight. In 
addition to modeling small strain elastic and viscoelastic properties, even more important is 
progress in modeling damage propagation and fracture, as well as the multifunctional prop
erties of conductivity and diffusion. Currently, increases in toughness come at the expense of 
stiffmess and strength. However, with better understanding of the interaction of nanoparticles 
and polymer chains across multiple length scales, it should be possible to greatly improve 
damage tolerance in systems that exhibit increased stiffness and strength. Many permutations 
to the design of nanocomposites are possible by targeted functionalization of nanoparticles 
to improve matrix interaction, use of secondary synergistic particles, and morphology control, 
all o f which will be able to fundamentally change local and global nanocomposites behavior. 
By development of improved modeling strategies, we will be able to tailor the nanocompos
ite design to simultaneously optimize the key multifunctional properties of interest for given 
applications.



334 Nanomcchanics of Nanoreinforeed Polymers

ACKNOW LEDGM ENTS
We would like to thank our collaborators over the last few years, and in particular Linda 
Schadler (R P I), Ami Eitan (Intel), Roger Bradshaw (Louisville), Terry Xu (University of 
North Carolina-Charlotte), and Rod Ruoff (Northwestern). Additional thanks to Peter 
Golovin and Hua Liu (Northwestern) and Kon Choi Lee (Stevens) for creating some of the 
figures used in this chapter and to Dr. Debbie Burton for assistance in the final stages of 
manuscript preparation. Portions of our work described in this chapter have been supported 
by the NASA Langley Research Center Computational Materials: Nanotechnology Modeling 
and Simulation Program, and the NASA University Research, Engineering and Technology 
Institute on Bio Inspired Materials (B IM at) under award no. NCC-1-02037.

APPEN D IX
A.1. Derivation of Mori-Tanaka Method
Assume that the composite is comprised of N  phases; the matrix will be denoted as phase 
0 with a corresponding stiffness C„ and volume fraction /jh while an arbitrary rth inclusion 
phase (where r = 1 to N  — 1) has a stiffness of Cr and a volume fraction f r. Each phase is 
assumed to be linearly elastic and isotropic, and perfect bonding between the inclusions and 
the matrix is assumed. The inclusions are further assumed to be ellipsoidal with a circular 
cross section (a { = a2), an aspect ratio a r (ratio of length to diameter), and aligned along 
the 3-axis as shown in Fig. A .I.

The two models shown in Fig. A.l represent the composite model and a “ comparison 
materiaF’ with properties identical to those of the matrix. Unless required, explicit tensor 
notation will be omitted for clarity. Displacements are now prescribed on the boundary of 
each material to give rise to a uniform strain sa in each material. The stresses required to 
produced this uniform strain in each material are

<r = Cein <ru = C()ea (A l

where a  and cr{) are the average stress of the composite and comparison materials, 
respectively.

The strain field within the matrix material of the composite will not be uniform due the 
presence of the inclusions (and hence the average matrix strain will not equal sa), but 
rather will be perturbed by an amount efj1 such that

(A2)

where an overscore represents the volume average of the stated quantity. The average strain 
in the rth inclusion is further perturbed from that of the matrix,

sr = e(l + e f  (A3)

Figure A.I. Schematic ot Mori-Tanaka method, (ieft) Mu I tip iparisort ir.aterial
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Given that the average stress in each phase is given as &, — C,.sr, using the equivalent 
inclusion method one can show that the average stress in the / th inclusion can he written in 
terms of the matrix stiffness.

where e* is the ficticious eigenstrain of the / th inclusion. For a single ellipsoidal inclusion 
in an infinite matrix. Eshelby showed that the eigenstrain and perturbed strain of the /*th 
inclusion can be related via

where Sr is the Hshelbv tensor. General forms of the Eshelby tensor are provided in 
Ref. [446].

Solving for e* in Kq. (A4) and then using Eqs. (A3) and (A5), one can find the dilute 
strain-concentration factor of the / th phase, which relates the average strain in the / th 
inclusion to the average strain in the matrix, such that

and I is the fourth-order identity tensor. We further require that the volume-weighted aver
age phase strains must equal the far-ficld applied strain, such that

Given Eq. (A8) and using F*q. (A6), we can now define the strain-concentration factor A (ii 
which accounts for inclusion interaction by relating the average matrix strain in the composite 
to the uniform applied strain.

Thus in the non-dilute composite, the average strain in the rth inclusion can be related to 
the applied strain such that

where from Eqs. (A6) and (A9) the strain-concentration factor A,, for the /th inclusion 
phase in the non-dilute composite is

To find the effective stiffness C for a unidirectionally aligned composite, we require that 
the average stress cr of the composite be equal to the sum of the weighted average stresses 
in each phase.

Through straightforward substitution and manipulation, the effective stiffness of the unidi
rectionally aligned composite is found to be

(J,. = C, er = Cn(er - e*) (A4)

(A5)

(A6)

where
?' = [l + lv , Q l( C „ - C 0)] (A7)

N- 1

./< > 0  +  E  / r « r  = (A8)

(A9)

where
,v i

(A10)

( A l l )

(A 12)

,V -  I

=  M l  +  E  f r & r  = (A13)

V 1
^  =  / u C | | ^ ( i  +  . f r C r A r

r~ I
( A 1 4 )
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Recalling Eqs. (A  10) and (A 12), we can also express Eq. (A14) in a slightly different fc>rm 
(see Ref. [311]),

c = U cn + E f ,C rA ? \ ^/„/ + E  (A  15)

Weng further simplifies this expression using the relationship that / ij1 = /. Such an expres
sion is sensible given that by definition A () relates the average strain in the matrix to the 
uniform applied strain. In the dilute sense these strains will be equal [311].

Both (A  14) and (A  15) thus provide the effective stiffness of a multiphase composite with 
aligned inclusions.

When the inclusion phases are randomly orientated in the matrix, determination of the 
effective composite stiffness can be accomplished by taking the orientational averages of 
appropriate quantities [311]. In this case the strain consistency condition in Eq. (A8) can be 
written as

(./;,/+ E  /fK ' " } j £o = (A  16)

where brackets { }  represent the average of a quantity over all possible orientations. (Note 
that the derivation for unidirectional inclusions presented above is a subset of the more 
general derivation presented here). Because of this averaging process, the average strain in
the matrix will be different from that in the unidirectional composite due to the random
alignment of inclusions.

Similarly one can rewrite Eq. (A13) for the case of randomly orientated inclusions, with 
the understanding that the matrix stress and strain are orientation-independent due to the 
isotropy of the matrix (an appropriate assumption for polymer matrices) as

.v I
= M l + E // K } = Cea (A17)

rr=  1

This expression can be simplified using the relationships established earlier in this section, 
namely,

<r = f aC „e0 + E  f A C re r }
/•-I

=  f M ,  +  E  / r K \ ' 4 r , l } e . )

r=!

= ( f ,Q ,  +  E  f r { C r A ? } j e 0 =  Ceu ( A18)

From Eqs. (A  16) and (A18). the effective stiffness of a composite with randomly orientated 
inclusions can be written as

C = ( f „ C 0 +  E  f r i C r A ? } ^  + E  I AIQ)

which is the direct analog of Eq. (A  15) except that appropriate averaging is used here to 
account for the inclusion orientation. While the above formulations are concerned with 
the effective properties of multiphase composite materials, analytical expressions have been 
derived for the Mori-Tanaka solution for two-phase composites with 2D and 3D randomly 
orientated inclusions [446].

For completeness, a brief description of the orientational averaging of a fourth-order 
tensor is included here. A more complete derivation can be found elsewhere j 140]. 
The transformation of a fourth-order tensor B .ki from local to global coordinates c&»n be
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written as

#,,*,(</>,,<!>) = airah uk,aluB'rslu (A20)

where the angular dependence of the a,, terms representing the tranformation of a vector 
from the local to global coordinate system is implied and the standard convention that 
double indices implies summation is used. Thus the orientationally-averaged fourth-order
tensor Bllk/ for a fourth-order tensor Bjjk/ in 3D and 2D space can be written, respectively, as

Bilki =  { B ljkl} =  ~  I  I 0> )s in (< J> )*/<£, (A21)
IT T  «'() J{)

Biikl = { Bjjki } = -  [ "  d<l>t (A22)
7 T  J { )

If standard contracted notation is used (see Ref. [271]), the resulting tensor component 
transformations can be expressed in matrix form. For a 3D random orientation of inclusions,

■ { * . , r '  9 45 24 5 5 6 6 10 10 40 24 20 “ " *  N -

{Bi,} 9 45 24 5 5 6 6 10 10 40 24 20 B22
64 0 24 0 0 16 16 0 0 0 64 0 *33

{» .> } 3 15 8 15 15 2 2 30 30 -40 8 -20 *12

{ * 2 , } 3 15 8 15 15 2 2 30 30 -40 8 -20 *21

{ * n } 1 cS 0 8 0 40 12 32 20 0 0 -32 0 *13

{« 3 « }
" Tio 8 0 8 40 0 32 12 0 20 0 -32 0 *3 ,

{ « 2 l } X 0 8 0 40 12 32 20 0 0 -32 0 *23

{ *321 <S 0 8 40 0 32 12 0 20 0 -32 0 *32

8 0 8 0 0 -8 -8 0 0 20 28 40 *44

<**>}
cS 0 8 0 0 -8 -8 0 0 20 28 40 *55

- < * « * }-
_ 3 15 8 -5 -5 2 2 -10 -10 40 8 20 _ 66 -

(A23)
Note that the 3D randomly oriented fourth-order tensor will be isotropic. For a 2D random 
orientation of inclusions, with the global 3-direction representing the out-of-plane direction, 
the contracted stiffness components can be written as

{ * 11} — { * ’>*’ } = ~jP*^2 +3/?-^ -1- B 2 t, 4- B ^ 2  + 4 £ 44]o
{ A ; }  = B n

{ B r_} =  { B : i } =  l- [ B 22 + + 3fl: , + 3Bv_ -  4S 44]
O

= { B 2, }  =  ~ [ B 21 +  Bm] (A24)

{ BM} =  { By2} =  ^ [ B i2 +  Bl,\

{ / U  = {fl55} = i [ f l 55 +

{ B J f =  I f B22 +  B,, -  fl,, -  By_ + 4 fl44]
O

Other known orientational distributions of inclusions can be accounted for by using the 
appropriate orientational distribution function; see, for example, Ref. [447].



352 N an o m ech an ic s  o f  N a n o re in fo rce d  Po lym ers
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1. INTRODUCTION
In 1985, a team led by Dr. Richard Smalley at Rice University discovered a new form of 
carbon, buckyministerfullerene CWh a geometric cage-like structure of carbon atoms that is 
composed of hexagonal and pentagonal faces [1]. Smalley’s work resulted in the discovery of 
carbon nanotubes by Iijima in 1991 [2] and his receiving the 1997 Nobel Prize in chemistry. 
Since the discovery of carbon nanotubes, significant research is underway to study the unique 
structural, mechanical, electrical, thermal, and chemical properties of carbon nanotubes and 
explore their potential applications.

The fullerene structure of carbon nanotubes, derived from the honeycomb lattice repre
senting a single atomic layer of crystalline graphite and held together by strong and high 
conductive sp: bonds, is vastly different from conventional graphite or carbon structures. 
Theoretical modeling [3-15] and experimental measurements [16-23] have showed that car
bon nanotubes possess extraordinary mechanical properties. Specifically, the strength of car
bon nanotubes is predicted to be 30 to 120 times stronger than steel, yet only 1/6 the weight 
of steel. Further, they also can sustain large elastic deformation without breaking. For exam
ple. their fracture strains are estimated to be 10-30%, a factor of 10-100 times better than 
those of carbon fibers, such as IM7, a fiber commonly used in military and aerospace applica
tions. These evaluations of carbon nanotubes indicate that they possess amazing mechanical 
properties greater than those of graphite fiber. Besides their extraordinary mechanical prop
erties, carbon nanotubes offer either metallic or semiconducting characteristics based on the 
chiral structure of fullerene. They also possess superior thermal and electrical properties: 
thermal stability up to 2800°C in a vacuum and 750°C in air, thermal conductivity about 
twice as high as diamond, with electric current transfer capacity 1000 times greater than 
copper wires.

Composite materials containing at least one phase with constituents of less than 100 nm 
in size can be termed nanocomposite materials. The discovery of carbon nanotubes opens 
the door to enhance the properties of polymer composites by adding them to the matrix 
materials for structural and multifunctional applications. Carbon nanotubes have large inter- 
facial area per volume and possess extraordinary mechanical, thermal as well as electrical 
properties. Therefore, it is anticipated that the resulting nanocomposite materials will have 
enhanced strength, modulus, fracture toughness, electrical conductivity, dimensional stabil
ity, and resistance to thermal degradation. In the past few years, significant progress has 
been achieved to develop carbon nanotube-based nanocomposites [24-29]. Despite these 
successes, several critical issues as follows must be solved before the full potential of carbon 
nanotubes is realized in nanocomposite materials applications:

• Proper selection of the polymer matrix;
• High purity of carbon nanotubes used in the composites;
• Uniform dispersion of carbon nanotubes within the polymer matrix during and after 

manufacturing process;
• Controllable alignment of carbon nanotubes in the composites;
• Good interfacial bonding between the nanotubes and polymer matrix in the composites.

First of all, the polymer matrix should be properly chosen before processing of carbon 
nanotube/polymer composites. Both thermosetting and thermoplastic polymers have been 
used as matrix materials in carbon nanotube, polymer composites. Research reports are con
flicting regarding the interfacial strength and mechanical properties of carbon nanotube/ 
poiymer composites. Depending on the polymer matrix and processing conditions, large vari
ations in their measured properties are found. Therefore, the properties of carbon nanotube/ 
polymer composites are highly polymer specific. Regarding the issues of purity, dispersion, 
and alignment of carbon nanotubes, these could be achieved by precisely controlling the 
manufacturing processes of carbon nanotubes and nanotube/polymer composites. Due to the 
van der Waals interaction., the nanotubes tend to aggregate to form bundles or ropes and 
further agglomerate when dispersed in the polymer matrix. The high surface area of carbon 
nanotubes also results in a high viscosity of the nanotube/polymer mixture particular!) when 
fabricating composites with high loading level of nanotubes, which makes the dispersion of
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carbon nanotubes extremely difficult. The dispersion of carbon nanotubes within the polymer 
matrix can be controlled through in-situ polymerization of nanotube/polymer monomer mix
ture (30-31], solution casting of suspension of carbon nanotubes in the dissolved polymers 
[32-34], melt mixing of carbon nanotubes/nanofibers with polymers [35-37], and the use of 
surfactants [38]. Carbon nanotubes can be produced with reasonable quality by several tech
niques. However, the mechanical and novel electronic properties of carbon nanotubes are 
not only sensitive to their diameter and chirality but are also highly anisotropic. Therefore, 
it is crucial to obtain the controllable alignment of carbon nanotubes in the final composites. 
Regarding the alignment of carbon nanotubes, several techniques such as slice cutting [39], 
m echanical stretching [25], melt spinning [26], and alignment in the magnetic field [40] have 
appeared in the past few years.

A n o ther challenging issue is the interfacial bonding between the nanotubes and polymer 
matrix in the composites. A  small number of research papers have now appeared in the 
literature concerning the assessment of the extent and efficiency of load transfer at the nano
tube/polymer interface. An  efficient load transfer from the polymer matrix to the nanotubes 
is required to take advantage of the very high Young's modulus and strength of carbon 
nanotubes in the composites. Unlike conventional fiber-reinforced polymer composites, large 
interfacial areas are available for load transfer in carbon nanotube/polymer composites due 
to high aspect ratio of the nanotubes. However, the strength of the interface between the 
nanotubes and polymer matrix is not well understood, and there is no well-developed experi
mental method for its direct measurement. Therefore, both the mechanisms and magnitudes 
of load transfer between the nanotubes and polymer matrix remain unclear at the current 
stage. M oreover, theoretically and computationally predicting the mechanical behavior of 
carbon nanotube/polymer composites will be of crucial importance before they are used in 
real structural applications. Technically, analyzing the interfacial bonding and predicting the 
mechanical behavior o f carbon nanotube/polymer composites can be classified as multiscale 
and multiphysics problems due to the small dimension of carbon nanotubes in the nanocom
posites. Therefore, a combination of analytical modeling, computational method, and exper
imental characterization should be used to solve this problem for the future development of 
n a noco mposite mat e rials.

The rapid pace of research development and industrial applications of nanocomposite 
materials has made it necessary to summarize what we currently know and what we don't 
know about this interesting nanostructure. Some technical reviews on carbon nanotube and 
nanotube-based composites have been conducted in the past few years, with varying pur
pose and level of detail [41-44]. The purpose of this review is to compare and contrast the 
details o f several computational models developed for the analysis of the interfacial bonding 
and the prediction of the mechanical behavior so as to provide a better understanding of 
the processing-morphology-property inter-relationships of carbon nanotube/polymer com
posites. The modeling and simulation of carbon nanotube/polymer composites can provide 
initial guidelines for the development of nanocomposites to help reduce the scope, cost, 
and time for the real experiments. However, the proper selection of mathematical models 
and computational methods is of importance, and this crucial issue wil 1 be addressed in this 
review. This review is organized as follows. In the next section, several models for the inter
facial bonding of carbon nanotube/polymer composites are described in detail. In  Section 3, 
the major methods to model the mechanical behavior of carbon nanotube/polymer compos
ites are reviewed, and the limitations of each method are discussed. Section 4 addresses 
the recent experimental characterization of interfacial bonding and mechanical properties 
of carbon nanotube/polymer composites. Finally, some concluding remarks are offered in 
Section 5.

2. INTERFACIAL BONDING OF CARBON  
NANOTUBE/POLYMER CO M PO SITES

It is widely accepted that the efficiency of load transfer is controlled by the interfacial char
acteristics o f the fiber and matrix in fiber-re in forced polymer composites. The major mech
anisms of load transfer include mechanical interlocking, chemical bonding, and nonbonded
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interactions between the fiber and polymer matrix. These mechanisms may be applicable- for 
carbon nanotube/polymer composites. In recent years, a few researchers have studied the 
interfacial bonding characteristics of carbon nanotube/polymer composites by using compu
tational and theoretical modeling techniques. These modeling techniques can generally be 
classified into two categories: One is the atomistic modeling where the atom is used as the 
building block of materials. In the carbon nanotube/polymer composites, the dimensioin of 
the nanotube is about the same size as a polymer chain. Therefore, the discrete natune of 
the atomic interactions between the nanotube and surrounding polymer matrix should be 
taken into account. In the other words, the nature of the load transfer should be understood 
using physics-based analysis where molecular mechanics and molecular dynamics simulations 
will be the most important tools. The other approach is the analytical modeling based on 
classical continuum mechanics. In this section, we will review and evaluate the computa
tional and analytical models that predict the interfacial strength of carbon nanotube/poly mer 
composites.

2.1. Molecular Mechanics Simulation
For conventional fiber-reinforced polymer composites, the single fiber pulloul test has been 
widely used to characterize the fiber-matrix interfacial properties under tensile loading con
dition. However, the pullout test of the nanotube is very challenging due to the technical 
difficulties involved in the manipulation of carbon nanotubes, leading to the use of theoret
ical and computational approach to characterize the interface of carbon nanotube/polymer 
composites. Because the diameter of the nanotubes is at the nanometer scale, the interaction 
at the nanotube/polymer interface is highly dependent on the local molecular structure and 
bonding. Molecular mechanics and molecular dynamics simulations have been used to inves
tigate molecular interactions at the nanotube/polymer interface. The molecular mechanics 
study of interfacial binding of carbon nanotube/polymer composites was first conducted by 
Lordi and Yao [45). They used force-field-based molecular mechanics to calculate the bind
ing energies and sliding frictional stresses between the nanotubes and different polymer 
matrices and found that the binding energies and frictional forces play only a minor role 
in determining the strength of the interface, but that the helical polymer conformations are 
essential. They suggested that the strength of the nanotube/polymer interface may result 
from the molecular-level entanglement of the nanotube and polymer matrix.

The conformation of polymer matrix in the carbon nanotube/polymer composites has a 
significant influence on the interactions between the nanotube and polymer matrix. Gou 
et al. [46-48] examined the molecular interactions between the nanotube and thermosetting 
matrix, epoxy resin, during composite processing. In their subsequent wwk, they studied 
the interfacial bonding between the nanotube and epoxy resin after curing reaction [49--52]. 
The pullout simulations of a single-walled nanotube from the cured epoxy resin were con
ducted through molecular mechanics simulations. In these simulations, a periodic model of 
the nanotube/epoxy resin composite system needs to be constructed. To construct such a 
simulation cell, the following relationship for the nanotube, epoxy resin, and their composite 
must be satisfied.

f i S T  , * polymer , , .
~  -f- ^  • /^p o lym e r Cl • b  ■ ( ■ pcom posite ( 0

where //NT and npi^ynK.T are {tlc number of the nanotube fragments and cured epoxy resin 
molecules, respectively. mNT and w puivmci are the molecular weights of the nanotube fragment 
and cured epoxy resin molecule, respectively. N A is Avogadro’s number (6.023 x M): ' formula 
units/mol), a , b , and c  are parameters of the simulation cell, and paimpos;lc is the density 
of the resulting nanotube composite. The two terms on the left side of the equation are 
ihe masses of the polymer matrix and the nanotube in the composite, which are calculated 
by the molecular weight and Avogadro’s number. The term on the right side of Eq. ( I )  is 
the mass of the single-walled carbon nanotube (SWNT)/polymer composite system, w hich is 
calculated by volume and density of I he simulation cell. The density of the composite' could
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be conserved during molecular dynamics simulations. The initial density can be determined 
by the rule of mixture if the volume fraction of the nanotubes is known.

In their study, the composite was composed of a fragment of (10. 10) single-walled nano
tube totally embedded into the amorphous polymer matrix of the cured epoxy resin. The

o
(10, 10) nanotube has a diameter of 13.56 A. A model of the composite with 21,288 atomso o o
is shown in Fig. I, which consisted of a supercell in the range of 50 A x 50 A x 100 A. 
The configuration was initiated by randomly generating the epoxy resins surrounding the 
nanotube using an initial density of 1.2 g/cm\ The matrix polymer was then equilibrated for 
approximately 20 ps with a time step of 0.2 fs while holding the nanotube rigid. The system 
was further equilibrated for 60 ps at a time step of 2 fs with a nonrigid nanotube to create 
a zero initial stress state. The energy of the nanotube/epoxy resin composite system was 
minimized during the calculations to achieve the strongest bonding between the nanotube 
and epoxy resin.

In the nanotube/polymer composites, the bonding strength between the nanotube and 
epoxy resin can be evaluated by interfacial bonding energy. The nature of interfacial bonding 
energy comes from the electrostatic and van der Waals forces in the molecular system. 
Generally, the interaction energy is estimated from the energy difference, A E, between the 
total energy of the composite and the sum of the energies of individual molecules as follows:

^ to ta l  (^ 'n im o tube  ^ p o ly m e rs ) ( ^ )

where £lolai is the total potential energy of the composite system, £ nanolUbC *s the potential 
energy of the nanotube without the polymer, and £p0|ymcr is die potential energy of polymer 
without the nanotube. In the other words, the interaction energy can be calculated as the 
difference between the minimum energy and the energy at an infinite separation of the 
nanotube and polymer matrix. The interaction energy of the nanotube/epoxy resin composite 
system was calculated using molecular mechanics after energy minimization was applied, 
as shown in Table I. In this case, the interaction energy came from both van der Waals 
interaction and electrostatic interaction between the nanotube and epoxy resin. The negative 
values of interaction energies were assumed to be attractive forces between the nanotube 
and epoxy resin. The electrostatic forces resulted from coulombic attraction between the 
positive hydrogen on both ends of the nanotube and epoxy resin. However, carbon atoms of 
the nanotube were neutrally charged. Therefore, the electrostatic forces were much smaller 
than the van der Waals forces. The total interaction energy A E  is —900 kcal/mol, resulting 
in attractive forces between the nanotube and epoxy resin. The total interaction energy, AE, 
is twice the interfacial bonding energy y  scaled by the contact area A [45]:

y = —  (3)
y 2 A V '

For the nanotube/epoxy composite system, the interfacial bonding energy was 0.1 kcal/ 
mol A 2, calculated from Eq. (3).
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Tab le 1. In te raction  energies o f  single-walled nanotube/epoxy resin com posite system (kcal/m ol).

E lectro sta tic van der W aa ls
N onbonded  

interaction energy

Resin S W N T Resin S W N T Resin S W N T

Resin 7851.58 -4.202 7308.72 -445.554 15160.3 -449.756
S W N T -4.202 72.350 -445.554 1861.82 -449.756 1934.17

The mechanical properties of nanotube composites are known to strongly depend on 
the magnitude of interfacial shear stress from the polymer matrix to the nanotubes. It is 
also clear that the level of physical-chemical interactions established at their interface plays 
an important role on the magnitude of load transfer. To characterize the interfacial shear 
strength of the composites, the pullout simulations of a nanotube were performed. The 
nanotube was pulled out of the epoxy resin along the tube axis direction 2. The snapshots 
of the pullout simulations are shown in Fig. 2. The potential energy, interaction energy, and 
interfacial bonding energy of the composite system were plotted against the displacement of 
the nanotube from the epoxy resin, as shown in Fig. 3.

The potential energy of the nanotube/epoxy resin composite system was increased as the 
nanotube was pulled out of the epoxy resin, as shown in Fig. 3a. In fact, the increase of the 
potential energy resulted from the decrease of the interaction energy and the increase of 
the energies of both the nanotube and epoxy resin. The interaction energy increased due 
to the decrease of contact area during the pullout. In the pullout simulation, the nanotube 
and epoxy resin were not held fixed. The potential energy of the nanotube and epoxy resin 
increased due to the changes of their configurations during the pullout. The deformation 
of the nanotube and epoxy resin during the pullout has influence on the pullout energy. 
During the pullout, the interaction energy changed with the displacement linearly, as shown 
in Fig. 3b. This is due to the stable interfacial binding interaction between the nanotube and 
epoxy resin. The interfacial binding energy kept constant with a value of 0.1 kcal/mol A 2 
during the pullout, as shown in Fig. 3c. After the nanotube was completely pulled out of 
the epoxy resin, the potential energy of the system was leveled off because there was no 
interaction between the nanotube and epoxy resin. The interaction energy then kept zero, 
and there was no change in the potential energies of the nanotube and epoxy resin.

The pullout energy, E puuoui, defined as the energy difference between the fully embedded 
nanotube and the complete pullout configuration. The pullout energy was divided into three 
terms, which included the energy change in the nanotube, polymer, and their interaction as 
follows:

^P u llo u t “  & 2  — E\ =  (£nt: — ^NTl) + (E resin 2 ~~ & resin l) + (^^2 — ) (4)

Figure 2. Snapshots from  I he p u llo u i sim ulations o f  the nano lube. R ep rin ted  w ith perm ission from  [49|. J. G ou  
et al.. Comput. Miner. Sci. 31. 225 (2004). C  2004. E lsevier.
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Displacement (A)

Displacement (A)

Displacement (A)

Figure 3. En erg y  plots during I he pullnut o f the nano lube: (a )  potentia l energy, (b )  in teraction energy, and (c )  in ter
facial bonding energy. Reprin ted  w ith perm ission from  |49], J. ( io u  e l al., Comput. Mater. Sci. 31, 225 (2004). 
©  2004. E lsevier.

where E Nr, E,vsm is the potential energy of the nanotube and epoxy resin, respectively, and 
SE  is the interaction energy between the nanotube and epoxy resin. The pullout energy can 
be related to the interfacial shear stress, r,, by the following relation

r L
= / 2 n r { L  -  x)r ,  clx =  i r r  r , L 2 (5)

*M)
^•'pullout <

Ti = ~ ~ T T  (6)TrrL-

where r  and L  are the radius and length of the nanotube, respectively, and x  is the dis
placement of the nanotube. At the initial stage of the pullout, the potential energy of 
the composite was 152,665 kcal/mol. After the pullout, the potential energy increased to 
154,951 kcal/mol. From the pullout simulations, the interfacial shear strength between the 
nanotube and epoxy resin was about 75 MPa.

Liao and Li [53] studied the mechanical interlocking due to the mismatch in the coefficient 
of thermal expansion (C T E ) between the nanotube and polystyrene (PS) in the composites. 
The thermal residual radial stress was estimated to be about -40 MPa/K from the three- 
phase concentric cylinder model of elasticity for a unidirectional composite [54]. In addition, 
they performed the pullout simulations for both single-walled and double-walled nanotubes 
from the PS matrix based on molecular mechanics. In the absence of atomic bonding between
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the nanotube and PS matrix, the physical attraction came from the nonbonded interactions, 
which consisted of electrostatic and van der Waals interaction, and deformation induced by 
these forces. The pullout energies for single-walled and double-walled nanotubes are 158.7 
and 154.4 kcal/mol, respectively. Based on Eq. (6), the interfacial shear stress between the 
nanotube and the PS matrix, r(, estimated from the molecular simulation, was calculated 
to be 160 MPa, which is significantly higher than most carbon fiber-reinforced polymer 
composites.

2.2. Molecular Dynamics Simulation
A second approach to modeling the interfacial bonding between the nanotube and polymer 
matrix is based on molecular dynamics simulations. Molecular dynamics simulations can 
generate information at the molecular level, including atomic positions and velocities. They 
can be performed to analyze the interfacial sliding between the nanotube and polymer matrix 
in the composites during the pullout process. At the molecular level, the interfacial sliding 
is related to the fundamental origins of the sliding friction. The physical principles of sliding 
friction can be found in [55].

Frankland et al. [56-57] studied the interfacial sliding during the entrie pullout process 
of the nonfunctionalized and functionalized nanotube/polyethylene (P E ) composite systems 
through molecular dynamics simulations. In the functionalized nanotube composite system, 
a total of six cross-links containing two methylene units each were created between the 
nanotube and PE  matrix. In their study, a unidirectional force was applied to each atom 
of the nanotube along the nanotube axis. The applied force was increased incrementally 
over time. After the molecular dynamics simulations, the velocity and displacement of the 
nanotube were recorded to characterize the interfacial interactions during the pullout.

The conversion of molecular dynamics simulation results to the interfacial shear stress 
requires appropriate frictional models. Frankland et al. further developed an interfacial fric
tion model with a relation between the applied force and the velocity of the nanotube.
A detailed derivation of their interfacial friction model can be found in [56], from which we 
summarized the main points as follows.

They adopted the Newton’s constitutive law to calculate the shear stress r  [58]:

t = T„ + /i„ly (7)

where r() is the yield stress and f i n] and y  are the viscosities of a fluid and a viscous matrix
material, respectively. Based on Newton’s constitutive law. the nanoscale friction model was
developed:

/ V cl( V~) \ V-)
( Tr z )  pull =  T<> +  M eff - ^ r 1 -  =  T<» +  ^ c f f  y —  ( 8 )

( , r  / * v d W

where (T,.r) pu„ is the total shear stress, /icff is the effective viscosity, V. is the average nano- 
tube velocity in the z-direction, and /?vdw is an average interfacial separation.

From the molecular dynamics simulation data, the average nanotube velocity ( K )  is lin
early related to the average applied force, (/ ).

( / >  =  W . K - )  ( 9 )

where is the viscosity coefficient. The applied force, (/ ), is related to the shear stress, 
( T/■_-), by force balance:

(/ ) = <V;Mss (10)

where A^  is the intertacial area during the steady sliding, which is given by:
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where /?N, is the radius of nanotuhe and /.NT is the length of nanotube. Therefore, the 
effective viscosity can be related to the viscosity coefficient as follows:

_ /Veil A'dW / jO\
/ic" “  2tt(/?ni + / ;uIW/ 2) Z ^

Then, the interfacial friction model for the entire pullout process is

< / > Pu l l = / u  +  * , I T < ^ >  0 3 )

where f {) is the critical pullout force, which can be obtained directly from the molecular 
dynamics simulation.

Based on the molecular dynamics simulation data, the critical pullout force, /„, and the 
force-velocity dependence, ^cff, can be found. Because the average interfacial separation, 
/?vdw, length of nanotube, L NT, and the radius of nanotube, /?NT, are known, the effec
tive viscosity, /xclt, can be calculated by using Eq. (12). For the nonfunctionalized nano
tube/crystalline PE  composite system, the value of r( was calculated to be 2.8 MPa, which 
provided an estimate of the lower limit of shear strength because no electrostatic interactions 
were included to supplement the relatively weak Lennard-Jones forces in these simulations. 
For the functionalized nanotube/crystalline PE  composite system, two sets of rr values were 
reported. The lower r. value of 6.8 MPa corresponded to the applied force at which a nano
tube alone began to shear with respect to the PE  matrix. The higher value of r c of 110 MPa 
was determined from the initial force at which the nanotube pulled the PE  chains with it 
through the PE  matrix. These results suggest that even a relatively low density of cross-link 
could have a large influence on the properties of the nanotube/polyethylene interface.

2.3. Analytical Modeling with Classical Continuum Mechanics
Much literature has addressed that classical elastic theories could be used to interpret the 
mechanical behavior of nanotube-based structures. Krishnan et al. (59] have first estimated 
the Young’s modulus of nanotubes using a well-known vibration theory. A cantilevered nano
tube was treated as an elastic rod subjected to a traverse vibration. Its vibrational behavior 
is governed by a fourth-order differential equation in space and is analogous in nature:

^  E / ^ v )
f i t2 pA  dxA

and the solution to Eq. (14) is

w (x ) = cos(n~t )[/? cos(/7x ) -f Csin(nx)  + Dcosh(/u ) 4- E sinh(/za)] (15)

where E. / ,p, and A denote the Young's modulus, the second moment of inertia, the den
sity and cross-sectional area of the nanotube, respectively. B. C. D, and E  are arbitrary 
constants that are dependent on the boundary conditions of the nanotube. By appropriately 
considering those boundary conditions of the clamped-free configuration of the nanotubes 
with the experimentally measured vibration amplitude, Young’s modulus can be calculated 
by using the regression method. It was found that Young’s modulus of the nanotubes with 
the diameter range of 1.0 to 1.5 nm was as high as 1.25 TPa. Ru [60] has also mentioned 
that the elastic rod or beam models can be adequately used to model the overall mechan
ical performances of the nanotubes in both static and dynamic loading conditions. Due to 
the aspect ratio of the nanotubes usually being large, a high possibility of failure mode of 
the nanotubes is on the buckling-driven debonding in composite structures. Euler buckling 
formula in Eq. (16) has been used in Ru’s paper, to study the critical load of a nanotube, by 
treating it as a hinged elastic column, particularly for using these nanostructural elements as 
atomic force microscopy (A FM ) tips.

77“ £7
=  -7---  (16)

La<
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The buckling of a nanotube not only happens when they are subjected to a pure com
pressive load at its free end. Wang et al. [61] have analytically and numerically found that 
buckling under bending of nanotubes also occurs on their compressive side. The linear elastic 
properties of the nanotubes were used in the simulation, and the structural performance of 
the nanotubes after being bent compared well with experimental observation. Because much 
literature has addressed that the nanotubes possess elastic mechanical properties under small 
strain conditions [62-63], it is reasonable to use the linear elastic mechanical properties of 
the nanotubes at their low straining condition to study the global mechanical properties of 
their related composite structures. In the following, the stress transfer behavior of different 
types of carbon nanotube based on an analytical study through the use of elastic shell and 
local density approximation method is reviewed.

In the early stage of carbon nanotube-related research, some diverse results on the 
interfacial-bonding characteristic between the nanotube and polymer-based matrix have been 
found. Xu et al. [64] have addressed that high interfacial shear stress between a multiwalled 
nanotube and an epoxy matrix was observed from a fractured sample. Wagner [65] first used 
the Kelly-Tyson model, which has been widely used to study the matrix-fiber stress trans
fer mechanism in micrometcr-size fiber composites, to study the interfacial shear strength 
between the nanotube and polymer matrix. Because it was found that the binding force 
between the inner layers is very low, and the sliding failure always occurs, only a single-walled 
system is of interest in his work. In his study, it was assumed that an externally applied stress 
to a nanotube/polymer composite is fully transferred to the nanotubes via a nanotube-matrix 
interfacial shear mechanism at the molecular level. A single nanotube cylindrical model was 
used to study the stress transfer properties of the composite shown in Fig. 4.

To consider the force balance in the composite system, the following equation is 
formed [66]:

/  » ") /  ") • » 1 J  “) V

Tmd,dx -  (<rNT f  d<rm ) (  -  c r J  ^ - = - 0  (17)4

where rNT is the interfacial shear strength between the nanotube and matrix, <tnt is the 
tensile strength of the nanotube, and d x. d09 and dt are the length, outer diameter, and 
inner diameter of the nanotube, respectively. After integrating Eq. (17) and considering the 
critical length of a typical short-fiber system in composite structures, the interfacial shear 
strength can be written as:

t n t  — (Tn i L Y (  i - ^( L ) I  d l ( 18)

where l j d a is the critical aspect ratio of the nanotube and d i / d () is the diameter ratio. As 
an external applied stress of 50 GPa was used, the interfacial strength was calculated for 
critical length values of 100, 200, and 500 nm. It is concluded that the interfacial shear stress 
is affected by several factors, including the critical length and the outer diameter of the

dx

T n t  '

Elastic shell model

, *, V V V V V S V ',

Carbon namnube

F ig u re  4. Schem atic o f elastic shell m odel lhat is used lo sim ulate a single-walled rianotube structure.

dn = outer diameter 
dj = inner diameter
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nanotubes. The increase of the diameter ol the nanotube results in increasing the interfacial 
shear strength at the bond interface.

Latterly, Lau  [66] has conducted an analytical study on the interfacial bonding proper
ties o f nanotube/polymer composites using the well-developed local density approximation 
model [67], classical elastic shell theory [68], and conventional fiber-pullout model. Several 
parameters such as the wall thickness, Young’s modulus, volume fraction, and chiral vectors 
of the nanotubes were considered in his calculations. In the past, most analytical studies used 
a constant Young's modulus £ NT to study the mechanical properties of nanotubes and nano
tube/polymer composites. However, many experimental works have proved that the modulus 
of m ultiwalled nanotube was less than that of a single-walled structure. Tu and Ou-Yang [68] 
have used the local density approximation model cooperated with the elastic shell theory to 
estimate the Young’s modulus of multiwalled carbon nanotube (M W N T )  structures. They 
found that the Young's modulus of the nanotubes decreases with increasing the number of 
wall layers N. The Young’s modulus £ SWNT, Poisson ratio uNT, and effective wall thickness h 
of the S W N T  used in their study were 4.7 TPa, 0.34 and 0.75 A , respectively. The radius 
of the lirst layer (an inner layer) o f nanotubes could be determined by using the rolling 
graphene model:

s / m 1 +  / ; :  +  r n n
Pi. = -------------- V M )  O 9)

IT

where p0, m, /*, and a{) are the nonrelaxed radius and indices of the S W N T s  and C -C  bond 
distance (1.42 A )  in Fig. 5, respectively.

The Young’s modulus £ NT of M W N T s  estimated by using the local density approximation 
model and classical elastic shell theory can be expressed as [67]:

^ NT =  /V __ | _j_” fl^SW N T^

where R  denotes the thickness to spacing ratio of the nanotubes (h/d). It is obvious that for 
/V = 1, the £ NT = £ Swnt' which corresponds to the result o f the S W N T  The parameter d is 
the spacing between each graphene layer (^3 .4  A ). The outer radius of the M W N T s  could 
be determ ined by

= Po + d(N - 1) (21)

In Fig. 6, the Young's modulus of the nanotubes with different number of wall layers is plotted. 
The Young’s modulus of the nanotube decreases as the number of wall layers increases. W hen 
the number o f layers exceeds 20, Young’s modulus of the nanotubes becomes almost constant.

Armchair tubule [4,4]

Zigzag tubule [7,0]

Chiral tubule [4,3]
two-dimensional 
graphene sheet

Figure 5. Chiral vector OC or Ch -  /?a, -f /?/a2 is defined on the hexagonal lattice of carbon atoms (a graphene 
sheet b> unit vectors a, and a: and the chiral angle f) with respect to the zigzag axis.
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Number of wall layers. N 

Figure 6. Tensile modulus of the nanotubes with different number of wall layers.

Lau [66] developed a simple pullout model for a M W NT/polym er composite. In Fig. 7a, 
the construction of the composite system is shown. The M W N T  could be imagined as a group 
o f coaxial circular shells packed together with a uniform interval spacing cl and the effective 
wall thickness h. The effective cross sectional area of the nanotubes can be calculated by

A M =  2 7 rh \N p ,+  £ < / ( C - l ) l
I C =  I I

(22)

(a) pi m~n H
Layer spacing, d

■ I Layer thickness, h

(b) ° n t (z)

J 1

Ĉ NT (z) + d(-V r(z>

Figure 7. (a) A schematic diagram of the nanotube/polymer composites and (b) a simple fiber-puilou t model. 
Reprinted with permission, from jf>6]. K T. Lau, Chem. Phvs. Lett. 370. 3W (2003). <£; 2003. Elsevier.
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Because the role of the nanotubes in composite structures is to take up all stresses that 
are transferred from the matrix through the interfacial shear stress, their bonding properties 
between the nanotubes and matrix should be studied in detail. A  well-known classical iiber- 
pullout model was used to study the interfacial bonding problem of nanotube/polymer com
posites. Three-dimensional, uxisymmetric cylinder model was proposed to study the stress 
transfer behavior between the nanotubes and polymer matrix. The mechanical properties 
and geometrical factors that were used in Lau’s study were followed according to the data 
given in [68] and Eqs. ( I 1)) and (20). The interfacial shear stress occurs when a nanotube is 
subjected to a pullout force, which is generated by a crack opening, propagating perpendic
ularly lo the longitudinal axis of the nanotubes.

The nanotube with an outer radius of Rm is located at the center of a coaxial cylinder 
matrix with an outer radius of b. The total embedding length of the nanotube is L. Assuming 
that the nanotube is undertaking the pullout force, F  due to the existence of crack opening 
and the bonding force on the other end cap of the nanotube is very small, thus the axial 
stress applied on the other end is equal to zero. The boundary conditions at two ends of this 
model are:

a £ T ( 0 )  =  " ’p u llo u t ( 2 3 a )

o^T(L )  = 0 (23b)

< (0 )= 0  (24a)

= r^Hiou. (24b)

where (r represents the stress, the superscripts denote the coordinates of the three principal 
axes (/', tf, z), and subscripts N T  and m refer to the materials of the nanotube and matrix, 
respectively, as indicated in Fig. 7b. And y  is the area ratio of the nanotube and matrix, 
that is,

y = , / %  (25)h- -  R-m

The pullout stress, <7pu|,oul. can be determined by F / A c({. The equilibrium between the
axial stress of the nanotube and interfacial shear stress r(z ) in the nanotube’s longitudinal
direction can be expressed as [69-70]:

^  = - ^ r W  (26,
d z  ftNT

d ( T : ( z )  2 y
— i n L l  =  - J - r (z )  (27)

dz a

Bv considering the boundary conditions given by Zhou [71], Lau et al. [69], Gao cl al. [72], 
and the general equilibrium equations for a 3D axisymmetric problem [73] and the continuity 
of axial and radial deformations at any bonded interfaces, the axial stress in the nanotubes 
can be written in the following differential equation form:

^ T(z)
A | <4[ (z) -  A 2a |l(ml = 0 (28)^  I ^ N T *  '  p u l l o u t

By using the boundary conditions at the ends of two nanotubes as indicated in Eqs. (23a), 
(23b) and (24a), (24b), and considering the relationship in Eq. (26), the equations of the 
nanotube's axial and the interfacial shear stresses can be obtained as:

<7n tU ) = (t)\ sinh( Az) + co2 cosh( Az) -  L~ a minoul (29)
A \

and

r(z) = — —-[co[ cosh(Az) + w: sinh(Az)] (30)
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where the parameters of /1,, A 2, A, a;h co2 are the functions of the mechanical properties 
and geometrical factors of the nanotube and matrix and are given as follows:

A, =
«(1 - 2kvm ) + y ( l  -  2k v j

A 2 =

l r
1 +y\-£r +

N'l

U2 -  2 k U l 

y( 1 - 2k v,„) 
U, -  2k U,

2 rj2( b 2 +  R i T ) +  4 t r  - 2 V ] ( b 2 -  R ^ )

U-, = vmy
2r ] l b : ln( ^ — j * 1 + y )  ~  V i ( b 2 +  R m )  +  2b l  ~  V \ ( b 2 -  R ^ )

■NT 

k = + y v>
a( 1 - tVr) + 1 -I- 2y + v,

a

V\ =

Vz =

—  1 

“  E m 

2 ( \ + v m) 
vm 

1 + 2v,„ 
v ...

=

A -  J A X 

( l  + cosh (AL)

sinh(AL pullout

(0-, — j 1 +( - t ) ^p u llo u t

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

( 4 1 )

For a simple fiber-pullout model, the maximum interfacial shear stress is located at a pull- 
out end region where z = 0 [69-72]. The magnitude of the shear stress is highly affected 
by the inherent properties and geometrical factors of the nanotubes and matrices. In Lau’s 
study, the total embedding length of the nanotubes and the outer diameter of the cylinder 
were 10 /xm and 4 /xm, respectively. The Young's modulus and Poisson’s ratio of the epoxy 
were 3.3 GPa and 0.48, respectively [74]. A pullout force of 1 nN is applied to the end of 
the nanotubes. In Fig. 8, it is clearly seen that the maximum shear stress of an SWNT'epoxy 
composite is comparatively higher than that of other composites made by MWNTs subjected 
to the same pullout force. The decreases of the maximum shear stress of MWNTs composites 
may be due to the decrease of the nanotube’s modulus as the modulus ratio of the nanotube 
to the matrix (£ NT//;m). Another reason may be due to the reduction of an axial stress in 
the nanotubes becausc of the increase of the effective cross-sectional area of the MWNTs. 
However, this equation fails to correct for the shear stress dropping to zero when z -- L. 
In Fig. 9, plots of the nanotubes’ modulus and volume fraction against the number of nano
tube wall layers are shown. It is obvious that the decrease of the interfacial shear stress 
is not linearly proportional to the volume fraction of the nanotubes as the surface contact 
area. The figure shows that the increase in the amount of nanotube could eventually reduce 
the load taken by the nanotubes. Therefore, the interfacial bonding strength between the 
nanotube and matrix is reduced.

In Fig. 10, a plot of the interfacial shear stress of SWNTs with different chiralities is 
shown. It shows that the maximum shear stress of a zigzag nanotube is comparatively higher 
than that of chiral (5, 3) and armchair (5, 5) nanotubes. Because of the small cross-sectional 
area of the zigzag nanotubes as determined by Eq. (19), the total surface contact area at 
the bond interface of the zigzag nanotube is therefore comparatively smaller than thit of 
the others, and hence, a higher interface shear stress is generated. Although it is shown
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/. (nm)

Figure S. Sh e a r  stress d istribution o f  the nanotube/polym er com posites w ith d iffe ren t num ber o f nanotubc wall 
layers. R ep rin ted  w ith  perm ission from  [66], K . T. L au . Chem. Phys. Lett. 370, 399 (2003). ©  2003, E lsev ie r .

Number o f layers

Figure 9. Re la tio nsh ip  between the maximum shear stress, nanotubc vo lum e fraction, and num ber o f nanotube 
w all layers. R ep rin ted  w ith perm ission from  [66|, K . T. Lau , Chem. Phys. Leu. 370, 399 (2003). ©  2003, E lsev ier.

z (nm)

Figure 10. Sh ea r stress d istribution o f  the nanotube/polym er com posites w ith  em bedding  d ifferen t ch ira l nanotubes.
R ep rin ted  w ith perm ission from  [66], K . T. Lau , Chem. Phys Leu. 370, 399 (2003). ©  2003. E lsev ier.
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Stress transfer length

Figure 11. Schem atic illu stration  o f the stress transfer m echanism  o f the nanotube/polym er com posite. Reprin ted  
with perm ission from  [66], K . T. Lau , Chem. Phys. Lett. 370, 399 (2003). ©  2003, H lsevicr.

that the maximum shear stresses of the chiral and armchair nanotubes are lower compared 
with the zigzag nanotubcs, they required a long stress transfer length to allow all stresses 
to be fully transferred from the matrix to the nanotubes, as shown in Fig. 11. Therefore, 
according to the trend of the curves shown in the figure, the maximum shear stress at 
the interface of the nanotube is not only affected by the Young’s modulus but also by the 
cross-sectional area of the nanotubes. In Fig. 12, the relationship between the diameter and 
Young’s modulus of the single-walled nanotube and the interfacial shear stress between the 
nanotube and matrix is plotted. In this figure, it is clearly demonstrated that the interfacial 
shear stress is highly affected by the diameter and modulus of the nanotubes.

It is well-known that the maximum shear stress should be located at the starting point 
of the bond where r = 0, therefore the allowable pullout force (Pcr) and the tensile stress 
(<7',.) in the nanotube/polymer composite could be estimated bv rearranging Eq. (30) once 
the allowable interfacial shear stress (r1Tulx) is known by using the following equations:

2rmax sinh(AL)
K NTA / U [ £ - 0  + 3:)cosh(A/.)]

(42)

Radius of the nanotube (nm

Figure  12. Re la tionsh ip  betw een  the Y o u n g ’s m odulus and radius o f the nanotubcs and the m ax im um  sh e a r stress 
o f  the nanotube polym er com posites.
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Number o f layers

Figure 13. M axim um  allow ab le  pullout fo rce  o f ihe nanotubes. Reprin ted  w ith  perm ission from  [66), K . T. Lau . 
Chem. Phys. Led. 370, 399 (2003). &  2003. E lsev ier.

< ■  =  % r  +  < ( 1 -  ” n t )  ( 4 3 )

where uNT and a*t denote the volume fraction of the nanotubes, and the stress in the matrix 
at the nanotube stress is equal to Prr/ A cff. Liao and Li [53] have recently determined by 
using molecular simulation that the maximum interfacial shear stress where a nanotube was 
pulled out of a nanotube/polymer system is about 160 MPa. By substituting this value into 
Eq. (43), it is possible to determine the maximum nanotube pullout force. In Fig. 13, it shows 
that the allowable pullout force of the nanotubes increases with increasing the number of 
the wall layers, thus decreasing the interfacial shear stress between the MWNTs and matrix. 
The increase in the number of layers and embedding length of nanotubes would result in 
decreasing the induced shear stress at the interface. Both factors are significant in the design 
of carbon nanotube/polymer composites.

3. MECHANICAL BEHAVIOR OF CARBON  
NANOTUBE/POLYMER CO M PO SITES

Compared to carbon fiber-reinforced polymer composites, carbon nanotube/polymer com
posites hold the potential to provide significant improvements in strength, stiffness, and 
toughness. In addition, the remarkable property-to-weight ratio of carbon nanotube/polymer 
composites makes them ideal candidates for structural applications. To use successfully car
bon nanotube/polymer composites in engineering applications, it is significant to predict the 
structural responses of this new class of nanocomposites under different loading conditions. 
The modeling and simulation of nanocomposite materials can play very important roles in 
this development and has been a matter of significant discussion in the literature. The focus 
of this section is on the computational methods to predict the overall mechanical responses 
of carbon nanotube/polymer composites.

There are two kinds of techniques in materials modeling: discrete modeling and continuum 
modeling. In discrete modeling, the material is an assemblage of atoms, which are consid
ered as individual particles. Il is obvious that discrete modeling (i.e. molecular dynamics 
simulations) can be applied in the study of mechanical behavior of nanocomposites. In con
tinuum modeling, the region of materials is considered as a continuum. In the past few years, 
the mechanical behavior of carbon nanotubes and carbon nanotube/polymer composites has 
been studied with comprehensive computational approaches from discrete modeling to con
tinuum modeling. In this section, we will review the major modeling and simulation methods.
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including molecular mechanics and molecular dynamics simulations, continuum modeling, 
and multiscale modeling.

3.1. Molecular Mechanics and Molecular Dynamics Simulations
In the early stage of carbon nanotube-related research, molecular mechanics and molecular 
dynamics simulations have been used to estimate the mechanical properties of individual 
nanotubes or bundles [75-81]. Generally, the atomic interactions in carbon nanotubes are 
determined by the force potentials from the bonded and nonbonded interactions. The non
bonded interactions are either due to the van der Waals force or electrostatic interactions. 
The van der Waals force is most often modeled using the Lennard-Jones potential function 
[82] originally derived for inert gases. The general form of this potential is

A.,,
cl>(r) = —  -  —  (44)

r" r m

For van der Waals forces arising from dipole-dipole interactions, the attractive part corre
sponds to m =  6. The most common form of this potential is the so-called (6-12) form:

<!>(/•) = 4f; (45)

The minimum of <!>(/*) is determined by calculating the first-order derivative of <!>(/*) versus r 
and equating it to zero. The van der Waals force between two carbon atoms can be estimated 
from:

u l W

d(J)
dr

24 e 
r

(46)

The two parameters, (r and £, can be estimated from experimental data such as the equi
librium bond length (lattice parameters at equilibrium), equilibrium bond energy (cohesive 
energy), and bulk modulus at equilibrium. The bonding energy (£ hond) is the sum of four 
different interactions among atoms, namely bond stretching ( Up), angle variation inver
sion (£/w), and torsion (U r ) [83].

E
B o n d Un + Uu "f Un) -f UT (47)

A schematic illustration of each energy term and corresponding bond structure for a 
graphene cell is shown in Fig. 14. The most commonly used functional forms are:

(48)

(49)

Figure  14. Bo nd  structures and co rrespond ing  energy terms o f a graphene cell.
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<50)
“ k

U r =  l, E  A \ \  +cos(/;,t, - </>,)] (51)
~ /

where dR, is the elongation of the bond identified bv the label /, K,  is the force constant asso- 
dated with the stretching of the " i "  bond, and dOj and dcok are the variance of bond angle j  
and inversion angle k. respectively. C ; and Bk are force constants associated with angle vari
ance and inversion, respectively. A, is the “ barrier” height to rotation of the bond /; n , is
multiplicity, which gives the number of minimums as the bond is rotated through 2tt [83].

To determine the tensile modulus of a single-walled nanotube subjected to uniaxial load
ings, it is useful to observe that at small strains the torsion, the inversion, the van der Waals, 
and the electrostatic interactions energy terms are small compared with the bond stretching 
and the angle variation terms. Thus, the total energy of the single-walled nanotube can be 
reduced to:

\  E  U d R , y  + \  E  Cjicie,)- (52)
i ~ j

The force constants K ( and C, can be obtained from quantum mechanics (ab initio). 
The average macroscopic elastic modulus and Poisson’s ratio were estimated to be about 
1.347 TPa and 0.261, respectively [83]. Such calculations may be performed either using 
the force or the energy approach, by measuring the mechanical forces developed between 
carbon atoms in nanotubes with different chiral arrangements.

Based on the calculations of those energy terms, molecular dynamics simulations have 
been used to predict the mechanical behavior of carbon nanotube/polymer composites. 
One example of recent work is the study of the stress-strain behavior of carbon nanotube/ 
polyethylene composites under isostrain loading condition conducted by Frankland et al. [84]. 
In their study, the overall mechanical responses of two unidirectional nanotube/polyethylene 
composite systems, long-nanotube and short-nanotube composites, have been studied when 
subjected to longitudinal and transverse loading conditions. The application of strain was 
accomplished by uniformly expanding the dimensions of the length of the simulation cell and 
the coordinates of the atoms in the direction of the deformation. The molecular dynamics 
simulation or potential energy minimization was then carried out to equilibrate the com
posite system and to measure the corresponding stress. The method to determine the stress 
corresponding to the applied strain is summarized as follows.

For the linear-elastic material, the stress to the specific strain value is defined as the 
change in the internal energy with respect to the strain per unit volume [85]:

V W . S
(53)

where V is the volume of the solid, E is the total internal energy, £/; is the strain tensor, 
and the subscript .S' denotes constant entropy. At the atomic level, the total internal energy 
can be expressed as the summation of the energies of the individual atoms, E a\

E a =  T (t + U a =  {- M a(va)2 4- <!>“ (/*) (54)

where for each atom a , 7'° is the kinetic energy, (J(X is the potential energy, M a is the mass, 
va is the magnitude of its velocity, and <J>°(/‘) is the potential energy at the atom location r. 
Therefore, the stress components were calculated for each strain increment by using

%  =  ~  e ( m ‘X v; + e  c v )  (55)

where V is the volume of the M l) model and V — J^(l V (Y. Based on the molecular dynam
ics simulations results, the stress-strain curves of both long-nanotube and short-nanotube
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composites were generated. It was found that the long-nanotube composite shows an increase 
in the stiffness relative to the polymer and behaves anisotropically under the different load
ing conditions. However, the short-nanotube composite shows no enhancement relative to 
the polymer, most probably because of its low aspect ratio. Griebel et al. [86] also exam
ined the elastic moduli of long- and short-nanotube composites through molecular dynamics 
simulations. They used Parrinello-Rahman approach to apply external stress to the periodic 
model of the nanotube/PE composite. They compared the elastic moduli of carbon nano
tube/polymer composites with the rule-of-mixture predictions and found the rule-of-mixture 
worked well for the long-nanotube composites but fails for the short-nanotube composites.

3.2. Continuum Modeling
Continuum modeling based on continuum mechanics has been applied for investigating the 
overall mechanical deformation of carbon nanotubes with the aspect ratio greater than 103. 
Sohelberg et al. [87] have addressed that the vibration analysis can be used to study the struc
tural rigidity based on continuum methods of carbon nanotubes. Drexler [88] has pointed out 
that vibrations in nanostructures will give rise to the issue of positional uncertainty, and that 
high structural rigidity will minimize this uncertainty. This is actually the major argument for 
the use of diamondoid covalent solids in nanomachine construction. The discussion has illus
trated that vibrational motions in the nanostructures can, in addition to predicting structural 
integrity, impair performance and introduce positional uncertainty. In fact, the operational 
performance of nanostructural systems is highly dependent on the ability to anticipate reli
ably the nanostructure vibrational properties. Sohelberg et al. [87] have first proposed the 
use of continuum methods to study the vibrational performance, such as natural frequency 
of carbon nanotubes. The nanotubes, as long narrow molecules composed of repeated units, 
can be simulated using classical trajectory methods. Sumpter and Noid [89] have studied 
the positional instability in graphitic nanotubes. In their work, they focused on three modes 
of vibration— longitudinal stretching, circumferential breathing, and transverse flexion— and 
considered the continuum description of five basic types of vibration in an unconstrained 

'■'e (free vibrated) as shown in Fig. 15.
In h id  study, as Timoshensko beam, a long circular shaft with a constant cross-sectional 

area, aligned along the shaft's longitudinal axis, z, was considered. A  well-known wave equa
tion was used to simulate the vibration behavior of the shaft:

d2u 1 f i n
T -  = -T -T  (56)

a -  d t-

where t and u are the time and the longitudinal displacement of a point on the cross section 
at z, respectively. The constant a is given by:

E '  1 ’
a = [ -  ) (57)

where E and p are the Young's modulus and mass density per unit volume, respectively, of 
the shaft. Subjected to the boundary condition that both ends of the shaft are free to move,
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the solutions demand an integer number of half-wavelengths over the length /., which results 
in a discrete spectrum of allowed vibrational frequencies,

/ 77 / E \ 1
w , = r ( p )  ("8)

By applying appropriate boundary conditions of different modes of vibration addressed in 
[89], the natural frequencies of the shaft at different vibration modes can be determined by 
the following equations:

Longitudinal stretching frequency:

C i rc i i m fe re n t i a 1 breathing fre q u e n cv:

n 46<  = —  (60) 
IT T ) '

Torsional twisting frequency:
I T T  (  G .

«  . = —  -  (6
1 L \  p

where /' = 1 .2 ,3 ..., r is the radius of the nanotube. From Eqs. (59) to (61), it is found 
that the fundamental frequencies of longitudinal stretching and torsional twisting modes arc 
independent of the tube’s diameter, while the circumferential breathing mode is independent 
of the tube length. However, we can see that resonance between longitudinal stretching 
[Eq. (59)] and torsional twisting [Eq. (61)) will occur when the harmonic indices are in a 
critical ratio related to the elastic and torsional moduli:

=  / —  
(O' \ I-

(62)

The transverse (also called lateral) flexions shown in Fig. 15d and Fig. 15e can be sepa
rated with an odd number of vibrational nodes (Fig. 15d) from those with an even number 
(Fig. 15c) because of their different symmetry properties. The transverse flexing vibrations 
are governed bv the following differential equation:

= z ! ^  (63)
d z 4 a 2 e f t 2

where v is the lateral displacement at position z and

I E l
a =  j —  (64)

\ pA

where / and A are the second moment of inertia and cross-sectional area, respectively, of 
the nanotube. The boundary conditions for free ends give rise to a transcendental equation 
for the allowed vibrational frequencies w\: owing to the fourth-order differential equation.

cos
/ (x)\ \ \ / 2 —|

cosh
/ (O1, \

1M —  I M  —
_  \  a / V a / J

(65)

where / — 1 ,2 ,3 ... (/ = 0 corresponds to tube translation). The above equation can easily 
be solved by numerical methods. The numerical methods, such as the finite element and 
boundary element methods, can be applied readily for solving the 3D multidomain elasticity 
problems.

In the carbon nanotube/polymer composites, the nanotubes are in different sizes and 
configurations, and their orientations in the polymer matrix could be aligned or random. 
Their structural characteristics make the prediction of the mechanical responses of carbon



382 M o d e lin g  and  S im u la t io n  o f  C a rb o n  N an o tu b e /Po lym er C o m p o s ite s

nanotube/polymer composites extremely complicated. Recently, Chen and Liu [90-92] have 
applied the concept of representative volume elements (RVEs) to extract the mechanical 
properties of carbon nanotube/polymer composites based on 3D elasticity theory and finite 
element simulations. In their R V E  approach, a single nanotube with surrounding polymer 
matrix was modeled, with properly applied boundary and interface conditions to account 
for the effects of the surrounding polymer matrix. According to the shape of the cross sec
tion, three types of representative volume elements are constructed: cylindrical, square, and 
hexagonal RVEs shown in Fig. 16. Specifically, the cylindrical RV E  is used to model car
bon nanotubes with different diameters. The square R V E  is applied when carbon nanotubes 
are arranged evenly in a square pattern, while the hexagonal R V E  is adopted when carbon 
nanotubes are in a hexagonal pattern. Compared to the square RVE, the cylindrical R V E  
tends to overestimate the effective Young’s moduli of carbon nanotube/polymer composites. 
This can be explained by the fact that a cylindrical RV E  overestimates the volume fraction 
of carbon nanotube due to the negligence of the small amount of polymer matrix. In this 
section, the formulas to extract the effective material constants of carbon nanotube/polymer 
composites for the square R V E  are summarized as follows.

For the square RVE. four effective material constants are to be determined including 
Young's moduli Ex and E. and Poisson’s ratios vXY and vzv. To determine these four unknown 
material constants, four equations arc required. Liu and Chen [90] devised the two loading 
cases, axial stretching and lateral loading, to provide the four such equations based on the 
elasticity theory. Generally, the strain-stress relation for a transversely isotropic material 
[93] is given as follows:

-  1 » x v V z x  "

K E.

I l ' x v 1 v z x

K E z

V z x v zx 1

.  E E. ~E~. .

(66)

For the square R V E  under an axial stretch AL, by integrating and averaging the third 
equation in Eq. (66) on the plane z = L / 2, the Young's modulus, can be obtained as:

£.
L

A L  dVt

where <rtvc is the averaged value of the stress cr. and is given by:

o’l.vc = f  «■-(■*> y, L /2 )  dxdy  
A J A

(67)

(68)

Matrix CNT

Figure 16. Schem atic o f three types o f  represen tative  vo lum e e lem en ls ( R V E s ) :  (a )  cy lind rica l R V E ,  (h )  sq iare  
R V E .  and (c )  hexagonal R V E .  R ep rin ted  w ith perm ission from  [CHJJ, X . L . C hen  and Y .  J .  L iu . Comput. Ma.ter. Sci. 
29. 1 (2004). ‘V 2004, E lsev ier
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By applying the boundary conditions along x =  ± a  on the first equation in Eq. (66), the 
transverse strain, s,, can bc written in the following, form:

e, =
A I. A a

a

Then, the Poisson’s ratio, , can be calculated as follows:

A a
a

AL
17

(69)

(70)

For square R V E  under a lateral uniform load p, the plane strain condition is applied due 
to the constraint in the 2-direction \e: — 0 and (r: =  v:x( a x + crv)]. The stress-strain relation 
in (66) is reduced to

1 " J , " w  v : x

E ; E x  E .

£ v
" i v

-  £, E-
•

£, E :

( V I )

Applying the boundary conditions along .v = ± a  and y = ± a  on Eq. (71), the strains in 
x- and v-direction are calculated by

f i . .  —

P

Ax
a

Ay
a

(72)

(73)

where A.v and Ay are the changes of dimensions in the x- and ^-direction, respectively. 
By solving Eqs. (72) and (73), the effective Young's modulus and Poisson’s ratio in the 
transverse direction can determined by the following equations:

i ' ,  =

E. =  -

-  + f  pa E :

pa

~  + ' f )  pa L : )

(74)

(75)

Chen and Liu [90] studied two numerical examples for carbon nanotube/polymer com
posites, one on a RVE with long nanotube and the other on a R V E  with a short nanotube 
by using finite element method (F E M ) simulations. The deformations and stresses were 
computed from the FEM  simulations, and the effective Young’s moduli and Poisson's ratios 
for carbon nanotube/polymer composites were then extracted using Eqs. (67), (70), (74), 
and (75).

3.3. Multiscale Modeling
Molecular dynamics simulations of carbon nanotube/polymer composites are currently lim
ited to very small length and time scales and cannot deal with the larger length scales. 
However, carbon nanotube/polymer composites for real applications must expand from nano 
to micro and eventually to macro length scales. The continuum modeling has been employed 
for quite some time in the study of individual carbon nanotubes and nanotube/polymer 
composites. However, the validity of the continuum approach to modeling of carbon nano
tubes and nanotube/polymer composites is still not well established, and the practice will 
continue to be questioned for some time to come. Therefore, the most promising method 
for simulations of carbon nanotubes and nanotube/polymer composites should be multiscale 
modeling techniques, where both molecular dynamics simulation and continuum modeling 
are integrated in a computing environment. Specifically, the multiscale modeling techniques



384 M o d e lin g  and  S im u la t io n  o f  C a rb o n  N an o tu b e /Po lym er Com posites

connect the atomistic models to continuum models by carrying the crucial information with 
the intrinsic nanoscale features from the molecular simulations to continuum simulations. 
For example, these modeling techniques are able to incorporate the interfacial characteris
tics of the nanotube and the surrounding polymer matrix at the molecular level into finite 
element modeling to predict the mechanical behavior of carbon nanotube/polymer com
posites. In this section, we will review two typical multiscale modeling techniques in the 
computational study of carbon nanotube/polymer composites, including molecular structural 
mechanics and equivalent-continuum mechanics.

3.3.1. Molecular Structural Mechanics
Li and Chou [94-95] first developed molecular structural mechanics to predict mechancal 
behavior of carbon nanotubes and nanotube/polymer composites. The concepts of molecular 
structural mechanics originated from the observation of geometric similarities between the 
nanoscopic fullerenes and macroscopic frame structures. Therefore, the fundamental to his 
modeling technique is the notion that a carbon nanotube can be regarded as a frame-ike 
structure and the primary bonds between two nearest-neighboring atoms can be con;id- 
ered as load-bearing beam members, whereas an individual atom acts as the joints of the 
related load-bearing beam members, as shown in Fig. 17. Establishment of a linkage between 
structural mechanics and molecular mechanics enables the sectional property parameter: of 
these beam members to be obtained. The major steps of the molecular structural mechanics 
approach are summarized as follows.

First, take atoms as joints and bonds as beams in the equivalent frame-like structure.
The total potential energy of the molecular system is a sum of energies due to bonded md
nonbonded interactions:

U = zur + Y,u» + Z  u* + E  u<o + E  v̂uw (76)
where Ur is for bond stretch interaction, UH for bond angle bending, U(t> for dihedral aigle 
torsion, L)w for out-of-plane torsion, and £/vdW for nonbonded van der Waals interaction

Ur = [- k , X ± r ) 2 (77)

U{) = \ k 0( M ) 2 (78)
z.

UT = U(!> +  U0J= [- k T( A</>): (79)

where k r, k (h and k T are the bond stretching force constant, bond angle bending fcrce 
constant, and torsional resistance, respectively. A/\ Atf, and represent the bond stretcling 
increment, the bond angle change, and the angle change of bond twisting, respectively.

Second, determine beam sectional parameters from molecular force fields constants. 
Because the equivalent beam is assumed to be of round section, it can be assumed hat 
I x — / = / and only three stiffness parameters, the tensile resistance EA,  flexural rigiiity 

and torsional stiffness C J , need to be determined for deformation analysis. From he

Figure  17. Truss model o f  double-walled carbon  nanotube. Reprin ted  w ith  perm iss ion  from  [ % ] ,  C . Y . L i md
T  W. Chou , Composites Sci. Technol, 63. 15! 7 (2003). €> 2003. E lsev ier.
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viewpoint of structural mechanics, the deformation of a space frame results in the change 
of strain energy. The strain energy for a beam element is given by

where L \ I% and U, are strain energies for axial tension, bending, and torsion, 
respectively.

where L is the length of the equivalent beam, A L is the axial stretching deformation, 
a denotes the rotational angle at the ends of the beam, and A/3 is the relative rotation 
between the ends of the beam. By considering the energy equivalence between Eq. (76) and 
Eq. (80), a direct relationship between the structural mechanics parameters and molecular 
mechanics force constants can be established:

Third, establish elemental stiffness matrices and elemental load vectors and then assemble 
the global stiffness matrix and the global vector. Finally, solve the displacements of atoms 
and then compute the elastic properties of carbon nanotubes.

For the simulations of van dcr Waals interactions, the truss rod model is used [96]. The 
van der Waals force acting along the connecting line between two interacting atoms is sim
ulated by a truss rod that connects the two interacting atoms with rotatable end joints. The 
truss rod, thus, transmits only tensile or compressive forces. Because the van der Waals force 
between two atoms is highly nonlinear, the truss rod connecting the atoms is a nonlinear 
element with its load-displacement relationship characterized by the van der Waals force, as 
shown in Fig. 18. The generalized displacement control method was used for simulating the 
nonlinearity of the truss rod. At the nanotube/polymer interface, the activation of a truss rod 
is determined by the distance between an atom in the nanotube and a node in the polymer. 
If the distance between an atom and a node in the polymer is less than 2.5cr (a  — 0.34 nm), 
a truss rod is activated. The center of the atoms of the nanotube is located in the midsection 
of the tube thickness, which is assumed to be 0.34 nm.

( 80 )

(82)

( 81 )

4

IL

CD
N --- L J  equation

°  simulatedE
o  - 4

1.0 1.5 2.0 2.5

Normalized length of a truss rod, rla

Figure  IS . Load-disp laeem enl curve o f  the non linear truss rod. R ep rin ted  w ith perm ission from [ % ] .  C . Y .  L i and
X  W. Chou . Composites Sci. Technol. (S3, 1517 (2003). ©  2003. E lsev ier.
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By combining the newly developed molecular structural mechanics approach and con
tinuum finite element method, Li and Chou [97] further examined the effect of interfa
cial load transfer on the stress distribution in carbon nanotube/polymer composites. The 
nanotube was modeled through molecular structural mechanics approach at the atomistic 
scale. The polymer matrix was modeled through finite element method. In their study, the 
nanotube/polymer interface was assumed to be bonded either perfectly or by van der Waals. 
They examined the interfacial shear stress and axial stress distributions in the polymer matrix, 
axial stress profile in the nanotube, and the effect of nanotube aspect ratio on load trans
fer and concluded that the effective Young’s modulus of the nanotube/polymer composite 
calculated from the simulation was in good agreement with that predicted from the rule-of- 
mixture. They also found the stress concentrations in the nanotube and the polymer matrix 
for various loading conditions, which may cause the failure of the nanotube and polymer 
matrix. The longer nanotube had higher load-carrying capability due to the larger contact 
region, although the maximum shear stress for various nanotube aspect ratios was close. 
It can be seen that the perfect interface had better load-carrying capability than the van der 
Waals interface due to the higher interfacial shear stress and axial stress in the nanotube.

3.3.2. Equivalent-Continuum Modeling
In their recent work, Odegard et al. [98] developed an equivalent-continuum method to 
determine the effective geometry and effective bending rigidity of a graphene structure. 
Based on this modeling technique, the nanotube/polymer interface was modeled as an effec
tive continuum fiber to predict the bulk mechanical behavior of carbon nanotube/polymer 
composites. This method consists of three major steps shown in Fig. 19. Specifically, the 
equivalent-continuum modeling technique can be described as follows.

First, a suitable representative volume element of the nanotube/polymer composite system 
is constructed based on the molecular structure of nanotube and the surrounding polymer 
chains, which is obtained from molecular dynamics simulations. Therefore, the nanotube/ 
polymer composite system is regarded as an assemblage of many atoms. According to molec
ular mechanics, the total potential energy, E n\  for the nanotube/polymer composite system 
is described by the sum of the individual energy contributions as follows:

E m = £ £ ' ’ + £ £ *  + £  E T + £  E l° + X ] E ,lh (85)

where E n, E e, E \  and E u> are the energies associated with bond stretching, angle variation,
torsion, and inversion, respectively, and E nh is the energy of the nonbondcd interactions, 
which includes van der Waals and electrostatic interactions. For example, the specific energy 
terms for bond stretching, bond-angle variance, and van der Waals interactions are

E- - E E K - v - py- + E  E  K"V>- «>! + E  £ ( S -  5 )  m
type bond type bond type bond '  • r  /

F ig u re  19. Represen tative  vo lum e e lem ents fo r m o lecu lar, truss, and con tinuum  models. R ep rin ted  w ith  perm ission 
from  |9«Xj, G . M . O degard  et : i L  Composites Set. Technol. 62. i 869 (2002). 2002. I-lsevier.
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where P and H refer to the undeformed bond length and bond angle, respectively, and p 
and 0 refer to the deformed quantities. The symbols K 1' and K °  represent the molecular 
mechanics force constants associated with the bond stretching and bond angle interactions, 
respectively, and both K n and K^  represent the molecular mechanics force constants asso
ciated with the van der Waals interaction.

Second, an equivalent truss model of the R V E  is developed to link the molecular model 
and equivalent-continuum model. In this modeling technique, each atom in the molecular 
model is represented by a pin-joint, and each truss element represents atomic bonded and 
nonbonded interactions. The values of the modulus of the truss elements are determined 
using the molecular mechanics force constants. Therefore, the total potential energy of the 
molecular model and the strain energy of the equivalent-truss model are equal under the 
same loading conditions. The total mechanical strain energy of the equivalent-truss model 
may take the form

= (87)
type rod

where A, V\ R , and r  are the cross-sectional area. Young's modulus, and undeformed and 
deformed lengths of the truss elements, respectively. In order to represent the mechanical 
behavior with the truss model, Eq. (87) must be equated with Eq. (86) in a physically mean
ingful manner. For small deformations, the Young's moduli of the rods representing primary 
bond and the bond-angle variance interactions can then be determined as a function of the 
force constants:

2 k p R"
Y " = -----  (88)

A a

Y h =  (89)2 R h A b K }

where the superscripts a and b arc associated with the primary bonding and bond-angle
variance interactions, respectively. However, the Young’s modulus of the truss element 
that represents van der Waals force is more difficult to determine. Finally, an equivalent- 
continuum model of the RV E  is constructed by equating the total strain energies under 
identical loading conditions. For example, the equivalent-truss model is replaced with an 
equivalent-continuous plate with a finite thickness, which is also called effective thickness.

Odegard et al. 199— 100] established constitutive equations for both functionalized and 
nonfunctionalized nanotube composites by using equivalent-continuum modeling technique. 
In their study, the equivalent-continuum model is a continuum solid cylinder shown in 
Fig. 20. The effective mechanical properties or geometries of the cylinder are determined 
from equating strain energies. The continuum solid cylinder is further used as an effec
tive fiber in the subsequent micromechanical analysis to determine the bulk properties of 
nanotube/polymer composites. The elastic, bulk composite behavior is described by:

W  = [C ]{e} (90)

where {<r} and {s } are column vectors that contain the components of stress and strain 
tensors for the nanotube/polymer composite system, and [C ] is the stiffness matrix. The 
components of the stiffness matrix are dependent on the properties, concentrations, ori
entations, and interactions of the constituents and are quantitatively determined by using 
micromechanical analysis.

In their study, the moduli of both nonfunctionalized and functionalized nanotube/
polyethylene composite systems were examined for various nanotube lengths, volume frac
tions, and orientations. For a fixed nanotube volume fraction of 1% and various nanotubc 
lengths, the Young’s modulus of the random composite, the shear modulus of the random 
composite, and the longitudinal Young’s modulus of the aligned composite have been shown 
to decrease up to 10% when the nanotube is functionalized. For a fixed nanotube length 
of 400 nm and various nanotube volume fractions, the longitudinal Young’s modulus of the
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F ig u re  20. Liquivalent-continuum  m odeling  o f the nanotuhe/po lym cr com posite system  11OOJ.

aligned composite, the Young’s modulus of the random composite, and the shear modulus 
of the random composite have also been shown to decrease up to 12% when the nanotube 
is lunctionalized. These results indicated that the functionalization has degraded the elastic 
stiffness of carbon nanotube/polyethylene composite.

4. EXPER IM EN TAL INVESTIGATION OF CARBON  
NANOTUBE/POLYMER CO M PO SITES

In the past few years, extensive experimental research has been conducted in processing and 
characterization of carbon nanotube/polymer composites. In the following section, we will 
review recent experimental work related to the characterization of interfacial bonding and 
mechanical behavior of carbon nanotube/polymer composites, which will provide direct or 
indirect evidences for the theoretical and computational results.

4.1. Interfacial Bonding of Carbon Nanotube/Polymer Composites
Because carbon nanotubes possess superior tensile modulus and strength, the possibility on 
the successful use of these nanostructural elements is highly dependent on the efficiency 
of the load transfer between the nanotubes and polymer matrix and the load transfer within 
the nanotube system itself. A few researchers have experimentally studied the efficiency of 
the interfacial stress transfer of carbon nanotube/polymer composites. Depending on the 
polymer matrix and processing conditions, the interfacial bonding properties of carbon nano
tube/polymer composites seem to have large variations.

A few previous works have concluded that the nanotubes have a poor chemical interac
tion to polymeric materials. The addition of catalysts to enhance their interfacial bonding 
strength may eventually destroy the perfect surface atomic structure, to which is attributed 
the high strength of carbon nanotubes. In the study of SWNT/epoxy composites using Raman 
spectroscopy, A  jay an et al. [ 101 ] suggested that the nearly constant value of the Raman peak 
in tension is related to tube sliding within the nanotube ropes and indicated poor inter- 
facial load transfer between the nanotubes. Schadler et al. j 102] studied the load transfer 
of MWNT/epoxy composites in tension and compression. They found that the compressive 
modulus was higher than the tensile modulus of the composites, and the Raman peak shifted 
only in compression. These findings suggested that during load transfer, only the outer layers 
were stressed in tension because of inner-wall sliding effects, whereas all layers responded 
in compression. Lau and Shi [103] also investigated the fracture behavior of multiwalled 
carbon nanotube/polymer composites. They found that multiwalled carbon nanotubes were
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pulled out after a flexural property test on multiwalled nanotube/epoxy composites. They 
mentioned that the use of multi-walled nanotubes may not be appropriate for advanced 
composite structures, as only the outermost layer of the nanotubes takes all applied loads. 
If only an outermost layer of carbon nanotubes takes all applied loads, the stress and strain 
in individual layers of the nanotubes are different. Therefore, the Young's modulus esti
mated by the theoretical and molecular simulations, which assumed that the force is applied 
uniformly to the ends of all tubes without considering the end caps’ effects, cannot be used 
to predict the global tensile modulus of carbon nanotube/polymer composites. Moreover, 
multiwalled nanotubes with end caps are entirely embedded into the matrix of the compos
ites. The bonding strength between the matrix and the end caps of the nanotubes is still 
unknown.

However, several experimental measurements have been conducted and obtained a rela
tively higher interfacial shear strength. Wagner et al. [104] examined the fragmentation of 
M W NTs in the polymer films and concluded that the interfacial bonding stress between the 
nanotubes and polymer matrix could be as high as 500 MPa. Lourie et al. [105] studied the 
expansion of elliptical hole spanned by the rope of SWNTs, which were well anchored at 
both ends. The fracture of the nanotubes occurred in tension within the hole rather than in 
shear within the gripping polymer region at the ends of the bundles. Cooper et al. [106] used 
Raman spectroscopy to detect stress transfer and concluded that the effective modulus of 
SWNTs dispersed in a composite could be over 1 TPa and that of MWNTs was about 0.3. In 
their recent work, Cooper et al. [107] directly measured the interfacial strength by drawing 
out individual SW N T ropes and MWNTs bridging across holes in an epoxy matrix using a 
scanning probe microscope tip. Based on these experiments, the interfacial shear strength 
between the MWNTs and the epoxy matrix were calculated to be in the range of 35-376 
MPa. whereas most of SW N T ropes were fractured instead of being pulled out of the epoxv 
matrix. Barber et al. [ 108] also measured the adhesive interactions between the M W N T  and 
the polyethylene-butene matrix by performing reproducible nano-pullout experiments using 
atomic force microscopy. Their experimental data resulted in a relatively high interfacial 
separation stress of 47 MPa.

Currently, much work is underway toward improving the interfacial bonding between the 
nanotube and polymer matrix in the composites. Thostenson et al. [109] have grown multi
walled nanotubes directly on the surface of carbon fibers by using chemical vapor deposition 
(C V D ) method. This work aimed to improve the bonding strength of carbon fibers to poly
mer matrix by the generation of mechanical interlocks with providing a strongest interface. 
According to the measured fragment lengths and captured birefringence patterns, they found 
that a high bonding strength was achieved at the matrix/matrix interface for a fiber with 
nanotube grown. Mamedov et al. [110] have latterly developed a deposition technique called 
“ layer-by-layer (L B L )  assembly” to minimize the phase segregation that normally exists by 
using the conventional blending process for fabricating carbon nanotube/polymer thin films. 
This technique is based on the alternating absorption of monolayers of individual compo
nents attracted by electrostatic and van der Waals interactions. By using the L B L  technique, 
the high structural homogeneity and interconnectivity of structural components of the L B L  
composite films could be achieved, and the amount of structural defects could be greatly 
reduced. The mechanical strength of L B L  composite films is comparatively better than that 
of any conventional plastic materials. Recently, Lu et al. [ I l l ]  have successfully produced 
multiwalled coiled carbon nanotubes (MCCNTs) using catalytic chemical vapor deposition 
(C C V D ) on finely divided Cobalt nanoparticles supported on silica gel under reduced pres
sure and at lower gas flow rates. In their study, the irregular coils with various shapes of 
nanotubes were found. The coiled shape of carbon nanotubes can generate the mechanical 
interlocking between the nanotubes and polymer matrix at the nanometer scale when the 
MCCNT/polymer composites are subjected to different mechanical loadings. The MCCNTs 
with the specified coil diameter and coil pitch can be produced by controlling their growth 
conditions. The good interfacial bonding and mechanical properties of the MCCNT/polymer 
composites are expected by controlling the structural parameters of MCCNTs, such as the 
coil diameter and coil pitch.
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4.2. Mechanical Properties of Carbon Nanotube/Polymer Composites
Many recent experimental studies have proved that adding a small amount of carbon nano
tubes into polymers could enhance the mechanical properties of carbon nanotube/polymer 
composites. Qian et al. [24, 112] have reported that the addition of 1 w t% MWNTs into 
polystyrene resulted in 36-42% increase in tensile modulus and 25% increase in tensile 
strength. They also observed via transmission electron microscopy (T EM ) micrographs that 
the nanotubes were able to bridge the crack surface of the composite once a crack was 
initiated. The crack was nucleated at the low nanotube density area and propagated along 
the weak nanotube/polymer interfaces or regions with the relatively low nanotube den
sity regions. The pullout of the nanotubes was observed when the crack opening displace
ment reached ^800 nm. Therefore, the function of carbon nanotubes was to bridge up 
the crack in the nanocomposites. Andrews et al. [113] have used the bundles of nanotubes 
and petroleum-derived pitch matrix to form composites. They found that the overall tensile 
strength increased with increasing the fraction of nanotubes in the composites.

Recent papers have reported that the Raman spectroscopy technique is an effective tool to 
nondestructively measure the strain of carbon nanotubes and nanotube/polymer composites 
by measuring a peak signal shift of the Raman spectra to identify the strain conditions [114]. 
Schadler et al. [27] and Wood et al. [115] studied the use of Raman spectroscopy technique to 
measure the strain of carbon nanotube/epoxy composites. They found that the compressive 
modulus of the nanotube was higher than the tensile modulus. Cooper et al. [116] have also 
demonstrated the Raman spectroscopy of a nanotube composite beam subjected to four- 
point bending. They found a Raman peak shift of the nanotube composites as the surface 
strain increased.

Lau ct al. [117] have found that the hardness of carbon nanotube/polymer composite 
increased with increasing the nanotube’s weight fraction. They also found that the hardness 
was dropped at the low nanotube’s weight fraction samples because of the weak bonding 
interface between the nanotube and polymer matrix. Increasing the nanotube’s weight frac
tion would result in forming a mesh-like networking structure by high aspect ratio nanotubes, 
which could enhance the hardness of the composites. Lau et al. [118-119] have studied 
the flexural strength of carbon nanotube/epoxy beams under different ambient temperature 
environments. They found that the flexural properties of the nanotube beams decreases 
compared with a beam without the nanotubes. The cause of the strength reduction was due 
to structural nonhomogeneity and/or the existence of a weak-bonding interface between the 
nanotubes and the surrounding matrix. Although the mesh-like structure was formed inside 
the beams, it did not improve the flexural strength because this is mainly determined by the 
nanotube/matrix bonding. The fracture surfaces of carbon nanotube/epoxy composites after 
flexural strength tests have shown different failure mechanisms for composites pretreated at 
different temperatures. It was found that the nanotubes within the composites after being 
treated at warm and cryogenic temperatures were aligned perpendicular and parallel to the 
fracture surfaces, respectively.

The potential applications of using carbon nanotubes as nanoreinforcements and nano
conductors in polymer or metallic-based composite structures are significant. Besides the 
structural applications, the electrical and electronic applications of using carbon nanotube/ 
polymer composites are exclusive. Much work in this area has recently been conducted by 
many research groups around the world. The major focus has paid much attention on the 
determination of the resistance, which in turn could be converted to strain or other chemical 
quantities, of different types of carbon nanotube/polymer thin films [ 120]. The films could 
be used as sensors for any tiny instruments and coatings for electrostatic discharge protec
tion for high-speed vehicle applications. The investigation on the durability and reliability of 
carbon nanotube/polymer composites subjected to different mechanical and thermal loading 
cycles is a key issue. In addition, the incorporation of carbon nanotubes into polymeric mate
rials for wear-sensitive components is possible to decrease the generation of the wear debris. 
Attempts are being made to improve the wear resistance of polymers by introducing carbon 
nanotubes into the ultrahigh molecular weight polyethylene (U H M W P E ), as U H M W P E  is 
commonly used as the acetabular cup component of total hip prosthesis. Wear debris from
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U H M W P E  produced during articulation is known to cause serious problems such as implant 
loosening. The wear rate significantly decreases with increasing the content of carbon nano
tubes. The wear rate as measured on simulated wear test in bovine serum approaches an 
undetectable level when 0.5 wtc/c carbon nanotubes are added. Therefore, carbon nanotubc 
is potentially an attractive additive for artificial implant material and high-quality compo
nents that need excellent wear resistance.

5. CONCLUSION
The discovery of carbon nanotubes has initiated a number of scientific investigations to 
explore their unique properties and potential applications. The composite community con
siders carbon nanotubes as ideal reinforcements for structural and multifunctional composite 
applications. However, some crucial issues must be solved before the full potential of car
bon nanotubes is realized in the nanocomposite materials. Fundamental understanding and 
highly accurate predictive methods for the interfacial bonding and mechanical behavior of 
carbon nanotube/polymer composites are crucial to realize successfully the extraordinary 
properties of this new class of nanocomposite materials. This review has compared several 
different computational methods to study the interfacial bonding and mechanical behavior 
of carbon nanotube/polymer composites. The comparison sheds light on the main differ
ences and similarities between the methods and introduces the essential features of new 
methods.

Molecular mechanics and molecular dynamics simulations promotes science-based under
standing of the properties of complex materials and phenomena. In the development of 
carbon nanotube/polymer composites, they offer insight into the local interactions among 
individual atoms based on the discrete models of the nanotubes and polymer matrix. 
They have provided enough detailed information for understanding the load transfer and 
mechanical behavior of carbon nanotube/polymer composites. However, these simulations 
are currently limited to very small length and time scales and therefore are not suitable 
for large-scale analysis in real-life applications. Continuum modeling based on continuum 
mechanics has been employed to study the mechanical responses of carbon nanotubc/ 
polymer composites under various loading conditions. Although the initial simulation results 
seem to be successful, the validity of the continuum modeling of carbon nanotube/polymer 
composites is still an open question. Therefore, multiscale modeling holds great promise 
for the continued advancement of modeling technique for carbon nanotube/polymer com
posites. This modeling technique is capable of taking into account the discrete nature of 
nanocomposite materials while being efficient to model the nanocomposite materials at 
larger length scales by integrating molecular simulation and continuum modeling. Regarding 
the modeling of carbon nanotube/polymer composites, it is required to incorporate more 
structural characteristics of carbon nanotubes into the computational models, such as struc
tural defects on the nanotube surface, ropes or bundles of nanotubes, and waviness of the 
nanotubes in the nanocomposites.
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1. INTRODUCTION
The development of microelectromechanical systems (M EM S ) and nanoelectromechanical 
systems (N EM S) requires a deep understanding of the deformation mechanisms of materials 
at the atomistic and nanometric levels. Although quantum mechanics is ideal for very small 
models on the atomic scale and micro/continuum mechanics is powerful for analyzing the 
objects of micro and macroscopic dimensions, molecular dynamics simulation provides a 
useful means of detailed characterization of materials on the nanometer scale. The advantage 
of using molecular dynamics lies in its capacity to handle relatively large molecular systems, 
which are hard for quantum mechanics to tackle, and its reliability in exploring atomistic 
deformation mechanisms such as phase transformations and dislocation emitions, to which 
micromechanics and continuum mechanics arc not applicable.

Fundamentally, a molecular dynamics analysis involves calculating the phase-space trajec
tories of each atom based on its interaction with other atoms in accordance with Newtonian 
dynamics. The phase-space trajectory describes the motion of an atom by describing its posi
tion in the Cartesian coordinate and its momentum. Although the principle of molecular 
dynamics is simple, a reliable application of the technique requires sophisticated considera
tion on the details of every step in the modeling and simulation.

T his chapter will elaborate on some fundamental concepts and features of molecular 
dynamics modeling for characterizing the nanodeformation mechanisms of advanced mate
rials. with the phase transformations in monocrystalline silicon and the mechanical defor
mation of carbon nanotubes and diamond-like thin films as the examples.

2. M OLECULAR DYNAMICS MODELING OF MATERIALS
2-1, Initial Mode!
The very first step in the nanodeformation characterization of a material subjected to a 
nanoprocessing operation using the molecular dynamics analysis is to generate an initial
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molecular model of the material consistent with the operation. Here the nanoprocessing 
operation can be any process corresponding to external loading, either simple or complex, 
such as tension, bending, indentation, tribological sliding, and mechanical cutting. One way 
to generate the initial model is to locate atoms on a perfect lattice structure of a material 
that represents the real atomic structure of the material [1]. An alternative is to take the 
initial positions of atoms from the end of an earlier simulation. However this may not be 
viable, as one may often change the size and shape of a model. For example, atoms in a 
model to simulate copper will be positioned in accordance to a face-centred cubic (FCC) 
lattice structure with its lattice constant [2], whereas a model to simulate diamond will bc 
positioned in accordance to a diamond cubic structure [3].

The model having atoms positioned in such a way implies that additional potential energy 
between atoms has been artificially applied to the system, because in a real material, atoms 
are actually vibrating around their equilibrium positions. Before simulation can go on, there
fore, it is necessary to “ relax" this constructed initial model from its artificially assigned 
conditions to its natural equilibrium status, consistent with the environmental temperature. 
This involves the execution of the constant-temperature molecular dynamics program for 
a specified number of time steps with a chosen potential function. During the relaxation 
process, the velocities of Newtonian and thermostat atoms that are initially assigned on the 
basis of a normal distribution will gradually reach equilibrium at the specified environmen
tal temperature of the simulation by a velocity scaling. The number of time steps required 
to run for such a relaxation is determined by the time needed for the model to arrive at 
the specified equilibrium temperature. Depending on the specific materials and their atomic 
lattice structures, essential relaxation time steps vary. The details will be discussed in the 
specific examples later in the chapter.

2.2. Simulation Temperature
The portion of the material simulated by the molecular dynamics model, often called the 
control volume, is only a small part of the material in the neighborhood of the deformation 
zone of interest. This portion in reality is part of the rest of the material or the surrounding 
environment. As such, any heat generated during nanoprocessing within the control volume 
will be conducted away. If this heat conduction process cannot be simulated in a molecular 
dynamics analysis, the simulation results can be incorrect. To achieve a reasonable heat 
conduction out from the control volume, special layers of atoms, called thermostat atoms, 
must normally be arranged to surround the model, as illustrated in Fig. 1, the control volume 
for a nanoindentation setup. Then, based on the temperature conversion rule, to be discussed 
later in this chapter, temperature regulation is made so that the temperature caused by the 
kinetic energy of these atoms will always be consistent with the environmental temperature.

Fig u re  1. M o le cu la r  dynam ics model o f silicon specim en w ith a hem ispherica l inden ier. R eprin ted  w ith  perm ission 
from  [3], L. ('. Zhant*. and 11. Tanaka. JSM I: Int. ./. A42. 546 (1999). ©  1999. Ja p a n  Soc ie ty  o f  M echan ica l Eng ineers.
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When the dimension of the control volume is sufficiently large, the arrangement of the 
thermostat atoms provides an efficient and reliable way for natural heat conduction in the 
solid.

The scaling of velocities [2] can be performed by

w w j  Kinetic energy corresponding to the environmental temperature /1N
y ** old I " I JL I°  y Kinetic energy of a thermostat atom before scaling

where Knew is the scaled velocity of a thermostat atom and Vok] is its original velocity.

2.3. Size of Control Volume
There are three major issues that must be considered in the dimension selection of a control 
volume of interest. To reduce computational cost, the volume should be as small as possi
ble. However, a too-small volume will bring about significant boundary effects that make 
the results unreliable. These include the boundary temperature effect and the boundary dis
placement effect. To eliminate these effects, the dimension of the control volume must be 
sufficiently large that the temperature at the boundary of the control volume is close to the 
environmental temperature. Then the application of thermostat atoms can make the natural 
heat conduction happen in simulation. Similarly, the volume should also be sufficiently large 
that the motion of the boundary atoms does not affect the atoms in the deformation /.one 
of interest. Normally, an error analysis is necessary to generate a suitable dimension. Two 
examples of the selection process of the control volumes for nanoindentation [3], which has 
fixed boundary atoms, and those for nano-tribological sliding and nanomachining (nanocut
ting, nanopolishing, and nanogrinding), which use moving boundary atoms [2, 4, 5], will be 
discuss in detail later.

2.4. Integration Time Steps
The prediction of the phase-space trajectories of atoms in molecular dynamics simulation 
is based on Newton’s second law of motion. To solve the differential equation, the finite 
difference method is often necessary because collisions between atoms are not instantaneous; 
rather, they are strong repulsive and attractive interactions that occur over a finite duration. 
However, the use of the finite difference method implies that the size of the integration 
time step. A/, must be determined very carefully, because both the global truncation error 
and global round-off error depend on A/. Moreover, these two types of errors are affected 
differently by changes in A/, as shown in Fig. 2 [5]. The global truncation error decreases 
with decreasing A t, whereas the other depends on the number of calculations. This means 
that the smaller the size of the time steps, the more calculations to be done and the greater 
the global round-off error.

A way to reduce the round-off error is to have an efficient code and use high-precision 
arithmetic. To reduce the truncation error, however, it is necessary to reduce the size of A t. 
It must also be noted that a smaller time step is usually associated with a greater computa
tional cost.

Figure  2. D iffe ren t types o f errors against the size o f lim e steps.
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In addition to the above problems, it is essential to note that the finite difference algo
rithm commonly used in molecular dynamics, the Vcrlefs method [1-5], is conditionally 
stable. That is to say, it will become unstable when A/ reaches a critical value, though the 
threshold can be determined through a series of experiments. In general, a suitable time step 
is recommended to be from 1/28 to 1/32 of the vibration period of an atom [3, 5]. Hence, 
the optimum time step is dependent on both the specific material and the potential function 
used. For instance, with the Tersoff potential [6, 7], an individual atom of silicon or diamond 
can be forced to move in a direction to determine the corresponding stiffness k, as shown 
in Fig. 3, so that the period of vibration of the atom in the direction, 7\ can be determined 
by r  — l 7 r ( n i / k ) ] 1 [3, 5], where m is the mass of the atom.

2.5. Temperature Conversion
Another important factor in a successful molecular dynamics analysis is the reliable conver
sion between the kinetic energy and temperature of an atom. An inappropriate conversion 
will result in an error in the velocities of the atoms and hence render the simulation incorrect. 
It is always essential that for a given material, a temperature conversion model is identified 
carefully before carrying out a molecular dynamics simulation. In studying the deformation 
mechanisms of monocrystalline silicon under the nanoindentation and nanoscratching with 
diamond tools [3, 4, 8), for instance, there are three models available [9] for the conversion. 
They are Dulong-Petit’s model, which takes into account the independent lattice vibration, 
Einstein’s model, which is based on the consideration of the single characteristic frequency, 
and Debye’s model, which involves a range of frequencies. A comparison with the experi
mental measurement, as shown in Fig. 4, shows that in the temperature regime encountered 
in the nanoindentation and nanoscratching, the Debye’s model is the best for silicon and the 
Einstein’s model is the most suitable for diamond. Clearly, if these models are incorrectly 
used, the result of molecular dynamics simulation cannot be correct.

2.6. Stress Analysis
The analysis of stress in a material is an important part of our understanding of charac
teristics such as deformation or transformation of the material under various machining 
processes. Stress analysis also allows useful criteria to be set for the prediction of phase 
transformation or plastic deformation of the material under processing.

However, on a fine scale, materials cannot be treated as a continuum, and the conven
tional definition of stress is no longer valid [3, 8. 10]. Here, let us take the deformation

Displacement (nm)

Figure 3. Forcc-displacem ent re lationsh ip  (T e rso ff p o ten tia l) when m oving a silicon atom  in the [100] d irection. The 
m ateria l stiffness k can he obtained  from  the g rad ient o f  the plot. R eprin ted  w ith  perm ission from  [3], L . C . Zhang  
and H . Tanaka. JS M E  Int. J  A42. 546 (1999). ©  1999. Ja p an  Soc ie ty  o f M e ch an ica l Eng ineers.
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F ig u re  4. Com parison  o f tem perature  conversion models. R e p rin te d  w ith  perm ission from  [3), L. C . Z h a ig  and 
H . Tanaka. JS M E  hit. ./. A42, 546 ( | W 9 ) .  ©  1999. Ja p a n  Soc ie ty  o f  M e ch an ica l Engineers.

of monocrystalline silicon as an example to introduce the concept of stress analysis o\ the 
atomic scale.

Figure 5 shows a conceptual atomistic mode! for calculating stresses. Assume that a solid 
is divided into an upper part and a lower part i l 2 by a plane A. Consider a small elenent 
F in il,  with a base area .S’ in plane A. The stress on 5 is defined by

F
(T =  —s (2)

where F is the resultant force on S induced by the interaction between the atoms ii {12, 
and those in I' and should be calculated by

N., /V, N, ,V
()// ( 3 )

— i j -1 »•= i /—i

in which N A is the number of atoms in F, N H is the number of atoms in i l 2,/, i; the 
interatomic force vector during indentation between atom i in V  and atom j  in (12, an! /0/j 

is the interatomic force vector before indentation between atom / in F and atom j  it f l2. 
The contribution of interatomic forces before indentation, /0/;-, must be eliminated, a; the 
stress analysis considers only the effect of deformation resulting from external forces. This 
consideration ensures consistency with the definition of stress in continuum mechanics 

It is important to note that in continuum mechanics, a stress vector is defined at a mithe- 
matical point, but in the definition here on the atomic scale, area S should always be inite.

F ig u re  5. Concept o f stress vecto r on an atom ic scale. R ep rin ted  w ith  perm ission from  [3|, L . C . Z h a :y  and 
H  Tanaka, JS M E  Int. J. A42, 546 ( 199^). v' 1999, Ja p an  Soc ie ty  o f  M e ch an ica l Engineers.
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Moreover, to obtain a representative stress vector on .S', the height of the element must be 
selected in a wav that the interaction force between atom j  in i l 2 and atom / in H,, but 
beyond the top surface of W is negligible. In the stress analysis of silicon specimen sub
jected to nanoindentation, for instance, it is found that the optimum size for clement I is 
2L c x 1L.  x 2 L ., as shown in Fig. 5, where L.  =  0.543 nm is the side length of a unit cell 
of silicon.

There are two questions that arose from the above stress definition on a molecular scale. 
The firsl pertains to the momentum flux of atoms within the material. That is, whether it is 
necessary to consider the contribution of this element in the calculation of stresses. In fact, 
each clement of the stress tensor will compose of a kinetic part and a potential part, that is,

v  1 v

J,,p = m E  vip + 1 E  ruftFija (4)
i  “  i y t j

where m is the atomic mass, vin is the ^-component of the velocity of atom /, r lj(3 is the 
(3-component of the vector r tJ separating atoms i and y, and Flja is the a-component of the 
force exerted on atom / bv atom j .  However, simulation results have shown that for a solid, 
the contribution resulting from the momentum flux of atoms within the body is very small 
compared with the effects of interatomic forces between the atoms. Hence, if the simulation 
is done for a solid, this term can be neglected.

The second question is that when a material is under an external load applied by another 
solid, for example, in the case of nanoindentation involving both the workpiece material 
(monocrystalline silicon) and the tool (diamond indenter), is necessary to include the inter
action forces between the workpiece and tool atoms in the stress analysis of the workpiece? 
It has been shown that the effect of this interaction is small when the work-tool interactive 
potential is low and, hence, is negligible if the region of interest for the stress analysis is 
not in close proximity with the tool. Stress calculation of the workpiece in such cases can 
therefore be achieved by considering the atoms of the workpiece alone. However, if the 
work-tool interactive potential is high, the influence of the tool atoms must be considered.

2.7. Potential Function
Given the adequacy of the simulation techniques and the appropriate selection of the control 
volume and time step size, the reliability of the results of a simulation depends on the 
quali:y of the atomic interaction potential used. If the potential function does not model the 
behavior of the atoms correctly, the results produced will be unable to simulate the actual 
defoimation correctly.

It would be desirable to take the interactions directly from first-principle calculations. 
However, this would take up far too much computational time. Thus, in order to obtain 
uscfil atomic interactions, empirical potentials have been developed.

In general, the potential energy of a system of N  atoms is a function of the atomic coordi
nates. Thus, the potential energy may be expressed in a series of -body interatomic potentials

= (t>„ + -<l>\( ')  + '7) + ±<l>Aijk) +  • • • + <j>N( i j k l , . . . )  (5)

wheiw <f)n is the //-body interaction potential that is a function of the positions of n atoms 
i j k  . .. The sums in Eq. (5) are over ail combinations (excluding redundant contributions) 
of n atoms in the system. The potential </>,„ and the number of terms, which are retained in 
a practical application, depend on the nature of the system under investigation.

In s- /^-bonded metals, that is, metals with free electrons outside the ion cores, the 
structure-dependent part of the system energy can be accurately expressed in terms of the 
secoid-order (pair potential) terms of Eq. (5). Hence pair potentials (such as Lennard- 
Jones, Morse, etc.) have a firm theoretical basis in simple metals fl 1]. Examples of such met
als a e copper, sodium, magnesium and aluminium. Zhang and coworkers have employed the 
Morse pair potential in the modeling of copper atoms and find the results of the simulation 
satis actory [2, 12]. A detailed explanation and expression for the Morse potential used in 
the nodding of copper can be found in Ref. [2].
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When using the pair potential function, the omission of angle dependent forces and mamy- 
body effects results in a severe restriction on its application to more covalent systems such 
as silicon, in which the directionality of the localization of charge in the bonding region 
is important. In such cases, it will require an empirical potential incorporating two- and 
three-body interactions. The parameters used in the potential function can be determined 
by least-square fits to a database of calculated energies of real and hypothetical atomic 
structures. However, because of the exclusion of some atomic structures, it is often difficult 
to evaluate the generality of such potential, in addition, this method of simulation requires 
much computational time.

To address these shortcomings of the above-mentioned potential function, the Tersoff 
potential was developed. This replaces the traditional two- and three-body expansion of the 
interaction energy with a simple pair-like potential, where the bond order of the atoms is 
affected by its local environment [6, 7]. In this way, structural chemistry is included in a 
classical empirical potential. It has been found that energies and geometries for silicon are 
very well described using the Tersoff potential. A  detailed explanation and expression for 
the Tersoff potential can be found in the following sections.

3. NANOINDENTATION ON MONOCRYSTALLINE SILICON
3.1. Introduction
Indentation mechanics has long been an established method to understand the constitu
tive behavior of metals in various engineering fields [13]. In recent years, it has also been 
regarded as an appropriate method to characterize hard and brittle materials such as silicon, 
ceramics, and glass, which are hard to investigate using a conventional tensile test because 
of their brittle nature.

The response of silicon to indentation has received extensive attention during the past 
decade. According to these studies, the initial plastic deformation is accompanied by a densi- 
fying semiconductor-to-ductile metal phase transformation. On unloading, a tetragonal body 
centred to amorphous semiconductor phase transformation is observed [14]. The conclu
sions are supported by several studies carried out using electrical resistance [ 15-19), x-ray 
diffraction [20-24], Raman spectroscopy, and optical properties [25-27]. These experimental 
studies revealed that silicon transformed from its diamond cubic structure to a metallic-body 
centred tetragonal structure, known also as /3-tin. In the experiments, the metallic nature of 
the /3-tin phase is inferred by the fall in the resistivity of silicon by a few orders of magnitude 
during indentation. Diffraction patterns obtained during indentation [28] also lend credence 
to the transformation of silicon from its diamond cubic to the body-centred tetragonal phase. 
Recent development of unique in situ stage for transmission electron microscopy (T E M ) has 
also made it possible to image nanoindentation in real time. Although these experiments 
have furnished us w'ith a wealth of information, combining the information into a convinc
ing picture of the microscopic mechanisms of the phase transition is impeded by possible 
ambiguities in interpreting these experimental findings.

There arc some fundamental problems in characterizing the properties of a silicon 
monocrvstal by nanoindentation. First, an experimental result may not correctly reveal the 
true behavior of the material, because of factors like surface roughness, surface contam
ination, surface microstruetural change, subsurface microcracks, and profile accuracy of 
the indenter, which may affect the response of silicon under indentation on the nanome
ter scale. Zhang, Tanaka, and Zarudi [28-30] pointed out that a specimen of a silicon 
monocrvstal prepared by grinding and polishing normally contains an amorphous surface 
layer of S iO v about 10-80 nm thick, followed by a region with dislocations, as shown in 
Fig. 6. Hence, experiments using such specimens cannot provide exact information about 
silicon monocrystal under nanoindentation. Second, it is unclear how amorphous phase 
transformation and other microstructural changes in silicon nionocrystal influence its inden
tation properties. There have been many reports on the nanoindentation of both ceram
ics and silicon (e.g.. Ref. [31]). The load-displacement curves showed common features of 
"pop-in" and pop-out." However, the mechanisms of deformation of these materials under 
nanoindentation have not been fully understood, and experimental findings have often led
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Figure 6. T h e  subsurface m icrosiruc iure  o f silicon m onocrystals afte r a two-body contact sliding. N o te  the top 
am orphous layer and the d islocations in the crystal zone, (slid ing  ve loc ity  — 23.95 m/s, tip  rad ius=  1 /im. indentation 
depth = 15.2 nm. sliding in (100] d irection ). Reprin ted  w ith perm ission from  [4], L . C . Z han g  and H . Tanaka. 
Tribal. In i 31, 425 (1998). &  1998. E lse v ie r  L id .

to controversial and conflicting explanations of microcracking, plastic deformation, or phase 
transformation. Nevertheless, it was found that the stresses in a silicon specimen during 
unloading do not suggest microcracking. By comparing them with the critical hydrostatic 
stress for phase transformation based on experiments by Hu and Spain [23], Weppelmannm, 
Field, and Swain [31] concluded that the phenomenon of “ pop-out'’ was caused by amor
phous phase transformation.

All the above studies did not consider the effect of surface roughness on nanoindentation. 
On the nanometer scale, surface asperities play a central role. For example, surface asperities 
always deform first before a full contact takes place between indenter and specimen. In the 
transient process, localized microstructural change may occur and alter the overall response 
of indentation. However, if the indenter and specimen surfaces are sufficiently smooth, the 
indentation will be influenced by surface energy, as pointed out by Johnson, Kendall, and 
Roberts [32]. When the surface roughness is comparable to or larger than the indentation 
scale, the surface energy effect becomes immeasurable. In addition, probably because of 
the capacity of the load measurement devices in ordinary nanoindentation tests, unloading 
indentation in all the above studies was considered to be complete when the load reduced 
to zero. This ignored the adhesion effect resulting from surface energy on the possible 
microstructural change that would in turn alter the mechanical properties of the specimen 
subjected to repeated loading. A thorough theoretical investigation into the mechanics and 
physics in silicon on the nanometer scale is therefore necessary.

In this section, we will follow the steps outlined in Section 2 in establishing the model and 
carrying out a reliable simulation of nanoindentation of monocrystalline silicon. The findings 
from the simulation will also be discussed.

3.2. Modeling
Figure I shows the model of a specimen of silicon monocrystal and diamond indenter used 
in the simulation. The hemispherical diamond indenter has a radius of 2.14 nm. made up of 
1818 atoms. The dimension of the control volume of the silicon specimen has to be made 
sufficiently large to eliminate boundary effects. Taking this into consideration, an optimum 
control volume is chosen on the basis of an iterative process of increasing the control vol
ume size until further increases do not affect the displacement and velocities of the atoms 
resulting from the indentation process. An optimum size of 6.5 x 10.3 x 10.3 nm, made up 
of 36,341 atoms, is obtained for this simulation. For example, Figure 7 shows the displace
ment field of the atoms, using such a control volume, at the maximum indentation for the 
optimum control volume size, where the direction of an arrow indicates the direction of an 
atom displacement, and the length of the arrow is the magnitude of displacement. It can be 
seen that the atoms affected by the indenter are primarily those near the indenter-silicon 
interlace. Atoms away from that region do not displace from their equilibrium positions.

To restrict the rigid body motion of the specimen, layers of boundary atoms that are fixed 
to space are used to contain the Newtonian atoms, with the exception of the top (100)
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Figure 7. D isp lacem ent Held o f the atom s at the m axim um  indentation . T h e  arrows represent the d isp lacem ent o f 
the atom s from  the ir in itia l position (b efo re  ind en tation ) to the ir new positions at the maxim um  indentation. T h e  
filled circles represent the equ ilib rium  positions o f  the atom s, whereas the sm aller, ho llow  circ les represent the 
d isplaced positions o f the atom s at the m axim um  indentation . Reprin ted  w ith perm ission from  |33|, W . C. D. C heong  
and L. C . Zhang . Nanotechnology 11. 173 (2000). € : 2000. Institute  o f Physics Publishing.

surface, which is exposed to the indenter. Thermostat atoms are also used to ensure reason
able outward heat conduction away from the control volume.

For covalent systems such as silicon, the directionality of bonding is important. 
Tersoff [6, 7] proposed a simple pairlike potential in which the bond order of the atoms is 
affected by its local environment. This replaces the two- and three-body potential conven
tionally employed when directionality of bonding is a concern. On the basis of empirical 
data, Tersoff also verified that the Tersoff potential is capable of predicting stable phases of 
diamond cubic silicon and body-centred tetragonal f i -tin. Hence Tersoff potential is used in 
this simulation to dictate the interaction between the silicon atoms. When that assuming j  
and k are the neigboring atoms of atom /, the atomic bond lengths of atoms i - j  and i - k  are 
Tjj and rik, and the angle between bonds i - j  and i - k  is 6ijk, then the total Tersoff energy Er  
can be expressed as

-  E  E, = \ £  w„ (6)
/ "  i±j

where Wlf is the bond energy, so that the summation in the equation is about all the atomic 
bonds in the control volume, is a function of repulsive pair potential f R and attractive 
pair potential f A and has the form of

wh er

w „ = fc (n / )1 /r(0  + >! (7)

/ r ( ' V )  =  exp(-A,,/■ ,), l \ ( r . : ) =  -  B:] exp(-/x,,/-,)

ru <

/c =

0 rn > R,
/ t i  r h i  \  ~  1 2/ i i

(8)

h  = x,i( i + P T Z j ' Y i n  = Ek*i..i f ( n  k)g(tiiJk) 

gWnk) =  1 + %  -  <7/1^ + ( /(, - COS^ ) : l
I

A,y = (A; -f Ay)/2, jl,; — (/.I, + ^,)/2, Ajj = ( A , A , ) 1 _
B,i = (flf/i,)|/2, Su =

Other parameters such as /!, B, R , A, and /j as listed in Fable I. are Tersoff potential 
parameters, depending on individual materials. With Eqs. (6) and (7), the interaction forces 
between silicon atoms can be obtained by calculating the gradient of £•,.
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Carbon S ilicon

A  ( e V ) 1.3936 x H r 1.8308 x 10-
B  ( e V ) 3.467(1 x I0 : 4.7118 x 10-
A M 34.879 24.799

M 22.11^ 17.322

P 1.5724 X n r 1.1000 X 10 h
n 7.2751 x 10 1 7.8734 x 10 1
c 3.8049 x 10' 1.0039 x 1(F
d 4.384 x |()n 1.6217 x K )1
h —5.7058 x 10 1 -5.9825 x 10 1
R  (n m ) 0.18 0.27
S (n m ) 0.21 0.30

\ . = 1-0 Xs, s, = !•<»
i'll

The interaction between the silicon and diamond indenter atoms is modeled by the mod
ified Morse potential 12] given by

= A , ,|l) -  2eX:rt{ri'~r"]] (9)

The parameters such as /), a , and r() are shown in Table 2. Interaction force is calculated by 
the gradient of c/j.

The choice of these potentials is supported by previous simulations and tests, which 
showed good agreement between simulation results and experimental data [2—4, 8, 12].

To simulate the nanodeformation under room-temperature conditions, the silicon atoms 
were initially arranged in a perfect diamond cubic structure, with the lattice parameters 
equal to its equilibrium value at an ambient temperature of 23°C. The ambient temperature 
is maintained by the use of the thermostat atoms that surround the control volume, as shown 
in Fig. 1. During the simulation process, the temperature of the thermostat atoms is kept at 
23°C by scaling their velocities at every time step, using Eq. (1).

On the basis of the method of time-step selection described in Section 2.4, it was found 
that a time step of 1.0 fs for diamond and 2.5 fs for silicon would provide sufficiently accurate 
integrations.

3.3. Phase Transformation
Snapshots of the location of the atoms of a silicon specimen at different stages during 
the indentation are shown in Fig. 8. The size of the spheres that depict silicon atoms has 
been deliberately reduced so that we can clearly see any changes to the crystalline order of 
diamond cubic silicon. At the maximum indentation (Fig. 8a), it can be observed that the 
order of atoms beneath the indenter differs considerably from its original diamond cubic 
pattern. However, these transformed atoms still maintain a long-ranged crystalline order. 
This indicates that a displacivc phase transformation of one crystalline form of silicon to 
another has occurred.

An investigation into the coordination number of the atoms reveals such a transforma
tion [33]. There is a significant increase in the number of six-coordinated atoms. Figure 9

Tab le 2. Pa ram eters in the standard 
M orse  potential.

Param eter C - S i

D  ( e V )  0.435
« (n m  ' )  46.487
r„ (n m ) 0.19475
Aj !
A, I
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F ig u re  8. Phase transform ations during indentation, (a )  Positions o f atom s in silicon specim en at the m axim um  
indentation . A tom s beneath the indenter (circ led  by the dotted  line ) have a crysta lline o rder d iffe ren t from  that 
o f o rig ina l d iam ond  cubic structure, (b ) Residual am orphous silicon a fte r indentation. R ep rin ted  w ith  perm ission 
from  [33]. W . C . D . C heong  and L. C . Zhang , Nanotechnology' I I ,  173 (2000). ©  2000, Institute  o f  Physics Publishing.

shows the variation in the coordination numbers of the silicon atoms during the indentation 
process. This is consistent with the theoretical coordination number of an atom in the /4-tin 
phase. It can also be seen that the atoms that are six coordinated are formed in the region 
just beneath the indenter during maximum indentation. As a further investigation into the 
nature of the phase transformation, the bond length distributions of the atoms within the 
transformation zone are calculated. The results of these calculations show that during the 
indentation, the average atomic distance between the atoms that have undergone transfor
mation changed from 2.35 A (diamond cubic structure) to 2.43 and 2.58 A  (/3-tin) (Fig. JO). 
From the simulation, it is found that the change is caused by the flattening of the tetrahe
dron structure in diamond cubic silicon. The displacive transformation at progressive lime 
steps is demonstrated in Fig. 11. By determining the spatial coordinates of the atoms, it is 
found that these four atoms of the flattened tetrahedron and another two atoms at a slightly 
further distance of 2.58 A form the six nearest neighbors of the six-coordinated atoms. 
Figure 12(a) shows one of these atoms with its six nearest neighbors. At the maximum inden
tation, about 730 atoms transform from the four-coordinated diamond cubic phase to the 
six-coordinated /3-tin phase. A portion of the transformed six-coordinated atoms beneath the 
indenter obtained from the simulation is shown in Fig. 13. The atoms form a repetitive crys
tal structure with lattice parameters a = 4.684 A and c =  2.585 A. These parameters of the 
new phase formed are in complete agreement to Donohue’s description [34J of high-pressure

r im e  steps ( x 100)

F ig u re  9. G ra p h  o f num ber o f alom s w ith specified nearest num ber o f  neighbors against time. N'ote tha t here 
is a significant increase in the num ber o f  atoms having  six nearest neighbors during indentation. R e p rin te d  with 
perm ission from  [33]. W . C. D . C heong  and I.. C  Zhang , Nanotecivutiogy 11. 173 (2000). £> 2000, In stitu te  of 
Physics Publishing.
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A tom ic bond length/A
(b)

A tom ic bond length/A

F ig u re  10. Length o f bond, (a )  A t the start o f indentation ; (b ) at the m axim um  indentation. R ep rin ted  w ith  p er
m ission from  [33], W . C . I ) .  C h co ng  and L. ( ' .  Zhang , Nanotechnology I I ,  173 (2000). ©  2000. Institute o f  Physics 
Publishing.

/3-tin. The change of structure from diamond cubic to /3-tin is accomplished by displacing 
atoms along the oaxis with an increase in bond length and a decrease in volume. Hence, this 
simulation indicates that /3-tin forms beneath the indenter in the compressive stress region 
through displacive phase transformation during indentation.

To ensure that the /3-tin phase is not an intermediate phase obtained as a result of the 
short simulation time, the indenter’s position is kept unchanged for at least 250.000 time

F ig u re  I I .  fla tte n in g  o f the tetrahedron in the d iam ond  cubic structure. T h e  atom s w ith a lighter co lo r fo rm  the 
tetrahedron in the d iam ond cubic structure. T h e  three d iagram s o f the top row  show , respectively, the shape changes 
o f  the  tetrahedron before indentation , during indentation , and at the m axim um  indentation.
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(a ) (b )

F ig u re  12. A tom s in /3-tin silicon structures, ( a )  A n  atom  o f /3-tin silicon w ith its six nearest neighbors. Fou r atom s 
are at a d istance o f  2.43 A , and another tw o are at a slightly fa rther distance o f  2.585 A . (b ) A n  atom  o f the 
distorted /3-silicon obtained  during  the second indentation , w ith its six nearest neighbors. R ep rin ted  w ith perm ission 
from  [33]. W. C . D . C heong  and L . C. Zhang , Nanotechnology 11, 173 (2000). ©  2000, Institute  o f Physics Publishing.

steps at a stage with /3-tin formed (e.g., at the maximum indentation). By determining the 
spatial coordinates of these atoms, it is found that the /3-tin structure in the transformed 
zone remains unchanged in that period of time. The coordination number of the atoms is 
once again recorded during the simulation. Figure 14 shows the variation in the coordination 
number of the atoms with the number of time steps. Clearly, the number of atoms that 
are six coordinated (/3-tin atoms) remains constant for the entire period during which the 
indenter’s position is held unchanged. It also indicates that the new phase formed is not an 
intermediate unstable phase. However, when the indenter is unloaded, the /3-tin transforms 
to amorphous silicon. (Details will be discussed later.) This means that the /3-tin phase 
obtained is stable as long as the required stress field is maintained.

Experimental studies [35-39] have shown that phase transformation in silicon from its 
normal, diamond cubic structure to the denser, /3-tin structure will take place under pure 
hydrostatic pressure in the range of 11-12 GPa. However, it was also found that under more 
complex conditions, such as in indentation, the transformation pressure may be reduced 
to as low as 8 GPa [40]. In this simulation, the maximum hydrostatic pressure attained is 
12 GPa, which is consistent with these experimental findings.

Referring once to Fig. 8b, it is observed that the crystalline order of the atoms is lost on 
the unloading of the indenter, showing that a body centred tetragonal to amorphous phase 
transformation has occurred. This is consistent with Clarke et al/s observation [37-39] that 
proposed a possible explanation for the formation of the amorphous silicon after indenta
tion in this study: At the relatively rapid unloading rate employed (40 m/s) and the nonhy
drostatic constraint imposed on the transformed region, the high-pressure, crystalline form 
cannot transform back fast enough, and without complications, the amorphous phase forms 
metastablv.

F ig u re  13, C rystal structure o f  /3-tin silicon at the m axim um  indentation . R e p rin te d  w ith perm ission from  [3 ] ,  
W . C . D. C heong  and I.. C . Zhan g , Nanotechnology 1 !. 173 (2000). <D 2000. Institu te  o f Physics Pub lish in g



N an o - C h a ra c te r iz a tio n  o f  M a te r ia ls 409

Tim e steps ( x l ( ) ; )

F ig u re  14. N um b er o f atom s w ith specified  nearest num ber o f neighbors against time. In this sim ulation, the inden- 
ter is delibera te ly  held  at the m axim um  indentation for 250,000 time steps, denoted  as the neutral regim e, to show 
the stab ility  o f  the transform ed /3-tin s ilicon phase when the T e rso ff potentia l is used Reprin ted  w ith perm ission 
from  [33J, W . C. D . C heong  and L . C . Zhan g , Nanotechnology' I I .  173 (2000). (0 2000, Institute o f Physics Publishing.

It is interesting to note that within this amorphous region, most of the atoms are four 
coordinated with the exception of some atoms that are six coordinated. This indicates that 
the amorphous phase consists of four-coordinated atoms, but without any long-range order. 
The six-coordinated atoms are observed to be the crystallite remnants of the /3-tin phase, 
maintaining the tetragonal body-centered crystal structure, interspersed within the amor
phous region. Experimental findings also lend credence to this claim [38-39].

In his experiments with silicon specimens subjected to hydrostatic pressure in a diamond- 
anvil pressure cell, Minomuru [41] found that the /3-tin to amorphous phase transformation 
is in fact reversible. To examine whether this is also the case in high-speed nanoindentation, 
Cheong and Zhang [42] carried out a repeated indentation simulation. It was found that the 
(3-tin phase could indeed have recovered on the second indentation loading. This conclusion 
was drawn from the fact that there is once again an increase in the number of six-coordinated 
atoms during the second indentation. However, it was found that the phase transformation 
during the second indentation is heterogeneous, with mixing of tetragonal body-centered and 
amorphous phases. In addition to that, the /3-tin structure obtained from the indentation of 
amorphous silicon (the second indentation) is distorted compared to that obtained from the 
indentation of diamond cubic silicon during the first indentation. Figure 12b shows the six 
nearest neighbors of the distorted /3-tin structure. A comparison between Figs. 12a and 12b 
shows the extent of the distortion. This is also in agreement with experimental claims.

In the simulation, there is an absence of the body-centered cubic structure that is expected 
on unloading of the /3-tin, as observed by Hu and coworkers in their hydrostatic loading tests 
[23]. This can be a result of the fact that the hydrostatic pressure under the indenter during 
loading is not high enough to affect such a transformation on unloading. In this simulation, 
the maximum hydrostatic pressure under the indenter is only 12 GPa. Minomura [41] stated 
that for silicon specimens subjected to pressure above 15 GPa, transformation into the body- 
centered cubic structure occurs on unloading. For a pressure (11-15 GPa) lower than that, 
the /3-tin will reversibly transform into the amorphous phase, as is the case for the present 
simulation. In addition, the rapid rate of unloading and low load favors phase transforma
tion of /3-tin silicon to amorphous silicon without other crystalline phases, as stated by Ge, 
Donmich, and Gogotsi [43].

3.4. Deformation Characteristics
Zhang and Tanaka [3] investigated carefully the deformation characteristics of monocrys
talline silicon subjected to nanoindentation, using the molecular dynamics analysis [3j. A  com
plete load-displacement curve of indentation, as shown in Fig. 15(a), consists of the loading
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Figure 15. O vera ll response o f silicon nano indentation in a com plete loading-un load ing  cycle. T h e  indentation 
conditions are dnvM - 2.1947 nm and R = 2.14 nm. T h e  d iam ond indenier in this case contains 1818 atoms. In  (c ) 
and (d ), com pare the d ifference o f adhesion between the d iam ond and silicon surfaces, (a )  Load-disp lacem ent 
curve ( I 7 = 40 m/s); (b ) load-contact area curve (V  — 40 m/s); (c )  contact during un loading  at P  =  -128  nN 
( V  = 200 m/s, (I = 0.6947 nm ): (d ) contact during  un loading  at P  = — 16.4 nN  ( V — 200 m/'s, d — 0.1947 nm). 
Reprin ted  w ith perm ission from  [3]. L. C . Z h an g  and H. Tanaka, JS M E  Ini. ./. A42, 546 (1999). €) 1999, Japan  
Soc ie ty  o f M echan ica l Engineers.

path, ABCD H FG , and the unloading path, G H IJK L M . The significant deviation between 
loading and unloading paths indicates that a remarkable inelastic deformation occurs during 
indentation. Compared with any experimental measurements of nanoindentation (e.g., those 
presented in Refs. [21, 38]), the present curve shows two distinguished features demonstrated 
by part A BC  in the loading path and part I JK L M  in the unloading path. From state A  to 
C, the indentation load is negative (tensile), which means that when the diamond indenter 
approaches the silicon specimen, the surface atoms in silicon and diamond first experience 
attractive forces before compression. T hus, even under a large tensile indentation load, as 
shown in Fig. 15b, the contact area between the indenter and specimen is finite. However, at 
the end of loading (state G in Fig. 15a), the contact area becomes very large. Thus, at the 
state with zero indentation load during unloading (state 1 in Fig. 15a), the contact area is 
still large because of the attraction between silicon and diamond atoms. The attraction keeps 
increasing until state L, although the contact area is continuously shrinking (Fig. 15b). Such 
a process of contact area shrinkage can be more clearly seen in Fig. 15c and 15d through a 
cross-sectional view of the atomic lattice deformation.

Under static and purely elastic conditions, Johnson, Kendall, and Roberts [32] developed 
the well-known JK R  theory to modify the Hertzian prediction of contact area by considering 
the effect of surface adhesion energy. For the present indentation configuration, the JK R  
theory gives rise to

and indicates that contact breaks when P — --5P./9 at a - c\./3: \ where l \  is the maximum 
tensile indentation load and ai: is the corresponding contact area. Figure 16 compares the
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F ig u re  16. Com parison w ith the J K R  theory. R ep rin ted  w ith perm ission from  [3], L . C\ Z han g  and I I .  Tanaka, 
.ASA//. Ini. J. A42. 546 ( I W ) .  ©  1999, Ja p an  Soc ie ty  o f  M echan ica l Eng ineers.

prediction from Eq. (10) and the result from molecular dynamics simulation, where Pc and 
ac are taken as the indentation loads and contact areas at states B and L  for loading and 
unloading, respectively. It is interesting to note that in the vicinity of P = — Pc, the predictions 
of the JK R  theory are in good agreement with the present results, although the theory is only 
valid for an elastic and static indentation, whereas significant inelastic deformation occurred 
in these cases and indentation speed varied largely from 20 to 200 m/s.

Under purely elastic indentation, the contact will become unstable when P reaches —5 P J 9 
during unloading, as pointed out by the JK R  theory. In an inelastic indentation, however, 
the occurrence of such contact instability depends on the strength of atomic interaction of 
the material subjected to indentation and that between the material and the indenter. In all 
the indentation tests in this study, the instability of contact during unloading never happens, 
as shown in Fig. 16. When indenting some other materials, as reported by Durig and Stalder 
|44J, for instance, instability still occurs, although significant plastic deformation appears.

After the initial attraction caused by surface adhesion (A-C in Fig. 15a), the indentation 
is elastic as reflected in the load displacement relationship from C to E  on Fig. 15a. When 
indentation proceeds to a certain level, say state E  for the case in Fig. 15a, phase trans
formation from the diamond cubic to the /3-tin silicon occurs. From E  to F, the number of 
transformed atoms increases by 218%. and the volume of transformed zone increases by 
202% (see Fig. 17a and Fig. 17b). The fast phase change from E  to F causes a rapid tem
perature rise (Fig. 17c). The /3-tin silicon is much softer than the crystal silicon, introducing 
a local softening phenomenon from E to F. On the load-displacement curve of indenta
tion (Fig. 15a), the softening brings about a clear slope change from C D E  to EF. As a 
result, the transformed phase is condensed quickly so that the density of the phase increases 
considerably from D to F  (see Fig. 17d). After state F, the variation of all the above (trans
formed phase growth, temperature rise, contact area development, and density increment 
of the transformed phase) becomes steady and linear. Thus from F to G, both the elastic 
deformation in the crystal zone (bending of atomic lattice) and the further development of 
transformed phase have linear contributions to the overall deformation and give rise to a 
linear load-displacement relationship from F to G, as shown in Fig. 15a. In this stage, the 
average relative density of the transformed phase increases from 1.55 to 1.70 (Fig. 17d).

During unloading, the deformation behavior from G to I is mainly the result of elastic 
recovery of the crystal lattice. This phenomenon is more evident at the very beginning of 
unloading from G to H. In this period, the total volume of the transformed zone decreases 
linearly by 18.2% (Fig. 17b), and the total number of transformed atoms reduces by 14.8% 
(Fig. 17a). but the average density of transformed phase increases by 1.2% (Fig. 17d). This 
means that the deformation is dominated by elastic recovery, so that the load-displacement 
curve behaves also linearly. It is interesting to note that the contact area (Fig. 15b) and
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Figure 17. Varia tion  o f key quantities during  indentation . Inden tation  cond itions are </max — 2.1947 nm. R  =  
2.14 nm. and V — 40 m/s. (a )  N um ber o f am orphous silicon; (b )  vo lum e o f am orphous zone; (c )  average tem per
ature rise in the specim en; (d ) ratio of the average density o f am orphous silicon to the density o f crystal silicon. 
T he  notation a-Si in the figure stands lor am orphous silicon. R ep rin ted  w ith perm ission from  |3), L.. C . Z han g  and
11. Tanaka, JS M E  Ini. A 42, 546 (1999). <0 1999. Ja p an  Soc ie ty  o f M echan ica l Engineers.

temperature of the specimen (Fig. 17b) also decreases linearly. After state I, the effect of 
elastic recovery is no longer dominant. The continuous recrystallization and density change 
with almost a constant amorphous volume make the load-displacement curve vary' in a com
plex manner from I to M. Because of this, temperature rises again. From J to K, recrystalliza
tion becomes dominant, leading to a fast decrease of density, a drop of amorphous volume, 
and a weaker interaction with the diamond indenter. This makes the load-displacement curve 
bend from J to K. The recrystallization process finishes shortly after state L, when the num
ber of amorphous atoms becomes constant, as shown in Fig. 17a. It is also clear that state 
L  is critical, beyond which the indenter-specimen contact becomes purely adhesive because 
both the volume and density of amorphous zone become constant. After L, contact area 
shrinks quickly and finally vanishes at M with an residual indentation depth. An irreversible 
indentation mark thus remains as a result of the local density change of silicon.

A silicon monocrystal is anisotropic, as its atomic structure implies. The anisotropy can be 
understood more directly by monitoring the development of the amorphous zone. Figure 18 
shows the profile change of the amorphous zone in xoy-plane (see Fig. 1) when observing 
in the positive z-direction. Clearly, amorphous phase grows with different rates in different 
directions, and the difference becomes greater when indentation proceeds. However, dur
ing unloading, recrystallization also occurs with different rates in different directions. As 
shown in Fig. 18. in the direction that amorphous phase grows faster during loading, recrys
tallization also goes faster during unloading. As a result, the amorphous zone during and 
after unloading becomes quite axisymmetric. Nevertheless the deformation anisotropy is not 
remarkable in the whole loading and unloading process. Indeed, the anisotropy ratio of a 
silicon monocrystal under pure elastic deformation is 0.64, which deviates from an ideally 
isotropic material by only 36rv [10, 45j. All the above has been detailed in Ref. 13).



F ig u re  18. Bo ttom  view  o f the developm ent o f am orphous zone during load ing  w hen indentation depth increases. 
Rep rin ted  w ith perm ission from  |3), L . C\ Z h an g  and H . Tanaka. JS M E  Int. ./. A42. 546 (1999). CO 1999. Jap an  
Soc ie ty  o f M echan ica l Engineers.

3.5. Effect of Oxygen Penetration
This section discusses the oxidation of silicon during an indentation in a nonvacuum 
environment.

The oxidation of silicon without mechanical loading has been studied to a certain extent 
146-51]. For example, Kato et al. [46] reported that the back bond oxidation was ener
getically favored. However, they found that this oxidation requires an activation barrier of 
0.8-2.4 cV. Bu and Rabalais [47] used the time-of-flight scattering and recoiling spectrome
try technique to study the chemisorptions of 0 2 on a Si (100) surface. They found that the 
exposure to 0 : resulted in dissociative chemisorptions. and at higher coverage the O atoms 
were adsorbed at the bridge positions between first and second silicon layers. Pasquarello 
et al. [48] studied the oxidation of the Si (001)-Si02 interface and observed that three layers 
of crystalline silicon were oxidized. They also observed that the oxygen diffusion involved 
an intermediate configuration in which the oxygen atom is three-fold coordinated by silicon. 
With external mechanical stresses, the effect of oxygen penetration becomes more signifi
cant. In an experimental study on contact sliding, Zhang and Zarudi [30] reported that the 
oxygen penetrates into the amorphous layer, changes the atomic bonding of silicon, alters 
the threshold of phase transformation, and accelerates wear. However, the mechanism of 
this chemical process is not yet known.

To capture the effect of position of the oxygen molecule, Mylvaganam and Zhang [52] 
investigated the following special indentation cases.

First, the 0 : molecule was laterally (i.e., parallel to the surface) right below the indenter 
and 2 A above the surface. In this case, the oxygen molecule dissociated into atoms, and 
both atoms went into the substrate and formed three or four coordinations with Si atoms. At 
the early stages of indentation, these oxygen atoms were within the first two or three layers 
of silicon. As the loading proceeded, these oxygen atoms went in farther, but they were close 
to the indenter tip. and there were no significant changes in the silicon-oxygen coordination. 
Toward the maximum loading, and at unloading, the addresses of the nearest neighbors 
showed that the oxygen atoms were coordinated to different silicon atoms. However, the 
oxygen atoms were three- or four-coordinated with silicon atoms throughout loading and 
unloading. At the end of the indentation process, the oxygen atoms were found about 8 A 
below the surface in the amorphous phase.

(c) (d)
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The difference in the total energy during the latter stages of loading and on unloading 
of the indentation process with and without oxygen would give the energy released in the 
formation of new Si-O bonds. This analysis showed that altogether, 10 new Si-O bonds 
should have formed. This is higher than the number of Si-O bonds that are worked out by 
looking at the nearest neighbors. However, it was found that there were some Si atoms that 
would have weak interactions with the penetrated oxygen atoms, which would account for 
the excess energy.

Second, the 0 2molecule was 1 A away from the center. During the loading process in this 
case, the oxygen molecule dissociated into atoms, but only one oxygen atom went into the 
substrate, coordinated with silicon atoms, and formed three/four coordinations with silicon 
atoms as in Case (i).

°  . . . .Third, the 0 : molecule was 5 A  above the surface. In this case, at the initial stages the 0 2
molecule rotated around and then dissociated into atoms, but only one oxygen atom went 
into the substrate and formed three or four coordination with silicon atoms.

These results indicate that the position and orientation of the oxygen molecule play a 
key role in the penetration of the oxygen atoms into the substrate. The structural changes 
during the loading and unloading of the indentation process when the 0 2 is placed right 
below the indenter are shown in Fig. 19. It is clear that there is a significant difference in the 
number of four- five-, and six-coordinated silicon atoms. At the maximum indentation, there 
is a remarkable increase in the number of five-coordinated silicon atoms, which could be 
an intermediate in the formation of six-coordinated [3-tin phase, when the indentation was 
carried out in the presence of 0 2. This is a result of the attraction of silicon atoms toward 
the penetrated oxygen atoms and is confirmed by Fig. 20, which shows the number of silicon 
atoms that are within 10 A of the O atom/dummy O atom. Throughout the indentation 
process (except at the very beginning), there are more Si atoms around the O atom compared 
to the number of Si atoms in the same region when the indentation is carried out without
0 2 (i.e., in vacuum).

On unloading, as discussed in the prcvous section [33], the /3-tin silicon transforms into 
the amorphous phase, and as a result, the number of four-coordinated silicon atoms may 
increase, which reflected in Fig. 19a. The fact that after unloading there are more Si atoms 
around oxygen clearly indicates that the oxygen penetration causes damage to the silicon 
substrate.

In summary, mechanical process can cause silicon monocrystal to get oxidized, and the 
oxidation can damage its subsurface structure. This explains qualitatively why oxidation and 
its associated subsurface damage take place in nanotribological sliding and precision surfac
ing. such as grinding, polishing, and lapping. In these processes, the many moving surface
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F ig u re  20. C om parison  o f the total num ber o f Si atoms around one o f the penetrated  O  atom /dum m y O  atom 
during  the indentation process w ith and w ithou t 0 : . Reprin ted  w ith perm ission from  [52], K. M ylvaganam  and 
L. C . Zhang , NanorechnoloQ' 13, 623 (2002). ©  2002, Institute o f Physics Publish ing.

asperities or abrasive grits, which can be viewed as the moving indenters, would increase 
greatly the chance of oxidation.

The above discussion concerns the oxidation of an initially clean surface. An analysis with 
a preoxidized layer on a pure silicon sample can be carried out without difficulty.

Polishing and grinding of monocrystalline silicon are usually done in open environment with 
water-based coolant or abrasive slurry [30, 53-55). The existance of water will introduce 
changes of mechanical properties of silicon. Figures 21 and 22 show the experimental results 
of nionocrystallinc silicon subjected to cyclc indentations in air and in water under the 
same loading and unloading conditions |56|. It was found that in the first cycle, the load- 
displacement curve of indentation in water is almost identical with that in air. However, a 
different response appears on the second cycle (Fig. 21). The gradient of the loading curve 
in water becomes higher, indicating that the mechanical properties of silicon have been 
altered because of the involvement of water in the first indentation cycle, and the discrepancy 
between the load-displacement curves becomes greater with further indentation cycles. The 
difference is also reflected by the dimension of the residual indentation marks and by the 
amount of material extruded during the cyclic loading, as shown in Fig. 22, where silicon in 
water exhibits less plastic deformation. The detailed mechansm is unclear so far.

We can use molecular dynamics simulation to achieve an understanding. Figure 23 shows 
a cross section of the initial model of nanoindentation under water, consisting of 36,285

3.6. Effect of Water

100

0 50 100 150 200 250 300 350
Displacement, nm

Figure  21. T h e  load-displacem ent curves o f  the second indentation cycle w hen  tested in a ir and w ater. T h e  maxi
mum indentation load is 00 m N , and the radius o f the d iam ond indenter is 5 /im.
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F ig u re  22. D iffe rence  in residual deform ation in silicon w hen  indented in a ir and in w ater, respectively, (a )  Residual 
indentation m ark afte r the fifth indentation cycle in a ir: (b )  residual indentation  m ark afte r the fifth indentation 
cycle in water. R ep rin ted  w ith  perm ission from  [56]. I. Z a ru d i et al.. Key Eng. Miner. 233-236, 609 (2003). £) 2.003, 
Trans Tech Publications.

silicon atoms, 3,906 carbon atoms (diamond indenter), and 3,468 water molecules. Similarly, 
the Tersoff potential is used to determine the interactions between silicon atoms, and the 
Morse potential is applied to describe those between the diamond indenter and the sili
con workpiece. To introduce the effect of water, a rigid water model [57-59] is employed 
to determine the interactions between water molecular sites (i.e., two positively charged 
hydrogen atoms, one noncharged oxygen atom, and one negatively charged site) located in 
a planar configuration. However, the Si—H2() and C-H.O interactions are described by the 
long-range Lennard-Jones potential

where e and 8 are the Lennard-Jones parameters that can be determined by the Lorentz- 
Berthelot mixing rules [60]. Table 3 lists their values for C-O and Si-O interactions based 
on the study by Yang and Kim [61].

It was found that as the indenter was pushed into silicon, water molecules were trapped 
at the indenter-silicon interface, thereby forming a cavity in the silicon surface (Fig. 24). 
The damaged zone grows in size and forms a rougher residual indentation mark. The 
tapped water changed the local contact stress distribution and gave rise to a smaller phase
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tim e steps before the d iam ond indenter is pushed dow nw ard .
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Tab  It* 3. Le n n a rd - Jo n es  Po tentia l Param eters.

In ter-m o lecu lar pair £ (k Jm o l  ' )  <*>(A)

(/-()
Si (4 -co ord ina tio n )-0  
S i(2 -eoo rd in ation )-Q

0.47S5
0.9286

53.6616

3.275 
3.388 
1.3807

transformation zone when compared with the indentation without water. In addition, water 
at the interface reduced the indenter-silicon adhesion considerably. All these changes con
tributed to the change of the overall response of silicon to indentation.

3.7. Cyclic Indentations
The previous sections have shown the phase transformation details in silicon during a single 
nanoindentation cycle and provided some understanding of the overall response of silicon 
in a complete loading-unloading process. However, the results obtained are not sufficient 
to uncover the deformation mechanisms of many processes. For example, in grinding and 
polishing wafers of monocrystalline silicon, the material is actually subjected to repeated 
tool-workpiece interactions. When the first interaction has created a damaged zone, the 
material may deform differently under subsequent operations. The purpose of this section 
is to understand how monocrystalline silicon will behave under repeated indentations using 
molecular dynamic analysis [421. The model used is the same as that for the previous single 
nanoindentation.

It shows that the residual amorphous phase after the first indentation seems to remain 
amorphous throughout the second and third indentations. There is no significant change in 
size of the amorphous zone. The residual indentation depths also appear to be consistent 
after the first, second, and third indentations. Figure 25 shows the volume of the trans
formed zone during indentation. There is only a small increase in the volume of amorphous 
silicon at the second and third indentations. However, by considering the number of the 
nearest-neighbor atoms, it can be observed that there is an increase of atoms with six nearest 
neighbors dining the loading phase of each indentation. This indicates the recovery of the 
/3-tin phase mentioned earlier.

Figure 26 shows the load-displacement curves for all three indentation cycles. The inden
tation depths are taken from the same reference, which is the initial untouched surface of 
the monocrystalline silicon, and that is why the load-displacement curves of the second and 
third indentations start at the depth of about 0.6 nm, which is the depth of the residual 
indentation mark after the first indentation. It is clear that the load-displacement curve of 
the first indentation is quite different from those of the second and third. First, there is a

Figure  24. Cross-sectional view  o f s im ulation o f nano inden tation  w ith w ater at the indentation  depth o f 2.58 nm.
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Figure 25. Vo lum e o f transform ed silicon versus indentation  depth d uring  repeated indentations. Reprin ted  w ith  
perm ission from  [42], W . C . D . C’heong and I.. C . Z h an g , ./. Mater. Sci. Lett. 19, 439 (2000). ©  2000. K lu w e r  
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Figure 26. Load-disp lacem ent curves o f  repeated  indentations. R ep rin ted  w ith perm ission from  [42]. W . C . D . 
C heong  and I.. C. Zhang , 7. Mater Sci. Lett. 19, 439 (2000). ©  2000. K lu w c r  A cadem ic Publishers.
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Figure 27. Inden tation  force versus contact area betw een ind en ie r and silicon specimen. R ep rin ted  w ith perm iss ion  
from  [42], W . C . D . Cheong  and !... C . Zhang . J. Mater. Sci. Lett. 19. 439 (2(500). r; 20(H). K lu w e r A ca d e m ic  
Publishers.
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F ig u re  28. N u m b e r o f  silicon atom s that have transform ed from  d iam ond cubic to o ther structures when indentation 
depth varies. R ep rin ted  w ith perm ission from  [42]. W. C . D . C heong  and L . C . Zhang,./. Mater. Sci. Lett. 19, 439 
(2000). ©  2000. K lu w e r  A cadem ic Publishers.
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marked increase in the resistance to the indentation during the loading phase of the sec
ond and third indentation, demonstrated by the gradient increase of the load-displacemcnt 
curve. T his is partly a result of the residual stresses within the residual amorphous zone after 
the first indentation. Second, although all three indentations start with an initially attrac
tive stage as the indenter approaches the workpiece, the attractive forces during the second 
and third indentations are considerably greater than that of the first, indicating that the 
amorphous silicon atoms experience greater attraction to the diamond indenter compared 
to diamond-cubic silicon atoms. The contact area between the workpiece and the indenter 
is also greater in the second and third indentations, as shown in Fig. 27.

Figure 28 shows the number of silicon atoms that have transformed from their origi
nal diamond cubic structure to other forms during the indentations. Compared to the first 
indentation, where the number of amorphous silicon atoms increases from 0 to 1624, the 
increase in the number of amorphous silicon atoms in the second and third indentations is 
very small, merely an increase of 8.6% (from 1622 to 1761 atoms) and 4.9% (from 1748 to 
1834 atoms), respectively. In fact. Fig. 28 shows that the loading and unloading paths of the 
second and third indentations almost follow the unloading path of the first, indicating that 
once the atoms have already transformed to its amorphous state, further indentation does 
little to change it. As a result, the amorphous zone does not change much.
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F ig u re  29. R e la tive  density o f transform ed silicon versus indentation depth. R ep rin ted  w ith perm ission from  [42]. 
W . C . D . C heong  and I.. C . Zhan g , J. Mata: Sci. Lett. 19. 439 (2000)- ©  2000. K lu w e r A cad em ic  Publishers.
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F ig u re  30. 1 lie va ria tion  o f average tem perature  of silicon specim en w ith the indentation depth. Reprin ted  w ith  
perm ission from  [42], W . C. D . C.'heong and L . C. Zhang , J. Mater. Sci. Lett. 19. 439 (20(H)). €  2000. K luw 'er 
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Because the increase in the volume of the transformed silicon and the increase in the 
number of transformed silicon atoms are proportional, the relative density of the amorphous 
silicon remains almost constant. Figure 29 demonstrates that the relative density of the 
transformed silicon during the second and third indentations varies in a manner very similar 
to the unloading stage of the first indentation. This again shows that the second and third 
indentations do not do much to change the existing residual amorphous region.

Figure 30 presents the average temperature variation of the silicon workpiece during 
indentations. In the second and third cycles, once the indenter comes into contact with the 
workpiece at the depth of 0.6 nm (the residual indentation mark caused by the first inden
tation), there is an increase in the temperature of the workpiece, corresponding possibly 
to the microstructural changes in silicon from amorphous to metallic phase. On unloading, 
the temperature drops initially, followed by another increase. This could be caused by other 
microstructural changes reversing from the metallic phase back to the amorphous form. 
Thus, the similarities in temperature changes described above indicate that the microstruc
tural phase transformations that occurred during the first indentation may have also occurred 
during the second and third indentations.

4. NANOTRIBOLOGY
4.1. Introduction
A full understanding of friction and wear on the atomic scale is of fundamental importance to 
the development of nanotechnology. Immediate examples in which atomic friction and wear 
play a central role are the optimal design, fabrication, and operation of devices with atomic 
resolution, such as micromachines and high-density magnetic recording systems. Over the 
last 16 v or so, many studies have been carried out to explore the mechanisms of nanofriction 
and nanowear, both theoretically and experimcntaly. For instance, an early experimental 
observation of atomic-scale friction using an atomic force microscope was reported by a 
research group at IBM  [62). The friction coefficient between a tungsten tip of radius 300 nm 
and a basal plane of a graphite grain was found to be 0.012 at a normal load of 10 /xN. 
Another early interesting study [63] was about the sliding of a tungsten tip of radius 10 /im 
on a carbon-sputtered surface. A frictional force of about 1 f i N at zero normal force was 
measured, indicating an infinite friction coefficient. In the meantime, theoretical studies 
using either molecular dynamics simulation and the first-principle calculations [64-68] were 
also carried out and showed that friction coefficient could vary' significantly, from 0.01 to 
0.07, under different sliding conditions. Belak and Stowers [69] studied the indentation and 
scraping of a copper monocrystal by a rigid diamond tip using the molecular dynamics 
simulation. While focusing mainlv on some issues of indentation with an observation of
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dislocation initiation, they also simulated a cutting under a specific condition and observed 
that the friction coefficient was about 1.0. However, the mechanisms of friction and wear 
and the effect of deformation, sliding conditions, and dislocation motions were not studied.

A more systematic research was conducted later by Homola [70], who proposed the 
concept of interfacial sliding to describe the sliding of two perfect, molecularly smooth, 
and undamaged mica surfaces. Mechanisms of wear were also addressed. The investigation 
demonstrated that the Bowden-Tabor formula [71], which states that the frictional force is 
proportional to the real molecular contact area, could well describe the frictional behavior 
during atomic sliding. In fact, the importance of the atomic contact area to atomic friction 
is not difficult to understand if the JK R  theory [13, 32] is recalled. This theory, although 
considering the effect of surface energy in its analysis, has implicitly indicated that the real 
contact area must be of great concern to sliding loads on the atomic scale.

If looking into the details of contact sliding, we can have two primary situations. When two 
surfaces are in sliding without foreign particles, they are in two-body contact sliding, as shown 
in Fig. 3la. In this case, the interactions among surface asperities play a central role in the 
process of wear and friction. However, if some particles appear between the surfaces, which 
could be the debris from worn surfaces or foreign particles resulting from contamination, 
a thrcc-body contact sliding occurs, as shown in Fig. 31b. Under such circumstances, the 
kinetics and properties of the particles contribute to the tribologv of the surfaces. The above 
sliding processes are common in nanotribological systems.

4.2. Moving Control Volume
To simulate a sliding or cutting process, the distance of relative motion of an asperity to a 
workpiece is significant, and in grinding and polishing, the situation is similar. An apparent 
way of simulating the steady-state behaviour of the workpiece material is to take a large 
portion of the work material as the control volume for simulation. However, this is infeasible 
because the cost and capacity of computation limit the number of atoms in a model. The 
moving control volume technique [2, 4, 5, 72] is then necessary and advantageous, in which 
the dimension of the control volume is similar to that of a nonmoving one but with special 
atom removal and addition techniques. Shown in Fig. 32 is an example of using the moving 
control technique for simulating nanocutting, in which zone 1, the zone affected by cutting 
deformation, is equivalent to the normal control volume size discussed previously. Zones 2-5 
are those unaffected by the cutting deformation. When the cutting proceeds, atoms in zone 5 
can be removed because the removal will not affect the behavior of the atoms in zone 1. 
However, zone 4 becomes a transition zone because the boundary between zones 4 and 5, 
which is originally inside the workpiece, becomes a free surface. The dimensions of both £4 
and <>5 must be determined by an error analysis such that the removal of zone 5 and the 
creation of the new free surface do not influence the behavior of atoms in Zone 1. Similarly, 
because atoms are added in zone 2 after the removal of atoms from zone 5, zone 3 becomes 
a transition zone. Because of the same reason, the dimensions of both <52 and 83 must also 
be determined by an error analysis. Zone 6 consists of the boundary and thermostat atoms.

Boundary atoms

Sliding direction

Newtonian silicon atoms

Diamond (ria id)

( h )
Sliding and self—rotating Newtonian silicon atoms

direction

Thermostat atoms

Boundary atoms

Fig u re  31. M o lecu la r dynam ics m odeling o f the slid ing processes, (a )  Two-body slid ing; (b ) three-body sliding.
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Cutting tool

Figure 32. T h e  concept o f  m oving con tro l vo lum e o f  a w o rkp iece  subject to nanocutting, (a )  In itia l contro l vo lum e; 
(b ) contro l vo lum e before the operation  o f  rem oval and add ition ; (c ) control vo lum e a fte r  the operation  o f  rem oval 
and addition. Reprin ted  w ith  perm ission from  [72], W . C . D . Cheong, L . Zhang , and H . Tanaka, Key Eng. Mater. 
196, 31 (2001). © 2001. T ran s  Tech Pub lications.

4.3. Diamond-Copper Sliding Systems
4.3.1. Methods of Modeling and Analysis
For simplicity, let us consider an atomically smooth diamond asperity sliding on an atomically 
smooth surface of a copper monocrystal in its (111) plane. The variables of interest are the 
sliding speed V, indentation depth d, degree of surface lubrication or contamination, and 
tip radius of asperity /?, that is, the radius of the envelope of centers of the surface atoms. 
The environmental temperature of the sliding system is 293 K, and the asperity rake angle 
is -60 degrees. In addition, we assume that d  keeps constant in a sliding process, which 
implies that the sliding system has an infinite loop stiffness.

The interactions between copper atoms can be described by the modified Morse potential 
given in Eq. (9), where r l} is the interatomic separation between atoms / and y, and /*0 
is the equilibrium separation at which the potential minimizes. D and a  are the material 
constants listed in Table 4. The physical meaning of D  is the cohesive energy between 
the two atoms. Teems A, and A2 are nondimcnsional parameters indicating the cohesive 
strength change between the atom pair i - j .  For copper-copper atom pairs. A, = A2 = 1, 
and hence Eq. (9) becomes identical to the standard Morse potential. For copper-diamond 
atom pairs, however. A, takes a value in interval (0, 1], whereas A: > 1. This is because 
an application of lubrication or contamination on the diamond-copper interface weakens 
the cohesive strength between copper and diamond atoms. Hence, the effect of surface 
lubrication or contamination on trie friction and wear can be qualitatively investigated by

Table 4. Pa ram ete rs  in the standard  M orse  potential.

Pa ram ete r C u -C u C u - C

D  ( c V ) 0.342 0.087
ff(nm  1) 13.59 51.40
r , (1.287 0.205
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varying A, in (0, l| and ignoring the detailed effects of lubricant or contaminant atoms. 
However, when A, varies in (0. 1]. the potential curve between a pair of copper-diamond 
atoms will distort toward the negative direction of r. Bearing in mind that the atomic distance 
between any copper and diamond atoms increases, rather than decreases, when a lubricant 
or contaminant atom appears to separate them from direct contact, the potential curve 
should distort toward the positive direction of r. Hence, A2 in Eq. (9) must be larger than 1. 
In this analysis, we determine A: , when A, changes, by keeping the spring constant of a 
copper-diamond atomic pair unchanged. This means that when A, is given, A: is determined 
by (A j D )(A 2a ) : = hence A: = A, 1 ".

With the above potential function available, the forces on atom / resulting from the inter
action of all the other atoms can be calculated bv

where Nis the total number of atoms in the model, including thermostat, boundary, and 
diamond atoms. (Here, 12.000 < N  < 15,000 is used in conjunction with the technique of 
moving control volume.) As a consequence, the motion of all the Newtonian atoms in the 
control volume, including their instant position and velocity vectors, can be obtained by 
following the standard procedures of molecular dynamics analysis, described previously.

In principle, an asperity is three dimensional, and thus a three-dimensional molecular 
dynamics analysis would be more appropriate. However, we found, based on a careful com
parison [73], that a two-dimensional model can lead to accurate enough results in terms of 
the variations of temperature and sliding forces and easier characterization of deformation. 
We will therefore focus on the two-dimensional, plane-strain analysis in this section.

When an instant configuration of the copper atomic lattice during sliding is obtained by 
the molecular dynamics analysis, the distribution of dislocations in the deformed lattice can 
be determined by the standard dislocation analysis [45], Figure 33 shows an example of 
identifying edge dislocations when two extra half planes of atoms (dark atoms) appear in the 
deformed atomic lattice. The Burgers vector can be obtained by application of the Burgers 
circuit. Because we are now carrying out a two-dimensional molecular dynamics simulation, 
we can only study edge dislocations [73]. For convenience, however, we call them dislocations 
from here on.

4.3.2. Mechanisms of Wear
The deformation of the copper specimen has four distinct regimes under sliding. They are the 
no-wear regime, adhering regime, ploughing regime, and cutting regime, as shown in Fig. 34. 
In the figure, the transition of deformation regimes is characterized by the nondimensionai 
indentation depth <5, which is defined as d / R  and can be viewed, when contact sliding takes 
place, as a measure of the strain imposed by the diamond asperity.

Y

Extra ha lf plane Burgers vector Extra ha lf plane

(■

Figure 33. D eterm ination  o f edge dislocations. R ep rin ted  w ith perm ission from  [2], L. C . Z h an g  and H. Tanaka, 
Wear 1I I .  44 ( 1 W ) .  €> 1997, E lse v ie r  Ltd.
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W ear Regimes
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Figure 34. Transition diagram  o f deform ation  regim es. (T h e  d iam ond slides from  the right to the le ft.) R ep rin ted  
w ith perm ission from  [2], L . C. Z h an g  and H . Tanaka. Wear 211, 44 (1997). ©  1997, E lse v ie r  Ltd.

In the no-wear regime, the atomic lattice of copper is deformed purely elastically. After 
the diamond asperity slides over, the deformed lattice recovers completely. In this case, 
sliding does not introduce any wear or initiate any dislocation.

When 8 increases and reaches its first critical value, <5[-h, adhering occurs. The atomic 
bonds of some surface copper atoms are broken by the diamond sliding. These copper atoms 
then adhere to the asperity surface and move together with it. However, they may form new 
bonds with other surface atoms of copper and return to the atomic lattice. The above process 
repeats again and again during sliding, causes a structure change of the copper lattice near 
the surface, and creates surface roughness of the order of one to three atomic dimensions. 
In the meantime, some dislocations are also activated in the subsurface see (Fig. 35a).

If 8 increases further, to its second critical value, <5C“ , the above adhering deformation 
will be replaced by ploughing (Figs. 34 and 35b). An apparent feature of deformation in 
the stage is that a triangular atom-cluster always exists in front of the leading edge of the 
diamond asperity and appears as a triangular wave being pushed forward. In this regime, the 
deformation zone in the subsurface becomes very large, and a great number of dislocations 
are activated. Moreover, the motion of dislocations and their interactions in the subsurface 
become extremely complex. Grain boundaries can also be generated by ploughing, as shown, 
for instance, by the continuous orange curve in Fig. 35b.

When 8 reaches its third critical value, Sc a new deformation state, cutting, appears, 
characterized by chip formation. Compared with the ploughing regime, the dimension of the 
deformation zone during cutting is smaller. Dislocations distribute much more closely to the 
sliding interface (Fig. 35c).

The above figure of deformation regimes and their transition represents the most general 
case. Under some specific sliding conditions, not al) the regimes would appear except the 
no-wear regime.

For example, if the tip radius of the diamond asperity keeps unchanged but the sliding 
speed changes, then at lower sliding speeds all the four regimes described above appear. 
At higher speeds, however, ploughing regime vanishes (see Fig. 36a). In contrast at a given 
sliding speed, if the tip radius of the asperity is very small, say 1 nm, only no-wear and cutting 
regimes emerge, as shown in Fig. 36b. However, with relatively larger tip radii, adhering 
appears as a transition from no-wear to cutting.

Another important factor that alters the deformation transition is the effect of surface 
lubrication or contamination. If the sliding interface is chemically clean. A, = A2 = 1 in 
Eq. (9). In this case, as shown in Fig. 36c\ ploughing does not happen at a given sliding speed 
and tip radius. If the surface is lubricated. A, < I with Â  > 1. and all the four regimes occur.

It is obvious from Fig. 36 that the no-wear regime exists in a wide range of indentation 
depths. In addition, a smaller radius, a lower sliding speed, or a better surface lubrication 
(i.e., smaller Aj) enlarges the no-wear regime. This highly indicates that a no-wear design of 
sliding systems may be possible in practice. Moreover, it is important to note that the size of 
the no-wear regime is a strong function of sliding speed and surface lubrication. Therefore, 
sliding speed and lubrication should be taken into specific account in an attempt to design 
no-wear sliding systems.
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( a ) F ile n a m e  :o b 1 4 0 0
S lid ing speed : 20 m/s
Indentation  dep th  : 0.1 nm

Copper (Inter-atomic distance: 0.277 nm)

(b )  F ilenam e : rnnlOOO
Sliding speed : 200 m/s
Indentation depth : 0.6 nm

Copper (Inter-atomic distance: 0.277 nm)

(C ) F ilenam e :mn1500
Sliding speed : 200 m/s
Indentation depth : 0.6 nm

Copper (Inter-atomic distance: 0.277 nm)

F ig u re  35. D istribution  o f d islocations in the subsurface o f copper specimen. (T h e  d iam ond slides from  I he right 
to the le ft.) (a )  A d h e rin g  regim e; (h )  p loughing regim e; (c )  cutting regim e. R ep rin ted  w ith perm ission from  [2], 
L . C . Z h an g  and H . Tanaka, Hear 21 l, 44 (1997). €> 1997, E lsev ie r Ltd ."

The formation of various deformation regimes and their transition can he elucidated by 
the variation of temperature distribution and dislocation motion in the atomic lattice, (see 
Figs. 35 and 37). For instance, a larger indentation depth or a higher sliding speed indicates 
a higher input sliding energy, greater temperature rise, and severe plastic deformation. This 
in turn means a higher density of dislocations with more complicated interactions in the 
deformed atomic lattice. When the nondimensional indentation depth 8 is small, a smaller 
number of atoms has high temperatures, as shown in Figs. 37a and 37b. Sliding does not 
cause any considerable temperature rise in the vicinity of the contact zone. With the increase 
of (5, the number of high-temperature atoms increases quickly (Figs. 37c and 37d). However, 
compared with the cutting regime (Fig. 37d), the high-temperature atoms in the ploughing
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Sliding Speed (m/s)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

•1A-

F ig u re  36. Reg im e transition  under specific sliding conditions, (a )  N ondim ensiona l indentation depth versus slid
ing speed; (b ) nond im ensiona l indentation depth versus tip  radius; (c )  nondim ensional indentation  depth versus 
lub rication/contam ination . R eprin ted  w ith  perm ission from  [2], L . C . Z h an g  and I I .  Tanaka. Wear 211, 44 (1997). 
€> 1997. E lse v ie r  Ltd .

regime (Fig. 37c) distribute in a much wider area. This explains why a ploughing regime has 
a greater deformation zone and less localized distribution of dislocations (Fig. 35).

4.3.3. Friction
With the above deformation mechanisms in mind, now let us examine the frictional behav
ior of the system. Figure 38 shows the variation of the conventional friction coefficient, 
( i  =  |Fx/F y\, with the change of <5, where Fx and Fv are, respectively, the frictional force 
and normal indentation force during sliding. It is clear that in the cutting regime, Fv is pro
portional to Fv. In other regimes, however, the behavior of Fx is complex. Particularly, (i  
becomes singular at a specific 8 in the no-wear regime.

The singularity of fx is understandable if we examine the sliding forces when 8 changes. 
On the atomic scale, as shown in Fig. 39, the normal sliding force Fv always varies from 
attractive to repulsive. Thus, at the transition point (Fv =  0), /x is infinite. This also explains 
why i i  varies sharply under different sliding conditions, as reported by Refs. [62-68]. All these 
conditions clearly indicate that the concept of the conventional friction coefficient is no 
longer meaningful in no-wear, adhering, and ploughing regimes.

In noncontact sliding, the only appropriate wav to calculate the frictional force is to use 
Eq. (12). In contact sliding, however, empirical expressions in terms of the contact area can 
be developed. For example, (he following simple formula can be obtained according to the 
present theoretical analysis

d■V,/ \
51 nm)

„ „ i  (iX n

r i i

: i " l cw i n

for L,. -- 0

for /4') < L c < L [2)

for L, > L[(-)

( 13)



Nano-Characteri/ation of M aterials 427

Figure 37. Tem peratu re  d istribution in the atom ic lattice o f copper. (T h e  d iam ond  slides from  the right to the left.) 
(a )  No-wear regim e; (b ) adhering  regim e: (c )  p loughing regim e: (d ) cu tting  regim e. R ep rin ted  w ith perm ission 
from  |2|. L. ( '.  Z h an g  and 11. Tanaka, Wear 211. 44 (1997). 1997, E lse v ie r  L td .
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Figure 38. Variation  o f friction coefficient. R ep rin ted  w ith  perm ission from [2|, L. C. Z han g  and I I. Tanaka. Wear 
2! I. 44 (1997). CO 1997, E lse v ie r  Ltd.

where = 409 MPa, = 1.807 x 10 8 nN, =  4.20 GPa, £:/;/ -  -1.899 uN are 
constants, /VL. is the total number of copper atoms in the model, A/d is the number of diamond 
atoms, Lc is the atomic contact length, and w.d — 0.226 nm is the width of an atomic layer 
of copper in the direction perpendicular to its (111). Equation ( 13a) can be derived directly 
from Eq. (12) by considering that Fx is the resultant force of the atomic forces on all the 
diamond atoms in x direction. Equations (13b) and (13c) are empirical expressions made by 
fitting the molecular dynamics simulation data in Fig. 40. The physical meaning of product 

w.{ in Eq. (13) is the atomic contact area in the present sliding system. As shown by 
Eq. (13) and Fig. 40, we can see that the frictional behavior of an atomic sliding system 
cannot be described by a single formula. There exist two distinct contact sliding zones, 
zone II ( L [ ]) < L c < L [2)) and zone I I I  ( L c >  where L [2) =  2.216 nm is the transition 
boundary from Zones II to III, and L (c]) =  0.277 nm is the minimum contact length, defined 
as the distance between two copper atoms in its (111) plane. The transition from noncontact 
to contact sliding is a sudden change because L c does not exist below L [ ]. In Fig. 40, zone II 
reflects the frictional behavior of the system in the no-wear contact sliding, and zone III 
shows the behavior in the adhering and ploughing regimes. Thus, can be interpreted 
physically as critical contact length at which wear takes place. It is easy to obtain according 
to Fig. 40, so that the shearing stress of the present sliding system in the adhering regime, 
r  = F J ( L cw.l), is in the range of 0.7 to 1.5 GPa. With so few dislocations activated in 
the atomic lattice, it is reasonable that t  is close to the theoretical shearing stress of a 
perfect copper monocrystal, which is G/2rr(^  7.32 GPa) > rtheorelica, > G/30(% 1.53 GPa)
[45], where G ~  46 GPa is the shear modulus of copper.

Force (x10 9 N) V = 2 0 0  m/s. R =  5 nm, = \ 2 = 1

8

Figure 39. Varia tion  of sliding forces. Reprin ted  w ith  perm ission from  (2], i.. C . Zhang  and II. Tanaka. Wear 2 IS ,
44 ( 1997). £■ 1997. E lsev ie r Ltd.
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1 . «x 10 " \ )

L c (nm )

F ig u re  40. R e la tionsh ip  betw een the frictional force and contact length: x :R = 5 nm. V — 20 m/s. A, =  1: 
*: R — 5 nm , I = 100 m/s. A, =  I: ★ :  R — 5 nm , V  = 200 m/s. A, =  1; 0 : R — * nm - I =  200 m/s. A, =  I:
O : R  5 nm , 1 =  200 m/s. A, =  0.5: ■: R  — 5 nm. V  = 200 m/s. A, = 0.6; +: R — 5 nm, V  = 200 m/s. A, = 0.7;
□ : R  == 5 nm , I — 200 m/s. A, = O.N. R ep rin ted  w ith perm ission from  [2], L . C . Z h an g  and H . Tanaka. Wear 211,
44 (1997). C) 1997. E lsev ie r Ltd.

The linear equations, Eqs. (13b) and (13c) are only the rough fittings to the theoretical 
results. The data scattering in Fig. 40 indicates that other variables, such as the tip radius of 
asperity R and sliding speed I7, also contribute greatly to friction. In other words, Fx should 
be a function of not only the contact area L^w.{ but also of V , R , and so on.

It is worth to note, from Fig. 39, that the frictional force Fx does not vanish under a 
stable condition even if the system is in noncontact sliding. It is understandable because the 
interactions between the diamond and copper atoms always exist. In contact sliding with a 
small indentation depth, Fx remains small until a ploughing or a cutting is achieved. Hence, 
the frictionless sliding mentioned by Belak and Stowers [69] is doubtable. Indeed, in their 
simulation the indentation motion stopped after 2000 time steps but the “ frictionless motion” 
ended at time step 1000. In that period of time, sliding was still at the very initial transient 
state. Thus, the variation of Fx with the time step of molecular dynamics simulation does 
not make sense in terms of frictional or frictionless sliding. In addition, the normal force 
variation they reported is inconsistent with the indentation motion.

In summary, the molecular dynamics analysis has acquired the following important under
standings of nanowear and nanofriction on diamond-copper sliding systems. First, there exist 
four regimes of deformation in general in an atomic sliding system. They are the no-wear 
regime, which is defect free: the adhering regime, in which surface atom exchange occurs; 
the ploughing regime, which is characterized by a moving triangular atom-cluster; and the 
cutting regime, in which material removal takes place.

Second, in the cutting regime, the frictional force follows the simple proportional rule of 
Fx — /jlFv. In all the other regimes, the formulae in Eq. (13) apply.

Third, the transitions between different deformation regimes are governed by indentation 
depth, sliding speed, asperity geometry, and surface lubrication conditions. A  better lubri
cation, a smaller tip radius, or a smaller sliding speed can bring about a greater no-wear 
regime, and no-wear designs may be achieved in practice.

4.4. Scale Effect of Contact Size on Friction Transition
4.4.1. Introduction
The investigation by Zhang and Tanaka [2], described earlier, focused on the friction and 
wear mechanisms when the radius of the asperity R is a constant while the depth of asperity 
indentation 8 increases. Wear and plastic deformation consequently occur when 3 reaches a 
critical value.

Recently, on the basis of certain experimental observations [74, 75], Hurtado and Kim [76] 
proposed a micromechanical dislocation model of frictional slip, predicting that when the 
contact size is small, the friction stress is constant and on the order of the theoretical shear
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strength. However, at a critical contact size, there is a transition beyond which the frictional 
stress decreases with increasing contact size, until it reaches a second transition, where the 
friction stress gradually becomes independent of the contact size. Hence, the mechanisms 
of slip are size dependent, or in other words, there exists a scale effect. Before the first 
transition, the constant friction is associated with a concurrent slip of the atoms without the 
aid of dislocation motion. The first transition corresponds to the minimum contact size at 
which a single dislocation loop is nucleated and sweeps through the whole contact interface, 
resulting in a single-dislocation-assisted slip. This mechanism is predicted to prevail for a 
wide range of contact sizes, from 10 nm to 10 {xm, in radius for typical dry adhesive contacts; 
however, there are no available experimental data in this size range. The second transition 
occurs for contact sizes larger than 10 /xm, beyond which friction stress is once again con
stant because of the cooperative glide of dislocations within dislocation pileups. The above 
dislocation model excludes wear or plastic deformation of the sliding parts.

To clarify this issue, Zhang, Johnson, and Cheong [12] carried out a nanotribology anal
ysis using molecular dynamics by varying the asperity radius from 5 to 30 nm and keeping 
the indentation depth unchanged. The model consists of a single cylindrical asperity (rigid 
diamond) of various radii, sliding across a copper (111) plane with a speed of 5 m/s. The 
indentation depth, cl. was 0.46 and -0.14 nm (0.14 nm above the workpiece), respectively, 
where cl is the distance between the surfaces of the asperity and the specimen, defined by the 
envelopes at the theoretical radii of their surface atoms. As usual, two layers of thermostat 
atoms are arranged around the Newtonian copper atoms of the specimen to ensure that the 
heat generated during sliding can conduct out of the control volume properly. The veloci
ties of the atoms in the initial configuration of the model follow the Maxwell distribution. 
The modified Morse potential, Eq. (9), was applied to describe the interactions between the 
atoms. It must be noted that the molecular dynamics simulation cannot capture the second 
transition because it will require too long a computation time to analyze a model on the 
order of micrometers.

4.4.2. Friction Transition
Figure 41 shows snapshots of the simulation with different asperity sizes. It is clear that 
the depths of indentation in the simulations are small enough that there are no dislocations 
created within the copper, corresponding to the no-wear regime described by Zhang and 
Tanaka [2].

In the case in which the radius of the diamond asperity is less than 12 nm, the carbon 
atoms slide across the copper atoms in close contact. The surface of the copper workpiece 
conforms closely to the shape of the asperity tip in contact with the copper (Fig. 42a). 
There is also strong indication of atomic stick-slip between the atoms of the asperity and 
the workpiece (Fig. 42b). This implies that the sliding mechanism involved is similar to the 
ideal slip of two atomic planes in a perfect dislocation-free crystal. Hurtado and Kim [76] 
referred to this sliding mechanism as concurrent slip. In addition, the friction stress averages 
around a constant value of 5 GPa, regardless of the contact width (Fig. 43).

F ig u re  4 !. Snapshots o f slid ing sim ulation  w ith d iam ond asperities o f d ifferen t tip  radius, (a )  R ad iu s  -  :  nm; 
(b ) radius - 30 nm. Reprin ted  w ith  perm ission from  [12]. L  C . Z han g  et al., Trihol. Lett. 10, 23 (2 ’0 0 h . ®  2001. 
K iu w er A cadem ic Publishers.
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F ig u re  42. D iam ond  asperity  o f radius S  nm sliding on a m onocrysta lline copper surface, (a )  Surface  o f copper 
w o rkp iece  conform s close ly  to shape o f  asperity w ith good contact; (h )  stick-slip phenom enon in sliding. R ep rin ted  
w ith  perm ission from [12]. L . C\ Z han g  et al.. Iribol. Lett. 10, 23 (2001). ©  2001, K lu w er A cadem ic Publishers.

When the asperity radius exceeds 12 nm, there are considerable differences in the sliding 
mechanism involved. The surface of the copper workpiece does not conform closely to the 
shape of the carbon asperity (Fig. 44a), and there is little atomic stick-slip between the 
atoms of the asperity and the workpiece (Fig. 44b). In addition to that, the frictional stress 
now decreases with an increase in the contact width (Fig. 43). Hence, the friction stress 
is constant before the first transition, after which it decreases with the increasing contact 
width (by increasing the asperity radius). This clearly indicates a change in the mechanism 
of sliding.

When the depth of indentation is increased to 0.46 nm, a somewhat similar relationship 
between friction stress and contact width is obtained. Figure 43 compares the variation of 
the friction stress and the critical contact width at the first transition when the indentation 
depth changes. It is clear that the indentation depth influences both the critical contact size 
and the rate of friction reduction after the transition. At this greater indentation depth, 
however. Figure 45 shows that permanent damage and wear are occurring. Dislocation lines 
indicating plastic deformation within the body of the solid are visible. This behavior is similar 
to the adhering regime described by Zhang and Tanaka |2].

4.4.3. Contact Width
The contact width between the asperity and workpiece obtained by the above M D simulation 
can be compared with the predictions of the JK R  theory [13. 32], which shows, for the 
present configuration of a circular cylinder in contact with a half space (plane-strain), that 
the indentation load per unit width on the asperity, P, and the contact width, 2a, follows 
the relationship of

i r  E*(i~
p  — -------- \J2TTE*aw (14)

4 R

where R is the radius of the asperity, E* is the effective modulus of the contact system 
[13], and w is the work of adhesion and can be determined by a nanoindentation simulation 
using molecular dynamics analysis. It is found that for the present diamond-copper (C-Cu)
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F ig u re  43. Frictional stress versus contact w idth for indentation depths o f -0 .14  nm and 0.46 nm. R ep rin ted  w ith 
perm ission from [12]. L . C . Z hang  et al.. Iribol. Lett. 10, 23 (2001). ©  2001, K lu w er A cadem ic Publishers.
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Contact width (nm )

F igure  44. D iam ond  asperity o f rad ius 30 nm slid ing on a m onocrysta lline  copper surface, (a )  Surface  o f cop per 
workp iece does not con form  closely to the shape o f the asperity ; (h )  no stick-slip phenom enon in sliding. R ep rin ted  
with perm ission from  (12]. L . C. Z h an g  et al.. Tribal, l.ctt. 10. 23 (2001). ©  2001. K lu w er A cad em ic  Publishers.

system, wc_cu =  1.476 J/rrr. Because the diamond asperity is assumed to be a rigid body, the 
F/  in Eq. (12) becomes 125.36 GPa by taking E( — oc, ECu =  110 GPa, and i'Cu =  0.35 [77].

Table 5 compares the contact widths from the molecular dynamics simulation, the JK R  
theory of Eq. (14), and the Hertzian contact theory under various conditions. The values 
from the JK R  and simulation are different, although the deformation of the copper work
piece at cl =  —0.14 nm was purely elastic, and that at cl = 0.46 nm was almost purely elastic. 
A possible cause is that the contact width of the molecular dynamics simulation contains 
the effect of sliding, whereas Eq. (14) does not. It is also worth noting that the predictions 
of the JK R  theory compared to the predictions of the Hertzian contact theory is much 
closer to the molecular dynamics results. This indicates that the effect of normal adhesion 
is considerable.

In calculating the contact width above using Eq. (14), the force P used is from the corre
sponding molecular dynamics simulation, as listed in the table. In their paper [12], Zhang, 
Johnson, and Chcong also discussed the sliding on copper by a copper asperity.

4.4.4. Mechanism—An Open Question
Apparently, the above result of molecular dynamics simulation is in agreement with the 
phenomenon predicted by the dislocation model [76]. but the mechanisms are different. A  
quantitative comparison between the predictions of the two modeling methods is worth
while, although the specimen materials are different and the dislocation model is three- 
dimensional, whereas this molecular dynamics simulation is two-dimensional. Table 6 shows 
the results of the dislocation model and those of the molecular dynamics simulation.

F igure  45. S lid ing  s im ulation w ith  indentation depth 0.4(> nm and asperity radius 5 nm. R ep rin ted  w ith  perm ission 
from 112], L  C . Z hang  et »L Trihol. Lett. 10, 23 (2001). C«" 200 !. K iu w er A cadem ic Publishers.
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the case of diamond-copper

Contact Length 2a (nm)

d = 0.14 nm. P  = (1.625 N/m d — 0.46 nm. P  = 22.969 N/m
R = 5 nm JK K 2.914 3.764

Molecular Dynamics 2.870 4.120
1 lertz 0 2.160

R = 8 nm
d = —0.14 nm. P  = 0.824 N/m d = 0.46 nm, P = 27.34 N/m

IKK 3.99 5.152
Molecular Dynamics 3.731 5.740

1 lertz 0 zc 
c-i

The value of riji obtained from the molecular dynamics simulation is close, particularly in 
the case of d — 0.46 nm, to that of the dislocation model, where r  is the shear stress and 
u is the bulk shear modulus defined by Hurtado and Kim  [76] as /i = 2G , G 2/ (G , + G 2), 
in which G | is the shear modulus of the asperity and Gz is that o f the copper specimen. 
In this molecular dynamics simulation, the asperity is rigid so that G , = oo and /i = 2 G : = 
81.48 G Pa. The ratio a/b at the transition varies considerably with the indentation depth, 
where a is half of the critical contact width and b is the Burgers vector. The ratio for the case 
o f d =  0.46 nm is closer to that of the dislocation model. However, it is interesting to note 
that in the transition zone the rates of friction reduction with the contact size, £ = dr/da, 
are very different. The molecular dynamics analysis gives a much greater rate. A  better 
understanding is needed to be gained, using a three-dimensional model.

The above analysis concludes that there does exist a critical contact size on the nanometer 
scale, below which the stick-slip and sliding occurs via concurrent slip of all the atoms in 
the contact at a friction of the theoretical shear strength of the solid. W hen the contact size 
is beyound the critical value, a friction transition takes place to a much lower value. The 
critical contact size varies with the degree o f penetration of the asperity. In addition, the 
study further confirms that the Hertz theory fails to predict the contact size in vacuum at 
the nanometer scale when surface energy plays a key role.

4.5. Diamond-Silicon Sliding Systems
4.5.1 - Modeling
Let us now consider the two-body and three-body contact sliding problems defined in Fig. 31. 
In the former, asperities are fixed on the sliding surfaces. To understand the fundamen
tal deformation mechanism in a component induced by the penetration of asperities, the 
molecular dynamics model illustrated in Fig. 31a is developed [4], where the shape of a 
hard asperity, which should be irregular in reality, has been simplified to a hemispherical 
diamond tip of radius R moving with a constant speed Vc. Because a diamond can be con
sidered to be a rigid body compared with silicon, the model enables us to concentrate on 
the understanding of the deformation of silicon. In a three-bodv contact sliding, the model 
shown in Fig. 31b [4] can be used, where the motion of a foreign particle between the 
two surfaces possesses both a translation and a self-rotation. To facilitate understanding, a 
single particle is considered for the time being and is approximated by a diamond ball of

Table 6. C omparisons of dimension less shear stress (r/fx) and contact size (a/b) at transition.

Two-Dimensional 
Molecular Dynamics Model

d = -(J.I4 nm d = 0.46 nm
Three-Dimensional 
Theoretical Model

7 fX 0.061 0.037 0.023
a b 6.53 13.06 30
t (Pa/m) 2.9o A m18 1.46 x I01S 1.88 x n r
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radius /?, moving horizontally (translation) w ith a speed and in the meantime rotating 
about its center independently with a peripheral speed Vr. W hen VT = 0, the three-body 
contact sliding reduces to a two-body sliding. W hen  Vc = 0 or Vr = Vc, however, it becomes 
a pure rolling process. To avoid the boundary effect, the dimension of the moving control 
volume of the silicon specimen was taken as 9.23 x 13.57 x 4.34 nm, containing 28,773 silicon 
atoms.

4.5.2 . Inelastic Deformation
The molecular dynamics simulation showed that there always exists a thin layer of am or
phous silicon in a specimen subsurface subjected to a two-body contact sliding, as shown 
in Fig. 46a. This is in agreement with the experimental findings by Zhang and Zarud i [78] 
(Fig . 46b). The thickness o f the layer decreases with the of decreasing the penetration depth 
of asperity (Fig . 46c), <5. If  8 is large (e.g.. 763 nm), dislocations can be developed in the 
crystal silicon below the amorphous layer. W hen  8 becomes smaller, dislocations cannot be 
activated but the amorphous layer still appears. This means that on the nanometer scale, an 
inelastic deformation via amorphous phase transformation is a more energetically favorable 
mechanism. In the case of three-body contact sliding, the mechanism of inelastic deform a
tion is the same: that is, via amorphous phase transformation. However, because of the 
kinetic difference in the two-body and three-body sliding motions, the extent o f subsur
face damage is different. In general, a two-body contact sliding introduces a thinner layer 
of amorphous silicon. A  three-body contact sliding, however, may leave a perfect crystal

(a) ( b )

Surface Amorphous
layer

100 200 300 400 500 600

Asperity penetration depth (nm)
700 800

Figure 46. The subsurface microstructure of silicon monocrystals after a two-body contact sliding. The amorphous 
phase transformation has been predicted, (a) Cross-sectional view of the deformed subsurface of the specimen 
( V \  — 200 m/s, R  — 2.J nm. 5  = 0.99 nm, sliding in [100j direction). Reprinted with permission from [4], L. C. Zhang 
et al.. Tribol. Int. 31, 425 (1998). €• 1998. Elsevier Ltd. (b) Experimental result of the subsurface damage induced. 
Note the top amorphous layer (I = 23.95 nrs. R — 1/nn. 8 = 15.2 nm, sliding in (100] direction) Here, cach spot 
represents a silicon atom. Reprinted with permission from 178j. I... (\ Zhang and 1. Zarudi. Int. J. Mcch Sci. 43. 
1985 (2001). €' 2001, Elsevier Ltd. (c) Experimental!) measured thickness variation of amorphous layer wilh the 
indentation depth of the asperity (I ’ = 23.95 m/s, R ~ 1/um. sliding in (100) direction).
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structure alter sliding, although wear has happened, depending on the penetration depth 
o f the particle, its speed ratio of self-rotation to translation, and the variation of atomic 
bonding strength affected by surface contamination. It was also found that the variation of 
sliding velocity from 20 to 200 rn/s does not change the deformation mechanisms described 
above.

Figure 47a is a molecular dynamics pediction on the deformation caused by a three-body 
contact sliding. It is clear that al location (2-4), specified in the figure, the shape of the 
crystal-amorphous boundary is irregular; but at location (1-3), the boundary is mostly regu
lar along the (111) atomic lattice orientation. This coincides very well with the experimental 
findings reported by Zarudi et al. [79]. shown in Fig. 47b-d. According to the theory of con
tact mechanics, the stress fields at locations (2-4) and (1-3) are different. A t the former 
location, the hydrostatic stress component dominates so that the boundary does not go along 
a single atomic lattice orientation. A t the latter location, however, the shear stresses play a 
central role, and hence the phase change term inates in a particular orientation. The above 
observations are aligned with the stress criteria for various phase transformation events in 
silicon proposed [3, 80].

4.5.3. Wear Regimes
Sim ilar to the wear mechanisms for the diamond-copper sliding system [2] discussed previ
ously, the wear regimes of the current diamond-silicon system also depend on sliding con
ditions, as shown by the mechanism diagram, Fig. 48. In a two-body contact sliding with a 
given sliding speed, the deformation of a silicon monocrystal falls into the no-wear, adhering, 
ploughing, or cutting regime when the asperity penetration depth varies (see the left half of 
the figure). Deformation without wear happens only under an extremely small penetration 
depth, when the atomic lattice of silicon deforms purely elastically. W ith  an increase in the 
penetration depth, adhering takes place (Fig . 49a), in which some surface atoms stick to the

.») m m m n . «•>

w s t

Figure 47. Comparison of theoretical prediction and experimental observation. In (c) and (d), each spot represents 
a silicon atom observed in experiment, (a) Molecular dynamics prediction of the deformation in the scratch gener
ated by nanopolishing (a cross-sectional view), (b) Cross-sectional view of the deformation in a scratch generated 
by nanopulishing (experiment), (c) Atomic orientations at the boundary (location (2-4)). (d) Atomic orientations 
at the boundary (location (1-3)). Reprinted with permission from [7l)j, I. Zarudi et al.. Nanotechnology 15, 104 
(2004) €) 2004. Institute of Physics Publishing.
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Figure 48. Wear diagram. Diamond asperities/particles move from the right to the left. Rotation of particles is 
anticlockwise. Reprinted with permission from |4], L.. C. Zhang and H. Tanaka, Tribal. Int. 31. 425 (1998). V  1998, 
Elsevier Ltd.

asperity surface and move together with it to cause wear. However, these atoms may return 
to the silicon substrate during sliding if the specimen surface has not been contaminated. 
W hen the penetration depth increases further, a new wear state, ploughing, characterized by 
an atomic cluster being pushed to move with the asperity, will appear (Fig. 49b). A  further 
increase of the penetration depth leads to a continuous cutting process.

In a three-body contact sliding, however, silicon will experience different wear regimes. 
They are the no-wear, condensing, adhering, and ploughing regimes, as shown in the right 
half o f Fig. 48. A fte r the pure elastic deform ation in the no-wear regime, the amorphous 
phase under the particle will experience a remarkable condensing locally without material 
removal. In other words, because the density of the surface silicon atoms under particle 
indentation becomes higher, condensing creates a sliding mark on the specimen surface (see 
Fig. 50a). Thus, condensing is a special wear process without material removal. A  further 
particle penetration will lead to adhering and ploughing (Fig. 50b). These regimes are similar 
to the corresponding ones in the two-body contact sliding. Cutting rarely happens in three- 
body sliding processes, but it is possible if the particle penetration depth becomes sufficiently 
large and the self-rotation speed becomes small.

Another interesting phenomenon associated with the three-body contact sliding is the exis
tence of a regime of no-damage wear. U nder certain sliding conditions, the atomic bonding 
strength among surface silicon atoms can be weakened chemically. W hen this happens, these 
atoms can be removed via adhesion because the diamond-silicon attraction is still strong, 
as shown in Fig. 51. Because of the recrystallization behind the particle, a worn specimen 
may appear as damage free in the majority of its subsurface, with only little distortion within 
one or two surface atomic layers. In conjunction with the phenomenon happening in the 
condensing regime discussed above, it becomes obvious that a perfect subsurface after a 
three-body contact sliding does not necessarily indicate a no-wear process.

Figure 49. Characteristics of various deformation regimes in two-body contact sliding processes, a cross-sectional 
view ( I , — 2U0 m/s, R ~  2.1 nm. sliding in [ 100] direction), (a) Adhering (<> — (J. 19 nm); (b) ploughing (5 = •).39 nm). 
Reprinted with permission from |4|. L. C. Zhang and H. Tanaka. Triboi. Int. 31. 425 i)99rt). € 1998. Llsevier Ltd.
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Figure 50. Deformation regimes associated with three-body contact sliding, a cross-sectional view (Kc = 200 m/s, 
Vr — 100 in/s, R — 2.1 nm, sliding in 11()()| direction), (a) Condensing (fi = 0.19 nm); (b) ploughing (5 = 0.99 nm). 
Reprinted with permission from |4], I.. ('. Zhang and H. Tanaka. Inbol. Ini. 31, 425 (1998). © 1998, Elsevier Ltd.

4.6. Multiasperity Sliding
4.6.1. Modeling
Previous study of a single sliding asperity has provided us with important knowledge on 
the deformation mechanisms of the friction and wear of monocrystalline materials. In a 
real sliding system, however, a counterpart material is actually subjected to multiasperity 
interactions, as illustrated in the inserts of Figs. 3 la  and 31b. W hen  the first asperity has 
created a damaged zone, the material may deform differently under subsequent sliding inter
actions. Cheong and Zhang thus discussed the effects of the sliding by multiasperities [81].

The mechanics model consists of three spherical diamond asperities. A , B  and C, sliding 
on an atomically smooth silicon surface, as illustrated in Fig. 52. The ir relative positions 
and orientations are defined by their distances, L AM and LAC, and angles with respect to 
the sliding direction, a and 0. Three configurations are of special interest; ( I )  a = 6 = 0°, 
with Lah < L m , representing a repeated single-asperity sliding so that the effect of residual 
subsurface damage can be understood; ( I I )  a = 0° and 0 = 90°, with L AH = L AC, standing 
for the interaction of two parallel asperities; and ( I I I )  a = 90° and 0 = 0°, indicating the 
case with parallel sliding asperities coupled with an interaction from a third asperity. Again, 
because diamond is much harder than silicon, the asperities are modeled as rigid spheres. 
These spheres slide across the silicon surface at a specified velocity o f 40 m/s. The maximum 
depth of asperity penetration is 1.0 nm.

4.6.2 . Configurations II and III
In the cases of configurations I I  and I I I ,  the asperities do not retrace the damaged zones. At 
the depth of asperity penetration of 1.0 nm, the wear mechanism observed is that of cutting.

Diamond ball

Figure 51. Material removal via adhering in a three-body sliding process when the C-Si interaction is three times 
stronger than that of Si—Si. The particle translation is from the right to the left, and its rotation is anticlockwise. 
(1.. — 200 m/s. I = 100 m/s. R — 2.1 nm, and fi = 0.19 nm). Reprinted with permission from [4], L. C. Zhang and 
H. Tanaka, Irihol. Int. 31. 425 (1998). C1 1()98, Elsevier Ltd.
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Figure 52. Mechanics model for multiasperity contact sliding. Reprinted with permission from [81], \V. C. D. 
Chcong and L. C. Zhang, Ini. J. Mater. Prod. Tech. 18. 398 (2003). €> 2003. Interscience Enterprises Inc.

The plastic deformation resulting from the sliding asperities is very localized. Figure 53 
shows a cross section of the silicon workpiece through the center of the asperities. It can be 
seen that there is almost no subsurface damage to the silicon workpiece between the two 
asperities. Plastic deformation is very localized and occurs beneath the asperities.

As in nanoindentation [33], the sliding asperities A . B. and C  also create trails of a sub
surface amorphous layer in the damaged zones. Phase transformation of silicon occurs at 
the leading edge beneath the sliding asperity, resulting in the formation of amorphous chips 
and an amorphous trail along the path traversed by the asperities. Dislocations are absent 
at this particular depth of asperity penetration, which indicates that the plastic deformation 
is solely caused by phase transformation.

4.6.3. Configuration I
In this case, the second and third asperities, B  and C, retrace the damaged path caused 
by asperity A . Therefore, the cutting mechanism involved in the first and the following two 
asperities are very different. Asperity A  cuts the silicon workpiece in the same fashion as in 
the case of a single sliding asperity, causing phase transformation of the original diamond 
cubic silicon. Asperity B, however, ploughs through the residual amorphous layer in the 
wake of asperity A . No further phase transformation is found, but the amorphous silicon 
atoms are pushed away as the asperity ploughs through.

4.6.4. Phase Transformation
As shown above, something apparent in the silicon workpiece in all the three configurations 
is the formation of an amorphous subsurface layer in regions traversed by the diamond 
asperities. This is analogous to the amorphous damaged zone resulting from nanoinden
tation. Hence, it is worthwhile to draw comparisons and to predict the process of phase 
transformation on the basis of results obtained from nanoindentation [3, 33].

W ith  configurations I I  and I I I ,  wear occurring via cutting is achieved by chipping the 
amorphous silicon. B y  considering the exact coordinates of the silicon atoms, it is found 
that the transformation mechanism is sim ilar to that of nanoindentation [33]. Diamond 
cubic silicon first transforms into its /3-tin phase and then, on the removal o f stresses, trans
forms into an amorphous phase. This explains the trail o f subsurface amorphous silicon in 
the damaged zone behind each sliding asperity. The mechanism o f phase transformation 
is reflected in the coordination numbers of atoms near the regions beneath the asperities.

Figure 53. Cross-section of the silicon workpiece through the center of asperities. Reprinted with permission 
from Ml. \. C. Zhann and H. Tanaka. Tribal. Int. 3! 425 ( 1998). <D 1998. Elsevier Ltd.
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Figure 54. Cross-sectional view of asperities A. B. and C in configuration I. A light-colored circle represents an 
atom with coordination number 4. and a dark circle represents an atom with coordination number 6. Reprinted 
with permission from |4|. L. C. Zhang and H. Tanaka. Tribol. Ini. 31. 425 (1998). © 1998. Elsevier Ltd.

It can be seen that a cluster of six-coordinated body-centered tetragonal /3-tin silicon atoms 
indicated by darkened circles (Fig . 54) forms near the leading edge beneath each asperity. 
Four-coordinated diamond cubic silicon transforms to its six-coordinated /3-tin form as a 
result o f the stresses induced by the asperity. W hen the stresses are removed as the asperity 
slides past, the atoms transform into an energetically more favorable amorphous form. The 
coordination number o f the silicon atoms in the trailing amorphous region is mostly equal 
to four. Therefore, as the asperity slides across the silicon workpiece, diamond cubic sili
con continuously transforms into fi-tin silicon beneath the asperity and then transforms into 
amorphous silicon when the asperity passes, leaving a layer of subsurface amorphous silicon 
in its wake.

Figure 55 shows the number of /3-tin silicon atoms formed during the cutting process with 
asperity configurations II and I I I .  The number of /8-tin silicon in configurations I I  and I I I  
is three times that of a single asperity cutting process. This indicates that the formation of 
/3-tin silicon is highly stress-state dependent and occurs only beneath the three asperities. 
Although regions between the asperities are compressed because of the proximity of the 
asperities, it is likely that /3-tin silicon does not form because of the absence of the required 
stress states.

W'ith configuration 1, asperity A  cuts the silicon workpiece in very much the same way 
as in the other two configurations described above. The asperity cuts through the diamond 
cubic silicon, leaving behind a trail o f subsurface amorphous silicon. However, there is a 
vast difference in the silicon phase transformation involved because of asperities B  and C, 
which represent subsequent cuts into the amorphous zone. In this case, the six-coordinated 
atoms also form beneath asperities B  and C  (Fig. 54). This implies that the /3-tin silicon 
phase is recoverable from the amorphous phase, provided that the required stress field is

1 200

Config. II 
Single Asperity 
Config. Ill 
Config. I

Number of time steps

Figure 55. Number of six-coordinated fi-tin silicon atoms in configurations I. II, and I I I  compared to that with a 
single asperity. Reprinted with permission from [4). L. C\ Zhang and H. Tanaka. Tribol. Ini. 31. 425 (1998). © 1998, 
Elsevier Ltd.
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achieved. It must be noted that only some of the /3-tin silicon is recovered as asperities B  
and C  retrace the amorphous damaged zone. That is why the number of /3-tin s ilico i atoms 
in configuration I is slightly less than in configurations II and I I  (F ig . 55).

5. CHARACTERIZATION OF CARBON NANOTUBES
5.1. Introduction
Carbon nanotubes have attracted tremendous attention since their discovery in 1991 [82]. 
Experimentally, they have been observed as single-walled nanotubes (S W N T )  [83, 84], m ul
tiwalled nanotubes (M W N T )  [82, 85, 86], bundles [87, 88] and nanoropes [89, 90]. They have 
remarkable electrical and mechanical properties. For example, they have tensile strength 20 
times that of high-strength steel alloys and have a current carrying capacity 1000 tines that 
of copper [91 ]. As such, nanotubes are expected to have a variety o f applications, such as in 
memory chips, sensors, probes, tips, and reinforcing phase in composite materials.

W ith  the rapidly growing interest in nanotubes and the difficulties in direct measurement 
resulting from its nanoscale dimension, molecular dynamics simulation has been widely used 
in characterizing the mechanical properties and understanding the mechanism of deforma
tion. However, such simulations have to be done carefully to represent the real situation. 
Sim ilar to the nanoindentation and nanotribology problems discussed previously, to have a 
reliable molecular dynamics simulation of carbon nanotubes, it is also important to select 
an appropriate interaction potential so that it describes the true deformation of a nanotube 
correctly and effectively. Second, during a loading process, improper treatment o f the tem
perature rise can lead to incorrect simulation results. In m olecular dynamics, as has been 
extensively discussed in previous sections, heat conduction is accomplished via thermostat 
atoms and various thermostatting methods. Adiabatic relaxation method, isokinetic ther- 
mostattting, Andersen stochastic thermostatting, and Nose-Hoover feedback thermostatting 
were all reported in the literature [92] for temperature conversion. The adiabatic method 
is quite noisy. In the isokinetic thermostatting, the temperature is maintained in different 
ways. For example, in the Berendsen thermostat scheme with velocity scaling, the velocities 
of the thermostat atoms are scaled to fix the total kinetic energy. In the Gaussian feed
back or Evans-Hoover scheme with force scaling, however, the kinetic energy is monitored 
and information is fed back into the equations of motion so that the kinetic energy is kept 
constant to dissipate heat by controlling the thermostatting force. The velocity scaling has 
been used in general because it is somewhat a simpler scheme to implement. For small 
time steps, the Gaussian isokinetic method and velocity scaling method are identical [92]. 
However, a very small time step will give an unusually high elongation speed. In contrast, 
a small displacement step with a small time step will be com putationally expensive. The 
flaw in the isokinetic-thermosatting method is that it is impossible to separate the effects 
of thermostatting on rate processes. The other two schemes also have this lim itation to a 
certain extent. Third, the system has to be relaxed initially as well as during the simulation so 
that the velocities of the Newtonian and thermostat atoms reach equilibrium at the specified 
temperature of the simulation; an appropriate time step and displacement step has to be 
selected to get a reasonable elongation speed.

It is unfortunate that no comparison or clarification is available in the literature as to the 
key issues discussed above for a reliable molecular dynamics simulation of carbon nanotubes. 
For example, researchers have used either the Tersoff-Brenner (T-B) potential or the tight- 
binding potential in their m olecular dynamics calculation on nanotubes. Those who used the 
potential claimed that the potential was selected because it could avoid the overbinding of 
radicals. However, the overbinding of radicals in a carbon nanotube is possible only when 
the bonds are broken. Sinnot and coworkers [93, 94] used the first few rows of atoms on both 
ends as boundary atoms and the next few rows as thermostat atoms applying the Langevin 
heat baths. Zhou and Shi [95] used the first two rows of atoms on both ends as boundary 
atoms but treated all the other atoms as thermostat atoms. No information is available on 
the method of temperature conversion. Moreover, various time steps, ranging from 0.15 to 
15 fs, have been used in the simulation of carbon nanotubes. A  natural question is, therefore; 
Which simulation scheme w ill be reliable and effective?
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In this section, we will discuss various critical issues for a reliable simulation by the molec
ular dynamics method for analyzing carbon nanotubes and their mechanical properties. In 
particular, we will address the problems in selecting potentials, number of thermostat atoms 
to control the simulation temperature, type of thermostats for the conversion of heat, time 
and displacement steps, and number of relaxation steps to reach the dynamic equilibrium. 
On the basis o f these variables, the structural changes of arm chair and zigzag nanotubes 
and their mechanical properties, including Young's modulus and Poisson's ratio, are also 
investigated.

5.2. Modeling
The interatomic forces were described by the Tcrsoff potential [6-7] and the empirical bond 
order potential formulated by Brenner based on Tersoff potential and known as the T-B 
potential [96, 97]. The simulations were carried out at 300 K  with a time step of 0.5 fs. Open 
single-walled arm chair nanotubes (10, 10) with 100 repeat units along the axial direction and 
zigzag nanotubes (17, 0) with 58 repeat units along the axial direction, both having a length 
of about 245 A . were examined. The first two layers of atoms on both ends were held rigid. 
The next four layers were taken as thermostat atoms, and the remaining atoms were treated 
as Newtonian atoms. First, the tubes were annealed at the simulation temperature for 5000 
time steps. Then the rigid atoms on both ends were pulled along the axial direction at an 
increment of 0.05 A  unless otherwise stated in the discussion. Each  displacement step was 
followed by 1000 relaxation steps to dissipate the effect o f the preceding displacement step 
over the entire length of the tube. In another simulation, all the atoms except the boundary 
atoms that were held rigid were treated as thermostat atoms, as in Ref. [95]. In this case, each 
displacement step was followed by 50 relaxation steps (in  Section 3.4, a different number of 
relaxation steps were used to examine its effect). The stress was calculated by dividing the 
axial force by the cross-sectional ring area of the nanotube. The equivalent wall thickness of 
a carbon nanotube is taken as 0.617 A  [98], which gives the area as 2.582 x n r.

5.3. Deformation Characteristics
For tie  armchaii (10, 10) and zigzag (17, 0) tubes under tensile loading. Fig. 56 compares 
the axial stress as a function of strain with both Tersoff and T-B potentials using Berendsen 
and I vans-Hoover thermostats.

The stress-strain relation has four clear stages. Initially it is linear (stage 1). It then becomes 
nonlinear (stage 2) and reaches a plateau. A fter this the stress increases sharply (stage 3), 
reaches the maximum, and then drops down to zero or close to zero (stage 4). The Young's 
moduli of the tubes were evaluated from the linear region (stage 1), which gave a value of 
3.96 TPa for the armchair tube and 4.88 T P a  for the zigzag tube. As pointed out by Voden- 
itcharova and Zhang [98], the value of the Young's modulus of a nanotube depends on the 
thickness of the tube. Here we use the equivalent thickness of 0.617 A , as mentioned before. 
The Poisson's ratios, (\ r/ r)j(A///), were found to be 0.15 for the arm chair tube and 0.19 for 
the zgzag tube, where A r and A / are the changes in tube radius and tube length, respectively.

5.4. Potential
At the initial stages of loading, all the stress-strain curves overlapped with one another, and 
it is f.lmost linear. Thereafter, the Tersoff potential curve lies slightly above the T-B potential 
curvcs, but it has the same trend up to a strain of 0.34 and 0.2 for the armchair and zigzag 
tubes respectively. The armchair tube has a maximum stress o f about 1357 G Pa  around a 
strain of 0.4, and the zigzag tube has the maximum stress of 754 G Pa  around a strain of 
0.22. A fter this, a large cross-sectional necking happens. If  the tubes are unloaded from a 
p.oin: little before the maximum stress, the stress-strain curve at unloading overlaps with the 
loadng curve, showing that the tube deformation up to this stage is completely elastic.

W th  both potentials at various stages of the loading process, the structural changes of the 
tube were examined by unrolling the tube. Figs. 57a-c and 58a-c give the two-dimensional 
view of a portion of the unrolled arm chair and zigzag tubes at stages 1, 2, and 3 when



442 N an o- C harac te riza tio n  o: M a te r ia ls

(a)

Figure 56. Strcss-strain curves with Tcrsoff and Tersoff-Brenner potentials using Berendsen and Evans--Hoover 
thermostats. |T-B( I ) is the calculation with the lirsi two rows of rigid atoms and nexl four rows of thermostat atoms 
on both ends. T-B(2) is the calculation with the first two rows of rigid atoms and all other atoms as thermostat 
atoms. T-B(3) is the calculation as in T-B(2) but with a smaller displacement step of 0.008 A.]; (a) ( 10. 1)) armchair 
SWNT; (b) (17. 0) zigzag SWNT.

using the T-B potential. They show that during loading, both the angles and lengths of the 
bonds change. In the zigzag tube, on the application of axial stress, both types of bonds are 
stretched because o f the way that they are oriented.

For an arm chair tube, Figs. 59a and 59b, compares the variation of these geometrical 
parameters with the two potentials. W ith  the T-B potential, the change in bond angles is 
more, but with the Tersoff potential the change in bond lengths is more. At about maximum

Figure 57. Structural changes of an armchair lube { 10,10) in different stages, {a) In deformation stage . indicated 
in Fig. 56a; (b) in deformation stage 2, indicated in Fig. 56a; (c) :n deforma lion stage 3. indicated in F ... 56a.
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Figure 58. Structural changes of a zigzag tube (17,0) in different stages, (a) In deformation stage 1. indicated in 
Fig. 56b; (b) in deformation stage 2, indicated in Fig. 56b: (c) in deformation stage 3. indicated in Fig. 56b.

loading, some of the stretched bonds are broken and the Tersoff potential curve starts to 
deviate from the T-B curve. This seems to indicate that when bonds are broken, radicals 
will form, and hence the overbinding effect that was not considered in the development of 
Tersoff potential would become important. The T-B potential results showed the necking of 
the tube followed by the formation of a one-atom chain, as shown in Figs. 60 and 61. The 
use of the Tersoff potential, however, did not bring about any necking or formation of the 
one-atom chain, and the tube broke suddenly after reaching the maximum stress.

The above comparison and discussion show that the T-B potential describes the whole 
process reliably. However, the Tersoff and T-B potential curves overlap at the initial stages, 
indicating that the Tersoff potential can be used for the calculation of the mechanical prop
erties of a carbon nanotube such as the Young's modulus and Poisson’s ratio.

5.5. Number of Thermostat Atoms
It is necessary' to clarify the issue because in the literature the number of thermostat atoms 
was selected and used without a rational reason. O ur comparison was done with the T-B 
potential using the Berendsen thermostat.

The first method is calculation with the first two rows of rigid atoms and next four rows 
of thermostat atoms on both ends. This method showed little fluctuation in the temperature 
up to the third stage. W hen stage 4 starts, the tube falls into pieces and the temperature 
increases suddenly and sharply. This is because when some bonds break at the same time, a 
huge amount of energy is released and leads to a sudden increase in temperature. Moreover, 
with >uch an arrangement of thermostat atoms, no significant necking will take place.

Th~ second method is calculation with two rows of rigid atoms and all other atoms as 
thermostat atoms. W ith this method, a remarkable necking occurs in stage 4. The armchair 
tube Parted necking at a strain o f 0.39, and the zigzag tube started its necking at a strain of
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Figure 59. Comparison of the changes in bond angles and bund lengths of an armchair carbon nanotube with the 
Tersof and Tersoff-Brenner potentials, (a) Bond angles (bal and ba2); (b) Bond lengths (bll and b12).
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0.22. The temperature increase in this stage is only 20°-30°C in a short period. On further 
application of the tensile force, a one-atom chain formed, as shown in Figs. 60 and 61 and 
grew with the applied force before the tube breaks, as reported in the literature [95, 99]. 
W ithin the chain, the strain is constant with a C -C  distance of 1.7 A. In other words, on 
further pulling, the C -C  distance in the atomic chain did not change, but more and more C  
atoms joined the chain. This is known as carbon chain unravelling and was observed in an 
experiment when a capped nanotube was opened bv the force of an electric field [ 100]. H o w 
ever. analysis of the current molecular dynamics results showed that the electronic structure 
of this chain is close neither to the cum elcnic form nor to the bond alternate polyync, as 
suggested in Ref. [100]. It is believed to be a pure unravelling process that originates from 
a place at which a bond is broken. Although in chemical terms the valency of carbon is not 
satisfied, it may be possible to have such a chain under stress for a short period. Once the 
growing chain was detached from the tube, the C -C  distance decreased to 1.33 A , which is 
equivalent to a C -C  double bond, as in the cumelenic form. During necking, some bonds are 
broken and some new bonds are formed to facilitate the closure of the ends at the breakage. 
As a result, the temperature did not go up suddenly. The slight increase in temperature can 
be attributed to the activation energy of the unravelling process.

The above comparison and analysis clearly show that the second method is the right one 
to use in molecular dynamics simulation of carbon nanotubes. Note that the loading rate in 
the molecular dynamics calculations is much higher compared to that in an experiment. As 
such, in the experiment not much heat will be generated. In the simulations, because o f the 
computational cost and numerical accuracy, the loading rate cannot be as small as in the 
experiment. Hence, one has to find an effective way to conduct the heat that is produced as 
a result of the higher loading rate. This could be achieved either by relaxing the atoms for a 
long time between each step of pulling, w'hich is computationally expensive, or by treating all 
the atoms as thermostat atoms, as in the second method. The first method is not reliable in 
this sense because the Newtonian atoms are not fully surrounded by the thermostat atoms; 
that is, they are exposed to the environment. As such, the heat conduction in the simulation 
cannot reflect correctly the real deformation process of a nanotube under experimental 
conditions.

5.6, Influence of Thermostat Schemes
Heat conversion is a central component in a correct molecular dynamics simulation [72]. 
An inappropriate conversion scheme will result in incorrect atomic motion and deformation. 
To examine the effect o f thermostat schemes, we use T-B potential, as it is reliable for 
nanotubes. For the arm chair tube, both the Berendsen and Fvans-H oover thermostats gave

jgP&SK a  o o o  «  o -at o  e

Figure 61. Atomic chain of a zigzag luhc when using Berendsen ihermosuu
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similar results until maximum stress. A fter this point, with the Bcrendsen thermostat (first 
method arrangment) the stress dropped down to zero, the temperature went up, and the 
tube broke into pieces without the formation of an atomic chain; with the Evans-Hoover 
thermostat and the Berendsen thermostat (second method arrangment), the stress dropped 
down to a value close to zero, the tube necked and formed an atomic chain and then broke 
into two pieces with closed ends.

For a zigzag tube, the Evans-Hoover thermostatting scheme showed an entirely different 
behavior than the armchair one once the maximum stress was reached. The zigzag tube 
started to neck at both ends at a strain of 0.23 as with the Berendsen scheme, but on further 
tension, the necking propagated, as shown in Fig. 62a until the whole tube became narrow, 
which happened at a strain of 0.475. During this period the stress was almost constant. This 
could be because in the zigzag tube both types of bonds can get stretched, as shown in 
Fig. 62b and 62c. As such, the above necking and its propagation is possible, whereas in the 
armchair tube, the bonds that are normal to the direction o f pulling cannot get stretched. 
As such, the stretched bonds will break once they reach the maximum stress. On further 
application of the tensile force, again the tube necked at both ends, formed a one-atom 
chain, and broke within a short period. It is interesting to note that the ultimate failure of 
the tube happens around a strain of 0.47, which is closer to that of an armchair tube.

The Evans-Hoover scheme can be understood more easily if the discussion in Section I 
is recalled. In this scheme, the force scaling is done on all the atoms, irrespective of the 
number of thermosat atoms used in the calculation, and the kinetic energy is kept constant. 
Thus, the heat conduction problem is avoided and a very smooth stress-strain curve was 
obtained. However, with this scheme, one has to work with small time steps. This means 
that to have a reasonable loading rate, the displacement step must be small, which would 
increase significantly the overall computational time. Hence, if the Berendsen scheme with 
the second method of thermostat atom arrangement is used, one can minimize the heat 
conduction problem and improve computational efficiency.

5.7. Integral Time Step, Displacement Step, and Relaxation Step
In molecular dynamics simulations, the time step has to be selected to reduce the round-off 
error and truncation error. A  suitable time step should be less than 10% of the vibration

( b )

Figure 62. Deformation of a zigzag tube, (a) Showing the necking that propagates along the tube; (b) showing 
the stuicturc on unrolling the tube at the narrower part: (c) showing the structure on unrolling the tube at the 
wider oari.
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period of an atom and, accordingly, for diamond, a time step of 0.5-0.8 fs will provide good 
results. Hence, in our calculations, we have used a time step of 0.5 fs.

Displacement step is usually chosen according to the time step used. For the armchair 
tube, variation in the displacement step did not show any significant difference in the stress- 
strain relationship. However, for the zigzag tube, the Berendsen scheme with the second 
method arrangement of thermostat atoms and a displacement step of 0.05 A  showed failure 
at a strain of 0.23. W hen the displacement step was reduced to 0.008 A , it brought about 
necking and its propagation over the entire length of the tube and the formation of the one 
atom chain and then the ultimate failure at the strain of 0.44, sim ilar to the application of 
the Evans-H oover thermostatting scheme. In other words, a little lower elongation speed 
showed a more reasonable results. Moreover, on unloading the tube from a point during the 
necking propagation showed that the necking is elastic, although the unloading curve took 
a different path until a strain of 0.182. This is because on unloading, the bond lengths and 
bond angles do not change in the same way as on loading.

Initially, the tube is relaxed to its dynamic equilibrium status at the specified simulation 
temperature. W e find that to reach this equilibrium about 4000 molecular dynamics steps are 
required. As a result, in all our calculations the initial relaxation is done for 5000 molecular 
dynamics steps. A fter the initial relaxation, tensile loading is done via small displacement 
steps. The effect of the displacement is dissipated over the entire length of the tube, and sub
sequently, a dynamic equilibrium is achieved by relaxing the system after each displacement. 
The required number of relaxation steps varies with the number of thermostat atoms used. 
The first method’s arrangement required nearly 1000 relaxation steps to reach the dynamic 
equilibrium. Even so, the necking and the one-atom chain formation were not observed. In 
contrast, the second method's arrangement, with 50 relaxation steps, showed the necking 
and the one-atom chain formation for both arm chair and zigzag nanotubes.

These results clearly show that even with 20 times the relaxation steps used in the second 
method, the first method fails to show the necking once the maximum stress is reached. 
For the zigzag tube, a smaller displacement step of 0.008 A  is required to get the correct 
behavior, where the ultimate failure of the tube happens around a strain of 0.44.

5.8. Summary
In summarizing the above discussion, we can conclude that the simulation using the T-B 
potential and the Berendsen thermostat with all atoms as thermostat atoms (exccpt the 
rigid ones) with 50 relaxation steps following each displacement o f 0.008 A  is the correct, 
reliable, and cost-effective method. Following the reliable simulation technique identified in 
this study, it is quantified that the Young’s modulus and Poisson’s ratio o f the arm chair tube 
are 3.96 T Pa  and 0.15, respectively, and the zigzag tube are 4.88 T Pa  and 0.19, respectively. 
The armchair tube has a higher tensile stress compared to the zigzag tube. In both armchair 
and zigzag nanotubes, under tensile loading, the carbon chain unravelling and the one-atom 
chain were observed at a strain of around 0.4.

6. D E FO R M A TIO N  O F C O P P E R  N A N O W H IS K E R S

6.1. Introduction
A  complete figure of the stress-strain behavior of a nanoscale specimen under tensile loading 
is of primary importance to the development of nanotechnology. However, the inform a
tion about the mechanical properties of nanoscopic specimens is lacking, and the potential 
problems of testing such tiny specimens have not been explored, although there have been 
some investigations on the deformation of microscopic specimens. This is because adequate 
testing techniques arc unavailable. O n the nanometer scale, specimen preparation becomes 
very difficult, and a mechanical testing must be well controlled with a high level o f stability 
in terms of temperature, strain rate, crystal orientation, and shape of specimen.

In this section, we will use the molecular dynamics method to investigate the deformation 
of copper nanowhiskers subjected to uniaxial tension, based on the study carried out by 
Zhang, Tanaka, and Gupta [ I0 l j .  Some important aspects, such as the effects of the shape
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and atom ic orientation of tesing samples, will be discussed in detail to provide the theoretical 
basis for potential experimentation.

6.2. Modeling
As already discussed earlier in the chapter, the Morse potential is reliable for investigating 
the deform ation of monocrystalline copper. For increasing the computational efficiency, a 
basket of neighboring atoms with 14 units was maintained for each atom, whereas the Morse 
potential cutoff radius was taken as nine units. The basket was updated adequately within 
a certain time interval by considering both the accuracy and efficiency. A  criterion used 
for updating was that an atom not in the basket does not enter the Morse potential cutoff 
radius, or an atom that was within the cutoff radius docs not leave the basket before a 
further updating. The motion of an atom depends on the strain rate of testing, and thus a 
higher strain rate needs a larger basket.

To properly maintain the temperature at 298 K  during the molecular dynamics simulation, 
thermostat atoms were arranged at the two loading ends of the specimen, which absorb
the rise in velocity momentum of Newtonian atoms. Figure 63 shows the initial atomic
configuration of a specimen with a hexagonal cross section. The reason for using such a
special cross section shape will be presented in the next section.

6.3. Effects of Atomic Orientation and Specimen Shape
W hen a simple square model with a (100) lattice in the direction of loading is subjected to 
free relaxation, a shrinkage of about 2 3 %  occurs. The surface atoms tend to restructure to 
(111) to maximize their atomic density, whereas those in the core of the specimen remain 
in a stable F C C  configuration of (100). As a result, a shrinkage stress is generated before 
the uniaxial tensile loading. A  series of testing results shown in Table 7 demonstrate that the 
shrinkage stress is sensitive to the dimensions of nanowhiskers, and smaller specimens have 
higher shrinkage stresses. This is because on the nanometer scale a specimen always tends 
to deform in a manner that may minimize its net potential energy.

In an F C C  structure, atomic lattices in different directions have different atomic den
sities. It is therefore not difficult to understand that specimens with different shapes and 
surface orientations would have different dimensional stability and shrinkage stress. The 
above observation suggests that the shape of a specimen may be stabilized and the shrinkage 
stress be minimized by maximizing the surface atomic density. A  systematic investigation 
shows that a specimen with a uniform square cross section of two (11 1) and two (112) sur
faces has a lower shrinkage stress. A  specimen, oblique in shape, with all its four surfaces as 
(111) planes shows even less distortion during relaxation. The best specimen shape is with 
a hexagonal section, which has four (111) and two (100) surfaces, as shown in Fig. 63. Such 
specimens do not have sharp edges and can maximize the gross density of the atoms on the

Figure <»3. The atomic model of a hexagonal nanowhisker specimen of monocrystalline copper.



Table 7. Effects of size, shape, and surface atomic structure of copper monocrystal nanowhisker.
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Specimen
Type

Specimen
Size

Atom
Number

Shrinkage Stresses 
Generated, MPa

Ultimate Tensile 
Strength, MPa

Strain at the 3nset of 
Plastic Defamation

10x1x1 263 9000 14000 12.5
Specimen with a 30 x 2 x 2 763 7500 9000 6.9

rectangular 30 x 2 x 4 1373 4000 8100 8.0
section and 30 x 4 x 4 2471 3000 9100 18.2
(100) surfaces 30 x 4 x 8 4667 1500 8200 15.8

30 x 8 x 8 9971 750 6400 7.4
34 x 8 x 16 19355 500 — —

Hexagonal 48 x 9 x 7 3871 0 6000 5.5

surfaces and minimize the distortion and shrinkage stress. Thus, this type of specimens can 
produce reliable results.

6.4. Elastic Modulus and Ultimate Tensile Strength
W ith most materials, there is a gradual transition from elastic to plastic deformation, and 
the onset point of plastic deformation is difficult to define with precision on the macroscopic 
or microscopic scale. For a nanospecimen, however, plastic deformation can be said to have 
occurred when an atom has changed its position permanently. The last column of Table 7 
indicates the strain needed for the occurrence of the first predominant slip in different 
specimens and directly gives rise to the modulus of elasticity. The modulus of elasticity, 
using the most stable hexagonal specimen, is 120 G Pa , which is very close to that of 130 
G Pa  obtained by a macroscopic engineering test. This indicates that macroscopic testing can 
be used instead of the difficult nanometer-scale experiment, if the measurement of elastic 
modulus is the only concern.

It is the fact that the ultimate tensile strength (U l 'S )  in a single crystal can be sometimes 
higher than that of a polycrystal of the same material, tested at the same temperature 
and strain rate. A  distinct rise in U T S  has also been observed when the size of specimens 
reduces to the microscopic scale; for instance, to a microwhisker as small as 6.8 /xm in 
diameter, which shows a U T S  of about 1950 M P a  as opposed that of 220 M Pa  measured with 
macroscopic specimens of polycrystal copper. The present molecular dynamics simulation 
shows that the U T S  of a nanowhisker of monocrystalline copper can go up to 6000 M Pa , 
which is about three times the strength of a microwhisker.

6.5. Shear Banding and Necking
Although the theory of shear-band formation has been well established, little knowledge is 
available to fully explain the actual mechanism of how a band begins to form.

Figure 64 shows the evolution process of shear banding and necking revealed by the 
molecular dynamics simulation. Even  in the elastic stage, the deformation in the atomic 
lattice has been nonuniform (see Fig. 64a). F'igure 64b and 64c shows that the first and 
second bands occur when the built-up stress is gradually released. The process of stress build
up and stress release continues in the whole elastic-plastic deformation process when the 
total strain varies from 5.64% to 11.33%. Bv this time, all the primary bands have formed. 
A  further straining, as shown in Fig. 64d, brings about an onset of necking at one of the 
weaker zones between two bands. In conjunction with this necking, stress increases first and 
then drops quickly when a noticeable necking forms. Here it is interesting to note that the 
atoms in the first necking zone are quickly restructured by minimizing their potential energy 
and exhibit a stronger resistance to further deformation. As a result, a second necking takes 
place between other bands, as shown in Fig. 64e and Fig. 64f. This process continues until a 
prominent slip occurs, as shown in Fig. 64g. which leads to a stable necking followed by the 
final breakage of the whisker.

In summary, the above molecular dynamics simulaton brings about some new and interest
ing understandings of the nanowhisker deformation. W e have understood that a hexagonal
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Figure 64. The evolution process of shear handing and necking in a nanowhisker of monocrystal copper under 
uniaxial tension. These are the cross-sectional views through the center of the specimen, (a) At the strain of 4.61%; 
(h) at the strain of 5.64'$— note the formation of the first shear band; (c) at the strain of 6.36%— the second shear 
band has formed; (d) at the strain of I 1.4%— many shear bands have formed, and necking can also be observed 
at this stage; (e) at the strain of 14.15%— necking has appeared in a number of places in the specimen; (f) at the 
strain of 14.51';— necking has developed further; (g) at the strain of 15.59%— the location of necking is stabilized.

nanospecimen with four (111) and two (100) side surfaces should be used for testing to 
achieve a high level o f shape stability and elim inate the effect o f shrinkage stress, that the 
elastic modulus on the nanometer scale is close to that from macroscopic measurement, 
that the ultimate tensile strength of a monocrystalline copper can be as high as 6 G Pa, and 
that the mechanism of shear banding and necking on the nanometer scale are much more 
complex than ever thought.

7. BUCKLING OF DIAMOND THIN FILMS
7.1. Background
Thin  diamond films have promising applications in protective coatings and microelectronic 
devices as a result of their high density, extreme hardness, high thermal conductivity, chem
ical inertness, and infrared transparency. However, the films often suffer from adhesion 
problems— partially or totally delaminated at the interface or in the substrate material
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because of high stresses [102-107] . The total stress is composed of a thermal stress and 
an intrinsic stress. The former is a result of the difference in the thermal expansion coef
ficients of the film and substrate materials, and the latter is a result of the accumulating 
effect o f the crystallographic flaws that are built in during deposition. According to Thornton 
and Hoffm an [108], the parameter T/Tm, where T is the substrate temperature and 7m is 
the coating material melting point, is important in describing the stress-related behavior. 
For materials with high T/Tnv bulk diffusion becomes very important, and this relaxes the 
intrinsic stresses and prevents their accumulation. As carbon is a harder, higher-melting 
point material (Tm ~  3700 K ), under typical deposition conditions T/Tm is low (M ).08 ), and 
the intrinsic stresses dominate over thermal stresses.

A  variety of stress relief patterns such as telephone-cord, sinusoidal wave, sinusoidal shape 
with extra branches, and a strings-of-bcads pattern have been reported in the literature. 
G io ia  and Ortiz [102] have compiled most of these patterns in their paper on delam ination of 
compressed thin films. Studies on carbon films [103-105, 109] have indicated intrinsic stress 
levels, which are normally compressive, in the range of —0.3 to —12.5 GPa, depending on the 
growth conditions. According to Gupta and Bhushan [ 109], the cathodic-arc carbon coatings 
that exhibit the highest hardness have high residual compressive stresses of about 12.5 G Pa , 
whereas all other carbon coatings exhibit comparable residual compressive stresses of about
0.6-2 G Pa. Som et al. [103] studied the delamination of C V D  diamond films deposited on 
silicon and estimated that the biaxial compressive stress to initiate the film buckling was 
1.19 G Pa . From their optical microscopy study of diamond-like carbon film, Iyer et al. [104] 
reported a new stress relief pattern having a sinusoidal shape with two extra branches at 
every peak position. They found the internal compressive stress in the film to be on the 
order of 1 G P a  and dependent on the film thickness. Peng et al. [105] reported that the 
intrinsic stress on diamond-like carbon film varied from 0.3 to 2.0 GPa.

The studies to date have been mainly using experimental techniques and continuum 
mechanics. Although Pailthorpe et al. [110], M cKenzie et al. [ I l l ] ,  and Rosenblum 
et al. [112] used atomistic simulation in their studies on coating, they concentrated mainly 
on the energy diffusion, the structure of films, and the mismatch-induced residual thermal 
stresses in film/substrate systems. Because silicon monocrystal is anisotropic in its physical 
and mechanical properties, it is of interest to investigate the behavior of coating on dif ferent 
crystal orientations of silicon.

In this section, we will present the study carried out by Mylvaganam and Zhang [113], who 
investigated the buckling patterns of diamond carbon films deposited on different orienta
tions of monocrystalline silicon under different residual stresses, using m olecular dynamics 
analysis.

7.2. Theory and Simulation Method
Bom bardm ent of diamond-like carbon films by energetic species tends to cause high com
pressive stresses, and as a result the film buckles and delaminates. Thornton [114] pictured

rate

Figure 65. The simulation mode! for thin Him buckling analysis. Reprinted with permission from [113]. 
K. Mylvaganam. L C. Zhang, Thin Solid Films 425, 145 (2003). £> 2003. Hseviei I..id.
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True stniin ln(///0)

Figure 06. True stress-strain relationship oi'siiicon under a uniaxial tension.

this process as follows: first the incident atoms transfer kinetic energy to the substrate and 
become loosely bonded “ ad atoms." They then diffuse over the surface, exchanging energy 
with the substrate until they are either desorbed or trapped at low-energy sites of the sub
strate. Thus the initial kinetic energy transfer to the substrate can induce a tensile stress on 
the substrate. W hen the atoms diffuse over the surface, a compressive stress can be induced 
back to the coated atoms.

The above understanding of the residual stress generation enables us to simulate the 
thin-fiim deformation in a convenient way while capturing the nature of the residual stress 
generation. W e apply the tensile stresses on the substrate before placing the coating and 
then release the stress with the coating on, so that the film will undergo compressions, as 
experienced in experiment.

We focus on the deformation of a diamond carbon coating on silicon (100) and (110) 
surfaces under various stress levels with different ratios o f compressive stresses in two per
pendicular directions, x and y, as shown in Fig. 65. A  piece of diamond cubic silicon (100) 
with the control volume of 10.3 x 10.3 x 3.8 nm (i.e., 19 x 19 x 7 unit cells), containing 21516 
atoms, was used as a substrate. The outermost layer of the substrate atoms with the excep
tion of the top (100) surface was thermostated to 300 K  by periodic rescaling of its atomic 
velocities. The tensile stresses were applied by forced atomic displacements at the boundary 
of the control volume in the following distinct ways to uncover the effect of stress variation 
in the film plane: uniaxially (along the .v-direction). that is, the stress externally applied in 
y-direction would be zero, and hence the stress ratio is (rJ(Tx = 0; and biaxially with equal 
displacements along both x- and y-directions to give the stress ratio of crv/ax ~  1. Three 
atomic layers of diamond coating with dimensions 9.987 x 9.987 x 0.1783 nm, having 4817 
atoms, was placed on the stressed substrate. The coating and substrate were relaxed together 
for 5 ps, and then the stresses on the substrate were released gradually. To investigate the 
effect of crystal orientation, the above procedure was repeated by placing the coating on Si
(110) surface.

Sim ilar to the many successful molecular dynamics simulation studies discussed in previous 
sections, the Tersoff potential [6-7] was used for Si-Si and C -C  interactions, and the Morse

Figure67. Sinusoidal buckling pattern of the top layer of the film in a*-direction after releasing the uniaxial stress 
(top virvv; a ja . - 0). Reprinted with permission from [113). K. Mvlvaganam, L. C. Zhang. Thin Solid Films 425. 
145 (2(03). €> 2003. Elsevier Ltd.
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True strain In(///0)

Figure 68. True stress-strain relationship of Si (100) and Si (110) under a biaxial tension.

potential was used for C'-Si interactions. The true strain defined by In (///,,) is calculated 
from the initial length. /,, and final length. /. o f the sample. The lateral normal stresses (a x 
and crv) were calculated by summing forces across the outermost yz- and xz-planes and 
dividing it by their current area to give rise to the Cauchy stress, or true stress. To facilitate 
the observation of the buckling deformation, we apply sufficiently large stresses, much higher 
than the critical buckling stress measured in relevant experiments [103-104], provided that 
they are within the elastic limit o f silicon.

7.3. Uniaxial Stress
The true stress-strain relationship under uniaxial tension is shown in Fig. 66, which is clearly 
nonlinear. The loading and unloading curve coincides with when the stress was released from 
a point little before the maximum. This shows that the substrate is fully elastic and that it 
deforms plastically at a Cauchy stress (along a -direction) of 16 G Pa  under uniaxial tension.

The film placed on the substrate prctensioned to various levels showed that the film 
buckled when the substrate was pretensioned to about 2.5 GPa. However, to facilitate the 
observation of the buckling pattern, we placed the film on the substrate pretensioned to
12.5 G Pa , a stress well below the maximum stress at which the substrate deforms plastically.

The film showed sinusoidal buckling and delaminated at the interface. The top layer of 
the film viewed from the top. at a tilted angle, is shown in Fig. 67. Sinusoidal wrinkles also 
formed in the ^-direction.

7.4. Biaxial Stresses
The true stress-strain relationships of Si (100) and Si (110) under biaxial tension are shown 
in Fig. 68, which are. again, nonlinear. The stress release behavior shows that both arc elastic

Figure 69. The telephone-cord-like buckling pattern of the top layer of the film after releasing the biaxial stresses 
on Si (100) (<t J ( tx — I ). Reprinted with permission from [! 13], k. Mylvaganam. I.. C\ Zhang. Thin Solid /Urns 425. 
145 (200?), €> 2003, Elsevier Ltd.
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Figure 70. The buckling pattern of the top layer of the film after releasing the biaxial stresses on Si (NO)
((/,./<7.. -= 1 ).

until they reach the maximum Cauchy stress of 13.9 Gpa in the case o f Si (100) and of 14.25 
CiPa in the case of Si (110).

The film placed on the Si (100) substrate showed that the wrinkles formed when the 
substrate was pretensioned to a stress value of as low as 1.04 G Pa . Again, to observe the 
buckling pattern, we placed the film on the substrate pretensioned to a much higher stress 
of 13.4 Ci Pa in both ,v- and y- directions, but still within the elastic limit.

On releasing the stress, the film buckled and delaminated. The top-most layer of the film 
is shown in Fig. 69. Now it is interesting to note that the size of the wrinkles becomes 
larger than those in the uniaxial stressing, and the overall buckling pattern approaches a 
telephone-cord-like structure, as observed in many experiments [102].

To see the anisotropic effect on the buckling pattern, we placed the film on the Si (110) 
substrate pretensioned to 13.5 G Pa , which is similar to the value used for Si (100). On 
releasing the stress, we find that the film buckled, but with very little delamination. In addi
tion, we note that the wrinkle sizes were not uniform and that the buckling pattern varied 
significantly. The top most layer of the film is shown in Fig. 70.

The above investigation leads to the following major understandings about the mechanisms 
of the buckling pattern formation of diamond thin films. The buckling pattern varies with 
the orientation of the crystal and the residual stress ratio, (ry/ax. Under biaxial stress, when 
both the film and substrate have the same crystal orientation, a telephone-cord-like buckling 
pattern will appear.

8. C O N C L U D IN G  R E M A R K S

Through a comprehensive dicussion on many examples of mechanical systems under various 
loading conditions, we have demonstrated in this chapter that molecular dynamics simulation 
offers an effective way to characterize the deformation of materials at the atomistic and 
nanometric scales. In some cases, none of the other methods, such as quantum mechanics 
and experimentation, can play the same role.

In the example of the nanoindentation of monocrystalline silicon, we have revealed the 
complex phase transformation mehanisms in relation to stress variations, investigated the 
environmental effects such as those of oxygen and water, and compared with experiment. 
In studying the contact sliding systems o f diamond-copper and diamond-silicon, w'e have 
explored the nanofriction and nanowear mechanisms and have concluded that there exists 
a scale effect of contact size on nanofriction transition. W e have also discussed in detail 
the modeling and deformation of carbon nanotubes, monocrystalline copper nanowhiskers, 
and diamond nanofilms, and we have demonstrated their deformation characteristics, shear 
banding and necking processes, and buckling patterns.

We have particularly emphasized, from the very beginning of the chapter throughout all 
the examples, that to carry out a reliable molecular dynamics analysis, it is essential to look 
into every step of a simulation, such as the establishment of the initial model, the relaxation.
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the temperature conversion, the control volume size, the potential function, the thermostat 
technique, the time step, and the stress analysis. A ny  inappropriate setting of the fundam en
tals can bring about misleading results.
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1. INTRODUCTION
Cage compounds built exclusively from carbon atoms, now commonly known as fullerenes, 
have entered many research and application fields (fo r a recent survey, see e.g., Ref. | l j ) .  
Though fullerenes were for the first time observed [2]. in the gas phase less than 20 years ago 
and prepared [3] in crystalline form less than 15 years ago, they have attracted an enormous 
research interest in chemistry, molecular physics, materials science, and medicine.

Not surprisingly, the new systems have also been evaluated as possible agents for nano
technologies including molecular electronics. One concept for fullerene-based molecular 
memories was suggested by Gimzewski [4] and belongs to the category of memories oper
ating between two isomeric configurations of a system (i.e.. mobile isomeric scheme [5], 
which has been treated in molecular electronics from its early days). A  fullerene cage with 
a metal encapsulated inside is considered [4] that possesses two possible location sites of 
the occluded atom inside the cage, the cage being immobilized on a support. As long as the 
two locations are distinguishable, they can in principle serve for coding the numbers 0 and 1 
(F ig . 1). The switching between the positions and reading could be handled by scanning tun
neling microscope. Storage density of the arrangement is estimated [4| to be approximately 
1000 Gbit/mm2.

Another concept of quantum computing aims [6] at a usage of spin states of a nitrogen 
atom encapsulated in the C,)0 cage, N(q C (>(). The  state of the electron spin in an external 
magnetic field could be read by nuclear magnetic resonance (N M R )  or electron spin res
onance ( F S R )  pulse (Fig. 2). However, the lifetim e of the states is relatively short even 
at very low temperatures, and single spin read-out is not possible. Hence, a larger iden
tical assembly should be organized and read. Recently, yet another candidate species has 
been added [7] to the list; namely, C H 2@ C 7() with an encapsulated simple polyatomic sys
tem. M olecu lar transistors based on fullerenes [8-10] represent another interesting option 
for molecular electronics. In addition to spheroidal fullerene cages, fullerene science also 
deals with elongated cylindrical bodies known as nanotubes, prepared [11] soon after mas
tering the fullerene synthesis. Nanotubes can also serve [12, 13] as molecular transistors. 
Nano-memory devices could also be based [141 on nanotubes filled with fullerenes. known 
as peapods.

Further development of this future nanotechnological application potential requires reli
able knowledge of various aspects of the fullerenic and endohedral systems. Calculations can

Figure 1. Concept of a mulecular memory based on an endohedral fullerene. Each cage in the array contains a 
metal atom that can be switched between two positions. Reprinted with permission from |4|. J. K. Gimzewski, in 
“ The Chemical Physics of Fullerenes 1.0 (and 5) Years Later" (W. Andreoni, Ed.), p. 117. Kluwer, Dordrecht. The 
Netherlands. 19%. © j996, Kluwer.
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Figure 2. Concept of a quantum computer with information storage in the spin stales of N atom encapsulated in 
Chl|, N («Cfl(l, exposed to an external magnetic field. The memory elements are addressable via A-gates. Reprinted 
with permission from [6], W. Marneit et al., in "Recent Advances in the Chemistry and Physics of Fullerenes and 
Related Materials” (K. M. Radish, et al., Eds.), p. 358. Electrochemical Society. Pennington, NJ. 2001. (0 2001, 
El ect roche m ical Societv.

help in a search for such promising candidates, evaluations of their interesting functional 
characteristics, and also optimizing conditions for their preparation and separation.

Fullerenes and metallofullerenes have represented objects of considerable interest for 
both experiment [15] as well as computations and theory [16, 17]. The ir experimental studies 
have especially been based on liquid chromatography [18], ‘ C  N M R  spectroscopy [19], 
and more recently also 'H e  N M R  spectroscopy [20]. Fullerenes are commonly defined as 
polyhedral cages containing only carbon atoms arranged into five- and six-membered rings. 
M ore  generally, <jrwtf5/-fullerenes have also been recognized [21], namely as cages containing 
not only the traditional five- and six-membered rings but also other types of cycles like 
(topological) squares and heptagons.

The very early history [22-26] of carbon clusters (i.e., before fullerenes) goes back to a 
mass-spectrometric observation by Hahn and his coworkcrs [27] in the 1940s (though their 
upper observation limit was only C )5). The research interest in the carbon clusters had con
tinued through the 1950s and 1960s when the experiments [28-30] could already reach up to 
C Vl. At about that time, simple computations had been applied [31-33] to the problem, in 
particular by Pitzer and Clementi [31], and later on by Hoffm ann [33]. The highest computa
tional level then applied was represented [34, 35] by the semiempirical M IN D O /2  (modified 
IN D O , where IN D O  means intermediate neglect o f differential overlap) method. Neverthe
less, according to current knowledge, the computed relative energies for small carbon clus
ters were essentially correct. On the other hand, much simpler Hiickel-type calculations of 
aromatic systems, most common in the chemical computations of the 1960s, missed sugges
tions [36-38] of carbon-based polyhedrons. So, only in the 1970s were the first H iickel calcu
lations of C (>() performed [39, 40]; however, they failed to attract any experimental interest.

In contrast to the extremely modest tools available to computational chemistry from the 
1950s till the beginning of the 1970s, quantum chemistry could act at much more advanced 
levels in the time of the C W) discovery by Curl, K ioto , Sm alley, and others [2]. Conse
quently, computations have received widespread appreciation and indeed have consistently 
supported fullerene [16, 17] and m etallofullerene [41] research at every important stage 
o f development. Thus, the computations have supplied not only a solid support but even 
guidance to experiments. For example, this guiding role can be documented by the fact 
that the four 1R bands computationally predicted [42—47] for C (>() were indeed used [48] by 
Huffm an and Kratschm er in their historical carbon-arc C 6() synthesis [3|. Le t us mention 
that vibrational analysis using semiempirical quantum-chemical methods for C wl and, in par
ticular, for C 7„ still represented a demanding task in the mid 1980s. Fortunately enough, 
the fullerene research avalanche [49, 50] from the 1990s on has coincided with further con
siderable progress in computer technology. Consequently, such large-scale semiempirical 
calculations like those by Bakowies and Thiel [51], or even ab initio correlated treatments 
as those by Haser et al. [52] could be performed.

Computational chemistry has at present been acting as a real contributing partner in 
fullerene research. Hence, theory and experiment can be viewed as complementing tools in 
the exponentially growing [49, 50] field. Although there are survey papers [53-80] dealing 
with numerous aspects of fullerene science, quantum-chemical computations of fullerenes 
and metallofullerenes are reviewed relatively rarely [16, 17, 41, 81-90]. Moreover, in spite of 
the fact that fullerenes are prepared at temperatures that are among the highest ever used in 
chemical synthesis, statistical-mechanical portion of the computations is typically left apart 
so that the picture is essentially incomplete. Hence, this report supplies such a review of
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the computations, covering both quantum-chemical and statistical-mechanical description in 
order to get a complete and consistent insight. The computations are linked to the existing 
observations and projected on the new, topical nanoscience aspects.

The time can be considered ripe for such a survey, as there are already well over 20 
stable higher fullerenes C „ known from observations [19, 91-93] {n ranging from 60 to 96; 
higher refers to the fullerenes bigger than C w)). E lucidation of their structures has entirely 
been based on the so-called isolated pentagon rule ( I P R )  that claims [94, 95] that especially 
stable fullerenes should have all pentagons surrounded just by hexagons. Bonding patterns 
for such cages can be generated by various topological schemes [96-99], and in fact the 
cages can be quite numerous. Sometimes, like for n = 76, the IP R  cage isomerism can be 
elim inated; that is, reduced down to just one species by energetics (in the C 7(1 case with the 
help of Jahn-Teller effect [100]). Nevertheless, beyond n = 76, isomerism of the IP R  struc
tures should generally play a role in observations. Several such mixtures o f empty fullerene 
isomers have indeed been computed and an agreement with experiments found: C 76 (e.g., 
Refs. [100-110]), C 7S (e.g.. Refs. [I 11-114]), C S(1 (e.g.. Refs. [115-119]), C S2 (e.g., Refs. [120- 
125]), C S4 (e.g.. Refs. [126-132]), C N() (e.g.. Refs. [91, 133-136]), C w (e.g.. Refs. [91, 134- 
136]), C ,() (e.g., Refs. [91, 137, 138]), C ,2 (e.g., Ref. [139]), C y4 (e.g., Ref. [140]), and C g„ (e.g., 
Ref. [141]), whereas there is still only a computational prediction [142] for C ys. The com
bined quantum-chemical and statistical-mechanical computations have clearly shown that 
temperature effects can be important in understanding higher fullerenes. M oreover, a sim
ilar interplay has also been described for smaller fullerene systems [143-146] like C}2 or 
C 3f>. In addition, various metallofullerenes can coexist [41] in several isomeric forms as well, 
for example C a (« C 72 (e.g., Refs. [147-150]), Mg(//C72 (e.g.. Refs. [151, 152]), C a (a C 74 (e.g., 
Refs. [147. 149, 153," 154]), C a(«  C s2 (e.g., Refs. [155-161]), L a (« C 82 (e.g.. Refs. [162-166]), 
T m (« C s2 (e.g.. Ref. [167]), T i^ C * , ,  (e.g.. Ref. [168]), or T i2(a C 82 (e.g.. Refs. [169]). Met- 
allofullerene isomerism is primarily based on encapsulation into different isomeric cages, 
however, different locations of the encapsulate in a given cage were also observed [170] 
(such species can actually be better suited for molecular-electronic applications). Endohedral 
fullerenes encapsulated in nanotubes also possess [171 ] an application potential as molecular 
memories. Still another interesting area is offered by isomerism of derivatives of fullerenes in 
the conventional chemical sense like C ()()H 3(> (e.g.. Ref. [172]), C w)FM) (e.g., Ref. [173, 174]), 
or C 6()F 4S (e.g., Ref. [175]). The derivatized cages obviously also can host encapsulates [176].

In spite of the structural diversity, the physicochemical picture is uniform. Although the 
interisomeric separation energies themselves are important, they alone cannot predict the 
relative stabilities of the isomers at the very high temperatures where the fullerene syn
thesis happens. Owing to the unusually high temperatures, entropy contributions can even 
overcompensate the enthalpy terms. Hence, the enthalpy-entropy interplay represents an 
essential background on which various aspects of fullerenes and metallofullerenes can be 
treated and interpreted.

2. OUTLINE OF QUANTUM-CHEMICAL AND 
STATISTICAL-MECHANICAL CALCULATIONS

The current quantum-chemical calculations of fullerenes almost always deal with the opti
mized geometries, either at semicmpirical, ab initio H artree-Fock Seif-Consistent-Field 
( H F  S C F )  or density functional theory (D F T )  levels whereas ah initio-correlated treat
ments are very rare. The quantum-chemical calculations can. however, start from prelim 
inary molecular-mechanical geometry optimization [177, 178]. M olecu lar mechanics can 
be misleading in special situations like Jahn-Teller cases that are relatively common with 
fullerenes. Sem iem pirical quantum-chemical geometry optimizations represent [179, 180] a 
useful treatment, either as such or as a prerequisite for following ab initio treatments [181]. 
The  semiempirical optimizations supply a reliable guess of the second-derivative matrix 
(known also as force-constant matrix, or Hessian matrix) that strongly influences perfor
mance of anv geometry optimization. The most common semiempirical methods [182-184] 
M N D O  (modified neglect of differential overlap), A M I  (Austin  model 1), and PM 3  (para
metric method 3) have recently been complemented with a new too!, the S A M I method j 185]
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(sem i-ab-initio model 1). The S A M  1 method is implemented in newer A M P A C  (Austin model 
package) program versions [186], whereas the other semiempirical methods are also avail
able in the more common M O P A C  (m olecular orbital package) program package [187, 188]. 
Sem iem pirical methods and a full spectrum of ab initio procedures are implemented in the 
Gaussian program series [189, 190] such as G98 or G03 and also in the streamlined Spartan 
package [191],

A t present, the geometry optimizations are routinely carried out with the analytically con
structed potential energy gradient. This approach, in contrast to the older techniques based 
on numerical gradients, assures a relative speed and accuracy of the stationary-point search. 
In  fact, the prim ary interest is focused on local energy minima, and the geometry search, 
unless specifically forced, rarely yields saddle points relevant in kinetic studies. The geome
try optimizations are increasingly performed in the Cartesian coordinates (i.e., without any 
sym m etry constraints). The symmetry constraints can be imposed, or in other words an exact 
sym m etry produced, if internal coordinates are used. The explicit implementation of the sym
m etry is still important as it can scale down the computational time considerably. However, 
on ly some portion of the fullerene structures exhibits some higher symmetry, and nonsym- 
m etric species are rather common. Although the semiempirical geometries are considered 
re latively reliable, the computed energetics is always to be checked with more sophisticated 
techniques (though frequently in the geometries optimized only at lower levels). There are 
several options available, such as ab initio H F  S C F  treatment in the standard 6-31G* or 6- 
311G* basis sets (HF/6-31G*, HF/6-311G*) or D F T  approach with Beckc's three-parameter 
functional with the nonlocal Lee-Yang-Parr correlation functional in the standard 6-31G* 
basis set (B3LYP/6-310*). For larger systems like fullerenes, an issue of the S C F  wavefunc- 
tion stability can become important [192, 193]. Still, it frequently happens that the relative 
energetics from various quantum-chemical sources agree quite well and are mutually consis
tent in sets o f fullerene isomers.

Although the optimization procedures mostly produce local energy minima, the types of 
the located stationary points must be checked accordingly. This step is essentially based on 
the harm onic vibrational analysis, that is, on the force-constant matrix, constructed numer
ically (num erical differentiation of the analytical gradient) or analytically. I f  the vibrational 
analysis is performed in the Cartesian coordinates, there are six zero (or near zero) frequen
cies always present that physically represent overall translations and rotations. The vibra
tional analysis reveals if there is any imaginary vibrational frequency— manifestation of a 
saddle point. I f  all the computed vibrational frequencies are real, we deal with a local energy 
m inimum, and the structure should be considered in the thermodynamic stability reasoning. 
The computed vibrational frequencies can also be used in simulation of the vibrational spec
tra and in construction of the vibrational partition functions. For the spectra simulation, the 
vibrational frequencies are to be combined with the computed infrared ( I R )  intensities or 
Ram an activities. Frequency scaling would be relevant for the spectral simulations though it 
is not important for high-temperature partition functions [194].

As already mentioned, the symmetries o f the optimized structures can be an issue. In some 
relatively rare cases, they may not be properly recognized by the symmetry searchers built in 
the quantum-chemical programs, though the symmetries are exactly present in the structures. 
O ther problem appears if the Cartesian coordinates are used, as the symmetry may not 
be recognized owing to numerical inaccuracies. The symmetries of the optimized structures 
can still be determ ined by a procedure [117] that represents a precision of the computed 
coordinates through a variable parameter, e. The origin of the coordinate system is placed 
in the center o f charge— the point is only candidate for possible center of symmetry. Then, 
candidates for C2 axes are either lines connecting any two nuclei or perpendicular bisectors 
o f the distance between any two nuclei o f the same kind. Further on. Cn axes with n > 2, 
Sn and S2n axes, and planes of symmetry are investigated in a similar way. The symmetry 
operations identified through this procedure have to create one of the known point groups 
of symmetry. For each symmetry operation considered, coordinates of the interrelated atoms 
before and after symmetry operation are checked with respect to e. If  the coordinates are 
identical within this accuracy £ (i.e., the largest difference is smaller than 6), a symmetry
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element has been found at the accuracy level e. This approach is more appropriate than the 
standard symmetry search without any flexible accuracy measure.

Fo r a given carbon content (i.e., for a family o f fullerene isomers), the geometry opti
mizations will end with a set o f m isomeric structures. T he ir relative concentrations can be 
expressed as their mole fractions, using the isomeric partition functions qr In the terms 
o f <:/, and the ground-state energy changes A H ° i the mole fractions are given [195-197]:

;/,exp[-AW° , / { RT) ]

W'~  EjUq^pl-AH^/iRT)}
where R stands for the gas constant and 7 for the absolute temperature. Equation (1) 
is an exact formula that can be directly derived [198] from the standard Gibbs energies 
of the isomers, supposing the conditions of the interisomcric thermodynamic equilibrium. 
A lthough the partition functions are to be constructed w ithin the rigid-rotor and harmonic- 
oscillator ( R R H O )  approximation, Eq . (1 ) itself is essentially exact. In fact, there is only 
one presumption behind Eq. (1 )— the presumption of noninteracting particles (or, more 
specifically, the ideal gas behavior) and the condition of the interisomcric thermodynamic 
equilibrium.

Strictly speaking, neither scm iem pirical nor nonempirical methods offer the A/Y° , terms 
as their primary computational outputs. The scm iem pirical quantum-chemical methods are 
parametrized for room temperature; that is, they produce the conventional heats of form a
tion at room temperature A H? (o r the related separation or relative terms 1H J 2l)s ,.). 
Thus, one has to convert the prim ary terms to the heats o f formation at the absolute zero
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Figure 3. The computed [ 143] relative concentrations for top, simple Boltzmann factors. Eq. (2): bottom, the
rigorous terms fiom Eq. (1}. Reprinted with permission from [143]. X. Zhao et al., Fullerene Sci. Techno!. 8, 595 
(20001. 2000. Marcel Oekkcr.
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tempe rature A/Y^ (); that is. the terms that truly appear in Eq. (1). The vibrational zero-point 
energy can be extracted, and in this case the relative potential energies A E, result from the 
treatment. This level has in fact exactly the nature of the energy terms from ab initio com 
putations; in other words, the relative potential energies A E r from nonempirical treatments 
are to be corrected for the vibrational zero-point energies in order to serve in Eq. (1). For 
methodological reasons, we can also mention simple Boltzm ann factors:

cxp[-AE°,./(/?-n ]
Wi E " L ie x p [- A  E : j (R T ) }

entirely based only on the potential-energy terms with no reference to entropy contribu
tions. It is important to realize that the simple Boltzm ann factors can never cross with a 
tem perature change, and thus, they cannot really represent a complicated system— for an 
illustration, see Fig. 3.

There is still another interesting parameter that should be discussed. Chirality contribu
tions are to be considered in Eq. (1). C learly  enough, there is no asymmetric carbon atom 
in the conventional sense in the fullerene cages (w ith sp2 three-coordinated carbon atoms). 
Nevertheless, some of the structures are still chiral (i.e., they are not superimposable upon 
their m irror image). This structural dissymmetry can be directly read from the point group 
of symmetry, as presence of no reflection symmetry, that is, absence of rotation-refiection 
axes S,„ is required: only the C „, D /f, 7 , <9, and 1 groups obey the requirement. For an 
enantiom eric pair, its partition function q, in Eq . (1 ) has to be doubled (if  we assume the 
presence of both optical isomers, which can be considered well justified under fullerene syn
thesis conditions). It should be noted that therm odynam ic packages in quantum-chemical 
programs entirely ignore the chirality contribution [199].

3. ENERGETICS AND THERMODYNAMICS OF 
CARBON CLUSTERS

3-1. Basic Topology
The conventional fullerenes are understood [21, 97] as cages built from three-coordinated 
(.v/r) carbon atoms arranged into two types of rings: pentagons and hexagons. As any other 
polvhedra, fullerenes have to obey E u le rs  polyhedral theorem [200, 201] (more precisely, 
the theorem for convex polyhedra):

V 4- E = E  + 2 (3)

where V denotes number of vertexes (atom s), F  number of faces (rings), and E  number 
of edges (bonds); for example, for C 6(): V — 60, F  = 32, E  — 90. As only pentagons and 
hexagons are allowed, their numbers n5 and n6 give the total count of faces:

F  = >U + nh. (4)

As all atoms are three-coordinated, it must hold for the num ber of edges:

3 *1 /
t  = - y -  (5)

as each bond is accounted twice. One can also count the edges through rings:

5 * n5 + 6 * nh E  = ------ -------. (6)

Combining Eqs. (5) and (6) yields:

y  _  5 *  ;?5 +  6 *  nh ^
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Equation (5) can be placed in E u le rs  theorem:

(8 )

and combination with Eqs. (7) and (4) gives:

«5 + nb ( 9 )
6

which can immediately be reduced to:

( 10)

In other words, in any conventional fullerene C „, the number of fivc-membercd rings must 
equal 12. The number of six-membered rings is variable, however, Eq. (7) gives a relationship 
to the number of carbon atoms:

According to Eq. (11), the smallest possible fullerene has the stoichiometry C :n (12 pen
tagons, no hexagons). Am ong all possible fullerenes, a special position have the IP R  
cages [94, 95] (that have all the pentagons surrounded just by hexagons), as the arrange
ments should be especially stable. In other words, there are no pentagon-pentagon junctions 
in the IP R  fullerenes. As there are always 12 pentagons, then the smallest cage that could 
be of the IP R  type should have 12*5 carbon atoms. Indeed, 60 carbon atoms can create an 
IP R  cage (which is geometrically truncated icosahedron), and the structure is the well-known 
buck m insterfull e re n e C6(,.

3.2. Isolated Pentagon Rule Energetics
The very first M IN  DO/2 computations [34, 202] of one. two-, and three-dimensional small 
carbon clusters C „ pointed out a simple, smooth dependency of the relative heats of for
mation A/7; on the number of carbons n. O f course, that time virtually nothing was 
known over n o f about 8, the computational upper limit of semiempirical quantum chem
istry of those days. A fter two decades, the curve was extended into the fullerene domain, 
for example with ah initio H F  approach in the standard STO -3G  basis set (H F/ST O -3G ) 
computation [203, 204] or with the M N D O  method [51, 205] or with simple semiem piri
cal tight-binding computations [86, 206]. The qualitative picture is all the time the same. 
Although a shallow minimum could possibly be seen in some of the curves for C w>, basically 
they are still smooth decreasing dependencies (Fig. 4). X u  and Scuseria [206] could find 
such behavior even with carbon clusters up to C SM().

There is a simple way to rationalize the finding. Let us lim it our reasoning to the IP R  
fullerenes. Then, we deal with two types of bonds, frequently called the 5/6 (between pen
tagons and hexagons) and 6/6 (shared by two hexagons bonds). Let us suppose moreover 
that those two types of bonds can be represented [207] by some uniform dissociation ener
gies, „ and Hu:(y. In a general IP R  fullerene C „ we have always 60 5/6 bonds, whereas the 
number of the 6/6 bonds is variable, 3/2/2 -  60. Now, we can readily write for the atomization 
heat of the considered C „:

The atomization and formation heats for carbon aggregates are linked by the heat of vapor
ization of carbon, A//* :
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Figure 4. The MNDO heats of formation per atom [51, 205] (left) and ah initio HF/STO-3G relative ener
gies [213, 204) (right) for selected fullerenes. Reprinted with permission from [203], R. F. Curl. Phil. Trans. Roy. 
Soc. Unclon A 343, 19 (1993), © 1993. The Royal Society; and from [205], M.-L. Sun cl al.. Chem. Phys. Lett. 233, 
279 ( I<-95). €> 1995. Elsevier.

or sin plv in the terms of the bond energies:

a  m 3 60
 ̂ h -f A H ° H--- x2 1 n

This functional dependency can formally be expressed by:

«s/,

a w :
= A +

B

(14)

(15)

where B is a positive constant and A is a relatively small number. Hence, Eq. (15) is indeed 
a smoothly decreasing curve of the type shown in Fig. 4. From such a curve, one cannot read 
a particular stability of C 6() or C 7(). Just the opposite— it might suggest a straightforward rule 
that tie  stability would increase with dimension, which is, however, not observed. C learly 
enough, the shape could have been predicted even before any computations, however, it 
could have been counter-productive as an indication that there had been nothing special 
in addition to diamond/graphite. Anyhow, in order to get a realistic picture, we have to 
consicer entropy and/or kinetic effects instead, this being still under development.

3.3. Stabilities of Clusters of Different Dimensions
In its most general form, the problem could, in principle, be treated as a complex kinetic 
scherre described by a huge number of kinetic differential equations. The scheme can be 
solvec if the values of the rate constants for all reaction channels are known. The equilibrium 
composition comes as the limiting case for infinite time. If  we treat the problem from a 
thermodynamic point o f view, we should realize that the conventional standard pressure of 
1 atm is considerably different from the actual fullerene-synthcsis conditions. Apparently, 
we shnild expect lower cluster pressures in the carbon-arc synthesis. The actual entropy and 
G ibb" free energy change with pressure as can be demonstrated simply on the C60 and C 7() 
cases iased on quantum chemical calculations. For example, the equilibrium constant KU) 1{) 
for ar interconversion between the two clusters, expressed in partial pressures p, offers a 
deeper insight into the problem [208-212]:

^ h 0 / 7 0  —

(i 1 
Pli)
Pm

— v W 7
p -1 (16)

where P stands for the total pressure of the two clusters and xH) is the mole fraction of buck- 
minsttrfullerene. A t higher pressures, C 7() is more populated than C h(), but at the conditions 
of a saturated carbon vapor (simulated simply as a mixture o f seven clusters at present), 
the stability order is reversed in favor of C h() so that agreement with experiment is obtained.
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The pressure effects can be studied [212] based on the M N D O , A M I ,  PM 3 , and S A M I 
methods or using the available experimental data [213]. The results [212] also point out a 
need for a reliable evaluation of the absolute values of the heats o f formation and other 
input information before the pressure-dependent scheme can be applied to other higher 
fullerenes. Still, it is already clear that the C w)/C70 population ratio is modulated by the 
carbon-vapor pressure.

M ore generally, one should consider all the clusters C „ (i.e., all the values for n) and 
for each n value all the isomers. A t present, however, just seven clusters have been con
sidered [212]: n = 1 ,2 ,3 ,4 ,5 ,6 0 , and 70. Expansion to any larger set o f cluster is just a 
technical, not a conceptual, problem. Let us suppose that the thermodynam ic equilibrium 
between the carbon gas phase and graphite is established:

where pn denotes the partial pressure of C „ (it is actually expressed in atm; 1 atm = 
101,325 Pa). I f  all the partial equilibria (17) are established, we reach the state of the sat
urated carbon vapor with a unique total saturated pressure p* (fo r a given temperature 7 ). 
In our model truncated set of carbon aggregates, it means:

There is also an alternative and more general formulation of the problem. The alternative 
formulation is related to the monoatomic carbon cluster C (g ):

and is described by another set o f equilibrium constants, Kp n:

The equilibrium constants K'p n are related to the starting equilibrium constants K p n by:

M oreover, we can consider any total pressure p. not just the saturated p* but also any 
undersaturated or supersaturated pressure. However, it remains true that:

In order to simplify the scheme, we can introduce a variable .v, with a meaning of the 
mole fraction of the monoatomic cluster C(g). This substitution converts Eq . (23) into the 
following algebraic equation of the 70th order:

One can solve [208-212] Eq. (24) for a selected temperature T and pressure p numerically 
with any required precision. Once the term .v, is known, other mole fractions are simply
given:

nC(s) = Cn(g)

The partial chemical equilibria (17) are described by equilibrium constants:

(17)

Kr. n = Pn (18)

/ /  =  /? ,  +  p 2 +  / ; ,  +  p A 4  / ; ,  +  p w  +  p lu (19)

rtC{g) = C„(g) (20)

( 2 2 )

P = P i + Pi + P?. + Pa + Pi + Pm + Pm (23)

7(1

1 =  -v' i  +Y .K 'P.iX\P' ' • ( / = 2 - 5 ,  60, 70) (24)

The equilibrium constants K'r can be derived from quantum-chemical and statistical- 
mechanical calculations; the constant K s comes from experiment.
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T he  scheme is pressure dependent— the pressure does not reflect the He pressure but 
the carbon-vapor pressure itself (never measured; after all, it is always covered by the H e 
pressure). At pressures around the saturated carbon-vapor pressure, the scheme gives the 
correct order of the relative populations of C W) and C 70. If  we increase the pressure to 
very  high, unrealistic values like 1 atm, we can reverse the order. The scheme is quite 
sensitive to the heats of formation. Thus, before the treatment is applied on a large scale, 
one has to be able to produce accurate values of the total heats of formation (i.e., not 
on ly the relative energetics like for the isomeric problem). M oreover, some representative 
values o f temperature and pressure for fullerene synthesis are to be selected. As there is a 
considerable temperature gradient in the chamber, if we select one pressure value, we shall 
in a substantial volume of the chamber actually deal with a supersaturated carbon vapor. 
C learly  enough, the isomeric stability problem is much better understood at present than 
the relative stabilities of nonisomeric carbon clusters, partly because the former has been 
been studied [198, 214-216] for a longer time.

There is still another interesting result of the computational studies [208-212]: tempera
ture increase of the clustering degree under the saturation conditions. This somewhat sur
prising result can in fact be easily rationalized [217]. W hereas the equilibrium constants 
for cluster formation decrease with temperature, the saturated pressure increases. It is just 
the competition between these two terms that decides the final temperature behavior. The 
finding actually has a more general validity as it was also reported for other vapors [218-221].

Le t us consider a substance A that exists in both condensed (liquid or solid) and gas 
phases, and those two phases are in thermodynamic gas-liquid or gas-solid equilibrium. In 
the gas phase clusters Ai o f any dimension are present:

iA(g) = Ai(g), (i = 2 , . . . )  (26)

and their formation is described by equilibrium constants:

Kr J = ^ ,  (i = 2 , . . . )  (27)
P a

Tem perature dependency of the oligomerization equilibrium constant K  . is given by the 
van't H o ff equation:

d\nK„ , AH°
- 3 7 “ - 7 3 * ’ = «*>

where A H ° stands for the (negative) standard change of enthalpy upon the respective 
z-mcrization.

The total pressure P  will be the sum of all the partial pressures derived from Eq. (27):

P  = PA + ' t p iAK Pj  (2Q)
i—2

W e can again work with the monomeric molar fraction a ,:

l = . v , + X > '  P '- 'K /k, (30)
i=2

Generally  speaking, this algebraic equation cannot be solved in a closed form. In fact, we do 
not need the algebraic solution— it is just enough for our purpose to express the temperature
derivative dxJdT  in an applicable form. M oreover, we are not interested in a general
pressure but in the saturated pressure. Let us suppose that the saturated pressure simply 
obeys the Clausius-Clapeyron equation:
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where A W vap symbolizes the (positive) enthalpy o f vaporization. A fter some algebraic m anip
ulations, one can express the temperature derivative dx JdT  as follows:

d T V  ‘ + V f l ]  = V ' 1' R T ------ "  (32 )

w'here the £t terms are given:

Zi = x\']P ‘- 'KnJ (33)

Equation (32) suggests a simple sufficient (though not necessary) condition for the temper
ature decrease of a', in the saturated vapor (in other words, for temperature increase of the 
clustering degree 1 — x{). As long as A/Yvap > \\H°\/(i — 1) for every / > 2, the temperature 
derivative dxJdT  is negative, and thus, the clustering degree increases with temperature in 
the saturated vapor. In all cases tested in computations [217], the simple rule derived from 
Eq. (32) was satisfied. This finding also gives still another perspective to the high temper
atures in fullerene synthesis. They are needed not only in order to evaporate graphite, but 
also in order to get a sufficient clustering in the vapor phase.

4. SMALL CARBON CLUSTERS
Although the small carbon clusters had been computed [31-35] well before the fullerene 
discovery, their studies have certainly gained from the discovery. The ir relative stabilities can 
be treated in a similar way as those of fullerenes, and thus, the small clusters represent an 
interesting model system. They have been treated by both theoretical [222-240] and exper
imental [241-264] techniques. The basic structural features of the systems were established 
by Raghavachari and Binkley [223]: ( i )  linear isomers exist for both even- and odd-numbered 
species; however, the even species being in the triplet electronic state, and (ii)  planar cyclic 
isomers exist for the even species. The ir computations were performed at the HF/6-31G* 
level only, and thus, a further check with a correlated treatment had been necessary.

On the experiment side, ion-chromatography observations by von Helden et al. [261, 263, 
264] suggested that most carbon clusters had more than one stable form. Figure 5 shows [264] 
that starting from about n = 7, cyclic rings exist in addition to the linear forms (though 
there is a charge dependency). The first observed cyclic case [264] (i.e., C 7) was indeed at 
the MP2./6-31G* level computed [236] only about 2 kcal/mol above the linear form (though, 
17 kcal/mole at the advanced MP4/6-3IG* level). On the other hand, the HF/6-3IG* treat
ment does not produce such low-energy species. The cycles are not necessarily planar as a 
nonplanar structure w;as computed [266] for C , in the MP2/6-31G* approximation (6 kcal/mol 
above the linear form). M oreover, the C s cycle is also computed [237] nonplanar at the 
MP2/6-31G* level. The nonplanarity of C s allows for an inversion motion with an inversion 
barrier [237, 267] of 13 kcal/mol. However, the nonplanar C (S cycle was not confirmed in 
the more sophisticated coupled-clustcr computations of M artin  and Taylor [240]. Hence, the 
MP2/6-31G* applicability to carbon clusters still needs additional critical tests.

In spite of the open question of their applicability, there are [268] the MP2/6-31G* cal
culations also for C,<„ C M, C ,: , and C J3, with the cyclic form located 131, 48, 102, and 
23 kcal/mol, respectively, below the linear isomer. The separation energy for C 1( is, how
ever, considerably higher than reported by Parasuk and A lm lo f [235]. Density functional 
computations agree [269] with the M P2  results for C ,3 (so that the observations of Giesen 
et al. [270] can be rationalized). Qualitatively speaking [271]. the available computations 
agree with the findings of ion chromatography [261, 263, 264]. C M should bc the first 
(or, at least first odd-numbered) species for which the cyclic structure becomes dominant. 
Switch from cyclic to polyhedral species is still not well-known but is expected [272] around 
n = 45.

The linear and cyclic (rhombic, bicyclic) C 4 isomers were computed several times. The 
cyclic versus linear difference varied considerably [53] from -16 to 1 kcal/mol. Usually, calcu
lations placed the singlet cyclic form at the lower energy, it was suggested [53] to estimate the 
rhombus energy preference by about 5 kcal/mol. The unclear computational picture for C 4
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Figure 5. Ion chromatography of carbon dusters performed by Gotts et al. [264] with indication of several structural 
families. Reprinted with permission from 1264], N. G. Gotts et al., Int. J. Mass Spectr. Ion Process 149/150, 217 
( 1995). £) 1995. Elsevier.

------ T (K)

Figure 6. Relative concentrations 1232. 278, 279] of the linear (the higher curve at high temperatures) and rhombic 
structures of C4 for three separation energetics [53, 273, 280] (bottom: thermodynamic fit [273]). Reprinted with 
permission from [232|, Z. Slanina et al., /.. Phys. D 19, 431 (1991). © 1991, Springer-Verlag.
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Figure 7. Relative concentrations [232, 214. 281] of the linear (the highest curve at high temperatures), cyclic (the 
lowest at high temperatures), and another linear structure of C„ for two separation energetics [222]. Reprinted with 
permission from [232]. Z. Slanina et al.. Z. Phys. I)  19, 431 (1991). © 1991, Springer-Verlag.

prompted an approach [273] based on available [29, 274] experimental equilibrium constants 
for CA formation (two values for two different temperatures). Using the computed entropy, 
the cyclic versus linear difference was evaluated [273] as 2.4 kcal/mol (o r 2.9 kcal/mol; i.e., 
the linear form was slightly lower). Incidentally, an extended computation of Nygren and 
Pettersson [275] placed the linear structure 3.6 kcal/mol below the cycle. Density functional 
theory may yield a numerical artifact [276] in this case (the rhombic structure higher by
20.6 kcal/mol). A t the G1 and G 2  levels o f theory, the rhombus form is predicted [239] to 
be more stable by 3.4 and 5.1 kcal/mol, respectively, though the G 2 value is probably too 
large. Still another advanced calculation by W atts et al. [277] finds the cyclic isomer to be 
more stable by about 1 kcal/mol.

The energy difference between the C 4 isomers is relatively small, however, the entropy 
contributions can still produce one dominant species at higher temperatures [245, 278, 279]. 
Figure 6 presents the temperature evolution of the relative concentrations of the C 4 isomers 
evaluated for three selected values of the separation energy [53, 273, 280]. For example, 
if the thermodynamic fit [273] is used, the highest relative concentration of the cycle is 
obtained at around 2700 K, however, only 5-10% . Even  if the cycle represents the ground 
state, the linear isomer still dominates at high temperatures. This conclusion agrees with the 
experimental finding of only one (and not two) peaks in ion chromatography [261].

There is still another example of a small carbon-ciuster system with an important role 
of entropy, viz. C 6. Raghavachari et al. found [222] an energy separation of -11 kcal/mol 
between the cyclic and linear C () forms, with the cycle representing the ground state. 
At nonzero temperatures, the picture is, however, considerably different, as shown [232] 
in Fig. 7. A t a temperature of observation [29] (2500 K ), the linear species is com
puted [214, 281] to form more than 95%  of the equilibrium mixture. M artin  and Taylor 
confirmed [240] the finding. This thermodynamic reasoning again explains why only one 
peak was recorded [261] in the ion chromatography o f C 6. The system continues to attract 
a vigorous research interest [282, 283].

5. TOPOLOGICAL GENERATIONS OF CAGES
Enum erations and generations of fullerene topologies represent an essential step before any 
search on a potential hypersurface. The first systematic studies of the problem were carried 
out by Fowler et al. [96. 97, 284-302], though various topological aspects of fullerenes have 
been studied on a wide front [95. 98, 99, 303-331]. Exhaustive generation of all closed
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cages built from pentagons and hexagons, and of the IP R  cages among them, represents a 
particu larly important task. As long as we deal only with pentagons and hexagons, the cage 
isiomerism first appears [97] with C 2tS (however, the IP R  structures start from C6()).

Enum erations of fullerene cages have developed together with other algebraic and com 
binatoria l aspects of fullerenes, like the concept of Goldberg polyhedra applied [286] to 
icosahedral cages, leapfrog transformation [296], or the concept of topological duals [306]. 
T ’he Stone-Wales transformation [304] represents another useful concept based on topolog
ical relationships. It was introduced as a process for rearrangements of the rings in fullerene 
cages (i.e., for fullerene isomerizations). Such a pairwise interchange of two pentagons and 
two hexagons is also called the pyracylene transformation [296]. It can be further gener
alized [332] through inclusion of other rings, different from pentagons and hexagons. It is 
visualized as a movement of two atoms in which two bonds are broken. It is not necessarily 
a convenient, feasible kinetic process— it is thermally (but not photochemically) forbidden. 
Nevertheless, it still represents a useful topological concept.

Recently, a way was suggested how to activate the kinetic process— its feasibility can be 
enabled [333-335] by a catalysis or even autocatalysis by free atoms present in the reaction 
mixture at very high temperatures. Hence, catalysis seems to be of crucial importance not 
on ly  for production o f nanotubes [11] but also of fullerenes themselves. However, the mech
anism of fullerene synthesis is still virtually unknown. There are tremendous experimental 
difficulties in elucidation of the mechanism, and computational support is essential. There 
are some generally supposed steps like production of small linear, cyclic, and polycyclic 
species, and their combination into cages. Finally, multiple isomerizations should transform 
general cages (containing several types of rings) into a few most stable IP R  structures. 
Although kinetics in electronically excited states could bring some reduction of the barriers, 
a catalytic action is also a very plausible step. The catalytic action is supposed through an 
influence o f either elemental atoms or their small clusters, in particular carbon, nitrogen, 
oxygen, and hydrogen atoms. G raphite always contains small amounts of many chemical 
elements, and N 2 and 0 2 also come as an impurity in the inert gas used as the medium in 
the fullerene synthesis. During the process of graphite evaporation in the electric arc, all the 
components are atomized. The free atoms can create intermediate complexes with the cages. 
In  fact, even carbon atoms themselves could act this way [333]. However, the computations 
in particular favor [335] catalytic activity in the complexes containing nitrogen atoms.

Although the kinetic aspects of the fullerene synthesis are of tremendous importance, the 
Stone-W ales transformation can be a useful concept even if all the energetics is disregarded. 
Then, it works as formal topological structure generator [132]. This application represents 
another exhaustive or near-exhaustive generation of topologically possible cages and was 
recently applied [143], to the cage-isomerism problem of C 32. M oreover, the Stone-Wales 
transformations can give some kinetic insight even without considering kinetic barriers. They 
were for example applied to an analysis [296] of interconnection links for the C 84 IP R  
structures. The analysis demonstrated that the set of transformations would decompose into 
two disjoint families.

A  versatile technique for the enumerations of all fullerene cages and of the IP R  cages 
was systematically developed by Fow ler and Manolopoulos [96, 97, 308]. They introduced 
a concept o f two-dimensional representation of fullerenes by their ring spiral, and the con
cept has been developed into a key tool in the fullerene enumerations. They noticed that 
fullerenes, at least below some dimension threshold, could be peeled like an orange—  
each face, after the first, borders its immediate predecessor, so that the rings come off the 
cage in a single continuous spiral. It is now known that the simple procedure cannot be 
applied to any cage— a counterexample is given [302] by a fullerene with 380 atoms. It is 
the smallest tetrahedral fullerene without a spiral (T symmetry). It is not clear, however, 
whether this is the smallest possible unspirable fullerene of any symmetry. However, the 
spiral algorithm seems to fail only for such n values that are not relevant to our current 
considerations.

W ithin the spiral algorithm the bonding topology is reconstructed from the sequence of 
rings in the spiral. Thus, all possible C „ fullerene graphs can be generated by considering all
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The number o f the spirals, S„, is higher than the resulting number of related fullerenes and 
it is subjected to a selection and reduction procedure. The uniqueness test is based on the 
eigenvalues of the adjacency matrix (hence, we deal with the spectrally distinct cages).

The total number of spectrally distinct Cn fu llerene isomers increases rapidly with the 
carbon content n. In particular, it was found [308-313] that the number of spectrally dis
tinct C 60 isomers is 1812. Fo r example, for n — 50,40,30, and 20, the computed [96, 97] 
numbers of all isomers are 271, 40, 3, and 1, respectively. Le t us stress that these counts 
consider only pentagon/hexagon rings, with no other cycles allowed, and a chiral pair is con
sidered essentially as one isomer. Odd-numbered cages are not usually considered in the 
enumerations. They are also known [314, 336, 337] but they cannot simply be built from 
three-coordinated atoms only. Fo r example, if we consider just one two-coordinated car
bon in the odd-numbered cages, and pentagons/hexagons only, the number of pentagons is 
reduced [314] to 10. I f  we allow for two tetra-coordinated and one two-coordinated carbons, 
the number of pentagons is 14, and so forth.

Am ong all the possible isomers, the I P R  structures are supposed to be a particularly 
im portant species (i.e., high-stability candidates). The requirement of isolated pentagons 
can readily be implemented into the spiral algorithm. As already mentioned, there can
not be an I P R  structure for n < 60. This fact is obvious as there are always 12 pen
tagons, and 12 isolated pentagons represent 1 2 x 5  = 60 carbon atoms. The second smallest 
IP R  fullerene comes for n = 70. It is still a unique structure like those for n = 72 and 
74. Fo r any higher carbon atom, we already meet I P R  isomers; for example [96, 97], for 
,/ = 76, 78. 80, 82, 84, 86, 88, and 90, there are 2, 5, 7, 9, 24, 19, 35, and 46 IP R  structures, 
respectively.

O ther enum eration algorithms have been developed, for example, the net-drawing 
method [98, 99], ring-by-ring approach of L iu  et al. [309, 310], circumscribing technique by 
D ias [320], or topological treatment based on the Stone-W ales transformations [132]. There 
are also interesting applications o f Po lya ’s enumeration theorem, known as the most general 
result in chemical enumerations [198, 233]. Po lya ’s theorem was for example applied [321, 
324, 330, 331] to enum erations o f isomers for various substituted fullerenes.

6. S M A L L E R  F U L L E R E N E S

Although fullerene science is focused at n = 60 and above, there has been a vigorous inter
est in a lower bound for observable fullerenes C „. Von Helden et al. [261, 272] reported 
fullerene-like structures at and above C 30 using gas-phase ion chromatography technique. 
The fraction o f fullerene isomers was observed close to 5%  for C 32, about 1 %  for C 30, 
and virtually no cages below n — 30. M oreover, synthetic routes even toward the smallest 
fullerene have indeed been developed [339-342] and the system computed (e.g., Refs. [216, 
343-346]). S im ilarly, C 36 fullerene was also isolated as a solid material [347] and com
puted [144, 145, 348, 349]. Narrow  nanotubes related to C 36 and even to C 20 are also 
known [350-353]. Cage isomerism was computed [143-145] for C 32 and C 3ft.

There are six conventional C 32 cages built from pentagons and hexagons. They were com
puted by M urry  et al. [348], and a D, structure was pointed out as the system ground state. 
No IP R  structures are of course possible for C 32. Hence, pentagon/pentagon junctions will 
always be present. However, one can reduce the number of pentagon-pentagon junctions by 
introduction of four-membered and/or seven-membered rings. Then, E u le r ’s network closure 
requirem ent has the following form:

2/2, -i-//5 -  it, =  12, (35)

where n, denotes the number o f rings wfith / vertices. For example, this equation says that 
a removal o f two pentagons w ill increase the number of four-membered rings by one. An 
exhaustive generation of all C\2 cages built from four-, five-, six-, and/or seven-membered

th e  w a y s  in  w h ic h  12 p e n ta g o n s  a n d  (? f  — 10) h e x a g o n s  c a n  b e  c o m b in e d  in to  a  s p ira l:



Is o m er ic  Fu lle re n e s  and E n d o fu lle re n e s 473

rings was performed [143] using the topological treatment based on the generalized Stone- 
Wales transformations [ 132]. In order to reduce the amount o f necessary quantum-chemical 
computations, an additional lim itation, viz. 2/z4 + n7 < 4, was imposed. W ith  this limitation, 
the topological search generates 199 cage structures for C 0 . Six of them are the conventional 
fullerenes and 193 c/z/tfs/’-fullercnes.

A ll the 199 structures were computed at the A M I ,  PM 3 , and S A M I  levels [143] and partly 
also at ab initio levels. A ll the computations point out a structure with two four-membered 
rings (and no heptagons) as the ground state in the 199-membered set (the second lowest 
structure is, however, a conventional fullerene). M oreover, if we consider five structures 
lowest in energy (Fig . 8), only two o f them are conventional fullerenes, the other cages 
contain at least one square, though no heptagon yet. The first structure with a heptagon 
(Fig. 8) appears only about 230 kJ/mol above the ground state. The first two structures with 
a nonzero n7 contain one square and one heptagon each. The third lowest structure with a 
nonzero nn contains no square. The three heptagon-containing structures are lower in energy 
than the four conventional fullerenes not included among the lowest five cages.

In order to gain a deeper insight into the relative-stability problem, temperature develop
ment of the equilibrium mole fractions in the C 3: system was computed [143], too (Fig. 3). 
If  we completely ignore the entropic terms [the simple Boltzm ann factors from Eq. (2 )], the 
resulting temperature evolution is rather simple and uniform . However, the entropy con
tribution can reverse the stability order in some cases, and this indeed happens in the C 32 
isomeric set. The structure lowest in energy (coded 51; a DAd sym metry) is the most popu
lated species only till a temperature of about 2500 K. Beyond that point it is surpassed by 
another structure, the conventional fullerene labeled by 1. H owever, at still higher tempera
tures a third species becomes a leading term, the quasi-fuWerene structure coded by 7. The 
equimolarity points are located rather high in temperature, however, in a still relevant tem
perature region. The computational results suggest that the C v  system, if isolated, should 
definitely represent an interesting structural case.

For C 36, there are already 15 conventional fullerene cages, of course none of them 
being an I P R  structure. However, one can again reduce the number of pentagon-pentagon 
junctions by introduction of four-membered and/or seven-membered rings. The topological 
search [144], based on the generalized Stone-W ales rearrangements [132], was limited to 
conventional fullerenes and to </z«/.y/-fullerenes with one or two squares (no heptagon), one 
heptagon (no square), or one square and one heptagon. The topological search supplied

figures. Six computed [143] important structures of C,: . Reprinted with permission from [143], X. Zhao et al.. 
I'/lhrcnr Sri. Technol. 8, 595 (2000). O 2000, Marcel Dekker.
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598 cages. A t present, the completeness of the search is not completely understood yet, how
ever, it is certainly a comprehensive enough search for the first approach. A ll 598 structures 
were optimized at the S A M I level, and the 10 lowest structures selected (F ig . 9); among 
those 10 cages, 6 are the conventional fullerenes. W e can characterize the cages by a ring 
index, a vector containing the counts n, of the rings considered: (//4, /z5, n(„  n7). Then, three 
low-energy quasi-fuWevencs are of the (1, 10, 9, 0) type (one square) and one is o f the ( I ,  11,
7, 1) type. For the three lowest structures, their separation energetics was further checked by 
the HF/4-31G and B3LYP/6-31G* computations [144, 145] in the optimized S A M I  geome
tries. It turns out that the S A M I and B3LYP/6-31G* data agree very well, whereas the 
HF/4-31G (free of any correlation energy) values seem to be somewhat underestimated.

In contrast to the above Cn system with the ground state containing two squares, in 
C 3h the ground state is already represented by a conventional fullerene. The ground state 
exhibits a Dld symmetry. The second lowest species is also a conventional fullerene. with 
a C 2l. symmetry and 36 kJ/mol higher on the S A M I scale. The highest member of the

Figure 9. The SAM I optimized structures [144] of C\(t: 10 lowest isomers out of a set of 598 cages. Reprinted with 
permission from 1144). Z. Slanina et a!.. Chem. Phvs. Leu. 290. 311 (W 8 ). C> 1908. Elsevier
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I()-membered set is a C v conventional fullerene and is located about 162 kJ/mol above the 
ground state in the S A M I approach. However, the third lowest structure contains one square, 
it has a C s symmetry, and in the S A M I terms it is located some 77 kJ/mol above the ground 
state. There is one interesting high-symmetry conventional fullerene. The structure exhibits 
a L)b/l topological symmetry; however, flexible symmetry diagnostic tool [117] gives only C ftl, 
symmetry at the S A M I level [144] and C2/J symmetry after the B3LYP/6-31G* geometry 
optimization [145]. A  closer analysis reveals that we are actually dealing with a Jahn-Teller 
distortion owing to the degenerate frontier orbitals; however, the finding is method depen
dent [144-146]. Even  after the symmetry relaxation, the structure is located above the Dld 
ground state. The temperature dependencies of the relative concentrations of the selected 
CM, low-energy isomers were also evaluated [144, 145]. Even single and multireference M P2  
perturbation theory was applied recently to the system by Gordon et al. [146] giving still 
another perspective to its description.

7. HIGHER FULLERENES
7.1. C72 Fullerenes
C 72 is the last member among higher fullerenes [19, 92] C ft()-C %  that has not been isolated in 
condensed phase. C 74 has also been counted as a “ missing fullerene,” however, some access 
to C 74 is already possible [354, 355]. A  low solubility [356] in conventional solvents may be 
one reason for the difficulties. Hence, as C 72 could only be recorded in gas phase [357, 358], 
its structure is not known. Still, C 72 can act as a host cage for some metallofullerenes [41, 
147, 148] like C a (« C 72 or L a 2(q C 72.

There is just one IP R  satisfying structure for C 72, namely with D()(, symmetry [97]. N ev
ertheless, it was pointed out in conjunction with the C a @ C 72 computations [148] that a 
non-IPR (i.e., IPR-vio lating) structure with one pentagon-pentagon junction is by a few 
kcal/mol lower in energy than the IP R  cage. Moreover, it was demostrated [359] on the S ift() 
case that the IPR /n o n - IPR  stability order can be reversed by the entropy factor. Hence, the 
C 72 system was investigated at semiempirical [360] and D F T  levels [361]. A t the D F T  level, 
the geometry optimizations were carried out [361] using the B3LYP/3-21G treatment. In 
the optimized B3LYP/3-21G geometries, the harmonic vibrational analysis was carried out 
and also the B3LYP/6-31G* separation energies were evaluated. The electronic excitation 
energies were evaluated by means of the Z 1 N D O  (Zerm ers IN D O ) method [362, 363].

The following structures were considered [361]: the IP R  cage (a), two non-IPR cages [148] 
with one pentagon-pentagon junction (b ) and (c), a structure [148] with one heptagon (d ), 
a cage [149] with two heptagons (e ), and two structures [356] each with two pentagon- 
pentagon junctions (f), (g). Figure 10 presents the B3LYP/3-21G optimized structures of the 
seven C 72 isomers. The (c ) structure of C2v symmetry with just one pentagon/pentagon fusion 
represents the lowest energy isomer, being followed by the IP R  structure (a). The other 
structure with just one pentagon-pentagon junction, (b ) isomer of C2 symmetry, comes as 
the third lowest species. The remaining four cages are located more than 30 kcal/mol above 
the lowest one.

Figure 11 presents the temperature development of the relative concentrations of the 
seven C 72 isomers in a high-tcmpcrature region. The lowest energy structure (c ) is the most 
populated species at any temperature. On the other hand, the IP R  structure (a ) is always 
negligible. Its elim ination cannot be ascribe only to the potential energy. In fact, several 
structures higher in potential energy than the (a ) isomer are more populated at high temper
atures. This is in particular true for the (b ) structure with one pentagon-pentagon junction 
and the (e ) structure with two heptagons [the (e ) cage is located in the B3LYP/6-31G* scale 
about 20 kcal/mol above the (a ) isomer]. C learly enough, the IP R  structure is suppressed 
not only by its energy but also by its unfavorable entropy term.

7.2. C74 Fullerenes
Although C 74 has not been isolated in condensed phase yet, Shinohara et al. [355] recorded 
electronic spectrum of C 74 anion and suggested that the cage could have Dyh symmetry
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Figure 10. B3LYP/3-2IG optimized structures [3611 of C7. isomers: (a) IPR , (h) 5/5 pair, (e) 5/5 pair, (d) 7- 
membered ring, (e) two 7-membered rings, (f) two 5/5 pairs, (g) two 5/5 pairs. Reprinted with permission from [361), 
Z. Slanina el al., Chem. Phys. Leu. 384, 1 14 (2004). © 2004, Elsevier.

(i.e., the only one available [97] I P R  structure). This interesting finding prompted D F T  com 
putations [364] that treated a set o f six isomers (F ig . 12), five of them being non-IPR species. 
The set consists of the three isomers considered previously [147, 149] in connection with 
C a @ C 74 and of three additional cages that also exhibited some non-negligible populations 
in semiempirical evaluations [365]. In the evaluations [365], the cages were labeled by some 
code numbers that are also used here, combined with the symmetry of the complexes: 1 / D Vj 
( IP R ) .  4/C| (5/5 fusion), 52/C2 (5/5 fusion), 103/C, (5/5 fusion), 368/C’, (5/5 fusion and 
7-ring), and 463/C, (5/5 fusion and 7-ring). The computational methodology was the same 
as in the C 72 case [361].

Figure 13 presents the temperature development in the C 74 set. The IP R  structure is the 
lowest in energy and prevails at any relevant temperature. The computations thus agree with 
the experimental finding [355]. There is, however, an interesting point regarding the elec
tronic partition function. Furche and Ahlrichs [366] recently pointed out a very low location 
o f the first triplet states for some C 80 isomers (actually even with a possibility of a triplet 
ground state). It can be expected that the triplet species will polymerize and form insoluble 
solids, t here are also other fullerenic systems [314, 367] with computed low triplet states, 
and the same feature was also recently reported [368] for the I P R  C 74. Although the compu
tations [368] were carried out with the unrestricted Hartree-Fock method that gives lower 
energies than the corresponding restricted open-shell Hartree-Fock treatment [314, 367], the 
aspect was also found [364] in the Z IN D O  and time-dependent [369] D F T  treatments.

In principle, every excited electronic state could be treated within Eq . (1 ) as an individual 
isomer with its own rotational-vibrational partition, function. This approach would, however, 
considerably increase the computational demands. Consequently, one has to follow the usual 
approach in which the rotational and vibrational levels of any excited electronic state are put
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Figure I I .  Relative concentrations [361J of the C7: isomers based on the B3LYP/6-31G* energetics and the 
B3LYP/3-21G and Z iN DO  entropy. Reprinted with permission from [361], Z. Slanina cl al.. Chem. Phvs. Lett. 384,
1 .4 (2004). © 2004, Elsevier.
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Figure 13. Relative concentrations 1364] of the C74 isomers based on the B3LYP/6-31G* energetics and the 
B3LYP/3-21G and Z IN DO  entropy; both singlet and triplet electronic excited states are included in the partition 
functions.

equal to those of the respective electronic ground state. There is, however, one interesting 
point. Le t us suppose that the triplet states from the gas phase end up as polymers after 
condensation. Then, it can be shown [370] that their explicit consideration as inidividual 
isomers in Eq. (1 ) would not influence the ratios of _v;, and thus the comparison with the 
observed data (as long as we deal only with the xt ratios). Anyhow, the topic is in fact not 
particularly important for C 74, as even if the triplet states are excluded from the partition 
functions, the results are not qualitatively different from those in Fig. 13. However, the 
presence of low-lying triplet states would suggest [370] reduced production yields as they are 
scaled down owing to the part o f the cages that were converted into the polymeric material.

7,3. C76 Isolated Pentagon Rule Set
The system was firstly isolated by E ttl et al. [101] and treated in further studies [100. 102— 
110]. C 76 is actually the smallest fullerene that allows for cage isomerism of its IP R  structures, 
though modest. There are just two [97] different IP R  structures, namely with the topological 
symmetries D2 and Td. However, the Td topological symmetry undergoes a relaxation as the 
structure exhibits degenerate, partially tilled frontier orbitals. Thus, it has to be distorted 
according to the Jahn-Telier theorem, lowering both symmetry and energy. In the A M I cal
culations [100. 371], this relaxation process ends in a D->t{ symmetry (though other quantum- 
chemical methods could predict other symmetry subgroups). Moreover, the D:i isomer is 
still located about 108 kJ/mol above the D2 ground state on the A M I potential hypersurface. 
The separation energy derived directly from the heat of formation at room temperature 
AH? is 103 kJ/mol. Interestingly enough, the geometrical distortion is quite small. This 
distortion can be measured by the rotational constants (identical for a spherical top like
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tetrahedral T(l species). Fven after the symmetry relaxation, the rotational constants remain 
almost identical for the Dllf structure: 0.00173, 0.00173, and 0.00174 cm '"1. For the other 
species, D : , the rotational constants are, however, distinctly different: 0.00194, 0.00171. and 
0.00156 cm '. As all the computed vibrational frequencies of both structures are real [100, 
37 .J, one really deals with local energy minima after the symmetry relaxation.

From the relative-stability point of view, the D2 structure is actually in a triply convenient 
situation. It is lower in energy, it is enhanced bv its chirality factor of 2, and its low vibrational 
frequencies are lower than those of the Dld isomer. Ow ing to this triple coincidence, it 
must be prevailing even at very high temperatures. For example, even at a temperature of 
4000 K, the ground-state structure represents [100, 371] more than 95%  of the two-isomer 
equilibrium mixture. Thus, the computations clearly point out that the D1(l C 7f) species can 
hardly be observed.

7.4. C78 Isolated Pentagon Rule Set
The situation is very much different if we move from C 7f) to C 78. The I P R  cage isomerism 
o f C7S has been frequently studied [111-114, 293, 373] not only by computations but also 
in experiments, however, the picture is still not yet complete. In experiment, at first only 
two isomers were observed by D iederich et al. [ I l l ] :  D 3 and C2v symmetry in a ratio 1:5; 
the latter species is also labeled as C 2,,(I). Later on, Kikuchi et al. [112], however, reported 
three isomers of C 7S with the symmetries D 3, C 2l,(I), and C 2t, ( I I )  and in a ratio 2:2:5. The 
challenging observations were soon completed with computations [113, 114] of the relative 
stabilities. In fact, it was only the third case of such computations in the fullerene field, 
folow ing two model computations without an available experimental counterpart [215, 343].

T ie  semiempirical stability computations on th e ^78 IP R  system were performed [113,
1 U, 373] with the semiempirical M N D O , A M I ,  and PM 3  methods. There are five [97] IP R  
isoners for C7ii, and each of the topologically possible structures indeed leads to a local 
energy minimum in the geometry optimizations. Their symmetries derived from the M N D O  
optimizations are [113] Dy,(I) , D 3/j( I I ) ,  Z)3, C 2lP( I ) ,  and C 2l, ( I I ) .  In all three semiempirical 
methods employed, the C2j, ( l l )  structure represents the lowest (global) energy minimum (in 
fac, in agreement with the M M 3  force-field results).

According to the semiempirical computations [114], the global minimum represents more 
thin 5 0 %  of the equilibrium mixture even at a high temperature of 4000 K. On the 
o tle r hand, the relative population of the D 3/l( I )  structure is always practically negligi
ble The remaining three structures exhibit comparable relative stabilities, and in the high- 
tenperaturc limit this three-membered group represents nearly 5 0%  of the equilibrium 
isoneric mixture. The picture is basically the same for the three semiempirical energetics 
considered. Fowler et al. [293] conclude that the structures D 3/|( I ) ,  D 3/J( I I ) ,  D 3, C2l,(l), and 
C 2(I1) should exhibit 8, 8, 13. 21, and 22 lines, respectively, in their l3C  N M R  spectra. 
Ditderich et al. [ I l l ]  isolated two C 7S isomers that exhibited 13 and 21 N M R  lines, respec
tively, and were therefore identified as the D 3 and C 2l,( I)  structures. The presence of only 
tw< isomers (rather than of five) was rationalized [111] by kinetics. Two product channels 
w ee considered, the minor one leading to the D 3 species and the major one to the C 2l,(I) 
species. A  kinetic control, if present, would of course reduce applicability of the equilibrium 
thermodynamical treatment.

t was not however the end o f the story as later on Kikuchi et al. [112] reported their obser- 
vaton of the D 3, C2},(I), and C 2r( I I )  isomers of C 7(S in a 2:2:5 ratio. This second experiment 
is ictually qualitatively more consistent with the computatie>ns than the 1:5:0 ratio [111]. 
Hovever, in order to get even a quantitative agreement, we have to go to relatively very 
higi temperatures. Still, it should be realized that a relatively small change in the observed 
rato can scale down the anticipated temperatures considerably. Moreover, there is certainly 
ro<m for further computational activities; for example, on the system energetics. In addition 
to hat computational need, there have also been additional experimental results reported 
reently [374-376]. In particular, the independent 3He N M R  spectroscopy data supplied by 
Sainders et al. [20, 125, 377] could support a more ample isomerism. This possibility is 
inched consistent with the recent experimental work of Yamamoto, who reported [378] iso- 
laton of a fourth isomer of C 7iS, namely the D\h species. The observation prompted a new



480 Is o m er ic  F u lle re n e s  and  En d o fu lle re n e s

computational evaluation [372, 379] with the B3LYP/6-31G* energetics and Z IN D O  elec
tronic excitations. Figure 14 presents [372] the outcome (including a visualization of the role 
of the electronic partition function). The computed results [372, 379] agree reasonably well 
with the experimental findings [112, 378] on the C 7S system.

7.5. C80 Isolated Pentagon Rule Set
This system o f seven [97] topologically possible IP R  structures represents an instructive 
example of the thermodynamic isomeric interplay. The isomers have in the literature been 
conventionally coded [115-119, 136] by letters rather than by a numerical code, A-G. O f 
the seven IP R  C so structures, the species B  exhibits a high topological symmetry, I lr the 
same as seen in the icosahedral C fl(). However, according to the concept [286, 380, 381] 
of the Goldberg polyhedra based on the topological duals, it has to be an electronic open 
shell. Consequently, it has to undergo a Jahn-Teller distortion toward lower energy and 
lower symmetry. Sim ilarly to the distortions of the topologically tetrahedral T(l C 7f, case, 
we can also check the Jahn-Teller deformation on the rotational constants. The distortions 
are again quite small, as the rotational constants of the A M I  fully optimized species B  

read [117] 0.00155, 0.00156, and 0.00157 cm 1 (i.e., a near-spherical top). The symmetry 
of the B  structure is lowered to D2 in the relaxation process. Nevertheless, the particular 
species still exhibits the highest energy in the computed IP R  set. The computations (both at 
room and at the absolute zero temperature) point out the C isomer (D5(t symmetry) as the 
system ground state, being followed by the A species of a D , symmetry.

Figure 15 presents [136, 382] the temperature dependencies of the relative concentra
tions, wh for the seven-membered mixture under the thermodynamie-equilibrium conditions.

T (K)

Figure 14. Mole fractions |372] x, of five IPR  isomers of (the full anti empty symbols refer to the calculations 
with and without </,h respectively). Reprinted with permission from [3721, Z. Slanina et al.. Int. J. Quantum Chan
%  (2003). C<:> 2003, John Wiley and Sons.
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Figure 15. The HF/4-31G computed [136, 382] relative concentrations of CS() (topological symmetries indicated). 
Reprinted with permission from [382], Z. Slanina et al., Advan. Strain. Inter. Org. Mol. 7. 185 (1999). © 1999, 
Elsevier.

T h e  dependencies are reported for the HF/4-31G energetics (Fig . 15 refers to the topo
logical symmetries of the isomers). As always at very low temperatures, the ground-state 
structure, C  D5d symmetry, has to be prevailing, and the relative concentrations of other 
structures have to simply obey the A HJ () rcl order. This low-tcmperature region, however, 
has no relevancy to the fullerene synthesis. A t higher temperatures, the preexponential fac
tors in Eq. (1 ) become increasingly important (whereas the importance of the exponential 
part is gradually decreasing at the same time). In fact, at a relatively low temperature, the 
A  (D 2 symmetry) species reaches equimolarity with the C  species. Beyond this temperature 
point o f the two-component equimolarity, the A species of D2 symmetry is always more pop
ulated (though not being the system ground state). Interestingly enough, at still considerably 
higher temperatures, yet another species becomes the most populated.

The C S() separation energies were computed [117, 136] in the S A M I,  A M I ,  HF/STO-3G, 
HF/3-21G, and HF/4-31G approaches. The results agree reasonably well so that the agree
ment between various types of computations supports reliability of the predicted relative 
concentrations. In fact, the computational prediction [117] could soon be critically tested 
against observations. N M R  spectra of a C 80 isomer were recorded [118] and they were 
indeed consistent with the A (D2 symmetry) species. According to the HF/4-31G com pu
tations [136, 383], the two-component equimolarity point between the important A  and C  
structures is reached already at 517 K. A t a temperature o f some 1500 K  (which proba
bly represents a reasonable lower bound of temperatures for the fullerene synthesis), the 
A  structure of D2 symmetry forms about 7 3%  of the equilibrium isomeric mixture. In fact, 
the A  isomer reaches its relative concentration maximum at a temperature of 1497 K  in 
the HF/4-31G energetics. Thus, the computations and observations single out as the most 
populated species a structure that is not the ground state of the system, but it is still pre
ferred by the G ibbs function. This interesting thermodynamical event has been known with 
other chemical systems [198, 384], too, but it is relatively frequent for isomeric fullerenes 
owing to the extremely high temperatures needed for their preparations. Recently, Shinohara 
et al. [119] isolated also a minor C 80 isomer, the D5d species.

Interestingly enough, once a metal is encapsulated, the electronic structure is influenced 
considerably. There is a substantial charge transfer to the cage, and this can in some con
venient cases elim inate the Jahn-Teller situation otherwise present with the empty cage. 
This interesting event happens with the I h C s() cage, for example, if two La  atoms are 
encapsulated [385-387]. In fact, for L a 2C S() the Ih-related encapsulate is the lowest energy 
isomer [385].
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7.6. C82 Isolated Pentagon Rule Set
,3C  N M R  spectra for C s2 were reported by K ikuchi et al. [1 12], and that time three symmetry 
species (C 2, C2v, C3v) were concluded with a ratio o f 8:1:1. Later on, however, the original 
interpretation was modified [19, 91, 92]; in the newer interpretation, only C2 symmetry is 
considered with the C 82 species (while the two form er minor components are supposed to 
be other fullerenes). In  fact, it is even suggested [91] that C s2 has at least two isomers, and 
both of them have C2 symmetry. Several related papers are available dealing with the C S2 
system [120-125].

There are nine C 82 cage topologies [97] that satisfy the I P R  condition. The ir relative sta
bilities at high temperatures were evaluated [124] with the A M I  quantum-chemical semiem- 
pirical method. The cage separation energies are rather similar, giving the following energy 
order at the absolute zero temperature: C2, C 2, C v, C v, C 2, C v, C , , C s, and Cs. In  particular, 
the two lowest structures are o f C2 symmetry and are separated by about 17 kJ/mol only.

A t very low temperatures, the ground-state structure of a C\ symmetry is of course domi
nant. A t moderate temperatures, the other low-energy C2 isomer represents the second most 
populated structure. However, its molar fraction in fact exhibits a temperature maximum 
of about 2 0 %  and then decreases. At very high temperatures, some other structures show 
significant populations, including the third C2 isomer. For a more quantitative correlation 
of computations and observations, some inform ation on the temperature history of the par
ticular sample would be needed. Any information on a representative reaction temperature 
during the fullerene synthesis is still virtually missing. However, the computations reveal that 
the group of C\ species always represents more than 5 0 %  o f the equilibrium isomeric mix
ture, for example 84%  at 1500 K. This com putational finding is consistent with the updated 
interpretation [19, 91, 92] o f the available N M R  spectra as it allows for both one or two 
C2 structures. Incidentally, with some difficulty, the computations could to some extent also 
support the previous N M R  interpretation (C 2, C 2|1, O u in a ratio 8:1:1).

Although isomerism of the empty C 82 cages is not important, the situation is quite different 
with some C 82-based metallofullerenes. For example C a (« C s2 consists of four isomers [ 155— 
161], L a @ C 82 of two isomers [162-166], or T m @ C 82 o f three isomers [167, 388-390].

7.7. C84 Isolated Pentagon Rule Set
C S4 fullerenes [126-132] are rather special as they are relatively abundant, and thus, they 
were among the very first fullerene species observed [126] immediately after the synthesis 
of C 60 and C 7(). The ir observations have frequently been complemented with theoretical 
studies [51, 96, 129, 130, 292, 296, 391-396], and. in turn, there is now a larger set of 
identified C 84 isomers. However, a still more sophisticated wave of the C 84 computations is to 
be expected before the topic is entirely settled. In  fact, for C 84, altogether 24 I P R  structures 
are to be considered [97], and this isomeric count can be quite demanding on computational 
resources.

Kikuchi et al. [112] concluded from ] C N M R  spectra the presence o f two major isomers 
o f D2 and Dld symmetry. The two major isomers are now quite well characterized [397-399]. 
Saunders et al. [20, 125, 377] could, however, see with their 3H e N M R  technique even up to 
nine C S4 isomers. The two major isomers were separated by Dennis et al. [131], and more 
recently they could recognize several minor isomers [400-402].

Bakowies et al. [394] computed all the C M IP R  isomers at the M N D O  semiempirical 
level. Their study was soon completed [130. 132, 395. 396] with computational evaluation 
of the temperature dependencies of the relative concentrations in the isomeric set. in fact, 
the C 84 isomeric system is also the interesting case where the lowest-energy cage is not 
the most populated species at the conditions o f the fullerene synthesis. The two species 
reported by Kikuchi ei al. [112] are conventionally labeled [394] 22 ( D2 symmetry) and 23 
(D 2j  symmetry). In the M N D O  computations [394], the lowest isomer 23 is located only 
about 2 kJ/mol below structure 22. On the other hand, the structure highest in energy (also 
w ith a D2 symmetry) is located about 240 kJ/mol above the lowest minimum.

The lowest energy minimum, 23. is actually the most populated species only at very low 
temperatures [130]. below room temperature. The 22 '23 two-component equimolarity point
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is found at a temperature of 276 K  only. A fte r this relative stability interchange, structure 22 
(in  spit o f being slightly higher in the potential energy) becomes the most populated isomer 
over a wide temperature interval. M oreover, the 22/23 ratio is almost constant, being roughly 
2:1 anywhere above 500 K; for example, the ratio of the two isomers is 58.2:41.7, 41.4:20.6, 
and 19.0:8.84 at temperatures 500, 2000, and 4000 K, respectively. One could interpret [199, 
216. 298] this 2:1 ratio in the terms of the chirality partition function from Eq. (1). There 
are several other species exhibiting a significant or non-negligible mole fraction at very high 
temperatures. This computational prediction [130] was after several years indeed confirmed 
in the observations of Saunders et al. [20, 125, 377] and Dennis et al. [400-402]. For example, 
if we select a threshold w, value of 10%, the computations can point three additional isomers 
o f this relatively high stability.

The  agreement of the computational predictions with some of the newer experiments is 
com prehensively analyzed in our study [132]. Some non-IPR structures of C s4 were also 
evaluated [365]. Com petition between some o f the species creates an interesting temperature 
dependency with a local maximum (as also seen for C (S0 in Fig. 15). In  fact, even in very 
complex fullerene mixtures, we should be able, at least for some specific cases, to suggest an 
optim al region o f temperatures where the production yield should be maximized. Although 
any temperature history o f the sample used for the N M R  spectroscopy by Kikuchi et al. [112] 
is virtually unknown, the computed data can match their observed ratio 2:1 in a very wide 
temperature interval. Overall, the C S4 system represents another instructive example of a 
basic theory-experiment agreement, though further developments can be expected.

7.8. C86 Isolated Pentagon Rule Set
As soon as the first isomeric fullerene systems such as C 7h, C 7S, C s(), C s2, or C S4 were success
fully computed, it had become rather clear that the interisomeric thermodynamic equilibrium 
presumption was applicable. This conceptual finding has been somewhat surprising and could 
be interpreted through a cooperative cancellation of several effects. Anyhow, still higher 
fullerenic systems should be submitted for computations as long as some observations are 
available. A t present, the observations extend [19, 91, 92, 93, 374] till C,,h or even till [374] 
C |,)2 (and also include C , m). C w, is then the next system in the row to be computed [ 133-136]. 
In contrast to the 24 1PR isomers for C s4, there are only 19 topologically different C 8f) I P R  
structures. As for the relative stabilities, they were computed [133-136] primarily with the 
S A M I method [185] (fo r other semiempirical treatments, see Ref. [403]). However, also the 
A M I ,  HF/STO -3G, and STO/3-21G treatments consistently produce [133-136] a C2 species 
as the ground state of the C 86 I P R  set.

Figure 16 shows the temperature development of the computed [133, 382] relative stabil
ities in the C 86 I P R  set. A t very low temperatures, the ground-state structure is o f course 
prevailing, however, its mole fraction decreases relatively fast. A t first, a Cs species reaches 
close to 2 0 %  (it has its population maximum at a temperature of 1503 K ). There is a 
third significant species (C 3 symmetry). A lthough it is relatively high in energy, its entropy 
contribution still allows for an equim olarity (about 29%  each) with the ground state at a 
temperature of 1739 K. Let us mention, however, that at this temperature, two additional 
species already exhibit relative concentrations o f about 10%. Achiba et al. [91] found from 
13C  N M R  spectra the presence of two C2 isomers in their C 86 sample; the relative abundance 
of the isomers was about 4:1. The computations [133-136] suggest C2 and Cs structures 
around 1500 K. A t higher temperatures, the computations predict a coexistence of more 
than two isomers. It is, however, true that one computed symmetry is Cs, not C 2, and this 
minor difference between theory' and experiment has not been clarified yet.

7.9. C88 Isolated Pentagon Rule Set
After the small drop in the number o f the IP R  structures when going from C 84 to C S6, 
the Css IP R  system is already quite extended. There arc [97] 35 topologically different C 88 
IP R  structures. Nevertheless, also this system has been computed and reasonably under
stood [134-136, 404, 405], again primarily using the S A M I semiempirical method.
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Figure 16. The SAM I computed (133, 382) relative concentrations of Csr, isomers (numbering according to Rets.
[97. 133]). Reprinted with permission from [382), Z. Slanina et al.. Ad van. Strain. Inter. Org. Mol. 7, 185 ( I c)99). 
© 1999. Elsevier.

As already mentioned (and demonstrated with, e.g., the topologically icosahedral structure 
for C SI)), the original topological symmetries represent a kind of symmetry upper bound. The 
true symmetries after quantum-chemical geometry optimizations can be the same or lower 
(not higher). In particular, during quantum-chemical calculations, the topological symmetry 
can be lowered owing to Jahn-Tcller and pseudo Jahn-Teller effects. In addition to those 
specific physical reasons, it can also bc reduced simply owing to general energy reasons. 
Hence, only after quantum-chemical geometry optimizations can the symmetry properties 
be clarified. Moreover, such symmetry reductions are not rare for fullerene and other cages 
and can frequently happen even without a Jahn-Te ller effect. For example, the icosahedral 
B 32 cage (a topological boron analogy of C 60) actually exhibits [406] imaginary frequencies 
when computed ab initio. Sim ilarly, hexa-anion of C W) may seem to be icosahedral (as the 
degenerate L U M O  is just filled), but actually its symmetry relaxes with a considerable energy 
gain [406] of some 60-150 kJ/mol. W ith  the examples in mind, it is not surprising that the 
C ss system at the S A M I computational level in five cases falls below the topological upper 
symmetry limit. In four cases, the starting topological symmetry itself is so low that it does 
not allow for degenerate representations. Hence, we deal with only one pure Jahn-Teller 
distortion (nam ely from T to D:).

The system was computed [404] at four different levels of theory: S A M I,  HF/STO -3G , 
HF/3-21G, HF/4-31G. The computations consistently predict a species of C v symmetry as the 
ground state of the C ss I P R  set. The IP R  cage highest in energy is located about 300 kJ/mol 
above this system ground state. Owing to the temperature interplay governed by Eq. (1 ), the 
species, which is the second lowest in energy and has a C 2 symmetry, exhibits [404, 407] a 
fast relative-stability increase with a temperature maximum (Fig . 17). The maximum molar 
fraction is about 2 3 %  and happens at a temperature of about i 470 K  in the S A M I com pu
tations (or already at a temperature of 1270 k , and amounts to about 30 % , in the HF/4-31G 
approach). The third lowest species, again having a C: symmetry', has a temperature profile 
with a maximum, too, though rather modesi. There is, however, a structure with a steady 
increase that eventually becomes dominant— a C, symmetry, in fact reduced from a C2 topo
logical expectation. The isomer is relatively rich in potential energy— over 100 kJ/mol above 
the ground state. It has an equimolarity point with the ground-state structure that comes in 
the HF/4-31G computations at a temperature of about 1990 k  with 29%  for each species 
(see Fig. 17). In the S A M I energetics, the equimolarity is reached at somewhat higher
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Figure 17. The computed [404. 407] (HF/4-31G energetics) relative concentrations of Css. Reprinted with permis
sion from 1407], Z. Slanina et al., Seripta Mater. 43, 733 (2000). €> 2000, Elsevier.

temperature, at about 2240 K with about 26%  for each of the two isomers. For example, at 
a temperature of 3000 K, the C\ relative concentration amounts already to 5 9 %  and 4 7 %  in 
the HF/4-31G and S A M I energetics, respectively.

I3C  N M R  spectrum for C 88 in solution is available from Achiba et al. [91] and is consistent 
with an isomer of C2 symmetry as a major structure. Although our computations point out 
even two C2 structures, their temperature maxima appear at rather low temperatures when 
the ground-state structure still has a strong population and should be seen in the experiment, 
too. However, if we consider temperatures above 2240 and 1990 K  according to the S A M I 
and HF/4-31G predictions, respectively, we shall deal with the fast increasing structure 
as the most populated and eventually the dominant one.

As already mentioned, the structure exhibits a C2 topological symmetry, which is reduced 
to C, only in the quantum-chemical optimization. Such symmetry reductions can bring 
rather small coordinate distortions. For example, the topologically icosahedral C (S„ cage 
exhibits [117] the Jahn-Teller geometry' distortions of the order 10“ 3 or iO 2 A . Hence, we 
can well speak on a near-icosahedral structure in this case. The C, C 88 structure exhibits 
in our search a C2 symmetry for e > 4 x 10-: A, too. However, the vibrational amplitudes 
of Q >(, from electron diffraction, for example, have still larger values. The same is true, for 
example, for the vibrational amplitudes of kekulene at room temperature [404]. The vibra
tional amplitude data suggest that we can actually consider the C  structure as having a 
near C\ symmetry. This argument would produce an agreement between computation and 
experiment. Moreover, the theory-experiment comparison also suggests that the measured 
sample originated at temperatures somewhat over 2000 K.

7.10. C90 Isolated Pentagon Rule Set
G*, is another system where the treatment based on the interisomeric thermodynamic equi
librium presumption reveals rather unexpected complex internal relationships. The compu
tational details are given in Refs. [137, 138]. The G )() system consists [97] of 46 topologically 
different C w IP R  structures. The computations consistently point out a structure with C2 
symmetry (labeled 38 and 45 according to numbering systems in Ref. [138] and Ref. [97], 
respectively) as the system ground state. Interestingly enough, there is an exception at the 
HF/3-21G level. The D5h structure (only one such high symmetry species in the whole set) 
comes as practically isoenergetic with the 38/45 structure at semiempirical levels, but this 
event is likely to be just a computational artifact [138, 408].
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According to the prelim inary experimental results reported by Achiba et al. [91 ], altogether 
five C yo species were identified from l3C  N M R  spectra. The observed C 9() species were in 
fact distributed in three H P L C  fractions: one C 2r, three C2. and one C ,. However, more 
advanced interpretations reported later on in Refs. [19, 92, 409] change the assignment into 
the following quintet [409]: two C 2, one C 2r, one C v, and one Cv The symmetries of the five 
S A M I lowest-energy structures read [138] C2 (38/45), C 2l. (29/46), Cs (43/35), D5h (19/1), 
C, (22/30). In other words, at least two of the structures suggested by the potential energy 
screening do not appear in the original interpretation [91]. The computation-observation 
agreement, however, becomes still even worse if we look into the N M R  pattern of the 
computed C2v structure. The last mentioned structure gives 24 lines, 3 of them weaker. The 
C2v species considered in the experiment is different and exhibits 25 lines, 5 of them weaker.

A t best, we could speak on a partial agreement with the experiment at this intermediate 
stage. In order to get the final picture, however, we really have to investigate possible thermal 
effects on the relative stabilities in this large isomeric set in spite o f the already considerable 
dimension of the set. A fter applying the combined treatment, it turns out that there are just 
five structures that exhibit a significant population in the high-temperature region, relevant 
to the fullerene synthesis (Fig . 18). In addition to the three structures lowest in the potential 
energy (C 2 38/45, C2v 29/46, C v 43/35), two high-energy species are also exhibiting significant 
populations: C2 16/18 (A E r = 130 kJ/m ol) and C, 12/9 (A E r = 202 kJ/mol). As always, at 
very low temperatures, the ground-state structure has of course to be the dominant species; 
however, its decrease of relative stability with increasing temperature found for this system is 
considerable. According to the S A M  1 computations [ 137, 138], the ground-state isomer drops 
to two-component equimolarity with the 16/18 structure of C2 symmetry at a temperature 
o f 2012 K. Two other structures, Cs 43/35 and C2v 29/46, show' moderate maxima close
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Figure 18. The SAM I computed j 138] relative concentrations of O,,,: top, major isomers: bottom, some less- 
populated species (numbering according to Ref. |97]). Reprinted with permission from [138], Z. Slanina et a!.. 
Chem. Phvs. 219. 193 (1997). © 1997, Elsevier.
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to  1500 K. The last structure of Fig. IS, C, 12/9. becomes quite important at very high 
tem peratures, though its population is still found too low around 1000 K. Figure 18 also 
s.creens several less-populated structures— it is of interest that the species with the highest 
tem perature maximum in this second group, 22/30. also has again a C, symmetry, and the 
s.ame is even true for the second most populated species in the second group, 32/32. On 
the other hand, the high symmetry D5h isomer is actually not favored by entropy and turns 
ou t to be unimportant even if  it is almost isoenergetic with the 38/45 ground-state structure. 
L e t  us also mention that the results [138] from the S A M I and HF/4-31G energetics are not 
particu 1 a rly cl iffe re n t.

W e do not know what could be a temperature interval in which the C y() sample, exam
ined in the observations [91], was actually synthesized. W e may expect the temperatures 
somewhere beyond 800-1000 K. O ur computations predict that at elevated temperatures, 
w e prim arily deal with the five structures of the following symmetries: C2, C2, C v, C 2l„ C ,. 
Th is  S A M  1 high-temperature set compares now better with the original conclusion [91] from 
the l3C  N M R  spectra: C 2)!, three times C 2, C ,. However, we have to remember that in the 
com putations and experiment, we in fact deal with two different C2v isomers with different 
N M R  patterns. The original experimental conclusion is based [91] on an N M R  spectrum 
consisting of exactly 70 lines, five of them weaker— those are the primarily observed facts. 
A n y  I P R  C %, isomer of C2 symmetry exhibits always 45 lines (none weaker). There are C 2(, 
C g„ structures with exactly 25 lines (5 of them weaker). This was the essence of the inter
pretation [91] of the observed facts. However, in the computations, we deal with a different 
C\v structure— only 24 N M R  lines (3 of them weaker). M oreover, we have to consider still 
another species, not mentioned in the original experimental interpretation [91], a Cs struc
ture with 46 lines (2 of them weaker). If  we now combine together the N M R  patterns of the 
two structures predicted by the computations, C2v and C s, we also get exactly 70 lines (and 
exactly 5 of them weaker). W ith  this computation-supported analysis of the N M R  spectra, 
we actually reach a complete agreement between the computations and the more advanced 
experimental report [409]. Let us note for the completeness that the C v species is somewhat 
more populated than the C2v one, which actually should help to equalize the intensities of 
their N M R  lines.

7.11. C92-C 98 Iso lated  Pentagon Ru le Se ts
The complete set of 86 1PR isomers of C )2 was described [139] by the S A M I quantum- 
chemical method, and their energetics is also checked at the B3LYP/6-31G* level. Although 
the lowest-energy cage is not identical in both approaches, it still exhibits a D2 symmetry 
in either case. The lowest energy structure is not the most populated isomer at higher 
temperatures— it is replaced by a D 3 structure. Further stability interchanges are possible at 
very high temperatures, when C> and C, structures are also important. Achiba et al. [409] 
reported prelim inary results on their ,3C  N M R  investigations of C l)2. They list [409] seven 
structures: two D 2, C2, C 3, D 3, and two C{. Hence, there is a reasonable correspondence 
between the computations [139] and the prelim inary observed data [409].

The combined computations were also carried [140] out at semiempirical level for the 
complete set of 134 IP R  isomers of C 94. Selected low-energy cage structures were recom
puted at ab initio level. A ll the methods point out a C 2 species as the lowest energy isomer. 
In the temperature range 700-2000 K, the S A M I calculations point out three structures 
with a comparable stability: C 2, C v, and C ,. There are also two minor isomers of Cs and C, 
symmetries. Prelim inary results of Achiba et al. [409] can distinguish up to three C2 isomers 
and one Cs structure. The results of Howard  et al. [410, 411] suggest three isomers.

There are also prelim inary experimental results available [93, 409] for C % . The isomeric 
abundance should for the top 10 species decrease along a sequence: C, (four isomers), C2 
(three isomers), C v, D 2, and D v/. Computations were performed [141] for the complete set of 
187 IP R  isomers of C % , using four semiempirical quantum-chemical methods: M N D O , A M I ,  
PM 3, and S A M I.  The relative concentration of the lowest energy species (D2) decreases 
rather fast, especially in the S A M I method. There are always some C, species among the 
most populated isomers. On the other hand, populations of high-symmetry isomers are not
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impressive (with a Dud exception in the PM 3  method). Overall, the computations and exper
iment are in a reasonable agreement at this stage.

Finally, computational predictions [142] are available for the complete set of 259 IP R  
isomers of C w at the S A M I.  PM 3, A M I ,  and M N D O  levels. A ll the applied methods point 
out a C2 species as the lowest energy structure. Interesting stability interchanges in the 
isomeric set are found so that not only the C 2 ground-state structure but also other three 
structures (C ,, C v, and C2) are significantly populated at elevated temperatures.

8. E N D O H E D R A L  M E T A L L O F U L L E R E N E S

The combined stability computations have been applied also to a few metallofullerenes, espe
cially to Ca(wC12, C a (a C 74, and C a (a C (S2. Ca(a C 72 was isolated [147], though its observed 
structure is not yet available. It follows from its very first computations [148, 149] that there 
are four isomers especially low in potential energy. In fact, C 72 has only one [97] IP R  struc
ture. The endohedral C a @ C 72 species created by putting C a inside the sole IP R  cage has 
been labeled [148] by (a). The other three Ca(a C 72 isomers considered in Ref. [148] are 
related to two non-IPR  C 72 cages (b ) and (c ) and to a C 72 structure with one heptagon (d ) 
(see Fig. 19).

The extended computations [150] started from the four optimized structures 1148) derived 
using ab initio H F  treatment with a combined basis set: 3-21G basis for C  atoms and a 
dz basis set [412] with the effective core potential ( E C P )  on Ca (fo r the sake of simplic
ity, the treatment is coded by HF/3-21G~dz). The structures [148] were reoptimized at the 
B 3 LY  P/3-2 lG ^ d z  level. In the optimized B3LYP/3-21G^dz geometries, the harmonic vibra
tional analysis was carried out with the analytical force-constant matrix. In the same geome
tries, single-point energy calculations were also performed at the B3LYP/6-31G* level. The 
electronic excitation energies were evaluated by means of time-dependent D F T  response 
theory [369] at the B3LYP/3-21G^dz level.

Figure 20 presents [150] the temperature development of the relative concentrations 
of the four CaC^C72 isomers in a high-temperaturc region. At very low temperatures

(C > (d)

Figure 19. B3LYP/3-210^dz optimized structures [150] of (  ( \ : isomers: (a) IPR . (b) 5'5 pair, (e) 5/5 pair,
(cl) 7-membered ring. Reprinted with permission from | !5(H. Z. Slanina et al., Chem. Hivs. Led. 372. 810 (2003). 
€' 2003. Elsevier.
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T (K )

Figure 20. Relative concentrations of the Ca(« 0 72 isomers based 1150] on the B3I.YP/6-31G* energetics and the 
B3LYP/3-2IG 'dz entropy. Reprinted with permission from [150], Z. Slanina et al., Chem. Phys. Lett. 372, 810 
(2003). €> 2003, Elsevier.

(not shown in Fig. 20), the structure lowest in the A s c a l e  must be prevailing. However, 
already at a temperature of 226 K  (that has no practical meaning), the relative concentra
tions of the (c ) and (b ) structures are interchanged, and beyond the point, the (b ) structure 
is always somewhat more populated. Even  more interesting is the behavior of the IPR- 
satisfying (a ) structure. As the structure is the highest in potential energy, it must be the 
least populated species at low temperatures. However, later on the entropy contributions 
(low  symmetry, some lower vibrational frequencies, and some lower electronic excitation 
energies) elevate the (a ) isomer into the status of a minor isomer that could also be observed. 
O n the other hand, the (d ) isomer has the least chance to be detected. Interestingly enough, 
the concentration order at high temperatures for C a (a C 7: is quite similar to that previously 
computed [151] for M g(a Cp .

In contrast to C a (« C 72, C a @ C 74 was not only isolated [147] but even its structure was 
determined [153]. According to the ! 'C  N M R  spectra recorded by Achiba et al. [153], 
C a @ C 74 exhibits DVl symmetry of its cage. There is only one IP R  structure possible [97] for 
the empty C'74. The sole C 74 IP R  cage has D 3/j symmetry. The Ca location in the C 74 IP R  
cage was computed [41, 147, 149] to be o ff the three-fold axis. The metal atom is instead 
placed on an orthogonal two-fold axis. The two carbon atoms nearest to Ca are connected 
by a bond between two cage hexagons so that the system has C\v symmetry. Two non-IPR 
C 74 cages (one pair o f connected pentagons in each cage) were also computed [149] for Ca 
encapsulation, but the resulting endohedrals are higher in energy. This indicates a difference 
from the C a (« C 72 system [150] with two non-IPR  C 72 cages especially convenient for the Ca 
encapsulation.

A  set o f six Ca(« C 74 isomers was subjected to the stability computations [154] along the 
same lines [150] as Ca(a C 72 (though the electronic excitation energies were evaluated by
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Figure 21.
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Figure 22. Relative concentrations [ 1541 of the Ca'" C-, isomers based on the B3LYP/(k3IG’ energetics and the 
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O 2004. Elsevier.
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the Z IN D O  method [362, 363]). The set consists of the three isomers considered in initial 
computations 1147, 149] to which three cages were added (Fig. 12) that exhibited some non- 
negligible populations in evaluations [365] of the empty C 74. Figure 21 presents [154] the 
B3LYP/3-21G 'm Jz optimized structures of C a (« C 74.

Tem perature development [154] of the relative concentrations of the six Ca(« C 74 isomers 
is shown in Fig. 22. It turns out that the 1 /C2v species has not only favorable enthalpy but 
also entropy term, and thus all the remaining isomers can act as m inor species at best. In 
the I P R  C 74 structure with the D}h symmetry, there are obviously three equivalent sites for 
location of Ca, being linked by rotations around the three-fold axis. It makes sense to find a 
transition state that separates two such equivalent minima. C learly enough, the structure is 
reached by a 60° rotation around the three-fold axis. The structure is an activated complex 
indeed as it exhibits [154] just one imaginary frequency (76i cm -1). The calculations give for 
the potential barrier a low value of 7-9 kcal/mol, thus placing it just between the well-known 
barriers for the ammonia inversion [413] and bullvalene autoisomerization [414]. Such low 
kinetic barrier should enable the C a (a C 74 autoisomerizations at moderate temperatures; the 
rearrangements can actually be seen in the N M R  spectra [153]. The motion produces an 
averaging and thus the D}/, symmetry deduced from the 13C  N M R  spectra.

W hereas C a (« C 74 is represented by just one structure, the third illustrative system, 
Ca(rt'Cs2, exhibits the richest isomerism among the Ca endohedrals [147, 155, 157, 415-417]. 
Shinohara et al. [155] isolated four isomers of Ca(a C s: and labeled the isomers by (1), ( I I ) ,
( I I I ) ,  and ( IV ) .  Dennis and Shinohara concluded [158, 418] from the l3C  N M R  spectra of

/// p _  'I  \\x /k. 1 / A

i./YWYv*
t  \ .  -  -  , / rV /  \  // V  /  ' ' z  
x 7̂ O '  >  ___ S  ^

C i v(a)

a / / ;
N i / i 1 /■

v —~ —y

C,,(b)

/

\

l l _ /  T  \  l f \  

//YC 'TVw ii

II \  L  /  II .
V ^  o '  O '  ^  /

// / I 's>-

» / /  A . >
II

/  / '

/A, W"//' VS»NN-// M
\\i f  W 1

/ / >W  - J
\N  „  N

\ \  J \  ^
'/  ” i i S

s ' ft V \
4. O  O- \

^ 1 L /  1 \  I A  

'i;\Y 
\ ' j  \  j  /  ii //

\  ^  f  s '
C? (a) C\(b) C-»(c)

/ " I"  \N I st
/ J /  >< >< 

h  \ ® /  

i '  \  /  '  j  \V/V^ /

/  * \  i /  # \ / 1 1 _  ^  _ '  \ \  

(y.yAv\0
*■ \ lN 7I / *

Cs(a) Cs(b) C A c )

Figure 23. B3LYP 3-21G~dz optimized [161] structures of Ci\(a Cs: isomers. Reprinted with permission from [161], 
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Ca(J/ C s2( I I I )  its symmetry as C 2. The ultraviolet photoelectron spectra measured by H ino 
et al. [159] support the finding; a similarity with T m @ C 82( I I )  w'as also noted [167). Very 
recently, Achiba et al. measured [160] the l3C  N M R  spectra of all four isomers and assigned 
the symmetry of isomers ( I ) ,  ( I I ) ,  ( I I I ) ,  and ( I V )  as C v, C 3,., C 2, and C 2r, respectively.

The Ca(a C s2 structure-energetics relationships were also computed [156], and a qualita
tive agreement with the experiment was found [41]. The computations were performed at the 
H F  and D F T  levels, and in both cases the C2v structure was the lowest isomer in potential 
energy. There were still three other low-energy species: C v, C 2, and C 3r. The combined sta
bility computations are also available [161] for the full set o f nine isomers [156] of C a @ C 82.

The nine C s2 I P R  structures [97] produce nine C a @ C N2 cages with the following symme
tries recognized [156] at the H F  level: C 3l,(a), C 3},(b), C 2?„  C 2(a ), C 2(b), C 2(c), C v(a ), C ,(b ), 
and C v(c). Figure 23 presents the structures of the nine C a @ C s2 isomers reoptimized [161] 
at the B3LYP/3-21G^dz level. It has turned out that in five cases, the original H F  structures 
after the D F T  reoptimizations within the same symmetry lead to saddle points with imaginary 
vibrational frequencies, not to the required local energy minima. W hen  the five saddle points 
are relaxed and reoptimized, the following local m inima are obtained: C 3l,(b) -> C v, C2v —> 
C v, C 2(a ) -  C „  C 2(b ) -  C „  C v(b ) C , .

Figure 24 presents the temperature development [161] o f the relative concentrations of 
the nine C a (ct C s2 isomers in a wide temperature region. The enthalpy part o f the Gibbs 
energy is taken from the B3LYP/6-31G*//B3LYP/3-21G^dz calculations: the entropy part 
is evaluated at the B3LYP/3-2 IG ^ d z  level. A t very low temperatures, the structure lowest 
in the A //“ , scale must be prevailing. However, at a temperature of 1700 K, the relative 
concentrations of the C2v —> C s and C v(c ) structures are interchanged, and beyond the point, 
the C s(c ) structure is always somewhat more populated. The C v(c) isomer and also C2(c)

T (K)

Figure 24. Relative concentrations [ ! ft 11 of the Caf«Cs: isomers based on the 133LYP <)-31G energetics and he 
B3LYP/3-21G~dz entropy. Reprinted with permission from [IM  |. Z  Slanina et al.../. Chem. Phv.s. 120, 33^7 (20(4). 
C 20(M, American Institute of 5>li\sics.
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exhibit a temperature maximum. Then, there are still two other structures with significant 
populations at high temperatures: C 3l.(b) —► Cs and C v(b ) —► C,. Although the former 
species is a bit more populated, their concentrations are rather close. In contrast to the 
five species with significant populations at least in some temperature regions, the remaining 
four isomers are computed to be negligible at any temperature. The C3l,(a) structure is 
remarkable as it is lower in the potential energy than C 3l,(b) —► C v; however, it is actually 
suppressed by entropy. The observed yields [ 160] of the isomers were nearly equal except for 
the considerably less produced C 3], species (though the H P L C  chromatograms [1.55] could 
indicate somewhat larger production differences). Figure 24 is in reasonable agreement with 
the qualitative population information in a relatively wide temperature interval. However, 
the fifth isomer also pointed out by the computations, C v(b ) —► C ,, has not been observed. 
The fifth species could be hidden in a chromatographic fraction as a minor component.

9. FULLERENE DERIVATIVES
Halogenated (especially fluorinated) and hydrogenated fullerenes represent [419] prominent 
families of fullerene derivatives. As their preparation can be carried out at higher tem
peratures, entropy term should have a significant role. An  instructive example is supplied 
by C w,F3ft that was prepared [420] by heating C 6() and M n F 3 at a tcmpcratuc of 623 K. 
Two isomers were recognized [420]: C 3 and T. The structure of the C3 isomer has only 
recently been clarified [421] by l9F  N M R ,  whereas the T isomer was characterized [422] by 
x-ray. M oreover, a third isomer with a C, symmetry has very recently been isolated [423] 
(for Schlegel diagrams, see Refs. [420-424] and also Fig. 25). The C , species undergoes a

Figure 25. Schlegel diagrams of 15 isomers of CNIX 3h; heavy lines indicate C — C bonds or benzene rings. Reprinted 
with permission from |424|. J. Nossal et al.. J. Am. Chem. Soc. 123. 8482 (2001). © 2001, American Chemical
S)cietv.
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remarkable room-temperature rearrangement and establishes equilibrium  with the C 3 isomer 
in solution [425].

C 6()F 36 isomers have also been computed with a conclusion [426-428] that there arc four 
symmetric low-energy isomers for C h))F 36: C3, 7\ 5ft, and C : symmetry, and then one non- 
symmetric C, isomer [423]. However, the computed energetics somewhat depends on the 
applied methods [429, 430], and the final stability picture is influenced [173] by entropy. 
Further computations were thus carried out [174] at the B3LYP/6-31G* level. The PM 3  and 
B3LYP/6-31G* separation energies are somewhat different, as it was also found [423, 427] for 
the A M I  method. W h ile  in the A M I  and PM 3 methods, the C 3 structure is the lowest cage; 
at the B3LYP/6-31G* level the T isomer comes as the species lowest in the potential energy.

There are two observed concentration ratios that can help to resolve the issue. The C\:T 
concentration ratio [421] for a temperature of 623 K  is 12:1 and the C3:C, ratio [425] at 
room temperature is 6:1. The computed entropies can be used within an inverse problem, 
that is, deduction [273] of the separation energetics from the observed concentrations and 
computed partition functions. For example [174], the C 3:C, ratio of 6:1 at room temperature 
requires the C ,- C 3 potential-energy separation of 1.68 kcal/mol. As it is known [425] that 
the C | isomer is mostly converted to the C\ isomer in solution, we can actually require 
that (C 3 + C\):T is equal to 12:1 (if  we neglect the residual, nonconverted amount of C , ). 
Figure 26 presents the temperature development based on the energy fit. The S() and C2 
isomers should always be negligible (the S6 structure is obviously suppressed by entropy), 
and indeed, they have never been observed.

C 60H 3() is historically the first prepared [431] derivative of C 60. Although C 60H 36 was orig
inally produced by the B irch reduction, the system can also be prepared [424, 432-434] 
by hydrogenation at higher temperatures up to 700 K. C fi()H 3r) and other hydrides have

T (K)

Figure 26. Relative concentrations ol" the live C(>I,K.. isomers bused on the energetics refined (174! to the obs.-rv-d
( -:C, and C :.T  ratios
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extensively been calculated [424. 426-428, 435-438], too. Recently, 14 C W)H Vl isomers were 
com puted [424] at the B3LYP/6-31G level in order to assist interpretation of N M R  spectra. 
A  lthough the degree of parallelism between iluorination and hydrogenation is not yet clear, 
it makes sense to apply [172] the new C, C 6()F3h topology [174, 423] also to the C 60H 3(, case.

The original 14-membered C w,H 3fl isomeric set [424] was limited [172] to 8 structures 
that have low energies either in the A M I  or B3LYP/6-3JG* method or in both. Then, the 
ninth isomer was added— the C, C W,H % species derived from the observed C, C hUF ^  topol
ogy [423] (label F/C, in Fig. 27).

S im ilar to the C WjF 36 case [174], the PM 3 and B3LYP/6-31G* energetics do not agree 
throughout. The PM 3 method points [172] out the 7/Sh isomer as the lowest energy species 
in the set. However, this semiempirical result does not agree with the prediction from the 
B3LYP/6-31G* treatment [424] where the 5/T  structure falls 15 kcal/mol below the 1/S6 
isomer.

The PM 3  relative energies together with the PM 3 evaluated partition functions produce 
a temperature development [172] of the relative concentrations in which the F/C, structure 
becomes the second most populated at high temperatures (Fig . 27). The F/C, isomer is 
actually only the fourth lowest in the PM 3  potential energy, but its less favorable energy 
term  is compensated by its entropy. C learly  enough, if the PM 3  energetics is replaced by 
the B3LYP/6-31G* data, the picture w ill be dominated [172] by the 5/T structure. M ore 
experimental data are needed before the complex system can be fully understood. The search 
for low-energy C W)H 36 isomers should also continue further, given the enormous number of 
possible topologies [321]— there are 600, 873, 146, 368, 170 topological isomers of C 6(,X 3h.

C h()F 4<s represents another fullerene derivative subjected to the combined stability treat
ment. C ()0F 48 has been known [429, 439-442] to exist in two isomeric forms of D 3 and

T(K )

Figure 27. Relative concentrations [172] of the nine CWIH*(, isomers based on the PM3-computed energy and 
entropy. Reprinted with permission from [ 1721. Z. Slanina, K. Kobavashi, and S. Nagase, Chem. Phys. Leu. 382. 
211 (2003). €> 2003, Elsevier.
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symmetries. However, the quantum-chemical calculations [175, 429, 441, 442] have not 
agreed on their stability order, though a ncar-isoenergetic picture is otherwise always 
encountered. In order to clarify the situation, the entropy effects were evaluated [175] for 
synthetic temperatures of about 500 K. The PM 3  entropy-based inverse problem [273] sug
gests that the D 3 isomer should be more stable in the potential energy by 2.05-2.55 kcal/mol 
(to which term the ab initio data are closer [175] than the semiempirical ones).

10. CONCLUSIONS
This survey shows the ongoing productive interaction between theory and experiment in 
fullerene research that is building a frame for nanotechnological applications of fullercnes 
and nanotubes. For higher fullerenes, the mutual interaction is indeed essential, given 
the complexity of the systems. The considerable thermal effects on the relative isomeric 
populations revealed by the quantum-chemical computations result from a complex inter
play between rotational, vibrational, electronic, potential-cnergy terms, chirality factors, and 
so forth. Such effects would never be seen if  only energetics is considered and entropy 
neglected. The treatment is, however, built on the presumption of the interisomeric thermo
dynamic equilibrium. W e do not know yet to which degree this presumption is satisfied in 
reality. W e can only acknowledge that the thermodynamic-equilibrium treatment has already 
produced a reasonable computation-observation agreement for the isomeric systems from 
C 76 to C % , with no serious failure. This relatively large tested set supports the belief in a 
still wider applicability of the equilibrium  treatment. There are also other aspects of the 
combined treatment that should further be studied— especially anharmonicity of vibrations, 
motions of encapsulates in cages, and reliability of interisomeric energetics. The non-IPR 
structures have not sufficiently been explored yet (though they may be behind the observa
tion [443] of possible isomers of C w) and C 7n). Heterofullerenes, like cages [205, 444] based 
on boron nitride, should also attract more interest. Once the thermodynamic treatment is 
completely exposed, the interest w ill gradually shift toward complex kinetic schemes and 
to fullerene sets with variable stoichiometry. The steadily growing family of fullerene and 
metallofullerene cages will further attract interest of more applied branches of nanoscience 
and nanotechnology.
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1. INTRODUCTION
Thi; chapter reviews the research on carbon nanocones, which started a decade ago. The 
tern nanocones here refers to conic graphene shells, closed like fullerenes or open-ended. 
Thi. implies a distinction from the the various conical whisker structures, the first of which 
wen studied already in 1960 by Bacon [I]. However, due to remarkable theoretical crossing 
poiits and recent experimental results [2], a parallel discussion of the related helical graphite 
cores seems indispensable. As is common in the literature, graphite cones will in the following 
reftr to both nanocones and topologically different conical carbon structures. Newer mem
ber. of this family, like nanohorns [3—5] and the recently discovered nanopipettes [6], will 
be liscussed only briefly, as a substantial literature on these structures has not accumulated 
yet A discussion of the boron-nitride nanoscale cones [7] is omitted from this review; these
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All lghts of reproduction in any form reserved. Volume 8: Pages (507-536)

507



508 C a rb o n  Nanocones

Figure 1. The first STM  image of fullerene cones. Reprinted with permission from [22|. M. Ge and K. Sutler. 
Chem. Phys. Leu. 220, 192 (1994). <0 1994. Elsevier.

Figure 2. F1RTEM images of the live cone shapes synthesized bv Krishnan et a!. (a--e): multilayered tit (f). 
Reprinted with permission from [25 j. A. Krishnan et al.. Mature 38N. 45! ( Ic>‘>7>. &• 1997. Nature Publishing Goup.
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Temperature |°C ]

Figure 3. I lydrogcn desorption curve from a storage experiment with samples from Kvacrners carbon-blaek process 
[24] :ontaining nanocones. See patent letter [361 for a description of the method. Reprinted with permission from 
[36]. A. T. Skjeltorp and A. J. Maeland, U.S. Patent No. 6,290,753 B l.  Sept. 18. 2001.

anaogous structures are still sufficiently different from carbon nanocones that they should 
rather be included in a treatment of the emerging field of boron-nitride fullerenes [8-19].

h 1994, independent theoretical predictions [20, 21] of the likely formation of carbon 
narocones appeared in the scientific literature, and before the year was over, observation 
of lullercne cones synthesized in the hot vapor phase were reported by Gc and Sattler [22J. 
In addition to tubes, open-ended cones were produced in the same experiment. A striking 
faci is that all the observed cones had apex angles close to 19°, which is consistent with a 
gnohene shell with five pentagonal faces at the tip. Because a tube has six pentagons1 at 
a apped end, it was suggested [22, 23] that the tubes and cones originated from a similar 
seed. Figure 1 shows a scanning tunneling microscopy (STM ) image from this experiment. 
A Urge open-ended cone is in front of a smaller fullerene cone.

/ new trigger for further research came in 1997. Under pyrolysis of heavy oil in a cycle 
knewn as Kvcemer's carbon-black process [24], large quanta of open-ended cones with all 
the five apex angles consistent with Euler's rule were synthesized by Krishnan et al. [25]. 
Figire 2 shows high-resolution transmission electron microscopy (H R T EM ) images of these 
five basic types of cones observed in the sample. From this point, industrial production rates 
ant commercial applications of carbon nanocones appeared feasible, and in 2001 Terrones 
et d. obtained high yields of closed, open-ended, and lamp-shade formed (open in both 
encs) nanocones by pyrolysis of palladium [26]. The partly investigated areas of applica
tion for the carbon nanocones are field emission (FEM ), magnetic flux manipulation, and 
hydogen storage. The cones, which have one to five pentagons at the tip, can show up a 
broider range of topology-dependent electronic properties than the tubes, which invariably 
hav: six pentagons at the tips. The different aspect ratios also make a factor. A detailed 
oveview of the results achieved on electronic properties of nanocones is given in Section 3. 
The appearance of the many new carbon structures has renewed the interest in carbon as 
a luhl, inexpensive material for hydrogen storage in cars [27-35]. Experiments with sam
ple: from Kva^rner’s carbon-black process are very encouraging in this respect, and a U.S. 
patrnt on hydrogen storage has been issued [36]. Figure 3 shows a hydrogen desorption 
cure for a sample from Kva^rncr's carbon-black process. The part played by the cones in 
the;e experiments is not understood.

Contrary to the icosahcdral fullerenes, the appearance of the various types of nanocones 
did not attract much attention from pure chemists. The study [37-47] of fluoranthenoids 
(conjugated hydrocarbons composed of one pentagonal ring among otherwise hexago
nal rings) and indacenoids (two fused pentagons surrounded by hexagons) started at the

1 Cher face combinations are possible, but considered less likely, as will be discussed in the next section.
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Figure 4. Core shell of the HIV-1 virus: Caps id protein (C A ) helical polymorphism and cone formation, (a) O ri
entations of the unit-cell vectors in six reconstructed CA helical families. See |49] lor details, (b) Stereo view of a 
model of the HIV-1 capsid. Pentagonal defects in the hexagonal network are shown in red. A  contiguous line of 
CA  hexagons is highlighted in gold to illustrate reversal of the helical band. Reprinted with permission from [49], 
S. Li et al.. Nature 407, 409 (2000). €) 2000, Nature Publishing Group.

beginning of the 1990s and has proceeded seemingly independent of the discovery of carbon 
nanocones, as the focus has been on enumeration of isomers. The observation of fullerene 
cones [22] inspired, however, an American biochemistry research group [48-50]. They found 
that both the viral and synthesized cores of the human immunodeficiency virus (H IV ) exhib
ited conic shapes with apex angles of approximately 19°, just like the previously observed 
fullerene cones. Pursuing this coincidence led to the hypothesis that the capsid protein shell, 
which surrounds the nucleocapsid protein and genomic RNA, was arranged in a hexagonal- 
pentagonal network. An image reconstruction that supported this hypothesis is shown in 
Fig. 4. As for the HIV-cores, the nucleation mechanisms for the nanocones is a great 
unsolved puzzle, and the pieces will be discussed in Section 4.

2. C O N IC  S H A P E S  IN G R A P H ITE : TO P O LO G Y . G EO M E TR Y ,
A N D  STA B IL ITY  C O N S ID E R A T IO N S

2.1. Carbon Chemistry in Two and Three Dimensions
Due to the small energy difference between the filled 2s and the unfilled 2p  sheil of carbon, 
the atoms attain their lowest state of energy by promoting the 2.v electrons into a hybridiza
tion with the 2p electrons when they form a molecule or a solid. The two hybridizations sp1 
and sp ' correspond to the periodic lattice forms of carbon, graphite and diamond, respec
tively. In diamond, all the four electrons lake part in the hybridization. The sp1 hybridization 
of graphite, on the other hand, involves only two of the three /j-orbitals, which defines the 
hybridization plane. The last /^-orbital oriented normal to this plane is occupied by the fourth
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•electron outside the 1 s core. The three others take part in bonds in the hybridization plane, 
which explains the hexagonal arrangement of the atoms in a plane graphite sheet, usually 
called graphene. The hybridized orbitals look like .v-orbitals when viewed along the relative 
vector of two atoms in the sheet and are therefore denoted by the Greek letter a. For the 
same reason, an electron occupying the last />orbital is called a 7r-electron. Because this 
•orbital is only half-filled, neighboring atoms can form covalent 7T-bonds.

For sp~ hybridized hydrocarbons made up of an even number of carbon atoms, so-called 
conjugated systems, we can represent a set of such pairwise 77-interactions involving all 
the carbon atoms by double bonds in the graph defined by the cr-bond skeleton. This 
kind of pictorial structural formulas are called Kekule structures, after the nineteenth cen
tury German chemist. However, for conjugated systems showing some degree of symmetry, 
one can usually draw two or more equivalent Kekule structures. This reflects the delo
calization of the 77-orbitals, which is incorporated in the standard molecular orbital the
ories by a linear combination of atomic orbitals (LCAO ). The simplest of these is the 
Hiickel [51] theory, where each atomic site contributes a single /7-orbital to the molecular 
77-orbitals and only interactions, assumed identical, between neighboring atoms are taken 
into account. The Hamiltonian of the Hiickel theory is therefore a matrix2 that commutes 
’with the adjacency matrix of the combinatorial graph describing the cr-bond network (see, 
e.g., 152].) These connections between topology, molecular spectra, and bonding structures 
have resulted in an infinity of graph-theoretical papers on planar hydrocarbons and, later, 
fullerenes.

The fullerenes, which have attracted attention through two decades, and all the novel 
carbon materials, imply, however, a bending of the graphene sheets, which in turn implies a 
'modification of the hybridization concept. We will avoid introduction of too many chemical 
terms in the present discussion, as few of these will be encountered in the main body of work 
on carbon nanocones. Therefore, we adapt Haddon’s [53, 54] recipe for transferring the ( t - t t  

separation of orbitals from two to three dimensions. His argument is that the success of the 
Hiickel theory for planar systems is not due to the possible reality of the concept of specific 
1.7 - and 77-electrons, but rather the orthogonality of the a - and 77 orbitals. This orthogonality 
can be maintained in three dimensions, for which purpose he introduced two methods, both 
described in [53]: A  modified Hiickel theory (different from the previous extended Hiickel 
theory [55] which explicitly incorporates both the 2 s and 2p orbitals of each carbon atom) 
and the 77-orbital axis vector (PO AV) analysis. These methods have not played any noticeable 
role in the investigation of carbon nanoconcs; it is the transferability of the c t- tt separation 
to curved surfaces we want to stress here. In accordance with Haddon’s concept, the original 
Hiickel theory, which is purely topological, is found to predict the correct level ordering 
around the Fermi level for fullerenes [56].

2.2. Nanocones
According to the discussion of the last section, the topology associated with the cr-bonds 
is relevant also for curved carbon materials. When Euler had proved his famous theorem 
connecting the faces, edges, and vertices of graphs on various surfaces, he could immediately 
deduce the sum rule

£ « > - * )/ *  = 12 ( i )k
for the number fk of A:-sided faces in a planar cubic3 graph, and it is well-known that a 
three-dimensional polyhedron can be represented by a planar graph by stretching its faces. 
Because a cubic graph corresponds exactly to the rr-framework of a closed 77-conjugated 
carbon cluster, a fullerene has therefore exactly 12 pentagonal faces and all other faces 
hexagonal. There are thus five basic types of fullerene cones, with 1, 2, 3, 4, or 5 pentagons 
at the tip, and, respectively, 11, 10, 9, 8, or 7 at the base end. Because there are no pentagons

In solid-state physics, the Hiickel matrix is usually called the “ hopping matrix/*
'Cubic means that each vertex of the graph is connected to three neighbors, as are the corners of a cube.
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in a fiat hexagonal sheet, and placing six pentagons at both ends gives a tube, it is clear that 
the apex angle decreases with the number of pentagons at the tip, and later in this section 
the apex angles will be quantified.

The most symmetric closed cluster with one of the mentioned pentagon distributions is 
the five-fold symmetric U FO  shape, where the base is identical to the tip with one pentagon, 
and the remaining ten pentagons are placed pairwise along the edge, but this is a stretching 
of the cone concept. The next highest symmetry is the tetrahedron obtained by placing three 
pentagons at each of the four corners. Then comes members of the Cmr point groups, with 
m < 3 and two to five pentagons at the (only) tip. For open-ended cones, m ranges from
1 (five pentagons ) to 5 (one pentagon). According to the sum rule (1), one may consider 
many different combinations with triangles, squares, heptagons, and so on. All these will lead 
to larger deviations from the optimum (7-bond angle of 120°, and their physical realizations 
are therefore considered to be relatively unlikely.

An open-ended cone can be obtained by cutting one to five sectors with disclination angle 
77/3 out of a flat hexagonal sheet and connecting the resulting dangling bonds on each 
side of the cut, as shown in Fig. 5. Sector angles not divisible bv tt/3 will give unmatched 
dangling bonds if we attempt to construct a single-walled nanocone. We see that cutting out 
one sector of disclination angle 7t/3 angle introduces a pentagon among the hexagons in the 
sheet, cutting out two such sectors gives two pentagons or one square, and so on, until all 
the tip configuration possibilities consistent with the sum rule are exhausted. If we assume 
all bond lengths equal, the apex angle (p for any possible face combination is then found 
from the circumference ratio between a circular sheet and the cone resulting by cutting out 
a sector with total disclination angle /z( tt/3) by

. / <p \  2 tt -  //( 7t/3 )

Slll(l) =---2* (" = ' -2...<2)

so the apex angles $ are respectively 1 12.9°, 83.6°, 60.0°, 38.9°, and 19.2° for 1. 2, 3. 4, and 5 
pentagons, or their alternative face combinations allowed by the sum rule. This topological 
construction, commonly referred to as “ the pentagon model." should not be taken as a 
pathway to cone formation; for the tubes, at least, there is strong theoretical evidence [57] 
that the pentagons are incorporated at an early stage of the nucleation process.

Open-ended cones with all these five apex angles, together with tubes (six pentagons at the 
tip) and disks (no pentagons) were synthesized in Kva^rner’s carbon-black process [24] by 
Krishnan et al. (25]. H RTEM  images of each geometry are shown in Fig. 2. All the observed 
fullerene cones, on the other hand, have apex angles close to 19° [22. 23], which corresponds 
to five pentagons at the tip, and seven at the base. Figure 1 is a STM  image of a sample 
from the first synthesis of fullerene cones by Ge and Sattler [22]. The largest cone in front 
has a sharp and bright edge, suggesting an open edge with dangling bonds. The smaller cone

Graphene Sheet Nanocone

l op V iew

Side \ iew

Figure 5. The cut-and-paste procedure* for making a nanoeone from a flat graphene shed. Reprinted with perni; 
sion from 15X1. O. A. Shenderova et al.. Nanotechnolow 12. 191 (200!). •!.: 2001. Institute of Physics Publishing
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partly hidden behind it has a curved less bright end consistent with a cap without dangling 
bonds.

In 2001. what appears to be a third variant of nanocones were created by pyrolysis of 
palladium precursors [26]. In the presence of Ar at 850-1000°C, high yields of graphite 
cones up to 5-/xm long were obtained. Many of the observed cones had apex angles a few 
degrees off those allowed by the pentagon model. These small but significant deviations were 
attributed to absence of closing pentagons at the tips. According to this hypothesis, a receipt 
for producing cones open in both ends is found.

Next, we will discuss a few theoretical results enabling stability considerations without per
forming computations. Thereby, it is possible to limit the scope of the expensive simulations 
to a fraction of the infinitely many possible cone topologies and (resulting) geometries.

2.2.1. Geometrical S tability Considerations
In 1993, before any fullerene cones were actually observed, Tomanek, Zhong, and Krastev 
[59] studied the stability of multishell fullerenes in the form of spheres, tubes or cones, as 
shown schematically in Fig. 6. Using continuum elasticity theory to calculate the bending 
energy A E h required to bend a plane graphene sheet into the required shape, they obtained 
for the three types of single-walled fullerenes

AZT,^sphere) = 4 t t D (  I + or) = e(sphcre)

, ttD L  At,, (tube) = —---- h e(sphere)
R,

AC,,(cone) = -
77 L )

tan(<̂ >/2
In

L

Rout-“(I) -f e( sphere

(3)

(4)

(5)

where I )  is the flexural rigidity [60], a  is a combination of elastic constants, and L, Roul, and 
the apex angle <p are shown in Fig. 6. The logarithmic factor in the bending energy of a cone 
stems from integration of the cylindrical expression with increasing radius along the cone 
axis. It is noteworthy that the bending energy of the spheres are constant, independent of 
the spheres’ radii. This result were confirmed in 159] by tight-binding calculations, a method 
that will discussed in Section 3.3, and by comparison with other energy values for spherical 
fullerenes published at that time [61-63]. The bending energy of an open-ended cone can 
thus be obtained by subtracting the half of 6(sphere) from (5).

In a previous work [64], the values D  = 1.41 eV and a = 0.165 were suggested for graphite. 
The cone formula then gives the intuitive result that the bending energy increases with decr
easing apex angle a, and plotted as a function of /., the curve will flatten when L  becomes 
large. Flowever. in the first synthcsization of fullerene cones by Ge and Sattler published a 
year later [22], only the fullerene cones with the smallest apex angle of M 9 ° were observed. 
This is consistent with the hypothesis put forward in [23], that the cones and the more 
abundant tubes originated from a similar seed. But it also suggests that (5) must be used 
with some care in comparison of bending energies of cones with different apex angles: The 
fullerene cones with M 9 ° apex angle are realized by placing five pentagons at the tip, and

(a)

Figure 6. Schematic figures of the three basic fullerene geometries. Reprinted with permission from [59|. 
J. Tomanek et al., Phys. Rev. B 48. 15461 (1993). ®  1993, American Physical Society.
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seven at the base. The pentagon distributions of all other fullerene cones will effect larger 
geometrical deviations from the ice-cream shape shown in Fig. 6. with larger and more 
localized stress around the pentagons.

Another central question addressed in [59] was at which number of atoms a multishell 
fullerene becomes more favorable than a larger single-shell fullerene with the same shape. 
This number is determined primarily by the increased bending energy required to form 
two concentric fullerene shells and the stabilizing van der Waals attraction between them. 
The estimate of [59] was based on the assumption that the van der Waals attraction is 
proportional to the area of contact between the shells. Ab initio calculations of the intershell 
energy of two concentric nanotubes [65] was taken as support of this assumption. However, 
the total van der Waals energy doesn't scale linearly with the number of shells; depending 
on the intershell distance, the inner and outer shells contribute differently [66]. Therefore, 
the estimate of [59] will not apply to more than two shells. This experimentally verified [67] 
general feature of multilayer systems is predicted by the macroscopic analysis [66], where 
each layer is given a macroscopic permeability, and continuity of the solutions of the Laplace 
equation is required at the surface of each layer. The conic coordinate system is one of 
the 11 in which the Laplace equation can be solved, but it doesn't relate the surface of a 
cone to its center of mass, so it is not possible to carry out a strictly correct macroscopic 
calculation of the van der Waals energy of multilayered cones. Because no other theoretical 
works on multilayered nanocones are reported to this date, the therefore superfluous term 
single-walled will not be used in the remainder of this review.

One of the main conclusions of [59] was that the cones, single-shelled or multishelled, 
were the least stable of the three fullerene shapes. This agrees well with later experimental 
observations, where the appearance of fullerene cones have been absolutely exceptional. The 
spherical fullerencs were found more stable than the tubes, in agreement with a previous 
work of Adams et al. [68], where an empirical formula based on computational results was 
proposed. Also in that work, the bending energy single-shelled spherical fullerencs were 
found to be independent of the radii. For the tubes, however, the energies obtained were 
inversely proportional to the squared radii, in contradiction to (4). More recently. Park 
et al. [69] parameterized the empirical formulas of [68] to their a/> in itio  results while taking 
the effects of local curvature at the pentagons into account. The conclusion of this work was 
that nanotubes with diameters about 13 A were the most stable structures. The conclusion 
of [59] that the cones were the least stable structures has not been objected by later works, 
however.

2.2.2. Topological S tability Considerations
For a given apex angle, the question is which of the yet infinitely many possible configurations 
of the pentagons are likely to be found in real nanocones. The rich literature on fullerencs 
gives some important guidelines. The simplest concept to practice is the isolated pentagon ride 
( IP R )  [70], theoretically justified from different points of view: In the valence bond approach 
of Taylor [71, 72], the main point is that fused pentagons is one of the many configuration 
modes where Kekule structures cannot be drawn without double bonds in the pentagons. 
The presence of double bonds shortens the already strained pentagonal bonds, producing 
the Mills-Nixon effect [73, 74]. According to Haddon and Raghavachari, part of the stress 
is due to re-hybridization [75, 76], and finally fused pentagons introduces anti-aromaticity 
[71,77,78].

A more profound approach is imparted by the important leapfrog principle, first applied 
to fullerencs by Fowier and Steer [79]. On a cubic graph, the leapfrog operation consists 
of transforming the vertices into hexagons while preserving the original faces. A leapfrog 
fullerene satisfies automatically the IPR  and is guaranteed to have closed Fluckel shells [80]. 
It may appear cumbersome in practice to obtain a leapfrog cone by explicitly performing 
the operation, so it is useful to know that a fullerene has a Fries Kekule structure if. and 
only if. it is a leapfrog [Si]. This particular Kekule structure is the one where the maximum 
fraction the hexagonal faces can be drawn as benzenoid rings, and its name is due to the 
early organic chemist who proposed a correspondence between the stability and the fraction 
of benzenoid rings for hydrocarbons. According to the discussion in the last paragraph, the
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molecules with Fries Kekule structures are favorable as the double bonds can be kept outside 
the pentagons; the three types of faces in the Fries structural formula of a leapfrog fullerene 
are shown below.

Except for the leapfrogs, which consist of /z = 60 -I- 6k carbon atoms, where k can be any 
non-negative integer except 1. there are two other series of fullerenes [82], n — 70 + 30A: and 
n =  84 + 36k with all bonding orbitals fully occupied, and thus, as far as the Huckel theory 
applies, stable against Jahn-Teller distortions. In the two latter series, there are no restrictions 
on k , except that it must be a non-negative integer. The limitation on k in the leapfrog series 
is due to the nonexistence of cubic graphs with 12 pentagons and 1 hexagon (22 vertices). 
Contrary to the leapfrogs, the fullerenes of the last two series have two unbonding orbitals 
and should therefore bc more reactive. Very few fullerenes with closed Huckel shells that 
do not belong to one of these three series are found. Most of the topologically possible 
fullerenes have either more than half of the Hiickel energy eigenvalues negative (pseudo
closed), or identical H O M O  and LU M O  energies (open shell). HO M O  and LU M O  mean, 
respectively, highest occupied and lowest unoccupied molecular orbital.

If there are dangling bonds at the base end of an open-ended cone, there is no well-defined 
bonding topology allowing stability considerations. If the open base end is terminated by 
hydrogen atoms, on the other hand, we can say a lot more. Because the carbon atoms don’t 
make 7r-bonds with the terminating hydrogens, the molecular graph determining the Huckel 
spectrum is obtained by deleting the hydrogens and their adjacent (T-bonds. In a recent 
work it is proved [83] that all even-membered hydrocarbon cones having a Fries Kekule 
structure or an induced molecular subgraph consistent with a Fries Kekule structure have 
closed Huckel shells. Thus, we have a common recipe for constructing the tips of chemically 
stable fullerene and hydrocarbon cones. The tightest configuration of pentagons at a cone tip 
consistent with a Fries Kekule structure is obtained simply by placing the pentagons as close 
as they can be without breaking the IPR . All wider distributions of the pentagons consistent 
with a Fries Kekule are leapfrogs of the tightest one. The relative stability of the latter are 
not yet investigated. In addition, the optimal cap topologies of the leapfrog fullerene cones 
have not been identified.

2.3. Helical Cone Growth
Instead of joining the dangling bonds at the opposite edges of the cut in Fig. 5, imagine a 
continuous helical growth of the edges around a central screw dislocation. The result is a 
helically wound structure that can be enveloped by a conic, cylindric, or irregular surface. 
This is the growth form of helical graphite cones. It is different from the whisker growth 
explored by Bacon in 1959 [1], where the scrolled graphene sheet is aligned with the whisker 
axis, and the conic shape is realized when the winding axis is not perpendicular to the 
whisker axis.

A  decade after Bacon’s work, Double and Hellawell found by optical, scanning, and 
eletron microscopy that the flake graphite crystals in metal-carbon eutectics [84, 85], where 
the alloy is constrained to grow along a duplex front, could change orientation during growth 
by formation of stacking faults involving rotations corresponding to disclination angles of 
//(7r/3) ± w, with a) equal to 13.2°, 21.8°, and 27.8°. In 1974, the same authors proposed 
a cone-helix growth mode [86] for graphite consistent with these observations and other 
contemporary works [87-92] suggesting crystal growth with components normal to the basal 
graphene plane. In particular, pyrolysis of CO on a SiC substrate at temperatures above 
1800°C [91, 92] produced whiskers where the growing ends had the shape of a cone with 
140° apex angle. Notice that this angle is far off the largest apex angle consistent with the



516 C a rb o n  N an o co n e s

pentagon model outlined in Section 2.2. The corresponding disclination angle is 21.8°, and 
the cone-helix growth conjecture is supported by the fact that this angle gives an optimum 
coincidence configuration of the carbon atoms in the self-overlapping graphene sheet. Simi
lar “ good fit” arrangements occur for the other co values given above, and exact coincidence 
is achieved for the disclination angles allowed in the pentagon model.

In 1992, a work [93] inspired by the contemporary speculations on nucleation mechanisms 
for fullerenes was published by authors apparently unaware of the work of Double and 
Hellawell. Based on electron microscopy and diffraction studies of the old samples of [92], 
they formulated a cone-helix growth model that differed from the one just outlined only by 
a proposal of stacked five-membered carbon rings in the core of the screw dislocation. This 
implies only two four-connected carbon atoms at each turn of the screw, and the reality of 
the concept can hardly be pursued bv macroscopic geometry considerations.

It would be difficult to omit the helical cones from this review, as there is an interesting 
theoretical connection between a nonhexagonal face in a nanocone and the screw disloca
tion in the cone-helix growth model, which will be discussed in Section 3.5.5. In addition, 
the first-known natural occurrence of large arrays of graphite cones were recently reported 
by Jaszczak et al. [2]. Surfaces of spherical or spheroidal aggregates of graphite enclosed by 
calcitc were found covered with cones, as shown in the high-quality field emission scanning 
electron microscopy (F E S E M ) images of Fig. 7. Cones as long as 40 n m, which is far beyond 
other reported graphite cone lengths, were observed. The graphite spheres, found in the Cen
tral Metasedimentary Belt of the Canadian Greenville province, are presumably deposited by 
metamorphic fluids [2], and the peak metamorphic temperatures in this area are believed to 
be below 70()°C [94]. About 2% of the examined spheres had surfaces covered with cones, 
and the presence of a small pyrite crystal was associated with the cone formation.

Figure 8 shows the distribution of measured apex angles for these naturally occuring 
graphite cones, with the angles favored by the cone-helix and the pentagon model high
lighted. Together with the layered growth ripples seen in the scanning electron microscopy 
(S E M ) and F E S E M  images of Fig. 9, the angle distribution clearly supports the cone-helix 
growth model. The lower panel of Fig. 10 shows the renormalized distribution of mea
sured apex angles (upper panel) for the nanocones synthesized by Krishnan et al. [25]. In 
that experiment, rather large error bars were assigned to the measured angles, and the

Figure 7. F E S E M  images of a com.-covered graphite aggregate. In ib) ami (c). the arrows show, respectivilv.
change in apex angle and ripples. Reprinted w itli permission from (2j. J. A. Jaszczak et al. Carbon 41. 20S5 
*' 2003 Ekevier
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Apex angle [degrees]

Figure 8. Freqcncy histogram of the natural occurence of various cone apex angles in a single sample. Arrows 
shows the apex angles predicted by the pentagon model schematically shown in inset (b). Outlined bars below the 
horizontal axis show apex angles favored by cone-helix growth model shown schematically in inset (c). Reprinted 
with permission from [2). J. A. Jaszczak et al.. Carbon 41. 2085 (2003). © 2003. Elsevier.

Figure 9. SEM  (a and b) and F E S E M  (c and d) images of naturally occurring graphite cones with the predominant 
60 apex angle. The arrows in (c) show mutliple tips. Reprinted with permission from [2], J. A. Jaszczak et al.. 
Carbon 41. 2085 (2003). © 2003. Elsevier.



518 C a rb o n  Nanoconcss

!.()
6

1.5 -

g I .OH

0.5

0.0

10 *

d 4*

I D

N um ber o f pentagons

£ ijthin--- r

■V
01

20 40 60
I

100
~r~
120

i
140

“1
60 ISO

Cone angle (degrees)

-  10

-6

-4

CC

200

Figure 10. Measured apex angles of cones synthesized in Kvaerner's carbon-black process. Statistical distribution 
(a) and averaged distribution centered at the angles allowed by the pentagon model (b). Reprinted with permission 
from [25], A. Krishnan et al.. Nature 388, 451 (1997). ©1997, Nature Publishing Group.

renormaliztion consisted of taking the total count at the average angle of each peak, and 
correcting for underestimation of larger apex angles. The result is the shown discrete dis
tribution in close agreement with the pentagon model. If we accept this procedure, it must 
be concluded from Figs. 8 and 10 that the 60° apex angle is predominant both for naturally 
oceuring graphite cones and synthesized nanocones. The unavoidable question then arises: 
Are there considerable amounts of nanocones among the naturally occurring graphr.e cones? 
This is a tough nut: The predominance of 60° apex angle seems to be consistent with the 
cone-helix model, as this corresponds to a screw dislocation giving exact coincidence of the 
self-overlapping graphene sheet [86] and, as pointed out in [2]. smaller apex angles may be 
disfavored by the resulting higher elastic bending energy. If we regard bending energy as an 
important parameter for the nanocones, on the other hand, cones with larger apex angles 
should be more abundant, and the peak at 60° did in fact surprise the authors of 25]. The 
answer seems to be outside the reach of the theory presented so far in this review. Also, the 
role of the pyrite crystal and the enclosing calcite layer is not understood.

2A Horns, Pipettes, Zipped Structures, and Tubular Graphite Cones
Rearranging the six pentagons at a conventional dome-like nanotube end cap w.ll yield a 
tube with a conic tip of lower symmetry. Such asymmetric single-walled tubes a*e called 
nanohorns, and were synthesized for the first time by lijima et ai. [4] in 1999. An unusual high
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production rate, up to 10 g/h, was obtained by CO: laser ablation at room temperature in the 
absence of a metal catalyst. The average apex angle of the tips was about 20°, corresponding 
to the pentagon configuration of lowest symmetry, namely five pentagons at the tip proximity 
(which gives 19.2° apex angle according to the pentagon model). The various pentagon 
distributions consistent with this observation and the resulting geometries and electronic 
structures were subsequently studied in terms of ah in itio  methods bv Berber, Kwon and 
Tomanek [5]. Nanohorns have been considered as a storage material for hydrogen, and an 
adsorption model was recently proposed [32].

The sharpest cone-shaped carbon structures ever found are the nanopipettes reported by 
Mani et al. in 2003. It was shown that the pipettes arc formed by wrapping a graphene sheet 
helically around a central nanontube. At each turn, the wrapped sheet falls just short of 
overlapping itself, such that the surface of the pipette is smoother than the surface of an 
ordinary conical whisker. Due to the very sharp tips and the hollow cores, the pipettes are 
being considered for high-precision drug delivery; the standard microneedles fabricated for 
that purpose are typically wider at the tip [95].

Another new class of graphite cones found in pores of glassy carbon were reported by 
Dimovski, Libera, and Gogotsi [96] in 2002. The small apex angles varied within a narrow 
range with distinct peaks at 3°, 7°, and 15°, clearly outside the realm of the pentagon model. 
Selected-area electron diffraction and high-quality T EM  images revealed that these struc
tures were made of thick graphitic walls, up to several hundred layers, around a hollow 
cone-shaped core. The tips were dome-like, as a result from zipping between adjacent lay
ers. It was suggested that these cones originated from a herring-bone carbon nanotube [97]; 
deposition of carbon at the terminated planes and extended growth beyond the core of the 
herring-bone tube can form a conical cavity and zipped layers at the tip. Similar structures, 
but with a nickel catalyst at the tip, have been grown by Mcrkulov et al. [98-100].

With the conic structures synthesized by Zhang, Jiang, and Wang [101] in 2003, the geo
metric possibilities must now be near exhausted. H R T EM  images show that these tubular 
cones have hollow cores with constant radii, and the conic tips result from a gradual short
ening of the concentric tubular layers along the cone axis. The distance between the layers 
is the same as for multiwalled nanotubes. Despite this, the outer surfaces of these cones 
have helically wound ridges, which isolated could be taken as an indication of whisker struc
ture. T his observation was, however, attributed to stress inhomogeneities due to noncircular 
endings of the individual layers at the conic tip. The tubular cones have wider tips than the 
nanopipettes, with radius of curvature about 1 /xm, which corresponds to the sharpness of 
fabricated microneedles [95].

3. ATOMIC AND ELECTRONIC STRUCTURE: 
THEORETICAL/COMPUTATIONAL METHODS 
AND PREDICTIONS

This part describes the methods that have been central in the investigation of the atomic 
and electronic structure of carbon nanocones, and all significant results obtained will be dis
cussed. With the exception of a paper of Shenderova et al. [58], no published theoretical or 
corr.putational work involves the atomic coordinates of carbon nanocones in excited states. 
In tie ground state, the atomic coordinates are understood as the average positions around 
which the atoms vibrate in the lowest energy mode. According to the Born-Openheimer 
approximation, the electronic wave function of the ground state depends parametrically on 
these coordinates. Except in the topological or continuum models to be discussed, the atomic 
coordinates are thus explicitly needed in order to perform electronic structure calculations. 
The next three sections describe the most frequently used methods to obtain these coordi
nates and/or the resulting electronic structures.

3.1 Molecular Mechanics
For covalent systems, this method offers the simplest version of dynamic simulations and the 
shoitcst route to an approximate ground state geometry. In the formal derivation of molec
ular mechanics (M M ) (see, e.g.. [ 102], [103], or [104]), the electronic degrees of freedom are
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integrated out from the time-dependent Schrodinger equation to obtain the classical equa
tions of nuclear motion in an effective potential, which attempts to incorporate the coupled 
nuclear-electronic quantum dynamics. MM simulations of the novel carbon materials require 
a potential where the 7r-bonding is realistically accounted for. The major developments in 
this direction are due to Brenner [105], who modified the Tersoff potential [106] into a form 
suitable for fitting to the large accumulation of carbon data.

The Tersoff potential was in turn formulated in terms of the repulsive and attractive pair 
interactions used by Abell [107] to explain the universality observed in binding-energy curves 
by Ferrante, Smith, and Rose [108, 109] in 1983. Expressed as a sum over atomic sites, the 
Tersoff potential reads [106]

E = £  = ‘ E  Kj (6)
/ “  / , ./>/

where the interaction energy between two nuclei, Vir  is given the mentioned pair form

K j  = f A n , ) \ A  CXP (—A ,/„) - B n exp(—Aw-,)] (7)

Here, ) \ \ r (j) is an optional cutoff function, A , A,, and A: are parameters to be fitted, and 
rij is the distance between the two atomic sites. The second term describes bonding, and 
Bjj is a function of r i r  which implicitly includes the bond order. For this reason, potentials 
developed from the above expression are often referred to as bond-order potentials.

In 1990, Brenner [ 105] introduced the major modifications of (7) that appeared necessary 
in order to apply the potential in MM simulations of 77-conjligated systems. These include 
additional terms to account for inherent overbinding of radicals bv (7) and replacing Bn by 
an implicit many-body term to account for nonlocal environmental effects on the bonding. 
Although the Brenner potential is computationally efficient, it is sufficiently complex that 
a discussion of the various terms and the 13 parameters must be omitted here. It is found 
to reproduce a large database of solid-state and molecular properties of carbon, includ
ing the in-plane lattice constant, cohesive energy, and elastic properties of graphene sheets 
[58]. Additional improvements were achieved by Burgos, Halac, and Bonadeo in 1998 [110]. 
These authors introduced a torsion-like term in the Brenner potential in order to overcome 
inadequate descriptions of the dynamics of covalent carbon systems. This step reduced the 
rms deviations for vibrational frequencies significantly, and the re-parameterized potential 
gave excellent agreement with data on systems not included in the fit. It was pointed out
11 H)| that the torsion-like term introduced did not contribute to the static energies of the 
crystalline carbon forms.

As in the framework of the stochastic Monte Carlo approach (see, e.g., 111 1]). simulated 
annealing [112] can be carried out within the MM scheme. In this process, the energy is 
dissipated slowly from the system, which will then undergo all metastable states on its way 
to down to the global minimum.

3.2. Density Functional Theory
Density functional theory (D FT ) [113-115] is the only ab in itio  method hitherto applied to 
carbon nanocones. The process of an ab in itio  simulation of a molecule is as follows: First 
the geometry of the molecule is optimized by iteration. In contrast to a MM simulation, 
where the electronic degrees of freedom are integrated out in advance, the electron den
sity is updated at every stage of the ab in itio  iteration. If convergence is reached, hopefully 
to a geometry close to the the one corresponding to the global energy minimum, one can 
subsequently calculate a variety of electronic properties. There are several D FT  implementa
tions of this procedure available; the Amsterdam density functional (A D F ) code |116. 117], 
CPVID  j 118]., Gaussian [ i 19], NWChem [ !20], C A SFEP  1121. 122], and VASP [123] are the 
most well-known. A D F  is a specialized D FT  code, while Gaussian and NW-Cheni are mul
tipurpose packages. CPM D stands for Car-Parrinello molecular dynamics. This remarkable 
method allows D FT  simulations under user-specified temperature and pressure and can be 
used, among other things, to find global energy minima by simulated annealing (see previous
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section). NWChem, CAST I: P. and. of course, CPM D  perform Car-Parrinello simulations in 
addition to regular D FT  simulations. Because no Car-Parrinello simulations involving cones 
have so far been reported, this method will not be discussed further. ADF. Gaussian, and 
C 'A STEP are commercial while CPM D. NWChem, and VASP are public codes.

There are more accurate ab intio schemes than DFT, like quantum Monte Carlo (see, e.g., 
| 124]), but the working principle of DFT is far more efficient, making the method a natural 
choice for extensive calculations. However, for large carbon structures, it is, for reasons to 
be pointed out below, not a trivial task to reach convergence. In addition, implementation 
of D P I' involves an approximate treatment of exchange correlations, although the method 
has accurately reproduced the true geometry of a large variety of molecules.

The basis of D FT  is the theorem of Hohenberg and Kohn [125], stating that the ground 
state electronic energy is determined completely by the electron density //(r ). which in turn 
depends parametrically on the the fixed nuclear coordinates. An efficient minimization pro
cedure is therefore obtained by expressing the electon density as a sum over the occupied 
KLohn-Sham [126] (K S ) orbitals {</>,};

/;(r) = £«,■!</>,( r ) | : (8)
/

where a, is the occupation number for each orbital (which equals 2 for all orbitals for an
even number of electrons in the ground state). These orbitals are solutions of the (pseudo
eigenvalue) KS equations

h k s 4 > M )  =  ( 9 )

and the KS Hamiltonian (in atomic units) is given by

^ ■ .v = ^ 2+ K.ir(r) (10)

where the effective potential is composed of three terms;

Kw ( r ) — Kie(r ) + j  d r ' - - - - -  + Kxc(r) (11)

where Lnc(r ) is the interaction between the nuclei and the electron and the second term is 
called the Hartrec term and describes the mutual interaction between the electrons. Both 
these terms are simply Coulomb interactions. The last term, on the other hand, is the func
tional derivative of the unknown exchange correlation energy E sc(n):

8Eyr(n)
K*(r) = V t t  (,2)cs>//( r)

which implicitly contains the remnants of the original many-body problem. In order to 
carry out calculations, EX{.(n) is approximated by an integral over an exchange correlation 
energy density / xc, which depends only on the density and its gradient at the actual point in 
space 1127].

£Xc (") -  I  t l r t J i i ( r ) : X n ( r ) }  (13)

In the simplest approximation, '^xc is taken as the exchange correlation energy of an inter
acting electron gas with homogeneous density //(r ) [ 126, 128]. This is called the local density 
approximation (LD A ), and is known to work remarkably well. To improve from this approx
imation, it is necessary to consider nonuniform electron gases in the evaluation of (13). The 
various methods developed along this line 1127. 129-132] usually incorporates derivatives of 
the density, too, and are referred to as generalized gradient approximations (G G A ).

For geometry optimization of large systems, like carbon nanocones, the first problem to 
appear is not the inaccuracies due to the above approximations. Much larger deviations 
from the ground state geometry can occur as a result of convergence into one of the many 
geometries corresponding to local energy minima, if the optimization converges at all. It is
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well-known that the D FT  algorithm tends to assign too low energies to the unoccupied KS 
orbitals [117]. As a result, the electrons may reorganize themselves between the orbitals 
at successive geometry iterations, and convergence is hampered. This can be overcome by 
forcing the algorithm to keep the occupation numbers, but this will in many cases hinder 
convergence of the self-consistent electron field calculations to be carried at each step in 
the geometry optimization. The user manual for the A D F  code [116, 117] suggests several 
tricks to overcome these problems.

There are practically two different implementations of D FT  A D F and Gaussian expand 
the KS orbitals in basis sets of user-specified complexity (and quality). The other codes 
mentioned in the beginning of this section use plane-wave basis sets and pseudo-potentials. 
This implementation, descried in detail in [104], requires in addition simulation cells, so the 
user will have to deal with more strategic parameters in a simulation.

Despite the relative effectiveness of the D FT  algorithm compared to other ab initio 
schemes, the required CPU  time is sufficiently long that complementary computationally 
faster methods are widely used in the study of nanocones. These methods, which will be 
discussed next, necessarily imply simplifying models that have given both insight and contro
versies.

3.3. The Tight-Binding Model
The tight-binding (TB ) model [133, 134] resembles in some aspects the the crude Hiickel 
model and its various extensions discussed in Section 2.1, and its efficiency has made it one 
of the most widely used electronic structure models. In addition, the model is the basis of a 
powerful molecular dynamics simulation technique (T B M D ) [135-138]. In this scheme, the 
total energy E,ol of the given system is expressed as

■>

£.«, = E f  + £ "' + !i''p (l4 )2 nin a
where the first term sums the kinetic energies of all the atoms constituting the system, and 
(/rep is an effective potential taking account of repulsive effects. It is the middle term, called 
the band structure term,

fibs = X X / ’( e/>r ) 05)
i

which extracts most of the CPU time during calculation of the eigenvalues

e, =  ( % \ H \ * j )  (16)

where H  is the tight-binding electronic Hamiltonian for the given atomic coordinates, and 
xVl is the zth eigenfunction of H . The factor /(e,, T)  is simply the Fermi-Dirac energy 
distribution at temperature T. The Hellmann-Feynman force [139, 140] is the derivative 
of £hs with respect to atomic displacements. In its present formulation, the computational 
cost of a T BM D  simulation is in cubic proportion to the number of atoms, and several 
ways around this bottleneck have been proposed [141-150]. The majority of these efforts 
are based on the concept of localized orbitals [141-144] calculation of the density matrix 
[145-149]. The idea of Gocdecker and Colombo [150], on the other hand, was to replace 
the Fermi-Dirac distribution with the matrix

Fr = f ( H . T )  ( 17)

which enables the transformation of (15) into the expression

E hs -  Tr[/7/■'] = £  (4>lt, m ra.)(<l>r& m , „ )  ( IS )
l(.f u‘

where is the /th T B  basis function centered on atomic site number a. According to [150], 
evalution of the traces scales linearly with the number of atoms, and the sum of the sum
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over the matrix products of (18) is well suited for parallel processing and can be computed 
efficiently.

For systems in the ground state, the calculations of atomic and electronic structure can to 
a large extent be done separately; the simplest T B  Hamiltonian is the Hiickel matrix, which 
only reflects topology, and the atomic coordinates for more advanced T B  interactions can be 
determined by other means, for example one of the MM  potentials discussed in Section 3.1.

For quantitative electronic structure calculations, realistic potentials for the TB Hamilto
nian have been developed. The environment-dependent binding potential of Tang et al. [151] 
goes beyond the traditional two-center approximation [152] of the hopping integrals by 
allowing the parameters and the repulsive energy to depend on the binding energy, thereby 
improving the transferability between different carbon systems significantly. A  comprehen
sive parameterization of the T B  interaction for CH bonds at the ends of hydrocarbons was 
done previously by Davidson and Pickett [153]. In its simplest form, the T B  Hamiltonian is 
equivalent to the Huckel matrix discussed in Section 2.2, with identical interactions— hopping 
integrals— between nearest neighboring atoms.

3.4. The Effective Mass Theory and Continuum Models
The “ effective mass theory” (EM T ) has been applied to band analysis of periodic structures 
since the beginning of the 1930s [154-161]. The first modification of the EM T  for the case 
of perturbed periodic fields was done by Luttinger and Kohn [162] in 1954, and the devel
opments due to DiVincenzo and Mele 30 years later [163] is the basis for two different 
continuum models [164, 165) currently applied to the cones [166-170].

For a flat graphene sheet there are two degenerate Bloch states at the K  point of the 
first Brillouin zone, and the EM T  approach is equivalent to the k ■ p  expansion [171] of the 
7r-bands about K \ the essence of both theories is to replace the graphene bands by conical 
dispersions at the Fermi level E , . In atomic units, the EM T  equation for the one-electron 
wave function 'l '(r )  then takes the form [163]

( " " l ”  + <T1

where v,. is the Fermi velocity and E  is the one-electron energy. The meaning of the Pauli 
matrices rr, and (r2 will be explained below. As pointed out in [163], the Pauli matrices 
anticommute, and (19) is thus algebraically identical to a two-dimensional Dirac equation. 
The difference between a cone and a flat sheet may therefore be incorporated in terms of 
gauge fields [166-170].

Because the controversy resulting from the two different gauge transformations applied 
to the cones [166-170] has not converged yet, the LCAO  expression

^ (r )  = V C (R )< M r - R ) (20)
R

as a function of the distance from a pentagonal defect in an otherwise perfect hexagonal 
graphene sheet has been a valuable reference point. Here, (/> and R are the 7r-orbitals and
positions of the atoms, respectively. For a single pentagon, application of the EM T  Hamil
tonian to (20) and satisfaction of boundary conditions at the atom sites of the pentagons 
gives [172, 173] the coefficient

C (R ) o c / (R )z (3",+2)-5 (21)

at the Fermi level. Here, m is an integer and z — Re'H, where R is the distance from the 
center of the pentagon and 0 is the azimuthal angle. The factor / (R ) is shown in Fig. 11 
together with the K  and K ' points of the Brillouin zone. At the A  and B sites of the 
pentagon, / ( R ) is given by

/ ( R , )  =  e i K H *  (2 2 )

= l'(r ) (19)
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(b)

Figure 11. (;i) The factor /'(r)  defined in (22) and (23) on the sites A  and 13. respectively. Dotted lines show 
antiphase bonds, (h) The first Brillouin zone with the K and K ' points shown. Reprinted with permission from 
[173]. K. Kobayashi. Phys. Rev. B 61, 8496 (20(H)). Co 2000. American Physical Society.

and

/(Rh ) = e'K‘K"( — iy"(D 23)

where co = e2iri/*. In a 2000 paper, Kobayashi [173] applied this theory to simulation of STM  
images of open-ended cones terminated by hydrogens, and the results will be discussed in 
Section 3.5.4.

Of the two gauge-held approaches to the cones, we briefly outline the one of Kochetov 
and Osipov [164, 167-169]. The cut-and-paste procedure used in Section 2.2 to make a cone 
from a flat graphene sheet can be formalized as the embedding

( t \ 6 ) (ar  cos ar  sin 6, c) (24)

of r and 0 defined in the last paragraph. The cone parameters a and c define the apex 
angle; sin(<£/2) = a / \ /a 2 + c2, and the convenience parameter \  =  1 -he2/ a2 is introduced in 
[167]. As found in [163], the E M T  Hamiltonian for two-dimensional graphite is algebraically 
identical to the Dirac equation. The physical difference is that the two-component spinor 
represents the two sublattices instead of spin up or down. To avoid a lengthy declaration of 
the indices in the Hamiltonian derived in [167], we just mention that it commutes with the 
angular momentum for a two-dimensional Dirac system and that the gauge field accounting 
for the curvature is Abelian. The solutions have the spinor form

M'(r)
u( r ) e iBj

v ( r ) e ,fHHl)
(25)

where j is an integer unit of angular momentum. (The spin connection term of the Hamil
tonian does not contribute to the Dirac equation in two dimensions [174].)

An essential difference between this theory and the alternative scheme of Lammert and 
Crespi [166, 170] is captured by the general solution

= A r
J r S ^ E r )  ' 

±Jfl(s/rXdEr) !6 )

of the reduced equation for u( r )  and v(r) .  In (26), A is a normalization factor, £ — (1 — 
y/x)  and Jri(Jf,) are Bessel functions. Introducing the Frank index v — 1 - sin(<p/2), the 
disclination angle divided by 2~,  r? and r) can be expressed as 77 — ± [ s/ x ( j  + v -f 1/2) — 
1/2] and f) ±  \ y f x ( j  F v -r 1/2) -f 1/2|. The omnipresent \  factor, which characterizes the 
geometry of the cone, has no direct analogue in the solution of the Hamiltonian proposed 
in [1661, where the gauge field instead carries information about the changed boundary
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conditions when a graphene sheet is changed into a cone by the cut-and-paste procedure. For 
comparison, the radial solutions obtained in the Scheme of Lammert and Crespi read [170]

_ / ( ' e r 1 ■%„-,/:>(*/■) \ <27)

w here e = ±1, k = E / h v F, vf. is the Fermi velocity, and the the index fx is defined as

/ -
a =  ----- - (28)
p i - n  ;

w here is the normalized fictitious magnetic flux introduced by the gauge field, and fl 
is the number of disclinations. Another difference is that the latter gauge fluxes are non- 
A.belian, which is instrumental for certain predictions to be discussed in Section 3.5.3.

3.5. Predictions
In this section, we review and, when possible, compare the results predicted by the various 
methods discussed in the last section. Because no firm theoretical predictions on the atomic 
or electronic structure of fullerene cones are published yet, it is implicitly understood that 
the term nanocones refers to open-ended cones in the following.

3.5.1. Relative S tability o f Isomeric Cone Tips
The question of relative stability of different cone geometries and topologies can clearly be 
addressed by D FT  or other schemes taking into account the interplay between geometry and 
electronic structure stated by the Hohenberg-Kohn theorem. It will, however, be impossible 
to restrict the analysis without any guiding or emerging theory. The only investigation of 
this type was done in 1997 by Han and Jaffe [ l75]. They calculated various tip topologies 
in terms of conjugated hydrocarbons to establish some rules beyond IP R  for the relative 
position of the pentagons.

For each tip topology with two to four pentagons, they calculated the bonding energy 
of the isomers obtained by relocation of the pentagons among the hexagons allowed by 
the IPR  rule. The maximum number of carbon atoms was 56, the least number needed 
to circumscribe the live pentagons of the ~19° tip with hexagons in the next to tightest 
configuration. The computations were done in DFT, POAV, and additional methods not 
mentioned previously in this review. The result for all the tips was the same: The tightest 
configuration of the pentagons allowed by the IPR  rule is the most stable. This finding was 
attributed to less in-plane and out-of-plane strain of these tips.

What is omitted from the analysis is the fact that these configurations were the only of 
those investigated consistent with a Fries Kekule structure. In the valence bond approach 
discussed in Section 2.2.2, the conclusion would have been the same as the one reached 
by computing. The question is then about the relevance of the valence bond theory. In 
[83] it was proved that all even hydrocarbon cones with tips consistent with a Fries Kekule 
structure had closed Hiickel shells. Calculating the Hiickel spectra of the isomers compared 
to these tips in [ l75], it is found that, except for the case with two pentagons, they are either 
open-shell (three pentagons) or pseudo-closed (four and five pentagons). These isomers are 
likely to be Jahn-Teller distorted into structures with enhanced bond-alternation [176], which 
in turn makes the valence bond picture more relevant than for the closed shell structures. 
The good thing with the ab initio simulations is that they incorporate all these effects, and 
their predictions are independent of any theoretical confusion about the parts played by the 
various effects. The rules established by Han and Jaffe were used to choose the relative 
position of the three pentagons at the 60° tip studied by D FT  and T B  in [177]. It remains to 
investigate the relative stability of wider distributions of the pentagons consistent with Fries 
Kekule structures.
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3.5.2. Meta-Stable Structures
The 2001 paper of Shenderova et al. [58] is so far the only work involving investigation of the 
atomic structure when the nanocones are not in the ground state. As pointed out in [58], car
bon nanocones with one pentagon at the tip are geometrically compatible with the diamond 
pentaparticles observed in vapor phase growth of diamond nanoparticles [178] and as five
fold micro-crystals embedded in chemical vapor-deposited diamond films [179]. Atomistic 
simulations of these structures were done previously by Shenderova and Brenner [180].

In [58], generation of nanocones by cutting layers of the pentagonal diamond crystals were 
computer-modeled. Simulated annealing (see Section 3.1) via MM gave wavy metastable 
structures for cones radii larger then 14 A. Figure 12 shows three of these states together 
with the conventional shape of the lowest energy configuration. This behavior was attributed 
to compressive stress in the inner region and tensile stress in the outer region, both stemming 
from the inherent misfit of the diamond pentaparticle. When the temperature was raised 
above 300 K in the simulation, the wavy cone shapes converted to the conventional one. 
The many-body potential used in these MM simulations was that of Brenner [105] discussed 
in Section 3.1. It is hard to judge if the additional torsion-like term [110] discussed in the 
same section would have changed the results noticeably.

Another unique feature of this work was the modeling of cone assemblies. It was found 
that the structure to the right in Fig. 13 possessed the lowest residual stress and system 
energy.

3.5.3. Local Density o f States, Field Em ission, and Magnetic Properties
The local density of states (LD O S) at the tip of a cone or the end cap of a tube is directly 
connected to the field emission (F E M ) properties. If there is a peak near the Fermi level, the 
threshold voltage for emission is decreased, and assemblies of cones have been considered 
[177] for flat panel displays [181] and tcmplating [58]. Consequently, there are several theo
retical papers dealing with the connection between the LDOS and the "topological defects,”

c
E =  -7 .3 6 5  e V /a t

d m *

e

Figure 12. Four configurations for nanocone with radius 32 A. Configuration (a) is stable, while (b), (c). and (e) 
are mctastablc structures. The top view of configuration (c) is shown in (d). The shading illustrates the distribution 
of hydrostatic stress. Reprinted with permission from [58]. (). A. Shenderova et al., Ncmoieilmolo&x 12. I Of (2001). 
V 200i. Institute of Phvsics Publishing.
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Figure 13. Two-dimensional free-standing structures with (a) different or (b) same type of convex/concave angle 
for consequent circular groups of cones. Reprinted with permission from [58), O. A. Shenderova et al.. Nano- 
technology,' 12, 191 (2001). © 2001. Institute of Physics Publishing.

that is, the nonhexagonal faces of the curved graphene sheets [166-170. 173, 177, 182-185). 
Most remarkable is the predicted LD O S of cones with three pentagons at the tip and the 
divergency of the predictions for cones with two pentagons at the tip.

We start with the most transparent results. In a series of papers in the 1990s [182-184], 
Tamura and Tsukada (with additional authors in [184]) investigated the LDOS at sites 
belonging to /7-membered rings in the otherwise hexagonal graphene sheet. The aim of these 
calculations was the shear topological aspects, so the simplest T B  Hamiltonian with constant 
hopping integral T  was used (see Section 3.1), and the Fermi level was chosen as the zero 
point of the energy. For a single /j-membcred ring, the symmetry of the model sheet can be 
chosen /7-fold, and the local density of states at any of the n sites of the ring is given by [184]

A//"’(£') = I ' j r / v Y —  j , e )  (29)
11 ,_0 v n )

where / refers to any of the sites, and

Ni ( k , E )  =  Y , \ ( i ] a A ) \ 28 ( E -  En) (30)
a

where ( i \ a , k )  is the projection of the state a  with symmetry k  = l i r / n  on site /. N,(k,  E)  
can be expressed as a Green’s function

Nj (k,  E)  = —Im (i|£  - H lk)\i) (31)
77

where H {k) is the &-fold symmetric T B  Hamiltonian. This latter expression was calculated 
by a recursion method invented by Haydock, Heine and Kelly [187].

Figure 14 shows the LDOS so obtained for a single //-membered ring in a graphene sheet 
for n — 4 to n =  8. The asymmetry with respect to the Fermi level for the odd-membered 
rings is due to the lack of a sublattice structure [182]. The symmetry seen in the LDO S for 
the even-membered rings is likely to be disturbed when other than purely topological effects 
are taken into account.

In 2001, Charlier and Rignanese [177] applied the full T B  molecular dynamics scheme 
outlined in Section 3.3 to model cones consisting of 2000-2500 atoms. These fairly large 
numbers were chosen to diminish the effects of dangling bonds at the ends, which in this 
case were not terminated by hydrogen. The T B  Flamiltonian incorporated both 2s and 2p  
orbitals, and the LD O S for the optimized cone geometries with one to five pentagons at the 
tip were obtained by the recursion method [J87] mentioned above. For the cones with two 
and four pentaons, two different configurations of the pentagons were investigated. As in the 
previous work of Tamura and Tsukada [182] it was found that the shape of the LD O S around 
the Fermi level is very sensitive to the relative position of the pentagons. The LD O S for the 
different configurations of two pentagons are, however, very different in these two works.
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Figure 14. The LD O S  at sites belonging to the /i-membered rings for (a) n = 5, ft, 7 and (b) n = 4. ft, 8. The energy 
unit T is the constant hopping integral in the TB  Hamiltonian. Doited lines shows the LD O S for n = 4 and 5, 
dashed lines represent /? = 7 and 8. Reprinted with permission from [184]. R. Tamura et al., Phys. Rev. B 56, 1404 
(1997). <D 1997. American Physical Society.

The most significant result of this work [177] was a high sharp peak just above the Fermi 
level in the LD O S of the cone with three pentagons (60° apex angle) in the configuration 
favored by the analysis of Han and Jaffe [175]. Charlier and Rignanese supported this result 
by D FT  calculations of the LD O S for smaller cones terminated by hydrogen at the edges 
and suggested applications of the prominent F EM  characteristics resulting from this peak.

The continuum model of Kochetov and Osipov [167-169] also predicts a distinct behavior 
for nanocones with 60° apex angle. In this model, the configuration of the pentagons cannot 
be incorporated as the cone tip is viewed simply as the origin of a conical surface. For the 
same reason, the local density of states diverges at this point, so it must be calculated as 
the total density of states D( E ,  8) on a small patch ()</*<  8, where r is the distance from 
the apex. In the leading order, the model of Kochetov and Osipov then gives [167]

D( E , 6) oc

E 8 \  ip =  0 (Flat sheet)
/:4/5S's \  i f  =  112,9°
E 1 25, ip =  83.6°
£ °50, <p =  60.0°

(32)

where <p is the apex angle. Thus, according to this model, only the cones with 60.0° have 
nonvanishing density of states at the Fermi level, which is chosen to be the zero point of the 
energy E. This agrees well with the results of Charlier and Rignanese, except for the case 
with two pentagons configured as close as possible without breaking the IPR  rule, where 
their T B  calculation actually gives a peak in the LD O S at the Fermi level. This particular 
result of Charlier and Rignanese is, however, in turn in opposition to the topological analysis 
of Tamura and Tsukada [ 182], where the LD O S had a minimum at the Fermi level unless the 
pentagons were separated by at least one hexagon. The two-pentagon case was not followed 
up by ah in itio  calculations in [177].

The alternative continuum model of Lammert and Crespi [165, 166, 170] predicts the 
same ^-dependence of the LD O S as given in (32), but the energy dependence is entirely 
different. In their 2000 paper [166], they obtain they obtain analogously

D( E , 8) cx
E81, (Flat sheet)

: \5S \  (One disclination)
(S. (Two diselinations)

33)

which implies an enhancement of the LDOS al the apex of cones with two pentagons and 
is thus in agreement with Charlier and Rignanese. which again is in disagreement with 
Osipov and Kochetov, Tamura and Tsukada at this particular point. In [183] and [1.84], it 
was suggested that the nonzero LDOS at the Fermi level for the case with two pentagons
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arc due to power-law localized electron states. This understanding was supported by the 
later work of Kohayashi [173], which will be discussed in the next section. According to 
the 2000 paper of Lammert and Crespi. on the contrary, these states are extended. It was 
actually these conflicting points of view that attracted the attention of Osipov and Kochetov 
to nanocones. At present, this controversy is not resolved. The counter-arguments raised by 
Osipov and Kochctov in 2001 and 2003 [167-169] are not confronted in the 2004 paper [170] 
of Lammert and Crespi.

In the 2001 paper of Shenderova et al. [58], the LD O S at the single pentagon of a 45 
carbon cone terminated by hydrogen was calculated in the TB  model, using the environment- 
dependent T B  potential for carbon [151], discussed in Section 3.3. The T B  parameters of 
Davidson and Pickett [153] for the CH bonds were refined by DFT-based procedure further 
described in [58]. In contrast to the previously discussed results, these calculations gave a 
local maximum at the Fermi level. This difference indicates a correlation between the LD O S 
and the size of the cone. Maybe it can be explained simply in terms of end effects.

In the 1997 paper of Tamura et al. [184]., it was shown that the LD O S could be tuned 
continuously by the presence of an apical magnetic flux through the relation

between the expression (29) for the LDOS at the ring defect and the normalized magnetic 
flux <1>. These ideas were developed further by Lammert and Crespi. According to their 
continuum model, the normal period of intrinsic magnetoconductance is extinguished for 
the case of one pentagonal defect. This is referred to as the anomalous Aharanov-Bohm [56, 
188-190] effect in [166]. The non-Abelian nature of the gauge fluxes enabled a connection 
between the relative configuration of two pentagonal defects and the LD O S around the 
Fermi level, and agreement was achieved between the predictions of Tamura et al. in [182] 
and this continuum model. Additional subtle magnetic properties persistent in the ray-optics 
limit were predicted in [170].

3.5.4. The Origin o f Petal Superstructures
In the 2000 paper of Kohayashi [173], the effective mass theory, as outlined in Section 3.4 was 
used to explain the origin of observed [191] petal superstructures in STM  images of conical 
protuberances on graphitic nanoparticles. (The observations, by An et al., were published 
first in 2001.) A  similar analysis, in terms of TB, have been done for tubes [192].

The simulation of the STM  images included only the LDOS p(r, E ) of the sample cluster, 
and the tunneling current / at bias voltage V and distance r from the tip is then expressed

where E,. is the Fermi energy. Figure 15 shows a simulated STM  image for a cone with one 
pentagon at the tip. The model system for the calculation of Kohayashi was a C5(M)H 50 cluster 
with a single pentagon in the center. The geometry' was optimized by the M M  potential of 
Burgos, Halac, and Bonadeo [110] discussed in Section 3.1.

The pronounced petal superstructure of Fig. 15 agreed with the previous observations of 
An el al. Figure 16 shows the close agreement between EM T  and D PT  simulations of the 
STM images. The sector corresponds to the map of the factor / ( R ) (Fig. 11) appearing in 
the LCAO  expression for the EM T  wave function. The good agreement between experiment, 
DFT. and E M T  enabled a clear interpretation of the superstructure: Recall from Section 3.4 
the EM T  expression for the coefficient

(34)

as [193]

(35)

C (R )< x/(R )z

of the LC A O  expansion of the wave function. It is seen that the solution with m =  —1 gives 
the main contribution to the electron transport in STM; the solutions with other integer
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(b)

Figure 15. Simulated STM  image of a nanocone with one pentagon at the tip; grayscale (a) and three-dimensional 
view of the constant-current surface (b). Reprinted with permission from [173], K. Kobayashi. Phys. Rev. B 61, 8496 
(2000). €) 2000. American Physical Socitey.

m values are more localized. The lower STM  image of Fig. 16 was in fact simulated with 
m =  -1 only, and the petal superstructures can thus be explained by the phases of / ( R ) 
shown previously in Fig. 11.

These superstructure are different those originating from scattering of extended Bloch 
waves at the K and A" points of the first Brillouin zone [194], commonly observed around 
defects of flat graphite surfaces. The qualitative difference is emphasized by the r  l/> decay 
of the wave function of [173] away from the pentagon. A  later D FT  calculation of charge 
densities by Yamaguchi [195] were also in agreement with these superstructures. Similar
ity between the electronic states of cones with two and three pentagons and those of C60 
fullerenes adsorbed on silicon surfaces were additionally found in that work.

3.5.5. Large Ring Defects and Screw Dislocations
An interesting connection between large ring defects and screw dislocations in graphite, 
pointed out in the 1996 paper of lhara et al. [185], was elaborated in the 1997 paper of 
Tamura et al. [184]. Their T B  expression (29) for the LD O S at any site i of a single n- 
membered ring in an otherwise hexagonal graphene sheet takes continuous values in the limit 
of infinitely large rings. It was found that the LD O S at the screw dislocation center could 
be closely approximated by those of an 18-membered ring and that they quickly approached 
those of perfect graphite with increasing distance from the defect, as for small rings. A  model 
of the screw dislocation is shown in Fig. 17. This connection has renewed relevance due to 
the recent discoveries of cones with open tip topologies (Terrones et al. [26]) and naturally 
occurring graphite cones (Jaszczak et al. [2]). As discussed in Section 2.3, the measured apex 
angle distribution for the latter supports the cone-helix growth conjecture of Double and 
Hellawell [86]. which implies a central screw dislocation. With regard to LDOS, both these

Figure 16. Comparison of simulated STM  images of the nanocone around the apex (O ) based on D FT  (a) and 
E M T  (b). Reprinted with permission from f 173]. K. Kobayashi, Phys. Rev. B 61. 8496 (2000). €;• 2000, American 
Physical Socitey.
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F igure  17. Model of a screw dislocation in graphite. Reprinted with permission from [ 184], R. Tamura el al., Phys. 
Rev. B 56, 1404 (1997). CO 1997, American Physical Society.

classes of cones may therefore, within the T B  scheme, be treated on the same footing as the 
nanocones.

3.5.6. Effect o f Substitutional Atoms
Very recently, the effects of introducing boron or nitrogen at the tips of carbon nancones 
with one or two pentagons have been investigated by Azevedo [196]. Previously, there have 
been done similar theoretical studies on silicon-doped nanotubes [197] and boron-nitride 
fullerencs [19]. Figure IS shows the locations of the substitutional atoms at the cone tips. 
The open ends where terminated by hydrogens.

Figure 18. Nanocones with one (a-c) and two (cl—f) pentagons and substitutional atoms (b, c, d, f) at various 
locations around the tip. Reprinted with permission from [196], S. Azevedo, Phys. Leu. A 325, 283 (2004). ©2004, 
Elsevier.
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The formation energies of the various cones were calculated as

E f '. rm  =  E n„ ~  >h M e  “  ~  » H (  M llC  C-̂ 6 )

where Etol is the total energy of the cluster, nc is the number of carbon atoms. nx is the 
number of boron or nitrogen atoms, n uc is the number of HC  bonds, and the /as are chemical 
potentials. For the HC bonds, the chemical potentials were extracted from the total energy 
of a flat graphene sheet;

= «cc ^ f  + " ucMhc (37)

obtained by ascribing a null value to its formation energy. Here, ncc and f i 1̂  are, respec
tively, the number of CC bonds and the bulk chemical potential.

The energies were determined by quite comprehensive D FT  computations, involving the 
generalized gradient approximation (G G A ) [132] for the exchange correlation potential. It 
was found that the nitrogen substitutions shown in Fig. 18 lowered the formation energy of 
the cones by reducing the cost of the pentagons. Boron, on the other hand, had the opposite 
effect. It was further found that both substituents decreased the HOM O-LUM O gap and 
that nitrogen gave the most enhanced reactivity in this sense.

4. THE NUCLEATION PUZZLE
Several models for the nucleation and subsequent growth of fullerenes and nanotubes under 
the various environments of synthesis have been proposed [57, 198-215], but complete nucle
ation theories for curved graphene surfaces are still missing. In this section, we collect the 
pieces of experimental facts and theoretical predictions that seem relevant for an attempt to 
formulate a nucleation theory for nanocones.

The method of synthesis invented by Terrones et al. [26] is distinguished by the presence 
of a heavy catalyst, and its theoretical description requires a nucleation model significantly 
different from those proposed for cone formation in the hot vapor phase [22] or under 
pyrolysis of heavy oil [25]. A  schematic model of nucleation and growth of cones on the 
palladium particle is given in [26]. In this section, we will discuss nucleation processes in the 
two amorphous states [22, 25], where the various nucleation models for fullerenes and tubes 
developed over the years presumably have larger relevance.

The effective plasma temperature in the experiment of Krishnan et al. [25] were estimated 
to be at least 2000°C. Because hydrocarbons are known to dehydrogenate at high tempera
tures [199], the nucleation mechanisms for the cones, although synthesized from heavy oil in 
this experiment, should have similarities to those determining the distribution of morpholo
gies originating from a pure carbon plasma. The two most well-known models for formation 
of fullerenes and tubes under these conditions are the “ pentagon road” [198, 200, 202] and 
the “ ring-stacking” model [201, 206-208]. The question of nucleation is more pressing than 
the nature of the subsequent growth. Once a single-walled cone is formed, additional layers, 
seen in the samples of [25], are likely to grow on its surface in accordance with the growth 
model for tubes suggested by Iijima, Ajayan, and Ichihashi [204].

The “pentagon road" model assumes the pre-formation of a flat hexagonal sheet, whi:h 
subsequently folds into itself by incorporating pentagons in order to get rid of the dangling 
bonds along the edges. The inherent weakness of this model is the origin of the initial sheet. 
In 2003, a very clarifying series of total energy calculations in terms of DFT were published 
by Fan et al. [57]. In short, their conclusion was that the bending energies of the various 
curved graphene surfaces were small compared to the energy of a dangling bond. whi:h 
suggests that the pentagons, which reduce the number of dangling bonds per atom, are incor
porated in a very early stage in the formation of single-walled carbon nanotubes. This is a 
severe objection to the “ pentagon road” model for formation of curved graphene surfaces 
in general.

To explain the distribution of cone apex angles observed by Krishnan et al., arguments 
based on the “ ring-stacking” model were put forward in [25, 216]. In particular, from 
simple geometrical stability considerations as those in Section 2.2.1., one should expect
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predominance of the largest apex angle, 112.9°. not 60.0° as observed. The ring-stacking 
approach to this problem was refined in a 2001 paper of Treacy and Killian [217] where the 
apex angle distribution was explained by differences in the Gibb’s free energy

A G „ =  A H u -  7AS., (38)

where A H n is the enthalpy of formation when a chemical system transforms from state i 
to state j  at temperature T. The entropy change S,. serves in this context primarily as a 
measure of the number of reaction pathways from state i to j .  The proposed mechanism 
leaned on topologically flexible seeds, primarily, but not necessarily, carbon rings. Large rings 
were found to favor multiple disclinations (high enthalpies) because of the entropy increase 
resulting from the calculated large numbers of pathways to the resulting cones. Ring seeds 
of 18 and 24 carbons favored cones with two and four pentagons, respectively.

The occurrence of only one apex angle, 19°, for the cones synthesized in the hot vapor
phase by Ge and Sattler [23] was understood as a result of similar nucleation seeds for
the cones and the simultaneously synthesized tubes, namely imperfect or perfect Cw hemi
spheres, respectively. This intuitive picture is in agreement with the above precursor to a 
complete nucleation theory for cones and tubes.
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1. INTRODUCTION
Currently, there is much research on artificial media that do not exist in nature. Such media 
typically have a structure of the order the wavelength or smaller than the wavelength they are 
designed for. Because the optical wavelength is in the nanometer regime, nanotechnology is 
required for fabricating artificial media. Although nanotechnology is a rather new branch of 
science, artificial media were already fabricated a long time ago.

Obviously, no nanotechnology is required for the fabrication of artificial media in the 
radio frequency (R F ) regime, where the wavelengths are in the millimeter regime or even 
longer. Thus, it is not surprising that artificial R F  media were already invented a short 
time after the invention of R F  signal transmission by R F  pioneers. In 1919. Marconi [l] 
had the first patent on a structure that would now be considered as a frequency selective 
surface (FSS) [2]. A FSS is a periodic structure on a dielectric plate that only transmits a 
part of the frequency spectrum through the plate (i.e., it can be considered as a filter lor 
electromagnetic waves). Although the fabrication of FSS devices was possible at Marconi's 
time, these structures gained not much interest until printed circuit technology made it really 
easy to fabricate such structures and computer codes provided useful means for the analysis 
and design. Therefore, FSS devices were intensively studied after I960.

Despite the much smaller size of artificial media structures for optics, such structures were 
fabricated and used even a long time before Marconi. Already in 1785. David Rittenhouse 
reported the fabrication of a diffraction grating consisting of 53 apertures [3, 4]. Unaware 
of this work, Fraunhofer began in 1821 to use gratings for spectroscopy, namely for the 
analysis of the spectrum of solar light. After this work, diffraction gratings were continuously 
improved.

In radar technology, chiral media were considered to be very promising for building new 
absorbers and reflectors. It is interesting to note that such structures were studied by Bose at 
the early time of radio engineering in 1898 [5]. Because the chiral effect of natural materials 
was too weak, artificial chiral media were fabricated by inserting small helical antenna into 
dielectric emulsions [6]. This could be considered as an extension of the FSS technology 
because this artificial material was no longer planar. It became obvious that artificial materi
als could be designed in such a way that material properties that do not exist in nature may 
be obtained.

In 1967, Veselago [7] proposed that artificial materials might have both negative permittiv
ity and negative permeability and therefore can be described by a negative refraction index. 
Several terms were used for such materials, namely "negative index materials*’ and “ left- 
handed media.” Already simple theoretical considerations of negative index materials led to 
attractive effects, namely lenses with a higher resolution that traditional optical lenses built 
of natural dielectrics [8].

The exaggerations of the artificial inelligence (A l) community finally discredited the term 
artificial. This is probably the reason why the most natural term artific ia l material was 
replaced by metamaterial. In the following, we consider metamaterials as artificially fabri
cated structures consisting of many similar substructures that are of the order the wavelength 
or smaller and establish the desired macroscopic material properties. These macroscopic 
material properties may be similar to the properties of natural materials (anisotropic, ch ral, 
biisotropic, etc.) but much more pronounced, or they may be new in the sense that no natjral 
materials with similar properties are known— which does not mean that such natural nrtte- 
rials do not exist. Note that the term metamaterial is sometimes defined in a more restrictive 
way. Namely, the size of the substructures is sometimes assumed to be much smaller than the 
wavelength. This considerably simplifies the numerical and analytical treatment. At the same 
time, the strength of the electromagnetic effects obtained under this restriction be cones 
rather weak, whereas strong effects are obtained as soon as one is in the resonant regime 
(i.e., when the structure size is in the order of the wavelength).

When dealing with natural materials, one often focuses on isotropic media because t.ieir 
mathematical description is relatively simple. When one intends to fabricate isotropic meta- 
materials, one must compose them of isotropic natural materials. Furthermore, one nust 
make sure that the cells of the metamaterial are randomly oriented. For example, when snail
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helical antennas are used for obtaining a chiral metamaterial, these antennas should be ran
domly oriented. For the fabrication process, this is more difficult than systematic orientation. 
For this reason, metamaterials are often anisotropic and exhibit some periodic symmetry like 
natural crystals. This makes the mathematical description of metamaterials more demand
ing. but it also produces many interesting effects. In 1987, Yablonovitch [9] proposed to 
fabricate photonic crystals (PhCs) [10] as photonic counterparts of electronic semiconductor 
crystals. The main feature that makes semiconductors attractive is the existence of electronic 
band gaps (i.e., energy bands where no electrons can be). Similarly, a photonic crystal is a 
periodic metamaterial that exhibits photonic band gaps, that is, an energy band or a fre
quency band where no photon (i.e., no electromagnetic wave) can propagate through the 
PhC. Because semiconductors are the most important material for electronics, the PhC con
cept is extremely promising and has gained much attention. We therefore will consider PhCs 
in more detail in the following.

Although interesting objects may consist of a single material, most of the attractive devices 
are composed of at least two different materials. In fact, ail metamaterials are composed of 
at least two different natural materials. The design of new devices is therefore mainly a com
position of different materials. When working with metamaterials, one can not only compose 
natural materials for obtaining a metamaterial, but one can also compose different metama
terials in order to obtain devices with higher functionality (i.e., composite metamaterials are 
attractive from the engineering point of view).

In semiconductor technology, most of the functionality is obtained from composing semi
conductors with differently doped areas. Doping means that impurities are introduced in 
the semiconductor crystals. This may heavily affect the band structure, and it causes inter
esting effects that are essential for all semiconductor devices. Impurities are atoms that do 
not belong to the pure crystal. They are more or less randomly distributed because there 
currently is no way to place a doping atom at a precise location. Therefore, doped semicon
ductors must consist of rather many atoms. Because photonic crystal cells consist of cells 
containing many atoms (typically of the order 100 nm), doping of PhCs seems to be not 
very attractive because one expects doped PhCs to become big. Fortunately, the rather big 
PhC cells offer the opportunity to dope precisely a perfect PhC in various ways. Here, one 
is not restricted to a small set of atoms that may be used for doping. Instead of inserting 
doping materials into a PhC, one can also modify the geometry of a cell to be doped. For 
example, when a perfect PhC consists of a set of dielectric spheres located on a regular 
lattice, one can not only replace a sphere by another sphere made of a different material, 
but one can also omit it enlirely, one can replace it by a smaller one, by a dislocated one, 
by a nonsphcrical object, or even by a composite object such as a dielectric ellipsoid that is 
coated with some metal.

From this it becomes evident that composite doped metamaterials (C'DMs) provide an 
extremely high degree of freedom for the design of new photonic structures and devices. 
Although this is highly desirable and promising, it also causes strong difficulties for the 
design process. Currently, no design rules are known for the design of CDM  devices with a 
desired functionality. It is not even known what functionality may be achieved in the near 
future. For example, it is not known if any useful, competitive device can be obtained from 
negative index materials. When PhCs are considered, one has a long list of devices that might 
become feasible in the near future: waveguides that permit sharp bending without radiation 
loss and with almost zero reflection over a wide frequency range, couplers, resonators with 
very high Q, filters, splitters, diplexers, multiplexers, modulators, sensors, and probably also 
active devices such as amplifiers and switches. It is therefore imaginable that PhCs might 
be used for fabricating highly complex optical systems such as entire computers including 
sensors for data input, signal processing, storage devices, and optical displays. Although this 
is imaginable, we do not yet know whether a simple optical filter with predefined character
istic can be fabricated with a reasonable effort and structure size. We know that PhC filters 
can be obtained, but we have no useful design rules (as for electronic filters) for the filter 
synthesis. Currently, the only way is to analyze promising structures using numerical codes 
and to try optimizing such structures numerically. For this reason, numerical simulation and 
optimization are crucial for the development of PhC and more general CDM  structures.



540 S im u la t io n  and O p tim iz a t io n  o f  C o m p o site  D o p ed  M e ta m a te r ia ls

Despite the rapid growth of computer power, current computers do not allow one to opti
mize efficiently and accurately even relatively simple CDM  structures because of their high 
complexity, big size (compared with the wavelength), and often “counter-intuitive or unsys
tematic” behavior that will be demonstrated in this chapter. In order to keep the computa
tional effort small enough, w'e will focus on 2D models (i.e., on cylindrical geometry). Such 
models are certainly less realistic than 3D models but they often exhibit the fundamental 
effects and can be analyzed in reasonable time, which allows one not only to analyze struc
tures obtained from intuition but also to use optimizers for finding much better structures.

2. METAMATERIALS
2.1. Frequency Selective Surfaces: Gratings
Printed circuit boards (PCBs) consist of metal structures on a dielectric substrate as shown in 
Fig. I. The first patent on such structures was submitted by A. P. Hanson in 1903. PCBs are 
widely used in R F  engineering and can easily be fabricated. Note that a single metallic layer 
is shown in Fig. 1 for reasons of simplicity, but already Hanson’s board had two layers of 
wires, and multilayer boards are very common. When a printed circuit board is illuminated 
by an electromagnetic wave, the wires act as antennas and cause a complicated response. 
Depending on the size and arrangement of these antennas, one can obtain a strong frequency 
dependence of the total power that is reflected at the board or transmitted through the 
board, that is, the structure acts as a filler for the incoming wave and is therefore called 
frequency selective surface (FSS ) [2]. In general, the response of the FSS depends not only 
on the frequency but also on the angle of incidence and on the polarization of the incoming 
wave. One now' can try to synthesize a FSS with special properties, for example, one that acts 
like a bandpass filter and only transmits power within a specified frequency band. Because 
one wants to obtain one and the same property along the entire surface, one usually designs 
a FSS as a periodic array of antennas as shown in Fig. 2. The periodicity considerably 
simplifies the design and the numerical analysis of such structures.

We already have mentioned that optical gratings were fabricated before FSSs were 
invented. From the theoretical point of view, there is no essential difference between a FSS 
and a diffraction grating [4]: Both structures exhibit periodic symmetry in one or two direc
tions. For reasons of simplicity, we only consider structures that are periodic in one direction 
as shown in Fig. 3. Assume that a is the period in x direction. This means that the geometry 
of the entire structure at a + nd  is the same as the geometry at .v, where n is an integer 
number. The entire structure is therefore completely described, when a single period, for 
example, in the interval from x  = 0 to x = a is defined.

The periodic geometry does not imply a periodic symmetry of the electromagnetic field, 
especially when the incident wave that illuminates the structure is not periodic. The first step

Figure !. Printed circuit board. Black: copper layer.
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is to decompose the incident wave into plane waves because plane waves exhibit periodic 
symmetry in all directions of the 3D space, namely in x  direction. However, depending on 
the frequency and on the angle of incidence, the geometric period a and the period p of the 
incident plane wave are usually different.

Field(x, y, 2, t )  =  Rc( ,1 x «-/>j (1)

describes the electromagnetic field of a plane wave in Cartesian coordinates x, >\ z with a 
complex field amplitude A and a given angular frequency to. ( k ‘"c, k ” u\  k"*1') describes the 
wave vector in Cartesian coordinates. From this, one can see that the incident field is periodic 
in x  direction and that the period p is equal to 2ttf k x. When any component of the incident 
field has the complex amplitude A at .v = 0, it has the complex amplitude A ■ Cx =  A ■ e,k""° 
at x  — a. From this, we obtain the periodic condition

F (x  + cL v, z) = C\ x F (.\\ y, 2 ); Cx =  eik""“ (2)

where F  is the complex amplitude of any field component of the incident field as well as of 
the scattered field and of the total field. Obviously, all waves with a- dependence of the form

eUk‘;n +2m»/./).v ( 3 )

fulfill the condition (2), when m is any (positive or negative) integer number. Thus, all 
plane waves with kx = k ”u -f 2 m tt/ o fulfill tiq. (2). These waves are called Rayleigh or 
Floquet modes of order m. When we assume cylindrical symmetry of the structure along the 
y  direction, the y  components of all wave vectors must be equal to k[nc. Furthermore, the 
lengths k of the wave vectors are given by the frequency and the material properties. Thus, 
the z components are obtained from

k,  =  ± y / k 2 -  k 2 -  k 2. — k 2 -  ( k ' ”c + 2m' i r /a)2 -  (k[nc)2 (4)

Note that k z becomes imaginary for loss-free materials with real wavenumber k when the 
absolute value of the order m is high enough. The corresponding plane waves are then
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Figure 3. Structures with periodic symmetry in a single direction. Left: sinusoidal grating: middle: grating with a 
single layer of dielectric rods: right: grating with two layers of dielectric rods.
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evanescent, that is, they do not propagate in z direction and are exponentially dampened 
with the distance from the grating or FSS. Because the wavenumber k is proportional to 
the frequency, propagating higher order Floquet modes are only obtained for sufficiently 
high frequencies or for sufficiently long period a. The highest orders of propagating Floquet 
modes are obtained for k y = 0. For this reason, one often focuses on the special case k ” ,r = 0. 
For the even more special case of vertical incidence, one also has k '”c = 0. One then easily 
can see that first-order modes propagate when

k =  co/c > I m i r / a  f  > f m = me/a —> A < A,„ =  a / m  (5)

holds, where c is the speed of light, A is the wavelength, and /  is the frequency. Below 
the cutoff frequency f m, the orders -fm and — m are evanescent. Note that the Floquet 
modes of order m =  0 are always obtained, even for arbitrarily low frequencies and short 
periods a . For the special case a — 0, the FSS or grating degenerates to a slab. Then all 
cutoff frequencies for m ^  0 become infinite, and the zero order modes are the well-known 
reflected and transmitted plane waves.

Although FSSs and gratings can be used at low frequencies (i.e., when the period a is 
large compared with the wavelength), when only zero-order Floquet inodes propagate, the 
effects of these structures become much more colorful and pronounced when a is of the 
order the wavelength (i.e., when also higher order modes can propagate). This is illus
trated in Figs. 4-7. Figure 4 shows the wavelength dependence of the zero- and first-order 
reflected and transmitted efficience for a vertically incident plane wave. Obviously, higher 
order Floquet modes only propagate when condition (5) is met (i.e., for wavelengths below 
1 micrometer in the case considered here). Note that the +1 and —1 order modes are 
identical because of the vertical incidence. The transmitted efficiencies depend on the polar
ization, which indicates anisotropy, but this effect is rather weak at long wavelength. The 
effects become much more pronounced but also more complicated with decreasing wave
length, especially when higher order Floquet modes propagate. Then, the slab acts not only 
as a filter (i.e., as a FSS) but also as a mode converter. Here, mode conversion means that a 
part of the transmitted power propagates in a direction that is different from the direction 
of the incident wave. We will encounter similar effects for negative index materials but also 
for planar structures with a =  0.

When we work in the area where no mode conversion takes place, we still observe very 
strong for sufficiently small wavelength. Here, sharp resonance peaks arc obtained. Because 
the resonance peaks are at different locations for s and p  polarization, the grating becomes 
strongly anisotropic.

The power transmission of a grating depends not only on the wavelength, but also on the 
angle of incidence, as one can see from Fig. 5. Here, a grating consisting of circular dielectric 
rods is simulated. Because such a grating can be considered as a thin slice of a photonic

vv a ve!e ngth wave length

Figure 4. Sinusoidal grating (see Fig. 3>. wavelength dependence of the reflected and transmitted efficiencies of 
orders 0. -1, and -fi for a vertically incident plain. Relative permittivity of the grating 4. period a =.- 1 fxm, 
h -- 0.4 am. d — 0.2 /im. Left: v polarization (H. — 0); right: p polarization (h. ~  0).
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Figure 5. Grating consisting of a single layer of dielectric rods (see Fig. 3), frequency dependence of the reflected 
and transmitted efficiencies of orders 0 for s polarization (i.e.. //. = 0). Left: vertically incident plane wave, right: 
angle of incidence 45 degrees. The gray areas indicate the photonic hand gaps (P B G ) of the corresponding perfect 
phc tonic crystal.

crystal, wc replace the wavelength dependence bv the normed frequency dependence that is 
usually used for photonic crystals:

where c is the speed of light and a the lattice constant (i.e., the period of the grating). 
Figure 6 shows that all higher order Floquet modes are evanescent when f a / c  is slightly 
below 1 in the case of vertical incidence. As one can see, there is a nonuniform pattern 
of the Poynting vector field below the grating. Such a pattern is typical when higher order 
modes are excited. Because it disappears with the distance from the grating, the higher order

/ f  l / / I V /  / /  /  /  . / ' #  / /
. , > ✓ . ,

* ** s * * s s * > s s s s ** y

Figure 6. Grating consisting of a single layer of dielectric rods (see Fig. 3), time average of the Poynting vector 
field, .v polarization. Dark areas indicate a strong Held. Left: vertically incident plane wave at fafc = 0.99; middle: 
angle of incidence 45 degrees at fu/c = 0.99: right: vertically incident plane wave at fafr = 1 . 1 7 .
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modes do not propagate (i.e. are evanescent). For a nonvertical incidence of the plane wave, 
a nonuniform pattern is observed. This pattern does not disappear with the distance from 
the grating (i.e., higher order propagating Floquet modes are excited). The same holds for 
vertical incidence as soon as f a / c  is bigger than I.

The photonic band gaps (PBG ; see section on photonic crystals for more details) of the 
corresponding perfect photonic crystal are obviously only weakly correlated with the areas 
of low transmission. When we add a second layer of dielectric rods, the correlation becomes 
clearer as one can see from Fig. 7. Obviously, one has a low transmission within the first 
PBG. Note that one can also have low transmission coefficients at frequencies outside the 
PBG, but these exhibit a strong dependence on the angle of incidence. For a sufficiently 
high number of layers, the transmission coefficients become almost zero for all angles of 
incidence.

The Floquet theory outlined above can easily be extended for structures that are periodic 
in two different directions (e.g., x and y). The Floquet modes are then described by two 
different integer numbers /??, //, and one obtains

k. =  ± ^ k : -  k]  -  k ]  = ± sj k 1 -  ( k ”w +  I m i r / a J 2 - (£"'• + h n r / a , ) 2 (7)

Note that the periods ax and a v in v and y directions can be different. We will consider 
structures with such symmetries in the following section. Note that the formalism becomes 
slightly more complicated when the directions of the two periods are not perpendicular. For 
more information, see Ref. [ 11 j.

2.2. Artificial Anisotropic Media
Natural anisotropic media are obtained when the atoms or molecules favor a certain direc
tion of the polarization and are arranged in a systematic way, for example, on a regular grid 
as in crystals. We therefore expect to obtain artificial anisotropic media when we arrange 
small nonspherical particles, for example, on a cubic grid. From the numerical point of view, 
the cubic symmetry (i.e., periodic symmetry in three perpendicular directions) is very simple, 
and it allows us to explicitly model only a single cell as shown in Fig. 8. In order to observe 
the polarization effects of an anisotropic material block, we want to consider an arrange
ment of a finite number of cells, illuminated by a plane wave. This completely breaks the 
cubic symmetry and leads to high numerical costs even when the number of cells is small. 
We therefore consider an artificial anisotropic slab that still exhibits periodic symmetry in

fa/c (a n g le - o f  in c id e n c e  -  0  d e g .  > la/c (a n g le  <>l i n c id e n c e  ~  4 5  d e g .  >

Figure 7. Grating consisting of two ’layers of dielectric rods {see Fig. 3). frequency dependence of the reflected 
and transmitted efficiencies of orders (1 for s polarization (i.e., H. — 0). Left: vertically incident plane wave, right: 
angle of incidence 45 degrees. The gray areas indicate the photonic band gaps (P B G ) of the corresponding perfect 
photonic -crystal.
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Figure 8. Cell containing a nonspherical objcct for obtaining an anisotropic metamaterial.

A* and y  directions and consists of a single layer of cells in z direction as shown in Fig. 8. 
This structure is essentially the same as a FSS or a grating with two perpendicular periods.

For reasons of simplicity, we consider a plane wave incident perpendicularly on the slab. 
We expect that the transmission coefficients for the polarization parallel and perpendicu
lar to the axis of the “ molecules’1 are different. As one can see from Fig. 9, the transited 
zero-order efficiencies exhibit a strong dependence on the wavelength for wavelength slightly 
above 1 /xm. Because the slab is built of an infinite set of bean-shaped “ molecules” arranged 
on a square lattice with lattice constant ax = ay =  1 /xm, no higher order Floquet modes 
arc excited, and the zero-order efficiencies represent the total transmitted power. For wave
length above 1.25 /xm, the curves become rather flat and tend toward 1 (i.e., almost 100% 
of the power is transmitted). Despite this, there is a considerable difference between the 
transmission for the polarization parallel and perpendicular to the axes of the molecules, 
which clearly indicates the anisotropy. For wavelength below 1.2 /xm, one observes strong 
changes in the curves due to resonance effects. Note that the relative permittivity of the 
“ molecules” is 11.56, that is, the wavelength inside the molecules is 3.4 times shorter than 
in :ree space (i.e., outside the “ molecules” ). Therefore, resonances are observed also when 
no higher order Floquet modes propagate. Because the resonances depend on the polariza
tion of the incident wave, one obtains areas where one has almost zero transmission for the 
p polarization and almost 100% transmission for the s polarization and vice versa.

Another artifical anisotroptic slab is obtained when we use metals for fabricating the 
“ nnlecules” instead of dielectrics. It is well-known that metals loose their conductivity

l Fi-6 I. IE-6 1.2E--6 I.3E-6 I.4E-6
wavelength

Figire 9. Wavelength dependence of the transmission coefficients of an anisot ropic metamaterial slab consisting of 
a siigle layer of cells (shown in Fig. 8, for cell size I pm in v, y, and z directions) for vertical incidence of a plane 
wav:. Relative permittivity of the dielectric "molecules” is 11.56. Curve with marker: polarization of the incident 
wav: parallel to the axis of the "molecules” ; without marker: orthogonal polarization.
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at optical frequencies and become very lossy. For some frequency range, metals may he 
described by a complex permittivity with negative real part. When this happens, plasmon 
effects [12, 13, 14] are observed: When an arbitrarily small particle with negative permittivity 
is illuminated by a plane wave, it becomes resonant for certain values of the permittivity. 
The plasmon resonances depend not only on the material property and geometric shape of 
the particle but also on particle interactions. Because we are interested in a slab consist
ing of many particles, particle interactions play an important role and cannot be neglected. 
Figure 10 shows the dependence of the transmission coefficient on the relative permittivity 
for the same artificial slab as in Figs. 8 and 9. Obviously, two strong plasmon resonances are 
observed near the relative permittivities -1.3 and —1.75 when the electric field is polarized 
parallel to the axes of the molecules. It is important to note that these resonances exist at 
long wavelength (i.e., the “ molecules'’ can be short compared with the wavelength). Despite 
this, one can obtain an almost perfect filter that transmits only one polarization. Because 
the location of the plasmon resonances do not depend much on the wavelength, such filters 
would have broadband characteristics despite the sharp plasmon resonances.

The model considered above is not very realistic because the permittivity is assumed to be 
real (i.e., losses are ignored). All known metals exhibit rather strong losses (i.e., the permit
tivity has an imaginary part that cannot be neglected). In order to see the consequences of 
the losses in the “ molecules,” we assume that the relative permittivity has an imaginary part 
of 0.1, which is very small for realistic metals. As one can see from Fig. 11, the resonance 
peaks become much broader and less pronounced. Despite this, metals obviously help to 
strengthen the anisotropic effect of a metamaterial even at low frequencies (i.e., when the 
period of the artificial crystal is long compared with the wavelength).

2.3. Artificial Chiral Media
Chiral media are obtained from molecules like sugar that have some handedness, that is, 
these molecules are either left- or right-handed (Fig. 12). Note that this has nothing to do 
with the so-called left-handed media or negative index materials that will be considered in the 
following subsection. Chiral molecules act on the electromagnetic field like helical antenna. 
As a consequence, the chiral media provide interactions of the electric and magnetic field 
that can be described by macroscopic material properties of the form

dH  - - dE
D =  s E - X  — ; B =  ti H + X l r- 8)

(’ l ol

where \  *s the chiral parameter [15]. Chiral slabs are attractive because they rotate :he 
direction of the polarization. Because the chirality of natural media is usually very weak, this 
effect can only be exploited by sufficiently thick slabs or when metamaterials with a string 
chirality can be fabricated. At radar frequencies, one cannot afford thick slabs. At the sane 
time, it is relatively easy to fabricate small helical antennas for such frequencies. When tne

Figure 10. Permittivity dependence of the reflection ( R ) and transmission (T ) coefficients of an anisotropic metar.a- 
terial slab consisting of a single layer of cells shown in Fig. <X for vertical incidence of a plane wave. T he waveleigth 
is o./10, where a ~ 1 (xm is the period of the structure in x and y directions. C urves without markers: polarizaion 
of (he incident wave parallel K) the axis of the “ molecules” curves with markers: orthogonal polarization.
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Figure I I .  Same as in Fig. 10. when ihc relative permittivity of the “ molecules ' is assumed to be complex, with an 
imaginary part equal to 0.1. Only the polarization of the incident wave parallel to the axis of the “ molecules*’ is 
cons.de red.

distributes them in a dielectric, one obtains a metamaterial with strong chirality. For this 
reason, artificial chiral materials first attracted interest within radar applications [16, 17].

When the chiral elements, for example the helical antennas, are arranged on a regular grid 
in such a way that the axes of all elements point in the same direction, the artificial material 
becomes not only chiral, but also anisotropic. The analytic treatment of such materials is very 
demanding (i.e., even simple cases such as the transmission of a plane wave through a slab 
becomes tedious). Because no commercial field solvers can handle such materials, it is best 
to ompute an artificial anisotropic chiral slab by directly computing the array of cells that 
are jsed to fabricate it. This can be done with any field solver that can handle periodic sym
metries. In Ref. [11], it has been demonstrated that a periodic structure consisting of helical 
antennas rotates the polarization of the incident wave by some angle a  as it is expected 
for i chiral slab. The angle a depends on the orientation of the antennas, which indicates 
that the slab is anisotropic, but for a short helical antenna, this effect is weak. Beside this, a 
strong frequency dependence is observed (i.e., a strong rotation of the polarization is only 
obtained when the helical antennas become resonant). One then can obtain a rotation of 
sevc al degrees with a slab consisting of a single layer of antennas. Because the length of the 
helical antenna can be considerably longer that the periods in x  and y directions of the slab, 
the irst resonance of the antennas can be reached before higher order Floquet modes are 
exciied (i.e., one can operate the chiral slab at a frequency where only a single, transmitted 
plani wave is observed). It is interesting to note that almost 100% transmission is obtained 
when one is sufficiently well below the first resonance frequency, whereas the transmission 
coeficient drops down very much near the resonance frequency.

Because metals lose their conductivity at optical frequencies, the model of perfectly con- 
ductng helical antennas in Ref. [11] is not realistic. In the previous subsection, we have 
seen that metals can be interesting also in the optical regime when one wants to obtain

X
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metamaterials with pronounced effects. Therefore, we assume that metals will play an impor
tant role for the fabrication of chiral metamaterials.

2.4. Negative Index Materials: Left-Handed Media
In 1968, Veselago [7] predicted negative refraction for media with both negative permittivity 
and negative permeability (i.e., with a negative refraction index). For example, a plane wave 
incident from free space (with refraction index n = 1) on a negative index material with 
refraction index n =  -1 should be refracted as shown in Fig. 13. In fact, simulations with 
well-known electromagnetic field solvers support this idea. Although this seems to provide no 
problems when an optical ray model is used, difficulties are observed in more realistic wave 
models. According to Valanju [18], negative refraction would violate the fundamental limit 
of speed of light, and according to Garcia and Nieto-Vesperinas [19], a perfect lens made 
of negative index material— as proposed by Pendry [20]— would require an infinite amount 
of energy to operate. Furthermore, numerical simulations in time-domain, as performed by 
Correia and Jin [21], become unstable when one simple assumes that the permittivity and 
permeability are equal to —1. Because no negative index materials have ever been observed 
in nature, the discussion of such materials was obsolete until Pendry suggested fabrication of 
such metamaterials based on small antenna structures such as wires and metallic split-ring 
resonators.

The main effect of negative index material is that a plane wave incident from free space 
on a negative index material is refracted in the “wrong" direction as shown in Fig. 13 (i.e., 
the component of the wave vector tangential to the surface becomes negative). This is also 
called negative refraction. Note that also gratings can exhibit negative refraction, namely 
when a negative-order Floquet mode is dominant. Because the amplidudes of Floquet modes 
strongly depend on the angle of incidence, this effect is usually only observed for certain 
angles of incidence, where it is present for all angles in the case of a negative index material. 
For this reason, one also uses the term all-angle negative refraction (A A N R ). In Ref. [22], 
it has been shown that A A N R  can also be obtained for metamaterials without negative 
effective index, namely with photonic crystals. We will consider this case in the section on 
photonic crystals.
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Figure 13. Plane wave refraction al a negative index material slab. Left: ray model; right: MuX-l simulation, time 
average oi' the Poynting vector field.
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Negative index materials are also called left-handed materials, although they do not consist 
of left-handed molecules like chiral media. To understand the term left-handed materials, we 
best consider the energy conservation law for electromagnetic fields. Maxwell theory assumes 
that the electric field is a vector field, whereas the magnetic field is a pseudo-vector or 
axial vectors. Pseudo-vectors are obtained from vector products of vectors. Vectors describe 
line-like objects (i.e., ID  objects), whereas pseudo-vectors describe 2D objects in 3D space 
[23]. The Pointing vector is obtained from a vector product of the electric and magnetic 
field (i.e., of a vector and a pseudo-vector). As a consequence, the Poynting vector is a true 
vector that is perpendicular to the electric and magnetic field vectors in such a way that 
these three vectors are right handed (i.e., when the electric field points in the direction of 
the thumb and the magnetic field points in the direction of the index finger, the Poynting 
vector points in the direction of the middle finger of our right hand). This only holds in 
an ordinary, “ right-handed” material as we can see when we now consider the fundamental 
energy conservation law; that is, the divergence of the Poynting vector field should be the 
negative time derivative of the energy density:

divS = d iv ^ £  x =  H  x curl£ — E x  curl/7 = — + s E - ^ ^  (9)

In Eq. (9), the first equation is obtained from the definition of the Poynting vector, the 
second one is a mathematical identity, and the third is obtained from Maxwell’s equations 
for a linear, homogeneous, isotropic material that may be described by the scalars j j . and 
e (i.e., the permittivity and permeability). The term on the right-hand side is essentially 
the negative time derivative of the energy density of the electromagnetic field. From the 
negative sign of this term, it follows that the Poynting vector points away from an area where 
the energy density is decreased— provided that fx and e are positive. Because f i and e are 
negative in a negative index material, Eq. (9) would violate the energy conservation law in 
such a material. To avoid this, the definition of the Poynting vector field S = E x H  must 
be replaced by S =  — E x H  =  H  x E  in such a medium. This means that the three vectors 
E, El, S only obey the right-hand rule in an ordinary medium, whereas a left-hand rule 
applies for these vectors in a left-handed medium. However, in order to avoid confusion 
with left-handed molecules, we do not use the term left-handed medium in the following.

The extraordinary effect of A A N R  at the surface of negative index materials is certainly 
not sufficient for explaining the tremendous interest in such materials that was initiated by 
Pendry's paper [24). The main reason for this is the promise of a “ perfect" lens that would 
image a point source on a sharp focus point that is not limited by the wavelength as when an 
ordinary lens is used. Such a lens could be used for obtaining optical microscopes with higher 
resolution than conventional ones. Because higher optical resolution is already obtained from 
scanning near-field optical microscopes (SNOMs) [12], a "perfect” lens or a more modes 
“ super-resolution” lens should have advantages compared with SNOM; that is, it should 
provide higher resolution or it should allow one to remove the main drawbacks of SNOMs, 
namely, the fact that a SNOM  acts in the near field of the object to be observed. Although 
microscopes arc useful instruments, super-resolution becomes much more attractive from 
the engineering point of view because it would allow one to overcome the limit of optical 
storage devices such as CD ROMs, and this would be attractive for the mass market of 
computer industry. The demands for suppcr-resolution CD ROMs are much higher than for 
super-resolution microscopes (speed, stability, durability, fabrication costs). Therefore, the 
promise that SNOM  technology might provide such CD ROMs is still neglected, although 
SNOMs are widely used in microscopy.

Pendry proposed that a very simple “ perfect" lens could be obtained using a simple slab of 
negative index material as illustrated in Fig. 14. As one can see from the ray model, such a 
lens would not behave like an ordinary lens: When the source point moves to the left, also the 
image point moves to the left, and when the source point moves closer to the lens, the image 
point moves away. Unfortunately, but not surprisingly, calling such a slab a “ perfect”  lens is 
in fact an extreme exaggeration as we can see from accurate numerical simulations based on 
Maxwell theory. Before we do this, we would like to point out that all structures that were
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Figure 14. Ray model of a “ perfect” lens consisting of a slab with refraction index n = — 1. The rays originated at 
the source point S cross each other inside the slab al the point X  and again at the focal point F. The distances of S 
and X  from the upper boundary of the slab are equal, and the distances of X  and F from the lower boundary are 
equal as well. When the source point S is moved in any direction, the focal point is moved in the same direction. 
This only holds as long as the focal point is below the lower boundary of the slab.

proposed for constructing negative index materials are operated near a resonance. As we 
have seen before, resonance can be important for obtaining metamaterials with sufficiently 
strong effects. As a consequence, such materials exhibit the desired effect only in a very 
narrow frequency band. To overcome this difficulty, Tretyakov [25] proposed the use of 
dipole and loop antenna that are loaded with electronic circuits. This is a strong extension of 
the metamaterial concept that might be feasible for sufficiently low frequencies. At the same 
time, it makes it questionable that a “ perfect” lens with focus size considerably smaller than 
the wavelength might be obtained using such an advanced metamaterial at least as long as the 
cells, that is, the loaded antennas, that constitute the metamaterial are not small compared 
with the wavelength. However, in the following we assume that all fabrication problems can 
be solved and that a material with negative permeability and negative permittivity exists. 
In order to study the effects of wave propagation through a simple negative index slab, we 
apply the M M P solver of MaX-1 [26]. Because M M P is a semianalytical method, it allows 
one to obtain highly accurate frequency domain results, which is important because there is 
currently no way to compare such results with measurements.

First, we consider a simple 2D model of a negative index slab illuminated by a monopole 
source. In order to avoid numerical problems when the relative permittivity and permeability 
are equal to -1, we insert small losses (i.e., we assume that the relative permittivity and 
permeability are complex and have a small imaginary part). As one can see from Fig. 15, the 
field becomes rather complicated. In addition to the field radiating away from the monopole

IE-7 2F-; 7 0
X - ( ! .0.0) 1=4.2H -17 0=((),(),()•)

Figure !5. Poynting vector held for a 2D model of a negative index slab illuminated by a monopole source at 
distance d above the slab. The width of the slab is 2A. Left: d — A/2: middle: d - A: right: d — 3A/2. The relative 
permittivity and permeability of the slab are - J 0.001/.
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source, penetrating the slab and radiating out of the slab on the opposite side as suggested 
by the ray model, an additional field near the surfaces of the slab is observed. This field 
becomes stronger when the monopole moves closer to the surface and when the losses in the 
slab are reduced. This clearly supports the ideas of Garcia and Nieto-Vesperinas [19]. The 
strong field near the surfaces of the slab makes it difficult to see a strong focus as suggested 
by the ray model. As one can see from Fig. 16, the field near the surface can be suppressed 
well by introducing higher losses in the slab, but then, no sharp focus, that is, not even a 
‘'super-resolution lens" is obtained.

It is well-known that the field of a 3D dipole source decays much more rapidly with 
the distance that the field of a 2D monopole source. Therefore, one can assume that the 
undesired effect observed above is less strong for a more realistic 3D model. At the same 
time, such a model becomes more complicated because of polarization effects and it is 
much more difficult to visualize and inspect the electromagnetic field in 3D space. Fig. 17 
shows a quarter of a circular negative index disk illuminated by a dipole that is oriented 
perpendicular to the disk. Although this structure is axisymmetric, the electromagnetic field 
is not axisymmetric because the dipole is not oriented along the axis. Because a dipole 
along the axis would not radiate toward the disk, this case is simpler, but not interesting. 
However, when we place the dipole at a distance d = w /2  from the upper surface of the 
disk, the ray model suggests a focus at the distance d below, where w is the width of the 
disk. As one can see from Fig. 17, the field is concentrated very much near the dipole source. 
Therefore, the disk is sufficiently large for avoiding undesired effects caused by its finite size. 
Despite this, the field is extremely complicated. Because the main purpose of the negative 
index lens is to focus the field radiated by the dipole on a spot that is expected to be small 
compared with the wavelength, we consider the power flux through a plane that contains the 
hypothetical focus point, perpendicular to the axis of the disk. Figures 18 and 19 show the 
intensity pattern on this plane for different wavelengths. As long as the width of the disk 
is small compared with the wavelength, a strong intensity is only obtained inside an area of 
radius r  around the focal point, and r  is of the order d =  w/2.  Close to the focus point 
one has at least one strong spot with negative intensity, that is, here the focal plane is not 
illuminated from the back side. This is possible because one is in the near field of the disk. 
Energy radiated from the disk at some distance from the axis turns back and illuminates the 
focal plane from the “wrong” side. This has an important consequence for the measurement. 
Any equipment used for measuring the field near the focus will strongly interact with the 
field of the disk. Thus, it will be difficult to observe the “ super-resolution.'1 The fact that 
several spots are present in the focal plane causes another difficulty and makes the negative 
index disk unattracive as an imaging device. Finally, when we increase the frequency— as 
shown in Fig. 19— the areas of negative illumination (i.e., illumination from the back side), 
disappear. But then, one still observes several spots in the focal plane, and the total spot 
area is no longer small compared with the wavelength. Obviously, a conventional dielectric
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Figure 16. Same as in Fig. 15 hut with relative permittivity and permeability of the slab equal to -1 +0.1/.
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Figure 17. Negative index material disk illuminated by a dipole on the axis of the disk, polarized perpendicular 
to the axis. Distance d of the dipole from the disk ir/2. where //■ is the width of the disk. According to the ra\ 
diagram, the focal plane is also at the distance d from the disk but on the opposite side. The radius of the disk 
is 5u\ The relative permittivity of the disk is I -» ll.OOOi/: the relative permeability is - I. Iso-lines of the time 
average of the Poynling vector field are shown with a logarithmic spacing.

0=(0,0.0) X=< 1.0.0) t=0 (>=(0.0.0) X=( 1.0.0) t=4.2E-l 1

Figure 18. Intensity of the time average of the Poynting vector component perpendicular to the focal plane for the 
negative index disk shown in Fig. 17. White indicates strong positive, black strong negative values. Left-hand side: 
wavelength A = 10m>. where w is the width of the disk. Right-hand side: A = 2w.
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Figure 19. Same as Fig. 18. I. eft-hand side: wavelength A ----- I//-, where ?/> is the width of the disk. Right-hand side: 
A -- 0 .5 n \
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Figure 20. Small conventional dielectric lens with relative permittivity 2.25, diameter 6 wavelengths, illuminated by 
a plane wave propagating along the axis of the lens. Left-hand side: intensity plot in the focal plane, right-hand 
side: time average of the Poynting vector field in the plane parallel to the electric field (left half of the plot) and in 
the plane perpendicular to the electric field (right half of the plot).

lens as illustrated in Fig. 20 has much nicer characteristics than a negative index lens that is 
far from being perfect. As one can see, the conventional lens has a single, bright spot around 
the focus that is almost circular and has a diameter of the order half the wavelength.

From these simulations, vve assume that the promises of super-resolution lenses based on 
negative materials are wishful thinking that has gained a position in modern optics similar to 
the philosopher’s stone in alchemy. Although our results concerning the ‘‘perfect lens" are 
rather discouraging, the study of negative index materials is fascinating because it provides 
unexpected and highly complicated effects even when most simple configurations are consid
ered. These effects are inspiring and motivating for the research on metamaterials. Maybe, 
this will push material research forward just as the vain search for the philosopher’s stone 
finally initiated fruitful chemical research. In the following section, we therefore focus on 
photonic crystals as a more promising category of metamaterials that also exhibits many sur
prising effects and provides a variety of new structures for ultradense integrated optics with 
attractive engineering applications. As we will see, photonic crystals also provide all-angle 
negative refraction and could therefore be candidates for super-resolution lenses [22].

3. PHOTONIC CRYSTALS
In the previous section we have considered a simple grating consisting circular dielectric 
rods. The analysis of the results presented in Fig. 20 and more extended studies suggest 
that light incident from any direction on such a grating with sufficiently many layers of rods 
will be totally reflected within some frequency ranges. As mentioned in the introduction to 
this chapter, Yablonovitch [27] proposed to consider such structures, called photonic crystals 
(PhCs), as photonic counterparts of electronic semiconductor crystals (i.e., the photon in 
a photonic crystal propagates in a photonic crystal in a similar way as an electron in a 
semiconductor). The most interesting physical effect is that there are energy bands where no 
electron can propagate in a semiconductor and where no photon can propagate in a photonic 
crystal. Such energy bands in a PhC are called photonic band gaps (PBGs). Because the
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energy of a photon is proportional to its frequency, the energy bands can also be considered 
as frequency bands. When a photonic crystal slab is illuminated by a plane wave, a stop band 
is observed (i.e., in terms of filter technology, each PBG  corresponds to a stop band). Thus, 
it is evident that PhCs are interesting for the design of optical filters.

Semiconductors as well as PhCs have interesting physical properties, but what makes 
them really attractive from the engineering point of view is the possibility to modify their 
characteristics by doping. Semiconductors are usually doped by a more or less statistical 
infiltration of dopants (i.e., atoms that do not belong to the pure crystal). Therefore, doped 
semiconductor areas typically consist of many atoms. Because the wavelength of photons is 
much longer then the wavelength of electrons, the cells in a photonic crystal— that corre
spond to the atoms in a semiconductor— are big compared with the atoms, typically of the 
order 100 nm or more. Therefore, one might expect that doped photonic crystal become 
big compared with the wavelength and this would make them unattractive for integrated 
optics, especially when one intends to design ultrasmall configurations that should not be 
much bigger than the wavelength. Here, it is important to note that the size of the cells 
of a PhC— that correspond to the atoms— is big enough for permitting a precise doping. 
Furthermore, because these cells consist of many atoms, one has a much higher degree of 
freedom in the doping process, that is, instead of introducing ari atom (selected from a small 
list of acceptable atoms) as dopant, one may modify the location, the orientation, and the 
geometric shape of the “ photonic atom" as well as the material used for fabricating it. When 
we consider, for example, a PhC built of circular dielectric rods, we can have a variety of 
“ dopants” as shown in Fig. 21. Although this high degree of freedom is attractive, it also 
poses a big problem: A good design of a doped PhC structure requires an optimal or at 
least a good selection of the different parameters. Because the parameter space is huge, this 
is an extremely demanding task. Furthermore, we will demonstrate that doped PhC struc
tures have a high complexity and often behave in a counterintuitive way (i.e., intuition of 
experienced engineers can be insufficient or even misleading during the design process). Fur
thermore, simple and useful design rules that are usually applied by engineers are currently 
missing for the design of doped PhC' structures. In order to overcome these difficulties, we 
will take advantage of extensive numerical simulations and optimizations.

Because perfect PhCs are periodic structures, the doping process always breaks at least 
one of the periodic symmetries. This leads to a simple classification of doped PhC structures: 
In 3D crystals, one can have one, two, or three broken symmetries. PhC structures for 
integrated optics are usually obtained from drilling holes in dielectric plates. Such structures 
can be approximated by 2D PhCs that exhibit only two periodic symmetries. For reasons 
of simplicity, we focus on such structures in the following. Obviously, one only can break 
one or two of the periodic symmetries of a 2D PhC. When only one symmetry is broken, a 
waveguide structure is obtained. Although PhC waveguides are important, the more general 
case where both symmetries are broken is much more attractive and fundamental for the 
design of various structures such as resonators, filters, modulators, and so on. From the 
engineering point of view, waveguides are used to connect different devices. For example, 
a resonator that is not linked to some other part of a circuit by some waveguide makes
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Figure 2i. Photonic crvstai with different "dopants"* (i.e., cells containing rods of bigger or smaller si/.c than the 
rods of the original crvstai).



S im u la t io n  and  O p tim iz a tio n  o f  C o m p o s ite  D o p e d  M e tam a te r ia ls 555

mot much sense. A resonator that is attached to a waveguide may also he considered as a 
discontinuity of the waveguide. Therefore, we will consider the following classes of problems 
im the following: (1) perfect PhCs (without any broken symmetry). (2) PhC waveguides (with 
o>ne broken symmetry), and (3) waveguide discontinuities (with two broken symmetries). 
Mote that a waveguide in a 3D PhC breaks two symmetries, and a waveguide discontinuity 
im a 3D PhC breaks all three symmetries. A single broken symmetry in a 3D PhC is of not 
nnuch practical interest. This case corresponds to parallel plate waveguides.

In the following, we consider the analytical background and the numerical treatment of 
tlhe three classes (1) perfect crystals, (2) PhC waveguides, and (3) PhC waveguide discon
tinuities. From the engineering point of view, the third class is most interesting because 
ai 11 attractive PhC devices belong to this category, but as these devices are accessed mainly 
tlnrough waveguides, one should study category 2 beforehand. This study also requires the 
knowledge of the locations of the PBGs because PhC waveguides are operated within a PBG  
o)f the corresponding perfect crystal.

3;.1. Perfect Photonic Crystals
Avlthough a perfect PhC that occupies the entire 3D space is not realistic and not very attrac
tive from the engineering point of view, the idealization behind a perfect PhC is required for 
amalytical studies and it is essential for understanding the fundamental properties of PhCs. 
Essentially, this idealization is the same as when one considers plane wave propagation in 
a natural material that occupies the entire 3D space (i.e., we want to find out how electro- 
miagnetic waves propagate within infinite photonic crystals). Because PhCs are structured, 
a strong dependence on the direction of the wave propagation is expected. This makes the 
ainalysis rather demanding.

Perfect PhCs are closely related to perfect gratings. In both cases, periodic symmetry 
is involved (i.e., the structures consist of identical cells that are repeated at least in one 
direction). The main difference is that a grating consists of at least two different materials, 
usually free space and a periodic metamaterial or a slab of metamaterial with free space or a 
ruatural material on both sides of the slab. For this reason, one can use the same techniques 
for handling the periodicity of gratings and PhCs. Above all, it is sufficient to know the 
ehectromagnetic field of the grating or PhC within a single periodic cell together with a 
symmetry description.

Because a grating consists of sections with different natural materials or metamaterials, 
it is also different from a perfect PhC. Usually, one assumes that a grating is illuminated 
by/ a plane wave that is defined within a natural material, such as free space. This known 
phane wave excites the field in the entire structure (i.e., one essentially has a scattering 
problem with some periodic symmetry). For the simple case where the grating is periodic in 
a direction (see Figs. 3-7) we have seen that the angle of incidence of the plane wave and 
tine .v component of its wave number play an essential role. In fact, the incident plane wave 
“ impresses'’ the symmetry condition in x  direction

Field(x + na , >>, z) =  F ie ld (x , y, z) x eink*c" =  F ie ld {x , y, z) x (C v)" ( 10)

wlhere n is an arbitrary integer number. When the field is known, for example, in the interval 
from x — 0 to a* = a, one can use Eq. (10) for computing the field everywhere outside this 
imterval.

Equation (10) can easily be extended for the case where the structure is periodic in two 
or even three directions. Therefore, we can write for a 3D PhC with a periodic symmetry in 
x , y, z directions with the lattice constants r/v, ay, a

Field (x + nax. y -f m a v, z + l a : ) =  Field(a*, y, z) x (C v)" x (C v)m x (C ./  ( I I )

Now, the essential difference between the grating and a PhC must be considered: Because 
th«e PhC is assumed to extend to infinity, there is no space left where we can define the 
incident plane wave. This, we do not have an incident wave vector with known components in 
thie a\ y , z directions. Therefore, we cannot compute the periodicity constants C v, Cv, C: for
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the electromagnetic field. In fact, as no excitation is defined, we no longer have a scattering 
problem. We now have an eigenvalue problem with the characteristic constants Cv, Cv, Cz. 
We therefore must find nontrivial solutions or cigenmodes that fulfill Eq. (11) as well as 
the Maxwell equations within a single cell of finite volume, for example, within 0 < x < ax,
0 < y < av, 0 < z < a.. As in resonator problems, nontrivial solutions are only found for 
certain frequencies that therefore can be considered as eigenvalues. These eigcnfrequcncies 
depend on the characteristic constants C v, C\ . C\. For an arbitrary, given set of constants C v, 
C v, C,, we can find infinitely many eigcnfrequcncies. For practical reasons, we can restrict 
ourselves to the lowest eigenfrequcncies. Finding them for the space spanned by C v, Cv, C. 
is still quite demanding.

Because such problems are very common in crystallography, we take advantage of the 
knowledge and formalisms known from crystallography. Here, one usually considers the 
energy as eigenvalue. Because the frequency of a photon is proportional to its frequency, it 
is easy to convert the energy into the frequency and vice versa.

Despite of this, the analysis of perfect PhC’s is still complicated. Therefore, we use 
two additional assumptions for reasons of simplicity: (1) we assume that the PhC is two- 
dimensional (i.e., cylindrical in the z direction perpendicular to the two periodic directions) 
and (2) we assume that all materials are loss-free. The first assumption is reasonable because 
it allows us to work with 2D illustrations and 2D symmetry considerations. Furthermore, 
many realistic PhC structures can be approximated well with such 2D models and the exten
sion to 3D models is straightforward. The second assumption is reasonable because one 
usually tries to use materials with low losses in optics. Note that this assumption is rather 
crucial for all kinds of eigenvalue problems for the following reason: The proper definition 
of an eigenvalue problem requires the assumption that the system is energetically closed. In 
the case of a simple resonator, this means that no energy is transferred from outside into 
the resonator and no energy leaves it. Each cell of a PhC should also be energetically closed 
in the sense that the total energy exchanged with the neighbor cells is zero. When losses are 
present, some part of the field energy is converted to thermal energy. To take this energy 
into account, one would need to consider Maxwell’s equations together with thermodynamic 
equations, which is extremely demanding. In order to avoid this, one usually works with sim
plified, complex models that assume that the eigenvalue becomes complex due to the losses 
and that the imaginary part of the eigenvalue can represent the losses. In fact, a complex 
frequency describes a dampened oscillation that is observed when a resonator is lossy. Note 
that a perfect resonator cannot be observed at all because it is perfectly closed. In order 
to observe it, one always must open it. Usually, one then has an input port that feeds the 
resonator and an output port for the measurement. Such a structure is no longer described 
by an eigenvalue problem. It can be well described as a waveguide discontinuity problem 
that has a known incident field as an ordinary scattering problem. One then observes a signal 
in the output port that is frequency dependent and exhibits peaks near the resonance fre
quencies. As in the case of the plasmon resonances shown in Figs. 10 and 11, one observes 
a broadening of the reasonance peaks with increasing losses. The width of these peaks is a 
good indicator for the quality of the resonator (i.e., for the losses). Unfortunately, opening 
a resonator for observing it also introduces losses, namely radiation losses that also broaden 
the resonance peaks. This makes it difficult to precisely measure the losses of high-quality 
resonators.

Another problem of complex eigenvalue problems is the following: In the loss-free case, 
the modes are characterized by a real eigenvalue that can usually be restricted to a finite 
interval as we will see in the following. The number of solutions m this interval is always 
finite. Beside this finite number of modes, one can also have an infinite number of evanes
cent modes that are characterized by imaginary eigenvalues. In most cases, the evanescent 
modes are of not much interest and need not be computed. When a complex eigenvalue 
problem is defined because of the losses, both types of modes are characterized by com
plex eigenvalues. This makes it not only difficult to separate the evanescent modes, it also 
leads to an eigenvalue search over the entire complex plane that is much more difficult 
than the eigenvalue search over a finite real interval. For this reason, one avoids complex 
eigenvalue problem formulations whenever possible. We will do this also in the following
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sub section, but we will consider a complex eigenvalue formulation when we consider PhC 
waveguides.

3.1.1. Symmetry Considerations
A general 3D photonic crystal is periodic in three directions, the so-called lattice vectors 
F\, r2, r? as shown in Fig. 22. We therefore obtain the following equation for the material 
properties of the PhC:

Material ( r  + /?, f, + n2r2 + =  Material ( r  + R) =  Material ( r ) ( 12;

where /?,, /?2, n-. are arbitrary integer numbers. Note that the vectors r,, r2, are the three 
shortest vectors that transform a cell to its neighbor cells. For a rectangular lattice, these 
vectors are perpendicular, but in general, they are arbitrary. As for the grating, we now have 
the symmetry condition for the field:

Field( r + /i,F + n2r2 + n:j } ) =  F ie ld (f  -f R) =  Field ( r )  x e'^R 3)

We now can define a reciprocal lattice space for the wave vector K  that is spanned by three 
reciprocal lattice vectors A,, As, as shown in Fig. 23:

(14)

Note that the reciprocal lattice vectors are not orthogonal in general. Because we now have 
an eigenvalue problem, where no excitation is given, none of the components of the wave 
vector K is known, but for all nontrivial solutions we must have

eiKR = 1 =» K R  = 2 N tt (15)

where N is an integer number. This allows us to construct a set of reciprocal lattice vectors 
as follows:

k, =2 x /'i
77

r{ x (r2 x FO r. x (r:
k.

X /•
ITT

X F, x ( r2 x r,)
(16)

Note that this construction is not unique, but it obviously fulfills the condition (15). As a 
consequence of the periodic symmetry of the original lattice space, also the reciprocal lattice 
space has a periodic symmetry. Therefore, it is sufficient to know the field of a nontrivial 
solution only in finite, limited cell, spanned by the lattice vectors F,, r2, r:> and to consider 
only a finite, limited zone in the reciprocal lattice space spanned by the reciprocal lattice 
vectors A:,, A: , k y  When additional symmetries are present, this zone can be further reduced. 
The smallest, irreducible zone near the origin of the reciprocal lattice space is called first 
irreducible Brillouin zone ( IB Z ).

Figure 22. Three-Dimensional photonic crystal consisting of dielectric spheres periodically distributed in 3D space. 
Lattice vectors and permittivity constants are depicted.
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m

Figure 23. Reciprocal lattice space of the 3D photonic crystal presented in Fig. 22.

We mentioned that we will focus on 2D PhCs for reasons of simplicity. In fact, the IB Z  
of a 3D PhC is limited but three-dimensional and this makes the visualization of the non
trivial solutions over the IB Z  not simple. A 2D PhC is periodic in two directions rh f2 and 
cylindrical in the third direction r} =  where z is the coordinate along the cylinder axis. 
The reciprocal lattice space now becomes two-dimensional and we obtain from Eq. (16)

2 v As — 27T
c. x r.

Fj x ( r2 x ez)
(17)

We now consider the two most frequently used 2D eases of a square and a hexagonal (or 
triangular) lattice. In both cases, we assume that the two lattice vectors have the same length 
a. For the square lattice, the two vectors are perpendicular and the hexagonal lattice has an 
angle of 60 degrees between the two lattice vectors as shown in Fig. 24. In both cases, the
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Figure 24. Original lattice space of the perfect, photonic crystal with a square lattice (top left) and with a hexagoral 
lattice (top right): reciprocal lattice and irreducible Brillouin zone for the square (bottom left) and hexagoral 
(bottom riuht) lattice
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first 1BZ becomes triangular and is described by the three corners F, M, X  and F, M, K. 
respectively. Note that the I' point is always in the origin (i.e.. at K =  0), but the two other 
corners are not unique.

3.1.2. Band Diagrams
Each nontrivial solution in a photonic crystal is characterized by a (resonance) frequency 
that is a function of the K  vector. As mentioned before, it is sufficient to describe this 
function only over the first IB Z  because of the symmetry properties. Furthermore, extreme 
values of this function are always on the contour of the first IBZ . Therefore, it is sufficient 
to plot the resonance frequencies only along the sides of the triangles with the corners F, 
M, X  and F, M, K  for the 2D PhC with square and hexagonal lattice as shown in Fig. 25. 
These band diagrams allow one to obtain a quick overview over all solutions. Usually, one 
can even guess the values of the resonance frequencies within the first IBZ .

Because identical band diagrams are obtained when the geometry is multiplied by any fac
tor and the frequency is divided by the same factor, one usually plots the normed frequency 
fa/c\ where a is the lattice constant (for the square and hexagonal lattice) and c is the speed 
of light in free space.

What makes photonic crystals most attractive is the occurrence of band gaps, that is, fre
quency ranges where no eigenmode exists (for any value of K ). This means that light cannot 
propagate at these frequencies in any direction. When a finite— but sufficiently large— PhC 
is illuminated by a plane wave incident from any direction, it will totally reflect the wave 
when its frequency is within such a PBG. Note that such a complete PBG  is usually only 
observed for one polarization for 2D PhCs.

In some applications, the direction of the incident plane wave is restricted to some sector 
of angles. Then, it is sufficient that the photonic crystal allows no penetration within this 
sector only. This means that an incomplete band gap may be sufficient. Furthermore, there 
are applications where one wants light to propagate through a PhC. In this case, there is no 
need for a PBG  at all. A  typical example is a PhC waveguide structure: such a structure is 
essentially composed of at least two different PhCs or of a PhC and an ordinary material. 
Within the waveguide channel one then wants to have wave propagation, whereas no prop
agation is required through the walls of the channel. We will consider such waveguides in 
the following.

Figure 25. Band structure (dispersion relation) tor E-polarization (bottom left) and H-polarization (bottom right) 
of a perfect 2D photonic crystal consisting of circular dielectric rods on a square lattice: original lattice (top left), 
reciprocal lattice and first irreducible Brillouin zone (center), geometrical and material properties (top right). As 
one can see, the bandgap exists only in the case of E-polarization.
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It is important to know that a complete PBG  is only obtained for certain geometries and 
certain material properties. Then a PhC is composed of two dielectrics; the dielectric contrast 
must be high enough for obtaining a complete PBG. This considerably limits the selection 
of materials that may be used for the fabrication of PhCs. Most frequently, materials with a 
relative permittivity around 10 are used.

From the fabrication point of view, it is most simple to obtain a 2D PhC structure by 
drilling holes in a dielectric as shown in Fig. 26. Because of the finite size of the dielectric 
slabs used for such crystals, the 2D model is somehow inaccurate. It is obvious that the finite 
size will cause some radiation effect. This radiation can be accounted for by inserting lossy 
materials in the 2D model. As in the case of lossy resonators, the consideration of lossy PhCs 
is not trivial. Because the perfect PhC model analysis is mainly used for obtaining a first 
overview and for finding the band gaps, it makes not much sense to carry out sophisticated 
complex eigenvalue problems that take losses into account.

3.2. Waveguides in Photonic Crystals
When we embed a slab of an arbitrary material (natural material or metamaterial) within 
a photonic crystal, we obtain a PhC waveguide as shown in Fig. 27. When we operate at a 
frequency within the band gap of the PhC on the sides of the waveguide channel, all waves 
within the channel will be totally reflected at the walls (i.e., at the PhC). The channel itself 
may be constructed of a natural material or of another PhC' or of any metamaterial. The 
only requirement is that electromagnetic waves may propagate through the channel material 
at least in some directions. This gives one a huge degree of freedom in the design of PhC 
waveguides. One therefore can obtain single-mode and multimode waveguides with very 
different characteristics. Because it requires extensive much experience to synthesize such 
waveguides with desired characteristics, one usually takes advantage of numerical simulations 
and optimizations. This is of great importance because one currently does not know much 
about the limitations of PhC waveguides. The following, very simple waveguide structures 
demonstrate that it is possible to fabricate waveguides within a PhC that have very different 
properties. For reasons of simplicity, we will consider the same rod-type PhC we already 
have considered in the grating section of this chapter.

2 pm
Mag = 12.71 K X j----

EHT= 10.00 kV Signal A = InLens Date :26 Jun 200v
W D --9 mm User Name = W UEEST Time:12:05

Figure 26. S E M  image of a holey photonic crystal structure with holes arranged on a hexagonal lattice and a detect 
waveguide with a hO-dearce bend.
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Figure 27. Photonic crystal waveguide consisting of a line defect (vacancies) in the perfect crystal shown in Fig. 25. 
Left: geometry and material properties; right: j -component of electric field (grayscale) and time-average Poynting
vector (arrows).

From the analytical point of view, the waveguide channel destroys the periodic symme
try of the original PhC. Only the periodic symmetry along the channel remains. Thus, the 
corresponding 1BZ becomes one-dimensional, which seems to be much easier than the 2D 
or 3D IB Z  of perfect 2D or 3D crystals. Although this is correct, one should not forget 
that the cell in the original lattice space now extends to infinity, whereas it was finite for 
the perfect PhC. This excludes an analytical treatment of PhC waveguides and makes the 
numerical computation much more demanding. The most commonly used way out of this is 
the so-called supercell approach. In this approach, one considers a periodic set of parallel 
waveguides. This replaces the previously broken symmetry by a new symmetry with a larger 
lattice constant as shown in Fig. 28. As a consequence, one can use the same procedures 
for perfect PhCs also for PhC waveguides— under the assumption that the interactions of 
neighbor waveguides may be neglected. As one can see from Fig. 29, the lines in the band 
diagram split in several lines when a supercell is analyzed. The number of additional lines 
is increased with the size of the supercell (i.e., with the distance between neighbor wave
guides). Although this is numerically annoying, it is of not much interest for the waveguide 
design. What is interesting, however, is the occurrence of new lines (i.e., modes within the 
band gap of the original crystals). These lines characterize the modes that propagate within 
the waveguide. As one can see from Fig. 27. the field of such modes within the channel is
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Figure 28. Supcrceil approach for photonic crystal waveguides. As one can see. fictitious periodicity in v-direction 
is introduced. This allows us to define periodic boundary conditions in .v and y directions and to perform eigenvalue 
analysis of the waveguide as in the case of the perfect crystal.
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Figure 29. Dispersion relation (hand structure) of the photonic crystal waveguide depicted in lig. 28. a\ single 
defect mode covers almost the entire bandgap of the original perfect crystal shown in Fig. 25. Note that the modes 
of the original crystal outside the bandgap split in several modes. The number of additional modes outside the 
bandgap depends on the size of the supercell.

dominant and decays rapidly with the distance from the channel. When the field between 
two channels is weak enough, one can assume that the interaction between the neighbor 
channels is weak enough and can be neglected. This finally justifies the supercell model.

An alternative to the supercell solution is obtained from an extension of the general 
procedure for the computation of waves in cylindrical waveguides. In cylindrical waveguides, 
the longitudinal field dependence is obtained from the separation of the z dependence, 
where z is the cylinder axis, in the frequency-domain analysis. One then simply obtains

F ie ld (rT, z) = Field(rr , 0) x eiyz (18)

where y is the propagation constant and rT is a two-dimensional vector in the transverse 
plane, perpendicular to the z direction. This means that the field is known everywhere when 
the propagation constant is known and the field in any transverse plane, for example, at 
z = 0, is known. This reduces the dimension of the problem by one. In the transverse plane, 
an eigenvalue problem is to be solved. As for photonic crystals, one could now’ search for 
the resonance frequencies as functions of y  and draw the corresponding ID  band diagrams. 
Because cylindrical symmetry is the limit of periodic symmetry with lattice constant a = 0, 
the corresponding 1BZ is one-dimensional, but infinite.

In practice, a waveguide mode is excited by a generator at the end of the waveguide. This 
generator determines the frequency. Thus, it is more reasonable to fix the frequency and 
to search for the corresponding propagation constant as a function of the frequency. When 
one normalized the propagation constant with the free-space wavenumber, the normalized 
propagation constant becomes finite for all frequencies and for ail modes.

Damping is one of the most important issues in the design of waveguides. Therefore, one 
usually is interested in the attenuation due to material losses. The attenuation is described 
by the imaginary part of the propagation constant. Thus, one has much experience with 
complex eigenvalue problems in the description of waveguides. When we consider a PhC 
waveguide as a waveguide with periodic rather than cylindrical symmetry, we can profit from 
this experience. For this purpose, we need to consider (1) the replacement of the cylindrical 
symmetry by a periodic and (2) the replacement of attenuation due to materia! loss by 
attenuation due to radiation loss. The latter has the following reason: When we do not
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establish periodic symmetry as in the supercell approach, we must truncate the model (i.e., 
w/e must consider a finite width of the PhC walls on both sides of the waveguide channels). 
As we have seen in the grating section, some energy may propagate through a PhC slab 
o f finite width. As a consequence, some energy will be transmitted through the walls, and 
tinis energy will radiate into the space outside the PhC walls. This radiation loss will also 
cause an attenuation of the waveguide mode (i.e., it will contribute to the imaginary part 
o f the propagation constant). Because any realistic PhC waveguide can only have walls of 
finite widths, such a model is more realistic than the supercell model and it provides useful 
information on the attenuation and radiation loss.

We now replace the cylindrical symmetry in z direction by a periodic one in x direction 
with period a. Instead of computing the field in the transverse plane at z = 0 we then must 
evaluate the field in a section, for example from x — 0 to .v = a. Out side this section, we 
then obtain the field everywhere else from the periodic condition

Field(r + naex) =  F ie ld (r) x eik'na (19)

From this, it is obvious that the constant k x now plays the role of the propagation constant. 
As mentioned before, the propagation constant for lossy waveguides becomes a complex 
function of the frequency, and its imaginary part describes the attenuation. Now, k x becomes 
a complex function of the frequency, and its imaginary part describes the attenuation. To 
compute Av, we can apply the same eigenvalue solvers as for cylindrical waveguides. More 
details will be given in the next section.

3.2.1. Defect Waveguides
The most simple waveguide is obtained from a perfect photonic crystal when one or several 
rows of cells or “ molecules” are omitted, as shown in Fig. 27. Depending on the width of such 
a defect, we can obtain single-mode or multimode waveguides. As for ordinary, cylindrical 
waveguides, one observes the more modes the broader the waveguide channel is.

Defect waveguides can be obtained for rod-type PhCs as well as for hole-type PhCs. When 
we consider such structures with an effective index model, the hole-type PhC waveguide has 
a higher effective index in the channel because the holes are missing there, whereas the rod 
type has a lower index in the channel. In both cases, we have something like a symmetric slab 
waveguide, and it is well-known that such a structure can guide electromagnetic waves only 
when the channel has a higher index. Thus, it is somehow surprising that also the rod-type 
PhC defect waveguide can guide electromagnetic waves.

3.2.2. Other Waveguides
The degree of freedom in PhC defect waveguides is rather low because one only can omit 
a finite number of rows of cells of the original PhC. When one wants to obtain single
mode operation, one can usually only omit a single row. Sometimes even a single-row 
defect waveguide supports more than one mode. The design and composition of waveguides 
with different characteristics is interesting for the design of filters and filtering junctions. 
Therefore, there is a strong need for a more general waveguide design that provides more 
flexibility. One might be tempted to simply generalize the defect waveguide concept by 
admitting an arbitrary, real channel width w instead of the width na for standard defect 
waveguides with n missing rows of width a. Although this would be feasible, this has a strong 
drawback when one wants to have a bend in such a waveguide. In fact, sharp waveguide 
bends are one of the most attractive features of PhC waveguides as we will see later. For 
this reason, one should usually not consider PhC waveguides of a channel width different 
from na.

As mentioned before, the channel of a PhC waveguide can consist of any natural material. 
Thus, we also could modify the permittivity within the channel instead of the width. This 
would not cause any essential problems for waveguide bends, but it would cause strong 
fabrication problems. For this reason, it is certainly best to use a photonic crystal structure 
also within the waveguide channel, but one with a different geometry, namely one that does
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not have a band gap at the same location as the original PhC or one that has no band gap 
at all.

When we fabricate a PhC waveguide by a PhC channel embedded in another PhC, we 
can obviously have two different types. The more simple one has the same period a along 
the channel for both crystals (channel and outside), whereas the second one has different 
periods ain and a()ur Obviously, the former is also much simpler from the analytical and 
numerical point of view because it does not break the periodic symmetry. For this reason, 
it is best to focus on this case whenever possible (i.e., as long as the desired waveguide 
properties may be obtained with such a design). Incidentally, the second case can be handled 
with a supercell approach in longitudinal direction when ciin/ciout is rational. Otherwise, its 
handling becomes very demanding. However, in the following, we only consider the simple 
case that is periodic along the channel.

When a photonic crystal consisting of circular rods or circular holes is given, the simplest 
version of a channel w'aveguide is obtained when we either increase or decrease the radii 
of the rods or holes. Figure 30 shows that the radius as a single tuning parameter already 
allows us to shift the propagation constant of a mode rather freely within the PBG  of the 
original crystal. As one can see, one can design waveguides that carry modes over almost 
the entire band gap or only over some fraction of the band gap.

When we connect PhC waveguides with different characteristics, we obtain frequency- 
dependent transmission and reflection coefficients exactly as when we connect conventional, 
cylindrical waveguides. Such waveguide junctions can therefore be used for the design of 
filters. Waveguide junctions break the symmetry along the waveguide as to the more gen
eral class of waveguide discontinuities. This causes additional analytical problems that are 
outlined in the following.

3.3. Waveguide Discontinuities in Photonic Crystals
In practice, the main purpose of a waveguide is to transfer energy or information from one 
device to another one, for example from a sender to a receiver, from a signal generator to 
a filter, from a filter to a power divider, and so on. Although the analytical and numerical 
models of waveguides usually assume infinitely long structures— for obtaining cylindrical or 
at least periodic symmetry— all realistic waveguides have a finite length and at their end 
points one must have a discontinuity that breaks the symmetry. Because devices like filters, 
modulators, and so forth, arc connected through waveguides, one can consider them also as 
a waveguide discontinuity. In general, each device has at least one waveguide port. When a

Waveguide I

Figure 30. Design of different types oi photonic crystal waveguides. Top: vacancy line deled; left: substitutional line 
defect with smaller rods: right: substitutional line delect with larger rods. Combining appropriate waveguide- with 
optimally tuned characteristics allows us to design photonic crystal {'liters, filtering T-junctions, and other interesting
structures.
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device has N ports (Fig . 31), il should obtain energy at least from one port, the input port. 
The  input port then plays the same role as the excitation of a standard scattering problem as, 
for example, the scattering of a plane wave at an optical lens. Therefore, the mathematical 
description o f waveguide discontinuities is closely related to the the mathematical description 
o f scattering problems.

Because one has much experience in the description of waveguide discontinuities at radio 
frequencies in electrical engineering, it is reasonable to take advantage of this knowledge. 
First, we consider an arbitrary field that is impressed in the cross section of a loss-free 
cylindrical wave guide. According to mode matching theory [28], this field can be expanded 
as follows:

m= I m—M -f-1
(20)

that is, one has a finite set o f guided modes, an infinite set o f evanescent modes, and a 
continuous spectrum of radiating modes. Because each evanescent mode becomes guided at 
sufficiently high frequencies, it is reasonable to number both types of modes with the same 
index. From  this, it is also evident that mode matching theory works in the frequency domain 
[i.e., Eq . (20) only holds at a certain frequency]. Now, a scalar product can be defined as 
an integral over some field components over the cross section of the waveguides, and it can 
be shown that all modes are orthogonal. H ere, it should be mentioned that the definition of 
the scalar product is not unique, and that different definitions are preferred depending on 
the type of the waveguide. However, the scalar product can be used to normalize the fields 
o f all modes. Because of the orthogonality, it is possible to compute the amplidudes Am of 
the guided and evanescent modes without an explicit computation of the radiating modes. 
Because the evanescent modes are characterized by an imaginary propagation constant, they 
do not contribute to the energy transfer along the waveguide. Furtherm ore, waveguides 
and waveguide discontinuities are often designed in such a way that radiation is minimized 
[i.e., the most cumbersome third term in Eq . (20) can be neglected]. However, the modal 
expansion Eq. (20) allows us to handle all waveguide discontinuities.

It has been mentioned that the distinction between guided and evanescent modes becomes 
difficult when losses are present. In this case, one can account for both types of modes in a 
single, infinite sum in the modal expansion [i.e., Eq . (20) becomes formally even simpler].

In practice, the infinite sum must be truncated. Because the modes are usually ordered 
in such a way that higher order modes have bigger attenuation constants, this poses no 
severe problems, even in the lossy ease. However, a previous computation of the propagation 
constant and field of all modes of order m < mhii{ is required for the proper truncation, where 
mhi,, is so high that the corresponding mode and all higher order modes are dampened so 
rapidly that they can be neglected. Note that this condition depends on the desired accuracy 
and on the length of the considered waveguide. The shorter the waveguide, is the bigger mhiH 
must be. Because of the frequency dependence of the modes, mhii, must also be increased 
with increasing frequency.

Port N

Port

I  a(s)Fiekr'“"h's(s,PT)ds

Figure 31. Analysis of general waveguide discontinuities. A structure with N waveguide ports is depicted (Port I is 
the input port and all other ports are pure outputs).
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Obviously, the integral over the radiating modes is the most cumbersome term in the 
modal expansion. Usually, it is not possible to evaluate the field of all radiating modes. 
Therefore, mode matching often is restricted to nonradiating cases. Although waveguide 
discontinuities are often designed in such a way that radiation is negligible, radiation is 
essential for two special eases: (1 ) when energy of a waveguide shall be radiated and (2 ) when 
radiation shall excite a waveguide mode. The first case is a radiating, active antenna, and the 
second case is a receiving, passive antenna. Because of the reciprocity theorem, both cases 
are closely related. Therefore, it is sufficient to consider explicitly only one case, for example, 
the radiating antenna. Here, the waveguide carries usually a single, guided mode that feeds 
the antenna structure that is designed in such a way that most of the energy of the mode is 
radiated. The radiated waves can then be expanded, for example, by a multipole series [i.e., 
the third term in Eq. (20) can be replaced by a more simple multipole approximation].

For a junction of two different waveguides, one can now take advantage of the modal 
expansion. W hen both waveguides are linear, one can assume that only one of the guided 
modes is incident on the junction. This mode plays the role of the incident wave in a scatter
ing problem. It excites a set of guided, evanescent, and radiating waves for both waveguides. 
W hen  the discontinuity is abrupt, one only has a single discontinuity plane, and one then 
can expand the known field of the incident mode in this plane using a superposition o f the 
modal expansions of both waveguides. From the scalar products, one then directly obtains 
the amplitudes of all modes o f interest. In most cases, only guided modes are of interest 
because only these modes transmit energy along the waveguides. Furtherm ore, one often 
considers single-mode propagation. In this case, the situation becomes most simple (i.e., a 
part of the incoming energy is reflected and a part is transmitted). The first part is then 
described by the reflection coefficient R and the second part by the transmission coefficient 
T. W hen no radiation is present, the sum R -F T should be equal to one because o f the 
energy conservation law. Otherwise, 1 — /? — 7’ is equal to the total radiated power. W h en  
A'/, propagating modes exist on the waveguide w ith the incident mode and M2 propagating 
modes exist on the second waveguide, one obtains Af, reflection coefficients Rm and M2 
transmission coefficients Tnr Besides this, the formalism  remains essentially the same. This 
is the fundamental procedure o f the mode matching technique.

In practice, one often uses tapered waveguide transitions instead o f abrupt ones in order 
to minimize undesired reflections. Mode matching technique then replaces the tapered sec
tion in a sequence of sufficiently short cylindrical sections with abrupt transitions that may 
be handled as before (Fig . 32). One then obtains a system o f N  waveguide junctions. Now, 
the evanescent and radiating modes can no longer be neglected because the waveguide sec
tions are short. Obviously, the radiating terms are much more cumbersome here. Fo r this 
reason, mode matching technique is usually restriced to nonradiating junctions. Then, one 
also defines a set o f reflection and transmission coefficients for the lowest order evanescent 
modes that cannot be neglected. As a result, one obtains Mn important modes for each junc
tion. Each of these modes acts on the neighbor junction. Thus, one needs to know for each 
mode on a waveguide what reflected and transmitted modes it excites at the discontinuity. 
This is usually described by the so-called scattering matrix, or S matrix, that has Mr, rows 
and columns. The element sik o f S indicates how big the amplitude o f the mode number 
k o f the junction is when the mode number i is incident with an amplitude 1. W h en  all S 
matrices of all junctions are known, the entire system may be computed (i.e., the S matrix 
o f the entire tapering section may be obtained).

waveguide 1 waveguide transition waveguide 2

Figure 32. Waveguide transition obtained by tapering. As one can see, the mode matching approach repl aces trie 
continuous tapering by a finite set of abrupt transitions.
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The mode matching technique can also be applied to more general waveguide disconti
nuities with more than two ports under certain restrictions that arc caused by the modal 
expansion that is performed only in a cross-section of an abrupt waveguide transition. One 
then obtains a big S matrix that describes the transmission o f energy from any mode in 
any port to any mode in any port. Because this procedure is not only very general but also 
tedious and approximative (higher order modes and radiating modes are neglected), one can 
replace it by a numerical technique that only matches the important modes at the N ports 
as illustrated in Fig. 33 and approximates the field in the discontinuity by any numerical field 
approximation exactly as an arbitrary scattering problem. One then can use any Maxwell 
solver to compute directly the S matrix of the entire N port waveguide discontinuity. Mode 
matching is then only required at each waveguide port. W hen the length of each waveguide 
(i.e., the distance from the neighbor discontinuity) is big enough, one can define each port 
(i.e., each reference plane at such a distance from the discontinuity that all evanescent modes 
can be neglected), which further simplifies the mode matching and reduces the size of the S 
matrix.

The application of mode matching and S matrix formalisms to Ph C  waveguides is straight
forward. The only speciality to be considered is the fact that the Ph C  waveguides are periodic 
rather than cylindrical. As we have seen, the field of a Ph C  waveguide is there entirely 
described when it is given within a section of length a, where a is the period along the 
waveguide. Thus, mode matching can no longer be defined in a transverse reference plane. 
It should be defined in a reference section of length a instead. This makes the definition 
and numerical evaluation of the scalar products for the modal expansion more complicated. 
Fortunately, the field pattern of the important guided modes in a PhC  waveguide varies 
often not much along the axis o f the waveguide. Therefore, one can also obtain a reasonable 
approximate solution when one restricts the mode matching on a reference plane as in the 
case o f cylindrical waveguides.

In the following, we outline several simple cases of PhC  waveguide discontinuity in order 
to illustrate the procedure and to show the variety of structures that may be considered as 
waveguide discontinuities.
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Figurt 33. Numerical treatment of a simple PhC waveguide discontinuity. Fictitious boundaries arc introduced in 
order to be able to match the eigenficld of all important modes in the two waveguide ports with the field in the 
discortinuitv area. Top: schematic representation: bottom: plot of the Poynting vector field.
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3.3.1. Coupling Energy into Photonic Crystals
The first practical problem of PhC  waveguides is the need for structures that allow one to 
efficiently excite any PhC  waveguide mode (i.e., to couple energy into a Ph C  waveguide). 
This is rather demanding from the practical point of view because the PhC  waveguides are 
typically very thin (i.e., of the order less than a wavelength).

There are two essentially different cases for doing this: ( l ) One can design some receiving 
antenna structure that collects energy from a not-guided electromagnetic energy and trans
fers it to the PhC  waveguide. (2) One can design a junction of a traditional waveguide with 
a Ph C  waveguide.

In the first case, one has a waveguide discontinuity with a single waveguide port, whereas 
one has two waveguide ports in the second case. Obviously, radiating waves are important 
in the first case, whereas one tries to suppress any radiation in the second case. Despite 
these fundamental differences, we can use one and the same formalism (outlined above) for 
handling both cases.

Figure 34 shows the most simple case of an abruptly terminated PhC  waveguide illum i
nated by a plane wave. As one can see, even this simple structure acts as an antenna that 
transfers energy into the PhC  waveguide.

W e can easily modify the properties of a receiving PhC  antenna with the goal to couple 
energy more efficiently into the PhC  waveguide. For doing this, one has a huge degree of 
freedom because one can use arbitrary elements with arbitrary material properties, shape, 
and locations near the ending of the PhC  waveguide. Another simple example is shown in 
Fig. 35.

In order to illustrate the coupling of a conventional waveguide with a Ph C  waveguide, 
Fig. 36 shows another simple 2D configuration of a slab waveguide in front of the same 
Ph C  waveguide as in Fig. 27. As one can see, the energy is transferred rather well, but some 
radiation energy is lost at this junction. In order to reduce the radiation loss, some tapering 
section might be used for the transition of the two waveguides. This would be a natural 
procedure, but the high degree of freedom in the design of PhC  junctions allows one to 
improve considerably the performance by optimizing the locations and radii o f the PhC  rods 
near the end of the photonic crystal. As one can see from Fig. 37, even the optimization of 
a single rod on each side of the PhC  channel allows us to reduce drastically the radiation 
loss and reflection. Sim ilar optimizations may also be used for the design o f Ph C  antennas 
and all other Ph C  waveguide discontinuities. W e will consider such optimizations in more 
detail at the end o f this chapter.

3.3.2. Coupling Energy Out of Photonic Crystals
Because of the reciprocity theorem, coupling energy out of a PhC  waveguide is not much 
different from coupling energy into a Ph C  waveguide. We also have the two categories of a 
(radiating) Ph C  antenna and of a transition to a conventional waveguide.
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Figure 34. Photonic crystal waveguide termination illuminated hy a planar electromagnetic wave incident fri m the 
right-hand side. Waveguide geometry, material properties (left) and time average of the Poynting vector field (right). 
As one can see, this simple structure behaves like a receiving antenna.
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Figure ^5. Modification of the photonic crystal waveguide termination shown in Fig. 34 for obtaining a different 
antenna pattern (directivity). Geometry and material properties (left) and time average of the Povnting vector field 
(right).

An initial design of a photonic crystal waveguide term ination (antenna) is presented in 
Fig. 3<S. Obviously, this waveguide termination is not so bad when we look at the frequency 
characteristics and returned losses (reflection) are acceptable. However, this design can be 
optimized. Initially, we have decided that the optimization variables are a position and radii 
of the last rod of waveguide, as it can be seen in Fig. 38. The fitness function is defined as 
an integral o f the reflection over the bandgap frequency range, and a Newton-like (gradient) 
optimizer was applied. The optimization result is presented in Fig. 39. As one can see, 
our optimization was actually very efficient and we obtained a high-quality photonic crystal 
antenna (reflection is negligible over an entire bandgap).

Light coupling out of a photonic crystal waveguide is also an interesting problem. An initial 
design of this coupler is presented in Fig. 40 together with the frequency characteristics. 
Obviously, this design suffers significant radiation (5 0 % ) and poor transmission (< 5 0 % ) 
and it has to be optimized. Applying the same algorithm as in the case of the previously
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Figure 26. Coupling of a dielectric slab waveguide and a defect waveguide in a 2D PhC. Left: geometry, material 
properties, and time average of the Poynting vector field: right: frequency characteristics (reflection coefficient R. 
transmission coefficient T, and total radiation Rad) of the coupler. As one can see, this design exhibits considerably 
strong ndiation and reflection.
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Figure 37. Improved optical couplor. Positions and radii of the two rods of the photonic crystal closest to the slab 
waveguide were optimized. As one can see. the reflection and the radiation losses were significantly reduced over 
the entire frequency range (i.e.. the bandgap of the original PhC).
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mentioned photonic crystal antenna, we have obtained significant improvement, as presented 
in Fig. 41. A fter these two examples, it seems to be very useful to apply the gradient-based 
optimizer in the case of photonic crystal structures. It is also important to see that gradient- 
based optimizer gives us a good result only in the case when we have smooth character of 
fitness function, and obviously the photonic crystals are such a case.

3.3.3. Waveguide Bending
We have already mentioned that sharp bends in Ph C  waveguides may be obtained without 
any radiation loss— as long as one operates within the band gap and provided that the walls 
of the Ph C  waveguide extend to infinity. Theoretically, a waveguide bend is nothing else than 
a waveguide discontinuity with two ports of identical waveguides. W hen radiation is present,
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Figure 38. S im ple o p e n  p h o to n ic  crystal w aveguide (p h o to n ic  crystal a n te n n a ) .  Left: g eo m etry , m ate ria l p roperties , 
and  tim e average  o f  th e  P uynting  v ec to r  field: right: freq u en cy  ch arac te ris tic s .
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Figure 39. Optimized design of the open photonic crystal waveguide. The initial design from Fig. 38 was optimized 
using the gradient approach. Only two rods were optimized. Left: geometry, material properties, and time average 
of the Poynting vector field; right: frequency characteristics.

the description is more demanding than when radiation may he neglected. Therefore, the 
treatment of a Ph C  waveguide bend is simpler than the treatment of a conventional wave
guide bend. A  special problem is caused in both cases because the planes of the two ports 
intersect each other at some distance d from the waveguides. This causes a Held region where 
modes of both waveguide ports are assumed to be present. Such regions are not assumed 
to be present in the mode matching theory. W hen d is big enough, the field of all modes in 
this region is small enough that it can be neglected. Fortunately, d can be increased to any 
desired value by moving the two ports away from the bend area. Note that this problem is 
more pronounced when strong radiation is present or when some waveguide modes extend 
far into the PhC  walls, which mainly is the case when the Ph C  is operated near the end of 
the band gap.
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Figure 40. Light coupling out of a photonic crystal waveguide into a dielectric slab waveguide (same structure as in 
Fi .̂ 36. but opposite coupling direction). Obviously, this initial design exhibits large radiation and low transmission.
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Figure 41. Optimized design of the coupler presented in Fig. 40. Optimization variables arc the position of the 
planar dielectric waveguide and the position and radii of the two rods of photonic crystal waveguide near the slab. 
A gradient-based optimizer was applied once more. As one can see. the transmission is significantly improved, and 
the radiation losses are reduced. For better characteristics, additional rods or the shape of the slab termination 
should be optimized.

As one can see from Fig. 42, strong radiation is observed near the bend of a conventional 
slab waveguide, whereas a sharp PhC  waveguide bend exhibits no radiation when its walls 
are thick enough. As one can see from Fig. 43, even a rudimentary PhC  waveguide with a 
single layer of rods on each side of the channel can be bent in such a way that much less 
radiation loss is obtained as for the slab waveguide.

Because the transition from a conventional waveguide to a PhC  waveguide is not trivial, 
one can also suppress radiation at a conventional waveguide bend by inserting a small PhC  
piece as shown in Fig. 44.

Although a sharp PhC  waveguide bend exhibits no radiation loss, it is not perfect in 
general because a part of the energy is reflected. It has been shown in Ref. [29] that the 
reflection coefficient can be zero for certain frequencies that depend on the geometry of the 
PhC  near the bend. As in the design of PhC' waveguide couplers, one can optimize the bend

fa/C=(>.38*s H/1(„ =  I f  = 2 25

Figure 42. Classical 90-degrec bend in a dielectric slab waveguide with two guided modes. The time average of the 
Povnting vector field is shown. Thi>. bend exhibits a very strong radiation loss (Rad - hV'< of the input power). 
The reflection (R  J r> of input power) is not significant.
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Figure 43. Time average of the Povnting vector Held for a "single layer photonic crystal waveguide." At frequencies 
close to the upper limit of the bundgap, even this primitive PhC' waveguide is better than the slab waveguide 
presented in Fig. 42. The reflection coefficient (R  = l r/c) is bigger, but the radiation loss is considerably smaller 
(Rad = 33%).

area in such a way that even almost zero reflection is obtained over the entire band gap, 
that is, that an achromatic waveguide bend is obtained [30]. This is illustrated in Fig. 45.

3.3.4. Filters
W e have already mentioned that the com bination of waveguides with different characteristics 
of the guided modes may be used for constructing filters. Such a filter consists of at least one 
section of a different waveguide type inserted in a given PhC  waveguide. One therefore has 
at least two waveguide discontinuities at the two ends o f the inserted section. W hat is im por
tant for such a design is that one should match the propagation constant and its derivative 
with respect to the frequency— this derivative corresponds to the group velocity— as well as 
possible at the frequencies where one wants to have low reflection at the junction. W e will 
consider such filtering sections when we consider more advanced structures.

A lternative fillers along PhC  waveguides are obtained w'hen defects are either intro
duced in the waveguide channel or in the walls o f the channel. As one can see from Figs. 46 
and Fig. 47, this allows one to obtain simple band-pass and band-stop filters. High-pass and
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Figure 44. Slab waveguide bend improved by small PhC patch near the bend. Much lower radiation (Rad = 2ry of 
inpu: power) and acceptable reflection (R = 60 of input power) is obtained.
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Figure 45. Achromatic 90-dcgrcc bend in a PhC’ defect waveguide. This design is a result of a gradient optimization 
of the rod radii in the bend area. Details can be found in Ref. [30].

low-pass filters make not too much sense because the band gap limits the area where a PhC  
waveguide is operated. The main concept here is that the defects create PhC  resonators that 
are coupled to the waveguide. W hen more than one resonator is coupled, as in Fig. 48, the 
different resonators also couple with each other because the PhC  walls that separate the 
resonators are finite. W hen this filter design only uses simple defects, one only can obtain 
resonators with specific frequencies and a finite number of coupling coefficients between the 
resonators and between each resonator and the waveguide. For a reasonable filter design 
(i.e., for filter synthesis), a much higher degree o f freedom is required. For this reason, it is 
necessary to consider also more sophisticated modifications of the photonic crystal, namely 
modifications of the position, size, and shape o f the cells in the filter area. This allows one 
to tune the resonance frequencies as well as the coupling coefficients.

O o ~ o Q 0 0 0 0 O 0 O 0 0

O o c o Q o o G O O O o G ;

o o o Q O 0 © o O O O o G ;

© o o o 0 o o o o O O o G j

o 0 0 o o 0 o o o G G

. c = > R

o o o o o Q O o O G

o
1

0 0 0 c o 0 Q G 0 Q G © |

G o 0 o 0 0 o o G G o C 0  1

o 0 o G o o c G 0 O G o o '

G o 0 G 0 o o o o O O 0 0
i'h(uk ~ l . f r. I,i ~: 1 i .56. r - 0.18«. n = 1 uni

0.33 0.34 0.35 0.36 0.37 0.3S 0.39 0.4 0.4j 0.4. 
fa/e

0.43 0.44

Figure 46. Simple bandpass photonic crystal tiller consisting of two strongly coupicd cavities inserted in the wave
guide channel. Left: geometry and material properties; right: frequency characteristics (reflection and transmission 
coefficients R and T, respectively).
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Figure 47. Simple hand-slop photonic uyMai imci iuhsi; 
guide. Left: geometry and material properties; right: ireq

ic crystal filter consisting of two symmetric cavities coupled to a defect wave- 
...— ...... : ' u*‘ ‘-'quency characteristics.

For the synthesis o f R L C  filters in electrical engineering, one has many simple design 
rules. For this reason, more sophisticated microwave filters are also usually designed with 
equivalent R L C  networks. In the case o f photonic crystal filters, the situation is much more 
complicated because of the coupling of all parts involved. Currently, one therefore has no 
simple design rules. Therefore, the only way of efficient PhC  filter synthesis is numerical 
optimization, which will be discussed later.

3.3.5. Power Dividers
A  power divider is a structure that distributes the power of a mode in an input channel over 
two or more output ports. Thus, the total number of ports of such structures is higher than 
for the structures considered above. This does not cause essential new problems.

As an illustration, we consider a simple power divider with two output ports. W hen  we 
want that equal amounts of energy are transmitted to both output ports, it is reasonable to 
design a symmetric structure. The most prim itive design is a T-shaped structure as shown in 
Fig. 49. Although the field at a frequency near the center of the band gap looks nice, the 
reflection coefficient at the input port is not small enough from the engineering point of 
view. As one can see from Fig. 49, the reflection coefficient is even higher near the ends of 
the band gap.
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Figure 48. Photonic crystal filter consisting of four coupled cavity resonators.



576 S im u la t io n  and  O p tim iz a t io n  o f C o m p o s ite  D o p ed  M e ta m a te r ia ls

i .i -j
0 o o o

A  0
o 0 o 1 -4

0 o o o f  O o o o
o o o o o o Tub Q o o o 0.9 i

o 0 0 o o o 0 o o o O .Ki

o o o c o o o o o G 0.7-1

o o 0 o o o o o o o -j

< = 1 R
o o 0 o 0 .6 -i

o o 0 o o o 0 o o o 0.5-j

° o o o o o o o o o 0.4 i

o o o o o o 0 o G o i
O O O O O O-Tdown 

O  O  O  0  J ]  G

O O O O
O O O

O O P  o
. , = I. II

v  O o  o
.56. r  = 0.18c/. <i =

R+Tub+Tdown

Tub i Tdown)

0.3 

0 .2  “i 

o.i H
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Figure 49. Initial, '‘intuitive1' design of a photonic crystal power divider. Left: geometry and material properties; 
right: frequency characteristics. For an optimized design, see Figs. 01-63.

A n  intuitive idea— motivated by the design o f microwave power dividers— is to insert 
a little “ m irror”  or to insert a small Y-shaped part as in Fig. 50. As one can see from 
Fig. 50, this even increases the reflection coefficient everywhere in the band gap frequency 
range. Anyhow, this demonstrates that intuition and experience from non-PhC design may 
be misleading. The fact that intuitive design often leads to suboptimal design is another 
reason for numerical optimization. In the section on optimization, we will consider the power 
divider in more detail, and we will find much better solutions than the “ intuitive”  ones 
considered here.
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Figure 50. Alternative "intuitive"' design of a photonic crystal power divider with a 45-degree mirror” in the 
junction area. Left: geometry and material properties: right: frequency characteristics. For an optimized design, see
Fi«is. 61-63.
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Figure 51. Photonic crystal filtering T-junction. For a certain frequency range, vve obtain left propagation (top), 
and for another frequency range, we obtain right propagation (bottom).

3.3.6. More Advanced Structures
M ore advanced PhC  discontinuities may be obtained from combinations of the structures 
considered up to now. A  simple example is the filtering T  junction shown in Fig. 51. This 
structure is a combination of a power divider with two different filter sections in the two 
output ports. Because power dividers and filters require optimization for obtaining a good 
design, we will also consider the filtering T  junction in the optimization section.

Beside more advanced structures obtained from combinations of simple waveguide discon
tinuities, we can also obtain waveguide discontinuities with higher functionality by inserting 
other materials in a photonic crystal. O f  course, nonlinear and active materials are very 
attractive in this context because such materials allow us to fabricate modulators, lasers, 
amplifiers, and switches within a photonic crystals (i.e., devices that might play an essen
tial role in future PhC  design). Because we currently have not enough experience in the 
treatment of such structures, we cannot provide any details here.

4. SIMULATION OF CO M PO SITE DOPED METAMATERIALS
Composite doped metamaterials (C D M s ) are a natural generalization of photonic crystals. 
They exhibit very rich and often complicated, sometimes even counterintuitive effects. There 
fore, both analytical solutions and the intuitive design of such structures are very much 
limited as we have seen in the previous section. Fo r obtaining experience and for find
ing devices that meet the strong requirements of engineers, one therefore needs extended 
numerical simulations and optimizations.

Currently, many numerical methods for the analysis o f Ph C  structures are available and 
frequently used. Many of these methods provide a good insight to the mechanisms of pho
tonic crystals and can also be extended for the simulation of more C D M  structures.

W e  have already seen that the intuitive design of Ph C  structures often leads to subobti- 
mal solutions and that numerical optimization is therefore highly desirable and promising. 
This is even more important for the more general C D M  case. W hen  C D M  structures shall 
be optimized, one theoretically can use any field solver that can evaluate all models that 
will be generated by the numerical optimizer. Thus, all available C D M  simulation tools 
might be linked with an optimizer. Although this is true in principle, it may lead to cumber
some, tedious, and inefficient procedures. First o f all, an optimizer might generate rather 
crazy designs. W hen  such designs let the field solver crash, the optimization process will be 
stopped, which requires undesired interventions of the user. In order to avoid this, the field
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solver should be extremely robust (i.e., it should never crash). A  second problem is that 
an optimizer may easily generate thousands or millions of different structures. In order to 
keep the computation time reasonably short, the field solver should therefore also be fast 
and efficient. Fast results are usually obtained at the cost o f lower accuracy. As a result, 
the results become “ noisy'’ and this can considerably disturb the optimizer. Therefore, it is 
not good advice to use the fastest field solver. In fact, many structures of composite doped 
metamaterials exhibit extremely sensitive parts that require a rather high accuracy. For this 
reason, the optimizer might miss the best solutions when the field solver is not accurate 
enough. A ll in all, the field solver and the optim izer should be adapted to each other and 
also to the problem to be solved. In the following, we will compare the most important field 
solvers. A fter this, we outline the main methods and procedures for handling the three main 
tasks in the design of C D M  devices: band diagram computations, waveguides, and waveguide 
discontinuities.

4.1. Selection of Numerical Methods
In principle, two different classes of field solvers are available. The first, more widely used 
class contains domain methods that require the discretization o f the entire domain where 
the electromagnetic field exists. This includes the most prominent finite differences ( F D )  
[31, 32J, finite integrals ( F I )  [33], finite volume ( F V )  [34, 35], and finite elements ( F E )  [36, 
37] techniques. Boundary methods such as boundary elements ( B E )  [38], and generalized 
multipole techniques (G M T )  [39, 40] are very promising for PhC  and C D M  structures but 
less widely used and therefore also not very well-known. In the following, we outline the 
main features o f these methods with a special focus on their applicability to PhC  and C D M  
analysis.

4.1.1. Domain Methods
Dom ain methods require the discretization of the entire space occupied by a PhC  or a C D M . 
Because this space is infinite in most of the idealized models, the discretization must be 
truncated to a finite size. Fo r doing this, special absorbing boundary conditions (A B C s )  are 
required. Although special problems with A B C s  may be encountered when infinite wave
guides must be truncated, and although the implementation of good A B C s  is often more dif
ficult than the implementation of the core of domain methods, powerful A B C s  are available. 
Despite this, the truncation of the model may be crucial. For example, when we consider a 
PhC  waveguide discontinuity, we would like to truncate the model as close to the disconti
nuity as possible. In order to avoid strong inaccuracies near the truncation of the waveguide 
ports, some appropriate mode matching should be introduced. This is not easy for domain 
methods, and many of the available codes do not provide features for matching modes o f 
PhC  waveguides. Usually, these codes do not even provide any feature for solving the eigen
value problem associated with the waveguide modes. In order to circumvent mode matching 
at the waveguide ports, one usually introduces sufficiently long waveguide sections (i.e., one 
moves the truncation lines at rather big distances from the discontinuity). One then can set 
a fictitious point source at the end of the input channel. This source will not only excite the 
desired input mode but also undesired modes. In the simple case of single-mode waveguides, 
the undesired modes are evanescent and will be exponentially dampened with the distance 
from the source. Thus, these modes can be neglected at the discontinuity - provided that the 
distance from the truncation line is big enough. Obviously, moving the truncation line away 
from [he discontinuity is not sufficient when multimode waveguides are considered. Fo r this 
ease, additional techniques must be developed and implemented. Furtherm ore, moving the 
truncation line away makes the discretization large and this drastically increases the memory 
requirement and the computation time. As a result, the simulation becomes inefficient. This 
can only be tolerated for the analysis of a few special structures, but it should be strictly 
avoided when one intends to optimize the structure.

Dom ain methods always lead to iarge, sparse matrices. In F D  and F I codes, one usu
ally uses a uniform grid for the domain discretization that allows one to work without the 
explicit storage or the system matrix. Although this leads to simple codes, it also leads to
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unacceptable inaccuracies when small features should be taken into account. According to 
our experience, this is often the case within numerical optimization. F D  and F I codes usually 
provide additional procedures such as subgridding techniques to refine locally the discretiza
tion, but these techniques are still subject to research and improvement. F D  and F I are 
known to be very closely related and lead to practically identical codes. The main promise 
o f F I  was that it is easier to develop algorithms for irregular grids with the F I formalism. 
A lthough this is correct, no efficient F I solver for really irregular discretizations is available. 
The main reason for this is the fact that second-order schemes are obtained almost for free 
on regular grids. As soon as irregular grids are introduced, the corresponding algorithms 
obtain first-order accuracy only.

In  contrast to F D  and F I,  F V  and F E  use irregular meshes that usually are based on 
geom etrical simplexes (i.e., triangles in 2D and tetrahedral in 3D ). As a consequence, small 
details may be approximated rather well. A t the same time, often first-order schemes are 
used for reasons of simplicity. For this reason, it is often difficult to know what methods 
provide the most accurate solution for a given problem on a com puter with limited memory.

The large, sparse matrices of domain methods are most efficiently solved iteratively. For 
this reason, it is natural to develop time-domain versions in such a way that one iteration 
per time-step is used. In fact, all prominent FD , F I,  F V  implementations work in the time 
domain, whereas prominent F E  codes are available both in time and frequency domains. W e 
have seen that several useful techniques for the analysis o f PhCs and C D M s  are formulated 
only in the frequency domain. This holds for the treatment o f periodic symmetries when 
the field has not the same periodicity as the geometry as for gratings and PhCs, for the 
computation o f eigenfrequencies, for the mode matching technique, and finally for material 
properties with strong frequency dependence. Time-domain code users often circumvent 
these problems by brute-force models. For example, to obtain a Ph C  waveguide mode, one 
simulates a “ sufficiently long”  section of the waveguide instead o f the single cell section 
required in frequency-domain codes. Sim ilarly, one considers the scattering at a “ sufficiently 
big”  P h C  block instead of modeling a single PhC  cell required in frequency-domain codes. 
As a result, such brute-force models are neither efficient nor accurate enough for numerical 
optimization. In consideration of the fact that C D M  structures exhibit many features that 
are only well studied in frequency domain, the dominance of time-domain codes is rather 
surprising. The main reasons for this dominance are the relatively simple implementation 
and the success of these codes in radar and radio frequency applications. W hen  one considers 
the research activities in experimental verification of negative index materials and effects, 
one can see that many of the researchers in this area come from radar and radio frequency 
rather than from optics and therefore are used to time-domain considerations. Despite this, 
we focus on frequency-domain methods in this chapter because we are convinced that these 
methods are better suited for the analysis and especially for the optim ization of C D M s.

U p  to now, we did not mention a prominent domain method, the method of moments 
(M o M ).  The M o M  is different from the other domain methods because it only discretized 
the domain of the field sources. W hen losses are present, the discretization domain is a natu
ral domain, but without losses, only the boundaries of the natural domains are discretized as 
in boundary methods. For this reason, M o M  stands somehow between domain and boundary 
methods. It should be mentioned that typical M o M  matrices are considerably smaller and 
less sparse than typical matrices of the other domain methods. As a consequence, iterative 
time domain implementations of M o M  exhibit severe stability problems. For this reason, 
all prominent M o M  implementations work in the frequency domain. A lthough this makes 
M o M  attractive for Ph C  and C D M  simulations, it seems that F E  and standard boundary 
domain methods are more powerful.

Before we consider the boundary methods, we apply the frequency domain solver of 
F E M L A B  [41]— a well-known commercial F E  solver— to a simple Ph C  structure, that is, a 
rectangular 2D Ph C  block illuminated by a point source as shown in Fig. 52. This configu
ration has been presented in Ref. [20] as metamaterial without negative effective index that 
provides “ all angle negative refraction”  as required for fabricating a perfect lens. Note that 
the right part of Fig. 52 is in good agreement with the time-domain F D  solution presented 
in Ref. [20]. Obviously, there is some stronger field around a point near the Ph C  block on
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Figure 52. Metamaterial slab with “ all angle negative refraction” illuminated by a monopole source on the right- 
hand side near the slab. A photonic crystal slab with holes arranged on a hexagonal lattice is used. The time average 
of the Pointing vector field (left) and the r-component of the magnetic field (right) are presented al the relative 
frequency fa/c = 0.191.

the side to the source point. One can also sec that one has no sharp focus at all. In fact, the 
field plot for a certain time point provides a special “ tuning param eter” (i.e., one can choose 
the time in such a way that the field in the focus point seems to be more concentrated 
than in other time points). A  much better, that is, more honest representation is therefore 
obtained from time-average plots as shown in the left part o f Fig. 52. From this figure, it 
becomes obvious that no sharp focus is obtained at all (i.e., this structure is far away from 
a “ perfect lens” ). It cannot even compete with a small conventional lens shown in Fig. 20. 
A  closer look at the source point in Fig. 52 shows that this point is extremely close to the 
metamaterial block. Furtherm ore, the metamaterial is truncated in such a way that the c ir
cular holes are split along the borders, that is, the metamaterial has some sort o f “ coating”  
consisting of half circles and the source point is almost within such a half circle. In order 
to call this structure an optical lens, we should therefore also verify that the movement of 
the source point causes the expectcd movement of the focus point as indicated in Fig. 14. 
The result shown in Fig. 53 is crushing. As soon as the source point is moved, no focusing 
is observed at all. Despite this, the structure is interesting because it essentially consists of 
a photonic crystal that is not operated within a band gap. This is necessary because one 
intends to obtain energy transmission through the crystal. Furtherm ore, Fig. 52 shows that 
one really can observe negative refraction at such a metamaterial and this demonstrates that 
even geometrically simple metamaterials exhibit rich and attractive physical effects.

4.1.2. Boundary Methods
Boundary methods only discretize the boundaries of the natural domains. As a consequence, 
the corresponding system matrices become relatively dense and small. Thus, iterative matrix 
solvers are not very important and time-domain implementations are expected to be as 
problematic as for the M o M , that is. all prom inent boundary method codes work in the 
frequency domain and are therefore well suited for the computation of periodic structures, 
resonance frequencies, waveguide modes, and so forth.

Because only the boundaries are discretized, the field equations inside the natural domains 
must be fulfilled by the series expansions that approximate the solution. This means that 
boundary methods use a set o f basis functions that must fulfill the field equations, that 
is. Maxwell equations in each domain analytically. Such basis functions may be found with 
different techniques, namely the separation o f variables and G reen 's techniques. Although 
many analytical solutions have been found for domains with relatively simple material prop
erties. the derivation and implementation o f a useful basis is the most difficult pari of the
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Figure 53. Same as in Fig. 52 with a different position of source (at the same distance from the slab as in Fig. 52!). 
As one can sec. the sharp focus does not exist any more (i.e.. a weak “super-resolution” effect is only observed for 
a very special location of the source).

boundary method. For this reason only, analytically experienced professionals are able to 
develop boundary methods. Furtherm ore, this considerably limits the application of bound
ary methods. Above all, such methods may not be used when nonlinear materials are present.

The simplest class of basis functions for boundary methods are the plane waves that 
are obtained from the separation of variables of the wave equations in Cartesian coordi
nates. Plane wave solutions are known for rather complicated materials including chiral, 
anisotropic, and bi-isotropic materials. Plane waves are closely related to spatial Fourier 
transforms. The main drawback o f plane waves basis functions is the fact that these functions 
have the same amplitude everywhere in space when no losses are present and that on infinite 
spectrum of plane waves is available. The former can cause numerical cancellation problems 
in shadow areas. The latter causes difficulties in the proper selection of an appropriate set 
of finitely many plane waves for a good field approximation, especially when small features 
of a structure play an important role.

A  numerically more attractive set o f basis functions is obtained when the wave equa
tion is separated in polar coordinates (2 D ) or in spherical coordinates (3D ). This leads 
to well-known multipole expansions that exhibit a singularity in the origin. This leads to a 
very' desirable local behavior of these basis functions that allows one an accurate modeling 
of small details. M ultipole expansions can easily be derived only for simple materials. For 
complicated materials, one can obtain multipole approximations from plane wave superposi
tions [42]. For these reasons, multipole expansions have the same limitations as plane wave 
expansions. M ultipole expansions are the basis of generalized multipole techniques (G M T )  
[39, 40]. The most advanced G M T  implementation currently is the multiple multipole pro
gram (M M P )  [23] o f the MaX-1 software [26] that was used for most of the examples shown 
in this chapter. M M P  includes not only multipoles and plane wave expansions but also more 
sophisticated expansions and linear superpositions of expansions such as waveguide modes 
of cylindrical and periodic structures. For this reason, M M P  is very well suited for PhC  and 
C D M  simulations.

There arc numerous special cases of G M T , namely codes based on lowest order multipoles 
(i.e.. monopoles in 2D  and dipoles in 3D ). Several methods focus on these special cases, 
namely the method of auxiliary sources (M A S ) .  Furtherm ore, these special cases are also 
the basis of G reeen ’s techniques that essentially integrate over monopolc or dipole fields. In 
this sense, M o M  and B E  could be considered as special cases of G M T .

Because boundary methods discretize the boundaries, the transition from 2D to 3D  mod
els means that one has a transition from ID  to 2D boundaries, which is a much bigger 
step for boundary methods than for domain methods. For this reason, boundary methods
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arc very attractive, efficient, and accurate when 2D models are considered but they lose 
much attractivity in 3D. H ere they are still interesting for band diagram and waveguide 
computations, but for 3D waveguide discontinuity computations, current implementations of 
boundary methods are very time-consuming.

4.2. Band Diagram Computation
A s we have seen, the computation of band diagrams of photonic crystals is based on the 
eigenvalue solution of a periodic resonator problem. This also holds for more general peri
odic metamaterial structures. Before  the eigenvalue problem should be tackled, the symme
try should be analyzed, and the corresponding first I B Z  should be constructed. Once this has 
been done, any code that can handle periodic symmetries and eigenvalue problems may be 
used for the band diagram computation. Both the symmetries and the eigenvalue problems 
can be handled in different ways that also depend on the field solver to be applied.

First o f all, time-domain codes cannot handle periodic symmetries properly. Therefore, 
they require brute-force solutions that model sufficiently big blocks of metamaterial. W hen 
such a block is illuminated by a time-pulsed plane wave, one can observe the time depen
dence of the field in the center of the block. Fourier transform then allows one to find 
the locations of the resonance frequencies for the given angle of incidence. W hen this is 
repeated for all angles corresponding to the positions on the contour of the first IB Z ,  the 
band diagram is obtained. This brute-force method is not efficient because it does not take 
advantage of the symmetry condition, but it includes an eigenvalue handling technique that 
is closely related to how resonances are observed in practice (i.e., some excitation is intro
duced and the response of the structure is measured at some point inside the resonator). 
This technique can also be applied to frequency-domain methods with either domain or 
boundary discretization.

In the frequency domain, one can easily take advantage of the periodic symmetry condi
tion (13) for the field. One then must only discretize one single cell o f the periodic structure, 
which makes the discretization area finite. We call this “ original cell”  in the following. Fur
thermore, the symmetry conditions link the field values on a boundary of such a cell with the 
field values on the opposite boundary. As a consequence, a hypercube topology is obtained. 
Although this topology is somehow unconventional, its implementation is trivial. Therefore, 
this technique can easily be applied to both domain and boundary methods. For domain 
methods, the procedure is trivial.

In the case of boundary methods, the periodic symmetry condition (13) for the field can 
be formulated on the boundary o f the original cell only when a natural boundary is there. 
Because the natural boundaries usually do not coincide with the boundaries o f the origi
nal cell, one must introduce fictitious boundaries. The domains on the two sides of su:h a 
boundary have identical material properties but are considered as different domains. F ic 
titious boundaries need no special implementation and can be always introduced. Because 
these boundaries are discretized as natural ones, the system matrix size is increased when 
fictitious boundaries are introduced. W'hen the structure inside the original cell is simple, 
the discretization o f the fictitious boundaries may become dominant. It is important to note 
that the definition of the original cell is pretty much arbitrary. For example, when a crystal 
with a square lattice is considered, it seems to be reasonable to define a square origina cell 
with four straight fictitious boundaries. First o f all, the location of this square is arbitrary. 
Second, the boundaries can be curved lines, the only requirement is that the boundiries 
on the opposite sides of the origina! cells are indenticai (i.e., are obtained from paalle l 
translation). In order to minimize the discretization effort for the fictitious boundaries one 
should place them within those areas where the field is expected to be simple because this 
allows one to discretize the boundaries more roughly than when the field varies rabidly 
along them. Because the field is usually most complicated near the natural boundaries and 
becomes smooth with the distance from these boundaries, the original cell should be deined 
in such a way that all points of its boundaries are as far away from the natural boundiries 
as possible. This will reduce the numerical effort more than the minimization o f the kngth 
of the fictitious boundaries (i.e., the introduction of straight lines).
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In fact, boundary methods can also handle periodic problems without fictitious boundaries 
that increase the resulting matrix size. W hen  no fictitious boundaries shall be introduced, 
one must approximate the field in the original cell by a series expansion with basis functions 
that fulfill the periodic symmetry condition (13) for the field. For plane wave basis functions, 
this is trivial. W hen  more sophisticated basis functions, namely multipoles, are used, their 
symmetry decomposition is trickier. To illustrate this, we consider a simple PhC  consisting of 
circular rods on a square lattice as shown in Fig. 54. The field outside a circular rod can easily 
be approximated with a multipole expansion located in the center of the rod. Obviously, the 
corresponding basis function does not fulfill the periodic symmetry condition (13). Because 
the original cell is only a section of the entire crystal, this is no surprise, and it is clear that an 
infinite array of multipoles placed in all centers of the rods are required. The condition (13) 
is fulfilled when the amplitudes of all multipole expansions outside the original cell are 
computed from corresponding amplitude of a multipole expansion inside the original cell 
according to

A(ntr + iuf2 + n,r3) = A (R ) = Aimgjlull x e'KR (21)

When one now sums up over the infinite array of multipoles, one obtains the desired peri
odic multipole expansion. This sum must be truncated at some distance from the original 
cell in order to make it finite. Unfortunately, no rapid convergence is obtained for increasing 
distance, which causes a very high numerical effort for the evaluation of the basis function. 
For monopole arrays, special techniques to accelerate the convergence have been developed, 
and it is likely that such acceleration procedures may also be derived for arbitrary multi- 
poles. However, the derivation of efficient algorithms and the corresponding implementation 
is tedious and always increases the matrix setup time com pared with a standard multipole 
expansion that may be used when fictitious boundaries are introduced. Therefore, it is ques
tionable whether this approach can outperform the “ fictitious boundary,” approach although 
the resulting system matrix is smaller.

We have outlined two different numerical techniques for handling periodic symmetries in 
boundary methods. W e now will outline how three prominent boundary methods compute 
banc diagrams.

4.2.1. Plane Wave Approximation
Currently, the plane wave approximation (P W A )  code M P B  developed at M IT  [43) is the 
most frequently used code for the band diagram computation o f photonic crystals. This code 
takes advantage of fast Fourier transforms and is highly efficient and user-friendly, namely 
becajse it is a specialized code for band diagram computations rather than a general field 
solver.

Figure 54 shows a typical output of the M P B  code for a simple 2D PhC  consisting of 
circular dielectric rods on a square lattice. Plane wave code M P G  is based on the Fourier 
expansion of the dielectric constant of photonic crystal cell and it has consequently the same
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Figurt54. Perfect photonic crystal band structure calculation with the M PG and M M P codes. The disagreement 
is less han I / everywhere (i.e , below the graphical resolution).
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accuracy and convergence properties as Fourier. For this typical example (perfect photonic 
crystal with dielectric rods arranged in a square lattice), M P G  code has generated the matrix 
of size 1.50 x 150. W e have obtained the same accuracy (disagreement was bellow 1 % ) with 
the M M P  code that generates the matrix 324 x 82 (overdeterm ined system). Unfortunately, 
the C P U  time was not possible to compare because a free, available M P G  code works under 
U N IX  and our MaX-1 code runs on a PC. However, it is possible to say that the computation 
time is of the same order of magnitude.

4.2.2. MAS Computation
The method of auxiliary sources (M A S )  [44) can be considered as a generalized multipole 
technique that focuses on the lowest order multipoles (i.e., monopoles in the 2D case). 
The M A S  is practically the same as the method of fictitious sources (M F S )  [45]. Because 
acceleration techniques for the numerical evaluation of monopole arrays are known, these 
codes need no fictitious boundaries for periodic problems as the P W A  codes. Beside this, 
the M A S  uses a different procedure for the com putation of the resonances (i.e.. another 
eigenvalue solver). This solver is motivated by the practical measurement of resonances 
like the time-domain procedure that was outlined before. Because only the original cell 
is modeled, one cannot specify an “ exterior" excitation like in the brute-force model that 
considers a large but finite PhC  block. P'or this reason, the M A S  introduces a licit it ious 
excitation somewhere inside the original cell and a fictitious measurement point P  at some 
other place. Because the M A S  uses monopoles to approximate the field, it is natural to also 
use a monopole excitation at some point .S’. O ne then can compute the strength of any field 
component in P  as a function of the frequency and will observe peaks of this function at 
the resonances. For detecting these peaks, numerical search routines are required. These 
routines are heavily disturbed by a strange “ double peak" phenomenon [46] (i.e., an accurate 
analysis shows that one may obtain two peaks that are very close to each other instead of 
a single one). Furtherm ore, the strengths and widths of the peaks depend very much on 
the location of the source point .S’ and o f the field point P. When one of these points is 
set at a position where the field o f a mode is zero, the peak for the corresponding mode is 
suppressed. This is especially the case when points are set on special locations, namely on 
symmetry axes. For randomly set points P  and S, it is very unlikely that a peak indicating one 
o f the eigenvalues is suppressed, but it may happen that some of the peaks are much weaker 
than other ones. This problem may be reduced when more than one obsenation point P  is 
introduced and the sum of the field in all observation points is considered. Sim ilarly, one can 
introduce several source points and introduce excitations with equal amplitudes in all source 
points. This causes higher numerical effort but it also makes the procedure more robust. 
Unfortunately, the double peak phenomenon is not removed. For this reason, the M A S  
solver is currently not competitive with P W A  solvers for the band diagram computation, 
although M A S  is more attractive than P W A  for scattering problems.

4.2.3. MMP Computation
The multiple multipole program (M M P )  is the most sophisticated implementation of gener
alized multipole techniques G M T . In addition to multipole expansions, it also contains plane 
wave expansions and more sophisticated expansions. The implementation of the periodic 
counterparts of al! expansions contained in the M M P  library would be tedious. Because the 
band diagram computation is only a very special task for M M P. such periodic expansions 
are not available. There fore, the M M P  band diagram computation is based on the fictitious 
boundary technique mentioned above.

In addition to a technique for handling the symmetries, an eigenvalue solver is required. 
M M P  allows one to use the same eigenvalue solver as for the M A S  with one or several 
fictitious excitations.

Because eigenvalue problems are frequently solved by M M P  users, an alternative eigen
value solver without fictitious excitations is also available. W hen no excitation is available, 
the resulting matrix equation becomes homogeneous. Nontrivial solutions are then obtained 
from the zeros of the determinant of the system matrix. This common technique cam ot
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bo applied in most o f the M M P  models because overdeterm ined systems with rectangular 
matrices are preferred. Instead of this, the M M P  eigenvalue solver searches for the m in
ims of a special eigenvalue search function that is obtained from the residual vector of the 
matrix equation and from the field amplitudes in a set of test points P similar to the M A S . 
M M P  also contains a sophisticated eigenvalue search procedure that considers both the 
M A S  search function and the residual-based search function at the same time in order to 
overcom e the numerical problems caused by the doube peak phenomenon.

Num erically, the nonlinear search for maxims and minims of search functions is rather 
demanding and therefore not very efficient even when good search strategies are applied. To 
compensate this drawback in the band diagram computation, M M P  takes advantage of the 
fact that the locations of the eigenvalues vary slowly when one traces them along the border 
o f the first IB Z .  As soon as the resonance frequency (i.e., the eigenvalue of a mode) is found 
in any point o f the diagram, one therefore can estimate the eigenvalue in a point nearby. A  
good estimate of the location of an eigenvalue drastically reduces the iterations required for 
detecting the maxims or minims of the eigenvalue search function. W hen several points in a 
band diagram are known, one can take advantage o f higher order extrapolation techniques 
for obtaining very accurate estimates. This eigenvalue estimation technique ( E E T )  [23, 26] 
drastically reduces the computation time of band diagrams. Unfortunately, it sometimes 
exhibits numerical problems, especially near points in the band diagram where degenerated 
modes are present, that is, where two (o r m ore) different modes have identical eigenvalues. 
For this reason, the M M P  band diagram computation is either less robust (with E E )  or less 
efficient (without E E T )  than the M P P  computation.

Figure 54 shows the M M P  result o f the same Ph C  as computed with the M P G . In fact, 
an excellent agreement is obtained.

4.3. Guided Waves
As we have seen before, guided waves on cylindrical structures and on periodic structures 
such as photonic crystals are closely related. Because cylindrical waveguides are more com
mon and analytically simpler than periodic ones, many methods for cylindrical waveguide 
simulations are available. As in the case of band diagram computations, time-domain tech
niques use brute-force models that are neither efficient nor convincing from the theoretical 
point of view. Therefore, we focus on the frequency-domain approach that is much more 
natural for eigenvalue problems. We have mentioned that only a cross section of a cylindri
cal waveguide structure needs to be analyzed and discretized. This simplifies the numerical 
model considerably. In optics, most of the waveguide structures are assumed to have modes 
with electromagnetic fields that tend to infinity. Usually, one has some core region where a 
strong field is present. Outside this core region, the field decays with the distance. Thus, it 
is not too difficult to truncate the model at a sufficiently big distance from the core region, 
except when a mode is close to its cutoff frequency, because the decay of the field with the 
distance from the core is very slow near cutoff. This mainly affects domain methods that 
always require a model truncation, but it also affects boundary methods when waveguide 
structures with infinite boundaries are considered.

It is important to know that the cutoff frequency of a mode is only defined for loss-free mod
els. Above cutoff, the mode is then guided and characterized by a real propagation constant, 
where it is evanescent and characterized by an imaginary propagation constant below cutoff. 
When losses are present, the propagation constant is always complex, the transition from 
“ guided”  to “ evanescent*' becomes smooth, and the cutoff frequency is not sharply defined. 
Interestingly, even the most simple case of the wave propagation along a lossy circular wire 
becomes rather complicated, as shown in Ref. [12]. For this reason, many prominent codes 
for waveguides are restricted to loss-free cases or take the losses approximately into account 
using techniques for small disturbances (i.e., for small losses). Because the M M P  eigenvalue 
solver, mentioned above, is very sophisticated and can also handle complex eigenvalue prob
lems. this solver can also directly solve lossy waveguide problems.

For periodic waveguide structures, one must not only provide an eigenvalue solver 
but also a method for handling the periodic symmetry. Because codes for the com puta
tion of band diagrams must include both features, there seems to be no problem to use such
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solvers for periodic waveguides. In fact, there are two important differences between perfect 
crystals and periodic waveguides. First o f all, the periodic waveguides are described by an 
original cell that extends to infinity and this causes truncation problems for both domain 
methods and boundary methods because both domains and boundaries extend to infinity. 
Thus, an appropriate model truncation technique is important. The second problem is that 
engineering models of waveguides consider the propagation constant as an eigenvalue that 
is frequency dependent because the frequency is usually defined by the excitation (i.e., the 
generator at the end of the waveguide). In the band diagram formulation, the frequency is 
the eigenvalue that depends on the location in the reciprocal lattice space. Because a certain 
value of the propagation constant corresponds also to a point in the reciprocal lattice space, 
this is a m inor problem as long as only the loss-free case is considered. W hen losses are 
present, it makes a big difference when the frequency is considered to be complex (in band 
diagram models) or when the propagation constant is considered to be complex (in conven
tional waveguide models). In the following, we therefore outline two different approaches, 
one that essentially uses the band diagram model and one that extends the conventional 
waveguide model.

4.3.1. Supercell Approach
The main problem of the computation of periodic waveguides with specialized band diagram 
computation codes is the broken symmetry (i.e., that the structure is only periodic along the 
waveguide). Because band diagram codes can also handle periodic structures with a single 
symmetry, this seems to be no big problem. In fact, codes like M P P  assume that such struc
tures consist of planar slabs, which is not the case for periodic waveguide structures at all. 
Therefore, an alternative technique must be found. The most elegant technique is to replace 
the given waveguide by an infinite set o f parallel waveguides that are periodically repeated. 
This establishes periodic symmetry in a second direction for 2D models and in a second and 
third direction for 3D models. Consequently, the same procedure as for a perfect PhC  can 
then be used for arbitrary (P h C  and non-PhC) periodic waveguide structures. In the case 
of a PhC  waveguide, the resulting original cell— that needs to be discretized— contains the 
waveguide channel and a bunch of cells of the original photonic crystal. For this reason, this 
cell is usually called supercell. Obviously, the matrix size of the supercell model becomes the 
larger the bigger the distance between the parallel waveguides is. Furtherm ore, the band 
diagram also becomes bigger with increasing distances o f the parallel waveguides (i.e., with 
the size of the supercell). The reason for this is that each mode splits in more and more sub
modes with increasing supercell size. As one can see from Fig. 29, the band diagram becomes 
rather complicated even when the size of the supercell is not very big. As a consequence, the 
numerical effort grows drastically with the distance of neighbor waveguides. Because the field 
in these waveguides is coupled, the coupling of the waveguide modes becomes strong when 
the distance becomes short. The coupling causes undesired effects (i.e., it shifts the modes 
and therefore causes inaccuracies). The mode coupling depends not only on the distance of 
neighbor waveguides, but also the frequency. Near cutoff, the field does not decay rapidly 
with the distance from the waveguide channel, and this causes strong coupling even for big 
distances. As a consequence, the supercell com putation becomes numerically expensive or 
inaccurate near the cutoff frequencies.

Because PhC  waveguides are usually operated only within a P B G  o f the original perfect 
crystal, it is not necessary to evaluate the entire band diagram (i.e., one can restrict the 
computation to the P B G  area o f interest). This drastically reduces the number of modes 
to be evaluated. Note that only modes tnat occur within a P B G  of the original PhC  may 
represent guided waves. Note also that this technique can easily be applied to arbitrary 
periodic waveguides that are not obtained from photonic crystals, but it cannot easily be 
extended to lossy periodic waveguides.

4.3.2. Direct Approach
W hen we introduce a procedure for handling periodic symmetries in one direction (along 
a waveguide) to any frequency-domain code for the computation of cylindrical wave
guides, we easily obtain a solver for periodic waveguide problems. Usually, this causes no
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pro'blems for boundary methods as long as no boundaries extend to infinity within the orig
inal cell that must be discretized. For domain methods, the original cell must be truncated 
at s.ome distance from the waveguide core. If  this distance is so big that the resulting held 
is almost zero on the truncation boundary, one can assume that it is zero there. Such a 
zero  field boundary condition causes a perfect m irroring of the structure (i.e., the model 
becomes very similar to the periodic model of the supercell approach). Because domain 
methods provide A BC s , one can also move the truncation boundary closer to the waveguide 
channel— which reduceds the model size and com putation costs— and apply A B C s  on these 
boundaries. Flere, it is important to note that the field of a guided mode outside the core 
doe s not propagate like a plane wave, and plane wave propagation is what usually is assumed 
for the development of A B C s . For this reason, one should carefully analyze the A B C s  before 
one tries to take advantage of them for periodic waveguides.

W h en  the walls of a periodic waveguide are blocks of PhCs or of arbitrary metamaterials 
that extend to infinity, model truncation becomes also an issue for boundary methods. W hen 
this happens, one can introduce special boundary conditions on the truncation boundary. A  
special case is the application of periodic truncation boundary conditions. This directly leads 
to the supercell approach mentioned before. The same holds for zero field or perfect m irror 
boundary conditions.

In  fact, a periodic waveguide with infinite walls is not realistic at all. In practice, the width 
o f the walls must be finite. The finite width has an important consequence for the solution. 
E ven  when total reflection is assumed at the waveguide wall, for example, because a PhC  
waveguide operates within the P B G , some energy may tunnel through the w'alls even when 
no losses are present. One then observes essentially an exponential decay of the field in the 
walls, but the field is not zero at the outer boundary o f the walls, and therefore a radiating 
w ave may be obtained (i.e., the mode is no longer guided and it becomes difficult to separate 
“ guided’' and radiating modes on such structures). Despite this, it is clear that assuming 
zero field on the outer boundaries of the walls is reasonable for sufficiently thick walls and 
therefore leads to reasonable (i.e., accurate) solutions. Because this argumentation is rather 
intuitive, we now establish and study a model that does not neglect the radiation outside the 
walls.

Fo r reasons of simplicity, we consider a rod-type photonic crystal with a defect waveguide 
as in Fig. 28. W e assume that the walls consist o f finitely many PhC  cells. Thus, the model 
o f the original cell shown in Fig. 55 becomes very sim ilar to the supercell model with one 
important difference. The wall is not term inated by a periodic boundary. Instead, we have a
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Figure 55. Direct approach for the photonic crystal waveguide analysis. The periodic boundaries of the superceil 
approach in v-direetion are replaced by fictitious boundaries. Outside these boundaries, free space is assumed 
instead of the periodic repetition of the supercell approach. In free space, the radiating field is accurately modeled. 
The corresponding eigenvalue problem and the periodic constant in a-direction (propagation constant) become 
complex.
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fictitious boundary that separates the PhC  walls from free space. Incidentally, for a hole-type 
PhC, this would be a natural boundary. Now, we have a situation that is very similar to a 
grating, where we often also have a periodic structure embedded in free space, for example, 
a periodic metamaterial slab. W hen the free-space sections of a grating are truncated by 
straight (fictitious or natural) boundaries, one can expand the field in free space by Rayleigh 
expansions or Floquet modes (i.e., propagating and evanescent plane waves). From the prop
agating Rayleigh expansions, we obtain the radiation loss of the structure. Because of the 
energy conservation law, the total power that enters the original cell through the boundary 
on the left side of Fig. 55 should be equal to the sum of (1 ) the total power that leaves the 
original cell through the boundary on the right side of Fig. 55, (2 ) the total radiated power, 
and (3) the power loss within the original cell due to material loss. Note that no power 
reflection is present because the original cell is a part o f a waveguide structure. Because the 
periodic conditions (10) and (19) hold for the left and right boundaries of the original cell 
with // = 1, the field on the right boundary is simply Cx times the field on the left boundary. 
From this, one easily can see that the time average of the total power flux through the right 
boundary is given bv

p  _  p  y f '  w  f ' *  p  w  J k xti __ p  - H m { k x)u* right — 1left x  L V X L v — r,eft XL XL — X C \--)

where * indicates the conjugate complex. Obviously, the imaginary part o f the periodic prop
agation constant kx indicates the attenuation and must be positive when radiation losses or 
material losses are present.

W hen no material losses are present, the radiated power loss is obtained from Eq. (22) 
when the imaginary part of the propagation constant is known. To obtain the complex kx, 
we can run a complex eigenvalue solver such as the M M P  eigenvalue solver. In order to 
make sure that big radiation loss is observed, we first consider a PhC  defect waveguide with 
only a single PhC  cell on each side of the waveguide channel as shown in Fig. 56. Figure 57 
illustrates the M M P  eigenvalue search function over the first quadrant o f the complex kx 
plane for a given frequency. A ll modes of the structure are characterized by minims of this 
function. Although the search space is infinite and infinitely many modes may be found, 
one may restrict the eigenvalue search to a region near the real axis, because modes far 
away exhibit strong dampening and therefore decay rapidly. Such modes are usually of no 
practical interest. W hen the frequency is modified, the landscape in the complex eigenvalue 
plane changes and all minims move around. The E E T  of M M P  allows one to follow easily 
the traces of the minims as indicated for the fundamental mode with relatively low loss in 
Figure 57.

W hen the width of the Ph C  walls is increased, the attenuation constants ( i.e., the imagi
nary parts of the fundamental waveguide modes) are reduced as expected (Fig. 58). Conse
quently, the minims of the complex eigenvalue search function move closer to the real axis. 
As soon as the distance from the imaginary axis (i.e., the radiation losses) are small enough, 
one can obtain a good approximation of the real part o f kx by a real eigenvalue search along 
the real axis, which drastically reduces the computation time. One can use such a real eigen
value search for obtaining a good start point o f the complex search, but one can also use the 
eigenfield obtained from the real eigenvalue search for obtaining an approximation of the 
radiated power. One can then take advantage of Eq. (22) for obtaining an approximation 
of the imaginary part o f kx (i.e., ot the attenuation constant). Figure 59 shows that >uch 
approximations are rather accurate for sufficiently thick waveguide walls. Incidental!}, no 
good supercell approximations can be obtained when the radiated power of the correspond
ing direct model is so high that the approximation of the imaginary part of kx— that uses 
the results of the real eigenvalue search— is not accurate enough. The direct solution can 
therefore always rely on the simple real eigenvalue search when the corresponding suptrcell 
model is accurate and vice versa. Thus, the direct model provides not only information on 
the radiation that is o f practical interest, but also information that is useful for the validation 
of the supercell approach.
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Figure 56. Single-layer photonie crystal waveguide. Time average of the Poynting vector Held (left), real part (right 
top), and imaginary part (right bottom) of the complex periodic constant in a-direction (propagation constant) over 
the frequency range of the bandgap of the original perfect PhC’. Results obtained from a complex eigenvalue search 
procedu re.
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Figure 57. Eigenvalue search function in the complex plane of the periodic constant (propagation constant) for a 
radiating PhC waveguide as shown in Fig. 56. Eigenvalues are characterized by local minima of this function (dark 
spots). The solid line shows the trace of the fundamental mode for varying frequency.
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Figure 58. Complex periodic constant (propagation constant) analysis with respcct to the number of PhC’ layers on 
both sides of the waveguide channel. Real part (top left) and imaginary part (top right) of the periodic constant 
for one up to four crystal layers and plots of the time average of the Poynling vector field for the four different 
waveguides (bottom).

4.4. Waveguide Discontinuities
W e have seen that time-domain methods use some brutc-force approach for problems with 
periodic symmetry. In this brute-force approach, sufficiently large blocks of C D M  structures 
are modeled explicitly, which makes the procedure rather inefficient. W hen  waveguide dis
continuity problems are considered, all periodic symmetries are broken, and the missing 
handling of symmetries in time-domain codes is no longer any handicap. For this reason, 
users of time-domain codes usually directly tackle waveguide discontinuity problems without 
any previous analysis of the waveguide modes that are important for the structure under 
consideration. Such “ quick and dirty”  solutions provide a high risk of obtaining inaccurate 
or even useless results especially because C D M s  often exhibit very complex effects that are 
not easily understood. Because the complex effects make the C D M  concept attractive, care
ful studies— starting with the band diagram analysis and continuing with an analysis of all 
possible waveguide modes— are strongly recommended.

W hen efficient and accurate solutions are desired, one should first understand the physical 
effects that may be caused by the most prim itive waveguide discontinuities; namely, those 
outlined in the previous section. A ll such models assume that one or several waveguides are 
connected to the discontinuity area and that these waveguides extend to infinity. Because 
only finite models may be discretized, model truncation is essential for all types o f numerical 
modes. As we will see below, there are many different techniques for model truncation that 
have different advantages and drawbacks. M ost of the attractive truncation techniques are 
limited to frequency-domain formulations. Therefore, typical time-domain solutions keep 
their quick and dirty image also here.

It is important to keep in mind that each discontinuity can have a strong frequency depen
dence and usually does not only reflect incoming modes but also converts them into different 
modes, including evanescent modes. Because the evanescent terms decay exponentially w'ith 
the distance from the discontinuity, one usually assumes that the evanescent modes can be 
neglected when the model truncation is sufficiently far away from the discontinuity. The 
problem of this concept is that one does not know how long this distance should be as long
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as one has not computed at least the lowest order evanescent modes. For “ safety”  reasons, 
quick and dirty modelers often define rather large models with long distances from the trun
cation lines to the discontinuity area. Such models obviously become rather inefficient and 
are certainly not "qu ick ” in terms of computation time. Even relatively small waveguide 
discontinuity models are often big compared with the wavelength and require an accurate 
full-wave analysis based on Maxwell's equations. As a consequence, the resulting system 
matrices often reaching the memory limit of modern computers. Thus, more sophisticated 
model truncation techniques that allow one to reduce the required model size are highly 
desirable. We present some promising concepts in the following.

4.4.1. Model Truncation
The  first step of a reliable model truncation is the analysis o f the lowest order evanescent 
modes (i.e., the modes with the smallest attenuation constant). This can be done with the 
same methods as for the analysis of guided modes— provided that imaginary propagation 
constants or the more general complex propagation constants can be analyzed with the cor
responding codes. Although this provides no essential difficulty from the theoretical point 
o f view, special codes for the waveguide computation may be restricted to real propaga
tion constants. From the attenuation constant of the first evanescent mode and from the 
desired accuracy, one can easily estimate the required distance from the discontinuity to the 
truncation line.
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Figure 59. Comparison of the frequency dependence of the complex eigenvalues obtained by a complex eigenvalue 
search and by a real eigenvalue search with an estimation of the imaginary part of periodic constant using the 
energy conservation law. As one can see. the imaginary part can accurately be estimated when sufficiently many 
crystal layers are present on both sides of the waveguide channel.
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Specialists of absorbing boundary conditions (A B C s ) tend to shrink the model size as 
much as possible for demonstrating the value of their A BC s. A B C s  can also be used for 
absorbing waveguide modes. W hen an excellent A B C  is available, one is tempted to move 
the truncation lines closer to the discontinuity region than mentioned above (i.e., to set 
the A B C s  in the area where the evanescent modes are not small). W hen one does this, 
one should first make sure that the A B C s  also absorb evanescent modes. If  this is not the 
case— as usual— unexpected inaccuracies can occur. For testing the A B C s , it is reasonable 
but not sufficient to model a short waveguide section terminated with A B C s  on both sides. 
This is not sufficient because the discontinuities at the A B C s  do not necessarily excite the 
disturbing evanescent modes as strongly as a real waveguide discontinuity.

Note that the attenuation constant of an evanescent mode is strongly frequency depen
dent. Near the cutoff frequency, it tends to zero. Therefore, it may be impossible for some 
frequencies to move the truncation lines sufficiently far awav. In frequency-domain codes, 
one can then apply mode matching techniques that also include low-order evanescent terms. 
In time-domain codes, one can only hope that only a small fraction of the spectrum is near 
the cutoff frequency of an evanescent mode and therefore no troubles are caused.

4.4.2. Excitation of Waveguide Modes
For all output ports of a waveguide discontinuity, the model truncation outlined above is 
sufficient, but an additional technique is required in the input port, where at least one inci
dent mode is assumed. Obviously, a proper definition of the incoming mode is only possible, 
when it has been computed before with an appropriate eigenvalue solver. Theoretically, dif
ferent numerical solvers may be applied for computing the waveguide modes and waveguide 
discontinuities, but it is often cumbersome or even impossible to insert results obtained from 
analytical solutions or from another code into a code for waveguide discontinuities. This 
especially holds when the former code works in the frequency domain and the latter in the 
time domain. Even  when it is impossible to feed a known mode into a code, the knowledge 
of the important mode patterns is very helpful to excite efficiently the desired waveguide 
modes with other means. This again supports the recommendation to study carefully all 
important waveguide modes before modeling any waveguide discontinuity.

The most simple waveguide mode excitation is obtained from a fictitious point source 
placed somewhere in the input waveguide. W hen single-mode waveguides are considered, 
this causes no big problems. Usually, the source will excite not only the propagating mode 
but also evanescent modes. As in the case of the model truncation, these evanescent modes 
become negligible at a sufficient distance from the source point. Because the field of the 
fundamental waveguide mode is usually strong in the center of the waveguide, it is reasonable 
to put the source point somewhere in the center. For the excitation of higher order modes, 
this technique is useless. First of all, some of the higher order modes will have a zero field in 
the center of the waveguide. These modes cannot be excited by a source point in the center. 
Furtherm ore, an arbitrarily placed source point will usually excite all guided and evanescent 
modes because its field is singular. From mode matching, it then becomes evident that all 
modes must be excited.

There are different methods to overcome the problem ot mode excitations in multimode 
waveguides. First o f all, one can apply the rigorous mode matching technique— provided 
that one works in the frequency domain. This technique has already been outlined and will 
be considered later again. An alternative is to extend the source point technique as follows: 
W hen N guided modes are present, one can insert N different source points at different 
locations. Each  source will excite al! modes. W hen one analyzes the field at a sufficient 
distance from the source, one wilI therefore observe a superposition of the N modes lor each 
o f the N  models. From  this, one can finally find linear superpositions of the N models with 
appropriate amplitudes of the sources in such a way that each superposition only excites one 
single mode. Once more, for this procedure, a previous analysis o f the waveguide modes is 
helpful. Note that the superpositions mentioned above are frequency dependent in general. 
Therefore, it is not easy to apply this technique to time-domain methods

The multisource methods outlined above represent a relatively simple alternative to the 
sophisticated mode matching technique. Its main drawback U the fact that a point source also
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strongly txeites evanescent modes. In order to overcome this difficulty, the introduction of a 
“ com plo  origin" source has been proposed in the M A S  [47. 48]. This technique essentially 
moves th: origin of the point source, that is, of the monopole expansion in the source point 
into the :omplex plane. As a result, a beam-like source field is obtained. The width and 
direction of the beam can easily be steered with the imaginary part o f the complex origin. 
This technique allows one to excite the fundamental waveguide mode very efficiently. By 
introduciig appropriate complex origin multipole, one can also efficiently excite higher order 
modes, b it it is not possible to excite only one single mode at once within a multimode 
waveguide Thus, a multi-complcx-origin-source method is required for multimode cases.

The model truncation technique and the multisource method outlined above are sufficient 
in principle for handling waveguide discontinuity problems. In the following, we present 
some m oe advanced techniques for the same purpose.

4.4.3. S Matrix Computation
W hen  w\ need to compute the S matrix of a waveguide discontinuity, we must repeat the 
procedures mentioned above with each guided mode in each o f the ports as an excitation in 
one of th: models. W hen  the total number of modes in all ports is N , the S matrix is an N 
by N niarix that is obtained from solving N models. Each of these models is represented by 
a matrix equation of the form M X ;) = A „, n = 1 . . .  N where the excitation is defined in the 
right-hani side vector An. Because the geometry and material properties arc identical for 
all model., the system matrix M  is one and the same for all n. M any direct matrix solvers 
allow one to solve such systems with multiple right-hand sides at once. This allows one to 
reduce dristically the computation time by a factor of almost N . O f  course, this can only be 
done whei the system matrix M  is explicitly stored.

As sooi as the vectors X n are known, one can compute the field of all outgoing modes 
in all pors— provided that no reflections are caused by the truncation of the ports. Usually, 
this is no problem when the mode matching technique is applied. The elements s/A. of S 
are then :imply given by P A„/P „, where P A„ is the outgoing power of the mode k in the nth 
model thit is excited with a total power P ;| in the input port. Note that these powers must 
be compued at well-defined reference planes in each of the ports. W hen mode matching is 
used, the efercnce planes usually coincide with the truncation planes, but for other methods 
it might b: reasonable to move the reference planes away from the truncation planes.

4.4.4. Node Matching Techniques
For simple cylindrical waveguide discontinuities, one can apply mode matching for obtaining 
the S niarix by subdividing the entire discontinuity in sufficiently many slices of cylindrical 
cross sectons as illustrated in Fig. 32. One then has k = 1 . . .  K abrupt transition planes. 
The transnission and reflection of the modes at each transition plane are then described 
by the S natrices Sk. From these matrices, one finally obtains the S matrix of the entire 
structure. For complicated geometries and for noncylindrical waveguides, this procedure is 
not efficient or even applicable. Furthermore, all relevant waveguide modes must be known 
in all waveguide sections. The numerical evaluation of these modes is extremely tedious 
for wavegiides with complicated geometry. For this reason, the standard mode matching 
techniqueis only applied to simple waveguides where analytical solutions of the modes are 
known. Tlus, it is obvious that we need alternatives for C D M  waveguide discontinuities.

The mot simple way to take advantage of mode matching without undesirable restric
tions is to ipp ly mode matching only at the model truncation lines (or planes in 3D ) and to 
approximiie the electromagnetic field in the entire discontinuity area exactly as a scatter
ing problcn by any numerical method as illustrated in Fig. 33. This partial mode matching 
technique'equires only the computation of the relevant modes in the waveguide ports. Fur
thermore, he scattering problem solver must include a feature for importing the waveguide 
modes. U  fortunately, several commercial scattering problem solvers do not provide such 
features.

Because the knowledge of the waveguide modes is also useful for the synthesis of a wave
guide discontinuity with desired properties, partial mode matching is currently our preferred 
technique although the numerical evaluation of all waveguide modes can be tedious.
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4.4.5. Compensation Scheme for Reflected Waves
W hen a scattering problem solver does not provide any feature for taking advantage of the 
partial mode matching technique outlined above, one usually computes the S matrix of the 
discontinuity as mentioned before. Here, it is important to note that a perfect or at least 
a good suppression of modes reflected at the output ports is required. Some codes do not 
provide sufficiently good absorbing boundary conditions for the waveguide ports. In this 
case, one can take advantage of a scheme that compensates the reflected waves instead of 
absorbing them [48].

For reasons of simplicity, we now assume that only single-mode waveguides are present. 
Then N is not only the total number of modes but also the number of ports. In order to 
compute the S matrix, N systems of equations o f the form M X,, = A „ ,  n = \ ... N are set 
up and solved all together using a matrix solver for multiple right-hand sides. Because of 
the reflections at all ports, each model has an incoming and an outgoing wave in each port. 
Thus, X „  represents the solution for a set of incoming waves from all ports rather then a 
solution with a single incoming wave. Assume that the reflection coefficients R,„„ represent 
the reflection at port m for the model n. It is well-known that reflection coefficients can be 
measured in reality by observing the standing wave patterns along a waveguide, that is. the 
reflection coefficient is obtained from the standing wave ratio ( S W R )  analysis. The S W R  
is obtained in a numerical simulation when the field is evaluated along a sufficiently long 
waveguide section that is free of evanescent waves. As soon as the reflection coefficients are 
known, one also knows the strengths of the incoming and outgoing waves in all ports for 
each of the N models. One now can compute a superposition of these /V models in such a 
way that all incoming waves cancel each other in all but one port, for example, port i. From 
this, one obtains a solution where no energy is incident from any port, except port /. This 
is the solution that also would be obtained when perfectly absorbing term inations of the 
ports would be available. W hen one repeats this for / — 1 . . .  N, one has all information for 
computing the S matrix. Note that the numerical effort for this reflection compensation is 
small. In addition to the computation of the reflection coefficients from the S W R ,  one only 
needs to solve a linear system of N equations with N unknowns, where N is the number of 
ports that is usually very small. For more details, see Ref. [48].

4.4.6. Optimized Open Port Approach
U p  to now, we have three techniques for handling the output ports of a waveguide discon
tinuity: (1 ) sufficiently good absorption of the outgoing waves (i.e., suppression of reflected 
waves by A B C s ), (2 ) mode matching at the ports, and (3 ) compensation of the reflections 
from a S W R  analysis evaluation of the reflection coefficients. Because excellent A BC s  are 
known for free space but not for complicated waveguide structures, a fourth alternat ve is 
to add a transition of the waveguide to free space at all ports as illustrated in Fig. 39. Such 
a transition is essentially a radiating antenna fed by the waveguide. As one can see from 
Fig. 39, even a simple, abrupt termination of a Ph C  waveguide can radiate rather wel into 
free space. In general, such abrupt terminations cause rather high reflections that ar: not 
desirable. O f  course, we could now use the reflection compensation scheme outlined axwe, 
but if so, we need no A B C  as well. An  alternative is to minimize the reflection by optirrizing 
the term ination of the waveguide. For doing this, we can take advantage of the me.hods 
presented in the following section. As soon as such an optimal term ination is known, i: may 
be applied to ail ports of a waveguide discontinuity. Because the numerical optimization 
can be very time-consuming, this procedure is only useful when one frequently considers 
problems where always one and the same waveguide structure is involved.

it should be mentioned that it is often surprisingly simple to optimize an open waveguide 
port with zero reflection at a single frequency. For example, Fig. 39 shows such c port 
where only one rod o f the Ph C  on both sides o f the waveguide channel was optimized 
in a symmetric way. Finding broadband solutions, for example, solutions with almos: zero 
reflection over the entire P B G  of a photonic crystal, is much more difficult and requires 
much more extensive optimizations. We now w ill consider such optimizations in more detail.
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5. OPTIMIZATION OF COM POSITE DOPED METAMATERIALS
During the past few years many promising C D M  devices, above all PhC  structures, were 
proposed and simulated by many researchers. Most of these structures were found by 
experience obtained from conventional devices based on waveguide structures and from 
intuition. Although many of these structures demonstrate that C D M  devices might become 
very attractive also outside high-tech labs in the future, the quality of these devices is usually 
not com petitive with traditional structures that exhibit the same functionality. To illustrate 
this, we consider the simple PhC  power divider shown in Fig. 49. In conventional waveguide 
techniques, one often uses T- or Y-shaped junctions. Such junctions can easily be obtained 
also w ithin a photonic crystal as shown in Fig. 49. The reflection constants of both structures 
turn out to be above 10% at a frequency near the center of the first P B G  of the crystal. 
This is nice in the sense that it proves that the concept works in principle, but it is by 
far not enough for making such structures competitive or for meeting the requirements of 
industrial applications. The fact that the reflection coefficients of the T  and Y  structures are 
rather sim ilar lets one assume that modifications (i.e., additional “ doping”  of these struc
tures) would not strongly affect the performance of the junction. In fact, this assumption 
is com pletely wrong. W hen we introduce, for example, a single additional defect in the T  
structure, the reflection coefficient becomes drastically higher, as illustrated in Fig. 60. W hen 
one tries to reduce the reflection coefficient of either the T  or the Y  structure by small 
modifications, one will see that intuition is often misleading because our brains have not 
much experience with C D M  structures. A fter a while of trying, one might assume that the 
T  junction is optimal in this case. This would have dramatic consequences for the industrial 
applicability o f PhCs. Fortunately, this assumption also is wrong. In fact, even a simple PhC  
junction provides extremely many parameters that can be optimized. This leads to huge, 
high-dimensional optimization problems that only can be solved numerically, but it also 
provides enough freedom in the C D M  design for obtaining really powerful structures, for 
example, power dividers with almost zero reflection.

Num erical optimization essentially searches for minima of a cost function or maxima of a 
fitness function. W hether the form er or the latter is preferred is a question of taste. Mere, vve 
consider the search for optimal fitness. The first step is therefore the definition of the goal 
(i.e., o f the fitness function). For the power divider mentioned above, we want to minimize 
the reflection coefficient R. Because R  must be in the range from 0 to 1, we can define 
the fitness as 1 — R , but this definition is not unique at all. Sim ple alternatives might be 
1/R and 1 — R 2. W hen we want to obtain a broadband solution, we need to minimize the 
reflection coefficient over some frequency range. This might be done by a weighted integral 
of one o f the definitions above over the given frequency range. M ore complicated fitness 
definitions are required when several different goals shall be met at the same time, for 
example, when one wants to design a T  junction that transmits the energy to one output
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Figure 60. Photonic crystal power divider. Compared with the structure presented in Fig. 49. only a single rod is 
removed. As a result, the reflection coefficient increases from l.Vr to almost lOÔ r.
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port for some frequency and to the other output port for another frequency in such a way 
that (1 ) the reflection coefficient at the input port is small for both frequencies and (2) that 
the transmission coefficients to the wrong output port is also small for both frequencies. The 
number of conditions that have an influence on the fitness may be high. W hen the fitness 
function is not well defined, it may happen that the solution perfectly meets some of the 
conditions, whereas others are not fulfilled at all. A  good fitness definition is a very important 
task that is often underestimated. It plays an extremely important role and requires much 
experience from the user because one has a high degree of freedom, almost no rules how 
to obtain good fitness definition, and because the results of an optimization depend strongly 
on the fitness definition.

The fitness is always defined over some search space. For example, when we want to 
optimize the location of a certain rod in a PhC, its position is defined by two real values, and 
the search space is the 2D real plane spanned by the coordinates o f the rod. The size and 
dimension of the search space have a strong impact on the speed of the numeric optimization 
but also on the quality of the solutions that can be found. For example, when we reduce 
the 2D  search space above on a small area (i.e., when we allow the optimizer to modify the 
original position of the rod only slightly), we cannot expect to obtain a much better solution. 
In most cases, moving a single rod in a PhC  will not be sufficient for finding sufficiently 
good solutions. Because even a simple PhC  structure consists of hundreds of cells, the search 
space obtains a very high dimension when we want to optimize the parameters of all cells.

As a consequence, the optimizer then can explore only an extremely small fraction of the 
entire search space, and it becomes not very likely that a good solution can be found. For 
this reason, the second important task for the user is to specify a reasonable big, reasonably 
limited search space. This requires as much experience as the definition of the fitness func
tion. Because C D M  structures exhibit very rich and complicated effects, enough experience 
can only be obtained from many numerical simulations. Chess players know that they learn 
most when they fight against stronger players. Sim ilarly, it is best to study excellent C D M  
designs for getting a good feeling for C D M  structures. W e consider the quality o f intuitive 
designs with quick and dirty field simulations to be insufficient for this purpose, that is, the 
student who studies such structures is trained by solutions far from optimal ones, and this 
does not allow him to realize how good solutions work. This is the main reason why we rec
ommend intensive numerical optimizations. The numerical optimizer can design thousands 
o f structures and filter out only the most promising ones. A fter this, the user can focus his 
study on the best solutions and learn from these like a chess player who learns only from 
the analysis of games that were played by chess masters.

Num erical optimization can be based on two different classes of algorithms: probabilistic 
or stochastic and deterministic optimizers. In early years of computing, only deterministic 
optimizers were considered because these optimizers usually require only a few fitness eval
uations for finding a local optimum near a start point defined by the user. Each  fitness eval
uation in the C D M  optimization requires the numerical field analysis of the corresponding 
structure. This field analysis can be very time-consuming even on fast computers. Therefore, 
the promise of determ inistic optimizers to work with a few fitness evaluations is very attrac
tive. A t the same time, one should see that this requires a good, user-defined start point. As 
long as a user has not much experience with C D M  structures, it is likely that the start point 
he provides is not good enough for allowing the deterministic optimizer to find a sufficiently 
good solution. This becomes obvious when we consider the simple power divider mentioned 
above.

W e have noticed that most of the modifications of the initial T  structure increase the 
reflection coefficient and therefore reduce the fitness. W hen  we select a small search area 
o f five times four cells near the junction— as illustrated in Fig. 61— and consider all possible 
effects in this area, we obtain 25*4 — 1, 048, 576 possible models. Because we want that equal 
amounts of energy are transferred to both output ports, it is sufficient to consider only 
the 2 '*4 — 4096 different symmetric models. This number is small enough for a brute-force 
evaluation of all possible solutions. W e then can see that most of the models provide very 
high reflection coefficients far above i(K>r. It is therefore very unlikely to find good solutions 
by randomly selecting the defects. From this point o f view, one can say that our intuitive
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Figure 61. Photonic crystal power divider search area. As one can see, we have defined a relatively small area of 
five by fair rods around the junction of the three waveguides. In this area, defects shall be introduced in such a 
way that tie reflection coefficient at the input port (left-hand side) is minimized and that equal amounts of energy 
are transmttcd to the output ports (top and bottom).

T- and v -shaped designs are not bad at all. But the inspection of all 4096 solutions also 
shows thit there are some solutions with reflection coefficients below 1 %  (i.e., solutions that 
are muci better than our intuitive ones). The best two solutions are shown in Fig. 62. As 
one can ;ee, these structures are rather different. W hat is common to both structures is that 
one can observe two strongly coupled cavity areas. W hen we have a look at the frequency 
response (Fig. 62) o f both structures, this becomes clearer. One cavity has a resonance 
above th: center frequency where the fitness function was defined previously, and the other 
cavity his a resonance above this frequency. As one can also see, the distance of the two 
resonanes of the best solution is bigger than the distance of the second-best solution, but 
the rcsoiance peaks for both solutions are within the band gap. Although we obtain a low 
reflectioi coefficient over a rather broad frequency band for the best solution, low reflection 
over the entire frequency band is not obtained.
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Figure 62. requency characteristics and geometry of the best (left) and second-best (right) solutions of a photonic 
crystal p«owr divider—obtained from the definition of defects in the search area shown in Fig. 61. These two 
solutions canot easily be found from intuition or human experience.
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W e now can run a deterministic parameter optimizer that tries to improve the solutions 
by modifications of the locations and radii of all rods in our small search area. This leads to 
a real search space with five dimensions because only three rods are present in the search 
area of the best model and two of them are symmetric. For a pair o f symmetric rods, we 
can optimize three parameters (x and y coordinates and the radius r). For a rod on the 
symmetry axis, we can optimize x and r. Num erical optimization now allows us to find a 
slightly better solution, as one can see from Fig. 63. Maybe this is not surprising because 
the six-dimensional search space is rather small, but it is unlikely that we could find a 
better solution when we would use a deterministic optimizer that starts with the intuitively 
designed T-shaped structure. This structure has 13 rods in the search area, six of them are 
symmetric. Thus, we obtain a real parameter search space o f 20 dimensions. In order to 
estimate numerically a single gradient in this search space, we must compute at least 20 
slightly different numerical models, which is rather time-consuming and does not allow us 
to perform many iterations during the optimization. Such optimizations can easily reach the 
limitations of modern computers, even when simplified 2D models and fast Maxwell solvers 
are applied with sophisticated port truncation schemes for obtaining a minimal model size.

W hen we want to find a better solution than the one presented above, we must increase 
the area where we select the defects. W hen we consider a single additional layer around the 
optimization area shown in Fig. 61, we already obtain 24*6 = 16, 777, 216 possible symmetric 
models. This is far beyond the reach of brute-force search. Therefore, we need a strategy 
to find efficiently good configurations. This placement of the defects can also be considered 
as an optimization problem but in a binary search space. W hen  we have a search area of 
N cells, we can characterize each cell by a bit that indicates whether the cell contains a 
defect or not. The entire model is then characterized by a bit string of N bits (i.e., we have 
an /V-dimensional binary search space). In such search spaces, no gradient may be defined 
and also the definition of distances in such spaces is of questionable value. For this reason, 
traditional optimizers cannot be applied. In the following, we outline the most important 
probabilistic optimizers for this purpose.

W hen  high-dimensional spaces shall be explored, systematic procedures always become 
inefficient. This already holds for simple tasks such as numerical integration. Therefore, it 
is no surprise that deterministic routines become inefficient for high-dimensional spaces.
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Figure 63. Further optimization of the best solution shown in Fig. 61. The. three most crucial rods (positions and 
radii) of this power divider were optimized by a gradient optimizer in such a way that a broader band wrh low 
reflection is obtained.
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A t sufficiently high dimensions. Monte Carlo integration outperforms systematic integration 
routines. Because M onte Carlo  routines rely on random numbers, it also becomes obvi
ous that random search algorithms become more efficient than deterministic ones when 
the dimension of the search space is high enough. Unfortunately, we cannot specify a cer
tain dimension limit for deterministic algorithms because this depends extremely much on 
the problem type, i.e., on the properties of the fitness function. Because C D M  structure 
optim izations are very complex, deterministic optimizations can only be applied for very 
low-dimensional spaces with less than 10 dimensions.

In  optimization problems, one often has fitness functions with many local maxima. Deter
m inistic optimizers usually converge toward one of these local maxima. W hether an accept
able solution is found or not depends very much on the start point o f the search that is 
usually specified by the user. In C D M  applications, the fitness function often has very many 
local optima. For this reason, one only should start determ inistic optimization when one 
is sure that one has an initial design that provides a sufficiently good start point. Because 
random search explores the search space in a uniform way in the sense that it does not focus 
on some special area, it always can find the global optimum or at least a solution close to the 
global optimum even when the fitness function is not a continuous function. Furthermore, 
random search is not limited to continuous search spaces like real number spaces. It also 
can be applied to discrete spaces including binary spaces.

Although random search is the simplest probabilistic optim izer that is even the best one 
for extreme cases with fitness functions that are discontinuous everywhere, this strategy is 
not efficient enough for most of the practical applications, even in difficult situations of 
C D M  optimizations. For this reason, we search for better probabilistic optimizers that clearly 
outperform  random search for typical C D M  structures.

5.1. Probabilistic Optimizers
A  probabilistic optimizer that outperforms random search must be somewhere between ran
dom search and deterministic search. The simplest way to obtain a search strategy between 
random search and determ inistic search is to combine any deterministic algorithm with ran
dom search. For example, one can randomly set the start point o f a deterministic search 
routine and repeat this for several start points. Because determ inistic search is only efficient 
when the dimension o f the search space is low enough and when the search space is at least 
locally continuous, such algorithms arc not very general and not good enough for C D M  
structure optimization. W c  therefore start with random search and try making it smarter by 
adding some reasonable search strategies.

Nature is sometimes considered as a huge lab where extremely complicated systems are 
optimized in a very efficient way, which then explains why organisms like human beings can 
be obtained in nature, although the probability of obtaining such organisms by a random 
assembly o f atoms is almost zero. This means that nature takes advantage of optimization 
strategies that outperform random optimization by far. Thus, one can try to analyze “ nat
ural optimization algorithms”  and try to translate them in com puter codes. This has really 
been done when several modern optimizers were designed, namely simulated annealing and 
algorithms that m imic the evolution. Because simulated annealing can also be considered as 
a most simple case o f an evolutionary strategy, we focus on the latter.

The characteristics of evolution are the population-based procedures (i.e., one always has 
a population o f sim ilar individuals). A n  individual alone can learn, but it cannot evolve. A  
group of individuals, for example, cats, dogs, and so forth, is always characterized by geno
types that are modified from one generation to the next one by genetic operations, namely 
mutation and crossover (i.e., mixing o f the chromosomes of two parents). This concept is 
implemented in genetic algorithms (G A s ). On the level o f species, evolution works in a 
similar way: One always has a population of different species like one has a population of 
individuals. Individuals may die and also species may die and new species occur like new 
individuals are born. Finally, new species arc also created by mutations, but it seems that 
crossover is not used for obtaining new species (i.e., a new species is usually not a combi
nation of two previous species). For this reason, G A s  and evolutionary strategies (E S s )  that
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mimic the evolution of species exhibit some sim ilarities as well as a fundamental difference. 
Because G A s  [49] and ESs  [50] are currently widely used for numerical optimization, we 
outline these procedures in the following.

5.7.7. Genetic Algorithms
W hen  we translate the chromosomes into com puter language, it is very natural to represent 
chromosomes, that is, the genotype of an individual, by a bit string, although natural D N A  
uses three rather than two pairs of molecules for storing the genetic information. Therefore, 
considering a model o f our power divider as an individual characterized by a bit string is 
trivial. The bit string then is the genotype of the individual, and the waveguide discontinuity 
defects are determ ined by the different bits is the phenotype. The fitness definition then 
associates a fitness value to each individual. The first step of defining the genotype (i.e., the 
bit string) is trivial here; also, it is not unique at all because we can select the Ph C  cells to be 
optimized differently. For nonbinary optimizations, for example, when we want to use a G A  
to optimize a real-valued parameter like the rod radius, some coding is required (i.e., we 
must discretize the real value and associate a sequence of bits). The length of this sequence 
then depends on the accuracy of the discretization. W hen  the accuracy is too low, it may 
happen that a good solution cannot be found, and when it is too high, the bit strings become 
too long. Therefore, a proper discretization and coding of real model parameters into bit 
strings requires some experience. Beside this, the procedure is very general.

Now, we consider a population of individuals rather than a single one. Because we usu
ally know nothing about good solutions at the beginning, standard G A s  randomly create a 
population of Npop individuals. Then, the genotype of each individual decodes, and the cor
responding numerical model may be solved by an appropriate field solver. From the results 
o f the field solver, one then can evaluate the fitness value for each individual.

Once the fitness values for all individuals are known, one can analyze these values and try 
to take advantage o f them in such a way that good solutions are more quickly found than 
with random search. This is usually done by selection mechanisms that favor the individuals 
in a population with highest fitness values as parents for obtaining the next generation. Here, 
one is very free in the definition of the selection mechanism. W hen one uses very strict 
mechanisms that keep only a few of the best individuals and discard all others, one usually 
obtains a rather rapid convergence toward a local optimum, but after a while, the progress 
o f the algorithm becomes very slow. For this reason, one often uses not too strict selection 
methods that give also poor individuals a chance to become parents.

Once the parents for the next generation are selected, one can start generating the children 
using a crossover algorithm. Here, one is again rather free in the definition of the procedure. 
A  simple technique is single-point crossover, where a position in the bit string is selected 
randomly. One then obtains two children from the two parents by exchanging the parts of 
the bit string before the randomly selected position as illustrated in Fig. 64.

A fter crossover, one may apply some mutation to the genotype of each of the children. 
A lso here one is rather free. Usually, one applies mutation with a rather small rate (i.e., 
low probability to a randomly selected bit in the bit string). H igher mutation rates let the 
algorithm work more like random search.

Because we already have different choices like the population size, the selection proce
dure, the crossover definition, the crossover rate, the mutation definition, and the mutation 
rate, we already have rather many tuning parameters. M ore sophisticated G A s  use additional 
techniques, namely elitism, dynamic mutation rates, and dynamic population sizes, which

parent ! M JM K JK IIM  L l O T I I l  child 1

F J . I m ating 
i crossover point j

parent 2 ' ! .! i f t . !  □ .D □ m ' J i l  Lfl B  child 2

Figure 64. Basic principle of genetic programming—crossover anil mating. First, a crossover point is randomly 
selected. After that, all hits of the two parents before the crossover point are exchanged.
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leads to additional tuning parameters. The optimal selection of these parameters requires 
much experience. For obtaining experience, one often considers extremely simple mathemat
ical fitness definitions that permit an extremely quick fitness evaluation. It is important to 
note that such fitness definitions for getting experience are similar to the procedure where 
a chess player analyzes a bunch of extremely stupid games played by prim itive chess algo
rithms. In order to avoid this, we have studied R L C  filter optimizations and similar examples 
that are much easier than C D M  structure optim ization but much closer to C D M  structures 
because o f several similarities. Because the fitness evaluation o f R L C  filters is quick, we can 
obtain enough experience from this for tuning the G A  parameters mentioned above.

When we applied a standard G A  with reasonable parameters to our simple PhC  power 
divider, the result was extremely disappointing because the global optimum was often not 
found within 4096 fitness evaluations, whereas the random search finds it within 2048 fitness 
evaluation in the average. The main reason for the bad performance of the G A  is that it 
frequently recomputes individuals near a local optimum several times. Because the fitness 
evaluation is extremelv time-consuming in the case of C D M s, we therefore should avoidJ  CT “

duplicate fitness evaluations. This can easily be done by maintaining a table of all known 
fitness evaluations. A  G A  with such a table turned out to be still not better than random 
seatch when we insist on finding the global optimum. The reason is that the algorithm tends 
to focus on a local optimum found in an early stage. From this, it becomes clear that even 
a simple C D M  structure can be very hard for numerical optimizers.

Because standard G A s  require too many fitness computations for most of the engineering 
app.ications, M ic ro G A s  were developed. M ic ro G A s  outperform the standard G A s  in most 
eases. They are based on extremely small populations of typically 5 five individuals only, 
which is clearly not a realistic imitation of nature. Furtherm ore, the convergence is increased 
by entirely omitting mutation, which makes the algorithm simpler. A fte r a few generations, 
all individuals are identical and the algorithm stops because no new individuals can be found 
from crossover of identical parents. One then reinitializes the entire population except one 
o f tie  individuals that is copied from the previous generation. Thus, one essentially moves 
much from the stochastic part to the reinitialization. The probability of reevaluations of 
individuals in m icroG As is even much higher than in standard G As. Therefore, it is extremely 
imp)rtant to maintain tables of known fitness evaluations. Surprisingly, such tables are not 
avaiablc in well-known m icroGAs. However, with our table-based m icroG A , we were able 
to ojtperform  the random search in the average (i.e., we found the global optimum within 
aromd 1200 fitness evaluations in the average). A lthough this is encouraging, we consider it 
to bt not good enough for efficient C D M  optimization. Therefore, we look for alternatives 
in tie following.

5.12. Evolutionary Optimizations
The e are many different types of evolutionary optimizations. G A s  arc probably the most 
frcqiently used category. We have already mentioned that the coding of real parameters into 
bit srings for G A s  provides some difficulties. Because one can consider other objects than 
bit srings as gene'rtypes. a G A  can also be extended to nonbinary forms. Namely, one can 
use nteger arrays or even real arrays instead of bit strings. W hen this is done, appropriate 
genctic operators must be defined. The mutation provides no essential problems, but when 
we cefinc a crossover like in the binary case, we see that it cannot modify any of the real 
parameters. For this reason, mutation becomes much more important.

F/olutionary strategies (E S s )  mimic the evolution of species, where crossover is assumed 
to pay no role. Therefore, an individual in an E S  corresponds to a species. Usually, each 
individual is characterized by a vector in the real search space (i.e., E S  focuses on the 
optinization in an N -dimensional real space). L ike in G A s, an initial population is obtained 
by nndom  creation, and like in M icroG A s, one often works with small populations. Once all 
individuals o f a generation have been evaluated (i.e., the fitness values have been computed), 
one :an proceed with a selection procedure as before. Usually, a rather strict selection is 
done (i.e., only a small fraction of the individuals survive). According te) the literature and 
our experience, it seems to be best to keep approximately 1/7 of the previous population 
and o create six new individuals by mutation from each surviving individual.
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One o f the important steps is now to define mutation. Adding a random vector d to a 
given vector ^(describing an individual) would not focus the search on the neighborlyod 
o f a good individual. Therefore, one uses standard deviation with a given variance s for 
generating the mutation vector d. Because it can be favorable to have different v a r ia n ts  
in the different directions o f the search space, one may also use a vectorial variance s. 
W hen one comes closer to a local optimum, the variance should be reduced for speedng 
up the convergence. Therefore, both r and .? should be optimized simultaneously (i.e.. eich 
individual is characterized by the location r and the variance). One therefore needs an 
additional algorithm for the evolution of the variance. In addition to these algorithms, clso 
crossover operators and more sophisticated algorithms were invented. According to m r 
experience, E S  always outperformed G A  for realistic parameter optimization in real-valued 
^-dimensional search spaces. For this reason, it is certainly attractive to develop ES-ike 
algorithms also for binary search spaces. W e will do this below.

5.1.3. Other Methods
In addition to G A  and E S ,  many alternatives were proposed and studied. A  prominent >ne 
is simulated annealing (S A ),  which mimics crystallization mechanisms known from physics. 
In fact, SA  can be considered as the simplest case of an E S  with a single individual. Selection 
necessarily selects and mutates this using standard deviation. Then, one decides whether the 
parent or the child shall survive. In SA , the temperature controls the variance. Unlike in 
E S , the “ evolution”  of the temperature is usually defined by the user, which provides an 
additional burden for the user. As a consequence, only experienced S A  users are able to 
outperform the simple one-individual ES .

A lternatives to G A  and E S  are also obtained when one mimics the search strategies 
of groups of “ smart animals.”  This leads to concepts like ant colonics and particle swirm 
optimization (P S O ) that mimic the search procedures of swarms o f birds and fishes, w lere 
each individual is described by a position vector, but also by velocity and acceleration veenrs. 
Furtherm ore, it is assumed that there is some com munication between the individuals (i.e., 
an individual can know when another one is at a better position). Although P S O  is nore 
complicated and seems to be smarter than E S , we never found a P S O  implementation hat 
outperformed E S  when realistic problems were considered. For this reason, G A  and E S a re  
our favorites among the well-know^n probabilistic optimizers.

5.1.4. Development of New Methods
W hen we observe how a M ic ro G A  optimizes our simple Ph C  power divider, we see thit it 
converges toward a local optimum. Then, random initialization (i.e., a completely “ b ind” 
technique) is applied. This technique does not take advantage of any knowledge that mght 
be obtained by an intelligent observer. Thus, it may happen that the algorithm restarts ii an 
area that is already known to be not promising. The standard M ic ro G A  does not “ kn>w”  
this, because it always completely deletes all inform ation of previous generations. Beciuse 
our table-based M ic ro G A  does not discard this information, it is much faster although it 
does not really take advantage of the contents o f the table in a very smart way (i.e., it sinply 
checks in the table if the fitness value of the current individual is already known).

How can a “ smart”  observer take advantage o f the fitness table? Because this table trnds 
to become huge, it is certainly reasonable to do some statistical analysis. Furtherm ore the 
bits of each bit string (that corresponds to a fitness value in the table) are not meaniniless 
because they correspond to the defects in the crystal. Therefore, each bit has some mealing. 
There are certain cells in the structures where it is very likely that a defect should be tlere, 
cells where this is very unlikely, and cells where one does not know. One therefore cai try 
to find out for each bit how likely it should be either 0 or l. As soon as the table conains 
sufficiently many entries, one can analyze it as follows. For each bit, we compute the ave age 
fitness a] o f all individuals with bit equal to l and the average fitness a{) o f all indiviiuals 
with bit equal to 0. W hen  the ratio /• = a{/a{) is big, it is very likely that the bit should 
be 1. W hen it is small, the bit should probably be 0, and when it is near one, we d( not 
know. From this, we can define a bit fitness for each bit. for example, as b — 2 * Arctg( )/7r.
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Note that this definition is not unique at all. As soon as we have allocated a reasonable bit 
fitness value b, to each of the bits in the string, wc can take advantage of this information 
when we manipulate any bit. For example, instead of randomly creating a new individual 
by the instruction "create a random number R  uniformly distributed in the interval 0 . . .  1; 
set the bit equal to 1 when R  > 0.5 and 0 otherwise,”  we can simply use the instruction 
“ create a random number R uniform ly distributed in the interval 0 . . .  1; set the bit equal to
1 when R  * bt > 0.5 and 0 otherwise." This small modification may considerably speed up 
the table-based M icroG A .

W e know from our experience that E S  usually outperforms G A  in real parameter opti
mization, and we also obtained the impression that crossover is not very helpful for our 
C D M  optimizations. For this reason, we developed several table-based algorithms without 
crossover that mimic ES . The simplest one is the following: (1 ) Create a random popula
tion. H ere, seven individuals were best for our power divider and similar applications. (2) 
Evaluate the fitness values, store them in the table, and perform the statistical analysis for 
obtaining the bit fitness values. (3 ) Keep the best individual only and fill the populations 
with single-bit mutations of it. Take advantage of the bit fitness values for this mutation 
(i.e.. mutate the bit that is most likely wrong with a higher probability). Here, one should 
make sure that all new mutations arc different from each other. (4 ) Repeat step 3. U su 
ally it is reasonable to display continuously the best solution that was found and to let the 
user stop the procedure when he is satisfied with it. Otherwise, the procedure is stopped 
when all possible configurations were evaluated. For our simple power divider test case, this 
strategy outperformed the table-based M icro  G A  by far. In the average, it found the global 
optimum within less than 300 fitness evaluations. It is interesting to note that it also outper
formed a table-based M ic ro G A  with bit fitness evaluation, which supports our impression 
that crossover is not helpful here. Despite this, we would like to take advantage of even 
faster optimization schemes, and we hope that appropriate solutions for the efficient C D M  
structure design will soon become available.

5.2. Deterministic Optimizers
W hen we have found a promising structure from experience, from intuitive design, or from 
a probabilistic optimizer, we can apply some deterministic optimizer (i.e., the goal o f such 
an optimizer will be fine-tuning rather than design). W hen the initial design (i.e., the start 
point for the deterministic search) is not close enough to an optimum, there is little hope 
that the deterministic optimizer can find it within reasonable time (i.e., with not too many of 
the time-consuming fitness evaluations). Because deterministic optimizers are well-known, 
we only focus on the aspects that are important for the C D M  structure optimization.

First o f all, deterministic optimizers become numerically more efficient when the first 
derivatives (gradient vector) o f the fitness function or even the second derivatives (Hessian 
matrix) are known. In an N -dimensional search space, the gradient has N and the Hessian 
matrix N 2 elements. C D M  structures are always so complex that neither the gradient nor 
the Hessian matrix is known analytically. The numerical approximation of any derivative 
requires at least one additional fitness evaluation (in addition to the evaluation in the point 
where the derivative is required). For the second-order derivatives in the Hessian matrix, at 
least 2N 2 additional fitness evaluations are required. This causes a huge numerical effort. 
Therefore, one should work with algorithms without an explicit computation of the Hessian 
matrix.

A  second problem associated w ith numerical derivatives is that small steps are required 
for (btaining a good accuracy of the gradient (i.e., one must compute the fitness values of 
N + 1 models that are only slightly different). W hen the numerical accuracy of the fitness 
evaluation is not high enough, the gradient approximation becomes inaccurate, and this will 
disturb the optimization procedure very much. For this reason, wc favor accurate field solvers 
for rumerical optimizations.

T ie  third problem is that one should keep the dimension of the search space as low 
as possible. Experienced users might know what cells in a C D M  structure have a strong 
influence on the overall fitness. For waveguide discontinuities, it is rather obvious that only



604 S im u la t io n  and  O p tim iz a t io n  o f  C o m p o s ite  D o p ed  M e ta m a te r ia ls

the cells near the discontinuity should bc optimized, but even this recommendation usually 
leads to too high values of N . For this reason, one best computes the gradient for the initial 
model for all parameters that might have an important influence. This can be numerically 
demanding, but it is helpful not only for the numerical optimization but also for the fabri
cation as we will see below. Once the gradient for the initial model is known, one can focus 
on the most important parameters (i.e., those directions in the original search space with 
the biggest components o f the gradient). In many cases, one then can only optimize a few 
parameters as we will see below.

5.3. Sensitivity Analysis
Assume that we have any initial model obtained from a previous probabilistic optimization 
(F ig . 62) or from intuitive design (Fig. 45 (30]) or from some detailed waveguide analysis 
(F ig . 51 [51]). W e now want to improve the design using deterministic optimization. In the 
simple examples mentioned above, we only have rod-type PhCs with circular rods. In order 
to keep the optimization space small, we only modify the coordinates or radii of the rods 
near the discontinuity. W e now can compute the gradient for the most promising positions 
and display the results as in Fig. 65. This allows us to reduce further the search space (i.e.. to 
focus our optimization on the biggest components of the gradient). For more information, 
sec Ref. [51].

A  relatively big component of the gradient indicates that the fitness will vary strongly when 
we modify the corresponding parameter in our model. Fo r example, the derivative o f the 
fitness function with respect to the radius of the rod at the outer corner of the 90-degree 
bend is relatively strong, as one can see in Fig. 66. This indicates that the optimization of 
this radius is promising. A t the same time, this also means that an inaccurate fabrication 
o f the corresponding rod might make the entire structure useless when the derivative is 
big enough (i.e., the strengths of the components of the gradient indicate how sensitive the 
corresponding model parameter will be with respect to fabrication tolerances).

Sensitive model parameters are crucial for the fabrication at least as long as C D M  struc
tures cannot be fabricated with low tolerances. Param eter optimizations do not only improve 
the fitness of a structure. They usually also tend toward solutions that exhibit extremely sensi
tive parts. W hen  the fabrication tolerances are not good enough, this will spoil the optim.zed 
solution. For this reason, one should not only perform a sensitivity analysis o f the initial 
design but also a sensitivity analysis of the optimized solution (F ig . 45 [30]). Depending on 
the quality of the fabrication, it may even be reasonable to focus on suboptimal solut.ons 
with lower sensitivity.

Figure 65. Photonic crystal power divider sensitivity analysis. Sensitivity analysis of the positions of the three most 
important rods of power divider (left) and of the radii of all surrounding rods (right). The reflection coefieicnt 
R at the input port is used to define the fitness function: Filness — I — R. Long arrows (left) indicate tha the 
rods must hc moved far away from the initial position for improving the fitness. Dark and bright rods (righ) are 
sensitive with respect to the corresponding radii. The fitness is increased when the radius of a dark rod is increased 
or when the radius of a hriehl rod is decreased.
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Figure t>6. Sensitivity analysis of the 90-degree photonic crystal bend. The radii of all rods are changed by 5°r. The 
resulting change of the reflection coefficient is shown bv the grayscale.

Although crucial (i.e., sensitive) parts of a structure cause fabrication problems, they also 
provide attractive aspects. First of all, there are techniques for performing some modifica
tions o f  given C D M  structures, for example, focused ion beam ( F IB )  technology. This allows 
one to trim a structure that was fabricated. W hen  this shall be done efficiently, one should 
obviously try to modify the sensitive parameters of the structure. Furtherm ore, it is possible 
to modify, for example, the permittivity of a rod in a PhC  structure or of an area in a C D M  
cell by an external electric field, heating, mechanical forces, and so forth. This allows one 
to tunc a C D M  structure. Because the effect o f changing the material property of a rod 
is very sim ilar to the effect o f changing its size, the sensitivity analysis also shows the way 
to the most efficient tuning. Finally, highly sensitive areas also open the door to attractive 
CDM-based sensors.

5.4, Towards Phenomenological Two-Dimensional Modeling of 
Planar Photonic Crystal Devices

Present planar Ph C  realizations are typically based on a semiconductor substrate material 
technology (A IG aA s/G aA s  or In G aA sP / ln P ) that allows the integration into passive and 
active optoelectronics devices for optical telecommunications. Due to the small index con
trast as provided by these semiconductor material systems, such substrate-type realizations 
of p lanar PhCs usually suffer from weak vertical light confinement leading to considerable 
out-of-plane scattering. A lternatively, strongly confining membrane-type PhC  devices using 
either silicon on insulator (S O I)  layer systems, or Si, In P  (see Fig. 67), or G aA s  in air as 
membrane structure, have already shown record low out-of-plane scattering loss [52]. Due to 
technological reasons, hole-type PhCs are much easier to fabricate than the rod-type coun
terpart that is mostly used within the conceptual studies as elucidated along our previous 
examples. Regarding the 2D lattice symmetry, triangular lattices are favored because they 
offer larger photonic band gaps (P B G s )  at the same air-hole filling factor /  compared to, 
for example, a corresponding square lattice, where /  denotes the air hole’s volume frac
tion (i.e., the cross section of the air hole normalized by the area of the PhC  2D lattice's 
primitive cell).

Even  if our conceptual studies using generic examples are among the very first numerical 
structural optimization of PhC  devices, a question still remains open, namely whether a 2D 
device design is reliable enough to cope with 3D  planar PhC  realizations. A  contemporary 
“ real-world”  design based on planar PhCs has therefore to address the following aspects: 
First, device concepts may be explored using efficient 2D computational optics tools such as, 
for example. M M P  where promising Ph C  device topologies may emerge from 2D structural 
optimizations as proposed earlier. H ere, corresponding phenomenological models [53] have
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Figure 67. 3D-FDTD simulation of a Wl-wavcguide (one line of vacancies) that is implemented in an InGaAsP 
membrane-type PhC The TE-polarized mode is excited in front of the vertical plane. The residual substrate 
radiation is an undesired feature of the modal mismatch at the waveguide junction (left). SEM  image of a fabricated 
membrane-type PhC' W1 -waveguide. The membrane consists of a 434-nm-thiek InGaAsP core layer surrounded by 
air (right).

already proven to be best suited to bridge the gap between a realistic (p lanar) PhC  structure 
and its proper 2D representation. Second, the simulation of realistic P h C  devices requires 
true 3D modeling capabilities that arc numerically much more demanding. Em ergent planar 
PhC  device topologies are thus evaluated using, for example, 3 D - FD T D  or more eflicient 
and more accurate 3D Ph C  simulation tools that have still to be developed. Despite the 
severe challenges posed by such realistic device design, we are prone to claim 2D  struc
tural optimization as highly appropriate to exploit the peculiar nature of PhCs toward most 
compact device topologies.

5.4.1. The Phenomenological 2D Model
One major advance of the phenomenological model lies in its proper terminology: it can 
be grounded on a real-world PhC  characterization, such as, for example, the internal light 
source ( I L S )  technique. The IL S  technique was introduced at the Eco le  Polytechnique 
Palaiseau in 1996 to study successfully substrate-type, planar PhC  structures that are deeply 
etched in a G aA s  layered material system. It has been further developed at the Swiss Federal 
Institute in Lausanne ( E P F L )  and is now among the most reliable means to characterize 
accurately planar PhCs [53]. The IL S  technique is based on the photoluminescence (P L )  of 
quantum dots or quantum wells that have to be present in the material system and that are 
excited by a focused pump laser beam. The excitation spot is positioned in front o f the PhC, 
enabling light propagation through the Ph C  bulk section, whereas the transmitted light is 
collected by a reflecting achrom atic objective at the rear face of the chip. Facet reflections, 
multiple output signals (such as, e.g., the substrate radiation) and the proper renormaliza
tion of potential propagation paths defines the major challenges of the IL S  setup. To cope 
with the large P B G  lithographic tuning (i.e., simultaneously up- or down-scaling o f the lat
tice constant a and the hole radius r while keeping the filling factor /  constant) has been 
applied because of the limited bandwidth provided by P L  spectra (<5A ^  150 nm for G aAs 
and 8A %  ] 00 nm for InP, respectively).

In order to dispose o f a comprehensive data set, the sample is usually characterized along 
both the f- M  and F-K crystal orientation. It is worth mentioning that the IL S  is the only 
characterization setup that is capable of providing absolute data at very high accuracy. The 
measured transmission spectra is then compared to the spectra provided by a correspond
ing 2D simulation model (F D T D  [53] or M M P ) ,  where the out-of-plane scattering loss is 
represented bv an imaginary' contribution ejm to the dielectric constant o f the air holes. In 
general, the air band (upper band edge of the P B G )  is more sensitive to losses than the 
dielectric band (lower band edge), as the light is mainly concentrated in the air holes. The 
fitting procedure actually accounts for the total intrinsic loss where a separation o f all con
stituents such as material absorption and the various out-of-plane scattering contributions
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has to involve an additional model. The interrelation between the out-of-plane scattering 
loss and the hole quality is thus developed using an advanced perturbation model [53], taking 
into account both the hole depth and the proper cylindroconical hole shape. The background 
material in the 2D model is assumed to coincide with the effective refractive index of the 
planar m ultiplayer slab, where the latter provides the vertical confinement in the planar PhC  
structure.

A  numerical 3D analysis o f the IL S  measurement scenario is depicted in Fig. 68. W hen 
comparing 2 D - M M P  and 3 D - FD T D  [54] field simulations, we observed that (a ) in-the-gap 
propagation turned out to be negligible, whereas (b) the hole diameter in the phenomenolog
ical model has to be increased by 3 %  in order to reproduce the P B G  of either the measured 
data or the 3D  simulations. W h ile  relating the band gap signatures of measured transmission 
spectra to statement (a ), one has to keep apart the underlying mechanisms that contribute to 
similar band gap features, namely, in-the-gap propagation from the PhC  sample’s improper 
in-coupling or poor facet quality.

5.4.2. Modeling of Planar Photonic Crystal Tapers
The incoupling of light into a PhC  is still a task that has to be mastered before the pre
dicted advantages o f PhCs in ultradense guiding of light can be exploited. Tapers making 
the transition from a W3-waveguide (a defect channel in the F-K-direction having a width 
of three vacancies) to a W1-waveguide (a single line defect acting as a light channel in 
the T-K-direction) have turned out to provide a feasible interface between the PhC  device 
and its accessing waveguides. The width of a conventional deeply etched ridge waveguide 
is around a few micrometers, while a W1-waveguide has a width of only a few hundred 
nanometers. Therefore, the conventional ridge waveguide has to be tapered down to the 
width of a W3-waveguide, whereas a subsequent confinement is conducted within the PhC  
providing a transition from a W3- to the W  1-waveguide while gradually altering the sizes 
of the corresponding holes. The material system under consideration is a In G aA sP/ In P  slab 
structure. The filling factor o f the implemented 2D Ph C  lattice has a value of 39% , which 
opens up a bandgap between c/a = 0.20 and 0.35 for T E  polarization.

The conceptual taper studies are performed in the frequency domain using the 2D- 
M M P  code MaX-1 in conjunction with the phenomenological model for the bulk PhC  
v.ith a loss parameter of eim =  0.14. For the interface, a linear tapering over five stages is 
assumed, starting with a filling factor of 2 0 %  corresponding to the smallest hole diameter 
(160 nm ) that is producible without any considerable lag effect with respect to the hole 
cepth. W ithout taking out-of-plane loss into account, the 2D  simulation of a 5-ary linear 
tip cr structure yields a maximal power transmission of 9 4 %  and power reflection of 2.2%, 
v-hereas the residual 3 .8%  is attributed to in-plane power leakage (Fig . 69). The subse- 
cuent 3 D - FD T D  simulation of the corresponding realistic taper version exhibits a signifi
cantly lower power transmission of 72%  comprising the considerable amount of out-of-plane 
scattering.

Figure 68. 3D-FDTD simulation of an ILS experiment. The excitation is modeled by a TE-polarized waveguide 
node coming from the left. Here the transmission of light along the I'-K direction of a PhC bulk section with a 
ttickness of 20 rows is used to retrieve the effective hole size for the phenomenological 2D model. The out-of-plane 
siatlering loss is translated into a loss parameter eim that is derived from a corresponding fitting procedure.



608 S im u la t io n  and  O p tim iza tio n  o f C o m p o s ite  D o p ed  M e ta m a te r ia ls

2E -6  4E -6  6E -6  8E -6  1E-5 1.2E-5 1.4E-5 1.6E-5 1.8E-5

0=(0.0,0) X=(1,0,0) t=0

Figure 69. Improving the in-coupling of light into a PhC: The light is excited with the IT  wave from the left. The 
picture shows the I [/.-field, and for the lossless case the taper provides a power transmission of (->4'7.

Sm oother transitions are obtained when starting the 5-ary linear tapering from even 
smaller hole diameters (with correspondingly reduced hole depths). To account for the lag 
effect, the refractive index o f the affected air holes are slightly increased [55] following a 
perturbation argument. The 3 D - FD T D  analysis shows a distinct increase in power transmis
sion up to 84.4%, whereas the lossless 2D model delivers a value of 90.5%, which is less than 
the uncorrected one. This somehow counterintuitive behavior is attributed to the presence 
of a so-called mini-stopband that divides the P B G  into two parts. It has been observed that 
the periodic nature of the Ph C  waveguide boundaries can give rise to contradircctional cou
pling between modes of the same orders at the Brillou in  zone edge (i.e., Bragg scattering) 
[56]. Because of the presence o f higher order modes in hole-type W1 -waveguides, contra- 
directional coupling also occurs between the fundamental and higher order modes [56, 57]. 
The resulting sharp transmission dips are termed mode gaps or mini-stopbands (M S B s ). To 
exploit properly the Ph C  taper’s efficiency, one has to direct the design to an appropriate 
operation wavelength on the opposite side o f the M S B  (i.e., at the low-energy side). The 
resulting taper provides a power transmission spectra peaking at 100% with a nearly flat 
transmission band centered at c/a = 0.252 having a 90%-bandwidth of around 10%.

The remaining discrepancies between the 2D and the 3D models are now clearly assignable 
to the omission of the radiation loss contribution. In order to set up a reliable 2D device 
model for the taper structure, the phenomenological loss parameter ejm =  0.14 has to be 
assigned to the underlying Ph C  lattice. The resulting 2D simulation still does not coincide 
with the transmission spectrum of the 3D analysis, because the proper tapering operation 
actually represents a symmetry breaking with respect to the propagation direction, and 
hence increasing the number of potential out-of-plane scattering channels. Accurate mod
eling should therefore include some additional loss contributions that arc localized in the 
proper tapering area. To obtain a refined 2D taper model, the output of the 2D simulation 
was fitted to the transmission spectra of the 3D  reference model while assigning additional 
loss contributions to the air holes involved in the tapering process (Fig . 70). Perfect agree
ment has been achieved when the loss parameter ejm in the first air hole of the 5-arv linear 
taper is increased by 79%  and the subsequent two by 39% .

Additional ideas [58] to provide simultaneously tapering and smooth S-bending are 
depicted in Fig. 71. Even  if this very special concept still needs further refinement and most 
of the parts are experiencing highly multimodal fields, one may intuitively deduce that the 
small holes within the local taper sections are exposed to larger light intensities than the reg
ular ones underpinning our approach to assign locally different values for the loss parameter 
in the phenomenological 2D model.
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Figure 70. Modified phenomenological 2D taper model. A loss parameter of eim = 0.14 is assigned to all holes of 
the underlying PhC (holes with white filling). Modifications comprise an increase of the loss parameter to f jm = 0.25 
(dark filling) and eini = 0.18 (light filling), respectively.

5.4.3. Planar Photonic Crystal Bends and Power Splitters
As a further example we have investigated and optimized 60-degree PhC  waveguide bends 
that are implemented in a planar photonic crystal (P h C ) with triangular lattice symmetry [59]. 
The in-plane guiding within the planar PhC  stucture is based on a W1 defect waveguide, 
whereas for the vertical light confinement we rely on a slab waveguide formed by the 
low index contrast material system InGaAsP/InP. To achieve a reasonable bandgap around 
1.55 nm, the planar PhC  consists of a lattice of holes with a filling factor of 39% . O ur con
ceptual device analysis is again carried out along the phenomenological 2D model in the 
frequency domain using the 2 D - M M P method.

In contrast to the 90-degree bend of the generic square lattice case, the initial 60-degree 
PhC  waveguide bend shows a very narrow transmission bandwidth of only 0.0065 around a 
normalized frequency of c/a = 0.245 laying at the low-energy side of the M S B  (Fig . 72). The 
power transmission peaks at a value of around 9 4 %  for the lossless 2D case. A  sensitivity 
analysis with respect to small displacements of lattice sites was performed for the most cru
cial holes around the proper bending region in order to increase the transmission efficiency 
and to enhance its bandwidth. Here the high-energy side proximate to the M S B  has turned

Signal A = InLens Date :24 Mar 2004 
User Name = WUEEST Time :13:21

Figure 71. Top view on staggered PhC taper structures. Left: The 3D-FDTD simulation shows a power transmission 
around 70*7. Right: SEM  picture of the patterned device containing both the staggered taper and a regular taper 
struct u*e.
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Normalized frequency [c/a]

Figure 72. Frequency response of the initial 60-dcgrec PhC waveguide bend. As a characteristic feature ol the 
implemented 2D MMP model, the M SB is indicated by a dip in the spectral response of the power conservation. 
Regarding an efficient bend design, the high-energy side proximate to the MSB (c/a = 0.27... 0.30) turns out to 
be more promising with respect to proper optimization.

out to he more promising with respect to our optimization task. A fter several optimization 
steps, we finally succeeded to find a bend topology (see Fig. 74a) that improves the values 
for the power transmission around c / a  — 0.287 from 14.48% (power reflection 85.35%) up 
to 96.8% (power reflection 2 .84% ) providing an overall transmission of more than 8 6 %  for 
a normalized frequency range of 0.02, which corresponds to a wavelength range of 290 nm. 
W h ile  adopting the (lossy) phenomenological 2D  model with eim = 0.14, the overall trans
mission spectrum drops nearly homogeneously according to the peak power transmission 
decrease from 96.8% to 85.7%. Nevertheless, 3D  simulations predict a power transmission 
o f below 66% . The discrepancy between the latter two values is again assigned to additional 
local loss contributions in the bending region of the 3D bending structure. This is also indi
cated by the anomalous field distribution in the proper bending region (see Fig. 74b). Nearly 
perfect agreement between the transmission spectra of the 60-degree bend’s 3D  model and 
the modified phenomenological 2D model has been achieved within the frequency band of 
interest when charging the two opposite holes at the outer and inner side o f the proper 
waveguide “ knee”  with a loss parameter of £im = 0.5 and some of their neighboring holes 
with a lower value of sjm = 0.3 (for the proper assignment, see Fig. 73). From this lesson, one 
may also learn that further improvements in power transmission are only achievable if the 
inherent resonant feature of the bending area is inhibited. Preliminary7 attempts toward non
resonant 60-degree bends are presented using a so-called steering effect [60]. A  convincing

o o o o o o  ooo  o o o o o o  ooo  o o o o o  o o o o  oooo® o o o o  . o o o o o  o o o o o ® o o o o  o o o o o o o o o o  o o o o o o o o o o
Figure 73. Modified phenomenological 2D model of the 60-degree waveguide bend. A  loss parameter ol' e,,,, r= 0.14 
is assigned lo all holes of the underlying PhC (holes with white filling). Modifications comprise an increase of the 
loss parameter to em — 0.5 (dark filling) and elnt - 0.3 (light filling), respectively.
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Figure 74. InP PhC dcvice simulation of the transversal H-field for T E  excitation. Optimized 60-degree bend with 
(a) 2D-MMP and (b) 3D-FDTD; optimized power splitter with (c) 2D-MMP and (d) 3D-FDTD.

demonstration of the aforementioned design principle has been recently provided in the 
fram ework of a 120-degree S-bend [61].

The reasoning for additional localized loss contributions due to local symmetry breaking 
may gain additional support from another device topology, namely the symmetrical PhC  
power splitter. Here, the strength of asymmetry at the proper branching point seems less 
severe because mirror symmetry with respect to the optical axis o f the input waveguide is still 
preserved. This argument becomes intuitively plausible when comparing the localization of 
the field distributions in the asymmetry points of both topologies, that is, the 60-degree bend 
(Fig . 74b) and the symmetric power splitter (Fig. 74d), respectively. It is still the subject of 
our further research whether other characteristic features are assignable to simple symmetry 
considerations with respect to the topology of the involved waveguide channels. For instance, 
a prelim inary study has demonstrated the PhC  power splitter’s inherent potential for large 
operation bandwidths including resonant and nonresonant realizations [62, 63]. Our opti
mized power splitter (Figs. 74c and 74d) relies on an increased-index type of defect in the 
splitting region, giving rise to a relative 90%  bandwidth of 29.2%  (i.e., 7 0 %  of the P B G ) ,  
which is actually split in two bands by the presence of the M S B . The resulting splitter design 
yields nearly ideal performance when showing power transmission efficiencies for both arms 
of 4 4 %  (2D  model) or 4 2 %  (3D  model), respectively.

6. CONCLUSIONS
Metam aterials (i.e., artificially manufactured structures that may be considered as new mate
rials that do not exist in nature) have attracted increasing interest by the scientific community 
during the past decade. Thanks to the latest achievements of nanotechnology, metamateri
als also became very promising in the optical regime. Here, periodic metamaterials such as 
photonic crystals might open the door to new, ultradense integrated optical devices with a 
wide range of potential devices.

In  order to make metamaterials attractive from the engineering point of view, additional 
techniques, namely composing and doping, are required. This leads to the rich, new research 
area of composite doped metamaterials (C D M s ). W e have demonstrated that C D M s  often 
exhibit counterintuitive behavior and that the design of such structures based on experience 
and intuition usually leads to suboptimal structures that are not good enough from the 
engineering point of view, that is, such structures are attractive in physics because they show 
that C D M s  may be used for obtaining optical waveguides, couplers, filters, and so forth, but 
these devices are not competitive with existing electronic counterparts.

Because of the lack of experience, intuition, and appropriate design rules, and because of 
the highly complicated physical mechanisms inside C D M s, extensive numerical simulation 
is currently the only feasible method for C D M  design. From numerical field solvers linked 
with appropriate numerical optimizers, we have found structures that are much better than 
those obtained from intuitive design. These optimizations exceed our initial expectations 
and make it very likely that C D M s  will be a key technology for integrated optics as soon as 
appropriate fabrication processes are established.
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In this chapter, we have presented a computer-based design strategy for C D M  structures 
that is necessary because of the complexity of such structures. Because this complexity is 
caused by strong interactions that also result from the densification of nonoptical structures, 
we are convinced that similar design strategies will replace traditional ones in all areas of 
engineering where densification is an important issue and especially in all areas of nano
technology.
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1. INTRODUCTION
By some accounts, catalysis affects 3 0 %  or more of G D P  in developed countries [1]. Catalysis 
is the enabling technology for petroleum production, for control of gaseous emissions from 
petroleum combustion, and for the production of industrial and consumer chemicals. Future
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applications of catalysis are potentially even more far-reaching. There is an ever-growing 
need to move the economy from a fossil-fuel energy base to cleaner alternatives. Hvdrogen- 
based combustion systems and fuel cells could play a dominant role, given a plentiful 
and inexpensive source of hydrogen. Photocatalysis is the most promising clean technol
ogy for hydrogen production because it relies solely on water and sunlight, but perfor
mance enhancements in photocatalysis are needed to make this technology economically 
competitive.

G iven the enormously widespread utilization o f catalysts, even incremental performance 
enhancements have far-reaching benefits for multiple end-use sectors. In the area of fuel 
and chemical production, such improvements translate into vast reductions in energy con
sumption. A t the consumption end, improvements in the catalysts involved yield tremendous 
reductions in pollution. In the area of photocatalysis, such efficiency improvements could 
finally render hydrogen an economically viable fuel.

The promise of theory and computation to facilitate advances in materials chemistry has 
been widely promoted; witness the numerous glossy covers of trade journals with com puter
generated renderings of materials structures. Large-scale computations are even heralded by 
some enthusiastic futurists as a replacement for traditional experimental research. Indeed, 
theory and computation arc making important contributions to materials research. Herein 
we review the state of the art in theoretical and computational modeling of complex cat
alytic materials and nanocatalysts. Related experimental work will occasionally be discussed, 
especially where theoretical work has leveraged experiments, but the focus of this review is 
on selected theoretical and computational studies of the materials themselves, as opposed 
to catalysis in general.

2. THEO RETICAL M ETHODOLOGIES
The techniques for computational modeling of complex catalytic materials may generally be 
divided into two broad categories, the essential difference being in the choice of boundary' 
conditions. The first category of techniques may be called the cluster models. In a cluster 
model, an isolated (typically small) cluster of atoms is assumed to be representative of the 
material. The second category of techniques employs periodic boundary conditions. In this 
second category, a small unit cell is modeled, and the boundary conditions at the edges of 
the unit cell are set so that translationally symmetric virtual images of the unit cell continue 
ad infinitum in all spatial directions. In effect, one is modeling a perfect periodic system of 
infinite extent. A  detailed review of software for quantum-mechanical modeling o f crystalline 
materials has been presented by Pisani [2].

2.1. Cluster Models
Generally speaking, cluster models have evolved in the computational chemistry commu
nity. For decades, computational chemists have been developing tools to model isolated 
gas phase molecules. O ver time, algorithmic improvements and increases in computer hard
ware technology have enabled the application o f these techniques to ever larger systems. 
Such techniques may be applied to the study of materials by taking a nanoscopic fraction 
of the material and modeling that in isolation as representative of its macroscopic whole. 
Notwithstanding practical limitations of com puter power, any of the techniques from the 
computational chemists' toolbox may be applied to the modeling of clusters.

The techniques of computational chemistry may be divided into three categories: molecu
lar mechanics methods, semiempirieal methods, and ah initio methods. M olecular mechanics 
(M M )  methods seek a description of the geometric arrangement of the constituent atoms in 
a system by minimizing an empirical potential energy function. The terms in the function are 
determined by empirical fitting to known molecular structures. M M  techniques are fast and 
readily allow structural optimizations of systems of thousands, tens of thousands, or even mil
lions of atoms. Because V IM  methods incorporate electronic structure effects only implicitly 
through empirical parameters, they are not appropriate for investigating electronic structure 
properties. The theoretically most rigorous Techniques are the ah initio methods. These incor
porate electronic structure effects explicitly. In an ah initio method, one attempts to solve the
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time-independent Schrodinger equation ( T IS E )  by using only mathematical approximations, 
without the introduction of empirical fitting factors. Such techniques are computationally 
very demanding, and typically one is limited to clusters of several dozen atoms or fewer 
with current computational hardware. Sometimes, only a few atoms (o r even just one) are 
used to represent a surface with which a reactant interacts, although at this extreme, the 
relationship to any actual heterogeneous catalytic reaction is dubious. Sem iempirical ( S E )  
electronic structure methods attempt to capitalize on the strengths of the methods at the 
two extremes. S E  methods explicitly treat the electronic structure but only for the valence 
electrons. Certain difficult-to-cvaluate integrals required for the solution to the T IS E  are 
em pirically parameterized for greatly increased computational efficiency. Modeling clusters 
o f several hundred atoms is currently practical with S E  methods. An  in-depth review of the 
specific techniques from each of these general categories is outside the scope of this review. 
The text by Jensen [3] is an excellent initial point of reference.

2.2. Models Employing Periodic Boundary Conditions
Historically, the solid-state physics community has favored methods based on modeling a 
unit cell o f a periodic solid and implementing periodic boundary conditions. Notwithstanding 
practical limitations of computer power, any o f these techniques may be applied to the 
modeling of complex catalytic materials.

The tools of the solid state physics community divide into three categories almost exactly 
analogous to those of computational chemistry. First are the empirical potential models. Just 
like the chemists' M M  techniques, the geometric arrangement of the constituent atoms in 
a system is sought by minimizing an empirical potential energy function, but here, instead 
of a cluster of atoms, a single unit cell is modeled with periodic boundary conditions. Un it 
cells o f 10'-106 atoms are currently within the reach of the empirical potential methods, 
depending on the complexity of the functions and the computational resource. Analogous to 
the chemists’ ah initio methods, there are also first-principles methods for modeling materi
als, wherein one explicitly models the electronic structure of the system by direct solution of 
the T IS E .  Unit cells o f 100 or so atoms are currently the practical limit for first-principles 
methods. Standing between the empirical potential and first-principles methods are tight- 
binding (T B )  methods. These are analogous to the chemists' S E  techniques. Because T B  
methods are computationally more efficient than first-principles methods, they may be rou
tinely applied to larger unit cells. One useful application is to first use T B  methods to 
investigate unit cell size effects |4]. This scheme allows straightforward determ ination of the 
smallest appropriate supercell for accurate description of the properties of interest. One 
then follows with first-principles calculations for this smallest appropriate unit cell.

Although computational chemists have historically favored expanding the electronic wave- 
function in a basis set o f atom-centered functions (term ed an atomic-orbital or A O  basis), 
the natural choice in a periodic system is a Fourier basis, that is, an expansion in sine and 
cosine functions. These are particle-in-a-box ( P I B ) wavefunctions. For practical calculations, 
the basis is truncated bv selecting a cutoff energy; all terms are excluded that correspond to 
P IB  eigenfunctions with corresponding eigenvalues in excess of the selected cutoff. A  Fourier 
basis is particularly appealing for convergence studies because the cutoff energy may be 
systematically increased until convergence is achieved. There are several codes for carrying 
out plane-wave/pseudopotential/DFT calculations on periodic systems. Three of the most 
widely used codes that are used also by the authors are C A S T E P  [5], (Cambridge Sequential 
Total Einergy Package), marketed com m ercially by Accelrys. a subsidiary of Pharmacopeia 
Inc; V A S P  [6, 7] (V ienna Ah initio Sim ulation Package); and D A C A P O  (from the Center 
for Atomic-scale M aterials Physics: http://www.fysik.dtu.dk/CAMP/).

A  complication that arises with the use o f a Fourier basis is that it is currently impractical 
to include enough plane waves to accurately model the wavefunction cusp behavior near 
singularities in the potential at the positions of the atomic nuclei. Typically, this problem is 
handled by modeling only the valence electrons and describing the electron-ion interactions 
by employing pseudopotentials that are parameterized to incorporate the effect o f the core 
electrons. A  less common technique is to use a mixed basis, whereby plane waves are used

http://www.fysik.dtu.dk/CAMP/
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to describe the valence electrons and A O  functions are used to model the core electrons. 
M ixed basis techniques are computationally very demanding, in part because solution of the 
T I S E  in this case involves multidimensional integrals that mix both types of basis functions. 
Challenging as they are, the all-electron methods are essential for modeling core electron 
phenomena.

There is some ambiguity in the specification o f pseudopotentials that renders their selec
tion somewhat system dependent. The degree to which a given pseudopotential may be used 
across a variety of chemical environments is termed its transferability. W e will now present 
an example of the limits of transferability.

Lin  et al. [8] have presented a procedure for developing smooth and transferable pseu
dopotentials. (The widely used C A S T E P  software [9] contains a database of pseudopoten
tials from an implementation o f this procedure by Lee [10, 11].) W ink ler et al. [12] have 
used C A S T E P  to apply density functional theory (D F T )  with a plane-wave basis and these 
pseudopotentials to three hydroxide minerals: brucitc [M g (O H ): ], diaspore (A lO O H ),  and 
hypothetical anhydrous wadsleyite [M g7S i40 | 4( 0 H ) 2] and reported generally excellent accu
racy. This set o f pseudopotentials would then appear to be a promising choice for use with 
related materials. One such class of materials relevant to heterogeneous catalysis is the 
transition aluminas of the form [13] that arise from dehydration of the parent
precursor hydroxide boehmite. Rem arkably, such calculations can result in a systematic error 
of as much as 6 %  in the lattice constant. This discrepancy may be traced to flexibility in the 
specification of pseudopotentials.

To demonstrate this effect, we have carried out unit cell optimizations for seven oxide 
and hydroxide systems, including transition aluminas of the form H 3//,A l2_mO v These are 
standard first-principles calculations employing (super)cells o f an infinitely periodic bulk and 
were based on density functional theory (D F T )  [14]. The generalized gradient approxima
tion (G G A )  to the exchange-eorrelation energy (K xc) [ 15] was used predominantly, although 
some calculations were performed with the local density approximation (L D A )  as well, for 
comparison. Two choices of pseudopotentials were used to describe the electron-ion inter
actions: (1 ) the Kleinm an-Bylander form [16] o f nonlocal pseudopotentials based on Lee ’s 
implementations of the scheme of Lin et al. [8, 10, 11], hereafter referred to as LPP , and 
(2 ) the “ ultrasoft”  pseudopotentials o f Vanderbilt [17, 18], hereafter referred to as USP. The 
cutoff energy ( E c) for the plane wave basis was increased until convergence of the material 
density was achieved. (Typical values of £ c were E c =  1500 e V  for L P P  calculations and 
E c = 700 e V  for U S P  calculations.) Integrations over the Brillou in  zone employed a grid of 
A.-points with a spacing of 0.1 A " 1 chosen according to the Monkhorst-Pack scheme [19]. 
U n it cell optimizations were taken to be converged when the change between iterations was 
less than the following values: total energy 2.0 x 10 5 eV/atom, R M S  displacement of atoms
1.0 x 10-3 A , R M S  force on atoms 5.0 x 10 2 e V  A  and the R M S  of the stress tensor
1.0 x 10-1 G Pa. Results for seven systems are reported in Table 1.

The first system we have considered is brucite. As shown in Table 1, the computed density 
is in very good agreement with the experimental value and reproduces the value reported by 
W ink le r et al. [12]. The second system, M gO . also has a computed material density in very 
good agreement with the experimental value. These results are representative of the general 
reliability of pseudopotential calculations.

Next we turn to the transitional aluminas. The third system in Table 1, H A I5O tS, is the fully 
hydrogenated form of y-alumina [13]. This structure is based on that of Mg-spinel, which 
is also one of the systems for which calculations are reported. The fully hydrogenated or 
“ hydrogen spinel" form of y-alumina. HA15O s, is nominally generated by stariing with Mg 
spinel and replacing half o f the Mg with A l and the other half with FI.

The fourth system is y-alumina in its fully dehydrated form [13], for which the empirical 
formula is □ A lsO , : . where □  denotes cation vacancy. The unit cell is based on a triple 
block of the basic spinel unit cells. The unit cell contents are 2D, 16AI. and 240, which 
corresponds to three units of H A U O s, with the three H  replaced by an A l and two vacancies.

The fifth system, corundum, is the well-known hexagonal A ! : 0 3 structure, a-alumina. The 
sixth system is boehmite. Boehm ite is the precursor o f y-alumina in the thermal dehydration
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Table 1. ( omputed material densities for various transition aluminas of the form !I.„,AL „.0;> as well 
as MgO. brucite, and Mg-spinel as predicted with two choices of pseudopotentials, hard (LPP) and 
ultrasoft (USP). Experimentally determined values taken from the literature as well as those computed 
with all-electron (LA PW ) calculations are reported for comparison.

Material V u Pseudopotential Density g/cc

Brucite expt. (152] na n a 2.368
Brucite theo. [ 121 G G A LPP 2.423
Brucite GG A LPP 2.41
MgO expt. [ 152] na n a 3.583
MgO GGA LPP 3.58
HAI<Ok expt. [62] na na 3.5
HA1,Ok Iapw [23, 24] na na 3.53
HAUOk GG A LPP 4.20
h a i ,o k GG A LPP 3.82
h a i ,o k LDA LPP 4.23
h a u o s GG A USP 3.72
HAI<0„ LDA USP 3.76
h a i5o k GG A LPP 3.78
AI,(iO:. expt. [153] na na 3.65
ALCX, GG A LPP 4.27
Corundum expt. [22] n a na 4.00
Corundum Iapw [22] na na 3.988
Corundum GG A LPP 4.80
Corundum GGA LPP 4.28
Corundum LDA LPP 4.78
Corundum GG A USP 4.14
Corundum LDA USP 4.17
Boehmite expt. [ 154] na na 3.08
Boehmite GGA LPP 3.65
Boehmite LDA LPP 3.85
Boehmite GG A USP 3.16
Boehmite LDA USP 3.36
Mg-spinel expt. [52] na na 3.5827
Mg-spinel Iapw. [25] na n a 3.56
Mg-spinel G G A LPP 4.09
Mg-spinel GGA USP 3.63

sequence [20] and has the empirical formula H A 1 0 : . The seventh and last system listed in 
Table I is the closely related Mg-spinel.

From Table 1, we see that the first-principles results of calculations with G G A  and the L P P  
choice of pseudopotentials for the aluminas and related Mg-spinel are systematically in error: 
HA13O s = 2 0 % , A l|60 24 = 17%, corundum = 20% , boehmite =  18%, and Mg-spinel = 14%. 
O n average, this error corresponds to an error of about 6 %  in the predicted lattice constant. 
Such deviation is too large to account for by physical causes, such as thermal expansion [21]. 
Table I affords a comparison of two different choices of Kxc, L D A  and G G A . Note that 
in all cases there is no significant difference in the computed material density, indicating 
that the choice of Vxc is not an issue. One can also dismiss the possibility that the dis
crepancy arises from errors in the experimental density. Although large error bars may be 
anticipated for y-alumina because its typically high porosity may complicate density mea
surements, the same is not true for boehmite, Mg-spinel, and certainly corundum, where the 
lattice constant is quite precisely established. C learly, the source of the systematic error in 
the predicted material density lies in the calculations. This conclusion is confirmed by the 
all-electron calculations reported in Table 1. A n  all-electron calculation of the material den
sity is available for corundum [22]. In  addition, we have carried out all-electron calculations 
of the material density for H A I5O s [23, 24] and Mg-spinel [25]. All-electron calculations on 
the other systems proved too demanding for our computational resources, but where avail
able. the material density predicted with all-electron calculations is in superb agreement 
with experimental results. G iven that removing the pseudopotential approximation removes 
the systematic error in the predicted material density, we conclude that flexibility in the 
construction of pseudopotentials influences the predictions.
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These materials are all based on close-packed oxygen, with A l and H  occupying intersti
tial sites among the close-packed oxygens. In these structures, Al-O distances are as short 
as 1.8 A . The recommended L P P  pseudopotentials in the C A S T E P  database have core radii 
of A l = 2.4 au and O  = 1.8 au, which sum to about 2.2 A . This means that in a treatment 
of these aluminas, the core radii may overlap by as much as 20%. which can result in a 
degradation o f the pseudopotential approximation [26]. C learly, the short interatom ic dis
tances in these transition aluminas render the A l pseudopotential with 2.4 au core radius 
less than ideal in this case. Em ploying an oxygen L P P  for which the core radius is 1.4 au, 
combined with the A l core radius of 2.4 au, gives a sum of about 2.0 A . reducing the overlap 
to only 10%. Calculations with this choice o f pseudopotentials are shown in Table 1 denoted 
L P P '. The predicted material densities are markedly improved. Finally, employing the oxy
gen L P P  with = 1.4 au and an aluminum pseudopotential ( L P P " )  for which =  2.0 au 
results in sum of radii of 1.8 A , which guarantees essentially no overlap. As shown in Table 1, 
the predicted lattice constant is further improved.

Another approach is to employ the U S P  pseudopotentials. Results are displayed in 
Table 1. These are consistent with the results for fully dehydrated cubic aluminas reported 
by W olverton and Hass [27]. Overall, these results serve to delineate the fact that the flexibil
ity in construction of pseudopotentials makes the choice of best pseudopotential somewhat 
system dependent.

2.3. Analysis Techniques
A  widely used semiquantitative method of probing electron distributions in gas phase 
molecules is the M ullikcn  population analysis. This technique assigns electrons to individual 
nuclei based on the importance of basis functions centered on each atom to each occu
pied molecular orbital. This analysis technique is directly applicable to cluster models. As 
noted previously, in solid-state calculations, the valence electronic wave functions are typi
cally expanded in a plane wave basis, not an atom-centered basis. Segall has developed a 
scheme for performing M ulliken population analysis on a plane-wave-basis expanded wave- 
function by first projecting the plane-wave basis onto an atom-centered basis [28, 29]. This 
technique capitalizes on the computational benefits o f the plane-wave basis, while still pro
viding the interpretive benefit o f the M ulliken population analysis. The projection is made 
onto a consistent linear combination of atomic orbitals (L C A O )  basis set to help control the 
typical issues of basis-set dependence of the population analysis.

2.4. Leveraging Experiments
G iven the large number of atoms required to reliably model complex catalytic materials 
regardless of whether cluster or unit-cell techniques are used, comprehensive exploration of 
configuration space is intractable because o f the huge number of internal degrees of free
dom in these systems. This is particularly true when manifestations of quantum behavior 
demand that a true quantum electronic structure treatment be used. No existing computa
tional resource would resolve this problem. The most practical current approach to this prob
lem is to leverage experimental results. High-resolution electron microscopy ( H R E M )  images 
facilitate intelligently targeted calculations. Fo r example, when modeling supported metal 
clusters, instead of searching (the countably infinite set of) all possible clusters, calculations 
can be targeted to those that are actually observed to occur on catalytic surfaces. Several spe
cific examples are highlighted in this review. O ther modern atomic-resolution microscopies 
and X-ray structure analysis are also providing useful data to target computational studies. 
O ther experimental techniques ripe for leveraging will be discussed in Section 4.

3. TYPICAL STUD IES AND RESU LT S
3.1. Nanocatalysts
M any materials that are otherwise chem ically unremarkable develop catalytic properties 
when their particle size has physical dimensions on the nanometer length scale. For example, 
Valden, La i, and Goodm an [30] have been able to correlate the onset of catalytic activity
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with appearance of nonmetallic properties as cluster size is diminished in titania-supported 
Au clusters. Large Au particles are metallic and have no special catalytic properties, hut 
the small nano-scale Au particles exhibit nonmetallic properties and catalytic behavior not 
known in bulk Au. T iny particles such as these are termed "quantized colloids" or, more 
commonly, ‘’nanocrystals’' and “ nanoparticles." In this section, we discuss the general theory 
o f catalytic nanoparticles and review some computational studies.

As particle size is diminished, the quantum nature of matter typically starts to manifest 
itself at the nanometer length scale. Finite size effects become apparent in the spectroscopy, 
and the addition (o r subtraction) o f a single atom to (from ) the structure has a marked 
effect on its chemistry. A t this length scale, a significant fraction of the total number of 
atoms of a particle resides on its surface. Consequently, surface effects profoundly affect 
the overall structure and chemical activity. In brief, the tiny size of nanoparticles influences 
their chemistry in two important ways: (1 ) by influencing the electronic structure and (2) by 
giving rise to novel surface structures.

Our intuition from the macroscopic world may start to fail us at the nanoscale, but it 
is anticipated that with new understanding o f this strange world, its atomic precision may 
be exploited to tailor catalysts with unprecedented specificity. In this nanoregime, there are 
an insufficient number of atoms to produce true bulklike properties. Electronic structures 
therefore result from a compromise between bulk and surface effects and produce novel 
chemistry. Theoretical calculations should prove to be particularly valuable in the design and 
optimization of nanocatalysts because of the capability to model atomic-scale details of both 
geometric and electronic structure. W e now discuss electronic structure effects, which may 
be divided into two categories, global and local.

Global electronic structure effects depend on the size, shape, and symmetry of the entire 
particle [31]. Such effects are particularly evident in clusters smaller than the size threshold 
for the onset of bulk behavior. The spatial confinement experienced by the electrons in 
the nanoparticle structure gives rise to quantization effects in the electronic structure. The 
electronic energy levels of the system are determ ined not only by the constituent atomic 
specie', and their bonding arrangements but also by the physical size of the system. This 
effect is shown schematically in Fig. 1. Here we show the maximum adjacent energy level 
spacing [/:(// = 2) E(n  — 1)] for an electron confined to an infinite square well potential 
as a function of the width of the potential (// is the quantum number). This is the famous 
particle-in-a-box (P1 B ) problem. The figure shows that spatial confinement starts to split 
the energy levels with chemically significant energies (> l kcal/mole) when the particle size 
decreases below about 1 nm in length. This effect may well be a technological benefit because 
it suggests that the electronic structure may be, in part, tailored by careful control of the 
system size.

When the particle size is below the threshold for the onset of bulk behavior, the electronic 
structure therefore consists of discrete orbitals as in a molecule, instead of bands as in a 
bulk solid. The degree to which these m olecular orbitals are filled with electrons depends

Figure 1 Maximum energy level spacing for an electron confined to an infinite square well potential as a function 
of the wdth of the potential. Note that confinement-induced splittings become chemically significant in energy 
below th; 1-nm length scale.



622 T h e o re tic a l and  C o m p u ta tio n a l A lo m ic - S ca le  S tud ies  o f  C o m p lex  C a ta ly tic  M a te ra ls

on the exact number and type o f atoms in the clustcr. Each different cluster therefore ha  ̂ a 
unique orbital filling and hence a unique electronic structure and unique chemical activity.

That the quantization effects of nanocrystals may in fact directly influence their eatahtic 
properties was noted by Nedeljkovic et al. [32], who reported optical effects due to size 
quantization in nanoscaie colloids, and catalytic properties that sim ilarly correlate with he 
dimensions. This result suggests that the quantum effects on the electronic structure in these 
nanocrystals may in fact determine their catalytic chemistry. Particles of HgSe and PtSe 
exceeding 500 A  in size are black, but below 500 A  the color is dependent on the partcle 
size. W ith  decreasing size, the optical absorption spectrum is shifted to higher energies. This 
observation is consistent with a simple particle-in-a-box interpretation of the effect o f partcle 
size on the electronic energy levels. W ith  decreasing particle size, one anticipates that he 
electronic energy levels will be pushed up and spread, thereby increasing transition energes. 
It is thought that as a consequence of this spreading, small particles possess energy levels 
that can accommodate high-energy electrons with greater reducing capability, and indeed, 
photoreduction is more efficiently performed by the smaller particles [32].

Supporting this view that the influence of particle size on the electronic structure s a 
major determ ining factor in catalytic activity is the work of Pan, Sohlberg, and Ridge [33] In 
this work, changes in the energy of the lowest unoccupied molecular orbital ( L U M O )  w:re 
shown to be determ ined by the size and symmetry of the cluster and were seen to correate 
precisely with the cluster reactivity. Clusters of Co  and Ir were reacted with cyclohexaie. 
The rate of reaction (by C — H bond activation) was seen to correlate to the ability of die 
cluster to accept electrons from the C  H  bond that is being activated. This cluster acceptor 
molecular orbital was found to result from the combination of the metal 4s atomic orbitals. 
Clusters where the bonding and symmetry resulted in an empty, metal 4s-derived, m olecilar 
orbital at low' energy (that is. a good acceptor) were reactive to eyciohexane by C — I I  b)nd 
activation. For clusters where the lowest unoccupied molecular orbital derived from the 
metal 4s atomic orbitals is at high energy, reactivity is seen to be low or negligible. Fere 
we see that every atom counts. The addition of a single atom changes the symmetry of a 
cluster. W hen the symmetry changes, the splitting of the molecular orbitals that arise form 
the degenerate atomic orbitals also changes. These changes in splittings move the energy 
level of the L U M O  up and down with the addition of each successive new atom to the 
cluster, altering its reactivity. In a system dominated by bulk, the addition o f a single aom 
to the system has (almost bv the definition of bulk) no appreciable effect on the chemi;try, 
but at the nanoscaie, every atom counts.

Beautiful demonstrations of the atom-by-atom size dependence of the chemistry in snail 
clusters have been reported by Cheng and Wang, who carried out theoretical studie- of 
clusters of chromium (C r„ , 0 < // < 15) [34] and of metallocarbohedranes (M „C ,„ )  [35,36]. 
In  agreement with experimental observations, they found that the chemistry of chromum 
clusters is uniquely dependent on the cluster size /?. For example, the dissociation en*rgy 
shows a distinct even-odd oscillation, as there is strong energetic preference for builling 
up the cluster two atoms at a time. Perhaps more interestingly, Wang, W u, and Cheng 37] 
report the onset of bulklike behavior in the photoelectron spectrum of these cluster at 
n = 11, the smallest possible value of n for which it is possible to construct a comjlete 
body-centered-cubic unit, the preferred structure of C r bulk.

Even-odd oscillations in the reactivity of gold cluster anions (A u “ ) with 0 2 have ieen 
reported by Kim . Fischer, and Gantefor [38]. These oscillations correlate exactly with oscil
lations in electron affinities of the gold cluster anions. The even n neutral clusters are 
so-called magic clusters with markedly high stability and an unusually large H O M O - L IV IO  
gap. The theoretical studies show that upon reduction to the corresponding anion, tiese 
"■magic" clusters become chemically very active because they are excellent electron dmor 
species.

The reductive activation of CO_> on the surface of semiconducting nanocrystals is a pro
totypical example of catalytic reduction by nanoparticles. This process holds promist for 
sequestration of atmospheric C O : to combat the accumulation of these greenhouse gvses. 
CdSe nanocrystals have been of particular interest for fixation o f C O : . It is known that >nly 
the smallest CdSe nanocrystals catalyze the reduction of C O : [32]. One possible explan tion
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for this effect is that only the smaller nanocrystals possess conduction band orbitals that, 
when occupied, have a sufficient redox potential to reduce C 0 2. This hypothesis is depicted 
schematically in Fig. 2. O n the right side of the figure arc the energies of C O : molecular 
orbitals arising from linear combinations of the carbon and oxygen 2s and 2p atomic orbitals. 
T he ir occupancy in molecular C O : is indicated. Note that the highest occupied molecu
lar orbital (H O M O )  is degenerate, composed of nonbonding and essentially unhybridized 
oxygen 2pv and 2pv orbitals [39]. The addition o f an electron or electrons to the lowest 
unoccupied molecular orbital ( L U M O )  then reduces the bond order of the C — O  bonds, 
thereby weakening the molecule, the first step in its reduction. O n the left side of the figure, 
the valence and conduction bands of the nanoparticle are shown. Owing to size quantization 
effects, at least some of the bands increase in energy with decreasing particle size. There is 
therefore a threshold particle size below which at least some of the conduction band orbitals 
will, if occupied, have sufficient reducing power to donate electrons into the C 0 2 L U M O , 
initiating its reduction. E lectron ic structure calculations on the nanocrystals may be used to 
quantify the reducing power of the nanocrystals. Subsequent calculations of the interaction 
of C O : with the nanocrvstal model the reduction process, including electron transfer, bond 
activation, and molecular dissociation.

A lthough global electronic structure effects are thought to play a key role in the reductive 
activation of C O : on the surface of semiconducting nanocrystals, other evidence suggests 
that local surface structures are critical as well. For example, Fujiwara et al., [40] have 
shown that the interaction of C O : with sulfur vacancies on the surface of C'dS nanocrystals 
results in a much stronger reduction of the C O : than interactions with nondefect surface 
sites. Numerous local geometries can be generated simply by removing two, thr^e, or several 
atoms from the surface. Theoretical calculations have been reported that use this “ trick”  of 
generating local geometries by creating a vacancy in an otherwise defect-free surface. In par
ticular, calculations o f the activation barrier for absorption of a C 0 2 molecule at a surface 
Se vacancy on CdSe show that the surface vacancy creates a favorable electronic environ
ment for chemisorption [41]. Photoexcitation of the chemisorbed C 0 2 is then simulated by
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Figure 2. Schematic of CO, reduction by nanoparticles. On the right side of the figure are the energies of CO. 
molecular orbitals arising from linear combinations of the carbon and oxygen 2s and 2p atomic orbitals. Their 
occupancy in molecular CO: is indicated. On the left side of the figure, the valence and conduction bands of the 
nanoparticle are shown. Owing to size quantization effects, at least some of the bands increase in energy with 
decreasing particle size. For the smaller nanoparticles, electrons promoted to the conduction band have sufficient 
energy to reduce CO:.
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placing an In atom in the unit cell far from the adsorbed molecule. Because of the low 
ionization potential of In, the electron transfers to the C O : , and lowers the activation bar
rier. Extrapolating to the behavior at a nanocrystal surface, the energy gap increases with 
decreasing particle size. Therefore, for sufficiently small nanocrystals, eventually it becomes 
energetically favorable for the C O : to desorb as C O ;  . Such a mechanism capitalizes on both 
key aspects of nanotechnology. First, only a nanoscale particle of CdSe will have a sufficient 
concentration o f surface atoms to present surface defects with the abundance necessary for 
appreciable catalysis. Second, the desorption of C O : anions becomes energetically favorable 
only for sufficiently small nanocrystals, because quantum confinement increases the energy 
o f the photoexcited electron for small nanocrystals.

As noted previously, below the size threshold for the onset of bulk behavior, the elec
tronic structure of nanocrystals depends uniquely on the number of atoms in the struc
ture. G iven that the electronic structure governs reactivity, this sensitivity suggests the 
intriguing possibility of selecting particles for specific catalytic activity. If  the size-dependent 
reactivity can be predicted, the “ holy grail." catalytic specificity by design, comes within 
reach.

Local electronic structure effects may be present in clusters even above the size threshold 
for the onset o f bulk behavior because even above this threshold, as long as one is still 
in the “ nano" regime, a significant fraction of the atoms in the cluster are at the surface. 
A  straightforward calculation estimates the fraction of atoms on the surface of a simple 
Platonic solid. One simply divides the volume of the solid by the effective volume of an 
atom to determ ine the number of atoms in the structure. Next, one divides the sum of the 
surface areas of the faces by the effective cross sectional area o f an atom to determine the 
number of surface atoms and divides the latter by the former. Carrying out this procedure 
for a range of values of the edge length yields the fraction of surface atoms on a cube of 
pure Cu as a function of the edge length, as shown in Fig. 3.

W hen  surface atoms become an appreciable fraction of the total, novel structures develop 
that are dictated by bonding compromises between the surface and bulk. These novel s:ruc- 
tures force the surface atoms into atypical bonding arrangements and, consequently, give 
rise to atypical local electronic structures. As highlighted below', atoms forced into bonding 
arrangements atypical for the specific element can produce unusually reactive surface sites, 
that is, ideal catalytic centers. Such novel structures have been directly observed by atcmic- 
resolution scanning tunneling microscopy (S T M )  [42] and are thought to provide h.ghly 
specific catalytic sites. The manner in which they are terminated may be at least equally 
important [43]. The coordination of A l cations on y- and 77-alumina surfaces is a case of 
particular interest because these cations arc a source of surface Lew is acidity, central to the 
catalytic activity o f alumina [44].

edge length (nm)

Figure 3. Fraction of atoms on the surface as a function of the edge length for a cube of Cu. Note that -urface 
becomes an appreciable fraction of (he total when the edge length drops info the j- 10 run range.
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3.2. Metal Oxide Materials
3.2.1. y -  and r]-Alumina
These two forms of alumina (y  and 77) arc in widespread use in heterogeneous catalysis 
systems [45]. such as those employed in petroleum refining [46], in the production of bulk 
and fine chemicals [47], and in automotive catalytic converters [48]. The two materials have 
very sim ilar bulk structures, but the surface acidity of 77-alumina is considerably greater than 
that o f y-alumina [45,49,50].

Both  y- and 77-alumina are cubic aluminas; that is, they are based on cubic close packing of 
oxygen anions with A l cations occupying interstitial sites within the ccp oxygen lattice. These 
structures may be described in terms of the structure of the closely related Mg-spinel [51]. 
Mg-spitiel has a crystallographers' cubic unit cell o f contents M g8A lKl0 32, and a primitive 
unit cell o f contents M g2A l4O s. The M g atoms occupy T d interstitial sites within the ccp oxy
gen lattice, and A l atoms occupy O h interstitial sites. The space group is Fd3m [52]. A lum ina 
contains no Mg, and therefore all cations are A l. This necessitates the introduction of vacan
cies to maintain the balance of valance. In particular, one o f every nine cation sites in the 
spinel structure must be vacant to produce the A120 3 stoichiometry. The crystallographers' 
cubic unit cell is D2 :A121 i 0 32 and the prim itive unit cell is □ 2A l lh0^4. Referencing the 
spinel notation, we note that the prim itive cell consists of (T d)6( 0 h)|20 24, showing that there 
are 6T d sites and 120h sites per prim itive unit cell. Obviously, with 16 cations per primitive 
unit cell, neither the T d cation sublattice (which has 6 sites per prim itive cell) nor the O h 
cation sublattice (which has 12 sites per prim itive unit cell) is sufficient to hold all of the 
A l atoms. The A l must therefore be distributed over both T t, and O h sites and will therefore 
fall w ithin the range [2 5 %  < X Td < 37.5% ], where X T[ is the fraction of A l cations on T d 
sites. The extremes of this range are represented by X-v = 2 5 %  given by (□ 2A14)(A1,2) 0 32 
and = 37 .5%  given by (A lh)(Q > A l1()) 0 32. As reviewed at length in Ref. [53], experimen
tal investigations have not resolved the correct distribution of vacancies over the T d and O h 
sublattices, and nearly all computational investigations have addressed this issue.

Some of the earliest serious modern computational studies o f y-alumina were reported 
by A lvarez et al. [54] and Blonski and Garofalin i [55, 56]. Recognizing that stoichiometry is 
a key issue in y-alumina, Alvarez et al. performed a classical molecular dynamics simulation 
based on pair-wise additive empirical potential functions on a 1440-atom supercell, A I57f,0 S(l4. 
This large unit cell allows for considerable variation in the distribution of vacancies, while 
maintaining the correct A120 3 stoichiometry of aluminum oxide. (E ven  today, more than a 
decade later, such a unit ceil is too large for treatment with first-principles methods.) One 
particularly important outcome of the calculations was the finding that cation sites other than 
the 8 (a ) and 16(d) sites of the spinel lattice [such as 16(c) and 48(f)] also have non-negligible 
occupancy. Occupancy of nonspinel sites leads to ambiguity in the specification of X T . This 
finding of nonspinel site occupancy is not definitive, however. During the simulation (15.5 ps 
total) the populations of the tetrahedral and octahedral sites were observed to change by up 
to 1.1%. A  tendency to retain the initial configuration throughout the entire simulation may 
result from low cation mobility due to appreciable potential barriers to A l migration within 
the alumina bulk (for example Ref. [57]), coupled with the 300 K  simulated temperature.

Lee et al. [58] carried out a Monte Carlo  simulation of the y-alumina structure in support 
of their [27] A l N M R  study. They employed an empirical potential energy function in the 
simulation. Parameters for the function were found by fitting to the results density functional 
theory (D F T )  calculations on nine ‘'artific ial” crystal structures. Based on the simulation 
they reported X T)j — 30 ± 3 % .

First-principles D F T  studies have been reported by M o, Zu , and Ching [59], based on 
structural models determined from empirical pair-potential functions. Based on these calcu
lations, it was reported that there is an energetic preference of 3.7 eV/vacancy for vacancies 
to exist on octahedral sites. Application of the Boltzmann distribution function to this 
energy difference yields X  ̂  = 37.5%. One criticism of these calculations is that the unit 
cell employed was of the stoichiometry A l2, 0 32. This is the nearest integer approximation 
to the [ ] 2 : A I 21 i 0 32, cubic unit cell. Despite this approximation, this vacancy distribution 
has been confirmed with elaborate empirical potential simulations reported by Streitz and
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M intm ire [60] on a 160-atom unit cell o f the correct stoichiometry. The computational 
expense of using a large unit cell and the use of an approximate stoichiometry can both 
be avoided by employing the prim itive unit cell or other noncubic cell [13]. The primitive 
unit cell (□ : A1I60 24) contains just 40 atoms. The two vacancies may be distributed both on 
octahedral sites (O hO h), both on tetrahedral sites (T dT d), or one on a tetrahedral site and 
one on an octahedral site (T dO h). Gutierrez, Taga, and Johansson have carried out first- 
principles calculations for all 14 symmetry unique distributions o f the two vacancies in the 
primitive unit cell and again confirmed the preference for vacancies at octahedral sites [61].

A  more complete understanding of the cubic aluminas is afforded when one recognizes 
that cubic aluminas are derived by dehydration o f aluminum hydroxide minerals, and there 
exists the possibility of the presence of hydrogen within the bulk [13]. Experim ental evidence 
suggests that conversion to the cubic structure occurs well before complete dehydration and 
points to the fact that once the spinel structure is reached, it remains intact throughout the 
remainder of the dehydration process [62-64]. The presence o f hydrogen is compensated for 
by an A l deficiency, so that an appropriate form ula for the sequence is H 3„ (A12_ „,O v  The 
stoichiometry corresponding to m — 1/8 is particularly notable. It corresponds to a unique 
case where all the cation sites and all the anion sites are occupied. An  ideal hydrogen- 
aluminum-spinel formula. H A l5O x, first suggested bv de Bo e r and Houben [62], is formed. 
For m < 0.125, the system is 11-poor, and there are vacant cation sites. The system is hydro
gen rich when m > 0.125 and in addition to all o f the cation sites being full, there are 
interstitial H  atoms as well. The m = 0 limit corresponds to what is commonly described as 
the defect-spincl structure. In this hydrogen-free limit, the extremes of the physically allowed 
distribution of vacancies over the two cation sublattices may be nominally assigned to fully 
dehydrated y- and 77-alumina [13]. Studies employing [27] A l N M R  by John , A lm a, and 
Hays [65], found X Ti = 25 ±4%  for y-alumina and X x̂ =  35 ± 4 %  for 77-alumina.

D F T  surface relaxation studies of y-alumina found that the nominally three-coordinated 
A l (those at nominal T d sites on the surface) relax inward to become quasioctahedral. (Hints 
of this result may be seen in the results of earlier m olecular dynamics studies [66-6 8 ].) 
By contrast, calculations of the relaxation of 77-alumina surfaces show that A l cations at 
nominal T d sites on the surface relax only until they become quasitrihedral [69,70]. (See 
Fig. 4.) This remarkable difference in the degree of surface relaxation between y-alumina 
and 77-alumina is in quantitative agreement with experiments [64].

This result also explains why 77-alumina is a more acidic catalyst than y-alumina 
[45, 49, 50]. It is known from semiempirical [71] and ab initio [72] cluster model calculations 
that A l atoms in T d sites, when exposed at the surface (three-coordinated A l),  have a lover

oh

• — o — •

•  •

Figure 4. Surface Al in a nominal Tu site (lower left) ami surface A! in a nominal ( \  site (upper right). Alumiium 
atoms are shown by open circles and oxygen atoms are shown by filled circles. The gray circles are oxygen a urns 
within the hulk. In 77-alumina, the surface Al in the nominal T, site will relax until it reaches the quasitrihclral 
position near the center of the ( i l l )  plane marked "X ” in the figure. In y-alumina. however, the Ai will rehx a 
distance of 1.7 A into an empty 0 ;, interstitial site in the nrsi subsurface layer, marked " V  in the figure.
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energy acceptor orbital and therefore serve as stronger Lew is acids than A l atoms in O h 
sites exposed at the surface. This is a manifestation o f a general principle that Kawakami 
and Yoshida [73] deduced, based on small basis set ab initio studies of small aluminum 
oxide and hydroxide clusters; Lew is acidity is greater for A l atoms with lower coordination. 
Because surface A l in T d sites relax into six-coordinated sites in y-alumina but remain in 
three-coordination on the surface of 77-alumina, it is expected that 77-alumina surfaces should 
exhibit the greater Lew is acidity, in agreement with the well-known properties of these tran
sition aluminas [45, 49, 50]. A  comprehensive review of the bulk and surface structure of the 
cubic aluminas may be found in Ref. [53].

Reactivity at cubic alumina surfaces has been studied with cluster models. Cai and 
Sohlberg [74] reported semiempirical electronic structure calculations of the preferred 
adsorption sites for several simple alcohols on y-alum ina by using an A14(S0 72 cluster model. 
This is one of the largest cluster models that have been reported and includes all interactions 
through the second-nearest neighbors of the binding site. It was reported that successful 
dehydrogenation of the alcohol (a  critical initial step in the formation of alkenes from alco
hols) may occur at two different sites, but in one site both the alcohol oxygen and hydrogen 
must interact with the surface, whereas at the second site only O surfacc- H aleoho, interaction is 
required. S im ilar semiempirical studies o f water dissociation on the y-alumina surface have 
been reported by Fleishcr, Golender, and Shimanskgya [75] but with a much smaller A l2O s 
cluster model. Again a two-point interaction was found where both the oxygen atom and one 
of the hydrogen atoms o f the water molecule are interacting with the surface. It is likely that 
many catalysts rely on multipoint interactions because such w ill accomplish both electronic 
and geometrical modification of the adsorbed molecule, setting the stage for its subsequent 
reactivity.

3.2.2. k -Alumina
One o f the best examples of the use of first-principles methods to elucidate the atomic scale 
structure of a complex metal oxide material is the determ ination of the k-AI20 3 structure by 
Yourdshahyan et al. [76]. Samples of k-A120 :i generally have poor crystallinity, so experimen
tal studies have left some uncertainty about its atomic scale structure. Yourdshahyan et al. 
[76] present an eight-step procedure for structure determ ination and apply it to k-A12O v

1. The unit cell, symmetry, and lattice parameters are identified from experimental data.
2. As much information as possible regarding the atom ic positions is extracted from exper

imental data.
3. A ll possible configurations of the unit cell that are consistent with the crystal symmetry 

are enumerated.
4. The list of possible configurations is pruned with simple rules, such as Pauling’s struc

tural rules for ionic crystals.
5. Crude structural optimizations of the reduced list o f possible configurations are carried 

out with first-principles methods to identify those that are locally stable.
6 . Detailed structural optimizations, including lattice param eter optimization, are carried 

out for the locally stable structures.
7. Structures are eliminated that have a material density inconsistent with experimental 

results.
8 . The remaining few structures are analyzed for lowest energy and best agreement with 

experimental data.

The structure of k - A120 3 resulting from the application of this procedure is one with close- 
packed oxygen atoms in an A B A C  stacking arrangement. A lum inum  atoms occupy 25%  
of the tetrahedral interstitial sites and 7 5 %  of the octahedral interstitial sites within the 
close-packed oxygen sublattice. One of the most interesting outcomes of the application of 
this procedure to K-alumina is that the resulting structural model gives novel insight into 
the mechanism o f C V D  growth of this material. Once a single close-packed oxygen layer is 
formed, the A l ions naturally fill “ hollow”  sites in the next layer. Electrostatic repulsion of 
the Al ions is minimized if they form zigzag lines. Once this happens, the pattern is set, and 
the crystal will grow' as K-alumina in the [0 0 1 ] direction, as observed experimentally.
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O f broader significance, the overall procedure is essentially completely general. Because 
it employs first-principles techniques, it is not restricted by empirical parameterization. It is 
therefore, in principle, applicable to almost any complex catalytic material.

3.2.3. Ceria
Cerium  oxide (ceria ) is a critical and multifunctional component of automotive emissions 
catalysts. One function of ceria is to act as an “ oxygen storage’’ component. Ceria is capable 
of oxygen uptake during excursions of the air-fuel ratio into the net oxidizing regime and of 
oxygen release during excursions into the reducing regime, thus facilitating the maintenance 
of the proper stoichiometric ratio for sustained C O  and H C  oxidation and simultaneous N O v 
reduction, that is, three-way catalysis (T W C ).  An  atomic-scale understanding of the structure 
and dynamics of ceria would obviously be valuable in the design of improved automotive 
emission catalysts.

M any of the key properties of ceria that contribute to its success in automotive catalysis 
are thought to arise from the fact that cerium has two stable oxidation states, Ce K> and 
C e h4 [77]. As a consequence, cerium oxide may exist over a range o f possible stoichiometries 
C e O ^ , [0  < a < 0.5] [78]. The deviation of ceria from its ideal C c O : composition has been 
extensively studied by temperature programmed reduction with hydrogen. These studies have 
given rise to an important controversy: Is there hydrogen uptake by ceria upon reduction with 
hydrogen? This question has been addressed with first-principles D F T  methods by Sohlbcrg, 
Pantelides, and Pennycook [79].

The affinity of ceria for hydrogen is determined from the reaction:

H C e 4O s C c 4O s + I /2H 2 (1)

H ere C c 4O s is used as the reference instead of the empirical formula C e O : because the 
form er is the formula for the primitive unit cell of cerium oxide. Em ploying D F T  total ener
gies to estimate A H  (pressure-volume work is neglected, typically an approximation of little 
consequence in condensed phase systems) and tabulated third-law entropies to determine 
A S  shows that for the above reaction,

A G = 0.45 -  6.768 x 10 4 T (2 )

where the energies are given in eV/molecule. This expression predicts that below 665 K,
hydrogen uptake is spontaneous. The calculations also predict that this uptake produces 
a lattice expansion of about 1.5%. The H  taken up forms hydroxide structures within the 
ceria bulk with a predicted vibrational frequency of 3414 cm '. These results are in good 
agreement with experimental reports [77, 80]. This work, therefore, has resolved the issue of 
the thermochemistry of hydrogen uptake by ceria, finding that hydrogen uptake is sponta
neous but that in sufficiently small quantities it should be of minor consequence in catalytic 
systems.

3.2.4. Zirconia
Like ceria, zirconia is a catalytically important material with good oxygen storage proper ies. 
Christensen and Carter [81] have reported an exhaustive first-principles study (D FT , G  j A, 
supercells, plane waves) o f the three observed bulk phases of Z rO : and their probable 
exposed surfaces. Cohesive energy curves are presented for cubic, tetragonal, and monocinic 
bulk phases. The energy minima are in excellent agreement with the experimentally observed 
lattice parameters. The ir work also leads to an explanation for the observed depression
of the tetragonal > monoclinic phase transition temperature for very small particles. The
tetragonal ( 100 ) surface relaxes to ( 0 0 1 ), thereby rotating the tetragonal distortion belov* the 
surface. Because other surfaces exhibit little relaxation, the tetragonal —* monoclinic p)ase 
transition must change a stable surface into a less stable one. Because small particles iave 
a larger fraction of surface atoms (see Section 3.1), this effectively increases the activaion 
energy for transformation for small particles.
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O ne of the more valuable aspects of the Christensen and Carter report, with impact 
beyond zirconia, is a presentation of three simple ‘■rules" for prelim inary identification of 
the most probable stable surfaces. They are: (1) the compactness condition, select surfaces 
that are the most compact; ( 2 ) the bond-breaking condition, select surfaces that minimize 
coordination loss for the surface atoms; and (3) electrostatic condition, select surfaces that 
are the least polar. Rules of this type are of considerable value because the number of 
possible exposures is large, and especially so for complex catalytic oxide materials. Rather 
than carrying out costly first-principles optimizations for a large number of possible surfaces 
and terminations, the set of candidates can first be reduced with the Christensen and Carter 
criteria.

3.2.5. Zeolites
Another class of complex materials important for heterogeneous catalysis is the zeolites. 
Shah et al. [82] have reported a first-principles study of zeolite catalytic behavior on 
methanol. The common methanol conversion zeolite catalyst, ZSM -5, has a primitive unit 
cell sufficiently large that first-principles calculations are impractical, so they chose to model 
the related material chabazite as a representative structure and, for comparison, sodalite. 
Because the chabazite structure has tetrahedral sites with 1/3 A l occupancy, there are a large 
number o f possible structures. To simplify the calculations, only one A l atom per unit cell 
was considered. This is a common issue in modeling complex catalytic materials. The com 
plexity of the material means that there are many possible structures. (The configurational 
entropy can be large.) To reduce the number of computations to a practical value, one must 
select representative structures.

The calculation of Shah et al. [82] showed a good ability to distinguish catalytic activity 
between these structures. In chabazite, methanol undergoes a kinetically spontaneous (no 
energy barrier along the reaction coordinate) protonation by a Bronsted acid site. In the 
more open sodalite structure, methanol was only physisorbed. This is one of the first success
ful applications o f first-principles methods to actual catalytic reactions in realistic catalytic 
materials.

3.2.6. Ru 0 2 and First-Principles Thermodynamics
One of the great challenges of understanding heterogeneous catalytic materials is to deter
mine the active site. Based on simple electrostatic and valence arguments, such as those 
discussed in the section about zirconia, it has long been assumed that so-called polar sur
face terminations and surfaces with highly valence-unsaturated metal atoms are energetically 
unfavorable. Unsaturated metal atoms, however, are strong Lew is acid sited, and chemi
cal intuition suggests that these would serve as excellent catalytic sites. Indeed, catalytic 
mechanisms that assume exposed metal Lewis acid sites have often been hypothesized and 
subsequently found to predict catalytic action in agreement with experimental observations. 
This apparent conflict is almost certainly a consequence of attempting to explain equilibrium 
surface conditions over a range of laboratory conditions based on T = 0, P  = 0 arguments. 
Reuter and Schcffler have studied the prototypical heterogeneous catalyst, R u O : , and shown 
that the application of first-principles thermodynamics (as opposed to more conventional 
static total-energy calculations) closes this gap.

Reuter and Schcffler [83] point out that the appropriate preferred surface structure under 
a given set o f temperature and pressure conditions will depend on the relative free ener
gies of the various possible forms. A  typical first-principles total energy calculation considers 
only the electronic structure contribution to the surface energies. There are also pressure- 
volume (PV*) and vibrational contributions to the surface free energy. Furtherm ore, the 
chemical potential (free energy per formula unit) of the oxygen will depend on the temper
ature and pressure of the reservoir o f oxygen gas in contact with the surface. Reuter and 
Scheffier [83] have shown how to account for all of these contributions. They show that in 
the pressure range of interest to usual catalytic systems, the PV  contribution is negligible 
in comparison to the expected accuracy with which the total energy can be calculated by 
using today’s first-principles methods, but the vibrational contribution can be appreciable.
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The most rigorous technique for determining the vibrational contribution would be to carry 
out a calculation of the density of phonon states, but a reasonable estimate may be made 
with the Einstein approximation (see any statistical physics text). Because catalytic systems 
run at temperatures greatly in excess of the boiling point of 0 2, a reasonable approxima
tion of the oxygen chemical potential may be derived from the ideal gas law. Incorporating 
all o f these terms into the determ ination of the system free energy, Reuter and Seheffler 
[84, 85] have shown that nonstoichiometric “ polar”  surface term inations o f R u O : are actually 
thermodynamically favorable under certain realistic temperature and pressure conditions. 
Furtherm ore, they have found that the free energies for adsorption of other gas specics on 
the surface have similar T and P  dependence [84,85]. These findings are almost certainly 
more general, and similar studies for other catalytically important oxide surfaces would be 
of significant value.

The concept of first-principles thermodynamics may, in principle, be extended to studies 
of phase transitions between solid phases. Consider the reaction

Phase A  —► Phase B  (3 >

The ultimate objective would be to generate a P/T phase diagram from first-principles 
calculations. To do so, one starts from the observation that at a phase boundary,

A G  = A/7 -  T\S  =  0 (4 )

for phase A  -» phase B  transition, where A G  is the change in Gibbs free energy, A H is 
the enthalpy change and A .S’ is the entropy change. There are three leading contributions 
to the enthalpy change: A E L\ the internal energy change due to electronic contributions; 
A E'\ the internal energy change due to vibrational contributions; and P A F\  pressure/volume 
work. In terms of these contributions,

A G  = A E c + A E v -F P&V  -  TAS = 0 (5 )

A E e is obtained from the difference in total energies of phases A  and B  as computed by 
first-principles total energy calculations. The vibrational contribution A E v may be obtained 
from computations of the phonon spectra of the two phases, or approximated by the Einstein 
method using local mode frequencies from finite differences calculations of the gradient of 
the potential energy [8 6 ] fo r each symmetry unique atom in the unit cell. Regardless of how 
they are determined, knowledge of the vibrational frequencies affords an estimate of the 
entropic change as well. Finally, pressure/volume work is a straightforward multiplication of 
the pressure by the volume change between the two phases. The volumes for the individual 
phases are easily obtained as a function of pressure by recognizing that P = —dE/dV. 
The total energy as a function of volume E (V )  as computed by first-principles total energy 
calculations may therefore be used to generate P( V). In  this way, first-principles calculations 
may be used to obtain an estimate of every major term in the free energy change associated 
with the phase change. Pressure-volume phase space is then searched for points on the phase 
boundary.

3.3. Catalytic Systems Based on Supported Metal Particles
Rem arkably, some metal clusters that are not catalytically active independently become 
active catalysts when deposited on a support [87]. In some cases, doping the metal cluster 
with another metal further improves its catalytic properties [8 8 ]. Subtle changes in the local 
electronic structure appear to be controlling the catalytic activity [89]. A  great many hetero
geneous catalysts are of this general nature, metal clusters dispersed on a support. Freund 
has presented an outstanding review of oxide-supported catalytic clusters [90].

M any heterogeneous catalytic systems are an intricate combination of supported materials. 
A  large surface area support material such as y-alumina may be used as a catalyst in its own 
right, but more commonly as a support for another oxide and/or a finely dispersed metal 
(to  impart properties such as improved durability or to tailor the catalytic chemistry) [46].
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To guide tailoring and engineering of improved catalysts, it is necessary to have a clear 
understanding of the catalyst structure, o f the dynamics of this structure during operation, 
and of the role of the support in relation to the catalytic activity of the supported phase 
[91, 92]. As we will now review, recent theoretical work has yielded very significant advances 
in this area.

O verall, y-alumina is one of the quintessential materials of heterogeneous catalysis. The 
catalytic properties o f alumina for alcohol dehydration have been known and exploited for 
m ore than 200 years [47, 93], Today, y-alumina is more typically used as a support for a 
finely dispersed metal catalyst. For example, one of the most important industrial applica
tions of alumina-based catalysts is the dehydration of alcohol to form olefins and/or ethers 
[47, 93]. In addition, an improved alcohol dehydration catalyst could render the conversion 
o f biomass-derived alcohols into transportation fuels a competitive source for such fuels. 
M uch computational work on complex catalytic materials has focused on alumina-supported 
metal atoms.

3.3.1 . Cr/Alumina System
Chromia/alumina catalysts are widely used industrially for dehydrogenation of alkanes to 
alkenes as given by the reaction,

CnH2n+2->CnH2n + H2 ( 6 )

In  this process, different transition aluminas have been used to support the heteroge
neous catalyst. A t the present time, 17-alumina is the preferred support in industrial practice 
because the catalysts Cr/77-alumina can last several years before the catalyst degrades. Quite 
remarkably, despite the close structural similarity o f y-alumina to 97-alumina, the analogous 
catalytic system based on y-alumina degrades within weeks. In the case of the y-alumina 
support, the active chromium atoms disappear from the surface and have a tendency to 
form aluminum eliminates. This considerable difference is quite puzzling because the two 
support materials differ essentially only in the distribution o f cation vacancies [64, 94], and 
were historically sometimes taken to be identical [95,96].

Rashkcev et al. [97] have applied first-principles D F T  calculations to the study of C r 
atoms on the surfaces of both y- and 77-aluminas and revealed the origin of the difference in 
degradation rates. These studies focused on the (110) surface because it is widely believed to 
be preferentially exposed [46]. The system was modeled by infinitely repeating slabs with an 
interslab vacuum spacing of 10 A . The structural relaxations were performed for supercells 
consisting of slabs five atomic layers thick. Individual chromium atoms were deposited on 
the relaxed alumina surfaces at several different sites, and the minimum energy positions, 
as well as energy barriers to migration, were calculated.

Rashkeev et al. [97] found that when C r is deposited on the relaxed 77-alumina surface, 
it can be accommodated in several different sites, but the minimum energy position corre
sponds to the C r atom, forming a strong bond with a three-coordinated A l and two oxygen 
atoms. Cr can diffuse along the surface, jumping from one three-coordinated A l to another 
in a “ zigzag”  trajectory. The activation energy for this process is found to be 2.5 eV. ( It  was 
pointed out for comparison that the energy cost to form a vacancy/AI-interstitial Frenkel 
pair is about 4-5 eV.) Throughout the entire trajectory, the C r atoms are chemically active. 
For example, a C r — H bond of bond energy about 4.7 c V  will form when a hydrogen atom is 
added to the structure. This is larger than the energy cost of breaking a typical C — FI bond in 
a hydrocarbon molecule, so it is not surprising that Cr/77-alumina is a good dehydrogenation 
catalyst.

On the reconstructed y-alumina surface, the energetically preferred site places C r attached 
to four undercoordinated surface oxygen atoms, with one of the four bonds considerably 
longer and weaker than the other three. Just as on 77-alumina, C r can also diffuse along the 
y-alumina surface, also with an activation barrier o f about 2.5 eV. Again, a C r — H  bond of 
about 4.8 eV  binding energy will form in the presence of a hydrogen atom. C learly, both the 
Cr/y- and Cr/77-alumina systems exhibit catalytic activity.
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It was also found that in both systems it is energetically favorable for C r to occupy a 
nominally vacant position in a subsurface layer where it becomes sixfold coordinated. The 
positions are depicted in Fig. 5. The activation barrier for C r to enter such positions, how
ever, is much higher in the case of y-alumina.

The activation barrier for C r entering y-alumina bulk is only 2.2 eV, as compared to ~ 5  e V  
in 77-alumina. A n  important consequence of this result is that C r can sustain its catalytic 
activity at the 77-alumina surface for a very long time, while becoming completely deactivated 
on the y-alumina surface within several days.

3.3.2. Pt/Alumina System
Studies of the alumina support have shown that that y-alumina without bulk hydrogen is 
merely the terminus of a progression of hydrated forms [13]. The starting point, boehmite has 
the empirical formula H A K )2, which can be written A120> • 1(H : 0 ) .  Upon heating, boehmite 
loses water, progressing through various g-alumina forms A120 3 / i(H 20 )  until all o f the 
water is driven off, leaving A U O :, () (H : 0 ) .  From the observation that y-alumina loses water 
upon heating [62, 98]. and the variable hydrogen content, it follows that the material behaves 
as a sponge, in that it can store and subsequently release water, but in a unique, “ reactive” 
way. W hen a water molecule arrives at the surface, it breaks up, H  enters the bulk, and
O  stays at the surface. A l atoms countermigrate from the bulk to the surface, where they 
recombine with the new O  atoms and extend the crystal matrix. The ratios, determ ined by 
valence requirements, work out so that for every three H : 0  molecules, six H  move in, two 
A l move out, and the crystal extends by a stoichiometric A120^ unit. In the reverse process, 
H  comes out from the bulk and combines with surface O  to evolve as water while surface 
A l countermigrates into the bulk. The net result is an etching of the material as both A l and
O  atoms leave the surface. O f course, the ratios work out the same way, so that the etching 
occurs by stoichiometric A120 3 units. This unusual chemistry is a natural consequence of the 
fact that y-alumina is not a single substance but a sequence of hydrogen-containing forms. 
The possibility that vacancies left behind in this reactive sponge process serve as nucleation 
sites for Pt clusters was explored by Sohlberg, Pantelides, and Pennycook 199]. M ore detailed 
studies by the authors are under way at the time of the preparation of this manuscript.

Figure 5. Cr atom adsorbed into a subsurface* layer of y-alumina (bottom'* and jj-alumina (top). The barrier to 
adsorption into 17-alumina is about - wo times higher.
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3.3.3. Ub/a-Alumina System
First-principles calculations have been reported for niobium on sapphire, studied as a rep
resentative metal-ceramic system [4j. Such systems are common in catalytic systems. The 
calculations show that the system is remarkably stable in that there is very little relaxation. 
The Nb atoms bind strongly to the "ho llow ”  sites above vacant octahedral sites on the 
sapphire (0001) surface, effectively replacing an outermost layer of A l. In pure Q'-alumina, 
each O  itom accepts a total o f two A l valence electrons, and each A l donates its three 
valence electrons into O  2p orbitals. Nb differs from A l in that it has five valence electrons. 
W hen  Nb replaces A l, three o f these five valence electrons are therefore donated into oxy
gen 2p o'bitals in the valence band. G iven that O  2p orbitals are nominally 5.7 e V  below Nb 
4d orbitds, very strong binding can be expected, and indeed the first-principles calculations 
find the idsorption energy to be 13 eV/Nb atom. Mixing of about 10% O  2p character into 
the Nb orbitals results in states within the band gap that are occupied by the remaining 
two Nb 'alence electrons.

In con rast to the lack of relaxation of the Nb-coated a-alumina surface, on the clean sur
face (no Vb atoms) the surface A l atoms were found to relax toward the bulk by about 80% , 
approacling very close to the adjacent oxygen plane. In addition to contributing to our 
understa ting  of the stability o f the Nb/sapphire interface, the results are important because 
they shov that full structural relaxation is crucial in accurately determining binding site 
preferences for add-atoms.

3.3.4. Au/Titania System
Althougl gold is a noble metal and generally chemically inactive, gold clusters and nano
particles have useful catalytic properties [30]. The preferred support material is T iO : . The
oretical u lculations have been reported for both the rutile and anatase polymorphs of T i0 2 
as suppots for catalytic gold clusters.

Gold  custers on rutile T iO : (110) have been studied with both cluster [100] and periodic 
slab [101 models. G iordano et al. [100) carried out calculations for the C u/T i02, Ag/TiO : , 
and A u / li0 2 systems. The C u/T i0 2 calculations were performed with a periodic slab model 
and on 0 0 2) , 3 and (T iO : ) , r> clusters. (Such stoichiometric clusters are though to minimize 
edge cfftets [102].) Fo r Ti Ctt and O  Cu bond distances, both sets of calculations gave 
the same qualitative trends. They argued that the results of the cluster calculations were 
sufficienty ' in  line” with those employing periodic slabs that they deemed it adequate to 
report oily cluster model calculations for the more com putationally demanding A g /T i0 2 
and A u / !i0 2 systems. For the adsorption energies, however, the cluster and periodic slab 
models dd not yield the same qualitative trends. For a single Cu adatorn. for example, 
both cluser and periodic slab models showed that the most favorable site for adsorption is 
atop a budging (twofold coordinated — “ 2 f ” ) oxygen on the stoichiometrically terminated 
surface, lut the models disagree over whether adsorption to a fivefold coordinated Ti atom 
is preferred over adsorption in a fourfold hollow site. This discrepancy is noteworthy because 
their resiits for the adsorption of a single Au  atom (cluster m odel) differ to some degree 
from thoe o f Wahlstrom et al. [101], who employed a periodic slab model. The G iordano 
and Wahstrom groups found for adsorption atop a two-fold coordinated bridging oxygen
0.99 (1.5:) e V  and for adsorption on a five-fold coordinated T i 0.51 (1.20) eV. O f greater 
significant, however, Wahlstrom et al. found that adsorption in an oxygen vacancy is even 
more stalle ( Dc = 2.0 eV ), and a single vacancy can support the adsorption of three to five 
Au atoms Vacancies therefore serve as nucleation centers for the formation of Au„ clusters. 
This wor: is an excellent example of theoretical calculations leveraging microscopy. The 
ST M  obs-rvations yield the vacancy-cluster ratio, the origin of which becomes clear in light 
of first-pinciples total energy calculations.

Theoreical studies of gold clusters on anatase T iO : (101) have yielded very similar 
results tothose on the rutile polymorph. Like rutile (110), the stoichiometric termination of 
anatase ( 0 1 ) exhibits two-fold coordinated "bridging”  oxygen atoms and five-fold coordi
nated T i itoms. V ittad ini and Sellioni [103] found the binding energy for adsorption of an 
Au adaton to the T i(5 f) on anatase (101) to be 0.39 eV  and the binding energy for adsorp
tion atopan 0 (2 f )  to be 0.31 eV. The interaction of Au w'ith the T i(5 f) is sim ilar to that
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on rutile ( 110), but apparently its interaction with 0 ( 2 f) is much weaker on anatase than 
on rutile. Because it is thought that Au binds to oxygen by transfer of its 6 s electron into 
the conduction band of T iO : , it may be possible to understand this bonding by scrutinizing 
the relative placement of the oxygen orbitals within the anatase and rutile band structures. 
Bonding of A u  to T i(5 f) is thought to take place by donation of a pair o f Au  5d electrons into 
empty T i 3d orbitals. Presumably the T i 3d orbitals are similarly positioned in the anatase 
and rutile band structures. Such an analysis could yield significant insight into the catalytic 
activity of the Au/TiCK system.

One striking similarity between adsorption of Au on anatase (101) and rutile (110) is that 
in both cases, adsorption is highly favored at oxygen vacancies. As long as there are more 
Au atoms than oxygen vacancies, the vacancies serve as nucleation centers for the formation 
of A u n clusters. The Au-vacancy interaction must be stronger than the Au-A u interaction, 
however, because no such clustering occurs if the concentration of Au atoms is comparable 
to that of oxygen vacancies [103]. In T i0 2. nominally the four T i 3d electrons are placed in 
empty oxygen 2p orbitals, the latter being buried in the valence band [ 104]. The formation of 
an oxygen vacancy then leaves behind two electrons that must go into the conduction band. 
In effect, the Ferm i level jumps to the conduction band minimum, at least locally, which is 
probably related to the very large formation energy for oxygen vacancies (4.7 eV  [ 1031)-

3.4. Stability of the Support Material
A t elevated temperatures (1000-1100°C), high surface area catalytic support materials, such 
as y-alumina, undergo a catastrophic loss of porosity through sintering. This loss of porosity 
depletes the material of surface area, rendering it useless as a support, a process that places 
an effective upper limit on the temperature of operation for the catalyst. Stabilization of 
y-alumina, therefore, represents an important industrial and commercial problem.

3.4.1. y-Alumina 0-Alumina Transformation
The phase transition of y- to 0-alumina is the critical first step in the sintering process that 
leads to loss of porosity. It has been studied by first-principles D F T  calculations by Cai et al. 
[57] and Cai and Sohlberg [105]. To model the transformation with first-principles methods 
requires a unit cell that can be morphed from representing the y-phase to one that represents 
the 0-phase. Although the unit cell o f cubic y-alumina looks quite different from that of 
monoclinic 0-alumina, both of them can be redefined to cells containing A lUl0 24 that are 
very similar. (See Fig. 6 .) This provides the required framework to study the transformation 
o f y- to 0-alumina. It is found that when some of the aluminum atoms in y-alumina move 
to specific sites, a close approximation of 0 -alumina is formed.

Two possible schemes for reordering the A l sub-lattice were identified: scheme A , reorder 
8 aluminum atoms from 16d/8a sites to 2 16c and 6 48f sites; scheme B , reorder 14 aluminum 
atoms from 16d/8a sites to 6 16c, 6 48f, and 2 8b sites. The oxygen sublattice remains 
essentially unchanged. The 0-alumina models that result from these two different reorderings 
are translationally equivalent and optimize to the same structure as the experimental one 
within the margins of error of the models. The orientation relationship between y- and 
0 -alumina defined by these models agrees with experimental observations.

Figure 6. (left) Dclect-free eel! yN: (right) ceil with translation of origir (solid spheres: oxygen: empty sphe'e: 
aluminum). Note the similarity, especially in the oxygen si,jb!at!»ce.



T h eo re tic a l and  C o m p u ta tio n a l A to m ic-Sca le  S tud ies  o f  C o m p lex  C a ta ly t ic  M a te r ia ls 635

Basel on a comparison of the energy differences obtained from first-principles calcula
tions, lb: aluminum migration is found to take place first in the vicinity of cation vacancies 
to reduce strong A l-A I interactions. As 8b sites are involved in scheme B  and A l atoms at 
8 b sites have one more strong A l-A I repulsive interaction than those at 48f or 16c sites, 
scheme 3 is energetically less favorable. In addition, as six more A l atoms are reordered in 
scheme 3, scheme B  is also statistically less probable. Starting from a lowest energy configu
ration o y-alumina, the lowest energy pathway of transformation by scheme A  was mapped 
out. Traisition states between adjacent intermediates were identified by successively fixing 
the posiion of the migrating atom and one of the atoms far away from it and relaxing all 
other at)ms. (The second atom is chosen to be an atom that does not appreciably change 
its positon throughout the transformation from the initial to final intermediates. This pre
vents “ siding” of the entire unit cell.) The conversion rate for the transformation is then 
computed based on this pathway. The rate is then given by

/• = vfp(E > A E) (7 )

where v is  the vibrational frequency corresponding to small oscillations of the A l atom in 
its equilibrium position prior to the rate determining step, /  is the population of this reac
tant, anc p(E > A £ )  is the probability that the system has an energy greater than A E. 
Vibratio ial frequencies are typically estimated by finite differences [8 6 ]. The latter two fac
tors are empcrature dependent. Computing the rate as a function of temperature recovers 
the experimental transformation temperature to high accuracy. The experimentally observed 
translatknal and rotational interfaces in 0 -alumina can be explained by different aluminum 
migratioi paths (resulting in models A, B, and their variants) in neighboring domains during 
the y- tc 0 -alumina transformation.

3.4.2. La/Alumina System
It is wid*ly known in the catalysis community through decades of empirical studies that 
doping o catalytic materials can improve thermal stability. The stabilization of y-ALO^ (or 
other poous alumina polytype used as a catalytic support) to prevent its transformation 
to a-AUOy can be achieved by adding certain chemical elements at different stages of the 
y-aluniira production process. Patented processes using La, P, Si. Ba, and Ce have been 
reported Lanthanum  is an expensive chemical, but an efficient industrial process has been 
devised t> introduce it into y-alumina. Silicon and some of the other elements, on the other 
hand, an inexpensive chemicals, but efficient industrial processes for incorporating them in 
y-alumini are not available. Thus, industry would like to optimize the amount of La  needed 
for stabilzation or develop processes that use less expensive chemicals.

In reont work at Alcoa [106], it was demonstrated that stabilization of y-alumina up 
to 1200°C can be achieved with as little as 0 .3%  La. This is an order of magnitude lower 
than exising practices, and the results suggest that in the industrial process of stabilization, 
large ammnts of La  are not active in the desirable mode. Unfortunately, the method of 
preparation by which alumina can be stabilized with only 0 .3 %  La  does not lend itself 
immediaely to industrial use. Nevertheless, reduction of the amount of La  used to stabilize 
y-alumini is in principle possible and remains a major industrial objective.

It is clear that an atomic-scale understanding of the stabilization issue could impact indus
trial procuction. In particular, understanding the role of La might lead to insights as to how 
to m odif the industrial process o f incorporating L a  in order to achieve stabilization with 
much sm Jler concentrations. On the atomic scale, a combination of experimental and theo
retical in stig a tio ns  can identify the configurations of La in y-alumina that are responsible 
for stabilzation and those that are inactive. The problem of stabilization is, o f course, more 
complex md involves processes on longer length scales. For example, the transformation 
from y  tc a alumina is likely to occur through the nucleation and growth of a-alumina parti
cles. Experimental [107, 108] and theoretical [55] work has demonstrated that y-alumina has 
lower surace energy than a-alumina so that an interplay between bulk volumes and surface 
areas of he competing phases may be the key to stabilization. W h a t then is the role of La 
and the oher additives? Is La dispersed as single atoms and remain so at high temperatures?
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Does it stop the nucleation of the a-phase, or does it inhibit its growth by residing on the 
surface of nucleated a-phasc particles? I f  so, is the process controlled by surface (interface) 
or bulk diffusivities of L a ?  Though experiments and theory have provided valuable insights 
for some of these questions, definitive answers have been lacking. O n the basis of very lim 
ited information, there have been conflicting suggestions that La  forms LaA 10 3 or L a 20 3 
monolayers on y-A l20 3 surfaces or it is incorporated in the bulk [106, 109-112]. There have 
been no suggestions about the atomic-scale processes that actually delay the onset of the 
transformation process.

Wang et al. [113] investigated the role of L a  in stabilizing y-alumina using a unique 
combination of first-principles density-functional total-energy calculations and experimental 
tools including direct atomic-resolution Z-contrast imaging of La-doped y-A I20 3 samples 
and extended X-ray absorption fine structure spectra ( E X A F S ) .  The three approaches yield 
complementary information that all leads to the same conclusion: La  atoms avoid going into 
the bulk and adsorb strongly on y-A l20 3 surfaces as single atoms without any clustering. 
Perhaps the most compelling evidence is provided by the Z-contrast scanning transmission 
electron microscopy (Z - S T E M ), where single La  atoms are seen clearly superposed on the 
crystal lattice planes formed bv the substrate. Surprisingly, unlike the undoped case [13,55], 
there was no apparent preferential exposure of the [110] surface. Instead, the [100] surface 
was encountered often. A  square arrangement of Al-O columns (representative of the (100) 
term ination) is clearly resolved. In Z - S T E M  the intensity contributed by an atom is roughly 
proportional to Z 2, where Z  is the atomic number [114], allowing single La atoms to be 
visible in the form of brighter spots on the background of thicker but considerably lighter 
y-A l20 3 support. Most of the La  atoms are located directly over A l-O  columns, but a small 
fraction also occupies a position shifted from the A l-O  column. The Z - S T E M  images also 
reveal that there is no apparent correlation in the distribution of dopant atoms.

The presence of La  was also confirmed by electron energy loss spectroscopy ( E E L S ) ,  but 
high-resolution E E L S  study was not feasible because of rapid beam damage of the substrate 
at very high magnifications, so it was not possible to use E E L S  to determine the position 
o f the La  atoms relative to the alumina lattice. Further information about the distribution 
of L a  was obtained by changing the focus of the microscope electron beam from the top 
surface to the middle of the sample to the bottom surface. It was found that the La atom 
images gradually fade and finally reappear, confirming that the La  atoms are, in fact, on the 
two surfaces.

The theoretical calculations were performed within density functional theory, using the 
pseudopotential method and a plane wave basis set [5-7, 115]. Exchange correlation was 
included using the generalized gradient-corrected functionals (G G A )  given by Perdew and 
Becke [15, 116]. The Vanderbilt ultrasoft pseudopotentials were used for O  and H  atoms, a 
norm-conserving pseudopotential for A l, and a projector-augmented wave (P A W ) potential 
for La  [ 117—119]. A  plane wave energy cutoff o f 400 e V  and two special k-points in the irre
ducible part o f the two-dimensional Brillou in  zone of the surfaces were used for calculating 
both the (100) and (110) surfaces of y-A l20 3. Semi-infinite (100) and (110) surfaces were 
modeled by repeated slabs (supercells) containing 7 to 12 atomic layers for the (100) surface
and 5 to 8 layers for the (110) surface (68-112 and 70-128 atoms, respectively) separated by

° • i '  a vacuum region equivalent to 10 to 12 A  (supercells containing 80 atoms and a 2 x 2 surface
cell were employed to represent the a-A l:0 3 surface). The  cation vacancies that are inher
ently present in the spinel form of y-A l20 3 were located on the tetrahedral cation sublattice. 
A ll the atoms in the supercell except for those in the lower one or two atomic layers (which 
were kept fixed) were relaxed until the forces on the atoms were smaller than 0.05 eVVA.

The calculations found that La atoms favor the surfaces over bulk sites by substantial 
energy differences ( —4 eV ), with several configurations, including the two observed in Fig. 7.

Figure 7 represents the configurations of the undoped and La-doped (100) surface. In the 
absence of La , the (100) surface (F ig . 7a) shows only m inor relaxation effects; all the sur
face aluminum atoms are five-coordinated, and the surface oxygen atoms are either three- 
or four-coordinated. The cation vacancies are located between the first and second oxygen 
subsurface layer. However, when an L a  atom is introduced, a significant relaxation of the 
structure occurs. O ne of the five-coordinated A l atoms (adjacent to L a ) is displaced from
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(b)

Figure 7. Schematics of the configurations lor the (100) surface of y-AI:0 3, determined by first-principles calcu
lations: (a) undoped and (b) La-doped. The Al, O, II. and La atoms are shown in light, red. white, and blue, 
respectively. The position of the aluminum atom that relaxes from the surface into the cation vacancy is indicated 
by the blue arrow.

the surface into the subsurface tetrahedral vacancy site (F ig . 7b). The La  atom occupies the
resultant surface fourfold hollow site, which is close to the initial location of the A l atom 

i °  ° in planar coordinates but located — 1.2 A  above it, making L a — O  bond lengths 2.3-2.5 A .
Th is configuration, obtained by total-energy minimization, is found in the Z - S T E M  images. 
Calculations aimed at revealing the structure of the other observed site found that it cor
responds to an La atom with one of the four neighboring surface O  atoms missing. The 
asymmetry forces the La atom off the Al-O column, as observed. Its formation is clearly the 
result of the presence of surface O  vacancies.

Additional calculations exploring the incorporation of La  atoms in bulk y-A l: 0 ;> found 
that an La  atom, when initially placed at a vacancy, interstitial, or substitutional site in the 
second or third subsurface layer, would relax up to the surface. W hen an La atom is initially 
located in a deeper layer (the eighth or ninth layer o f the supercell for the ( 100 ) surface, 
and the fifth or sixth layer for the (110C) surface), which is equivalent to the bulk, the total 
energy of the system is significantly higher ( —4 e V ) than that of the configuration with La 
on the surface (models with La  in different bulk sites were examined). The preference for 
surface sites over the bulk arises primarily from the strong binding of La  on the surface 
and the large difference in ionic size between L a " 3 (1.03 A) and A l+3 (0.54 A) [ 120 ]. The 
theoretical result corroborates the through-focus imaging analysis. The marked preference 
for surface sites versus the bulk is an important factor in the inhibition of sintering. Progress 
o f the sintering process would inevitably trap some of the surface L a  atoms in the bulk, 
thus forcing the system into highly strained and energetically unfavorable configuration. The 
resulting inhibition effect helps retain a large surface-to-volume ratio (specific surface area) 
for y-A l20 :, at higher temperatures, in agreement with experimental observations [109, 121].

The binding energy of La  to the (100) surface is very high ( 8 .6  eV ), due partly to the 
removal of the surface A l atom into the subsurface, which enhances the attractive interaction 
between La  and the surface O  atoms and reduces the otherwise strong repulsion between La 
and the A l atom. The strong binding also causes large migration energies (4-5 e V ) for typical 
paths connecting equivalent configurations. Sim ilar calculations for the (1 10C) surface, which 
is exposed preferentially in the undoped y-A l: 0 :, [13, 55], also resulted in high values of the 
binding energy (7.5 eV ). In this case, however. La  atoms occupy existing surface hollow sites, 
which are created on the undoped surface [69, 70] by displacement o f three-coordinated 
surface A l atoms into the empty octahedral sites in the first subsurface layer. It is possible 
that the difference in the two binding energies is responsible for the occurrence of ( 1 0 0 ) 
surfaces only after annealing in the presence of La  dopant. This interesting possibility needs 
to be further explored. W hen the same computational procedure is carried out for a-A120 3 
(0001) surface, much lower binding energy (4.3 e V ) for La  atoms is obtained. This difference 
means that doping would cause an increase in the enthalpy of o '-ALO ;, relative to y - A L 0 3, 
thus further stabilizing y-ALO^
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Finally, independent evidence that La prefers surface sites was provided by E X A F S  m ea
surements. These were carried out for y-alumina samples doped with La  at several tem per
atures below and above the transformation temperature. It was found that La  does not have 
a second well-defined coordination shell, indicating that atom ically dispersed distribution 
of La  is favorable.

Wang et al. [113] proposed the following scenario: L a  atoms coat the surfaces of po rous 
alumina as dispersed single adatoms. As the temperature is increased, their presence on 
the surface prohibits sintering and transformation to nonporous a-alumina, because any 
sintering would either trap L a  atoms in the bulk, which is energetically unfavorable, or expel 
them to the surface of a-alumina, which is again not favored energetically. La , of course, 
only delays the onset of the transformation until new pathways become available and lead 
to the formation of an aluminate. Overall, this study is one of the strongest examples of 
the successful interplay of theoretical and experimental methods to elucidate atomic-scale 
details of complex catalytic materials.

3.5. Photocatalysis

3.5.1. Ti02
Titanium oxide is perhaps best known as a paint pigment, but it is also a photocatalyst 
for dissociation of water into hydrogen and oxygen. W ith  the growing interest in moving 
the economy from a petroleum base to a hydrogen base, which was seeded as far back 
as the “ energy crisis”  o f the early 1970s, there is commensurate interest in photocatalytic 
dissociation of water. Titanium  oxide has become the de facto standard system for the study 
o f this process. Its catalytic properties also find use in remediation of pollutants and in  the 
preparation of antim icrobial surfaces.

Early  theoretical treatments of the electronic structure of T i0 2 gave insight into the basic 
band structure [ 122] and differences in the orbital interactions among the rutile, anatase, 
and brookite polymorphs [123], but the first in-depth inform ation about the geometric struc
ture of exposed surfaces, which is essential for understanding catalytic action, did not come 
until more than a decade later. Ramam oorthy, Vanderbilt, and King-Smith [124] rep*orted 
D F T  calculations with pseudopotentials and a plane wave basis on supercell slab miodels 
of various stoichiometric exposures of rutile T iO : surfaces and identified ( 110 ) as having 
the lowest surface energy, while ( 100 ) is also stable with respect to forming facets of ((110 ). 
Only very minor displacements of the surface atoms from their bulk positions were Ifound 
upon full structural relaxation. The most significant relaxations were 0.13 displacement of 
6 f  T i in the direction of the surface vector, 0.17 A  displacement of the 5f T i in the direction 
of the surface vector, and 0.13 A  displacements of the bridging oxygen atoms in the direc
tion of the surface vector (6 f  = sixfold coordinated, 5f =  fivefold coordinated, and so on). 
These displacements were quantitatively confirmed by surface X-ray diffraction by Ch arlton 
and coworkers in 1997 [125]. Surface energies reported by Ramam oorthy, Vanderbilt, and 
King-Smith [124) are about three times larger than those reported experimentally [126]. 
Ramamoorthy, King-Smith, and Vanderbilt [127] also studied the nonstoichiometric T i — O  
termination of the rutile T iO : (110) surface. There  are two major qualitative differences 
from the stoichiometric term ination. First, upon full structural relaxation, the 3f surface oxy
gen atoms displace outward from the surface so that they are no longer in a trigonal-iplanar 
coordination but instead become the apex of a trigonal pyramid. This result was subseq uently 
confirmed by more detailed spin-polarized calculations reported by Lindan et al. [ 128 j. This 
relaxation is consistent with simple freshman chemistry ideas about oxygen coordination. 
The preferred local geom etry of oxygen is tetrahedral coordination by electron pairs { bonds 
or free pairs). W ith in  the rutile bulk, the oxygen atoms are constrained to the trigonal planar 
local geometry, but when exposed to the surface, they are free to pucker outward, thereby 
achieving a local geometry closer to the chem ically preferred one. The second major feature 
o f the T i— O  terminated surface that distinguishes it from the stoichiometric term ination is 
that in the form er case, there are occupied states at the conduction band minimum. These 
states are localized near surface-exposed Ti atoms, an unsurprising result given tLat the 
removal of surface oxygen atoms will deplete acceptor oxygen p orbitals from the valence
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band. Absent enough acceptor oxygen p orbitals in the valence band, the T i valence elec
trons are forced to fill conduction band orbitals; that is. they remain on Ti. Band structure 
calculations [122. 129] reveal that the 0 2p bands are predom inantly within the valence band 
and the T i3d bands are predominantly within the conduction band. The occupied states at the 
conduction band minimum almost certainly are active in catalysis, and it has recently been 
confirm ed by an elegant combination of scanning tunneling microscopy and D F T  calcula
tions that oxygen vacancies are correlated to active sites when T i0 2 acts in the photocatalytic 
dissociation of water on the (110) surface [130]. Restructuring around such vacancies has 
been seen by S T M  and in first-principles calculations as reported in Ref. [131].

Fu ll potential calculations on T iO : include a study of the optical properties of the anatase 
polymorph [132] and of the rutile (110) surface [133]. The F L A P W  calculations on rutile 
T i 0 2 (110) surface were less successful than the DFT/pseudopotential calculations described 
previously. Displacements of surface atoms upon structural relaxation were reported that are 
now known to be contrary to experimental observation [125]. In light of a more recent and 
elaborate numerical convergence study by Muscat, Harrison, and Thorton [134], the reason 
for this failure is almost certainly the use o f an insufficiently thick slab model. (G iven  that 
F L A P W  calculations are considerably more expensive than pseudopotential calculations, and 
considering the early date of the F L A P W  work, it is understandable that the calculations 
were restricted to a small supercell.) The convergence study considered the (100) term i
nation. (M uscat and Harrison also reported calculations of the electronic and geometric 
structure of the rutile T i0 2 (001) term ination, which is known to be unstable with respect 
to faceting [124].) It was found that 9 0 %  o f the convergence in atom displacements and 
surface energies is recovered with a slab model that is six atom ic layers thick, equivalent to 
two T iO : units. N ine atomic layers (3 T i0 2 units) were found sufficient to yield essentially 
full convergence. The convergence study also investigated the influence of different treat
ments of the exchange and correlation on computed properties. Differences in geometric 
structure between D F T / L D A , D FT /G G A , and Hartree-Fock (H F )  treatments were found 
to be very minor. D ifferences in formation energy were quantitatively different by as much 
as 3 0 % , but the ordering of the different surface exposures was found to be invariant with 
the choice o f exchange and correlation treatment.

The anatase polymorph of T iO ? has been the subject o f fewer theoretical investigations 
than the rutile form, but it is in fact a better catalyst in some applications, and such studies 
are o f great interest. In addition to the F L A P W  study noted before, Lazzeri and Selloni [135] 
have reported DFT/plane wave/pseudopotential calculations on anatase and its surfaces. One 
particularly interesting feature of anatase is that while its bulk is less stable than the rutile 
polymorph by about 1.2 kcal/mol, it has generally lower surface energies [104]. A  (4 x 1) 
reconstruction of the anatase (001) surface lowers its surface energy still further [135]. The 
lower surface energy of the anatase polymorph relative to rutile is important because for 
sufficiently small particles, the anatase form may actually be favored. Consider the volume V 
and surface area A o f a particle as a function of the quantity of material. G iven a density p 
and m olar mass A/, if we assume a spherical particle o f radius r for simplicity (the qualitative 
result that follows is essentially invariant with particle shape), we may write:

V — nM j  p — 47T/*3/3 (8)

where n is the number of moles. Solving for r yields

r = ( 3 1^/477)1/3 = (3 /7  A//47rp),/3 (9)

Relating the surface area to the quantity of material yields

S = 47r r  = 477(3/? M /4trp )2/3 (10)

It follows that the volume increases linearly with the quantity of material but the surface 
area increases with only the (2/3) power of the quantity of material. If  we write the total 
particle energy E, as a sum of bulk £\ and surface E s terms,

E r = E y -f E s = aV -f bS = a nM/p -f M tt(3/7A//47rp)2/3 ( 11)
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where a and b are unspecified constants. It is clear from Eq. (8 ) that for large //, the volume 
term will dominate, hut for sufficiently small //, the surface term will dominate. It follows 
that if the b coefficient for anatase is smaller than that for rutile, the form er will be more 
stable at sufficiently small particle size. Evidently, the threshold particle size is about 10 nm.

Compared with the undoped materials, T i0 2_ vC v has been shown to exhibit greatly 
improved catalytic efficiency for water splitting. A n  atomic-level understanding of the piysi- 
cal origins of this improved efficiency would facilitate the systematic engineering of improved 
efficiency in other photocatalytic materials. It has observed that the band gap in H 0 2 
decreases upon doping with carbon [136]. It is speculated to decrease further with the iitro- 
duction of more impurities of C. We have carried out all-electron F L A P W  band structure 
calculations of for pure T i0 2, T i40 7C  and T i4O f1C 2. We find that the decrease of the )and 
gap from T i0 2 to T i40 7C  is dominated by C  p electrons. For T i4O f>C 2, strong C  intera:tion 
elim inates the band gap entirely. We have also carried out surface reconstruction calculaions 
for the T i— O  exposure of the (110) surface and find the reconstruction reported earlier by 
Ram am oorthy, King-Smith, and Vanderbilt [127], whereby the O  atoms, trigonally coordi
nated within the T iO : bulk, “ pop out”  o f the surface and seek T ,  geometry. The moving 
out of O  atoms on the surface may form a site where absorbed water H : 0  is cxcitec into 
a “ ready-for-splitting”  state. Although the stoichiometric (oxygen term inated) (110) surface 
is widely held to be preferentially exposed, combined D F T  calculations based on a peri
odic slab model and S T M  experiments have established that the catalytically active sites are 
oxygen vacancies, namely, exposed Ti atoms [130].

4. FUTURE DEVELOPMENTS
4.1. Some Selected Outstanding Problems
4.1.1. Interaction of N2 with Molybdenum Nanoclusters
It is known that geometrical surface structures, not electronic effects due to clustci size, 
are a key to understanding trends in the reactivity of N : with metal clusters [ 137]. This is 
because different-sized nanoclusters expose varying surface areas o f different surface panes, 
and the reactivity o f N : exhibits a strong dependence on the surface plane with which it 
reacts. It is thought that when N 2 interacts with the ( l 00) surface o f W  metal, it pene rates 
close to the surface where tt* orbital of N : interacts with metal d orbitals, activatirg the 
N — N bond for dissociation or reaction. W hen N : interacts with the ( l l 0) surface of W  
metal, however, the close packing of the metal atoms on the surface prohibits this >trong 
interaction. M itchell et al. [137] propose that the same mechanism holds for N 2 rcicting 
with molybdenum nanoclusters. This mechanism has been tested with empirical potential- 
based methods for N 2 and W  surfaces [ l 38] but not at all for M o  surfaces. Testing <f this 
hypothesized mechanism with first-principles quantum mechanical methods, which explicitly 
model the interactions of the valence electrons, would be a valuable contribution o the 
science of cluster catalysis.

4.1.2. Dissociative Adsorption of NO and CO
The catalytic treatment of N O  and C O  from vehicle exhaust remains one o f the most inpor- 
tant problems in automotive catalysis and one with tremendous potential to bench from 
designed catalysts. Nanoclusters of vanadium ( V n) have been shown to have stront size- 
dependent reactivity toward D 2 (deuterium, used for isotopic labeling) and N : [ l 39]. Similar 
results have been reported for D : and nickel clusters [ 1401. Size-dependent reactivity is the 
ideal characteristic for designing catalysts with specific activity, but unfortunately vie V n 
clusters show very weak size-dependent reactivity with C O  and NO . Understanding tie fun
damental properties that govern the size dependence of the electronic structure, and hence 
reactivity is now a kev barrier to designing catalysts with specific activity.

In the most widely advocated mechanism of the reduction of N O  in vehicle exhaist, the 
reduction initiates with the dissociative adsorption of N O  [48],

N O  -> N O , N , f  O 12)
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H ere  the subscript a denotes an adsorbed species. The adsorption site is unknown but often 
hypothesized to be a metal center or metal nanocluster on the supporting alumina wash- 
coat. Th is step seems plausible, particularly in light of experimental [141] and theoretical 
[ 1421 evidence for the dissociative adsorption of C O . One theoretical study, however, has
suggested that the adsorption of N O  on Pt or Pd actually strengthens the N O  bond [143].
A  coupling of two adsorbed N O  molecules was suggested as the initial step.

Two possible steps have been proposed for the final production of N 2. One possibility is 
that adjacent adsorbed N atoms combine,

2N(V —» N : (13)

A nother possibility is that an adsorbed N atom reacts with an adjacent adsorbed NO ,

NO ,# + N #, -  N , + 0 „  (14)

This case o f the reduction of N O  is just one example where the computational methods that 
coukl be used choose between proposed mechanisms. This kind of application (choosing 
between proposed mechanisms) is one of the strengths o f computational methods.

4.1.3. V20 5
Vanadium  has numerous stable oxidation states and consequently forms many oxides [ 144]. 
Vanadium  pentoxide releases oxygen reversibly upon reduction and is used as a catalyst in the 
mild oxidation o f organics [ 145]. Unlike many metal oxide heterogeneous catalysts in which 
the coordinatively unsaturated (cus) metal atoms at the surface function as Lewis acid sites, 
it is thought that in V 20 5, nucleophilic reaction occurs at surface oxygens [145]. Vanadium 
pentoxide has a layered structure with weak interlayer coupling. This fact has been used to 
advantage in designing cluster calculations; a single layer, term inated with hydrogen, gives a 
reasonable facsimile of the bulk electronic structure. Such cluster calculations of vanadium 
pentoxide surfaces have revealed that there are at least three different types of surface- 
exposed oxygen: singly coordinated (O 1), two-coordinated (O 2), and three-coordinated (O ') ,  
hinting at a rich surface chemistry [146]. The singly coordinated vanadal (V  — O ) species are 
o f particular interest because the vanadal oxygen will be electron-rich. Periodic slab D F T  
calculations have shown that binding of a single H  atom at the surface is energetically most 
exothermic at the vanadal oxygen and that the O — H bond formed there is shorter than 
that formed by H  binding at either the O 2 or O 3 surface oxygen species [147]. These results 
represent only prelim inary forays into the study of vanadium oxide. This material is ripe for 
theoretical investigations. Oxides other than V 20 5 have seen very little theoretical attention. 
The surface chemistry is o f great interest, and future bulk and surface studies couid be 
particularly fru i tfu I.

4.2. Leveraging Infrared Spectroscopy
To study heterogeneous catalyst surfaces and catalytic reactions, one needs a technique that 
will probe surface-adsorbed species and reaction intermediates. H R E M  is inappropriate 
because the high-energy electrons will dissociate adsorbed species and destroy the reaction 
intermediates long before an image can be captured. W ith  good resolution, high sensitiv
ity, and no requirement of a vacuum environment, 1R spectroscopy of adsorbed molecules 
would seem an ideal source of experimental input. Consider, for example, the interaction 
o f an alcohol with the surface of y-alumina. The catalytic properties of alumina for alcohol 
dehydration have been exploited for more than 200 years [47, 93]. but the mechanism is 
still unknown! I f  one knew how the alcohol molecule adsorbs to the surface, it would pro
vide important clues for elucidating the mechanism. Several chemically reasonable adsorbed 
structures are easily envisioned. If  one could compute the vibrational frequencies of these 
structures with sufficient accuracy, the correct structure could be easily identified by simply 
matching the experimental IR  spectrum.
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Regrettably, current computational methods do not have adequate accuracy. Today, the 
most common method of carrying out such a calculation is to find the normal modes of vibra
tion for the adsorbed species by diagonalizing the mass-weighted force-constant matrix for 
the adsorbed molecule. This technique gives the vibrational frequencies w ithin the harmonic 
approximations, typically accurate to about ± 5 %  (about ±150-200 cm 1 for O H  vibrations). 
By  contrast, definitive assignment of O H  on y-alumina, for example, would require an accu
racy of about ±10 cm ” 1 [148].

To obtain the desired accuracy, two approximations, which are the prim ary sources of error 
in conventional computations of vibrational frequencies for surface-adsorbed species, must 
be removed. These approximations are: (1) the harmonic approximation and (2) the neglect 
of dynamical coupling of the adsorbate to the support surface. To remove these approxima
tions, one possibility is to compute the vibrational frequencies for surface-adsorbed species 
by extracting them directly from classical dynamical trajectories. Quantum  information can 
be extracted from a classical trajectory as a consequence of the Heisenberg correspon
dence principle [149. 150]. The frequencies from a dynamical trajectory are based not on 
an approximating set o f harmonic oscillators but on the correct molecular Ham iltonian and 
therefore incorporate all of the couplings and anharmonicities of the system. To avoid errors 
introduced by a functional fit to the potential energy surface (P E S ) ,  the trajectories should 
be computed based on total energy and derivatives thereof (forces) computed “ on the fly” 
with electronic structure methods. These electronic structure calculations must reproduce 
the shape of the P E S  with quite high accuracy so as not to reintroduce errors of a magni
tude comparable with those removed by elim inating the harmonic approximation. Detailed 
studies from the literature [151] suggest that the best choice for such electronic structure 
calculations is an all-electron D F T  calculation for periodic (slab) systems. This will avoid the 
overestimation of force constants typical of Hartrce-Fock calculations, as well as the finite 
size effects of cluster calculations.

O verall, advances in the computational modeling of complex catalytic materials are inex
tricably linked to advances in theoretical methodology.
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1. INTRODUCTION
Mesoscopic physics concerns the properties of small systems with sizes in the range of a 
few nanometers to micrometers and at low temperatures typically below l K. The constant 
progress in nanofabrication techniques allows for a controlled fabrication of these structures 
and a consequent increasing interest in this physics. Characteristic for superconductivity is 
the macroscopic phase coherence of the order parameter and the supercurrent flow. On the
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one hand, superconductivity adds new degrees of freedom and makes the description of 
mesoscopic system richer; this is the case of hybrid (normal/superconducting) systems. On 
the other hand, superconducting properties arc deeply influenced by mesoscopic effects, as 
it is the case of charging effects in small superconducting junctions. Besides the interest
ing effects associated with the superconducting coherence in nanodevices, a very appealing 
direction of research with superconducting nanocircuits has been the study of macroscopic 
quantum dynamics of small Josephson junctions. This area of research has been fertile and 
very recently had an astonishing impact also in solid-state quantum information, where they 
are believed to be among the best candidates for the implementation of a quantum com 
puter. The study of superconducting nanodevices has been proven to have important con nec
tions also in the area of statistical mechanics and phase transitions. W e refer to Josephson 
arrays that have been studied for the past two decades to observe, in artificially controlled 
structures, a variety of collective properties and quantum phase transitions.

This brief introduction makes evident how the field o f superconductivity in nanostructures 
is so vast and diversified that each topic would require a separate review to be adequately 
introduced. It is our intention to give a general overview of the field pointing to the rele
vant references for a more detailed analysis. The description is kept as simple as possible. 
This chapter is divided in three sections (including this “ Introduction"), which are almost 
independent among themselves, and a Conclusions section. We begin, in Section 2, by in tro 
ducing the field of hybrid systems, which are mesoscopic devices constituted by norma i and 
superconducting parts in electrical contact. The electrical transport through the system is 
dominated bv the conversion of normal current into supercurrent, which takes place at the 
interface. We give, for educational purposes, a rather detailed introduction to the technique 
of Bogoliubov-de Gennes equations combined to the scattering approach for the study of 
transport in hybrid systems. The complementary approach using quasiclassical G reen func
tions is then briefly introduced, however we refer to the existing literature for a more detailed 
presentation. In Section 3, we begin with the discussion on the superconducting p roper
ties in small systems where charging effects are dominant. The study of charging effects in 
superconductors has important ramifications for the subsequent sections where we describe 
superconducting properties in ultrasmall grains (Section 3.4), the properties o f Josephson 
arrays (Section 3.5) and, finally, the role of Josephson junctions in quantum comput ation 
(Section 3.6), which is surely one of the most important breakthroughs in the field of super- 
conducting nanostructures.

Basics in superconductivity and Josephson physics can be found in the books by 
Tinkham f l]  and by Barone and Paterno [2]. Because many ideas discussed here belong 
to the field of more traditional mesoscopic physics, we refer for these topics to the Ibooks 
by Beenakkcr and van Houten [3] and Im ry [4] and to the conference proceedings ||5, 6]. 
Excellent introductions to single charge tunneling can be found in Refs. [7-9]. W e also refer 
to the recent reviews on hybrid structures [10], ultrasmall superconductors [11]. solid state 
quantum computation [12] and Josephson arrays [13] for a more complete description of 
these topics and a more complete list of references.

2. HYBRID SYSTEMS
2.1. Andreev Reflection and Proximity Effect
A  fascinating aspect of mesoscopics is the possibility of fabricating hybrid nanostructures 
formed from combinations of normal conductors (N )  and superconductors (S ). T he interest 
for these systems stems from the fact that the nature of charge transport is drama tically 
different in the normal and in the superconducting constituents of the heterostructure, giving 
rise to a rich variety of effects. W hile  the charge current in N is carried by quasi-particle exci
tations (electrons in a metal), at sufficiently low energy (e.g., temperature, applied voltage, 
frequency, and so on) the current in S is carried by the superconducting condensate, which 
is a many-body ground state property of the system, and Rows without dissipation.

The matching between these two different charge transport mechanisms can be well under
stood for phase-coherent structures in terms of the so-called Andreev reflection processs [ 14].
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This can hc introduced starting from the microscopic Bardeen-Coopcr-Schrieffcr (B C S )  
theory of superconductivity [ 15). In the presence of boundaries and nonuniformities, it is 
convenient to perform an approximate Fourier transform of the B C S  Hamiltonian. Making 
use o f the Hartree approximation, one arrives to an effective single-particle Hamiltonian 
that leads to the Bogoliubov-de Gennes equation (16]

//,, A \ /u\ r- /u
A ‘ -  H* I \ v J \v ( 1)

tor the coherence factors u and i>, where the energy E  is measured from the condensate 
chem ical potential. This is a matrix eigenvalue equation that contains the single-particle 
Ham iltonian H{] describing electrons in the superconductor in the absence of the attractive 
potential, and the time-reversal o f such a Hamiltonian ( — //,*), which describes the hole 
degree o f freedom. The off-diagonal term A, which introduces a coupling between electrons 
and holes, is given by the product of the point-like electron-electron attractive potential and 
the pairing amplitude describing superconducting correlations among electrons. The pairing 
amplitude, proportional to the anomalous average ( i/ji/j ), can be understood as being the 
wave function of the Cooper pairs. Because A, which is the superconducting order parame
ter, is determined by the coherence factors, it should bc calculated self-consistently. In the 
absence of superconductivity (A  = 0), the system is described in terms of decoupled elec
trons and holes, the latter being characterized by having group velocity and wavc-vector in 
opposite directions, as well as opposite charge and spin with respect to electrons. W hen an 
electronic attractive interaction is present (A  ^  0), electron and hole degrees of freedom 
get mixed, forming particle-like and hole-like quasi-particles. As a result, a gap of amplitude 
|A| opens up in the energy spectrum (see Fig. 6) forbidding quasi-particles excitations with 
energy inside the gap to propagate in the superconductor.

Now  consider a piece of normal metal in contact with a superconductor and assume 
that electrons of a given energy E  < |A| are injected from the normal part toward the N S 
interface. As explained above, such electrons cannot propagate through the superconductor, 
in fact they are allowed to penetrate as an evanescent wave up to a depth of the order 
of the B C S  superconducting coherence length They can, however, undergo two different 
processes. In the first one, normal reflection, electrons are reflected back into the normal 
slab and do not contribute to the charge current. The second one is made possible by 
the electron-hole coupling term of the Bogoliubov-de Gennes Ham iltonian and consists in 
the coherent evolution of the incoming electron into a retro-reflected hole (Fig. 1). This 
constitutes the Andreev reflection process, which is indeed responsible for charge transport 
and corresponds to the transfer of a pair of electrons from the normal side of the interface 
to the superconducting condensate. Noteworthy, each Andreev reflection process contributes

(a) (b)

Figure 1. (a) In a normal reflection process, which occurs for example at an interface with an insulator (1). an 
electron is scattered hack into the normal metal, conserving the component of the momentum parallel to the 
interface, (b) In an Andreev reflection, occurring at a NS interface, the incoming electron is reflected hack as a 
hole. In this case, the component of the momentum parallel to the interface is reversed, so that, at the Fermi 
energy, the reflected hole retrace hack the trajectory of the impinging electron.
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2e to the charge current. It is important to notice that Andreev reflection does not contribute 
to the transport o f energy, as no excitations are transferred into the superconductor. W h ile  
providing good charge conductivity, N S  interfaces prove to be good thermal insulators.

Andreev reflection also accounts for the influence that the superconductor exerts on the 
normal conductor, known as proximity' effect. In much the same way as the quasi-particle 
excitations penetrate the superconductor, the superconductor pairing amplitude also leaks 
out into the normal side of N S  contact over a large distance, o f the order the superconduct
ing coherence length, even in the absence of an attractive interaction. As a result, partial 
superconducting properties are induced into the normal conductor.

In the next section 2.2, we will give a derivation (following Ref. [16]) of the Bogoliubov- 
de Gennes equation, and in Section 2.3 we shall solve such an equation for different systems. 
In the following sections, we shall describe the two most widely used theoretical approaches 
applied to study hybrid systems, namely the scattering formalism (Section 2.4), which we will 
analyze in detail, and the quasi-classical G reen ’s function theory (Section 2.6). In Section 2.7, 
we shall review the most important results attained in the field.

2.2. Derivation of the Bogoliubov-de G ennes Equation
As mentioned above, the Bogoliubov-de Gennes equation is derived from the B C S  theory. In 
this section, we show how to derive such an equation in the general case where an exchange 
field is present. This will be useful for studying hybrid structures in which ferromagnets arc 
present, too. It is convenient to make use of the Bogoliubov’s self-consistent field method 
[16, 17]. The starting point is the following Ham iltonian in the second quantization form:

H I  -  y  E / ) 4 > , r - )  ( 2 )

where the second term accounts for the electron-electron coupling, which is assumed to 
be a point-like, two-particle interaction (introduced for the first time by Gorkov [18]) and 
independent of spin, therefore characterized by a single coefficient V . In Eq. (2),

» ( r ) —  (- / fiV  -  ~ A (r))2 + V()(r )  - ixni (3 )Imc —

is the single-particle Ham iltonian in the presence of an exchange field (second term ). A (r )  
is the vector potential, I/()(/r ) is the normal potential, ji is the chemical potential, M is the 
internal mean field due to the exchange interaction, and U{)( f ) is the periodic potential due 
to the ions in the crystal, c is the speed of light, 1 is the 2x2  unity matrix, and <r is the vector 
o f Pauli matrices. Before proceeding, we want to remark that ferromagnetism is introduced 
according to the Stoner model (see Refs. [19-22]). In this model a molecular field, due to 
the permanent magnetization present in a ferromagnet, replaces the external magnetic field 
in the Zeem an energy, and it is added to the single-particle energy. Such a molecular field 
can be obtained calculating the exchange interaction in a system of spins using the mean 
field approximation (sec Ref. [23]). Such a molecular field can be treated as an adjustable 
parameter to fit band structure calculations.

The operators if/,r(/: ) and ) are, respectively, destruction and creation field operators 
for a particle of spin a  at the point r, which obey the Ferm i commutation relations

$ Jr)4 t 'A P ) + $ A h h A r )  — 0 (4)

</',r('T W v ( 0  + r ) -  smr 8{r - r ) (5)

W e now seek an approximate solution of the many body problem in terms of an effective 
single-particle Ham iltonian If.,,-. According to the H artree approximation (see Ref. [24]), 
such a Hamiltonian describes a particle that moves in a mean-tield potential produced bv all
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other pmrticles. Using the variational principle, the best such a Hamiltonian is the one that 
minimi/zes the total free energy F. We can try the following guess:

+ j  c l r \ i p \ ( r  )i]j' ( r ) \ ( f )  + ( r  )t//, ( r  )A * (r  )] (6)

where ;U] (r), Ul (r )  and A(/T ) are effective potentials to be determined in the following.
By  defin ition

F = (H ) - TS (7 )

where H  [Eq . (2 )J is the initial Hamiltonian and the angle brackets denote thermal average
given by'

„ , ! r  - (« )

T is the temperature and .S’ is the entropy. The matrix elements are taken with respect to 
eigenstates of Hcfj

Hcff\ct>) = E ^ )  (9 )

A  general method to calculate (H ) is to replace the fields t//\s with the fields y ’s, which 
diagonal ize H(,rf through an unitary transformation

*At = £ » ( “ ',O ')y»t -  w»*('7) y l i )

>K = + Vn (r)yn\)

then to use the mean value rules

(y Linur) = slwl8„,T.f, ( i i )

(y,ury ,„«■•) = () (12)

where

f- = ^  (13)

However, i t will not be necessary to perform this entire calculation. W e write (H ) in the 
form

(H) --= J  dr{(i])](r). (//[(F ))7 M r )^  ~ j T ,  f  ( r )< M r  )$ „{? ))  (14)

The product <i//T(1 )i//T(2)j//(3)0r(4 )) can be simplified thanks to W ick 's theorem, which make 
use only of the fact that ipT and t// are linear functions of y' and y. The theorem gives

\ (2)ij/(3)ijj(4)) = 1 )i/;(4))<0,t(2)i//(3)) -  <<//*( 1 )<//(3)><^(2)<A(4)>

+ (i//t ( l ) 0 i ( 2 ) ) ( (//(3)i/}(4)) (15)
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W e now vary the amplitudes (uK v\ ul , vl ) and the occupation number /„. The free energy 
(7) then varies by 8F :

8F = J -  I7 E  /  dritfArWJrfiSifc.irW'r (i:

+ v E  f drifarWAnWiWWA?))
CT

- V  j  dr[(ijj\(r)iJ/l(r))8(ij/l (r)ip ] ( r ) )  +  c.c.] -  755 (16)

where we have assumed (ipl(r)il/ (r ))  = 0, as no magnetic exchange interaction was left 
in the interacting part o f (2). W e also assumed (4 fl(r)$r(r ) )  = 0, as we are considering 
spin-singlet pairing. Now, notice that the quantity

F  =  ( H eff) - T S  (17)

is stationary with respect to (8u\ 8vK 8u[, 8vl ) and 8fn, since our excitations diagonalize 
Hcff exactly. Using (6), this condition becomes explicitly

0 =  H H , „ ) - t s s  =  +  ( " T  , ) ] ( $ { ) )

+ j  dr[A(r)8(iJ^(r)ij/[(r)) -fc.c.] -  TSS (18)

By comparing (16) and (18), it is easy to see that F  will be stationary if we take as effective 
potentials

iV (r )  = -V(ijj](r )ijsl (i: )) (19)

r1lHn = - V ( $ ( r ) h ( r ) )  (20)

M r ) = - ^ ( ^ ( r  ) ^ t ( r  ) )  = V (ij/^r )ij\(r )} (21)

7/r ( r )  and Ul(r )  are single particle potentials (standard Hartree result for point-like inter
actions), and A ( r )  is referred to as the pairing potential.

The key feature o f the mean field theory of superconductivity is that we admit non
vanishing expectation values for the spin-paired operators ijjt(r )ijj{ ( r ) and i/j^f )ift (̂r ). If  
we consider Ht.1f in (6), we see that, on the one hand, the terms in 7/1 and U[ destroy and 
create one electron and therefore conserve the number of particles. On the other hand, die 
terms in A increases or decreases the number o f particles by 2, This is not a problem, as Hcff 
operates on the B C S  wave function, which is not an eigenfunction of the number operator. 

As we shall see, the transformation in Eq. (10) diagonalizes Flrlf in such a way that

H.-rf - £ ,  + £ £ , , y l y m, ‘21)
n(T

where E K is the superconducting ground state energy, En is the energy of the //th quasi
particle excitation, and y,UT (yjur) is the quasi-particle destruction (creation) operator 
satisfying Ferm i commutation relations:

{ y ' y , I — 8 8 (23)I i /nr / mir i  iw iK/:nr ■ ’

\y,„r< y„:r }  =  »  <2 4 )
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From  ecjLations (22), (23) and (24). we obtain

[Hr)) - y,„r] =

yL ]  = £,,7,1,

(25)

(26)

By  writing explicitly Eq. (6). setting A = 0 and Mx = A/v =  0, we obtain H(,fy in the following 
form:

= I )(/■/„ + U ( r ) ~  h : ) V i ( r  ) + i/fj(r )(//„ + //•(/) + /;; ) i//, ( r ))

where

//„ = - ^ V 2 + K , ( r ) - M
2  m  

h- —

2 me '

It is now possible to calculate the commutators of t//T( r ) ,  j//1 ( r ) with H crf

[*/V ^ // l = [«n  -  + //T( 'r )l«AT +

h /v  r̂/71 =  [« (, + /?, + ^ ( ^ W ' ]  -  A(z7) j/V;

(27)

(28)

(29)

Substituting the unitary transformation of Eq. (10), between t//s and f ’s operators, in 
Eq. (29) and assuming that the operators ymr are linearly independent with respect to the 
index /?, we obtain two equations

and

H '  -  h, 

V y ( r )

H l + h: 
A * ( r )

M r )

H ‘ -  h

M r )  

H ' + h

« ; , ( o \
=  £„ |

K i r )

v ; M ) ) W „ ( r )

" , ; ( ' r ) \ r- jf  » , U ' r )

< ( ’■) )
1 =  £,1 |

(30)

(31)

where H ,T( r )  =  H {)+  t i ,T( r ) .  They are the Bogoliubov-dc Gennes equations for, respectively, 
spin-up electrons and spin-down holes [vector ( / ^ ( r ) ,  i^O7 )) ]  and spin-down electrons and 
spin-up holes [vector (u;,(r ), vjt( r ))]. Note that if M: = 0, then 7P  = Ul and the two 
Eqs. (30) and (31) are equal. The Bogoliubov-dc Gennes equations are eigenvalue equations 
that allow one to calculate the energy spectrum of the quasi-particles and the coherence 
factors u "(r)  and v " ( r ) .  It is interesting to note that if ( " . ' )  is the solution to Eq. (30)

with eigenvalue Eir then ( “ '•': ) is the solution to Eq . (31) with eigenvalue - E , r  W e can puti,n
together Eqs. (30) and (31) in order to group the particle degrees of freedom in the top-left 
of the Ham iltonian and the hole degrees of freedom in the bottom-right:

/ ( / / T - / ? . )  0 0 M r )  \

0 (/7 l +//: ) M r )  0

0 A *(r) (- / 7 T+ / i, )  0

V A U r )  0 0 ( - H ' - l u ) J

( " , r, ( ' ' ) ^

l ln ( r )
— F

K ( > )

v' „ ( r )
~  r-n

< ( f )
(3:

We shall refer to the matrix Hamiltonian in (32) as the Bogoliubov-de Gennes Ham iltonian 
HBg• If we identify the top-left 2x2 block of such a Ham iltonian with the particle
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Ham iltonian Hp and the bottom-right 2x2 block with the hole Ham iltonian H,r we see that 
the equality Hh = —H* holds. Note that, by using the transformation (10), one can prove 
that

Hcff = EK + £  E nf„nynn ( 33)H(T

So far, we have diagonalized Hcff using the transformation (10), which was proposed inde
pendently by Bogoliubov [25] and Valatin [26], known as Bogoliubov-Valatin transformation. 
Hcff is now written in terms of quasi-particle operators y , y \  which greatly simplifies calcula
tions. Although the Bogoliubov-de Gennes equation (32) does not determine the potentials 
U '(r ), U[(r )  and A ( r ) ,  they can be fixed self-consistently. By  replacing the field operators 
in the definition of the above potentials (19), (20), (21) and using the Bogoliubov-Valatin 
transformation (10) we obtain

//.t(n  = - ^ D l « i ( ^ l 2/„ + k ( r ) | 2(l - / „ ) ]  (34)
n

lll (r )  = -V'£[\,,'n(r)\2f„ + \vl(r)\- [l- fn)] (35)
//

n
where we have used the mean-value rules (11) and (12). Equations (34), (35), and (36)
constitute the self-consistent equations for / /T ( r  ), Ul ( r )  and A (r).  These ensure that if we
solve the Bogoliubov-de Gennes equation (32), then the value of U\ 7/1 and A, which is 
calculated from the solutions o f (34), (35), and (36), is equal to the initial value of 7/1, U[ 
and A.

There is an important distinction between UT( r ) and 7/4( r ) ,  on one side, and A ( r )  on the 
other. The Hartree potentials and U[(i: ) come from a sum involving all states below
the Ferm i level and hence are nearly temperature independent and can be approximated by 
the Hartree potentials calculated in the normal state. However, the pair potential A ( r ) is a 
sum of terms of the form u* ( r ) v “ * ( r )  which are nonzero only in the neighborhood of the 
Ferm i surface. For this reason, A ( r )  is a strong function of temperature.

2.3. Solutions of the Bogoliubov-de Gennes Equation
In  this section, we discuss the solutions of the Bogoliubov-de Gennes equation (32) in 
heterostructures containing normal metals, ferromagnets, and superconductors. In the 
following we provide, first, the solution in the case of a homogeneous and clean ferromagnet 
(where A = 0), second, the solution in the case of a homogeneous and clean superconductor 
(where h = 0), and finally a solution for a ferromagnet/superconductor interface.

2.3.1. Ferromagnet
In  the limit when all potentials are zero apart from /?, the Bogoliubov-de Gennes equation 
reduces to the Schrodinger equation for a Stoner ferromagnet. Because we are considering 
collinear ferromagnets and we are ignoring the effect o f spin-orbit scattering, the problem 
can be decoupled in two equivalent Schrodinger equations, the first one relative to spin t  
and I  particles:

/ « - * .  \ l37) 

\ /?’ H + h \u'-(r ) J  \u [ (r ) J

anc! the second one relative to spin j and T holes:

r )\  / v ‘ (r )\
(38)

' -H  - h. - h i. .  \ / v '( r )\  / ) \

? ) /  W ( r )
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One can note that if (//'. u ) is an eigenvector for Eq. (37) relative to eigenvalue E ,  then 
the vector (i>] , i>! ) = (-//*, —//’ ) is eigenvector for Eq. (38) relative to the eigenvalue — E . 
Assuming plane wave solutions of the form

u'(r ) 
ii '(r )

Jk-r (39)

Eq. (37) becomes:

(k: - fi - hz - E)

hi. (k2 — f± + h. — E )

r
<i)[

0 (40)

which admits nontrivial solutions if the determinant of the matrix is zero. Note that we have 
assumed H = k2 — /x, where k2 = |A:|: , and we have set fi = 1 and 2m = 1. One thus finds 
that the eigenvalues of (37) satisfy

E  = (k2 - fi) ± (41)

The eigenvectors of (37) can be found by writing explicitly Eq . (40) and by dividing the first 
equation by t//! and the second by ip1. By  defining r = ~  one obtains

[(A': — fi) ~ /?, -  E ]  + hxyr = 0 

ft vv-- [ ( * “ — M) + h: — E ]  = 0

and subtracting the second from the first

hAVr 2h,r -  h*v = 0

whose soution is
lu ±

(42)

(43)

(44)

(45)

This makes clear that the eigenvalue, unlike the eigenvectors, do not depend on the direction 
of /?, but only on its magnitude \h\. From the dispersion curve, plotted in Fig. 2 for the z 
component o f k, we can see that the effect o f an exchange field is to shift downward the 
spin f  pa ticle parabola, and shift upward the spin !  particle parabola. In Fig. 3, we present 
particle aid hole dispersion curves together for energies £  > E r .

Figure 2. D iv e r s io n  c u n e s  to r  spin j and  spin |  e lec trons  in a f c rrom agne t .  N o te  tha t  the p resence  o f  an exchange 
field has 1 iftcl tine spin d e g en e racy  hy shifting the two bands  vertically.
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Figure 3. Dispersion curves for spin ! and spin 1 electrons (upward parabolas) and for spin | and spin I boles 
(downward parabolas) in a ferromagnct.

2.3.2. Superconductor
W e now consider another limiting case: all potentials are set to zero apart from A ^  0. 
The Bogoliubov-de Gennes equation (32) again decouples into two sets of equations, one 
relative to spin | particles and spin j  holes

H

A*
(46)

and another, equivalent, relative to spin J, particles and spin t  holes. Considering plane 
wave solution of the form

/ u (r)\  _  /(/'

\u (/- )/  \</>

one finds the following dispersion relation:

elk'r (47)

£  = ± v ' (*-’ -/*)-  + |A|- (48)

which is plotted in Fig. 4 in the direction k: when |A| = 1/3/jl (solid line) and |A| — 0 (gray 
line). W e can notice that there is an energy gap in the energy spectrum for nonzero A as 
expected. It is useful to write down the solution for k. at a given energy E :

kz = ± ,JjL± yjE--  |A|2 (49)

where j± = n — k\ — k~. This tells us that for an energy E  above the gap, there are four 
possible solutions denoted by k+, k_, and q_ in Fig. 4. W e shall denote excitations 
with wave-vectors ka as particle-like excitations and those with wave-vectors cju to be hole
like excitations. As we can see from Fig. 4, this choice means that particle-like excitations 
have their group velocity parallel to their momenta, whereas hole-like excitations have their 
group velocity antiparallel to their momenta. This choice is made because the wave function 
associated with wave-vector k(t (c/u) is predom inantly particle-like (hole-like). This can be 
seen by substituting kn and qa in the amplitudes i[/ and c/>, solutions of equation (46):
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Figure 4. Dispersion curvc relative to a uniform superconductor for A =  1/3/j. (solid line) and A =  0 (gray line), 
taking A = 1. i  = 3. and k x = k , = 2ir/2i). For A ^  0. an energy gap of amplitude |A| appears in the spectrum.

where <p is :he phase of the order parameter. Note also that as only the absolute values of 
the cohererce factors <// and </> are fixed (|i//|: + \<f)\2 = 1), there is an arbitrary choice in 
where to pi t the phase of the order parameter.

2.3.3. Ferromagnet/Superconductor Interface
In this section we solve analytically the Bogoliubov-dc Gennes equation for a Ferrom ag
netic/Superconductor (F/S) interface. W e shall prove that the Andreev reflection amplitude 
ra is suppressed when we are in the presence of an exchange field //. Before proceeding, note 
that, for i ballistic N/S interface, ra was first calculated by Blonder, Tinkham, and Klapw ijk 
( B T K )  in Ref. [27]. rtl was determined as a function of the energy of the quasi-particles and 
as a funcion of the strength of a barrier potential at the interface. The generalization o f the 
B T K  calculation to the case of a F/S interface was first derived in Ref. [28].

Fo r sirrplicity, let us consider a one-dimensional structure in which all potentials are set to 
zero apar from h — hO(—x)z and A (x ) — A„0(.v), where h and A n are constants. In this case, 
the Bogoiubov-de Gennes equation (1) can be decoupled into two equivalent equations, 
the first <f which reads

A(.V) \ / h ' w \ /«/'(a ) \

\ A* (or) (d; + — h) / \ v[(x) / \ v [(x ))

We now consider plane wave solutions of Eq. (52) and w'e solve the scattering problem. In 
the left-hmd (.v < 0) ferromagnetic region, the wave function </// ( * )  produced by a source 
of righl-g)ing spin \ particles of unit flux at energy E  can be written as

/ c‘̂ x c~'kx \
—=  + — = r

\ v ‘ ( . t ) / cit,x
/• -----

v /

where k = J E  + f± + /u q = v/ — E  + fi -  //. vk = 2k and v — 2q are the group velocities 
relative, r:spectively, to the particle wave-vector k and to the hole wave-vector q. r0 is the 
normal relcction amplitude, whereas ra is the Andreev reflection amplitude, which corre
sponds tcthe  reflection of an incoming spin f  particle into a spin [ hole. The Andreev 
reflection process [14] consists of the coherent evolution of a particle-like excitation into
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a hole-like excitation. In the right-hand ( a* > 0) superconducting region, the wave function
< M -V) i s

<M-v) =
W '(A ')

^ ( x )

■ V -«/, x
(54)

where and <$>* are the coherence factors, solutions of the Bogoliubov-de Gennes equation 
(46) for a superconductor (see Section 2.3.2), given by

E ± J E - -  An

and It/^p 4- l ^ l 2 = ! •/(» and ta are, respectively, normal and Andreev transmission am pli
tudes. In (54) we have defined:

k+ -  J f i  + y jE2 - A,

CU = yj M -  v  £ 2 -  r̂»

ciE 2A. +(A:~ - fi) 

yj(k\ -  /x)2 4- A (“

(56)

(57)

(58)

and similarly for vq . Because we are interested in the subgap solutions (i.e., when E  < A0), 
both k+ and q+ are complex and ^ ( a )  is an evanescent wave. The length £ over which the 
decay of i/rw(a )  occurs can be defined by Re[/&+£] = —1, so that £ = l/Im[A' J .  £ is known as 
the superconducting coherence length and for E = 0 one has g 1/A. It is therefore useful
to define: k+ = y/fi 4  ir] and q+ — J f i  -  ir] with r; — J  A,2, -  £ 2. The scattering problem is 
solved once r0, ru, t{) and ta are calculated. This can be done by matching the wave functions 
t/// and ijjR and their derivatives at the interface ( a* — 0). I f  we also include a delta function 
potential barrier of strength H  at the interface, those boundary conditions become

,//,(()) = <M0)

and

(59)

(60)

(61)

< M 0) -  (//; (0 ) -  0)

yielding the following system of four equations:

ra = ptuv+ 4- Stu v 
rt) = at()u+ 4- y t j r  -  1

er{) + at{)u+k+ - y t j i ..q. -  e* = 0

<l>ra +fit tiv+k̂  - 8tav~q+ = 0

Here, a  = ( )  ^  ~  (^ f~ ) ' ^ ”  ( t L‘)  » ^ =  ( ^ " )  ' 6 == ^  an(  ̂̂  =
/77). Solving (61) with respect to rtr we find

t  2 k ( q „  4  k + )

( e 4- A ,  ) ( f -  f / j ( | )  -  (e -  </T )(</> 4 ^ ) ( S j  

In the case where // = 0 and £’ = 0. in the limit o f small A u//x. (62) reduces to

_  . ,v  (M v V 2 -  /i2) 1 :

,u 4- v'7.'-' 2 -

(62.

(6 3 )
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in such a way that, as shown in Fig. 5, the Andreev reflection probability Ra = |/'J2 is a 
decreasing function of //. From Fig. 5, we note that in one dimension, Rlt is significantly 
suppressed only for large values of //, close to p. For small values of //, ra at E  = 0 can be 
approximated by

rtt -  ie* (64)

like in the N/S case. In real hard ferromagnets, like Co, the value of the exchange field, 
although high with respect to other ferromagnets, is one order of magnitude smaller than the 
Ferm i energy, and therefore (64) holds. In three dimensions, however, the picture changes as 
fi has to  be replaced by fi ~ E ir where E n is the transverse kinetic energy relative to the nth 
longitudinal mode. For quasi-particles approaching the interface at large angles, fi — E n can 
become comparable to or smaller than h and, as a result, the suppression of R(l is enhanced 
with respect to the one-dimensional case.

To conclude we remark, first, that ra contains the phase o f the superconducting order 
param eter <p. It is this that gives rise to interference phenomena for systems containing more 
than one superconducting interface with different phases. Second, Andreev reflection is the 
process by which electrical current can flow across a normal-metal/superconductor interface 
in the subgap regime. Because the change in momentum required for the Andreev process 
[8p = h(k — q) ~  hkrE/fx\ is much smaller than the change in momentum required for 
a normal reflection process [Sp = 2hk — 2hkr ], Andreev reflection is strongly favored at 
a clean normal-metal/superconductor interface for subgap energies. During this process, a 
charge o f 2e is deposited into the superconducting condensate in the form of a Cooper 
pair, which would be carried away by a supercurrent. For energies greater than |A|, normal 
transmission is dominant for clean normal-metal/superconductor interfaces.

2.4. Scattering Theory
Electronic transport through a phase-coherent conductor can be studied in the same way 
as wave propagation into a scatterer. A  conductor can be modeled as a scattering region 
connected to external leads that act as waveguides carrying a current of quasi-particles orig
inating in external reservoirs. Scattering is assumed to be elastic, and all inelastic processes 
occur in such reservoirs where quasi-particles are distributed in energy according to the 
Ferm i -Dirac function f ( E )  = [exp[(/^ — fi)/knT] + 1] 1 and characterized by a chemical 
potential p. = eV and a temperature T , e being the electronic charge. The conductance 
G o f completely normal structures can be expressed in terms of scattering probabilities 
[29-32] yielding the Landauer-Biittikcr formula:

G = ~7“ T r [f+/| (55)ll

Figure 5. Aidreev reflection coefficient Rit as a function of the exchange field h in one dimension. R„ is strongly 
suppressed only for h close to a.
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Figure 6. Energy spectrum of quasi-particle excitations in a superconductor: quasi-particle energies E  arc plotted 
as a function of their wave-vectors k. Superconducting correlations give rise to a gap of amplitude j A| above the 
Fermi level set by the horizontal axis. Typical values of A are hundreds of fxcV.

for a two-terminal system at zero tem perature in the linear response regime. In Eq. (65), 
e2/h is the quantum of conductance, the factor 2 accounts for the twofold spin degencracy, 
and / is the transmission amplitude matrix for an electron to propagate through the one
dimensional conductor.

For hybrid systems, the scattering theory was first applied [33] to a N IS  interface ( I being 
an insulating barrier o f arbitrary strength) in Ref. [27]. The total current /NS was calculated 
in the normal side of the junction in terms of the difference between incoming and outgoing 
quasi-particle distribution functions yielding the so-called B T K  formula:

/NS -  2N(0)evF'J f  [ / ( £  -  eV) - / ( £ ) ] [  I + A (E ) - B (E )] clE (66)
J  — ex.'

where A (E )  and B (E )  are the energy-dependent Andreev and normal reflection probabili
ties, respectively, and V is the bias voltage applied to the junction. In Eq . (66), N (0) is the 
density of states at the Ferm i energy, vf is the Ferm i velocity, i4 is the effective cross-sectional 
area, and /  is the Ferm i distribution function. A and B were determ ined by imposing match
ing conditions to the wavefunetions, solution of the Bogoliubov-de Gennes equation, at the 
N  and S side assuming a 5-like potential located at the interface. For low transmitting inter
faces, /NS reproduces the conventional transfer Ham iltonian result for which the current is 
proportional to the density of states of the superconductor and to the transparency of the 
interface (Andreev processes arc com pletely neglected). Namely, /NS is vanishingly small for 
sub-gap voltages and presents a pronounced peak at eV = A, which rapidly decays asymp
totically reaching the normal state current value. For highly transmitting interfaces, the I/V 
curve presents a large sub-gap current, due to Andreev reflection, which takes its maximum 
value when eV approaches A and thereafter decreasing to the normal state value. In addition 
to this, it is also possible to determ ine that the length at which the quasi-particle evanescent 
wave penetrates into the superconductor is equal to hv¥/2A at energies close to the Ferm i 
energy (i.e. of the same order of the B C S  superconducting coherence length £ hv}./ttA).

A  more general treatment generalizing the Landauer-Buttiker formulae to superconduct
ing systems was developed in Refs. [36-38). Il accounts for generic multiterm inal, multi
channel hybrid structures, even in the presence of ferromagnetism and spin-flip scattering. 
As mentioned before, in the absence of inelastic scattering (although a generalization to 
include this is available [39]), dc transport is determined by the quantum mechanical scat
tering matrix £ (£ ,  7/), which yields scattering properties at energy £ , of a phase coherent 
structure described by a Ham iltonian ./(.

Consider a scattering region connected to external leads that carry a current of quasi
particles originating in external reservoirs at chemical potential fx, — evr In the presence 
of Andreev scattering, current-voltage relations for a phase-coherent scatterer connected to
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normal reservoirs were first derived in Ref. [36], If  the structure is connected to external 
re s e rv o ir  by current-carrying leads with open scattering channels labeled by a set of quantum 
num bers /. then the S-matrix elements are defined through the relation:

k,(E ) = E 5« .» (E ’ W)an\ E )  (67)

which ctor.nccts the second quantization operators b„ o f quasi-particles leaving the scattering 
region t;hrjugh channel n to the operators an- o f quasi-particles entering the scattering region 
throughi channel /?'. Both an and bn satisfy anticommutation relations. The S-matrix satisfies 
the unittarity condition .S’ ’(£ ,  J  ) = S '(E , K), due to quasi-particle conservation, and the 
time-rev/ersibility condition S '(E , it) = S (£ ,  K*). In the presence of superconductivity, it is 
useful to  Libel the quasi-particle open channels in the leads using the following set o f discrete 
quantum! numbers: {/, a, a } ,  where a = -hi characterizes particle-like excitations, a = -1 
hoie-likie excitations, and a is the open channel index in lead i. In doing so, the quantity 
P “'^(E, It.) = 1%'a) (/ /»)(^’ ^ ) l2 ^lc probability o f reflection (if  / = j)  or transmission
(if  z ^  j  ) of a quasi-particle of type (3 in lead j  to a quasi-particle of type a in lead i. For 
a ^  /j, is referred to as an Andreev scattering probability, whereas for a = (3, it is a 
normal scattering probability. In the presence o f superconducting leads, we insist that all 
supereomduclors share a common condensate chemical potential /x. This is to avoid time- 
dependent order parameter phases varying at the Josephson frequency, which would render 
a time-independent scattering approach invalid. W hen  the energy £  is measured with respect 
to /x, the particle-hole symmetry' (j h)( E , 11) — h)(~ E , ffl)]* is satisfied too.

Because unitarity yields

E  \ ^ h)i E , n 2= E  \s:;:^h){E,x)\2 = \ m
[ i , t r ' , j . b  a . t r , i . a

where / and j  sum only over leads supporting open channels at energy £ , we have

£  (E . It) = N;ur(E )  (69)
f i . t r ' .  j

V  I^'. ^ 'iE ,  W) = N f,r'(E )  (70)
ft. rr, i

where N'*,r(E )  is the number of open channels for a-type rr-spin quasi-particles of energy £  
in lead i. The number of incident rr-spin quasi-particles per unit time of type [3 along lead 
/, with energies between £  and £  + 8E is J f*ir (E)8E, where

7f'T(E) = j N f (T{E ) f f { E )  (71)

where fj ( £ )  is the Ferm i distribution of incoming quasi-particles of type (3 from reservoir 
j  at temperature T and chemical potential /x; :

f f (E )  = - n ^ r ,—  (72)
e k*T> + 1

and /x is the chemical potential of the condensate, when superconductors are present. W hen 
deriving Eq . (71), we used the fact that for each channel, the product of the density of states
per unit length and longitudinal group velocity is a constant equal to 1 /h. Note that, in
the case of a ferromagnetic reservoir, f f (E )  does not depend on the spin of quasi-particles 
because the chemical potential of the reservoir is independent of spin.
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The number of outgoing a-type quasi-particles per unit time in lead /, with energies 
between E  and E  + 8E is J “<r(E )8 E , where

J:u’ (£) =  \  E  P“J  P,r'(E ) f j1(E) (73)
/, jS. cr'

The electrical current in lead i due to quasi-particles between E  and E  4- 8E is therefore

J,{E)8E = e E ( “ ) [ r r(£ ) - J r (E ) ] SE  (74)
a  i t

and the total current due to all quasi-particles is the integral

/, = J  f  dE E(a)[-V,'"r(£)//'(£) - E  P^J'P‘T'(E ) ff (E ) \  (75)
fl 0 ftfr jp<r

If  we write down I, in the form:

/, = E  A‘u wi)
j<r

then we can define the matrix A"- as

AU = T C  dE £  (« ) [H r (E ) f ,a(E )8 it8ITl,8al3 -  P ? ° - ( £) ]  (77)
* ' " afia'

O ne should note that if the system is periodic in the plane perpendicular to the longitudinal 
direction, the total current is the sum of currents associated with each Bloch wave-vector in 
the first Brillou in  zone, so that (76) should be replaced by

A = E E W  (78)
j,T kzBZ

where the dependence on k in (77) is contained in the quantities /V/ur and .
A t finite voltages, but zero-temperature we have

( 1 ifE  < (fi, -  fi)
/,+ ( £ ) =  • x (79)I 0 ifE  > (/Xy -  fl)

and
(1  if£  < -(fi, -  fi)

I] (E )  = I . (80)
[ 0 itE  > — (fij — fi)

therefore, (77) reduces to

<  = J f  dE^{[N^(E)SiiSmr. -  P. "  ' " ( /  ) +fl J() a
- {Nrr{E)8iiS<n, -  P ^ ^ ' ( E )  + ^ - " ' ( £ ) ] / ; ( £ ) }  (81)

Now. if (/ i; -  /.i) > 0, then the second term in (81) is zero, as }] ( E ) =  0 for E  > — (jU, -  f i) 
and one finds that

/i;; = f  ( IE Z [^ ’i ' T(E)8 i)8<ri, - p™-+a'(E )  + />;''■+,r' ( £ ) ]  (82)h

I f  (fi. — fi) < 0. then the first term in (81) is zero, but the resulting Al[. is formally equal 
lo (82).
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In  thie incar response limit, we assume that (u, — v) —> 0 and we write down I t in the 
form:

A = H a7j(vj - l ’)
!<r

To obta.in the coefficients a)', we expand f]a in Eq. (77) in powers of (v- - v):

(83)

f;*(E) = f “ (E ) 

It is easy :o show that

and

+e(v: - v)
(r,- i1) —(

where

Therefore, we obtain

<\f;i(E ) 
ed(Vj — v)

f ( E)  =

= —a

ed(Vj — v)

df“ (E )
dE

C2L
dE

+
( V.  — l')= (J

(84)

(85)

(86 )

(87)

(88)

Substituting (88) in (77) and calculating /,, one finds that the terms in f ( E )  cancel because 
of the unitarity of the S-malrix expressed by Eq. (69), and we are left with

j(T lafiir'
- {c t)N r(E )8 ij8m.8ape(Vj -  v) <]£

dE

}(W\(icr’+ (£ )/ ” ' (E )e (v :-v )^= (89)

Noting that a2 = -f-1 and exchanging a' with <r, one finds

<  = J  f  d E (- T £  )  L  [N r '(E )8 i}8air,8nf3 - (a f r P ^  ^ iE ) ]
n  " 11 '  0 ^  /  a  ( l a 1

In order to simplify further Eq. (90), we write explicitly the sum over a and /3:

<> = ~  [  d E { - j ^ )  ' L { W ,T\E)8 iJ8ITir, - r r r- ” (E ) + r ;:r - •'(/ )!

(90)

+ [N r" {E)8 ij8„„. - P „ ‘r ~‘r(E ) + P f  +(T( £ ) ] }  (91)

It is possible to show that in the general case of spin-flip scattering with the possibility of 
ferromagnetic leads, the particle-hole symmetry can be written as

(92)

In particular, we have that N, (r'(E ) = /V,+" ( - £ ) ,  p r* '+,r( £ )  = P+<T''-<r(- E ),  and 
P~j(T' <r(E ) = Plt ,r' ' <r( — E). By  using these relations and noting that 3f( — E)/dE  = 
—df(E)/dE, one can change variables in the second part o f the integral (91) obtaining the
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same expression given by the first part, but over a different range of energies. As a result (91) 
becomes

a% = e-  £  ^ ( - ^ )  E W 7' ( £ ) < V , „  -  f r , r , u- )  + p f '  “ " ( £ ) ]  (93)

A t zero temperature, where —df/dE = 8(E), (93) reduces to

=  T  Ef.NT'(0)8Air. -  p ^ ' - +€,(0) + P ’ "-  "((1)1 (94)

Starting from the above results, we can obtain the expression for the differential con
ductance at finite voltages g j ( V j )  defined as the derivative of the current in lead i with 
respect to the voltage i>;, with v and all other potentials held constant. A t this point, it is 
important to notice that all scattering coefficients can be computed in the presence of sclf- 
consistently determ ined order parameter A and normal potentials UiT. In such a case, one 
must take into account the effects on the system of changes in the applied potentials VjS. 
Such changes affect both the normal potential and the superconducting order parameter. For 
normal structures, self-consistency in the normal potential has been considered by Christen 
et al. (Ref. [40]), and it turned out that such effect can become important at large voltages. 
Calculations taking into account a self-consistent order parameter have been carried out for 
one dimensional structures in Refs. [41-43]. These demonstrate that provided the currents 
are low enough with respect to the critical current, the matrix /!'• can remain unchanged, 
even by the application of finite voltages of order |A|. However, here we are only interested 
in the effect due to the presence of the order parameter on a system, thus we shall neglect 
such effects, and we shall restrict ourselves to voltages of the order of |A|.

Taking the derivative of I, with respect to (v - v) we obtain

ft <KVj “  v)

= C- [ '  dE £
h -A) aptr'a

/ <> f"

where we have used the following equality:

dfr(E) c
d (v,-v) HE " ""

Expanding the sum over a and /3 and reorganizing the terms, one obtains

dl.
r/(v, - v) = - /h N r u ^ s ^  - p ,rT + ir(/-;) + p,j"■ " r(E ) ( J J l

\ HE

+ [Ni-"(E)8li8mr.-  p;;' ,T(E ) r P- 

Using the particle-hole symmetry relations (92) and

Wi " (~ E )

(E I
dE

<11? [E I
"  dE~ dE

one arrives at the final formula

dl,
i)(Vj -  ?.')

=  V r  dE -  P;r ' ^ ( E )  + ^ ,r'-J,,(E)\
l l  j  x “  V d t  )

(95)

(96)

(97)

(98)

(9 9 )
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Wo conclude by noting that, at finite voltages, the chemical potential of the condensate fi 
should be determined self-consistently bv imposing the conservation of the current ]T, /, = 0 
which y ields, from Eq. (76), ; (r = 0. From the expression of A” in (77), it is clear that
such a self-consistency condition involves integrals over all incident quasi-particle energies, 
which in turns require a knowledge of the S-matrix over a range of energies. In the case 
where superconductivity is present in one lead (say /), the solution is trivial, as /i coincides 
with one of the voltages vr In the general case, however, the solution of the self-consistent 
equations is difficult, but for some simple structures may bc determ ined by symmetry argu
ments. In a spatially symmetric two-probe system, for example, one can assume that /x =
1 /2(yu, +/x2). Finally, we refer the reader to Ref. [44] for issues related to shot noise power.

2.5. Two-Probe Differential Conductance and Conductance in More Details
W e now/ apply the above formalism to derive two-terminal conductance formulas. W e first 
consider the case of two nonsuperconducting leads (from  now on, referred to as N N  system) 
and then the case where one of the leads is a superconductor (N S  system).

The N N  system can be schematically drawn as in Fig. 7, insisting that /2 = —/, = —/ (cu r
rent conservation). In the current case, one can distinguish between two possible definitions 
for the differential conductance:

dL
()(V\ -  v)

and g2 ( l,2)
dl

0(v2 — v) (100)

depending on whether one varies i>, (for fixed i>: ), or v2 (for fixed ?;,). for example, can 
be written using Eq. (99), to give

g,(w,) = ~ /  ' d t l - ^ W [ N r { E ) S „ a. -  R " ',r(E ) +  R 'r ( E )  \ ( 101)

() — , n (R'(' (r = P\\ ) as the normal (Andreev) reflectionwhere we have defined R\\<T = P^,r * ,T (R ((rt (r 
probability for an injected rr-spin quasi-particle to come back as a (/-spin quasi-particle 
(hole),

The conductance at zero-temperature and zero-voltage can be calculated by rewriting 
Eq . (83) in matrix form as

(  Cl,, +  (l 11 ( l 12 -H

a , ,  + ci-,, a i, -f a ^
(102)

and considering its inverse

Cl.
(103)

Figure 7, A schematic picture of the NN system. The central gray region is the scatterer. whereas the two lateral 
objects denoted by N1 and N2 represent the leads. is the chemical potential of the possible superconducting 
regions eontained within the scatterer.
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where alJ = a]j + a\; and d = cinazl — ^ 12̂ 21 's ^ e  determinant. Because we are interested
in the conductance defined as G  = , we want to «et rid of the condensate chemical*’l-*’2 & . , 
potential v. W e can achieve this goal by subtracting the second equation in (103) from the
first one, obtaining

G  =
Cl ] j -f- Cl 12 #21 &22

where the matrix elements ci evaluated at the Ferm i energy, are expressed as follows:

(10-)

and

[(N ' -  /?,'/ -  /?,*' + R "  + R- ) + (N l -  R '1 - R "  + + /?“ )]  (105)

")

=  J^ V , ' + V ' ~  7n" -  T " )  + + V ' ~  C  -  T(r ) ]  (105)

= j [ i ruV + Ta C ’ h  < /;•  - ij ( 107)

R, ( 1(8)

H ere, 7j|r,r = /V,<r,Hr (7 jr,r — P2[<r-,<r ) is the probability for normal (Andreev) transmissi)n 
for an injected or'-spin quasi-particle from the left-lead into a cr-spin quasi-particle (hole) in 
the right-lead. For the primed quantities, the quasi-particles are injected from the right-lead 
into the left-lead. Note that 70,r'r and R ,̂ r , for a  ^  cr\ and R™  and T'J(T are nonzero only 
if spin-flip scattering is present. As a check of consistency, it is easy to prove that in the 
absence o f superconductors, one recovers the well-known Landauer formula:

(109))

W hen superconductors are present, it is interesting to note that their common condensate: 
chemical potential v can be determined imposing the conservation of the current, wh:chi 
yields:

(<7 , 2  +  o 22)^ \  +  ( ^ 2 2  +  ^ 2 l ) ? ; 2

au -f- fl|2 <521 2̂2
( 110)

The N S system can be schematically drawn as in Fig. 8, where again we insist that I_ =  
—/, = — / and that the superconducting lead and the superconductors in the scattering 
region share the same chemical potential: v2 = v. Note that the relation /-> = —/, allows u:s 
to avoid the explicit calculation of the current in the superconducting lead (/2), which villi 
be a combination of quasi-particle current and supercurrent. In this case, there is only ome

12 <-------

Figure 8. A schematic picture of the NS system. The central gray region is the scattered whereas the two literal 
objects represent the leads (in light gray is the superconducting one), v is the chemical potential of the possible 
superconducting regions contained within the scatterer. which equals the chemical potential of the righMamd 
supeiconducting lead.
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possible definition for the differential conductance, namely g = . From Eq. (99), we
easily obtain

g  =  Z [M r a(E)8*.r - K ' T(E )  +  R‘r ( E ) \  (111)

The conductance at zero-temperature and zero-voltage is also easily derived. Equation 
(102) becomes trivial because, on the one hand, no transmission of quasi-particles to the 
superconductor is allowed at the Fermi energy (ai2 = 0) and, on the other, v2 — v = 0. 
Therefore, (102) reduces to I = a u(v] — v), which gives

G  = = e- [ (N l  -  Rl' -  R-] + R;,- + R;,') + (/V,1 -  /?,’/  - /?// + R "  + /?‘ *)] (112)
i  j t/ n

where the probability coefficients are calculated at the Ferm i energy.
It is very instructive to consider a structure composed of a superconducting scattcrer of 

length attached to two normal leads, one on the left and the other on the right. From 
Eq. (75), one can derive the following two-probe linear-regime zero-temperature conduc
tance [45]:

2e2
7 h K  + K  + + r

(113)

where T  ( 7T,) is the normal (Andreev) transmission probability for quasi-particles injected 
from the left-lead and arriving on the right-lead. R (R.d) is the normal (Andreev) reflection 
probability for quasi-particles injected from the left-lead. S im ilarly 7!' and R'a are Andreev 
scattering probabilities for quasi-particles injected from the right-lead. For L s >  £, all trans
mission probabilities tend to zero, as the quasi-particles penetrate into the superconductor 
up to a depth of the order of £, so that the conductance reduces to the series of two inter
face resistances, namely l/2/?a and 1/2/?' in units of h/(2e2). A consequence of this is 
the fact that the overall conductance of the structure does not depend on L s, but simply 
on the m icroscopic structure of the N S  interfaces. In particular, for Ls —► oo, although the 
resistance of the system attains an asymptotic finite value, the resistance per unit length 
{resistivity) vanishes, as it must be for a superconductor.

According to Eq. (75), the problem of determ ining the eurrent-voltagc characteristic is 
reduced to the calculation of scattering amplitudes. This can be done in different ways; in 
simple ballistic systems, for example, by solving the Bogoliubov-de Gennes equation piece- 
wise in the different homogeneous regions composing the scatterer and imposing proper 
matching conditions to the wavefunctions at the boundaries between these regions. Complex 
structures such as disordered and diffusive conductors, heterostructures composed of d iffer
ent materials, and multiterm inal systems can be dealt with too. Scattering amplitudes can 
be determ ined numerically, for example, by discretizing the system in real space within the 
tight-binding formalism. For diffusive wires and chaotic quantum dots, a different approach 
can successfully be employed, namely the random-matrix theory (see, for example, the review 
papers o f Refs. [46, 47]). According to this theory, from the statistical properties of a class of 
matrices with random elements describing a certain physical system, it is possible to extract 
the properties of the system. This can be applied to scattering matrices: the first problem 
consists in determ ining their random-matrix probability distribution (statistical ensemble). 
The second problem is to find the correlation functions of the transmission eigenvalues 
from which the transport properties can be derived. The conductance, for example, is simply 
given by 2e2/h dTTp(T), where p(T) is the mean eigenvalue density. A  complete solution 
to this problem has been found for diffusive wires and quantum dots. For hybrid systems 
consisting of a phase-coherent structure connected to superconducting leads, the random- 
matrix theory is based on a relationship that links the Andreev reflection to the transmission 
eigenvalues of the corresponding normal system [48]:
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where Tn is a transmission eigenvalue and N is the number of open channels [49, 50]. From 
Eq. (114), it is clear that hybrid systems can be studied, making use o f the results developed 
for normal conductors.

2.6. Quasi-Classical Green’s Function Approach

systems. This approach applies when the characteristic length scale o f the problem is large

where a sufficient amount of nonmagnetic impurities is present so to make the motion of 
electrons isotropic.

The quasi-classical theory of superconductivity is developed through quantum field the
ory methods, and it is formulated in terms of G reen ’s functions in the particle-hole space 
(known as Nanibu space). Such Green 's functions are denoted by a hat and, in addition 
to standard G reen 's functions G , they contain anomalous components F  that describe* the 
s u pe rco nduct i ng cor re 1 at ions:

The starting point is the Gorkov equation [18] for the G reen 's  function of a bulk supercon
ductor. which was derived directly from the B C S  Ham iltonian. The quasi-classical approxi
mation consists in averaging the G reen ’s function (7 over the rapid oscillations in the relative 
space coordinates p = r { —r2 and over impurities. As a result, one obtains the quasi-classical 
G reen ’s function g (£ ,  r,  n),  which depends on the energy £ , on the center-of-mass coordi
nate r =  (r,  -f r : ) /2,  and the versor of the relative momentum n associated to the relative 
coordinate p. The G orkov equation reduces to the following (E ilenberger) equation for g:

derived in Refs. [51, 52). Here, v, is the Ferm i velocity, A is the pair potential, and r  is the 
elastic scattering time. Furtherm ore, the square brackets represent the commutator, whereas 
the angular brackets {•••)  denote an averaging over the direction n. Note that Eq. (116) 
determines g up to a multiplicative constant, and the following normalization condition must 
be applied: g2 = 1.

A  further simplification can be realized in the presence o f an isotropic impurity scattering 
potential, which makes the motion of electrons diffusive (d irty lim it). In this case, g can be 
expanded in spherical harmonics, and Eq. (116) reduces to the Usadel equation [53] for the 
isotropic function g (E , r)  =  (g (E , r,  n)):

(117) must be supplemented with a self-consistent condition for the pair potential A. The 
electrical current can then be calculated once the G reen 's  function g is determined.

It should be noted that the quasi-classical approximation does not allow to take into 
account nonuniformities that occur on the Ferm i wavelength scale, such as boundaries, bar
riers, and interfaces with other materials. It was shown, however, that this problem can be 
circumvented bv applying proper boundary conditions to the quasi-classical G reen 's function. 
For the Eilenberger equation, they were derived in Ref. [54] and for the Usadel equation in 
Ref. [55]. It is interesting to note that such boundary conditions are obtained by making use 
of the connection between scattering amplitudes and G reen 's  functions. Fo r a more detailed 
treatment of the quasi-classical theory, we refer the reader to a number of review papers on 
the subject (for the most recent see, for example. Refs. [ 10, 56-58]).

An important progress in the quasi-classical theory was put forward by Nazarov who for
mulated it, within the dirty limit, in terms of a circuit theory [59-61]. This constitutes a

In this section, we briefly underline another very important technique for dealing with hybrid

if compared with Ferm i wavelength. It proves to be particularly useful for dirty structures

( i  15)

(116)

(117)

where D -- i'f.r/3 is the diffusion constant. It is worthwhile to stress that both Eq. (1 H>) and
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generalizeion of the classical Ohm's law to hybrid coherent nanostructures. These can be 
viewed as :oherent networks consisting of nodes linked by connectors. The starting point con
sists in ob;erving that when the second term in the Usadel equation (117) can be neglected, 
the same equation can be written in the form of a conservation law for a matrix current 
j ( r ) [62]:

/ y ( r )  =  (); j ( r )  = aGc)rG  (11(S)

w here a i: the normal state conductivity proportional to the diffusion constant D. The sec
ond equaton in (118) resembles the local O hm ’s law in a normal metal structure, whereas 
the first e>presses the conservation of the current. The problem is finally defined by imposing 
additional boundary conditions, which sets the bias voltage established across the structure 
and describe interfaces in the conductor. By solving those equations, the voltage distribution 
over the conductor and hence the local current density and total current can be determined. 
T h  e orcinary circuit theory is formulated by discretizing Eqs. (118) plus boundary conditions 
through a finite element approximation so that the structure can be separated into resistive 
elemenis pairwise connected. Current conservation in each node, and current-voltage rela
tions for each element set the voltage in each node allowing the determination of the total 
current.

The extended circuit theory cannot be derived in such a simple way because of the matrix 
form  of the equations and the fact that one deals with matrix currents and Green 's functions. 
However, the situation can be simplified due to the symmetry properties of the G reen ’s 
functior a: zero energy so that Eqs. (118) can be separated into two parts. The first one 
determines the equilibrium spectral local properties and the second one the nonequilibrium 
chemical potentials in each node, which determines the electron propagation. These equa
tions al.ov to formulate a circuit theory that can be conveniently condensed into a set of 
rules (see Ref. [59]) for determining currents and potential differences of a coherent net
work of nodes and connectors. It is worth mentioning that (i) a node is required to present 
enough disorder to prevent ballistic transmission between the two connectors attached to it. 
Furthernore, the size of a node must be smaller than the coherence length, (ii) Connectors 
can be cf three types, namely diffusive conductors, tunnel junctions, or ballistic constrictions. 
The  net effect of superconductivity is to induce a renormalization of the conductivity in the 
last two types of connectors.

It is mportant to recall that the above circuit theory is valid when the second term 
in the Usadel equation can be neglected (i.e., for small temperatures and voltages [59]): 
knT,el «  A, D/L2. L being the system size. The limitations described above are quite 
restrictive, namely the voltage and temperature dependence of the transport properties can
not be accessed. However, a circuit theory can still be formulated by discretizing the Usadel 
equatioi (117) including the second term. This can be done by discretizing the space into a 
set of n<des a, such that the G reen ’s function G (a , )  = G , in neighboring points are close to 
each otter, A  resistor is associated with each connection. The Eq . (117) can then be viewed 
as a conservation law in each node / ( I jk + Aeakat-c./ — 0), where now the total current is 
composed of ljk [which corresponds to the second expression in Eq . (118)] and an additional 
leakage :ontribution /k..lk.i;:c , a  —ie2[Gr H] associated to the second term of the Usadel 
equatioi (117). The leakage current describes two processes, the first one, proportional to 
the enegy e. is associated to the decoherence of electrons and holes due to wave-vector 
mismatci at finite energies ( “ leakage" of coherence). The second one, proportional to A, 
is responsible for the conversion between quasi-particles and Cooper pairs ( “ leakage of 
quasi-pa ticles"). In order to obtain an accurate agreement with the full theory, the distance 
between the nodes has to be smaller than the coherence length £ = v/D M a x (A , e). It is 
importait to notice that ballistic point contacts can be considered as a particular kind of 
connectos, but they need a specific treatment. To conclude, this new circuit theory can be 
formaliz'd into a set of rules given in Ref. [61].



670 P ro p erties  o f S u p e rco n d u c tin g  N a n o s tru c tu re s

2.7. Panorama on Results in NS Systems
Superconducting hybrid nanostructures possesses a rich physics related, in particular, to the 
interplay between coherent transport o f electrons and Andreev reflection. Physical systems 
investigated so far comprise N S  junctions, mesoscopic SN S  Josephson junctions, structures 
containing several superconducting islands and, more recently, ferromagnet/superconductor 
(F S )  junctions, where the interplay between spin-dependent transport and superconductivity 
can be investigated. The vast knowledge available in semiconductor technology has been 
also exploited by replacing in the above systems normal-metals with semiconductors (Sm ). 
The possibility o f using unconventional superconducting materials, such as d-wave supercon
ductors and, more generally, high-Tc superconductors, has been explored too. As a  result, a 
variety of effects and phenomena have been reported so far, the most important o f which 
we shall review in the current section, making use of the various theoretical approaches 
outlined in the previous sections. It is worth mentioning that these allow one to calculate, in 
addition to the electrical current, all transport properties of a given system such as thermal 
current, current noise, and the whole full counting statistics of electronic transport.

W e shall start considering N S  junctions, which present different properties depending on 
whether N is diffusive or ballistic and on the transparency of the barrier at the interface. 
Perhaps the first effect that received much attention is the zero bias anomaly ( Z B A ) ,  which 
refers to a conductance peak observed at zero bias voltage in a low-transparency N S  point 
contact [63]. This contrast with the B T K  result, where the conductance presents a minimum 
at zero bias, is particularly striking, as the height o f the peak is of the order the norm al state 
conductance. Z B A  can be explained as an interplay between Andreev reflection at the inter
face with the superconductor and disorder scattering in the N side of the junction due to 
the presence of impurities. W hen  the elastic mean free path in the N side of the j unction is 
smaller than the junction size, electrons have the chance to be scattered back to the S inter
face many times, finally undergoing an Andreev reflection. The net result is that Andreev 
reflection processes occur with a much larger probability with respect to the case o f  absence 
of impurities. In other words, the low bias conductance is determined by com plex interfer
ence effects that produce an enhancement by several orders of magnitude. Such an effect 
dies away for energies larger than the Thouless energy, which sets the scale for particle-hole 
dephasing. Although Z B A  was first understood within the quasi-classical approach, it was 
then confirmed using scattering methods and also in the tunneling Ham iltonian approach. 
This effect is also known as reflectionless tunneling, as it can be explained in term s of the 
disorder-induced opening of tunneling channels.

Non-monotonic behaviors of the conductance as a function of voltage and te m p e ra tu re  in 
N S  junctions with clean interfaces were also reported. W hen  a diffusive wire is connected 
to a superconducting reservoir through a highly transparent contact, the zero-temperature, 
zero-voltage average conductance equals the normal-state conductance [48, 64]. E ve n  though 
this can be proved rigorously, intuitively it is the consequence of two facts, namelly that the 
Andreev reflection effectively doubles the length of the normal metal conductor and that the 
conductance in a N S  point contact is doubled with respect to the normal-state one. However, 
it was found [64-69] that a conductance peak appears either for voltages or temperatures of 
the order of the Thouless energy hD/L2. This phenomenon, known as reentrance effect, was 
experimentally proved in Refs. [70-72].

Another interesting phenomenon is the Andreev interferometry, which is realized in a 
hybrid structure containing at least two superconducting islands. This is based on  the fact 
that when a quasi-particle Andreev reflects from a N S  interface, the phase of the outgoing 
excitation is shifted by the phase of the superconducting order parameter. In the presence of 
two superconducting islands with order parameter phases (/>, and <f)2* the transport properties 
are oscillatory functions of the difference </>, -  cf>2. The conductance of individual samples 
was found to be 2?r-peiiodic in the phase difference.

Heat transport through N S  interfaces can be applied to m icrocoding (73-75]. The phys
ical mechanism underlying this electronic cooling is quite simple. W hen  a norm al metal is 
brought in contact with a superconductor, quasi-particle transport is effective on ly at ener
gies larger than the superconducting gap ( E  > A). This selective transfer of “ h o t" carriers
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leads to  the lowering of the effective electron temperature of the N electrode, even in the 
regime when electrons are thermally decoupled from the lattice. This situation can be exper
im entally realized with SN  tunnel junctions where transport is dominated by quasi-particle 
dynamics. This unique property o f such contacts was successfully employed for the realiza
tion of microcoolers [73, 74].

D uring  the past few years, the interplay between Andreev scattering and the ferromag
netic o rder has been addressed in numerous studies of electronic transport properties in 
nanostructures containing both ferromagnets and superconductors. The interest comes from 
the fact that the electron and the hole involved in the Andreev process must belong to 
opposite spin band. This produces a suppression of the current flowing through a FS  in ter
face, which depends on the value of the exchange field characteristic of the ferromagnet. 
Th is  phenomenon has been used for estimating the spin-polarization of different kind of 
ferrom agnets [76, 77].

3. COULOMB BLOCKADE AND SUPERCONDUCTIVITY
The  astonishing progress in modern technology has made it possible to fabricate in a con
trolled way tunnel junctions with capacitances of the order of C = 10 |VF  and below. In this 
case, even the charging energy associated with a single-electron accumulation at the junc
tion, E c == e2/2C , can be of the order of several Kelvins. This implies that the properties 
in the sub-Kelvin regime are strongly affected by the presence of charging effects. Indeed, 
charging energy allows the control o f the electron number o f small islands with precision 
e o r 2e in the case of superconducting devices. Adding one electron to a small supercon
ducting island puts it into an excited state with an energy exceeding the gap. Only when a 
second electron is added can both recombine to form a Cooper pair. This leads to parity 
effects (i.e., to different properties of the superconducting systems depending on the number 
o f electrons being even or odd).

The  relevant mechanisms for charge transport in superconducting single-electron devices 
are quasi-particle tunneling, two-particle tunneling, and coherent tunneling of Cooper pairs. 
A ll o f them are strongly affected by charging. Tunneling of quasi-particles is very similar 
to the case of normal metals but take into account the modified B C S  density of states. 
Two-particle tunneling is a higher order process related to the Andreev reflection discussed 
previously. Both two-particle tunneling and coherent oscillations of Cooper pairs dominate 
transport at very low voltages. M oreover, the interplay of charging and coherent tunneling 
has a deep significance because it leads to the possibility of observing macroscopic quantum 
dynamics in these systems. The charge and the phase difference in a Josephson junction, 
although being macroscopic degrees of freedom, are quantum mechanical conjugate vari
ables. Therefore, the eigenstates are in general superpositions of different charge states. In 
addition, the combination of coherent Cooper pair tunneling and quasi-particle tunneling 
leads to a variety of structures in the l-V  characteristic.

There are numerous examples of systems where single-electron properties and supercon
ductivity have been studied theoretically and realized experimentally. A  prototype example 
that W'e will analyze is the normal-superconductor-normal (N S N ) transistor where a super
conducting island is connected to two normal conducting leads by means of tunnel junc
tions. This example allows to discuss both quasi-particle and two-particle tunneling. W e  then 
discuss some basic properties of the coherent oscillations o f Cooper pairs, which will be 
important for the discussion on the implementation of quantum computers by means of 
superconducting nanocircuits.

3.1. Tunneling Rates and Parity Effects
As prototype examples to discuss charging effects in superconducting nanostructures, we 
consider the single-electron (S E T )  transistor shown in Fig. 9a and the single-electron box 
of Fig. 9b. Here we concentrate on the transistor, whereas the box will be analyzed in the 
section devoted to quantum computation. The charging energy of the S E T  transistor depends 
on the electron number in the central island and on the applied voltages. The central island is 
coupled via two tunnel junctions to a transport voltage source, V — VL - VR, so that a current
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( b )

Figure 9. (a) The SET  transistor, (h) The C'ooper-pair box.

can flow. The island is, furthermore, coupled capacitively to a gate voltage VG. The charging 
energy of the system depends on the integer number of excess electrons n = ± 1 ,± 2 , . . .  
on the island and on the continuously varied voltages. Elem entary electrostatics yields the 
“ charging energy"

£;.,(»■ Gc) = ine k Q (, )" i n y )

Here. C = C\ + C R + CCl is the total capacitance of the island. The effect o f the voltage 
sources is contained in the gate-charge Q(- = C(■ VG + CLVL + C R K R. Sim ilar expressions 
hold for the single-electron box.

In a tunneling process that changes the number of excess electrons in the island from n to 
n + 1, the charging energy changes. Tunneling from the left junction to the island is possible 
at low temperatures only if the energy in the left-lead, eV\ , is high enough to compensate 
for the increase in charging energy eVL > E cU(n + 1, QCl) - Q o ). Sim ilarly, tunneling
from the island (transition from n -1- 1 to n) to the right-lead is possible at low temperatures 
only if £ ch(/z + I, QCl) ~  Ecb(n, QG) > eVR. Both conditions have to be satisfied simulta
neously for a current to flow through the transistor. I f  this is not the case, the current is 
exponentially suppressed, realizing the so-called Coulomb blockade. Varying the gate voltage 
produces Coulomb oscillations, (i.e. an ^-periodic dependence of the conductance on QG). 
To understand further the characteristic o f a S E T  transistor, we need to determ ine the tun
neling rates associated to electron tunneling. An  electron tunnels from one of the states k 
in the left-lead into one of the available states q in the island, thereby changing the electron 
number from n to n -f  1, with rate y u . Such a rate, which is calculated by means of the 
Ferm i golden rule, can be expressed in a transparent way as

*..(«■ Qa) = - ' J —  I ,  — T (120)e " V  e ) exp(8Ech/kBT ) -  1

The function / ( K )  is the quasi-particle tunneling characteristic (see. e.g.. Ref. [1]), which 
is suppressed at voltages below the superconducting gap(s), and 5 E ch is the charging energy 
difference between the states with n and n+ 1 electrons in the island. Charging effects reduce 
the quasi-particle tunneling further. At low temperatures, knl' <$c |S£ chi, a tunneling process 
that would increase the charging energy is suppressed. This phenomenon is called Coulomb 
Blockade o f electron tunneiing. A t zero temperature, the rate is nonzero only if the gain in 
charging energy compensates the energy needed to create the excitations o £ ch + 2A : : 0.

The rates describe the stochastic time evolution of the charge of the junction system. For 
the theoretical analysis, a master equation approach can be used. Several examples of the 
current-voltage characteristics of normal metal can be found in Refs. [7, 8j; an important 
characteristic is the ('-periodic dependence of the current and conductance on the applied 
gate charge.
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As dictited by Eq. (120). the rate for quasi-particle tunneling are exponentially suppressed 
below the superconducting gap. In this case, higher order processes involving multi-electron 
tunneling can play a role. Indeed, for N S  interfaces, there still exists a two-electron tunneling 
process, h many respects similar to the Andreev reflection discussed in the previous section 
and for tiis reason denoted as Andreev tunneling. The rate for Andreev tunneling taking 
into accoint charging effects is discussed in Ref. [78]. Andreev tunneling is a second-order 
coherent process. In the first part of the transition, one electron is transferred from an 
initial stae (e.g., k t of the normal lead) into an intermediate excited state q |  of the 
superconcucting island. In the second part of the coherent transition, an electron tunnels 
from k' \ into the partner state — q J, of the first electron, such that both form a Cooper 
pair. The final state contains two excitations in the normal lead and an extra Cooper pair in 
the superconducting island, and the rates reads:

i G A SE  , i
y{ (H. <2r,)- --- 7,r-  , ^ -T  <121)4c- exp (S£ ch 2/£B7 ) -  1

Note that the functional dependence of this rate coincides with that for single-electron tun
neling in i normal junction, Eq. (120), with a linear I-V  characteristics. Hence, Andreev 
reflection is subject to Coulomb blockade like normal-state single-electron tunneling [79] 
with the exception that the charge transferred in an Andreev reflection is 2e, and the charg
ing energ; changes accordingly. The effective Andreev conductance is of second order in 
the tunne ing conductance and, as shown in Ref. [80], is sensitive to spatial correlations in 
the normal metal, which can be expressed by the Cooperon propagator.

In  a no*maI-mctal electron box (see Fig. 9b), by sweeping the applied gate voltage, the 
number o:‘ electrons on the island in unit o f c and, as a consequence, the voltage of the 
island shews a periodic sawtooth behavior [81]. The periodicity in the gate charge QCj is 
e. If  the sland is superconducting and the gap A smaller than the charging energy E c, 
the chargc and the voltage show at low temperatures a characteristic long-short cyclic, 2c- 
periodic dependence on Q(t. This effect arises because single-electron tunneling from the 
ground stae, where all electrons near the Ferm i surface of the superconducting island are 
paired, leads to a state where one extra electron— the “ odd" one— is in an excited state [82]. 
In a smill island, as long as charging effects prevent further tunneling, the odd electron does 
not fine another excitation for recombination. Hence, the energy of this state stays above 
that o f the equivalent normal system by the gap energy. O nly at larger gate voltages can 
another electron enter the island, and the system can relax to the ground state. This scenario 
repeats wi.h periodicity 2c in 0 (l, as displayed in Fig. 10.

3 -------------------------------.-------'-------r

2 - ------------
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o . ----------------------
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- 1 0  1 2  
QG/e

Figure 10. The charging energy of a supereondueting single-eleetron box as a function of the gate voltage shows 
a difteren:e between even and odd numbers n of electron charges on the island. Accordingly, the average island 
charge (n is found in a broader range of gate voltages in the even state than in the odd state.
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Parity effects appear at temperatures lower than a crossover temperature Teff, which, 
in the experiments, is typically of the order of 10-30% of T c. At low temperatures, the 
even-odd asymmetry has been observed in the single-electron box [83] as well as in the I-V  
characteristics of superconducting S E T  transistor [84-86]. However, at higher temperatures, 
above a crossover value Tcr A, the ^-periodic behavior typical for normal-metal systems is 
recovered.

3.2. NSN Transistor
The analysis sketched above can be used to analyze the I-V  characteristics of S E T  transistors 
with a superconducting island, the so-called N SN  transistor. The interplay of parity effects 
and Andreev tunneling makes the current-voltage characteristics quite rich. If  the energy gap 
is smaller than the charging energy, the important processes are single-electron tunneling 
processes in the left and right junctions, causing transitions between even and odd states. 
In the opposite limit of a superconducting gap bigger than the charging energy, the odd 
states have a large energy and Andreev tunneling, with rate given by Eq. (121), becomes 
important [78].

A t low temperatures, and superconducting gap larger than the charging energy, a 
set o f parabolic current peaks is found centered around the degeneracy points Q G = 
±e, ±3e,. . .  [78]

/A(SC?ci. n  = CA(V - (122)

H ere, SQCj = Q(] — e for Q(l close to e, and sim ilarly near the other degeneracy points. 
A t larger transport voltages, single-electron tunneling sets in, even if A > £ c , and And reev 
reflection gets “ poisoned”  [78]. This occurs for

v>  v ^ m = ~ ( f c t -  ~ + ^ )  (>23)

Figure 11 shows the current-voltage characteristic o f a N SN  transistor with A > Ec [87]. 
A t small transport voltages, the 2e-periodic peaks due to Andreev reflection dominate; they 
get poisoned above a threshold voltage. The peaks at larger transport voltages arise from  a 
combination of single-electron tunneling and Andreev reflection. The shape and size o f the 
even-even Andreev peaks and some of the single-electron tunneling features at higher t rans- 
port voltages agree well with those observed in the experiments of Hergenrother et al. [86].

Figure 11. The current U Q (r  f ) through a NSN transistor with A > /:( . The parameters correspond to those ot 
the experiments |86j. /:< = 100 fxeV. A — 245 f ieV  R u R — 43 kil. \/G A ^ 1.2(2.4) 10s for the left (right .> jir.nction. 
With permission from [87), G. Schon et aL in “ Mesoscopic Superconductivity/’ (F:. \V. J. Hekking. G. Schc»n. and 
D. V. Averin, Eds). Proceedings of ihe NATO ARW. p. 340 Physicu B 203 (W 4 )
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3.3. Cooper Pair Tunneling
In large Josephson junctions. Cooper pair tunneling leads to dissipationless transport 
between the superconducting electrodes. The coupling is described by the Josephson energy
— £ j cos <£, with cp being the phase difference between the superconducting order parameters 
of the two electrodes. The energy scale E } = hlcr/2c is related to the critical current of the 
junction /cr, which in turn can be expressed by the tunneling resistance of the junction R{ 
and the energy gap of the superconductor A: In(T = 0) = 7rA/(2eRl ).

Charging effects introduce quantum dynamics: The phase difference <p and the charge on 
the electrodes, Q . arc quantum mechanical conjugate variables. An ideal Josephson junction 
is governed by the Hamiltonian

Ho = yc  - E s cos (f (124)

The  interplay between the phase <p of an island and number of charge carriers Q on it plays 
a crucial role. Together they determine the properties of small Josephson junctions. The 
com petition between these two canonically conjugated variables is captured by the following 
Heisenberg relation:

[<p. Q ] =  2ei

This relation indicates that suppression of the fluctuations of one of the two variables leads 
to enhanced fluctuations in the other. The magnitude of the fluctuations is controlled by 
the E c/Ej ratio. An  important question, addressed in Refs. [88-91], is how to account for 
dissipation due to the flow of normal currents and/or quasi-particle tunneling. The so-called 
“ macroscopic quantum effects" like macroscopic quantum tunneling of the phase or quan
tum coherent oscillations are derived from the Ham iltonian (124). Macroscopic quantum 
tunneling has been observed in tunnel junctions with small capacitances of the order 10“ 12 F. 
These values are still orders of magnitude too large for single-electron effects to play a role.

A n  elegant illustration of this competition is presented by what became known as the 
Heisenberg transistor [92, 93]. The aim of the experiment was to control and measure the 
quantum phase fluctuations through a modulation o f the critical current of the system. In 
Fig. 12, the layout o f the device is shown. Two junctions in series (indicated by crosses) are 
connected to a current source. The junction parameters are such that Ej ~  E ( (i.e., quantum 
mechanical fluctuations o f the number of Cooper pairs and of the phase of the central 
island are com parable). A  large superconducting reservoir is coupled to the island through 
a superconducting quantum interference device (S Q U ID ) .  In the experiment, the critical 
current was measured as a function of the applied flux through the S Q U ID  ring. It shows a 
periodic modulation with a period equal to the superconducting flux quantum (<fr0 = hj2e). 
The role o f the S Q U ID  is to provide a tunable coupling to the reservoir of Cooper pairs. 
W hen  the flux equals an integer times half a flux quantum (7/<l>()/2), the coupling is turned 
off and fluctuations in the number of Cooper pairs are suppressed. A t the same time, phase 
fluctuations reach their maximum as indicated by the Heisenberg relation. A t fields equal 
to zero or an integer number of flux quanta, the coupling is maximum so that the amount 
of charge fluctuations reaches a maximum as well. In the experiment, the scale of charge 
fluctuations was probed by a measure of the critical current; large charge fluctuations would 
correspond to favorable Cooper-pair tunneling and a high critical current. Thus, for zero 
applied field, a high critical current is measured because charge fluctuations are at their 
maximum. A t half a flux quantum applied, the critical current reaches its minimum value 
because phase fluctuations are at their maximum.

W e now turn to mesoscopic Josephson junctions or junction systems, where the number 
of electrons or Cooper pairs in small islands is the relevant degree of freedom. The charging 
energy has been discussed above. The Josephson coupling describes the transfer of Cooper- 
pair charges forward or backward, and can be written in a basis of charge states as

(n\E, cos<p\ri) = + (125)
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Figure 12. A schematic drawing of the Heisenberg transistor. The phase and the charge on the island are quantum 
mechanical conjugated variables. By varying the flux through the SQ U ID  ring, the effective Joscphson energy is 
tuned and, as a result, phase fluctuations on the central island can be varied.

W e first consider an electron box (see Fig. 9b) with superconducting island and lead 
with large energy gap at low temperatures, A > E (0*> ktiT. In this case, at low voltages, 
quasi-particle tunneling is suppressed, and the island charge can change only by Cooper-pair 
tunneling in units of 2c as described by Eq. (125). The tunneling is strong near points of 
degeneracy. For instance, for QG ^  <\ the charging energies of the states with n = 0 and 
n = 2 are comparable, and we can restrict our attention to these two charge states. The 
coherent tunneling between both is described by the 2 x 2  Ham iltonian

IT =
£„(<>) - \

b
?

2

£ch(2) x

This Hamiitonian is easily diagonal!zed: the eigenstates and eigenenergies are

tfr„ = a|0>+j3|2>, (//, = j3|0) — or|2>

SE.

(126)

-f- ~-=
>/S£jh + Ej

1-/3' (127)

•I). 1 £ ch((»  + £ ch( 2) t  JsE 'j,  + E]

Here, we have introduced the difference in charging energy <5£ch = £ ch(2) -- £ Ch(0) = 
4Ec\Q^Je — 1). The coefficient a approaches unity if the charging energy of the state |2) 
lies far above that of |0) (i.e. for SEch 0) and vanishes in the opposite limit.

The expectation value of the charge on the island in the ground state is given bv

= 2j8 (128)

It changes near QG — c from 0 to 2 over a width o f order SQ(i Es/Ec. This has been 
confirmed experimentally in Ref. j94].
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The combination of coherent Cooper-pair tunneling and dissipative quasi-particle 
tunneling leads to a dissipative /-V characteristic o f superconductor-superconductor- 
superconducor (S S S ) transistors [84. 95-99]. W e consider the case of an SSS-SET  transistor 
with supercoiducting electrodes and island below the characteristic temperature for observ
ing parity efects. The combination of coherent Cooper pair tunneling and single-electron 
tunneling leids to a dissipative l-V  characteristic. Results are shown in Fig. 13 with param 
eters corresponding to those of experiments reported in Ref. [84]. W e note that the I-V  
characterise  is 2^-periodic and shows a rich structure deep in the subgap region. For trans
port voltage: eV > 2 .5EC, the 2^-periodic features disappear, and the current becomes 
^-periodic in QCt again.

A  very important example where the interplay between coherent tunneling of Cooper 
pairs and charging effect is the the gate-voltage dependence of the critical current of SSS  
or superconcuctor-normal-superconductor (S N S ) transistors [100, 101]. As discussed for the 
Heisenberg tansistor, the critical current can be modulated by means of a gate that favors 
(o r suppresses) charge fluctuations in the central island.

There are many other interesting questions that we could not touch; we mention for 
example the n le of single-electron effects in electrical noise [102] or the question of quantum 
pumping [10!].

3.4. Superconducting Nanoparticles
In  the previous section, we saw how the superconducting properties can be modified 
by the presence of charging effects. In this situation, the hallmarks characteristics of 
superconductvity in bulk samples (i.e., zero electrical resistance and Meissner effect) are 
not visible. Dssipationless current is masked bv Coulomb blockade and the dimensions of 
the samples ae small compared to the penetration depth so that the field penetrates over 
the whole superconducting particle. Nevertheless, we can still have a well defined supercon
ducting gap. n nanosized particles, the situation becomes radically different. For samples 
o f few nanoneters in diameter, the level spacing can become of the same order of the 
B C S  gap, anc superconductivity disappears [104]. These systems have been investigated in 
a series of ex>eriments by Ralph, B lack, and Tinkham (R B T )  [105] on small dots (linear 
size —\() nm lown to 2 nm) al low temperatures. R B T  have shown in larger grains the 
existence o f a spectroscopic gap (defined as the energy difference between the first excited 
state and t h e ’round state), which is driven to zero by applying a suitable magnetic field. 
Reducing the-aze of the samples down to ~3  nm, no trace of the gap is found. In these 
samples, the oppression of the spectroscopic gap is due to the spin paramagnetism (the 
Zeem an effec competing with the pairing interaction), as the orbital effects are negligible.

Figure 13. I-V  chracteristic of an SSS transistor. The parameters are A = 1.3E( . /;, = 0.17i:( , ft, r = R  ^ RK. 
y = 2.5 • I0“?(# C : '.  Reprinted with permission from [98|. J. Siewert and G. Schon. Phys. Rev B  54. 7421 (19%). 
© 19%, American Musical Society.
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The experiments by R B T  posed a number of important questions related to the disap
pearance of superconductivity in nanoparticles and on the definition of superconductivity 
in this case (where the canonical ensemble should be used). As we already discussed, the 
properties of an isolated, mesoscopic superconducting grain are quite different from those 
of a bulk sample. First o f all, because such a grain carries a fixed number N of electrons, its 
behavior depends strongly on whether N  is even or odd. Second, fluctuation effects become 
important as the size o f the grain decreases. The interplay between parity and fluctuation 
effects crucially depends on the ratio 8/A of two characteristic energies: the mean level 
spacing 5 and the bulk superconducting gap A. As long as the grain is not too small, 8 <3C A, 
the fluctuation region A T around the critical temperature T c is narrow, A7 '/T, ~  J  S/A  «  1, 
and the mean field description of superconductivity is appropriate.

The Ham iltonian usually adopted [106] for these systems is:

u  ii

H = E ,Tc„ g £  ci +i i : _c„ _c„ + (129)
n — l,fr=± m.n= I

The indexes m and n label the single particle energy levels with energy em and annihilation 
operator cm iT. The energy levels em fluctuate according to the Gaussian orthogonal ensemble, 
which describes systems with rotational invariance and time-reversal symmetry. (Th e  time- 
reversal symmetry is preserved in the case of a vanishing magnetic field). The quantum 
number a = ± labels time-reversed electron states. The external magnetic field is // and 
(lb the Bohr magneton, and the external field contribution is due only to the Zeem an term, 
as orbital effects are negligible. The number o f interacting levels is 12, which is twice the 
Debye frequency con in units of the mean level spacing 8 — 1 /N(())V [AA(0 ) is the density 
o f states at the Ferm i energy and V the volume o f the grain]. Finally, g = A<5 is the BC S 
coupling constant, A being a dimensionless coupling, given by the B C S  energy scale A = 
U5/[2sinh (5/A )].

The finite level spacing suppresses the B C S  gap in a parity-dependent way [107, 108], 
W hen  8 becomes of the order A, AT — Tc, and the B C S  description of superconductivity 
breaks down even at zero temperature [104]. The regime 8 > A is dominated by strong 
pairing fluctuations [109-113]. C lear signatures of superconductivity can be detected in the 
parity gap proposed by M atveev and Larkin  [110] and defined as

A _ jr-«(0)  ̂ / rp{̂ ) , r'(0)\
— C-2/V +1 — 2 \ 2.V+2 2N)

where E ^  is the ground state energy of a dot with N electrons.
The presence of the pairing correlation has further been characterized by studying the 

behavior of some thermodynamical observables, such as the specific heat [114]. the spin 
susceptibility [114, 115], and field dependent magnetization [116].

3.5. Josephson Arrays
The ability to assemble in ordered networks Josephson junctions, described in Scctior 3.3, 
has opened the way toward the study of collective phenomena in artificially fa b r ic a te s  sys
tems. The first artificially fabricated Josephson-junctions arrays ( J JA s )  were realized 20 /ears 
ago at IB M  as part of their effort to develop an electronics based on supercondieting 
devices. At the beginning, Josephson arrays were intensively studied to explore a weath of 
classical phenomena [117-119]. J JA s  proved to be an ideal model system in which classi
cal phase transitions, frustration effects, classical vortex dynamics, nonlinear dynamic*, and 
chaos could be studied in a controlled way. A ll classical phenomena have been expkriinsd by 
studying the classical (therm o)dvnam ics of the phases of the superconducting order param
eter on each island. Under these conditions, classical J JA s  are a physical realization of the 
two-dimensional XY-rnodei and, above a transition temperature, phase fluctuations destroy 
the global phase coherence preventing the system to reach the superconducting state. Clobal
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phase coherence is only restored below temperatures corresponding to the Josephson cou
pling energy E h which is the energy scale associated with Cooper pair tunneling between 
neighboring islands.

Quantum J JA s  already allow investigation of quantum (zero-temperature) phase transi
tions [120. 121]. In recent years, this field of research has attracted the attention of many 
physicists. Experiments on thin, superconducting films, high-temperature superconductors, 
spin systems, and two-dimensional electron gases have all shown the existence of quantum 
critical points. In arrays made of submicrometer junctions, the quantum fluctuations drive 
the system through a variety of quantum phase transitions. A  quantum J J A  may be insulating 
at zero temperature even though each island is still superconducting. In the classical limit 
Ej  Ec, the system turns superconducting at low temperatures, as the fluctuations of the 
phases are weak and the system is globally phase coherent. In the opposite limit, Ej <$C E c, 
the array becomes a Mott insulator, as the charges on each island are localized, and an acti
vation energy of the order E ( is required to transport charges through the system (Coulom b 
blockade of Cooper pairs). Strong quantum fluctuations of the phases prevent the system 
from reaching long-range phase coherence in this regime.

Granular superconducting thin films are closely related to arrays. In granular films, 
superconducting islands of various sizes and with various coupling energies are connected 
together. Therefore, disorder plays a crucial role in these granular materials, whereas it is 
virtually absent in J JA s  (in fact, it can be introduced in a controlled way).

Another important field of investigation addressed with J JA s  is the study of the quantum 
dynamics of macroscopic objects. In the classical limit (E , E c■•), vortices are the topological
excitations that determine the (thermo)dynam ic properties o f J JA s .  In the opposite situation 
(E j ^  E c), the charges on each island are the relevant degrees of freedom. Vortices and 
charges play a dual role, and many features of J JA s  can be observed in the two limits if the 
role of charges and vortices are interchanged. By fabricating arrays with different geometries, 
vortices can be manipulated to a great extent. Quantum dynamics of macroscopic objects 
requires knowledge of the coupling to the surrounding environment. To a certain degree, 
the dissipative environment can be modeled, and therefore J JA s  are prototype systems to 
study macroscopic quantum mechanics as well.

A  detailed account of the research work done on quantum Josephson arrays can be found 
in Ref. [13].

The relevant physics is captured by a model, frequently defined as the quantum phase 
model (Q P M ),  characterized by the following Hamiltonian

h opm = E K  - (iJV.'iqj -  <7v) -  E  c°s(</>,- -  4>j -  Aij) (130)
</.)•>

where /, / are array indexes, and q, and </>, are, respectively, charge and phase o f the super
conducting island i. The Coulomb interaction is described by the matrix U:i = e2Cjj]. The 
simplest, sufficiently realistic, model for the capacitance matrix ClJ includes only the ground 
capacitance C„ (accounting for the capacitance between the island and the ground) and the 
junction capacitance C , with the corresponding energy scales E c = e2/2C and E {) — el/2C„. 
The range of the electrostatic interaction between Cooper pairs is, in units of the lattice 
spacing, A = yJC/C[y A  control (external) voltage Vx applied to the ground plane enters via 
the induced charge Qx = 2eqK = J^,CIIVX. W hen tuning Kx, different charge configurations 
minimize the electrostatic energy. It suppresses tunneling (Coulom b blockade) except at 
degeneracy points. A  perpendicular magnetic field with vector potential A  enters the Q P M  
in the standard way through A „ = 2e // A  ■ dI. The relevant param eter that describes the 
magnetic frustration is /  = (1 /27r) Y^Atj, where the summation runs over an elementary 
plaquette.

The Q P M  accounts only for Cooper pair tunneling; in some cases, however, one has to 
take into account the tunneling of quasiparticles and/or the flow of O hm ic current through 
the substrate or between the junctions. In the case of strong on-site Coulom b interaction 
Uu = U() and very low temperatures, only few charge states are important. I f  the gate voltage 
is tuned :lose to a degeneracy, the relevant physics is captured by considering only two
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adjacent charge states o f each island, and the Q P M  is equivalent to an anisotropic X X Z  
spin-1/2 Heisenberg model [122]:

Hs = h v  .V; , V . s  U, V -  /;. Y.{e-A"S?S- + e ' .V.V ) (131)

The operators S~, 5/, 5 “  arc the spin-1/2 operators, Sj being related to the charge on 
each island (q, — S~ + 1/2), and the raising and lowering Sf  operators corresponding to the 
“ creation” and “ annih ilation" operators e±,,l>i o f the Q P M . The “ external" field h is related 
to the external charge by h = (qs -  1/2) YLj^a- Various magnetic ordered phases of the 
X X Z  Ham iltonian correspond to the different phases in the Q P M . Long-range order in (5  f ) 
indicates superfluidity in the Q P M , whereas long-range order in (S: ) describes order in the 
charge configuration. There is yet another closely related model that is mostly used in the 
context of superconductivity in ultrathin films, the Bose-Hubbard model [123]

H m E " / -  zY,(b]bj + h.c.) (132)

where b\ b are the creation and annihilation operators for bosons, and = b\bt is the 
number of bosons. Again. U!J describes the Coulomb interaction between bosons, fi is the 
chemical potential, and / the hopping matrix element. The connection between the Bose- 
Hubbard model and the Q P M  is easily seen by writing the field b, in terms of amplitude 
and phase and then approximating the amplitude by its average (i.e., b, — e,(h>). The hopping 
term is then associated with the Josephson tunneling while the chem ical potential plays the 
same role as the external charge in the Q P M . This mapping becomes more accurate as the 
average number of bosons per sites increases.

The three models are equivalent in the sense that they belong to the same universality class 
(they lead to the same Ginzburg-Landau effective free energy). However, the nonuniversal 
features like the location of the phase transitions depend quantitatively on the specific choice 
o f the model.

A  simple way to establish various properties of the phase diagram is to employ the mean 
field approximation, which consists in approximating the Ham iltonian of Eq .( 130) by [124]

HMI Y^q,U,,q, -  z£,<cos(</>)> £]cos(<£,)

where z is the coordination number in the lattice and ijj ~  (cos((f))) is the order parameter. 
This has to be calculated self-consistently according to

(cos(tf>)) = T r { cos( (/>,) exp ( —f3HMr) }  /Tr { exp( -  (3 f/M F) }

Close to the transition point, the thermal average on the right-hand side can be evaluated 
by expanding in powers of *//. To third order, a G inzburg-Landau type equation arises:

Ĵ l -  zE, ^  (/r<cos <!>,{t ) c o s  )),./, <//+(^ — )./!(//-'=  0 (133;

Here, the average < •■• >cJl is performed over the Eigenstates of the charging part of the 
Ham iltonian only, and the quantity .h entails the four-point phase correlation. If  the charging 
term is absent, the phase-phase correlator in Eq. (133) is equal to one. and we recover tin 
classical result [ScrzE , = 2. Due to the charging effects, the phase starts to fluctuate anc 
the critical temperature is depressed. The correlator is easy to evaluate. For instance, in thi 
self-charging limit Ulf — Û dj, at T — 0. it is (U{] = 8 £ 0 only if the junction capacitance i 
zero)

(cos (t\{r) cos </>,(0))(/. =  ̂- j exp j - ^ j r (  1 - r/jS) |

I
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As a result, the superconductor/insulator transition at zero temperature occurs at

2zEs = U„

For larger values o f the charging energy, the array does not acquire phase coherence even 
at zero temperature.

Sim ilar types of mean field approaches can be used to study the effect o f frustration in 
these systems.

3.6. Quantum Computation with Superconducting Nanocircuits
Quantum computation (Q C )  [ 125) has recently excited many scientists from various different 
areas of physics. The increasing interest in this field is certainly related to the fact that some 
problems that are intractable with classical algorithms can be solved much faster with Q C . 
Factorization of large numbers, as proposed by Shor, is probably the best known example in 
this respect. The elem entary unit of any quantum information process is the qubit. The two 
values of the classical bit are replaced by the ground state (|())) and excited (|1 )) state of 
a two-level system (it is common to adopt the spin-1/2 language as we will do here). W h ile  
information is stored either in 0 or in 1 in a classical bit, any state |t//(0) = «(/)|0 ) + 6(011) 
can be used as a qubit. Contro lled evolution between the two states |0) and |1) is obtained by 
applying resonant external radiation to the system or by a fast D C  pulse of high amplitude. 
B y  choosing appropriate pulse widths, the N O T  operation

(134)
l»> —  |1>

10 —  |0> 

or the Hadamard transformation

|0> — > -L(|()) + | l »
(135)

io  —  -  i »V -

can be established. These unitary operations alone do not make a quantum computer yet. 
Together with one-bit operations, it is of fundamental importance to perform two-bit quan
tum operations (i.e., to control the unitary evolution of entangled states). One example of a 
two-qubit gate is the contro l-N O T operation:

|00> — ^ |00>

|01) - |01)
(136)

110) — » |11)

111) — » 110)

The unitary single-bit operations and this control-NOT operation are sufficient for perform 
ing all tasks of a quantum computer. Therefore, quantum computers can be viewed as pro
grammable quantum interferometers. Initially prepared in a superposition of all the possible 
input sta:es, the computation evolves in parallel along all its possible paths, which interfere 
toward the desired output state. It is this intrinsic parallelism in the evolution of quantum 
systems tia t allows for exponentially more efficient ways of perform ing computation.

On the one hand, it is o f crucial importance that qubits are protected from the envi
ronment (i.e., from any source that could cause decoherence). This is a very difficult task 
because at the same time, one also has to control the evolution o f the qubits, which inevitably 
neans that the qubit is coupled to the environment. On the other hand, large-scale integra- 
ion (needed to make a quantum computer useful) seems to be impossible. Qubits realized 
vith solic-state devices may offer a great advantage in this respect, because fabrication tech- 
liques a lbw  for scalability to a large number of coupled qubits. Josephson qubits are among
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the most promising devices to implement solid-state quantum computation [126, 127]. Q uan
tum manipulations of individual [128-134] and coupled [135] qubits has been demonstrated 
experimentally.

A t present, different proposals have been put forward to use superconducting nano
circuits [136-140] for the implementation of quantum algorithms. Depending on the operat
ing regime, they are commonly referred to as charge [136, 137, 140, 141] and flux [138, 139] 
qubits.

In the case of charge qubits, the building block for quantum computation is realized by 
the two nearly degenerate charge states of a single electron box as shown in Fig. 9b. They 
represent the states |0), |1) o f the qubit. In the computational Hilbert space, the ideal 
evolution of the system is governed by the Ham iltonian

H = - A £ ch(|0)<()| -  |1){1|) -  ^ (|0 )< 1 | + |1>(0|) (137)

where A £ th = Ech(nx -  1/2). A ny  one bit operation can be realized by varying the exter
nal charge nx and, in the proposal o f Ref. [136], by varying the Josephson coupling E, as 
well. Modulation of E f is achieved by placing the Cooper-pair box in S Q U ID  geometry. 
The advantage of this choice is that during idle times, the Ham iltonian can be “ switched 
o ff”  completely elim inating any trivial phase accumulation that should be subtracted for 
computational purposes.

As discussed before, a quantum computer can be realized once two bit gates are im ple
mented. The Karlsruhe group has proposed an inductive coupling between qubits that lead
to a coupling of the type

//( (138)

This type of coupling is very close in spirit to the coupling used in the ion-trap im plem en
tation of Q C . The main advantage of this choice is that qubits are coupled via an infinite 
range coupling and that they can easily be isolated. A  different scheme has been proposed in 
Ref. [137], where the adiabatic aspect of conditional dynamics is emphasized and the use of 
capacitive coupling between gates is suggested as to reduce unwanted transitions to higher 
charge states. The coupling reads H( = - E c(t[: ])(T:~\ and the qubit is now defined as a finite 
one-dimensional array, o f junctions. By means of gate voltages applied at different places 
in the array, the qubit-qubit coupling can be modulated in time and a control-NOT can be 
realized.

A  qubit can also be realized with superconducting nanocircuits in the opposite limit: E,
E ( . An rf- SQ U ID  (a superconducting loop interrupted by a Josephson junction) provides 
the prototype of such a device. The Ham iltonian of this system reads

—

Here, L  is the self-inductance of the loop, and the phase difference across the junction 
(2 7r(I>/<!>,,) is related the flux <J> in the loop. The externally applied flux is denoted by <PV. The 
charge Q is canonically conjugated to the flux <t>. In  the limit in which the self-inductance is 
large, the two first terms in the Hamiltonian form a double-well potential near -• 3 V 2 . 
A lso in this case, the Ham iltonian can be reduced to that o f a two-state system. The term 
proportional to <t . measures the asymmetry of the double well potential, and the off-diagonal 
matrix elements depend on the tunneling amplitude between the wells. By  controlling the 
applied magnetic field, all elementary unitary operations can be performed.

In order to fulfill various operational requirements, more refined designs should be used. 
In the proposal o f M ooij et al. [138], qubits are formed by three junctions (as in Fig. 14). 
Flux qubits are coupled by means of flux transformers, which provide inductive coupling 
between them. Any loop of one qubit can be coupled to any loop of the other, but to turn 
o ff this coupling, one would need to have an ideal switch in the flux transformer. This switch 
is to be controlled by high-frequency pulses, and the related external circuit can lead to 
decoherence effects.
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Figure 14.. The threc-junetion flux qubit. Josephson junctions 1 and 2 have the same Joscphson energies E n = 
= Ej anc capacitance C, = C2 = C, whereas Josephson junction 3 has a Joscphson energy and capacitance that 

are a lirives arger. The islands are coupled by gate capacitors C\A = CulJ = yC  to gate voltages VA and VB. The 
arrows define the direction of the currents.

A n  intermediate situation in which the charging and Josephson energies are comparable 
has been \ery successfully exploited in Ref. [131]; in this case, it is more appropriate to talk 
about phase qubits.

A  high degree of quantum coherence is a crucial requirement for the implementation 
o f quantum logic devices. Decoherence can be a serious limitation, due to the presence of 
many types low energy excitations in the “ internal”  environment and of external sources due 
to the control circuitry. A  review of issues related to decoherence in superconducting qubits 
can be found in Ref. [142].

4. CONCLUSIONS
In  this review, we tried to present an overall description o f mesoscopic superconductivity. 
The field is so vast that the choice of the topics was surely biased by our personal taste and by 
our field of investigations. To summarize, we have started this review by illustrating the trans
port properties of hybrid systems formed by putting into contact superconductors with nor
mal metals and ferromagncts. In Section 2, we have introduced the Bogoliubov-de Gennes 
equation in order to discuss transport properties in terms of Andreev processes. W e have 
then provided a derivation o f the Bogoliubov-de Gennes equation starting from the B C S  the
ory and gave the solutions of such an equation for three different systems, namely a homo
geneous ferromagnet, a homogeneous superconductor, and a ferromagnet/superconductor 
junction. A fter that, we have introduced the two most important theoretical approaches to 
the study of transport properties in hybrid systems. We chose to give a more detailed treat
ment of the scattering theory, deriving general conductance formulas in terms of scattering 
matrices and giving explicit expressions for the case of two-probe systems. The quasi-classical 
G reen 's function approach has also been discussed, although in less details, and a review of 
the most important results has been provided. Section 3 has been devoted to the interplay 
between superconductivity and Coulomb blockade, which is present in small metallic grains 
where charging effects are important. W e have discussed parity effects in single-electron 
transistors containing a superconducting island and their consequences on the quasi-particle 
tunneling rates. I- V  characteristics have been illustrated. Cooper-pair tunneling has also 
been addressed in large Josephson junctions where the consequences of quantum mechan
ical conjugation of phase and charge variables has been considered. Section 3.4 has been 
devoted to superconducting nanoparticles where the hallmark characteristic o f superconduc
tivity o f bulk samples are not visible. Parity and fluctuation effects have been illustrated in 
the presence of a finite level spacing. In Section 3.5, we have discussed Joscphson arrays that 
consist o f ordered networks of Josephson junctions. These systems are important because 
they allow one to investigate a variety of phenomena, such as classical phase transitions, 
frustration effects, and so forth, in a controlled way. Furtherm ore, three different models 
have briefly been reviewed for the study o f such systems, and a mean field approximation
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has been also introduced. Section 3.6 is devoted to describe how it is possible to im ple
ment quantum computation with superconducting nanocircuits. A fte r having introduced the 
most important notions of the subject, wc have discussed how a qubit can be realized with 
Josephson junctions, either in the charge or flux operating regime.

There are several important topics that were left out; the interested reader may find 
additional references in the reviews quoted in the "In troduction.”

It is quite hard to draw conclusions and even harder to advance ideas about possible 
future directions of the field. Nevertheless, we take this risk and briefly outline what we 
believe (rem aining conservative) will be the future development o f the field. Quantum  com 
putation with superconducting nanocircuits is certainly one of the most active areas in this 
respect. The possibility of building a solid-state computer is very appealing, and the possi
bility to combine the macroscopic superconducting coherence with the ability o f designing 
nanocircuits will certainly give interesting results also in the future.

A  direction that is not fully studied up to now is the role of superconductivity in m olecular 
electronics. Transport through molecules using superconducting electrodes may give addi
tional insight due to the fact that one can perform both single-particle and Cooper pair 
spectroscopy.

Finally, we would like to mention that all the knowledge obtained in Josephson arrays may 
be important in the study of condensate in optical lattices. The experimental realization o f 
cold atoms trapped in optical lattices has indeed paved the way for the discovery of a wealth 
of new phenomena in Bose-Einstcin condensates. For example, the superconductor-insulator 
transition, predicted for optical lattices in Ref. [143], can be described in the framework of 
the Bose-Hubbard model (or equivalently the quantum phase model) employed also in the 
study of the properties o f Josephson junctions arrays.
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1. INTRODUCTION
Quantum  dots (Q D s ) are tiny, dimensionally confined (typically semiconductor) objects 
where quantum effects become obvious, for example, energy spectra become discrete (sec 
Fig. 1). Q D s are characterized by a sharp density of states (D O S )— reminiscent of “ atoms." 
To be more precise, a semiconductor material cluster may be termed a quantum dot if its 
characteristic dimensions become comparable to the exciton Boh r radius. For example, in 
case of G aAs, the exciton Bohr radius is roughly 10 nm. They are of immense technological 
importance and (while several technological barriers rem ain) are often considered as basis 
for several revolutionary nanoelectronic devices and applications (F ig . 2), for example, next- 
generation lighting [1-2], lasers [3-4], quantum computing, information storage and quan
tum cryptography [5-7], biological labels [8], sensors [9] and many others [10-12, 13-15]. 
Q D s and quantum wires (Q W R s )  are typically embedded in another material with differing
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1D OD
3D (Bulk Material) 2D (Quantum W ell) (Quantum W ire) (Quantum Dot)

fi(E) fi(E) 2(E) «<E)

Figure 1. As the dimensionality of the structure reduce DOS, #(/:). becomes sharper and pronouncedly discrete.

clastic constants and lattice parameter. Because of the lattice mismatch, both the Q D  and 
host matrix strain and relax elastically to accommodate this mismatch and thus admit a state 
o f stress (Fig . 3). As is well known, the electronic structure and the consequent optoelec
tronic properties o f Q D s are severely impacted due to this lattice mismatch induced strain 
[16-19]. In this article, we review pertinent literature on various methods to calculate the

(c)

Figure 2. Different applications of quantum wires and dots, (a) Image of a quantum wire laser operating through 
the eye of a needle. Reproduced with permission from C. Jagadish, Research School of Physical Sciences and 
Engineering. Australian National University, © (2005). Increased recombination probability and discrete nature of 
DOS results in efficient lasing characteristics at low threshold currents along with the promise of tunable wav elength,
(b) Magnified view of quantum dot attachment to neurons. Reproduced with permission from [18]. Winter et al.. 
Adv. Muter. 13, 1673 (2001). © 2001, Wiley VCH. Vcrlag GmbH &. Co. Pictured here is the magnification of quantum 
dot attachment to neurons using antibody (A. 13) and peptide (C. D) binding techniques. In R and D. the blue 
color is the self-fluorescence of the cell's cytoplasm, and the yellow/orange color is the quantum dot luminescence. 
Using nanostructure sensors such as these, cellular-level target specificity at biological-electronic interfaces can be 
achieved as against conventional silicon-based electrodes where interfaces are at the tissue level, (c) Image of a 
quantum dot bases transistor. Reproduced with permission from [ 19], Chen cl al., Phys. Rev. Lett. 92, 176801 (2004). 
© 2004, American Physical Society. Transistors form vital switching components in computers. With quantum dot 
based transistors as the one shown in the figure, ’‘quantum computers,” can be realized. The memory of a quantum 
computer can simultaneously be both in "0" (off) and ’‘ I"  (on) states (in general a superposition of these states) 
compared to a classical computer’s memory which is made up of either a "O ' bit or a "1* bit. id) Illustration of a 
quantum dot-based sensor for analyte detection. Reproduced with permission from |20|. Medintz et al., Nitt- Muter. 
2, 630 (2003). € 2003, Nature Publishing Group.
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M ate ria l A

Co he re n t  In te rface  D islocation N ucleation

t
A c* * * 1 * t * i* * * ♦ 4 • i

O O Q <> O Q O

0 <, o <. A 4

M a t e r i a l  B

(a) (b) (c)

Figure 3. (a) Illustrates two materials "A" and "B "  with different lattice constants; (b) formation of a "coherent'* 
interface between A and B. requires that the lattice mismatch is completely accommodated by elastic deformation;
(c) depicts the situation where the lattice mismatch is so high that further elastic deformation is energetically too 
costly and it is preferable to nucleate misfit dislocations. Such an interface is called a semicoherent interface.

state of strain in embedded coherent Q D s  and Q W R s ; That is, interface dislocations are 
absent. T h e  impact of dislocations, if formed, on optoelectronic properties is so severe that 
an entirely different sort of discussion is required. In  this review article, we mainly focus on 
the scenario when misfit dislocations are absent in the very near vicinity of the Q D . This is 
indeed practical for small Q D s [20].

The chapter is semitutorial in nature to make it accessible to readers from a broad range 
of disciplines. The rest of this chapter is organized in two broad sections. In Section 2, we 
provide, intermixed with a literature review, details on various methods and issues in calcula
tion of strains in embedded QDs. O ur particular focus is on cataloging the known analytical 
expressions. Physical insights obtained from both analytical results and numerical simula
tions of various researchers (including our own) are also discussed. The effect o f various 
parameters such as material anisotropy, Q D  shape, surface image forces, elastic nonlinearity 
and piezoelectricity are addressed (Section 2.2-2.6). Typically classical continuum mechanics, 
which is intrinsically size independent, is employed for strain calculations. To address this, 
we have also included a brief discussion on the effect o f Q D  size on strain calculations since 
most Q D  are in the sub-20-nm range, and one indeed expects a departure from classical 
mechanics at such small sizes (Section 2.7). In Section 2.8, we briefly review some relevant 
results in the elastic theory of inclusions, which while well known in the solid mechanics 
community, may be less known in the Q D  literature and are thus likely to be useful to 
engineers and scientists working in the latter research area. W e conclude with a summary in 
Section 3 w here we also present a rather terse personal viewpoint on some future research 
avenues in this research topic.

2. STRAIN FIELD CALCULATIONS IN QUANTUM DOTS AND WIRES
QDs occur or are fabricated in a variety of shapes, sizes, and material combinations. C las
sical continuum elasticity (and less frequently, atomistic methods) are typically employed
to calculate the strains in these structures, which are then linked to suitable band struc
ture calculation methods to estimate the strained optoelectronic behavior. A  review of band 
structure calculation methods for strained quantum structures is beyond the scope of the 
present article and the reader is referred to some excellent resources in the literature [12, 
21,22].

Classical Linear elastostatics is governed by the following set of partial differential equations 
[Eq. ( ] ) ]  along with appropriate boundary conditions at the interfaces/surfaces [Eq . (2)]:

e = - [ ( V  (g> u )7 + (V  <g> u )J ( l a )

d iv  a  4- f  =  0 ( l b )

=  C; (e -  f 111) (ic)
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Equation ( la )  relates the second-order strain tensor ( f )  to the displacement vector (u).
V is the gradient operator and superscript “ 7” ’ indicates transpose operation. Equation (lb ) 
written in terms of the second-order stress tensor (cr) is the equilibrium equation with 
external body forces (f)  while Eq. (lc ) relates the stresses and strain (note that e m is the 
lattice-mismatch strain) through a fourth-order elasticity tensor (C). We shall use both bold
face and index notation as convenient. Unless noted otherwise, all tensors are Cartesian and 
conventional summation rules for repeated indices apply. Boundary conditions can be cither 
prescribed tractions or displacements. In the context of embedded QD/QWRs (typically), 
the following conditions at the interfaces and free surfaces are obeyed:

The vector n is the normal at a point on the interface. The symbol [•] denotes jump in the 
field quantities across an interface. In particular for free surface, the traction-free condition 
( j  n = 0 is satisfied.

Considering the easy and economic availability of commercial numerical packages (e.g., 
finite element tools) that can solve Eq. (1) for arbitrary geometry, material symmetry, and 
boundary conditions, discussion of analytical solutions may seem somewhat redundant and 
antiquated. However, much effort has been expended to develop such analytical models that 
have proved to be extremely useful in obtaining explicit physical insights and often, rea
sonable accuracy. Further, one must note that eventually, the strain calculations must be 
coupled to quantum mechanical equations for band structure calculations, which often pro
ceeds numerically. Analytical expressions for strain can significantly simplify that proccss. In 
Section 2.1, we provide a simple illustrative example for calculation of strain in the idealized 
case of a deeply buried, embedded spherical quantum dot.

2.1. Simple Illustrative Example
Consider a spherical quantum dot (11) of radius R (Fig. 4), located in an infinite amount 
of host material (D ). The assumption of infinite host medium corresponds to the situation 
where the QD is deeply buried and the host matrix boundaries do not impact its strain state. 
In other words, the distance of the Q D  from any free boundary is significantly larger than 
the QD radius (typically > 3R).

Let the lattice parameter of the QD be aOD and that of the matrix be a XJ. The lattice 
mismatch strain tensor is then:

Some authors choose to divide aOD -  aM by the average of the two lattice parameters. We 
assume for the purpose of this simple example that the material properties of both QD and 
matrix are isotropic; that is, the elastic tensor can be expressed in terms of the two Lame 
constants (A, f i):

[cr]n = 0: [u] = 0 (2)

(3)

i j k l  ^ ^ i j ^ k l  t l ( S i k 8 j i  - j - (4)

Figure 4. S chem atic  o f  th e  spherica l q u an tu m  dot (SI) e m b e d d e d  in an  infinite host m atrix  ( I)) .
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In this simple example, it is easier to work in terms of displacement. Equations (1) can he 
rewritten in terms of displacement (Navier's equations):

f i x ' l l  + div grad 11 f  f = 0 (5 )

Here, v, is the Poisson ratio. To calculate stress, any nonelastic contribution (such as the 
mismatch strain) must be subtracted from the actual strain before employing Hooke's law. 
That is, for isotropic materials, the constitutive law in Eq. (1) can be rewritten as

(r = A0D(T rf - T rf " )1 + 2fiQD(e  -  em) ( 6 )

Here I is the identity tensor. No subtraction of the mismatch strain is necessary when calcu
lating the matrix stresses since according to convention we adopted in Eq. (3), the mismatch 
strain is calculated with respect to zero reference strain in the matrix.

The problem under consideration with all its attendant assumptions is manifestly spher
ically symmetric and hence must admit a displacement field that is purely radial, that is, 
u =  u ( r ) e r . The corresponding infinitesimal strain tensor in spherical polar basis (e,., elh e(/)) 
can be written as

du 
f■ = — e 

dr
li

e, +  - e „  
r

e« +  -e ,

Equation (5) or the Navier's equation then reduces to

()~n 2 (hi
T T  + ~ ~7T dr- r dr

,u2 i

—  =0 r-

(7)

(8)

The general solutions to the differential equation of Eq. (8) are simply, r  and 1/r2, that is,

//(/*) = A r  +  B r 2\r < R 

Cr + D r  2\r > R

(9a)

(9b)

Here, A, B , C, and D  are constants to be determined from the boundary conditions. Two 
boundary conditions are immediately obvious: (1) since the problem is a purely dilatational 
problem with spherical symmetry, at the center of the quantum dot u(/■) must approach zero 
and (2) at points infinitely far away from the quantum dot, the displacement must decay 
to zero. These restrictions render B =  C =  0. Further, as per the boundary conditions in 
Eq. (2), the displacements must be continuous, thus i r ( r  -* R)\ — u~(r  —> /?), while the 
traction continuity condition ensures that a l.  — cr~ =  0. The final solution is obtained as

//(/•) =

3K QDem

4m.v/ + 3 K od r-

m r>.->

\ - . r > R

( 10a) 

(10b)

Here the subscript M  refers to matrix properties. Strain components and in particular the 
dilation (which has the dominant effect in electronic calculations) can be trivially obtained 
to be

£,-,('•) = £««(/■) = eM (r )
3 K q d e

er,.(r) =
I K QD'

L ■1^O D  +  4/i,W -

Soil = z

/

r > R

r  < R

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
1

1 c w ft 3 1

R'

3 K od -f 4 _ 1 ?
r  > R

(I la) 

( l ib )  

( H e )
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Yang et al. [23] performed similar analytical calculations on Si() sGe(): sphere, cylinder and 
a rectangular slab embedded in an infinite Si host and linked these results to band-structure 
calculations. Numerical results were also obtained for V-groove Si()S Ge(i: quantum wires 
under anisotropy considerations [23].

An important point to note is that for band-gap calculations, the mismatch strain is sub
tracted from the actual compatible elastic strain. As a result while in the solid mechanics 
community the compatible elastic strain is normally expressed and plotted (as wc have done 
so in Fig. 5), the QD research community often illustrate the subtracted strain (see, e.g., 
Yang et al. [23]). This can potentially cause confusion and care must be exercised in inter
preting results from the solid mechanics literature. The simple idealized example in Fig. 5 
illustrates and underscores several rather general features: (1) the strain state is uniform 
inside the quantum dot— as shall be seen, this is a general feature for all ellipsoidal shaped 
quantum dots; (2) the dilation too is uniform inside the QD; we emphasize this trivial 
point here since, as will be discussed in the next section, the dilation is uniform for all 
quantum dot shapes (provided certain assumptions such as unbounded host material, etc., 
are not violated); (iii) the dilation is zero outside the QD. This also is true for all QD  
shapes.

2.2. Effect of Shape
Some of the commonly occurring configurations of quantum dots and wires are illustrated 
in Fig. 6.

The reader is referred to these references [24-29] that report evidence of a wide variety of 
shapes, including pyramidal, truncated pyramidal, lens shaped, hemispherical, multifaceted 
domes, and so on, for the widely studied InNGa,_ x As/In As quantum dot system. Owing to the 
inherent size independence of classical continuum elasticity, strain state calculations depend 
exclusively on inclusion shape— to be more precise, self-similar structures if scaled larger or 
smaller yield identical results for strains and stresses.

Several of the methodologies that emerged in the context of QD/QW R strain calculations 
can be considered to be off-shoots or modifications of the now classical work of Eshelby

Plot of strain components for SiGe/Si system

r/R

Figure 5. Plot of the strain components for a Sil) s Ge„ > spherical quantum dot embedded in an infinite Si matrix 
versus the ratio (r 'R). Uniform strain e;„ exists inside the quantum dot. Outside the dot. is one of the tangential 
components of strain and err is the radial component of strain. As is noticeable, the dilation of strain e|( outside 
the dot is zero. One can notice the rapid decay of the strain outside the dot to a zero value at values of r R as 
low as 3.5.
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Figure 6. Common configurations of QDs and Q W Rs. (a) Cuboidal, (h) conical, (c) lens shaped, (d) pyramidal, 
(e ) truncated pyramidal, (f) hemispherical, (g) trapezoidal Q W R . (h) cylindrical Q W R.

[30-32] on inclusions and inhomogenities. His elegant formalism provides rather straight
forward means to evaluate the effect of shape for, in principle, arbitrary shaped quantum 
dots and wires. We first discuss his formalism briefly before reviewing the specific litera
ture on QD/QWRs. In addition to providing a historical setting, Eshelby’s work provides an 
excellent perspective on inclusion problems and more specifically, then the related works on 
QD/QW Rs can be discussed in appropriate context. This discussion will greatly facilitate our 
presentation (Section 2.8) of some results on the theory of inclusions (based on Eshelby’s 
approach) that though widely known in the micromechanics community, do not appear to 
have been fully exploited in the context of quantum dots and wires.

2.2.1. Eshelby’s General Formalism for Shape Effects
Consider an arbitrary shaped inclusion (quantum dot) embedded in an unbounded material 
(the impact of finiteness of the surrounding material will be discussed in Section 2.3). Let a 
stress-free uniform transformation strain be prescribed within the domain of the QD (Fig. 7). 
Lattice mismatch induced strain is an example of such a stress free transformation strain 
and so are., for example, thermal expansion mismatch strains, phase transformation strains 
among others. For the moment, we assume identical material properties for the QD and the 
matrix.

Although Eshelby’s general approach is not restricted to isotropic materials, analytical 
results are generally not tractable in the fully anisotropic case. Issues related to anisotropy 
are fully discussed in Section 2.4.1. For now, we assume isotropic elastic behavior. By defi
nition, the transformation strain is only nonzero within the QD domain (x e f l) .  and thus 
we can write the constitutive law for the QD-matrix as follows:

aij = 2/i(e/y - t f H )  +  ~  e ^ H )  (12)

Figure 7. A  quiantum dot of arbitrary shape (12) inside an infinite matrix (D).
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Here “ H ” is the step function defined as H (x) 
rewrite a Naviers type equation:

. We can, analogous to Eq. (5),

f iU i j i  + (/x + A)uu , — —[(h s "}8 lk + 2fie '- l.)H ( \ ) ]  k (13)

Clearly, the divergence of the mismatch stain eikH (x )  defined over the inclusion volume 
act as delta functions across the inclusion surface i.e., e”kS(S) (e.g., Refs. [30, 33]). A  com
parison with the Navier’s Eq. 5 indicates that the mismatch strain terms can be simulated as 
body forces. The displacement vector can he obtained using the Green's function (of I:q. 5 
or 13) as

Here Gauss theorem has been used to convert the surface integral into a volume integral. 
The Green's function for Navier’s equation is available in most books on elasticity (e.g.. 
Ref. [34]) and can be written as

Upon substituting the Green's function in Eq. (14) and invoking the strain-displaccment 
law, we readily obtain [30]:

where t// and tf> are biharmonic and harmonic potentials of the inclusion shape ( i l ) .  They 
are given as:

Here S and D are the so-called Eshelby tensors for interior and exterior points, respectively:

One obtains S or D depending upon whether the vector x in Eqs. (17 and 18) is located 
within the quantum dot or outside it. Eshelby's tensors for various shapes (spheres, cylin
ders, ellipsoids, discs, and cuboids) are well documented in Mura [35j. For example, in the 
case of a spherical inclusion or quantum dot, we have

(\e"'i8jk +  /  g , / . a ( x  - x ')JK (x ') (14)

G ,j{r)  + 2/x) (15)
r  = x — x'; r = I r

[4>U.klij ~ ~l,(t>kk.,i -  2 ( 1  -  V){(f),k kj + (16)

(17)

(18)

Equation (16) is usually cast in the following form:

f ( x ) = S (X ): e m x e i l  

f ( x ) = D(x): e m x  ̂ 11
(19)

I v S u & j j  -  ( l -  v)[<t>kj 8 i i  +  d k l 8 j ,  +  <£,,<5,a +  d>,ji>i k} }  (20)
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- 3 R-) r e i l
6

R}
T- r f L S l3/*

(22)

Usin^ Eqs. (20)—(22) Eshelby's interior tensor can be then written explicitly as [35]

5p — 1 4 — 5^
S..i-i =  —z-- -— 8 8k, h--------- (8 r 8 / + 8.18.,) (23)

' 15(1 - v) 1 15(1 -  v) J 1

Here, v is the Poisson ratio. The reader can trivially verify that use of Eshelby tensor expres
sion above for strain calculation in a spherical quantum dot leads to the same results derived 
in a different way in Eq. (11) of Section 2.2 (provided the matrix properties are set to be 
the same as those of the quantum dot).

The implications of Eshelby’s formalism are manifest. An evaluation of the harmonic and 
biharmonic potentials (Eqs. [17] and [18]) for various shapes, in principle, allows calculation 
of Eshelby’s tensor and hence the complete strain state inside and outside the embedded 
quantum dot. An interesting outcome of Eshelby's analysis [30] is that for inclusions of 
ellipsoidal shape, S is uniform. This implies that any quantum dot belonging to the ellipsoidal 
family immersed in an unbounded matrix subject to a uniform mismatch strain will admit a 
uniform stran! This is rather useful since the ellipsoidal shape is very versatile and can be 
used to niirric and approximate a variety of shapes (see Fig. 8). For the simple case of a 
spherical quantum dot, this fact has already been noted in the context of Eq. (11) and Fig. 5. 
This notion remains true even in the case of arbitrary anisotropy. This uniformity of strain 
rule does net in general hold true for nonellipsoidal shapes (e.g., polyhedral, pyramidal), 
in absence o:. linearity or il the matrix is not unbounded. As Eshelby [301 has pointed out, 
the peculiar property that ellipsoidal inclusions admit a uniform strain state under certain 
conditions isalso very useful for taking into account the mismatch between the elastic moduli 
of the quantim dot and the surrounding matrix.

If only the dilatation is of interest, matters simplify considerably and we obtain:

{)K r /n ,
7>(f ) = - 7 - T T F V^  <24)4 f i + 3 K

Thus only the harmonic potential needs to be evaluated. Further, the general properties 
of the harmonic potential [30, 36-37] ensure that the dilation inside the quantum dot is 
shape indepetdent\ Again caution must be exercised in using this notion when, for example, 
the surrou.ndng medium is not unbounded. Within the strict assumptions of the derivation

Circular Cylinder Ellipsoid
Elliptical Cylinder r

Flat Ellipsoid Penny Shaped Sphere

Figure H. An illutration of the variety of shapes, which fall undci the gamut of ihe general ellipsoid.
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given by Eshclby [30] and partly reproduced here, this rather interesting fact suggests that 
in an isotropic unbounded medium, shape effects are of secondary importance insofar as 
dilation is concerned.

Since the strain state within the inclusion is uniform for ellipsoids, Eshelby [30] was able 
to devise an elegant method to mimic an inhomogenity, that is, an inclusion with a mismatch 
strain and material properties differing from the host matrix, by an inclusion containing a 
fictitious transformation strain. Mura [35] defines an inclusion to be a subdomain in which 
a stress-free strain is prescribed but the material properties are same everywhere. An inho
mogeneity is defined as an inclusion that has differing material properties from those of 
the surrounding matrix. The so-called equivalent inclusion method simply entails equating 
the elastic state of an inhomogenity to that of an inclusion albeit with the aforementioned 
fictitious transformation strain that is,

C v/: {e -  e m -  e 1} = C //: {e  -  e"'}  \ (25a)
} x g n

e = S : { e m + e J} J (25b)

Equations (25) are simply algebraic equations that allow explicit determination of the 
fictitious transformation strain and hence the elastic moduli mismatch in the case of ellip
soidal quantum dots. For more general shapes, Eshelby’s tensor is no longer uniform and 
hence these equations become rather complicated integral equations. This is will be further 
discussed when we address arbitrary shaped QDs in the next section.

2.2.2. Quantum Dots
In the specific context of QDs, fair amount of effort has been expended on general solutions
(for example, see [38-44]). Some of the earlier works in regards to quantum dots strain
calculations are due to Grundmann et al. [48] (see also Refs. [45—47]). They presented some 
simple analytical results for shapes such as slabs, circular cylinder and spherical. One notes 
that these results can, of course, also be recovered from Eshelby's formalism discussed in the 
previous section. For the specific case of InAs pyramidal-shaped quantum dots embedded
in a GaAs matrix, Grundmann et al. [48] presented numerical simulations for the strain
distributions. This shape is of course a bit difficult to handle analytically although closcd- 
form solution can indeed be derived as will be discussed shortly. Although it is beyond 
the scope of the present article, their computation of the strain-linked electronic properties 
of InAs QDs is also of interest and they succeed in obtaining reasonable agreement with 
experimental data on luminescence and absorption.

Downes et al. [49] devised a simple method for calculating the strain distribution in deeply 
buried QD structures. Six vectors A a r e  defined such that VA yields the stress components 
crsph for a point spherical inclusion:

Avv = Dx i ; Avr = — D xk; A (V — —Dx i

Avv = Dyj; Av_ = -D zj; A,. = Dzk

__ A _  Eem
(x 2 -f y 2 + z2)3/2 *  ̂ 47T( 1 -  v)

Here, E  is the Young’s modulus. The stress tensor for a given QD shape can then be written as

o*(x) = / V A(x - x') dV (x ')  (27)
J v

Divergence theorem can then be invoked to convert the volume integral in Eq. 27 to a 
surface integral to obtain the strain field in and around an arbitrarily shaped QD.

(T(x) — / A ( x - x ' ) - d S( x ') (28)

The QD surface may be discretized appropriately to convert the surface integral into a 
summation. This approach facilitates analytic solutions in the case of simple M me lures like

(26a)

(26b)

(26c)
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cuboidal QDs. Formally, this approach by Downes et al. [49] can be related to computing 
Eshelby's tensor. As example, the stress state of a parallelepiped dot can be easily related
to its geometry, that is, lengths and the angles. For such a parallelepiped dot, centered on
the origin and aligned along the Cartesian axes, with dimensions, 2a x 2b x 2c, Eq. (28) 
provides the following stress components [60]:

^  i / (b ±  y )(c  ±  z) \
a „  = Y ~\tan  1 -------- — V -  =, ^  =  (29a)

\ (a ±  .v) , / ( a ±  x ) 2 +  (b ±  y ) 2 + (c ± z)2 /

(Tv- = H  h  >°g j s j O' ± « ): + (y  ± + ( Z ±  c ) 2 -  ( v ± b) | (29b)

FIcre the summation is over the various combinations of -b and —. In Eq. (29b), q is +1 
for one or 3 plus signs and —1 for 0 or 2 plus signs. Identical results can be obtained using 
Eshelby’s approach and indeed have been derived by Chiu [50] and are also documented 
in Mura [35]. When the dimension of the parallelepiped along one direction is very large 
compared with the other two dimensions, it degenerates to the case of a rectangular Q W R  
and the results for the buried strained layer, both of which will be discussed later in this 
section. As noted by Downes et al. [49], the integral that is used to evaluate is similar to 
the integral for the solid angle subtended by the two (100) faces of a parallelepiped aligned 
along, the Cartesian axes (see Fig. 9). The hydrostatic stress inside such a dot (rrvv + <rvv -f a ..)  
is the reby proportional to the solid angle subtended at an interior field point by all the faces 
of th«e cube (47t). This fact automatically ensures the constancy of the dilation within the 
dot. The solid angle is zero for an outside point and so is the hydrostatic strain.

Oae of the more common shapes for self-assembled quantum dots is the pyramidal geom
etry (Fig. 10). Finite-element methods have been employed to treat the strain distribution 
problem for pyramidal quantum dots [48, 51]. However, analytical solutions (although some
what tedious) can also be readily obtained.

A generic point, ( a 1/ ,  a V, . r ^)  inside the volume of the pyramidal dot illustrated in Fig. 10 
can b*e mathematically represented by

(30a)

b
( m )

0 < x" < h f  (30c)

Figured. Illustration of the solid angle subtended at point P(.\.y,z) by two opposing faces, “'A ” and " B "  of a 
cuboid. Adap ed from Downes cl a!. [49].
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Figure 10. The geometry of the pyramidal quantum dot considered bv Pearson and Faux [52] is illustrated; "J" 
represents the degree of truncation of the pyramid. Adapted from Pearson and Faux [52].

Here, /  is the degree of truncation of the pyramid (see Fig. 10). With the volume of 
integration given by Eq. (29), and using the method developed in Ref. [60] (described in 
the preceding pages), Pearson and Faux [52] arrived at complex but, nevertheless, closed- 
form solutions for the stress distribution of pyramidal shaped and illustrated their results 
for the InAs-GaAs system (relying on the experimental data from Fry et. al. [531 for the 
geometry in Fig. 10). They also investigated QDs with nonuniform composition. In such a 
case, the pyramidal QD is sliced into a large number of smaller truncated pyramids, and the 
small slices are assumed to have uniform composition. Several aspects of their results are 
of interest. As the reader will gather from Fig. 11 (specific to InAs-GaAs), the magnitudes 
of the strain components were found to be the largest at the QD/matrix interface (at =  
55 nm), especially at the vertices with the strain attenuating rapidly in the barrier material. 
This is consistent with the notion that classical continuum elasticity admits a singular solution 
close to the vertices. Also, the strain distribution in the matrix material immediately below 
the square face remains unchanged for different truncations (/ ) considered because the base 
of the pyramidal dot remains unchanged. eu and s22 are compressive through out the dot 
though lesser in magnitude than the initial misfit strain of -6.7% owing to strain relaxation. 
Outside the dot, e33 is compressive within the barrier material owing to the QD relaxing 
outward along jc3, compressing the local host material in the process. Interestingly, as a

x3 (angstroms) (angstroms)

Figure 11. Illustration of the variation of e M (left) and (right) traced along ,v; obtained by analytical calculations 
on a pyramidal quantum dot (based on actual InAs/GaAs quantum dot geometry because of f ix el al. 1531) by 
Pearson and Faux [52]. The height of the dot i> 55 A. (The base of the dot is iocated at .v; — \) and the apex at 
a\ •.= 55 angstroms). Lines A, B, C. and D represent the different truncation factors "f" considered in the above 
analysis. Reproduced with permission from [52]. Pearson et al., ./. Appl. Phys. XX. 730 (20(10). Figs. 2. h. 2000, 
American institute of Phvsics.
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result of this, tends to overrelax inside the dot with tensile strains existing in QDs w'ith 
low truncation factors (compare with Fig. 11). However, Pearson et al. [52] note, as the 
truncation factor is made higher, the Poisson effect of £,, and e22 ]S much reduced which 
results in a compressive £- in the QD.

In the analysis of Pearson and Faux [52]. dots with graded composition exhibited smaller 
strains at the base because the mismatch strain is lower at the base for this case (compared 
against dots with uniform composition of InAs). The other trends follow patterns similar to 
the instance of QDs with uniform InAs composition discussed hitherto. In yet another case of 
an array o f QDs discussed in Pearson et al. [52], superposition of tensile stresses of adjacent 
material results in further relaxation of the compressive strain component of the QD in 
the center of the array. is always compressive within the dot in an array (compare this 
with the isolated quantum dot) due to the compressive stresses of the surrounding material 
superposimg with the small tensile stress.

Davies [54] drew an analogy with the Poisson equation of electrostatics and the lattice 
mismatch induced strain problem in quantum dots. In a treatment that can be easily related 
to that of Eshelby [30] as well as Downes et al. [49], he formulated solutions of spherical, 
euboidal and pyramidal dots. In this analogy, lattice mismatch plays the role of charge den
sity. Alter natively, as discussed by Eshelby [30], the mismatch transformation strain may be 
considered the density of an astronomical body while the dilation is related to the Laplacian 
of the “ gravitational” potential of the quantum dot or inclusion shape.

Several works [55-61] have resolved strain distribution in different shapes via numerical 
methods. For example. Shin et al. [61] used the finite element method and analyzed struc
tures simi lar to those in Faux and Pearson’s work [52]. Additionally, Shin et al. [61] also 
reported tthe change in strain distribution with change in dot truncation as a function of 
stacking p»eriod. Some representative pictures and results from Shin et al. [611 are shown in 
Figs. 12 and 13.

2.2.3. Atom istic versus Continuum Calculations 
o f Strain Distributions in QD/QWRs

A tew of tthe works have resorted to atomistic calculations for strain distributions [61-64]. 
Since by tihe very nature and size scale of the lattice mismatch embedded quantum dot 
problem, imillions of atoms have to be considered, cib initio methods are computationally 
too intensive. Empirical forcc-field molecular dynamics must be resorted to. The accuracy 
and the value of empirical force field atomistic calculations lie in the choice of a suitable 
potential. The latter is either fit to available experimental data for the material under con
sideration or alternatively may be developed using ah initio methods. As pointed out by 
Pryor et all. [58], atomistic methods are faithful to the true point symmetry of the material 
while analogous continuum models may not necessarily reflect this in their coarse-grained 
sense. Further nonlinearities (anharmonic effects) are automatically embedded in an atom
istic formulation. (However, to be accurate, the potential must have been parameterized 
appropriat ely to account for anharmonic effects.)

The valence force field (V F F ) [65] provided by Keating [66] and Martin [67] is perhaps 
the simplest. Anharmonicitv is inadequately accounted for in this approach and only nearest 
neighbors are accounted for. Stillinger-Weber [68—71 ] potentials and Tersoff potentials are 
more invoilved. Stillinger-Weber potentials have been applied to Si/Ge QDs [69-71]. The 
Tersoff potential has been used for InGaAs/GaAs quantum dots [72]. Kikuchi et al. [190] 
have compared the V F F  and Stillinger-Weber potential for the SiGe/Si system and concluded 
that for smaller quantum dots, the Stillinger-Weber potential may be better as V F F  yields 
some physiical results in the strain profiles (see also Ref. [191]).

Notably, Pryor et al. [58] have presented an interesting comparison between continuum 
elasticity and atomistic simulations (Fig. 14). For large mismatch strains (e.g., 7% strain 
mismatch for InAs/GaAs quantum dots) only minor discrepancies from continuum elasticity 
were found (Fig. 14). Other groups have similarly found that continuum elasticity for most 
cases provides reasonable answers, for all practical purposes, even at the monolayer level 
[63. 73].
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5  m o r e  la y e r s  p lu s  r o o f  (5 5  n m )

3 0  n m

Figure 12. Shin ct al.'s finite element model of the multilayer-stacked InAs/GaAs structure with (a) truncated 
(b) un-truncated quantum dots. Reproduced with permission from [61], Shin ct al.,7. Phys. 15, 3680 (2003), Fig. 1. 
(0 2003, lO P  Publishing Limited.

Tadic ct al. [59] have also made a comparative study of strain distribution in cylindrical 
InAs/GaAs and InP/InGaP QDs as obtained from isotropic elasticity theory, anisotropic elas
ticity and atomistic simulations [42]. Davies' approach [54] outlined above was used for the 
isotropic case, while finite element method was employed for the anisotropic case. For the
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atomistic simulations, both V FF  and Stillinger-Wcber potentials were used and compared. 
Better agreement was found between the strain contours between the four methods employed 
for InP/InGaP QDs than in InAs/GaAs QDs. This observation was attributed to the smaller 
lattice mismatch in the InP/InGaP system. In particular, differences are only observed in 
regions where strain changes very rapidly, that is, the edges and corners of the structures.

2.2.4. Quantum Wires
Some ol the early literature on shape dependence effects on quantum dots strain focused on 
quantum wires (Q W R ), which are one-dimensional analogues of quantum dots (zero dimen
sional). In particular, much emphasis was placed on solving problems for specific Q W R  or 
QD shape . A strained Q W R  (Fig. 15) is a region of material that has two of its dimensions 
very small in comparison to the third. The cross-sectional size of the wire is of the order of 
a few tenŝ  of nanometers giving rise to quantum confinement of electrons in these two spa
tial dimensions. Eshelby’s formalism [30] can be readily employed to tackle various shaped 
QWRs. A Q W R  with a uniform circular cross section (see Fig. 15) surrounded by an infinite 
host matrix happens to be a special case of an ellipsoidal inclusion in an infinite medium 
and HsheFby s well-known solution [30] for such ellipsoidal inclusions, discussed earlier, can 
be invoked to find the strain and displacement fields.

ai Embedded 
Quantum wire

Figure 15. A  quantum wire in the form of an infinite elliptical cylinder embedded in an infinite medium.
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Notwithstanding early analytical work on thin films or islands present in the vicinit' of 
a free surface [38-44], Downes and Faux [74] were among the first to explicitly deal -vith 
the problem of analytical strain-distribution calculation for buried strained layers; the ;ase 
of a quantum wire with square cross section degenerating to a special instance of this n ore 
general problem. The problem addressed by Downes and Faux [74] is schematically depi:ted 
in Fig. 16, which illustrates a buried strained layer ( i l )  surrounded bv an infinite host rrutrix 
(D ). The dimension of the structure in the z-direction is assumed to be very large so that 
plane strain conditions apply.

Downes and Faux [74] proposed an approach similar to one already outlined for the 
three dimensional case (Downes et al. [49]). (However, we note that, chronologically, the 
two-dimensional work preceded the three-dimensional formulation even though we iave 
discussed the latter in an earlier section.) They obtained (for the problem in Fig. 16)

(7layer(.v, y) =  j  j  ( rcy'(x  - .v„, y -  (31)

The stress fields for “ point” cylindrical inclusion serve as Green's function for this problem. 
They are

(32a) 

(32b) 

(32c)

Eem 
2tt( 1 - v)

Explicit analytical expressions (Eqs. [33]) have been provided by Downes and Faux 74] for 
a single strained layer after evaluating the integral in Eq. 31

= t ( x : -  r )  

< ;v = T ( r  -  x 2)

=  T  ( A - v )

where, T  = A2
(x- + V“)“

Figure 16. Illustration of a cross section through a buried strained layer. (Inset three-dimensional renteringof a 
strained layer). Adapted from Downes and Faux j74].
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<rXA =  A :

(T yv =  \ 2

A,
(T., = —-

E  ‘an 

E tan

l ± x
C ±  V 

C ±  V

(33a)

(33b)
I ± x

[ E  /; ln {(/ ± v)2 + (c ±  y): } J (33c

Once again, the summation is over various combinations of -f and —. In Eq. (33c), /? is -1-1 
for odd number of plus signs and -1 for even number of plus signs.

The strained layer reduces to a quantum wire with square cross-section when / equals c 
(Fig. 16). From the expressions for the strain field in and around a quantum wire with a 
square cross section, one can deduce that only a small fraction of the lattice mismatch strain 
is accommodated across the cross-section of the wire, with considerable strain relaxation 
occurring along these shorter dimensions [75J.

Quantum wires are often synthesized in situ as arrays and also occur in device structures 
(say, e.g., lasers, see Fig. 17) as periodic arrangements [76-79].

Considering a periodic array of trapezium-shaped wires buried in an infinite medium 
(Fig. 18), Gosling and Willis [80] tackled the array problem by simulating each of the wires 
to be an Eshelby-Iike inclusion. Modeling trapezium-shaped Q W Rs as inhomogenitics (with 
elastic constants different than the surrounding host material) can considerably complicate 
calculations; consequently, same elastic constants are chosen for the quantum wires and 
the matrix. Further assuming all materials to be isotropic, and employing the elastic Green 
function and Fourier transformations, exact analytical expressions for the stress field were 
provided [80].

As can be inferred from Fig. 18, the case of a buried strained epitaxial layer can be 
recovered when one allows "w "  to equal “ p .”  Also by allowing p —» oo, the case of an 
isolated wire can be examined. Gosling and Willis [80| applied these expressions to compare 
the structural stability and electronic properties of an array of wires with that of an isolated 
wire and found that for array periods of five wire widths or more the stability (see Ref. 
[81-87] for literature on stability issues in nanostructures) and band-gap characteristics of 
the periodic arrangement were similar to those of isolated wires.

Faux et al. [88] have employed the stress field because of a point cylindrical inclusion 
(similar to the way the point sphere stress solution was applied in the three-dimensional 
case [49]) as a “ Green function” to calculate the stress field about an arbitrarily shaped 
Q W R  buried in an infinite medium. Analogous to the reduction of the three-dimensional 
volume integral to a surface integral in the case of arbitrary-shaped quantum dots [49], their 
scheme reduces the problem to the evaluation of a path integral around the boundary of

Figure 17. A F M  cross-section image (left) of two V-groove QW 'R lasers separated by a distance of 3 /xm. T EM  
cross-section imagt (right) of a single V-groove Q W R  laser with five vertically stacked Q W Rs in the waveguide 
corc. Reproduced vith permission from |7l)|, Weman and Kapon, www.ifm.liu.se/matephys/nanopto/QWires.html, 
© 2005, H. We mar

http://www.ifm.liu.se/matephys/nanopto/QWires.html
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Figure 18. Schematic of a periodic array of trapezoidal quantum wires illustrating the geometry of the wire p" is 
the period of the array, "w" is the width of each wire at the apex, "y" is the height of the wire. The characteristic 
angles are also shown. (Inset: a three-dimensional rendering of the trapezoidal quantum wire). Adapted from 
Gosling and Willis [80].

the quantum wire. Consider the three vectors [88]:

D,
A vv = - D , y i; A v>, = D,x j; A,, = -y(.vi -  yj)

A , . '  ( 3 4 >

D l x 2 +  v2’ 2ir( 1 — v)

Similar to the three-dimensional case [49], the vectors of Eq. (34) are chosen such that
V x A yields the cylindrical Green’s function components a xx, a vv, and t rxv which are given 
by Eq. (32).

With the aid of Eqs. (32) and (34), the stress distribution due to a quantum wire with 
arbitrary cross section was obtained by evaluating the following surface integral

o r(r) = /  V x A (r  -  r ')  ■ d S (r ')  (35)

The integration is performed over the area of the Q W R. With the application of Stokes 
theorem, this surface integral (Eq. [35]) was reduced to a line integral around the boundary 
of the wire [88]:

(T( r )  = j> \ {r  — r ')  • dr (36)

For simple geometries such as rectangular wires, the line integral in Eq. (36), can be per
formed analytically providing, for example, similar results to the strained layer case visited 
earlier. For Q W Rs with a rectangular cross section. Faux et al. [88] have noted that with a 
proper choice of the integrand, only the horizontal boundaries of the rectangular Q W R  can 
be made to contribute to crvv and only the vertical boundaries to </vv, which simplifies the 
computation further. Faux et al. [88j apply their methodology to an InP wire ol triangular 
cross section embedded in GaAs host with a lattice mismatch strain, em — -3.7cc. Nishi 
et al. [89] have also performed strain calculations on the exact same wire configuration using 
the finite element method. For the triangular cross section, some results are illustrated in 
Fig. 19 [88]. They are found to agree well with Nishi et al.’s [89) results.

As Faux et al. [88] have noted from Fig. 19, significant strain relaxation is found to occur 
over most of the area of the wire with the magnitude of the strain components exx and e yy 
being less than about e,n/2  at all points in the Q W R, except at the apex of the triangle. 
Further, is least relaxed at the base resulting in over-relaxation of which is manifest
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Figure 19. Strain contours (in r'< unils) eX{ (left) and eYX (right) for an InP triangular wire within an infinite GaAs 
matrix. The initial misHt strain is assumed to be 3.7%. Reproduced with permission from [88], Faux et al.. J. Appl. 
Phys. 80, 2515 (1996). Fig. 1. O  19%. American Institute of Physics.

in the positive values that s vv assumes. In agreement with inclusion theory, the trace of the 
strain tens>or is constant for all points in the inclusion.

For complicated shapes the Q W R  boundary may be discretized and the contour integral 
can be converted into a summation. Arbitrary shapes can be approximated to be composed 
of a combination of line elements and circular arcs. In some cases, this decomposition may 
be exact. By  employing the simple expressions for line elements, and so forth, contributions 
due to a line element and a circular arc, stress/strain evaluations can be obtained. In fact, 
precisely on these lines, Downes et al. [90] in a subsequent work have provided analytic 
expressions for the strain field due to a lattice-mismatched Q W R  whose cross section is 
composed of any combination of line elements and circular arcs. The authors applied this 
methodolo'gy to GaAs/AIGaAs crescent-shaped wire [90]. Typically, crescent-shaped quan
tum wires .are grown in situ using organometallic chemical vapor deposition of thin layers on 
V-grooved substrates. The position of the Q W R  is germinated at the position of the initial 
groove on the patterned substrate, leading to highly self-ordered wire arrays.

As illustrated in Fig. 20, the wire was approximated as consisting of two lines and two arcs 
[90] (the thin quantum wells on the valley sides (not shown in Fig. 20) are usually ignored). 
For a givem radius of curvature of the lower arc and a given thickness of the Q W R  (this data 
obtained from Kapon et al. [761 for the GaAs/AIGaAs system), the radius of curvature of 
the upper arc can be arrived at (using geometry) and the strain contours inside and outside 
the Q W R  'were obtained (Fig. 21).

Decompos it ion o f  the 
crescent shape into line and 

arc elements

Dement 2

Figure 20. Decomposition of the boundary of a crescent shaped wire into line and arc elements. Adapted from 
Downes et al. [90].
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Figure 21. Strain contours in units of percent indicating exx (left) and f iv (right) for a GaAs/AIGaAs ;rescent- 
shaped wire (geometry of wire based on Kapon el al. [76]) with initial misfit strain of 1%. Reproduced w ith 
permission from [90], Faux et al., J. Appl. Phys. 82. 3754 (1997), Fig. 6. © 1997, American Institute of Ph-sics.

As can be observed in Fig. 21, Downes et al. [90] noted that, for an initial misfit strain 
of 1% (the wire is initially under tensile strain), the maximum strain in the .v-dire;tion is 
about 0.75% (at the center and near the top of the wire, where the width is the largest). 
e vv is negative within the Q W R. Expectedly, the dilation is constant inside the wire (zero 
outside the wire). In a rectangular Q W R  with a high-aspect ratio, the strain relaxation occurs 
predominantly in one dimension ( e vy would be about —0.9% and e xx would tend to *0). The 
crescent-shaped Q W R  has smaller peak strain values because strain relaxation occurs in two 
dimensions.

Provided wires of the same thickness are considered, on incorporation of the thir. lateral 
quantum wells, the strain fields have been observed to be similar [90] except at the corners 
of the structure. This similarity finds reason in the fact that as the QWs are thin, the jontour 
integral contribution along the lower line of the well is almost cancelled by the contribution 
because of the upper line.

We have seen that almost all the analyses discussed far assume identical elastic constants 
for the quantum dot and the barrier material, which begets the question whether t lis kind 
of treatment is justified. Clearly, for the ellipsoidal shape quantum dots embedded in an 
unbounded matrix, Eshelby's equivalent inclusion method [30] provides an easy recipe to 
account for modulus mismatch. More generally, this is not easy. So are we justified in using 
the same elastic constants for both the materials? Downes and coworkers [90] have mtlined 
the following issues to consider: (1) Two different materials, at least, are used. (2) The 
materials are generally semiconductor alloys. (3) At least one of the materials is in z state of 
strain (It is difficult to estimate the elastic constants for alloys in a state of strain.) Downes 
and co-workers [90] argue that Keyes scaling relationship [91—92] for I I I—IV  semiconductors 
suggests that the it is appropriate to choose the elastic constants of the barrier material for 
all materials in the system because all materials have the same lattice spacing befcre misfit 
strain relaxation takes place. As an illustration, the elastic constants for a strained hAs QD 
in a GaAs matrix will be closer to the GaAs values than those for unstrained In As. In the 
present authors opinion, this issue requires further investigation. If necessary, the modulus 
mismatch can be accounted for as a perturbation (see, for example, Andreev et al. [93]).

2.3. Effect of Presence of a Free Surface in Near Vicinity
Because of their mode of fabrication and operation, QDs/QWRs are most often bur.ed fairly 
close to a free surface rather than being embedded in an “ infinite" matrix where the host 
material boundaries play no role. Such “ shallowly” buried quantum dots act like stressors 
and the resulting elastic fields coerce vertical dot ordering during growth of subsequent 
layers of self-assembled quantum dots. (Lateral ordering of dot layers is known u occur in 
the presence of regular dislocation arrays or buried strained layers [94-95].) Furtiermore, 
both qualitatively and quantitatively, the strain behavior of embedded QD/QWRj that are 
located close to a free surface is quite different from one embedded in an infiniu medium 
For example, the famous Eshelby rule that an ellipsoidal shaped inclusion with ; uniform
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misfit will admit a uniform elastic state no longer holds true. For some simple shapes and 
cases, closed-form results are available although given the complications in satisfying the 
traction free boundary conditions at the host material boundaries, resort must be made 
toward numerical methods. As already indicated, typically, if the distance of a quantum dot 
from the free surface is larger than 3R (in case of a spherical dot), an infinite space solution 
may be invoked with reasonable accuracy. Otherwise, the so-called half-space solution is 
recommended. The schematic of the semi-infinite domain (defined by x-y > 0) is shown in 
Fig. 22 below:

In the context of half-space, Mindlin and Cheng’s seminal work [96-97] addressed a center 
of dilatation. This solution can be elegantly expressed in terms of the thermoelastic poten
tials of an infinite solid [98]. Following Mindlin and Cheng [96-97], we briefly discuss the 
displacement field of a spherical dot buried at depth, /?, from the free surface. Isotropicity 
is assumed and both the QD and the matrix are assumed to have identical elastic moduli.

The relation for displacement u ( r )  in a semi-infinite region 0 < z with a free surface at 
r — 0 as provided by Mindlin and Cheng is [97]:

477u(r) = — V</> — V: c/>-> (37)

where cj) is the harmonic potential of the infinite system given by Eq. (24) and cp2 is the 
reflection transform of (/> in the plane z = 0. For an i n f i n i t e  solid Goodier [98-99] showed that 
(for purely dilatation axisymmetrie problems) the displacement potential obeys the following 
Poisson’s equation:

1 + v 9 K
V“</> — —4 7T----em = —477------—  em (38)

1 — v 3 K  + 4fji

The operator V: is given by [97]

V,  =  ( 3 -  4/ ' ) V +  2 — 4(  1 — / ^ _ V : z (3 9 )
cU

The radii to a point of interest (x, v, z) from (0, 0, //) and its image point ((),(), —h) are,
r  = [a2 -f y 2 + (z — h ) : ] ] 1 and r: =  \x2 + v2 + (z + /z)2]1 2, respectively. Thus (f) and (f>2
are [97]

4tra-e"' , Aircr'e’" , , ,0 — — — — , d)2 =  —— —  for r  > a (exterior to the dot)
3 a ~ 3 R-y

(40)
2 tT8,,(3a2 - R 2) f 4?Ta*em , 7 ,

(p = ------ -- ---- , 0 -, = —— —  lor /• < a (points inside the dot)
3/?i

Figure 22. Uluistration >f a scmi-inliniic space with a plane free surface (c < 0). An embedded inclusion can also 
be seen.
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From Eq. (26), we have the solutions for displacements as [97]

for r  > a

(41)

Where ue is the displacement field for an exterior point, and u, is the displacement field for 
a point inside the quantum dot. The strain field can be recovered in the usual manner from 
strain-displacement relationships.

Davies [100] has extended Mindlin and Cheng's [97] approach. He showed that the 
displacements and strains for the semi-infinite solid can be, in a rather simple manner, 
expressed in terms of those for an infinite solid and their corresponding derivatives normal 
to the surface. He finds the following expression for displacement [ 100]:

u =  u *  + (3 - Av)u*  + 2z — (f/^, /"/*, -fz?) (42)
<7Z

where
y, z) = //"(a-, >\ -z) (43)

The displacement at the free surface, which can be obtained by setting z = 0, is found
to be increased by a factor of 4(1 - r) compared to the displacement of the same plane in
an infinite solid. The same factor relates the strains at the free surface: evv, s vv, and sxy to
their counterparts in the infinite sample. As noted by Davies [100], part of this enhancement 
occurs because the QD/QW R is less contained by a free surface than in an infinite solid but 
the remaining part is due to less obvious effects arising out of distortion of the surrounding 
which pushes the inclusion toward the surface. A  dilation of —4(1 — 2v )e ẑ arises due to the 
presence of the free surface. Unlike the infinite medium case, the dilation is neither uniform 
within the Q D /Q W R nor zero outside it.

Alternative (although essentially equivalent) methods are also available to solve such semi
infinite problem for shallowly embedded QD/QWRS. Many problems of elasticity can be 
simplified by reducing to force distribution problems over some region, which then can be 
solved through use of Green function techniques. The Green function for the half-space 
(Eq. [44]) (corresponding to Fig. 22) was derived by Mindlin [101]:

:O U .  _.v ) _ 
r ’

) + :nv,- v, ) ( > ,- , )  j |

■V, -.v,)(.v, -.v,) 1
r2(r2+ x j + x \ )  j

(44)

In Eq. (44), the effect of the free surface occurs through the terms containing /\. Subse
quently, Seo and Mura [102] and Chiu [50] employed the haif-space Green's function to 
obtain the Eshelby tensor for dilating ellipsoidal and cuboidai inclusions respectively (in a 
manner similar to Eq. [14]). For the case of an ellipsoid, closed form expressions are possible 
only when two of the semiaxes of the ellipsoid are equal [35].

On the lines of the preceding discussion, an interesting work is due to Glas [44]. Consider 
a uniformly thick layer of a semiconducting material coherently deposited on a substrate 
and covered by a capping layer of the same substrate material (Fig. 23). Such embedded 
layers frequently develop nonuniform mismatch strains either due to spatial distribution of 
temperature or variations in the composition of the quantum well material.

G ,(x ,x )  =
\6rr / i( 1 — v)

(3 — 4v )(x i —x'j )(Xj —x'j)

4(1—y)( l- 2 r )  _ (
r2 +  .v, + A-', j U

a V "  r (3-4 i/ )r2 6z(z + h ) r2 2k 
uc =  — - —  + ----- -̂-------------5---------- j { ( 3 - 4 i/) (z +  c ) - z }

J J' t V /->

Uj = ue + — ---- I for r  < a
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E = ̂ (1-C0SX)
Sinus 01 dally mo dulated 
mismatch strain along x- 
direction

Capping
layer

Strained
Layer

Figure 23. Illustration of a buried strained layer, with a sinusoidally modulated dilational mismatch strain, in the 
presence of a free surface as considered by Glas [44).

Gins [44] using an Eshelby-like cutting and welding gendaken combined with the method 
of images (to account for the boundary conditions) obtained an analytical solution to a sinu
soidally modulated dilatational mismatch strain problem. The relaxation of a general misfit 
dilational inhomogenity was obtained in the form of an integral, which can be evaluated 
when the stress-free strain admits a simple Fourier transform. Glas [44] applied his method 
to a coherent parallelepipedic inclusion (rectangular quantum wire) and to a step formed at 
the interface between a substrate and a coherent capping layer to arrive at fully analytical 
solutions.

Further, in a later work, Glas [103] also provided a closed-form solution for the strain 
fields of truncated fourfold pyramidal QDs and trapezoidal Q W Rs buried in half-space. 
To solve the problem, the pyramidal QDs were decomposed into elementary cuboids of 
infinitesimal height and varying areas. The displacements obtained from each of them were 
then summed up to obtain the net displacements by superposition principle. Glas [104] 
extended his solution of a single QD to the study of buried QD arrays and later periodic 
arrays of QW Rs in half-space [ 105]. Starting with the cases of single and periodic trapezoidal 
wires in half space, the calculation is extended to Q W Rs of arbitrary polygonal section. 
Analytical formulae for strain fields have also been found for a right-angled triangular section 
lying in half-space using results for those of a semi-infinite rectangular slab and a semi
infinite beveled slab.

Barabash and Krivoglaz [106] employed Fourier transform of the displacement filed due 
to a random distribution of point inclusions submerged under a plane with a given density- 
depth profile. The relaxation of the displacement was determined as a one-dimensional 
Laplace transform of the inclusion density.

Romanov et al. [ 107] compared the dilation of strain obtained for cuboidal and trapezoidal 
QDs using finite element method with analytical expressions provided for an spheroidal 
inclusion (with the same volume as the trapezoidal and cuboidal inclusion) [92] buried at 
identical depths. Except at the interface between the dot and the matrix (i.e., in the imme
diate vicinity of the dot), the spheroidal inclusion model provided good approximation to 
the finite element models of the cuboidal and trapezoidal inclusions (for both isolated and 
periodic inclusion models) even at significantly shallow levels of submergence, following 
which Romanov et al. [107] have suggested using the ellipsoidal inclusion model to obtain 
reasonable (if not very accurate) estimates of stresses for most geometries of dots.

2.4. Effect of Material Anisotropy and Nonlinearity
2.4.1. Anisotropic Effects
Most semiconductor compounds crystallize to cubic crystallinity. Against the isotropic value 
of 1, the anisotropy coefficient (defined as C, j -C,2/2C4_,) for most 111—IV  semiconductors is 
around 0.5. For some cases, the assumption of elastic isotropy may be justified or alterna
tively the uncertainty in other material and configurational parameters (e.g., lattice parame
ters, dimensions, etc.) may far exceed the error due to neglect of the anisotropic effects. In
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fact, some authors suggest that the isotropic approximation is reasonable for some eases of 
the two-dimensional problems [108]. (Caution should be exercised in taking this statement 
too literally and broadly. The reader is referred to Ref. [108] for further details.)

Explicit analytical expressions for the anisotropic Green's functions are unavailable (except 
for hexagonal symmetry) so the oft-used technique of reducing an elastic problem to a force- 
distribution problem cannot be employed readily. For the cubic anisotropic case, approx
imate solutions for the point force equation can be realized perturbatively and thus are 
applicable only for weakly anisotropic materials. Dederichs and Licbfried [109] have inves
tigated different approaches for the estimation of approximate cubic Green's function [see 
also Ref. 110-112].

Starting with the point-forcc formalism of Green's functions and assuming identical elastic 
constants for both the QD and the host material, Andreev et al. [93] suggested a general 
analytical method for the Fourier transform of the anisotropic Green function and presented 
explicit results for cubic crystals (in Fourier space). With this analytical result in hand, the 
expression of the Fourier transform of the strain tensor was also obtained. In their results, 
the shape effect of the quantum dot structure appears as the Fourier transform of a charac
teristic shape function. Equation (45) provides the Fourier-space strain solution [93]:

(C n -f 2Ci: )£,£./£:
1 + (C 12 + C44) £  t j , / t

x - 4-
Cu +  C ^ g / f -  Cu  +

(45)

*s the transformed characteristic shape function of the quantum dot structure 
defined by

^OD(r) =1, r  being a point inside the inclusion

= 0, /• being a point outside the inclusion

and Can is given by

C  =  C m -  C n  - 2 C 44

(46)

(47)

In the isotropic limit, Can = 0 and the expression for the transformed isotropic strain sim 
plifies to [93]:

3A 4- 2i i
<T(£) = £o* od(£) A 4- 2 f i

(48)

Transforming this strain back into real space and taking the trace, we recover the isotropic 
result discussed earlier (Andreev et al. [93] calculate the subtracted strain: that is, the mis
match strain is subtracted from the actual elastic strain. We have modified their expression 
to show the latter.):

Tr{e) =  e " ’ J l T T 2 j l X < j n ( r )  ( 4 9 )

Equation (49) emphasizes the constancy of dilation within the QD and that it vanishes for 
points outside it. As evident from Eq. (45), this may not hold true for all shapes in the cubic 
anisotropic case.

Andreev et al. [93] also provide a comparison between isotropic and anisotropic models 
for cubic crystals. As mentioned earlier the degree of anisotropy can be characterized by the 
anisotropic coefficient, which is about 0.5 for III- IV  semiconductors. As an example, the 
effective Poisson's ratio varies between 0.333 in the (001) direction to about 0.2 in the (111) 
direction. This variation in Poisson's ratio might be expected to result in a strong dependence 
of strain on the space direction. However, this was not found to be the case. In most cases 
where the “ anisotropy” in shape of the QD is more than or equal to the anisotropy in 
the elastic properties, the dominant contribution to the strain distribution is caused by the



S tra in  F ie ld  C a lc u la t io n s  in Em b ed d ed  (Quantum  D ots and W ire s 713

‘'anisotropy” in shape rather lhan the anisotropy in elastic properties. Figure 24 illustrates 
how the anisotropic solution of the radial component of the strain tensor err for a spherical 
InAs/GaAs quantum dot system (misfit strain of —3.7%) plotted along three directions, 
compares with the isotropic case.

As Andreev et al. [93] have pointed out, the influence of elastic anisotropy is small within 
the dot with both models yielding nearly the same constant value. Outside the sphere, 
however, anisotropy considerations are observed to produce significant deviations from the 
isotropic model. As a matter of fact, the isotropic model effectively gives the strain dis
tribution averaged over the different directions outside the dot. For a cubic dot, with the 
symmetry of the elastic properties being the same as that of the geometry, the effect of elas
tic anisotropy is even smaller than for the spherical dot. Unlike the spherical quantum dot, 
the difference between the two models for a pyramidal QD, exhibiting lesser cubic symmetry 
than the elastic properties, was observed to be less outside the dot than inside it.

While an exact expression for Green’s function for the cubic case is not possible, it can 
be expressed in terms of a perturbation series where the first term is the isotropic Green’s 
tensor and the subsequent terms are correction terms of increasing order, converging to the 
full anisotropic result [113-114]. Faux and Pearson [115] exploited this notion and presented 
explicit (but approximate) Green's tensors to permit rapid calculation of strain distribution 
in and around QDs. Computational effort is significantly reduced as excellent agreement 
was found with results of Andreev et al. [93] even with a first-order correction.

Pan and Yuan [116] expressed the half-space anisotropic Green's function, for traction- 
free surface, as a sum of the infinite space Green function and an image part based on the 
extended Stroh formalism. The image part can be expressed as a one-dimensional integral. 
Using these Green functions, the elastic fields of a quantum dot can be expressed as simple 
integrals over the surface of the dot employing Betti’s reciprocal theorem. If the QD is 
a point source, then the strain fields can be expressed in analytical form. Other notable 
works on Green’s functions (assuming traction-free surface conditions) are due to Refs. [122, 
126-128].

Pei et al. [122] investigated the elastic fields due to an array of lens-shaped anisotropic 
QDs buried under a capping layer of finite thickness using a three dimensional finite ele
ment method. The various geometrical parameters used in the model have been shown 
in Fig. 25. Values of anisotropy ratio A ( — 2C44/ ( C | C l2)) ranging from 0.25 to 4.0 were

distance, nrn

Figure 24. Radial strain tensor component t ,, for different directions through a spherical dot. The radius of the 
dot considered is 3nm and the center of the Q D  is the origin of the coordinate system used. The misfit strain is 
6.7% and parameters for GaAs have been used. The solid line represents the isotropic model while the dotted 
dashed lines represent anisotropic models. Reproduced with permission from |93], Andreev et al.,./. Appl. Phys. 86. 
297 (1999). © 1999, American Institute of Physics.
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considered both for the QDs and the matrix. The ratios of the cap-layer thickness to dot 
height considered were 2.0, 3.0. 4.0, 5.0, and 6.0, respectively.

From Fig. 26, Pei et al. [122] noted that the value of exx contour increases with A changing 
from 1.0 to 4.0 while it decreases with A changing from 1.0 to 0.25. Also, when A  > 1, 
[100] and [100] are the “ elastically soft" directions with the strain decaying rapidly in these 
directions. These same directions become the “ elastically hard” directions when A  < 1. For 
different values of A , sxx has a positive value in the matrix and increases from zero to a 
local maximum at the interface between the matrix and the wetting layer. In the QD region, 
it changes sign and its absolute value reduces till one reaches the interface between the 
QD and the capping layer. In the cap layer, exx changes its sign again to being positive. 
Compressive strain increases significantly with increase in A from 0.25 to 4.0. The exx profile 
is also significantly affected due to anisotropy considerations.

2.4.2. Nonlinear Effects
Generally, elastic material properties are assumed to be independent of strain. Ellaway 
and Faux [123] examined the accuracy of this assumption by investigating the behavior of 
elastic stiffnesses of InAs under uniform strain using atomistic methods. By using the three 
distortions as advised by Mehl [124-126] the three independent elastic stiffnesses C n, C )2, 
and C44, for a cubic crystal, were determined. Small distortions were applied to the crystal 
over a range of volumetric strains to evaluate the effective elastic stiffness at each strain 
level. For the atomistic simulation, Stillinger-Weber potentials [68] were employed using 
the parameters for InAs provided by Ichimura [127]. The elastic stiffnesses C M and C l2 
increased with volumetric strain demonstrating that materials tend to become harder on 
being compressed. C44 was however found to hardly vary with volumetric strain [123]. Clearly, 
the strain dependence of elastic parameters renders the elastic boundary value problem 
nonlinear. After proper accounting for strain dependent elastic parameters. Ellaway and 
Faux [123] found significant difference in the hydrostatic strain calculation for a spherical 
InAs QD embedded in an GaAs matrix.

Ellaway and Faux [128] also investigated the effect of volumetric strain on the degree of 
anisotropy and on the two-dimensional (biaxial) Poisson’s ratio. The anisotropy coefficient 
was found to have very weak dependence on the volumetric strain while the two-dimensional 
Poisson's ratio was found to increase with pressure showing good agreement with the esti
mate provided by Frogley et al. [129-130]. Lepkowski and Majewski [131-132] investigated 
the pressure dependence of elastic constants in zinc-blende InN, GaN, and AIN using

Figure 25. Schematic of an array of lens-shaped QDs. Distance (/)) is 45 nm; thickness of the wetting lay-r (W L ) 
is I nm. The base diameter (</) is 24 nm. while the height of the QD  {//) is mken to be 6 nm. A  lattice mismatch 
sirain of 4 r is assumed. Adapted from I'd  cl al. [ 122j.
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F igure 26. Contours in the midplane of one of the lens-shaped dots from Fig. 25 for different values of anisotropy 
ratio A. Reproduced with permission from [122]. Pei et al.. ./. Appl. Phys. 93, 1487 (2003). €) 2003, American 
Institute of Physics.

density functional formulism and demonstrated results similar to previous works discussed 
[123, 128].

2.5. Effect of Coupled Fields: Piezoelectricity
In addition to the coupling with the band structure, the stress arising out of a misfit quan
tum dot in a piezoelectric semiconductor material, additionally couples with the carriers 
through the piezoelectric effect. Like strain-band structure coupling, piezoelectric effect too 
can significantly alter the electronic and optical properties of semiconductor devices [22, 
133-135].

2.5.1. Piezoelectric Effect Around a Spherical Dot
Once again, we consider first the simplest example: a spherical QD of radius, /?, located in 
an infinite medium. The piezoelectric polarization, P, induced by strain is given by

P, =  ei}kejk (50)

where e i j k  is the piezoelectric tensor and e j k is the usual strain tensor.

eijk =  elA for {ijk} =  {123} or permutations

= 0 otherwise (51)

where el4 i:s the piezoelectric constant [ 136].
The polarization vanishes inside the spherical dot because the purely dilational strain 

present inside the sphere does not cause piezoelectric effect in a material with 43m sym
metry. As a result there is no piezoelectric potential within a spherical quantum dot. For
the region outside the dot, the polarization, P, can be related to the charge density per unit
volume, p (r )  as follows:

p (D = -V  P (52)

which whem combined with Eqs. (50), (51), and (11), results in [54]

p (r) = ^ ^ £ ?  (53)
ja.+4/x r

At the surface, the charge density cr is given by

(j =  P n (54)

uxx 

£  +0.002 
1 -0.008

i  ■°*°19 
s  - 0.029

I -0 039 
■  -0 .0 5 0

Z [001]

X[100]
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which can be written as

3 K + 4 / J . )  R'

Because of the polarization described by Eq. (54-55), the piezoelectric potential </>(r) inside 
the dot can be written as [54]

<p(r
3 e[4s"'R  9K

€0€,. 3K  -f \\1 (f) /?V  
r

where is the dielectric constant of the semiconductor and e0 is the dielectric constant 
of free space. The maximum potential occurs at, r  = a V 2. This potential would penetrate 
inside an inclusion possessing a less symmetric shape and one would expect it to shift the 
energy levels of electrons inside the dot. However, because of the presence of the extremely 
small length factor of R (the radius of the quantum dot) in Eq. (56), this potential tends to 
be very small and exercises little if any influence on the energies of electrons [54].

2.5.2. Piezoelectric Effect Around Any Dot
As highlighted by Davies [54], the elastic displacement, u, in the presence of a lattice mis
match strain, can be described by a scalar potential \  in a manner similar to the electric 
field-elastic potential relationship:

u = V *  (57)

This potential obeys Poisson's equation:

Using the usual Green’s function for the Laplace equation the following relationship can be 
obtained for at a generic point in space [54],

=  ^  ,59,
} 4tt3K4-4/W  |r — r'| '

The piezoelectric charge density is given in terms of \  by

/Hr) = - e ijkXjjk (60)

We know that

v ’ t f r )  = (61)
<Eo<5,

Using Eqs. (61), (60), and (58), we have [54]

V V ( r )  =  ^ ( 5 ; e ( , ' ’ " ‘ )  ( M >

Davies has [100] defined a “ piezoelectric pseudopotentiar (I) such that

V-M>(r)= v ( r ) (63)

From Eq. (51) we obtain
9 K

V <l>(r) -  — -— ew,(r) (64)
j/ \  4 4 f l
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thereby expressing </? in terms ol (l> in a biharmonic equation. The piezoelectric potential 
can then be obtained alter some further manipulation as a surface integral of the following 
form [100]:

9c?I4ew / VK \  r (.v - a )( v - v')(z -  z')( r -  r )  • cl S'
V ( r )  =  — — r    f ------------ i-----------------------------------------  (65>477 e(l€r V 3A + 4/x / / |r -  r  y*

In the analytical models previously described (and some tinite-element models notably [137]), 
the elastic field induced is first determined subject to given mechanical boundary conditions. 
The elastic solution is then used to estimate the polarization, which induces the electric 
potential and field. The electric field is then solved for by imposing purely piezoelectric 
boundary conditions. Such an approach is often called the “ semi-coupled model” .

A  fully coupled model was proposed by Pan [ 138] predicated on earlier works involving the 
determination of displacement Green's functions in a fully coupled and generally anisotropic 
piezoelectric half space [139]. In a fully coupled model, the elastic stress field, rr/7, and the 
electric displacement field. Dr  are coupled by the following constitutive relations:

(rij =  (  ijlm81m — Ckji^k (66a)

A  — (Jijkejk +  e ij Ej (66b)

where is the dielectric tensor and Ek is the electrical lield. The strain en and the electric 
held Ej axe related to the elastic displacement //, and the electric potential (/> by their 
corresponding constitutive relations.

Use of the Barnett-Lothe notation [140] allows one to recast Eqs. (66a) and (66b) into a 
unified single equation. For a finite-sized QD, Pan [138] then expressed the induced elastic 
and piezoelectric fields in terms of boundary integrals on the surface of the QD and the 
point'force/point-chargc Green's function solutions.

To facilitate comparison between the semi-coupled and the fully coupled model. Pan (138] 
presented the cases of GaAs and AIN quantum dots for both the infinite-space and half-space
situations. Under the assumptions of elastic isotropy, analytical solutions have been arrived
at, using the semi-coupled model in the full- and half-space GaAs and in the full-space AIN.

Some olf the results of Pan [138] are now discussed. In his work, a lattice mismatch em 
of 7%  was assumed while modeling the quantum dot system for both GaAs and AIN. The 
quantum dots themselves are point spheres with an equivalent volume of \Trcf\a  =  1) nm 
and are located at the origin r  = (0, 0, 0) for the full-space case and at r  = (0, 0, h)(h  =  
2 nm) for the half space case: z = 0 being the free surface. T he electromechanical coupling 
factor g for a piezoelectric material is defined as

(67)

where em.dX., €raax, and Cmax are the maximum absolute values of the piezoelectric coefficients, 
dielectric constants, and elastic constants. For the specific case of GaAs, with a weak elee- 
tromechaniical coupling (g = 0.04). the semicoupled model was found by Pan [138] to yield 
results similar to the fully coupled model for the elastic and piezoelectric fields (for full- and 
half-space) . However, in the case of AIN, which has a rather strong electromechanical cou
pling (g =  0.32 opposed to 0.04 for GaAs), the semicoupled model rendered substantially 
different results from the fully coupled model. This is well illustrated in Fig. 27, where both 
fully coupled and semicoupled models predict nearly identical electric fields in the case of 
the GaAs, 'while significant differences are observed between the two-models while estimat
ing the ele-ctric-field for the AIN case [138]. In fact at /• = (1, 1, 1) nm, the electric field 
predicted b»y the semi-coupled model in the GaAs case falls short of that predicted by the 
fully coupled model by nearly a factor of 2.

On a related note, Pan in a subsequent work [141] applied the three-dimensional Green’s 
function solution based on the fully coupled model to four substrates, namely, GaAs (001), 
GaAs (111), Iso (001), and Iso (111) to show that the isotropic model fails to predict the 
induced elastic and piezoelectric fields for piezoelectric semiconductors. The elastic constants
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x (=y=z) nm

Figure 27. A  comparison between the electric-held E , predicted by the semi-coupled and fully coupltd models 
for two different quantum dot systems (a) A IN  and (b) GaAs in infinite space. The dot is point spherical with 
an equivalent radius of a — 1 nm and is located at r = (0, 0, 0). The variation in the above diagram is traced 
along r = ( a  , . v , a  ). Reproduced with permission from [ 138], E. Pan, 7. Appl. Phys. 91, 3785 (2002). Fig. . . 1’ 2002, 
American Institute of Physics.

for Iso (001) and Iso (111) were assumed to be isotropic. The elastic and piezoelectric fields 
on the surface of these substrates, due to a buried point quantum dot with an initial d lational 
misfit strain, were also studied (Figs. 28-30). In the examples that Pan illustrates, the Q D  is 
a point sphere buried at a depth h (// = 10 nm), with an equivalent radius of a (a = 3 nm); 
an initial mismatch strain of em — 7% is assumed.

From Fig. 28, as Pan [141] noted, it is clear that the isotropic model is clearly not suitable 
to estimate the elastic fields in anisotropic GaAs. While the isotropic hydrostatic strain has 
complete rotational symmetry about the z-axis, GaAs (001) displays a C4 symmetry and 
GaAs (11 1) exhibits a C3 symmetry. The values of strain relaxation achieved at the surface 
for the three cases are also markedly different with high-hydrostatic strain prevailirg in the 
GaAs (111) case (10% of misfit strain in the GaAs (111) case as against 7% and 3r  for Iso 
(001) and GaAs (001), respectively).

For similarly orientated GaAs and Iso semiconductors (for example, GaAs (001)or (111) 
and Iso (001) or (111), respectively). Pan [141] have reported some similarities between 
the contours of piezoelectric potential (Fig. 29) (even the horizontal electric field las been 
demonstrated to display the said similarities) at the surface. However, as Fig. 30 m o w , the 
vertical electric field at the surface in GaAs (001) or (111) does not exhibit any similarity 
to the isotropic case. Pan [141], therefore, have suggested use of caution while applying the 
isotropic assumption to the GaAs semiconductor case to avoid arriving at erroneous results.

2.6. Effect of Size
As evident so far in our review, generally speaking, researchers have used the w;li estab
lished continuum elasticity theory (both numerically and analytically) to estimate mechanical 
strains. Those then are coupled to some suitable band-structurc calculation method (such
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y ( -1 1 0 ] nm

Figure 28. Contours of e(/( !() '), the hydrostatic strain due to a point Q D  of volume i\, — 47ra*/3 buried at a depth 
of h = 10 nm , (a) on the surface of the isotropic crystal (the contours are similar for Iso(OOl) and Iso( 111)); (b) on 
the surlacc Oil GaA§(001): (c) on the sui lace of GaAs (111)- Reproduced with permission from [141], Pan../. Appl. 
Phys. 91, 637(9 (2002). Fig. 2(a~c). C) 2002. American Institute of Physics. These figures clearly indicate that the 
isotropy model is not suitable to determine strain distributions in anisotropic GaAs semiconductor. Other elasticity 
fields (like stress and displacement) show similar variation to the strain shown in the diagram.

as tight bimding or the k.p approach) to estimate the impact of strain on the optoelectronic 
properties. Classical continuum mechanics, is however, intrinsically size independent. This is 
in contradiction to the physical fact that at the size-scale of a few nanometers, deformations 
and elastic state are size dependent and a qualitative departure from classical mechanics is

y[-110]nm y[010]nm

Figure 29. Cointours of piezoelectric potential due to a point quantum dot of volume vu = 47tg''I?>, and buried 
under a depth h = 10 nm (a) at the surface of GaAs (111): (b) at the surface of GaAs (001). Reproduced with 
permission fro>m [141], Pan../. Appl. Phys. 91, 6379 (2002), Fig. 3(a-b). © 2002, American institute of Physics.
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- 1 5  - 1 0  - 5  0  5  1 0  1 5  - 1 5  - 1 0  - 5  0  5  1 0  15
y [010lnm yf-110|nm

Figure 30. Contours of vertical electric field E {10'V/m) due to a point quantum dot of volume rtl — 4ira'/3 and 
buried under a depth fi = 10 nm: (a) at the surface of Iso (001); (h) at the surface of Iso (111): (c) at the surface 
of GaAs (001); (d) at the surface of GaAs (111). Reproduced with permission from 11411, Pan, J. Appl. Phys. 91, 
6379 (2002). Fig. 5(a-d). © 2002. American Institute of Physics.

expected. The obvious alternative method to compute strain is the use of atomistic simula
tions. Nevertheless, a field theoretic method is highly desirable (in the same vein several of 
the models discussed so far) albeit that does also account for the scaling or size effects in 
strain likely to be prevalent at these small length scales.

There are chiefly two physical mechanisms that may alter continuum elasticity predictions 
and result in scaling or size effects in the strain calculations in quantum dots: (1) surface 
or interfacial energy effects and (2) nonlocal elastic interactions. Both are likely to be small 
and only of importance for exceedingly small quantum dots, nevertheless these effects can 
be important in certain cases.

2.6.1. Surface/Interface Energy Effects
For structures with sizes >50 nm, typically, the surface-to-volume ratio is negligible and the 
deformation behavior is governed by classical volume strain energy. However, at submicron- 
length scales the properties of the quantum dot surface/interface are expected to play a 
role in the determination of its elastic state. Simply from dimensional considerations we 
expect that strain should scale ~  1 / R (where R is some characteristic length of the quantum 
dot and that the proportionality constant is related to surface or interface energy). In the 
context of quantum dots and embedded inclusions, this effect has been discussed in some 
recent publications by one of the authors [142-144]. The latter works, presented the size- 
dependent elastic state of QDs based on the involvement of surface interfacia! energies at 
the nanoscale. For example, errors in strain calculation as high as I2C< were reported in the 
determination of hydrostatic strain in a buried spherical QD (in the si/e range of 2 nm).
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Surface elastic effects have been considered by a variety of authors in various contexts, 
tor example, nanostructures 1145), nanocomposites, thin films [146], surface steps [147-148], 
quantum dots, and soforth. The reader is referred to the following review articles and refer
ences therein for comprehensive details. From the point of view of a mechanics, Gurtin and 
Murdoch [149], Murdoch (150]. and Gurtin et al. [151] appear to have established a fairly 
rigorous framework to incorporate surface or interface energies which is what we following 
in the present article to tackle the quantum dot strain scaling problem.

Consider an arbitrary shaped smooth interface between an embedded inclusion and sur
rounding host matrix, characterized by a unit normal n. Let this interface be “ attached” 
to the bulk (i.e., both inclusion and matrix) without slipping or any other discontinuity of 
displacem*ents across it. This implies that we consider only a coherent interface. In contrast 
to the classical case where surface energies are neglected, we now require that the inter
face of thie inclusion and the matrix be endowed with a deformation dependent interfacial 
energy, T. The interfacial or surface energy is positive definite. This quantity is distinct from 
the bulk deformation dependent energy due to the different coordination number of the 
surface/interface atoms, different bond lengths, angles, and a different charge distribution
[ 152]. Within the assumptions of infinitesimal deformations and a continuum field theory,
the concept of surface stress and surface tension can be clarified by the (assumed linearized) 
relation between the interface/surface stress tensor, <rs, and the deformation dependent sur
face energy, F (e s):

d l
"  = r „ P  + —  (68)

de*

Where applicable, superscripts B and S indicate bulk and surface, respectively. Here, is 
the strain tensor for surfaces that will result from the projection of the conventional bulk 
strain tensior on to the tangent plane of the surface or interface, while r () is the deformation 
independent surface/interfacial tension. The surface projection tensor, P s which maps tensor 
fields fromi bulk to surface and vice versa is defined as:

Ps = 1 — n <g> n (69)

Consider am arbitrary vector v. The surface gradient and surface divergence, then, take the 
following form [151]:

Vvv = VvP
(70>divv(v) — Ir (V vv)

Mere, we have also defined the surface gradient operator (Vv) and the surface divergence, 
which we shall short!) employ. We repeat here the equilibrium and isotropic constitutive 
equations o f bulk elasticity:

div a li =  0
(71)

<r]i =  AI-vTr(i?) + 2/xe

At the interface, the ccncept of surface or interface elasticity [149, 151] is introduced, which 
is excluded in the classical elasticity formulation:

[<rB • n -{- divv (rs =  0
(72)

(r =  TnPA + 2(/x' -  T{]) e s + (A* + Tu)Tr(t's)P s

Isotropic interfaces or surfaces can be characterized by surface Lame constants A\ /jlx, and 
surface temsion, r0. Th: square brackets indicate a jump of the field quantities across the 
interface. Only certain strain components appear within the constitutive law for surfaces due 
to the 2 x 2  nature of the surface stress tensor (i.e., only the tangential projection of the 
strains on the interface are included consequently, P ' ■ n = 0). In absence of surface terms, 
Eq. (72) reduce to the usual normal traction continuity equations of classical elasticity.
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Thus, while the infinitesimal strain tensor in the bulk (both inclusion and matrix) is Jeined 
as usual, the surface strains involve the use of projection tensor (Eq. 69).

- ( P s ? s« +  v y p s ) (7 3 )

Implicit in Eq. (73) is our assumption of a coherent interface. Using these basic eqiaiions, 
Sharma and Ganti [144, 153-155] have explicitly derived the dilatation strains for enbedded 
quantum dots. To be more explicit, the dilatational strain in an isotropic spherical lattice 
mismatched embedded quantum dot that correctly incorporates size effect due to ineracial 
energies can be written as:

^K em -  2r  /R
Tr(e) = 3— -------------  (74)

} 4yU + 3K  4- 2 K S/R

where K s is the surface elastic modulus defined as 2(AS + ^ s). Note that for large radius 
of QD (R oc) or zero surface energy, the result reverts to the classical solution used by 
several authors (see, e.g., Yang et al. [23]). Equation (74), of course implies that even if
the QD is not embedded, there is a finite strain (which of course is very small except in the
smallest possible QDs):

Tr(fi) = --------------- (  —  )  (75)
3K OD +  2 K J R \  R J

In a collaborative work, one of the authors presented numerical density function theory 
(D FT ) simulations of Si clusters that illustrated the impact of surface energy induce! strains 
(Peng et al. [156]). Ab initio simulations of quantum dots, for the purpose of ascertaining 
scaling laws associated with their optoelectronic properties, have also been carrici out by 
other researchers [157-158]. These previous works, however, did not notice the aforemen
tioned additional scaling effects since they (as is often done conventionally) constrained the 
surface atoms to remain configurationally fixed thus effectively precluding the manifesta
tion of influence of surface energies on strain. In the simplest possible picture, for the case 
of unembedded quantum dots where there is no apparent source of strain (i.e., ro lattice 
mismatch), the effect of surface tension is excluded (see Eq. [751). In the case oi embed
ded quantum dots, the correction to the lattice mismatch-induced strain due to irterfacial 
tension and elasticity is excluded. This form of simulations, where surface atoms arc not 
allowed to relax, is primarily employed for savings in computational time with the unfor
tunate consequence of effectively voiding the strain-induced scaling. For example, :hc D FT  
computation time for a surface relaxed cluster Si59HM) is 1,694 minutes, while the time for 
the same cluster without atomic relaxation is 125 minutes.

We now proceed to present a test of the assertions and implications of Eq. (75) through 
D FT calculations of unembedded Si clusters of various sizes. We note here the work of 
Delley [159] who performed such a study without incorporating the surface effects outlined 
in Eq. (75). The surface atoms were configurationally fixed in his analysis, thus excluding the 
scaling effect we predict. To retain the tetrahedral configuration of silicon (refer to Fig. 31), 
ail the dangling bonds of the surface silicon atoms were terminated by hvdrogen at initial 
bond length of 1.47 A. The clusters were varied from Si5H 12 to Si2:,i)H1% i.e., frcm 5.8 to
21.0 A).

The surface atoms were allowed to relax to their equilibrium state this triggering the 
strain in Eq. (75). The main results are depicted in Fig. (32), where the band gap s plotted 
as a function of cluster size and compared with Delley's [ 159j unreiaxed .‘luster uudy. As 
already anticipated, we note a significant shift in band gap at small sizes where surface 
energy-induced strains make their presence felt. A  somewhat surprising re>ul: that emerges 
from Fig. (32) is that this scaling effect disappears for extremely small sizes!

A  maximum band-gap shift of nearly 0.51 eV is observed at a cluster size of .7 atoms. 
Plausible explanations for the disappearance of this new scaling effect sizes below 17 
atoms appear to suggest that surface energy parameterized by surface tersion and surface
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S i5H12 
Dmension: 6 A
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Dimension: 21A

Figure 31. Snapshcts of various-sized Si dusters used in the D FT  simulations, 

clastic modulus must itself he size dependent, that is,

where k is a coistant. Obviously, as R —> 0, the surface energy smoothly vanishes, explaining 
the disappearaice of concerned scaling effect at extremely small sizes. Physically and in 
hindsight this u easy to justify. The continuum field concept of surface energy, tension, and 
surface elastic nodulus signifies the difference between the surface atom properties with 
the correspondng ones in the bulk material (due to different coordination number, charge 
distribution, bo id length, etc.: a mismatch strain of 3.5% and K  ~  100 Gpa and f i  ~  60 Gpa. 
However, at exremely small sizes, where only few atoms remain, this difference and the 
distinction betveen surface and bulk atoms becomes very tenuous or, in other words, the 
continmum notims of surface energy (if one insists on using them) must become zero.

2.6.2.. Non I ota I Effects
Nonloical interactions are another mechanism that is only of importance when the quantum 
dot si#e is commrable to the lattice parameter. At small length scales (approaching a few 
nanonneters conparable to the discrete structure of matter) the implicit long-wavelcngth 
assumption of classical elasticity breaks down. This break down is caused partially by the 
long-range inteuctions between atoms, which are inadequately represented by classical elas
ticity. As one you Id expect, several phenomena at the level of a few lattice spacing are 
inadequately cartured by classical elasticity and researchers often see enriched continuum

9
Delley’s clustersa 
Present work

2 Additional scaling 
due to size- 

dependent strain
Disappearance of 
surface effect due 
to increasing size

0
10 20 30 40 50 60 70

# of Silicon Atoms

Figure 3;2. Co)mpamn of the present work incorporating the size-dependent strain due to surfaces and Delley's 
[159] res;ults. /Adapt 1 from Peng et al. [156].
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theories such as nonlocal elasticity as a replacement for atomistic simulations (or, alterna
tively, a bridge between atomistic and conventional continuum mechanics). For example, the 
ubiquitous singularities ahead of crack tips and dislocation cores (as predicted bv classical 
mechanics) are indeed a break down of traditional elasticity at short wavelengths [157]. One 
possible means to circumvent the long wavelength assumption of classical elasticity is to> 
invoke higher order gradients in the elastic energy expansion. In a recent work [160], one of 
the authors derived the complete Eshelby’s tensor for an embedded quantum dot.

Consider the classical isotropic elastic material. The strain energy function is quadratic ini 
strains:

IV (x )  =  fj.E,.ell + kk (77

Here, e is the usual strain tensor related to u (displacement vector) as sym(Vu) and [•], j  
and d: will be used interchangeably to indicate differentiation with respect to spatial variable 
xj. Note that the antisymmetric part of the deformation gradient that is, co ( =  asym Vu)  
is absent from Eq. (77) because the quadratic term in co is not rotationally invariant— a 
necessary requirement for the energy function in Eq. (77). For small quantum dot sizes, 
additional gradient terms (absent in Eq. [77]) may also contribute and are considered to 
phenomenologicallv representative of nonlocal interactions [157-158]. The latter is achieved 
by suitably adding higher-order terms containing gradients of strain and rotation. (Indeed, 
the gradients of co are admissible because those fields are invariant with respect to the 
Euclidean group of transformations SO(3)t>T(3) unlike oj itself.) The general form of the 
elastic energy involving first gradients of strain and rotation is

(78)

In the isotropic case, the energy density that is invariant to SO(3)>T(3) group then takes 
the form [158]

u  u - f A  -> 2 a  -f A ,
W( x)  = H---  — (<V*/) H---- -j— I ^djd/U^jdjUj

(79)

Two new coupling constants (in addition to the Lame parameters) now appear namely / 
and /. Both have units of length. For band-gap calculations in quantum dots, one typically 
requires only the dilatation and in the isotropic case (as it turns out), the last term in 
Eq. (79) plays no role, and hence, in the following, we set / = 0. Further, using a variational 
argument (by appealing to the Euler-Lagrange equations), the governing field equation can 
be derived as well as the response quantities (i.e.. “ stresses” ). The single Navier-like equation 
that emerges is

—fxd~ui -  (/x 4- A)didlu, + (2/x + A) r 2V2(iidl u, =  3KSik(ik[e” ' H (.v)| (80)

The underlined portion of Eq. (80) indicates the extra terms absent in size-independent 
classical elasticity. Zhang and Sharma [160] have derived the solution to the problem in 
Eq. (80) for the case of a misfitting spherical quantum dot. They obtain:

9Ke"' [

/ / • ( e ) =

1 - (/' + RU

R
. R cosh -- - / 

3K  + 4/x \ /'

1 sinh r / l

T ~ r / r

RK \ I e
7) Til l

e n

r <£ n

(81)

In Fig. 33, the normalized dilations strain as a function of position, various inclusion sizes 
and nonlocal coupling constant / are plotted. The location x /R  — 1 indicates the boundary 
of the spherical quantum dot. The size effect of the nonlocal solution is manifest. We note 
that, unlike both the classical and interfacial energy-based solution, the dilation incorporating



S tra in  F ie ld  C a lcu la t io n s  in Em b ed d ed  Q u an tu m  D ots and W ire s 725

0.9

0.8

R =ior
R=30l'

R=20l'

3.5

Figure 3i3. Strain dilatation as ;> function of position and size. The flat line with abscissa = l for x/R < l and = 0 
for x/R > I represents the classical size-independent solution. Adapted from Zhang and Sharma [lft()|.

nonlocal effects is inhomogencous within the inclusion. Asymptotically, the nonlocal results 
converge to that of classical elasticity for large quantum dot size. Further, note that while 
the classical results predict the well-known zero dilatation outside the spherical quantum 
dot, in the case of nonlocal results we observe a small nonzero dilation. Conforming to 
physical intuition, artificial jumps in stresses are removed in nonlocal results and the strains 
vary smoothly across the interface (or in other words the “continuum” sharp interface of the 
quantum dot/matrix acquires a “ diffuse boundary layer” to the order of the characteristic 
length scale parameter.

To emphasize on the size dependency of our solution, the dilatation as a function of size 
(for a fixed position, i.e., r  = 0) is also plotted in Fig. 34. We observe that while for large 
quantum dot size, roughly, R > 11, the nonlocal/strain gradient solution is indistinguishable 
from the classical one, the dilatation decreases significantly below this threshold and exhibits 
a marked departure from classical solution.

We now proceed to draw a comparison between surface energy effects (discussed in 
Eq. [741]) and nonlocal results. Unfortunately, while the nonlocal results can be adequately

R/r
10

Figure 34i. Dilaitational strain us a function of size for fixed position (r = 0). The results are normalized with respect 
to classical elasticity solution. Adapted from Zhang and Sharma [ l 60].
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normalized (i.e., independent of mismatch strain), the surface/interfacial results canno and 
are highly material dependent (both on the actual values of interfacial energy paramettrs as 
well elastic moduli). We provide some general estimates here. The nonlocal coupling con
stant / roughly corresponds to the lattice parameter of the quantum dot which is anund 
~0.4 nm for most materials. For the specific case of GaAs, in a rather interesting vork, 
DiVincenzo [161] has determined the higher-order constants for the nonlocal elasticity the
ory. For the particular case of GaAs, we deduce / to be ^0.82 nm (which, in fact, is nuch 
larger than the lattice parameter). So, for the purposes of general comparisons, it is s<fe to 
adopt / to be roughly ~  lattice parameter. The interfacial tension (for coherent sysems) 
is roughly to the order of M  J/m2. Because (unlike both the classical and surface eiergy 
based result) the nonlocal solution is nonuniform, we compare results at the quairun dot 
center (/' = 0). For diameters of {2, 4, 6, 8, 10} nm, respectively, the nonlocal cevation 
from classical elasticity result is {22, 2.2, 0.18, 0.014, ^ 0 }% , while we obtain a cevation 
of {19, 9.5, 6.3, 4.8, 3.8}% for interfacial energy-based results. Because of the expmmtial 
decay in the nonlocal solution (with respect to size), these effects decay far more npidly 
than the interfacial effects but are likely to dominate for very small sizes (whicl tlough 
for most materials may be impossibly small and would be irrelevant anyway as wc d) not 
expect nonlocal theory to work for sizes smaller than 21 —classical elasticity is expected to 
breakdown at even larger sizes, roughly, 6/ ).

2.7. Some Results from Inclusion Theory Useful
for Strain Calculations in Quantum Dot Structures

Since the original appearance of Eshelby’s paper [30] several works have extended, notified, 
and applied the concept of Eshelby’s tensor to a diverse set of physical problems. W'( piovide 
a brief review of this body of literature here in the hope that researchers addressing juaitum 
dots may find them of use.

1. Bonding conditions of inclusion. The original assumption in Eshelby’s work isth.it the 
inclusion is perfectly bonded to the matrix; that is, the normal tractions are coitinuous 
and so are the displacements. All works on quantum dots (that the present auhors are 
aware of) make this same assumption, that is, matrix-quantum dot interface is perfectly 
bonded. Under certain conditions these conditions must be relaxed: jumps in lisplacc- 
ment or tractions may be allowed. Various researchers have considered the innerfectly 
bonded inclusion, for example, Furuhashi et al. [162], Ru and Schiavone [163, Zhong 
and Meguid [164], Qu [165, 166], and Kouris et al. [148]. O f course, physicail', imper
fectly bonded quantum dots will correspond to the case where defects are presmt at the 
interface. It is quite unclear whether then it is worthwhile to investigate the stain state 
in such dislocated quantum dots since most likely in comparison the mere pnsence of 
defects will overwhelm the electronic effects.

2. Coated inclusions. Frequently for technological reasons inclusions are embeided in a 
matrix with a coating (or which may be developed due chemical in te rac tio n  with the 
matrix). A  few representative works in this area are: Walpole [167], Luo aid Weng 
[168], and Cherkaoui et al. [169]. among many others. This scenario is ver realistic 
especially in multialloy quantum dots where the outer rim of a quantum dc may be 
preferentially rich in one phase.

3. Nonuniform  mismatch strains. Sendeckyj (170] and Moschovidis [171] considered 
general polynomial transformation strain thus nonuniform lattice mismatcl or ther
mal expansion strains can be mimicked. Their work is also useful for Uung into 
account interactions between inhomogeneities. Asaro and Barnett [172] and lura and 
Kinoshita [173] addressed polynomial eigenstrains in an anisotropic media, tote also 
must be made of the recent work of Rahman [ 174] who presents simplified emulations 
of Eshelby type tensors for polynomial eigenstrains.

4. Enriched  elasticity. The classical theory of elasticity itself has been modified n several 
ways. Micromorphic elasticity takes into account additional micro-degrees o freedom 
such as independent rotations, dilations and shears. An extensive account of tese theo
ries can he found in Eringen [ 175]. As far as inclusion problems are concerned.t appears
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that the only r.vo solutions that exist are due to Cheng and He [176, 177] who, respec
tively, solve tie spherical and cylindrical inclusion problem. On the basis of the latter 
work, Sharma and Dasgupta [178] have formulated the overall properties of microp- 
olar composites. Another enrichment of elasticity is whereby nonlocal interactions are 
introduced. A«ain, an up-to-date survey is given by Eringen [157]. A  popular version of 
nonlocal elasticity is the strain gradient theory. Zhang and Sharma [160] have recently 
provided solutons of embedded inclusions in the strain gradient elasticity formalism.

5. Inclusion-ind ision interactions. As already noted above, the work of Moschovidis 
[171] providesand interesting discussion on interactions between two inclusions. Rodin 
and Hwang [T9] provide a nice analysis of this problem and also contain several useful 
references. Interestingly, two dilating inclusions (same properties as matrix) have zero 
interaction energy in the isotropic limit. This is somewhat obvious since the external 
dilation in the isotropic case for all inclusion shapes is zero. Hence, if we are to use 
some of the isdropic results on quantum dots for dot-dot interaction, we may conclude 
that an interacion is absent. Anisotropy or half-space solution must be invoked to cor
rectly account or this interaction. Interestingly, because the external dilation is nonzero 
in nonlocal elasticity (see Zhang and Sharma [160]), a finite interaction between dots 
should exist e'en in the isotropic case. However, this interaction is likely to be weak 
and only of importance for dots very closely spaced to each other. This issue requires 
further investigation.

6. Anisotropicity ind shape. Several works have modified Eshelby’s (originally isotropic) 
form ulation to incorporate anisotropic behavior. Progress has largely been made only 
in the plane c<se. An excellent, but somewhat dated, account of these aspects is given 
in the now clasic monograph by Mura [35]. Some more recent works, that also contain 
an extensive li.t of references on this subject are Ru [180] who discusses arbitrary- 
shaped inclusions in anisotropic half and full plane, Li and Dunn [181] address coupled 
field anisotropc inclusion problems, and Pan and Yang [182] who present a semiana- 
lyticaJ method or application to embedded quantum dots. Inclusion shapes: Chiu [50] 
has considered parallelepiped inclusion. Rodin [183] considers the general polyhedral 
inclusion and provides and elegant algorithmic approach to determine the elastic state 
of arbitrary povhcdral. So do Nozaki and Taya [184].

In addition to the iforementioned group of papers, several other works exist in the context 
of nonlinear behavior and of course in application areas (such as effective medium theories, 
phase transformations, stability among others). A review of those works is beyond the scope 
of this chapter. The ollowing monographs, review articles, books, and references therein are 
recommended for tie interested reader: Mura [35], Nemat-Nasser and Hori [33], Markov 
and Prezioisi [185], Veng et al. [186], Bilby et al. [187], Mura et al. [188], Mura [189], and 
Kikuchi et al. [190].

3. SUMMARY AND OPEN ISSUES
In conclusion, we live reviewed and discussed several works and issues in calculation of 
strains in quantum tots and wires under myriad contexts of shape effects, presence of a 
free surface, anisotnpy considerations, nonlinear effects, and presence of coupled effects 
(piezoelectricity). W  have also provided a discussion on some of the novel size-dependent 
effects that may manfest themselves at the length scales at which these nanostructures exist.

Several avenues o research remain open and inadequately addressed. We highlight some 
of our own personal ̂ perspectives here.

Size effects in quantum dots appear to be the least explored. The use of classical con
tinuum mechanics fc* strain calculations is typical which of course is size independent. As 
mentioned in the prceding Section 2.6.1 (in the context of surface energy effects), if care 
is not takem, even tb atomistic studies may inadvertently exclude or undcremphasize size 
effects. Some rather nteresting scenarios are possible here. For example, we also discussed 
the size effects arisiig out of nonlocal interactions in a previous section. In such a the
ory, a characteristic *ngth scale appears that is roughly in the neighborhood of the lattice 
parameter, that is, sue effects in strain may become appreciable for dots that are close in
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size to the lattice parameter. Obviously, this effect is small and only applicable for very tiny 
dots. In a recent work, Drugan and Willis [191] show that material with multiple inclusions 
behaves as a nonlocal solid with a characteristic length that may be much larger than the 
lattice parameter (and roughly scales with the inclusion size)! This implies that an array of 
quantum dots (depending upon the volume fraction or density) may cause a screening effect 
inducing nonlocal and hence noticeable size effects. This notion, apart from clarifying size 
effects, may also be a valuable tool in modeling the many body strain effects.

The discussion of possible screening effects of arrays of quantum dots on the scaling of 
strain leads to another relatively less studied topic: quantum dot-quantum dot interaction. In 
the isotropic limit, two dilating quantum dots in an infinite medium do not interact mechani
cally. Perhaps this has led many to conclude that strain-mediated interactions between quan
tum dots are of relatively less importance. There are, however, several exceptions to this 
notion. If quantum dots are sufficiently close to a free surface or interface, they will inter
act even in the isotropic limit through their image forces. Of course, proper accounting for 
the typically cubic anisotropy of most quantum dot materials will also remove this isotropic 
degenerate behavior. In particular, we note that the nonlocal solution of a single quantum 
dot exhibited nonzero dilation in the barrier. This implies that nonlocal interactions are yet 
another mechanism that may mediate dot-dot interaction (even in the isotropic case; the 
interactions are expected to be yet stronger in the anisotropic case). Given the computa
tional advances, these many body interaction effects can accounted for easily (and indeed 
have implicitly done in several numerical works). To the best of the authors' knowledge, 
however, a systematic study is not yet available.

Frequently, quantum dots are assumed to have identical materials properties as the barrier. 
Computationally, there is no difficulty in accounting for the modulus mismatch (and indeed 
is routinely done in numerical simulations). The question, however, remains as to what truly 
are the material properties of the quantum dot that is often an alloy and under strain. 
Arguments may be advanced from both points of view. Indeed, some works have justified 
using identical material properties based on Keyes scaling relation [90-92]. Further, in a 
binary or ternary mixture, phases are not often uniformly intermixed [192]. For example, 
InGaN quantum dots one often sees a preferential phase segregation into InN [193]. How 
uniform is the mixing and hence the strain state in quantum dots? These aforementioned 
issues certainly could benefit from more detailed experimentation and theoretical work.

Although we have hardly touched on the strain-band structure coupling in this chapter, 
we mention here that several works have studied the viability and applicability of various 
approaches to take into account strain-band structure coupling. An oft-quoted work is that 
due to Pikus and Bir [194]. Other works have extended and modified this in various fashions, 
which we do not discuss here (e.g., Ref. [195] and the eight-band model, [196-197]). The 
particular reference that we would like to cite is due to Zhang [198] who presents formalism 
for taking into account inhomogeneous strain. This is an important advance however, largely 
predicated on the strain potential (in the quantum mechanical Hamiltonian) being local, 
that is the deformation potential at a point solely on the strain at that point. As acknowl
edged by Zhang himself (which in turn was communicated to him by C. Herring), the true 
strain potential is nonlocal. The implications of altering his formulation to reflect this fact 
remains unresolved. Modification of the Zhang Hamiltonian [198] along with possibh ah 
initio computation to investigate this issue is an interesting research avenue.
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1. INTRODUCTION
This chap-ter is devoted to theoretical calculations of the optical properties of silicon quan
tum wires and dots. The understanding of these properties is essential for their application 
in a variety of different fields, including nanoelectronic and optoelectronic devices, physi
cal and chemical sensors, biosensors, waveguides, photonic band gap devices, and others. 
Semiconductor quantum wires and dots are especially attractive not only for nanotechnology 
applications but also for basic investigations in nanoscience studies. Nanowires, compared 
to other l*ow-dimensional systems, have two quantum-confined directions while stiil leav
ing one umconfined direction for electrical conduction. They are so useful in applications, 
which require electrical conduction rather than tunneling transport. In contrast, semiconduc
tor quantum dots constitute a three-dimensional (3D) confined system, in which quantum 
confinement and Coulomb blockade effects arc dominant.

In both cases of quantum wires and dots, their properties are quite different from their 
bulk 3D counterparts. A size-dependent band-gap, a different density of electronic states, 
an enhanced exciton binding energy, and an increased surface scattering for electrons and 
phonons a.re some of the properties that differ significantly from those of the bulk, resuiting
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in different optical and electrical properties. However, even down to sizes as small as approx
imately 1 nm in the quantum confined directions, quantum wires and dots maintain a local 
crystal structure closely related to the corresponding bulk material, thereby allowing theo
retical calculations of their properties using the bulk parameters.

Because of their large surface, compared to their volume, both quantum wares and dots 
show properties that are very sensitive to the surface termination and passivation. This is 
why different systems containing silicon quantum wires or dots may show quite different 
optical and electronic properties.

Silicon quantum wires may be found in different forms, as is illustrated in Fig. 1. These 
include nanostructured porous silicon (PS), synthesized Si wires. Si quantum pillars on a 
silicon substrate fabricated by lithography and etching techniques, or silicon wires on SiO : 
between electrodes. Silicon quantum dots may be fabricated in different insulating matrices 
on a silicon substrate for use in nanoelectronic devices, as illustrated in Fig. 2: a silicon 
nanocrystal layer between S i0 2, randomly distributed nanocrystals in an insulator, and multi
layers or superlattices of Si nanocrystals and SiO : . Silicon nanocrystals also may be fabricated 
in the form of a nanostructured powder.

For the fabrication of Si quantum wires and dots, different techniques were used. The 
mostly investigated Si nanostructured material is PS, for which intensive studies have been 
undertaken since the discovery of its intense luminescence at room temperature in 1990 [1]. 
PS is a complex system, composed of a Si skeleton of interconnected wires or dots in a 
network of pores [2, 3]. When the material is highly porous, there is experimental evidence 
that the size of w'ires or dots is in the nanometer range. This is why most of its properties 
that differ from those of the bulk (as, e.g., the efficient photoluminescence [PI.] and light 
absorption in the visible range at room temperature), are attributed to quantum size effects.

To understand and explain the properties of PS, other well-defined systems composed of 
Si wires or dots were fabricated. Si quantum wires on a silicon substrate were fabricated in 
the mid-1990s, using advanced lithographic and etching techniques [4-5], and it was demon
strated that similar photoluminescence [6, 7] or electroluminescence [8] properties to those 
of PS may be obtained. More recently, silicon nanowires in the form of pillars or whiskers 
on a silicon substrate are fabricated by using the so-called vapor-liquid-solid (V LS ) mecha
nism of anisotropic crystal growth [9, 10]. The fabricated silicon wires consist of a crystalline 
Si core coated by a relatively thin amorphous oxide layer (2-3 nm thick). No PL  has been

Figure i. Ditie rent forms of silicon nanowires include {a) nanostructured porous silicon, (b) synthesized nanowires, 
(c) Schematic representation of Si quantum pillars on a silicon substrate, and (d) Quantum wires on insulator.
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a b c

Figure 2. S.i quantum dots embedded in thin S iO : layers, (a) 1-D layer of dots in SiO : ; (b) dots randomly distributed 
in S i()2; (c) multilayers of dots/SiO,.

reported so far from this kind of wires, mainly because their minimum diameter achieved 
was not below 2-3 nm.

Si quantum dots may be fabricated either in the form of a powder or in the form of a 
composite material, composed of silicon nanocrystals in an insulating matrix. For applica
tion in sillicon nanoelectronic devices, a promising material is a thin SiO: layer with silicon 
nanocrystals embedded therein. Different approaches are used to fabricate this kind of com
posite film on Si. One of the techniques used is ion implantation of Si into SiO : , followed 
by annealiing at high temperature [ 11 — 13], which is done either at high ion energy, resulting 
in nanocrystals of different sizes that are randomly distributed in the S i0 2 matrix, or at very 
low energy and using ultra thin oxides, resulting in a two-dimensional (2D) layer within SiO :
[14], Another technique is low pressure chemical vapor deposition (LPC V D ) of silicon on 
an oxidized silicon surface, followed bv annealing and oxidation or silicon dioxide deposition 
[15-18],

The optical and charging properties of Si quantum dots in SiO : were intensively investi
gated over the last years, in view of their application in silicon optoelectronics [16, 19-24] 
and in silicon nanocrystal nonvolatile memories [18, 25-27]. It is now well established that 
quantum size effects are found at the origin of efficient P L  in the visible range at room 
temperature from low-dimensional silicon, as they result from both experiments and the
oretical calculations. A variety of computational techniques have been used for the theo
retical calculations: tight-binding, empirical pseudo-potential, I lartree-Fock approximation, 
and density-functional theory calculations within effective mass approximation (EM A ). From 
these calculations, it is deduced that in both quantum wires and quantum dots there is 
widening of the band gap from the near-infrared wavelength region to and beyond the vis
ible range. Furthermore, an enhancement of the dipole matrix element responsible for the 
radiative itransitions is found. Both direct and indirect gaps have been reported, depending 
on wire o-r dot size, shape, and crystallographic orientation.

Quantum confinement (QC) of carriers in Si nanowires and dots are at the origin of 
intense P L  at room temperature. QC causes enlargement of the band gap and relaxation 
of the momentum conserving rule, resulting in enhanced PL  and size dependence of the 
PL  energy. Experimental evidence for this has been obtained for both porous silicon and 
other forms of silicon quantum wires and dots. Hydrogen-terminated nanocrystals confirm 
the tunabiility of PL  [28, 29], whereas oxidized nanocrystals or nanowires show limitations in 
tunability. attributed to surface states [15, 28].

The measured PL  lifetimes of Si quantum wires and dots strongly depend on the emitted 
wavelength and the temperature. Typical values are on the order of few microseconds at 
room temiperature and milliseconds at cryogenic temperatures. P L  decay is multiexponential 
in porous silicon [30], whereas both multiexponential [31] and single [20] or double [22] 
exponential decay was measured from silicon nanocrystals in SiO : .

In this chapter, the theoretical methods used for electronic structure calculations and the 
optical properties of silicon quantum wires and dots are reviewed.

2. ELECTRO N IC  STRUCTURE CALCULATIONS
Continuum models, with the use of the envelope function approximation (EFA ), have 
been widely used in the physics of electronic devices with active elements in the range of 
micrometers. In modern devices, the active elements are in the nanometric regime, where 
EFA  reaclhes its limits of application and atomistic approaches are more suitable. Ah initio
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(e.g., density-functional theory within the local density approximation, ab initio pseudopo
tential) and scmiempirical (e.g., empirical pseudopotential, empirical tight binding [ET B ]) 
atomistic methods have been used in the study of Si nanostructures. Ab initio approaches are 
limited by the small number of atoms that can be accounted for. Scmiempirical techniques 
have proved to be successful in describing the optical properties of Si nanostructures, being 
simultaneously computationally efficient. In this section, we describe the fundamentals of 
the effective mass approximation, of the T B  method, and of the pseudopotential method, 
focusing on the E T B  and empirical pseudopotential methods.

2.1. Effective Mass Approximation
E M A  is a continuum approach in which only the envelope of the nanostructure wave func
tion is described, regardless of atomic details. E M A  had great success because it is simple to 
handle and in many cases, although the involved assumptions, it provides reliable description.

In EM A, the wave function is in general written as a product of the Bloch periodic function 
and an envelope function. The envelope function and the energy eigenvalues are determined 
by the solution of an effective mass equation, to which are applied the appropriate boundary 
conditions. This method is described below for electrons and holes in Si quantum wires and 
dots.

2.1.1. Electrons
In bulk Si, electrons occupy at the minimum of the conduction band three pairs of equiv
alent valleys along the three main crystallographic directions. These anisotropic valleys are 
ellipsoids with two transverse masses m, — 0.19 m e and a longitudinal mass ni, =  0.98 />/.,. 
As becomes apparent, the anisotropic character of the conduction band of bulk Si reduces 
to a rich electronic structure in Si nanostructures that is responsible for their distinct optical 
behavior compared to, for example, the 111—IV  semiconductors.

We consider free-standing and homogeneous wires and dots. The distance of the center of 
the ellipsoids along the [001], [010], and [100] directions from the E-point is denoted by a. 
We denote these six valleys in the x, y, and z axes as [0, 0, ±a], [0, ± a ,  0), and [± a , 0, 0], 
respectively. We define the nanostructure crystallographic direction in a system of coordi
nates (X, X Z)  as follows: the Z  axis is along the Z  direction, and the X  and Y axes arc 
rotated anticlockwise by an angle 0 relative to the a* and y  directions, respectively. Elec
tron eigenstates are obtained by solving Schrodingers equation. An infinitely deep confining 
potential is assumed for electrons in the nanostructure.

2.1.1.1. Q uantum  Wires The conduction band wave function is written as

ifjc( r )  = <£>,( r )w , ( r )  ( l )

where u(.{r) is the Bloch function at the bottom of the bulk conduction band and sM r ) *s 
the electron envelope function.

In Si w'ires, the six anisotropic valleys are not equivalent, and to find the electron states, 
an effective mass equation must be solved for each pair of valleys [31. 32].

2.1.1.1.1. Eigenstates for the [0 , 0, ± a ]  Valleys The effective mass equation is

I h~ ll~ fl~ (  r) \~ |
- —  7-T -  —  T -  + —  - ' T  T-a - r  t • ( A'. z ) Vv( X . Y , Z )  =  E,>f, ( A . Y . Z )  (2)

\ 2m, fix- 2m, dy- 2m, \  dz / ]

where V(X, Z) is the 2D confining potential for electrons in the wire and /:, is defined with 
respect to the bottom of the conduction band. By transforming the coordinate system from 
(.v, v, z) to (A'. Y Z), Eq. (2) is transformed to

I hr d2 tr  fl- hr I  cl

2m, OX1 2 nr d Y 2
t- ~ + V ( X . Z ) ^ , ( X ,  Y . Z )  -  / , c ( V Y . Z )

(3)
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To solve the above equation, we introduce:

V \Z ) = —j =  c,k 1 yerta/x ( X i  Z )  (4)
V L y

where k Y is the w ave number in the Y direction and \ ( X . Z )  satisfies

n2 n2 h2 a2 |
—  !- V ( X , Z ) \ x ( X ,  Z )  =  E[y / x ( X ,  Z)  (5)

2m, ()X2 2m, (>Z2

Using the energy eigenvalue of the above equation and expressing the electron energy E c 
with respect to the top of the valence band:

h 2
Ec =  E^ + E \ y + - ( 6 )

where Eg is the bulk band gap energy.
Equation (5) is, in the general case, solved numerically for a given confining potential 

profile [HoNaTa]. For wires with rectangular cross section, it can be solved analytically:

„  2 . / n x7 r X \  . / n . t tZ  \

* {X -Z) = 7 r.^ s,n( — ) s,n( ^ r )  (7)
where L x , L z are the confinement dimensions in the X  and Z  directions, respectively, and 
n x , n z  =  1, 2, 3 , ---

2.1.1.1.2. Eigenstates for the [0, ± a ,  0] Valleys The effective mass equation is

h2 d2 hr d2 h2 ( d \~ |
+  + V { X ' Z T ( X ' Y ' Z)  = Y - Z)

(X)

By transforming the coordinate system from (.v, y, z) to (X, X  Z), this equation is trans
formed to

h2 | 1 d2 1 d2 (  \ 1 \ fi2 2m (  d d
2sin0cos0(-------——— in—  si nO----- |-cos0-

V m. m, )  8X  r)Y m, \2 \ m x d X 2 m Y r)Y2 \ m ,  m / J d X d Y  m t \  d X  dY

<pr ( X , Y \ Z )  =  E l.<pc( X , Y , Z )  (9)
?nt m, <>/- \

where
cos* 0 sin" 0

m v =  '
m, m

sin- 6 cos2 0 x 1 
m y =  I ------1------

( 10)

m, m,
To solve this equation, we introduce:

</>,.( A\ Y. Z )  =  Z )  (]1)

'where

A>-

<t>(ky ) =  m x ( ------ — ] sin 0 cos 0 (k Y =f= a cos 8) (12)
V /W, m , )

\where k Y is the wave number in the Y direction and x ( X , Z )  satisfies

X ( X , Z )  =  E lx z x ( X i Z)  (1 3 )
h1 d~ h2 d2

- —  +  V ( X , Z )
2mx OX2 2m, ciZ2
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Using the energy eigenvalue of the above equation, we obtain

hr
Ec = Eg + E lxz  + =F acosO)2 ( l4)

where m \  = m l cos2 0 +  m, sin" 0. For rectangular cross-section wires, the solution of (Eq. 13) 
is given by Eq. (7).
2.1.1.1.3. Eigenstates for the [± a ,  0, 0] Valleys The effective mass equation is

f k ~ d~ h '  %  +  + V ( X , Z ) ] < p c( X , Y , Z )  =  E,.V, ( X , Y . Z )I 2m, dy2 2m, dz2 2m ( \  dx 7 ,
(15)

By transforming the coordinate system from (x, \\ z) to (X, X Z), the above equation is 
transformed to

f r  ( 1 d2 1 d2 . (  \ 1 \ d2 2ia (  , c)
-  h------ — - -i- 2 sin cos 6 \ -) 7— :— ± —  I cos 0 -—7 — sin 0

2 \ m x d X 2 n i y  d Y 2 \ m ,  m , / d X d Y  n i t  \  c ) X  dY

<p(.( A\ X, Z )  = £>,.( A', X. Z)  (16)+  — ^ \  +  V { X , Z )

sin" 0 cos- 0 
m v = I ----- h ----

/ cos2 0 sin" 0 \
m Y = ---- + -----V m, m, J

(17)

m i m, dZ

where

m

cos2 0 sin" 0

To solve the above equation, we introduce:

<pc( X ,  Y, Z )  = e'k' 1 X( X , Z)  (18)

where

<b(k Y) = — m \ (  —-— ̂  sin 0 cos 0(k Y ±  a sin 0) (19)
\ ni, m, /

and k Y is the wave number in the Y direction and ;t(A\ Z ) satisfies Eq. (13):

hr d2 h2 d2 }
1---J y j  -  + V { X ,  Z ) \ x ( X .  Z)  =  E \ / X ( X .  Z)2m x dX-  2m, rlZ- \

Using the energy eigenvalue of the above equation, we obtain

h 2
£ t -  E k + E[x: + — (A'V ± a sin 0)2 (20)

where m*Y =  m, sin" 0 +  m, cos2 0. For rectangular cross-section wires, the solution of Eq. (13) 
is given by Eq. (7).
2.1.1.2. Q uantum  Dots  States in a quantum clot are confined by the finite size, and elec
tron and hole wave functions are spread in k-space. The electron state in the dot can be 
expanded in crystal basis states [33]:

ipc(v) = j  d k < p c ( k  -  k j  wrk(r) (21)

where //ik(r) is the Bloch function at a k-point of the bulk conduction band and the Fourier 
transform of the envelope function <p( is developed around the band-edge position k .

The electron envelope function <p,.(r) and the energy states for dots are determined in a 
way similar to that described above for wires [34]. A 3D infinitely deep confining potential 
V(X, X Z)  is assumed in this case.
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f t 2

C
'l ft- ft- /

2 m. 2 m ,  d Y 2  ' 2 m ,  V

2.1.1.2.1. Eigenstates for the [0. 0, ± a ]  Valleys The effective mass equation is

h 2 d2 h 2 <>2 h 2 (  ci \ ~  I
+  + V { X , Y, Z )  U ( X ,  Y. Z)  =  Ec<pc( X ,  Y , Z )

2 m ,  o x -  2 m ,  r*v- 2 m ,  \  O z  J  )
(22)

By transforming the coordinate system from (a , y, z) to (X , X Z), the above equation is 
transformed to

+ V ( X , Y , Z ) ^ \ X . Y , Z )  =  EcVc( X , Y , Z )

(23)
where Et is the electron energy with respect of the bottom of the conduction band. To solve 
this equation, the electron envelope function <pc(X% Y, Z )  is written as

<p,(X. V \Z ) =  e±iaZx ( X ,  r , Z )  (24)

where x ( X •> Y >Z )  satisfies the following equation:

+ ,/,A' - r  Z ) \ * ( X - Y - Z } - * ' « * ■  Y - Z)  |25)

2.1.1.2.2. Eigenstates for the [0, ± a ,  0] Valleys The effective mass equation is

h2 d2 h2 d2 ft2 ( c)
2m, dx2 2m, Hz2 2m, ( " %  + y ( X ' y ’ Z ) }< M * , y/-Z > = Y , Z )

(26)
By transforming the coordinate system from (x, v, z) to (X , X Z), the above equation is 
transformed to

( 1 - . ,,/ 1 1 \ eh 2ici /  () d \
_ _  _j---------  _ 2 s i n W c o s ^ ( --------------1 , —  —  I s in f l— -  +  c o s 0 —  )
JX- m y 0Y- \ m ,  m , )  ()Xc)Y m , \  c)X d Y )

a2 1 d2 ,
--- +  —  T p ]  +  V { X . Y , Z )

m ,  m  t )Z-
V c( X , Y , Z )  =  E c<pc( X , Y , Z )  (27)

‘where
cos2 0 sin~ 0 

m v = I ---- + ---

nn =

(28)

m, m,

To solve this equation, the electron envelope function is written as

i f, ( X , V ,  Z )  =  e i d x Xe“ ' '  Yx ( X -  Y - Z )  (29)

\where
m c

d  V — ± — -c/ sin 0 m, —— a cos 6/ 
m y 2
m, . c vv 

dy — ± —— ci cos 6 m ,—̂ —ci sin 6 (30)

c \ y — - 2  sin 6 cos 0 (  —---- —
V m, m /

<and y , Z )  satisfies the following equation:

I ft2 r*2 ft2 rJ2 ft2 (I h2 d2

2 m $  d X 2 2 m y  d Y 2 2 x v  d X d Y  2 m ,  d Z 2  

+  V ( X .  Y . Z ) \ x ( X , y . Z )  =  E ' x y / x ( X ,  Y ,  Z )  (31)
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2.1.1.2.3. Eigenstates for the [± a ,  0, 0] Valleys T h e effective mass equation is

h 2 d 2  h 2 d 2  h 2

2 m ,  d y 2 2 m ,  d z -
+ 2 ^ \ - l y x T * )  + V ( X ' Y ' Z )  J f M * .  ^  Z )  =  Ec<pc(X ,  Y . Z )

(32)
By transforming the coordinate system from (a; y ,  z )  to (X , X  Z ) ,  the above equation is 
transform ed to

h 2 [ l d 2  l d 2 _ . J  1 1 \  (92 2 i a  (  <9

2 [ m x  d X :  m y  d Y 2 \ w ,  n i t / d X d Y  /?7; \ fJA'
4- 2  sin 0  cos 0 1 ------------- — ;—  —  cos 0 —  — sin 0

c i ~ 1 0 '
—  4-
w ,  /??, f l Z 2

4  K (A \  y , Z ) < ? , ( * ,  y .  Z )  -  E c <pc ( X ,  Y .  Z )  (33)

where

sin 0 cos2 0
m  v =  | ------- 4 ---------

/?//

/ cos2 0 sin" 0 mv = ------ 1----—

(34)

\ m i m i I

To solve this equation, the electron envelope function is written as in Eq . (29):

Ip c ( X ,  Y ,  Z )  =  e i , i ' x e u l '  y  x ( X , Y ,  Z )

where
m ,  c  \- y

c L  =  ±  —  a  cos 0  ±  m ,  — 6/ sin 0  
m Y  2
M/ . t'vy

=  =p—— d sin 0  4 : m { - ^ - u  cos 0  (3 5 )

c v v = 2  sin 0  cos 0  ( ----------— ^
V m ,  m ,  )

and x ( X \  Y , Z ) satisfies Eq. (3 1) .
T h e  electron envelope function <jk£.(Ar, X  Z ) and the electron energy eigenvalues E c  for

the three sets o f  valleys are obtained by solving numerically the equations for x ( X ,  Y , Z )

for a given form o f  confining potential V ( X ,  X Z ). The electron energy levels E c ,  expressed
with respect to the top o f  the valence band, are:

/•;, =  /•:, +  i : \ y /  (36)

where E K is the bulk Si energy gap.

2.1.2. Holes
In the valence band (Ts), we have to take into account two different carrier types, which
originate from the k  =  0 degenerate heavy-hole (hh) and light-hole (Ih) bands o f  bulk Si.
T h e valence band w ave function can be written as

* M r ) =  (37)

where u " !  ( r )  are the degenerate Bloch functions at the top o f  the bulk valence band. The 
sum extends over the four expectation values ( m , — ± ~  for  the hh and ±  ‘ 111) o f  the j  —  3/2  
m ultiplet.

A  very useful description o f  the band structure is given by the K ohn-Luttingcr  for
mulation. jkohnj, according to which the calculation o f  the \ '  valence band starts from
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the Hamiltonian:

//, =

^/ill b c 0

/)• 0 c

c ‘ 0 H lh ~b

0 c* - I f

(38)

where
h-

Hu, =  ^— I(7i -  ?:)(*;■ +  *;■) +  (7i + 2y: )A-l m ()

— y/3 ifr
b = -------------y , ( k x -  i k v) k ,

ni „

s/3/r 
C =  ~2m~

\y: (k;  -  A") -  2/'y,A,A;,.]

and y |5 y 2> ar>d T.i are the Kohn-Luttinger parameters, which can be obtained by fitting 
experimentally obtained hole masses, and (A*v, k v, k .)  is the wave vector of the bulk electron. 
This formalism can be extended to lower-dimensionality structures by adding the confining 
potential term, J/(r), by replacing the k it components in the confining dimension a  by —ii)n 
for all confining dimensions, and by symmetrizing any product of noncommuting factors [36).

For the sake of simplicity, it is often assumed that the confining potential can be written 
as V(X\ Z )  = V(X) + V(Z) for a quantum wire and V(X, Y Z )  =  V(X) + V{Y) + V(Z) for 
a quantum dot. Moreover, any dependence of the effective mass in a given direction on 
the motion perpendicular to it is neglected. Then, the envelope wave functions separate in 
the three spatial coordinates. By applying H ^ to the wave function, a system of coupled 
eigenvalue equations for the envelope functions and the eigenenergy is obtained [36).

The degeneracy at the bottom of the valence band is removed by spin-orbit interaction. 
Because confinement is considerable in nanostructures, only the ground and first states are 
important in the optical properties. For this reason and for the sake of simplicity, hole 
states are fin some cases calculated neglecting the mixing of hole bands. Therefore, holes are 
assumed to occupy parabolic subbands with minimum at the F-point ( k v = 0). Then:

2.1.2.1. Q uan tum  Wires The effective mass equation is

h2 d2 h2 d~ h~ (l2 I
-  i — rv77 + + V ( X < Z ) \ t p v( X .  Y . Z )  = E v<pv( A', Y . Z )  (40)2mllt oX- 2mv cn - 2mv dZ- )

The hole envelope functions </>,. (X , Y Z)  and the hole energy, E v with respect to the top of 
the valence band, are

v 2 . /  n y i r X  \  . (  n7T rZ \
K ( x , y , z ) = .  r : = - = s.n ( t r ) ” ( t r )

n y i r Z  \

~ E 'X/ + 2m~ky

(41 a) 

(41b)

=  k ; ( t t ) ’ -  w , ( = 1 ' 2 - '  ( 4 2 )

1 he index v  runs over the hole bands (hh. Ih), and /??,, is the appropriate mass depending on r.
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2.1.2.2. Q uan tum  Dots  The effective mass equation is

2 7 ^ - 2 ^  +  2 ^  +  v .  Z  .45 )

This equation is solved numerically in general. For a rectangular dot, it is solved analogically, 
and for a dot with confining dimensions L x , L y , and L z, the hole envelope functicns, ipv 
(Xy Y, Z ), and the hole energy levels E v, with respect to the top of the valence band, are

y„(A \ Y , Z ) =  =  „ sin
V l x l yl z

n y7tX \  . / Hy 'TtY \ . / h / ttZ \

i t M - t t H - t t )  l44)
Er =  — (45)

h2 ( n yTT \ ~ h2 ( n y Tr \  h 2 ( ny TT\~ ,  ^

e- = s d T 7 ) + ^ ( t 7 ) (4<>»
The index v runs over the hole bands (hh, lh), and m v is the appropriate mass d:pend-

2.2. Atomistic Approaches
2.2.1. Tight Binding Method
The T B  method is an atomistic description, and the structural details of the nanost ucturc 
are taken into account. In the T B  method, all bands can be included and realistc band 
structures and reliable structural properties can be obtained. Its advantage is that it can 
provide quantitative predictions of electronic and optical properties of nanostructures at a 
computational cost that is comparable to that of continuum methods,

T B  approaches range from empirical to ab initio formulations, depending on how the atom 
interactions are implemented. It involves a large number of parameters that are determined 
by fitting the bulk band structure, which is known by other methods, such as first principle 
calculations or experimental data. In some systems to be modeled, the parameters need 
to be tested on atom clusters. The transferability of the parameters to the physical system 
under investigation is an essential feature of the method.

In the T B  method, the system wave function ^  is expressed as a linear combination of 
atomic orbitals (LCAO ):

V  = R<PaR (47)
</R

where <paR is the a-th free atom orbital of atom at site R.  The Schrodinger equatior is then 
written as

Ca r [H„R'Ci'R ~  ESaR.u’R'] ~   ̂ ^8 )
<|R

where E is the energy, H aR(lR is the Hamiltonian matrix element:

H lifUlR. =  ( a , R \ H \ a \ R ' )  (49)

and SaR a R is the overlap matrix element between the atomic-like orbitals:

S„R.a R -  » ') 150)

The whole set of (pilR is overcomplete [37], and one has to truncate the expansion on a  
in Eq. (47). This is done within the ’‘minimal basis set" approximation. An anavsis and 
discussion of this process can be found in Ref. [38], The orthogonalization of the xisis set 
can be done by using a Lowdin orthogonalization procedure [39] that preserves the symmetry 
of the basis function. When an orthogonal basis set is used, the overlap matrix S becomes the 
identity matrix. Although this facilitates the calculations, the use of a nonorthogoial basis
set offers some other advantages such as the transferabilty of the TB parameters [4i!. T his is
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because the nonorthogonul wave functions have a shorter range than the nonorthogonal 
wave functions that extends in the local environment of each atom [41].

The eigenvalues of the whole system are obtained by solving the secular problem of 
Eq. (48). For this purpose, the matrix elements of the Hamiltonian must be evaluated. The 
TB  models can be classified according to the orthogonality of the basis set, the dimension 
of the basis set, the type of the matrix elements included (two- or three- center), and the 
range of interaction (the number of nearest neighbors and by the method of evaluation of 
the matrix elements (empirical, semiempirical, ab initio). E T B  methods are often used to 
treat electronic and optical properties of nanostructured devices, whereas ab initio imple
mentations of T B  are mainly used in material science. Because we are interested here in the 
optical properties of Si nanostructures, we focus on ETB.

2.2.1.1. E m p ir ic a l  T ight B in d in g  M ethod  In ETB, the Hamiltonian matrix elements are 
treated in an approximate way without attempting to model the potential and the explicit 
form of the basis functions [39]. Both the Hamiltonian and the overlap matrix elements are 
fitting parameters of well-established quantities, such as the band structure or the total energy 
of the material obtained by first-principles calculations or extracted from experimental data.

To describe a nanostructure, one has first to describe bulk materials and establish the 
appropriate parameterization.

2.2.1.1.1. The Bulk Hamiltonian In the case of a crystalline bulk material, the symmetry 
of the system reduces the problem in the primitive unit cell. The one-electron wave function 
can be expressed as a 3D Bloch sum on the localized basis:

where the subscripts refer to the base atom index and to the atomic orbital index, respec
tively; n is the band index and k is the wave vector. The coefficients ctlJ n ,  k) of the linear 
combination are determined by solving Schrodingefs equation:

" y iVk = e .a 'K u  (52)

where en k represents the energy band dispersion. In the localized basis, the mean-field one- 
electron T B  Hamiltonian is written as [42]

£  = £  ~  (53)
a . o'

R>*R 0

where

R/j - U p )  =  {a, RplH la ', R '^ ) (54)

are the hopping matrix elements for R;. ^  R '/r, and

e ^  =  ( a , K fi\ H\ a , Rfi) (55)

are the on-site matrix elements.

2.2.1.1.2. Parameterization The system properties are sensitive to the parameters chosen, 
and parameterization is crucial for obtaining a reliable description of the system. The type 
of parameterization is closely related to the type of properties of interest. For example, to 
describe the electronic and optical properties, one needs to reproduce energy gaps, effective 
masses, and so forth, so a band structure parameterization would be appropriate.

E T B  parameterizations in which the matrix elements were determined by comparison with 
experimental data are given by different authors [39, 43]. Harrison [44] developed a simple 
and universal parameterization. The diagonal matrix elements are proportional to atomic 
ionization energies, and the off-diagonal elements are universal functions of the interatomic 
distance. This has served to get simple and correct description of many physical properties
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(e.g.. Ref. [45]). However, a more accurate description of the materials is needed for the 
study of the electronic and optical properties of nanostructures.

The choice of the basis demands particular care. A sp3 basis, for instance, succesfully 
reproduces the valence band of zinc-blende semiconductors, but fails to reproduce the con
duction band. Vogt [42] added for this an additional s* orbital representing nigh-energy 
orbitals. For silicon, this basis reproduces the lowest conduction bands more correctly than a 
first-nearest neighbor sp' mode [37]. The inclusion of more distant neighbors provides more 
accuracy. For instance, a sp3 E T B  model [46] including up to third-nearest-neighbor inter
actions and three center integrals has shown to provide an excellent fit to the silicon band 
structure, both for the valence and for the lowest conduction bands. However, this model is 
less good in describing the curvature of the bands near their extrema. In Ref. [47], the same 
method was used, but the parameters were obtained by minimizing the root-nean-square 
error on a weighted average of bulk band energies and the effective masses taken from ab 
initio GW  calculation [48]. The same accuracy can be obtained bv a first-nearest neighbor 
sp3d\s* model [49. 50]. This parameterization gives excellent agreement with p^eudopotcn- 
tial calculations, up to 6 eV above the valence band maximum, even without tie inclusion 
of interactions with more distant atoms and three-center integrals.

The advantage of the ETB  is its simplicity and the fact that, in most cases, it provides 
qualitatively correct pictures. In some physical problems, titling the bulk bard structures 
does not lead to a unique answer (e.g., point defects [51]). To test the accuracy of ET B  in 
intermediate situations, such as large size systems (e.g., dots), one must check the predictions 
in two limiting cases, bulk and the smallest dots, against those of the ab initio calculations.

The drawback of the ET B  is the high number of parameters needed to parameterize all of 
the matrix element. For example, in the sp3d:s* model of Ref. [52] for silicon, 32 parameters 
are needed. Even though very sophisticated methods have been developed to define such 
parameters [49, 53], the parameterization and the scaling law of such matrix elements remain 
a critical issue in ET B  methods.

2.2.1.2. S p in -O rb i t  In te rac t ion  Spin-orbit interaction was included in the ETB  model 
by Chadi (see Ref. [40]). The spin -orbit matrix elements are

(a. Rp, a \H sn\a. R'p. a ' )  —  I  a , R h I dV( ( r )  

4/7?-(■“ r dr
a\ R '(\  • (ct|<7|</) (56)

where a  are the Pauli matrices, V is the crystal potential and L  is the angular momentum.
In the TB model, the spin-orbit interaction H S() couples atomic orbitals on the same 

site. The spin-orbit matrix elements are evaluated between zero-order states [-()]. Thus, the 
spin-orbit interaction is characterized by a single parameter A. To get the correct spin-orbit 
splitting, (A ) in bulk Si in [ossi-216] is taken A = A/3, where A = 0.044 eV.

2.2.1.3. Q uantum  Wires an d  Dots  In quantum wires and dots, the confinement is in 2D 
and 3D respectively. A proper account of the dimensionality and symmetry >f the system 
must be used in the calculations. It is useful to introduce the idea of the “ perpendicular" 
space, in which the translational symmetry of the system is broken, and of :he “ parallel" 
space, in which the full periodicity of the crystal is preserved. It is then possible to define a 
unit cell of the system under investigation in such a way that some basis vectors belong to the 
perpendicular space and the rest of the basis vectors belong to the parallel space [40]. A given 
Bravais vector can thus be decomposed into perpendicular R and parallel R components: 
R  = R + R.. For R , a reciprocal parallel space can be defined, as can, consequently, the 
Brillouin zone for the k vectors. In the case of dots, where the translation;! symmetry is 
lost in all three dimensions, the parallel space will be empty and the perpendicular space 
will coincide with the Bravais lattice (R — R ).

In the directions, where the system is not confined, the translational symmetry is preserved 
and Bloch's theorem can be applied. This allows for a restriction of the problem to the unit 
cell and a consequent reduction of the number of atoms considered The Wove function of



Optical Properties of Silicon Quantum Wires and Dots 745

the system ^,lk can be written as linear combination of planar Bloch sums in the parallel
sPact' c*>«.*l ,k|[54]:

= E  C .h  (k , ) <K m .k (57)
u . R

with

^a.R -k = R *a.R (58)v/N K

where k,| iis the parallel space vector and /V is the number of unit cells in the parallel space. 
The subscript a refers both to the basis atom and to the atomic orbital.

For a giiven k(|, the eigenenergies E are calculated by solving the secular equation

H % k = ( H s +  V H)V nk =  E % k (59)

where H s is the system TB Hamiltonian and V n is the Hartree potential, which can repre
sent an externally applied potential or the internal potential resulting from charge interac
tions. Considering orthonormalized basis functions in the Bloch sum expansion, the secular
equation reduces to

z L  ^ R  . a : R R . =  ^ ^ R  . u  ( ^ 0
R

which needs to be solved with appropriate boundary conditions.
The boundary conditions depend on the physical problem investigated. When the nano

structure consists of an active part in a confined region, the system can be described, includ
ing the atoms belonging to this region and a few more atoms of the confining layers. In 
this case, cluster boundary conditions can be applied, and only a limited number of atoms 
or atomic planes in an empty space are considered. Outside the cluster of atoms, the wave 
function vanishes. The dangling bonds at the surface of the nanostructure introduce spurious 
surface states. These can be removed bv hydrogenating the dangling bonds or by saturating 
them with atoms, depending on the system investigated (e.g., with oxygen in surface oxidized 
nanostructures).

2.2.2, The Pseudopotential Method
The pseudlopotential method is an atomistic approach that represents a higher level of 
sophistication than TB. The central idea of this method is the pseudopotential, which is
defined wiith the use of some parameters. The number of the needed parameters is small,
which is am advantage of the method compared with TB. The empirical pseudopotential 
method (E,PM ) has been proved very successful in describing the properties of Si nanostruc
tures, and we focus on this method here.

The electronic structure of nanostructures is described in terms of the solutions of an 
effective siingle-particle Schrodinger’s equation [55]:

H %  = Si% (61)

The mean-filed potential V(r)  is constructed as a superposition of atomic pseudopotentials:

l ' (r) = E  V,„o„M - (f>2)
tii am

and the wa've functions are expanded in plane waves

'K (r ) = X > (q y 'q'r (63)
q

where {R fl,„)m} are atomic position vectors and a(q) are variationally determined expansion 
coefficients at the reciprocal lattice vector q of the supercell. The above expansion of the
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wave function ensures a microscopic description and allows for multiband and intervalley 
coupling [56].

To solve (Eq. 61), one needs [55], to determine the position of the atoms, to determine 
the atomic pseudopotentials, and to diagonalize the Hamiltonian.

To determine the positions of the atoms, the positions of the atoms and the composition 
of the nanostructure are supplied as an input. Inside the nanostructure, the atomic positions 
and the interatomic distances are assumed the same as in the bulk structure, except in cases 
of other experimental evidence. At the surface of the nanostructure, the atoms are relaxed 
using first-principle calculations [56] and experimental data.

To determine the atomic pseudopotentials, they are expressed in terms of parameters that 
are fit to the measured band structure, anisotropic effective masses of the underlying bulk 
materials as well as bulk wave functions, deformation potentials, and band offsets that are 
provided by first-principles calculations [57-60].

The pseudopotential Hamiltonian is diagonalized with the Folded Spectrum method [61, 
62]. This method scales as O (N), and therefore fast and enables us to study clusters with 
more than 1000 atoms. The inspiration of the folded spectrum method has been the fact 
that in physical properties such as optical properties, only the part of the electronic structure 
that is near the band gap is of interest. Thus, this method “ folds” the lowest levels to very 
high energies, leaving the highest occupied or the lowest unoccupied states as the lowest 
solution of the modified Hamiltonian [61, 62]. Another modification of the method is Linear 
Expansion in Bloch Bands [63], which is even faster and allows the study of even larger 
nanostructures, such as million-atom dots.

The outcome of the above procedure is then used in the calculation of the physical prop
erties of interest. For instance, the density of states and the optical absorption spectra can 
be calculated with the generalized moments method [64].

2.3. Quantum Confinement
A number of calculations on Si quantum wires [52, 65-77, 78-86] and quantum dots [87-104] 
have been reported using EM A , ETB , EPM , and ab initio density-functional theory, usually 
within the local density approximation, (LDA ). In most calculations, single, ideal wires and 
dots, often of rectangular cross section, are considered. When the Si atoms at the surfaces 
are passivated by H, all calculations conclude that quantum confinement causes an opening 
of the fundamental energy gap. quantization of the energy states, and new selection rules for 
optical dipole transitions across the fundamental gap. These effects increase with decreasing 
confinement dimensions.

Figure 3 [37] shows results of ET B  [88-89], E PM  [61], and LD A  [105] on the dependence 
of the energy gap from the confinement dimension of Si dots and wires. It is apparent that 
the band gap opening increases with confinement relative to the bulk, and it is therefore 
bigger in dots than in wires. The agreement between these methods gives confidence that 
they are reliable. The reliability of E T B  originates from the good fit to the bulk band struc
ture and the transferability of the obtained parameters to the nanostructures [37, 46, 88, 
89, 106]. ET B  descriptions that do not provide a good description of the bulk conduction 
band of Si [87, 97, 107, 108] predict lower values for the gap than ab initio calculations 
and more reliable ET B  methods. The reliability of E P M  originates by the good choice of 
the pseudopotentials. By comparing the results of the atomistic calculations with those of 
E M A  [55, 106], it is shown that EM A  overestimates the band-gap opening in quantum dots 
and wires. The energy gap does not follow the l i d 1 rule predicted by quantum confinement 
within EM A. Atomistic calculations showed the following behavior for wires and dots.

2.3.1. Quantum Wires
The great majority of calculations on Si quantum wires [65. 70. 72, 78-80, 1( 9, I If)], rang
ing from ab initio calculations to empirical or semiernpirical methods., show a remark able 
agreement. Si wires whose dimensions are of the order of 2-3 nm have energy gaps in the 
range of the experimental PL  energies. In addition to that, the calculated dimensions com
pare well with the experimentally determined ones. Results for the calculated hand gaps for
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confinement width (nm)

Figure 3. Eniergy gap versus confinement width lor hydrogenated Si dots and wires (ET B : solid lines, EPM : stars, 
EDA: dots). The LDA results have been corrected by a rigid shift of 0.6 eV. as LDA underestimates the bulk 
bandgap by ithis amount.

various wire orientations and widths are shown in Figure 4 [80, 111]. Excitonic corrections 
to the barud gaps, which can be as large as ~~200 (100) meV for wires ~1 (2) nm wide [65, 
i 12], do n«ot alter the previous conclusions. The calculated band gap reduces with increasing 
size, but itt does not follow the cl 1 rule predicted by EM A . Figure 2 collects results for the 
calculated band gaps of Si quantum wires for various orientations and widths of empirical 
or semiemipirical calculations [52, 76, 81, 82] and of local density-functional calculations [65, 
70, 72, 78— 80, 109]. These calculations can be fitted [80) by

/•:„(</) =  G  (oo ) + +  ^(eV) (6 4 )
(I cl-

where c, arnd c2 are constants.
For wire: orientations in the [ 100] direction of bulk Si, the calculated band gap appears at 

k =  0 [80, 112]. The near band-gap slates are linear combinations of off-F bulk states [112]. 
T he valence band maximum originates mainly from the coupling of the two highest-bulk
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Figure 4. Colllection of results for the calculated band gaps of Si quantum wires for various orientations and widths 
of empirical o r  scmiempirical calculations and of local density-functional calculations as referenced in the main 
text.
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valence bands at an off-1' k-point. It is not a surface state, despite the fact that the wave 
function is localized near the surface. The conduction band minimum comes mainly from 
the lowest two bulk conduction bands at a different off-F k-points. The Si quantum wire 
band gap is called pseudo-direct, because of the fact that the valence band maximum and 
the conduction band minimum states project into bulk states of different k wave vectors.

The changeover from indirect conduction band in bulk Si to direct conduction band in 
a quantum wire along a main crystallographic direction can be qualitatively explained as 
follows [31, 32, 52]. In bulk Si, the indirect conduction band consists of six equivalent X  val
leys with minima at ±0.85 ̂  along (100) directions. These valleys are anisotropic ellipsoids 
with two light transverse masses of m , and a heavy longitudinal mass of //?,. In a quantum 
wire along the [010] direction, for instance, the projections of four of these valley minima 
(oriented along [100] and [001] directions) onto the wire axis are at the zone center, and 
their energies are determined by the effective masses along the confinement directions of 
the wire boundaries. When projected onto the wire axis, these states give rise to the four 
closely spaced direct conduction subbands (also sec equations of Section 2.1 for 0 = 0 deg). 
The quantum wire subbands derived from the two X  valleys along [010] are indirect because 
the projections of their valley minima onto the wire axis are at ±0.85 — . The states derived 
from the two X valleys along [010] have higher energies than the direct minimum because 
the [010] valleys have light transverse masses along both confinement directions. Similar 
arguments explain the direct or indirect character of the band gap in quantum wires depend
ing on the crystallographic orientation and the confinement dimension (also see discussion 
in Section 4.1.1). Similar to the bulk X-like states, the quantum wire conduction bands are 
spin-split. The ordering of the states varies with the wire width in a complicated way because 
of the intervalley mixing effect [52].

Both first principles and E M A  results predict that the band-gap upshift is divided roughly 
equally between the valence and conduction edges [113], in qualitative agreement with the 
photoemission and X-ray absorption measurements [114]. In other atomistic calculations [72, 
78], it is found that the gap opening is in fact not symmetric: Roughly 1/3 of the widening is 
in the valence band, while 2/3 in the conduction band.

2.3.2. Quantum Dots
In dots, the energy spectrum consists of discrete atomic-like levels. Thus, the energy gap is 
defined as the energy difference between the highest occupied level and the lowest unoccu
pied level. The energy gap of Si dots as it is calculated by EPM  can be fitted by a “ universal” 
curve [55]:

where p is the mass density of bulk Si. These results are in agreement with third-ne arest- 
neighbor T B  results [88). The discrepancy found between this result [55] and with E M A  [90] 
and a mode! calculation [115] is another strong indication that to give reliable predictions 
for the energy gap of Si quantum dots one needs to use a method able to provide a good 
description of the Si bulk band structure.

2.4. Optical Properties
Experiments have shown that the optical properties of Si nanostructures are much different 
than those of bulk Si. The optical properties are closely related to the electronic structure 
of these systems. We discuss the results of calculations on the electronic structure and the 
optical properties, starting with EM A  calculations. EM A  is useful for obtaining the physical 
evidences— it is easy to handle, and it has important application in properties ol Si wires, 
such as the effects of fluctuations in the wire thickness along its length. We proceed then 
with the results of atomistic calculations that provide a move accurate description.

E,,(d) = 1.167 + 88.34A/l3V I / ) (65)

where the effective size d is defined for a cluster with N Si atoms, as

(66)
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2.4.1. Quantum Wires
2.4.1.1. E ffec t ive  Mass A pp rox im a t ion  We discuss results of a single hand EM  A calcu
lation, in which the coupling of hole subbands is neglected and they are approximated by 
parabolic functions. The calculations are based on the formalism given in Section 2.1. It is 
found that the anisotropy of the conduction band of bulk Si, together with the anisotropy 
related to the geometry of a quantum wire, give, for Si wires, spectra for conduction subband 
energies very sensitive to structural parameters of the wire, such as the shape of the cross 
section and the crystallographic direction.

In Si quantum wires, each set of bulk Si ellipsoid valleys gives a sequence of 2D energy 
subbands [Eq. (5) and (13)]. This is shown in Figure 5, where the electron subband energies 
arc plotted as a function of the wire direction for two quantum wires grown in the X-Y 
plane, which have the same cross section and different ratios A = L z / L x : wire A  (A >1), 
and wire B (A<1) [116]. The energy subbands from the [001] valleys (D-subbands) do not 
depend on the wire direction, as the change in the direction is in the X  -Y plane, and their 
minimum is at the F-point [Eq. (6)]. Energy subbands originating from [010] and [100] 
valleys show directional dependence (I-subbands). Their minima are at the F-point (direct 
subbands) or away from the F-point (indirect subbands), depending on the wire direction 
and the valley of origin [Eqs. (14) and (20)]. The order and the separation of the energy 
subbands of the wires depend strongly not only on their confinement dimensions (i.e., L x 
and L z for a wire in the y-direction) but also on their ratio L x / L z [31].

In Si quantum wires in the nanometric regime, because of considerable confinement, 
the number of excited e-h pair is small, and the system consists of independent c-h pairs. 
The lifetime, r, is defined as the inverse of the recombination rate of a single e-h pair. The 
expressions for direct and for indirect (phonon assisted) recombination are, respectively 
1117],

R (hio) =  — Pn Ci(h(o) x / (A-v, d) S( El ( k v) 
1 n
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Figure 5. Electron energy levels versus wire direction lor two quantum wires of confinement dimensions (a) wire A 
(Lx = 2.0 nm, /. = 2.5 nm. ■ I) and (h) wire B (/_, = 2.5 nm. I. = 2.0 nm, /. < 1). Electron states are
shown from the three pairs of valleys in |()(>11 (solid lines), [010] (dolled lines), and (100] (dashed lines) directions. 
Energy levels are expressed relative u> the bottom of ihc hulk Si conduction band.
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In the above expressions, hco is the energy of the emitted photon, and hco, is the energyof 
a phonon of branch L  Phonons are considered dispersionless. For illustration purposes, tie 
results shown here involve TO  phonons and conduction band phonon-assisted transitiois. 
The parameters are those for bulk Si [118]. Pcv is related to the bulk momentum matix 
element, and G(hco) is the optical density of states. I lV( k v, 0) is the overlap integral for tran
sition between the conduction and the valence band, and it is given in terms of the electnn 
and hole envelope functions [116]. The overlap integrals for intersubband transitions depeid 
on the phase of the electron envelope function, and they are consequently strongly depen
dent on the wire direction and the wire dimensions. The variable Z " ‘ is the overlap integal 
for intrasubband transitions in the conduction that are induced by phonon absorption or 
emission.

For the sake of discussion, we choose a quantum wire with L x = 2.0 nm, L z =  2.2 im. 
and A = 1.1. Because A > 1, the ground subband is the I-subband for small angles 0, md 
the D-subband for bigger angles (Fig. 5). The lifetime for the D-subband does not depend 
on the wire direction and is on the order of microseconds (Fig. 6). This order of magnitude 
is determined by the overlap integral that is 10 4 in the present case and, in general is 
well smaller than unity in the case of Si wires in the nanometric regime [117]. The overap 
integral is determined by the confinement dimensions and by the phase of the wave functnn. 
The phase of the wave function [Eqs. (4), (11), and (18)] is related to the bulk Si condueton 
band minimum and effective masses and to the direction of the quantum wire. The lifetime 
for the I-subband depends on the direction of the wire, following the directional dependeice 
of the overlap integral. It can vary from being on the order of milliseconds to being on 
the order of microseconds, with the wire direction (Fig. 6). These features are smoothed 
out by the thermal averaging over the possible occupied carrier states (Fig. 7). Moreover, 
at finite temperatures, thermally activated direct transitions are possible for the I-subbmd 
for small angles 0, because the subband minimum is close to the F-point (Fig. 7). These 
transitions become less probable as 0 increases, and which is why the PL  lifetime increaies. 
At bigger angles, recombination is a result of indirect transitions, and the magnitude of 
lifetime depends on the wire direction in the same way as in the low-temperature regime.

The distinct features of the PL  lifetimes when electrons occupy the I-subband or the 
D-subband, discussed in the previous section, show that the PL lifetime strongly depends 
on the electronic structure of the quantum wire. Thermal activation from one subbanc to 
the other is also important, as is shown in the following analysis. At low temperatures, only 
the ground subband is occupied and the dependence of the lifetime on the wire direcion

wire direction (cleg.)

Figure 6. The calculated PL  lifetime as a ('unction of the wire direction (/., -- 2 nm, /._. = 2.2 nm) iti vciy irw 
temperatures, for the (-subband, (squares) and the D-subband (dots). The solid line is for the total PI. lifeline >i 
the quantum wire.
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wire direction (deg.)

F igure  7. The calculated PL  lifetime versus the wire direction (Lx =2 nm. /., = 2.2 nrn), at room temperature, for 
the I-subband (squares) and the D-subband (dots). The dashed line is for the direct transitions of the I-subband, 
and the dotted line is for the phonon-assisted transitions of the I-subband. The solid line is for the total P L  lifetime 
of the quantum wire.

is shown in Figure 6. At room temperature, occupation of the first excited subband may be 
activated, and the resulting lifetime is then given by the following expression

T-l e- l M T  +  T \
- 1 -  ' s (70)

I + e \EikT

where r  stands for the total PL. lifetime and I E  =  E , .  — E s  for the energy separation of 
the two subbands. The subscripts F and .S’ are for “ fast” and “ slow,” respectively, and refer 
to the D-subband or the I-subband, depending on which is faster or slower than the other. 
The lifetime shows a variation of one order of magnitude at room temperature as the wire 
orientation changes (Fig. 7).

The behavior presented in the previous paragraph is typical for wires with similar ratios 
of confinement dimensions A [ 117]. As the wire’s size increases, the lifetime depends more 
weakly on the crystallographic direction in wires with small degree of asymmetry (A—1). This 
is because the subband’s energy separation becomes smaller for bigger sizes, the thermal 
activation is more efficient, and the effect of the D-subband is more important. In contrast, in 
quantum wires with A < 1, the D-subband is the ground subband, and the lifetime is weakly 
dependent on the crystallographic direction of the quantum wire for all sizes. It is evident 
that quantum wires with similar crystallographic orientations and confinement dimensions 
can have PL  lifetimes of different order of magnitude.

For direct gap wires, the PL lifetime increases with the diameter of the quantum wires 
(Fig. K). As the size of the quantum wires changes from 2 to 4 nm, the magnitude of 
the calculated lifetimes varies from 0.1 /xsec to 1 msec. These values are in agreement 
with first-principle calculations [52]. The lifetimes are higher for indirect transitions. For 
some crystallographic directions (Fig. <S), although the tendency is an increase of the lifetime 
with the size of the wires, nonmonotonic behavior has been found. This behavior is caused by 
the nonmonotonic size dependence of the overlap integral I cv in Si wires in the nanometric 
regime. The sizes of the quantum wires in highly luminescent porous Si samples are below
3 nm. The magnitudes of the calculated lifetimes are in agreement with those measured in 
porous Si samples [119-121].

2.4.1.2. A to m is t ic  Calcu la t ions  Silicon wires [OOlJ-oriented with a square cross section 
with diameters up to about 1.5 nm have been studied within LD A  [70, 72]. These calcula
tions showed that, unlike bulk c-Si, the gap is direct, at the center of the Brillouin zone, 
and involves states of predominately bulk Si character. The lowest transitions are dipole
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allowed with matrix elements induced because of confinement. The LDA calculaticns sup
port a more general analysis based on envelope function considerations [66, 90, 116. 117, 
122] and on a T B  approach [52, 88]. First-principles pseudopotential plane-wave calah.tions 
have been performed [67, 113] for rectangular wires along the [001] direction, wth wire 
surfaces corresponding to (llO)-type surfaces of bulk Si, with each surface dangliig bond 
passivated by a H atom. Wire thicknesses up to 1.6 nm have been considered. The >tudy of 
silicon wires [0()l]-oricnted with a square cross section with diameters up to about 3. nm has 
been done, using a second-neighbor sp3d2s* ET B  model that includes the spin—orbilinterac
tion [52]. The results are in agreement with empirical pseudopotential calculations 123] on 
the electronic states and corresponding lifetimes of optical transitions for Si thin uiantum 
wires.

Even the ideal wires considered have a rich electronic structure: The detailed vaby orbit 
splitting and ordering depends on the symmetry of the wire, as well as the struetue in the 
surface region. The dipole matrix elements vary by more than one order of magnitude among 
the various low-energy interband transitions in a given wire, with interesting consequences 
for the optical properties and implications relevant to light-emitting porous Si.

The wires have been found to be direct with an X-like conduction-band minimm and a 
F-like valence band maximum both occuring at the zone center. The obtained vale ce band 
maximum wave functions can relate to those for a particle in a 2D box [52]:

2
v) = sin («177.v/L)sin(/i: 7ry/L) 0 < .v, v < L (71)

where /?, and n2 are the two principal quantum numbers. Detailed band struct res and 
effective masses for the conduction and the valence band are given in Ref. [52].

The ordering of the levels at the valence band maximum agree with other first-jrinciples 
results [65, 72] and are in disagreement with E M A  [70, 113]. The calculated effectiv masses 
can be used in approximate EM A  calculations.

The band structure of a wire about I nm wide is shown in Figure 9 [72]. The quar.uni wire 
bands are clearly pulled away from the bulk band edges bv the kinetic energy of con ncment. 
The bands with the most Si-FI character are several eV from the band edges, wh a Si-H 
bonding to antibonding separation of 8-10 eV. The main feature of the valence bnd states 
is the splitting at the zone center. The lowest four conduction bands derive fron the Aa , 
valleys, whereas the next two come from the A. valleys. The latter are higher beause the 
lighter (transverse) mass of the A : valleys controls the kinetic energy of continemct. These 
valleys are further split by valley—orbit interaction because of the potential at th surface. 
The level ordering and spacing arc sensitive to the details of the surface potential

2 3 4
wire width (nm)
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Figure 9. The band structure of the 5 x 5 wire together with the projected bulk energy bands of Si (gray) plotted 
versus wave vector along the wire and the associated density of states (solid curve at right with Gaussian broadening 
of 0.1 eV). The dashed lines indicate bands with more than 50^ Si-11 character. The Si-H projected density of 
slates (dashed curve at right) is defined so as to include two electrons per Si-11 bond. Reprinted with permission 
from [b6], MI. Hybertsen and M. Needels. Phys. Rev. B 48, 4608 (1993). CO 1993, American Physical Society.

The imaginary part of the dielectric function resulting from band-to-band transitions in a 
quant um wire is given by Fermi's golden rule [124]:

e2(hco) =  £  I > ‘ ■ />,„,(k)|’ S (E'„(V.) -  E „ (k) - hco) (72)
" 1 7 }  k

where V i:s the volume of the quantum wire, c is the polarization vector, and Pnn(k)  is 
the miomentum matrix element between valence band // and conduction band r i  at wave 
number k.

The: maiin contribution in the e2(to) is a result of bulk-like excitations, but a side peak 
appears if the light is polarized in the direction of the wire (Fig. 10) [70]. This side peak

Energy (eV)

Figure IiO. Innaginary part of the dielectric function polarized in the direction of the wire for three different values
ol the siide lemgth of the quantum wire. Inset: the same for the largest wire (solid line) compared to the component 
polarizeid in tlhe orthogonal plane (dashed line). Reprinted with permission from [70]. Buda el a!.. Phvs. Rev. Leu. 
69, 1272 (1992). © 1992, American Physical Society.
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is caused by wire-related features and is absent in bulk c-Si. The size dependence of this 
optical feature can be closely related to the behavior of the luminescence peak observed in 
porous Si. M oreover, a high degree of polarization has been found in the calculations [52, 70] 
in agreement with experimental observations [125-127]. N ear the band edge, the dielectric 
function is larger for polarization along the wire length. In  contrast, the dielectric function of 
bulk Si is independent of polarization. Optical transitions for polarized light parallel to the 
wire axis are allowed between valence and conduction states of the same symmetry, whereas 
for light polarized normal to the w ire ’s axis, allowed optical transitions are between states of 
opposite parity with respect to the planes normal to the polarization axis [52].

The absorption coefficient is

where n() is the refraction index. Rem arkable polarization effects have been found in the cal
culated absorption coefficient [72]. The absorption cross section and threshold are reduced 
for the wire of larger cross-sectional area in agreement with effective-mass models [60, 90, 
122]. The confinement in these narrow wires ( M  nm) causes mixing of the bulk-band-edge- 
derived states with other states across the Brillou in  zone. As a consequence, the low-energy 
transitions have direct, nonzero dipoles, in contrast to bulk Si, where phonons or defects 
mediate the absorption or emission of light [72]. The exact set of transitions is sensitive to 
the structure of the wire.

O f  direct importance to understanding the luminescence o f the ideal wires is the radiative 
rate. It is interesting to note that both empirical [52] and first-principle [72] calculations 
show that within a given wire, several low-energy transitions (only 0.1-0.2 eV  above the 
lowest ones) exist with widely different radiative lifetimes that depend on the symmetry of 
the states involved in the transition. The calculated radiative times span several orders o f 
magnitude, with the fastest times being on the order o f tens of nanoseconds for these small 
wires [72]. These data are consistent with other L D A  calculations [128] and with effective 
mass theory, which predicts strongly size-dependent induced dipoles [52, 6 6 , 116, 1171. The 
decrease of the lifetime with the dimension of the wire agrees with experimental data on 
porous silicon [70] and this agreement is another strong indication in favor of the quantum 
confinement model.

2.4.1.2.1 Excitonic Effects Studies of excitons in silicon quantum wires using a two-band 
effective mass model are presented [52]. The electron and hole bands are assumed parabolic, 
and they are obtained from fits to computed quantum wire band structure. It is assumed 
that the exciton wave function may be written as a product o f electron and wave functions 
describing the motion in the confining dimensions (a\ y) and an exciton envelope function 
G(z) describing the relative motion of electron and hole along the wire axis (z). The exciton 
wave function is given by

with principal quantum numbers (/z,,/?: ). The envelope function G(z) satisfies an effective 
one-dimensional Scrodinger’s equation:

where E B is the binding energy. The reduced mass u is obtained from the zone-center 
effective masses and the effective Coulom b potential is given by

a(hco) = (co/n(,c) e2(hu)) (73)

o,) = -  2-„) (74)

where y) is the wave function o f a particle in a rigid two-dimensional box of area L~

(75)

dxt.dxhdy ,dyh (76)
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w here ea is the static dielectric constant. It has been found that V(z) can be fit fairly well by 
a  simple analytic expression with single adjustable parameter (52],

V(z) *  - — (1 - e " '5'-’1) (77)e(lz
The lowest exciton energy is smaller than the quantum wire band gap by 0.1—0.2 e V  [52]. 

Bo th  decrease in the same way with increasing wire width as expected by the quantum 
confinem ent model. Excitonic transitions in narrow wires give emission energies far above 
the band gap of bulk silicon.

The to ta l dielectric function, including the exciton states is given by

_ , 4/i7T~C~ _  . y/T T
e2(h(0) =  e2(hu>) + ---- TzUfnn jz---- r ----r r ~  t  ( 78)

m „w f l  „ ( h w  -  h a „„■)- + y-

where e2(h(o) is the band-to-band dielectric function. In one dimension (o r in quasi-one 
dimension]), the spectra is singular near the threshold, and the excitonic effect does not 
change the spectrum appreciably [52], as is the case in three [124] and two dimensions [129, 
130]. For this reason, the excitonic effect on the band-to-band transition can be ignored. The 
oscillator strength fnn, for an exciton derived from valence band n and conduction band ri 
is given by

fnn = — I* • ^ | 2|C (0 )|2// 211 (79)
HhfiVnn'

where ho)mn, is the exciton transition energy, G (0 ) is the exciton envelope function at z = 0, 
L  is the w idth of the square wire cross section, and 11 is the Si bulk unit cell. The averaged 
exciton oscillator strength decreases slightly faster than l/Z/ [52]. This is because |G (0 ) | 2 
is approximately proportional to 1/L, whereas the optical matrix clement |Pnn>\2 decreases 
slightly faster than 1/L2.

The re lation between the radiative lifetime of free excitons in quantum wires and the 
exciton oscillator strength is given by [131]

m „ c y

2n„e2o)f,x (80)

where fex refers to the oscillator strength per exciton instead of the oscillator strength per 
molecule ais defined in Eq . (79). It holds [132]

/ „  = f ~  f\z\\G(z)\2clz (81)

where G(z) is the exciton envelope function.
The absorption spectrum near the fundamental gap is dominated by excitonic effects [52]. 

The anisotropy of the absorption coefficient is enhanced as the quantum wire becomes 
narrower. A  unique feature o f Si quantum-wire absorption is that higher-lying excitons can 
absorb moire strongly than lower-lying excitons. This is attributed to intervalley mixing in the 
quantum-w/ire states.

The luminescence of the quantum wires resulting from direct recombination of excitons 
is proportional to the exciton oscillator strengths averaged over the occupied levels. The 
thermally averaged exciton oscillator strength is the physical quantity to be compared with 
experiment. This is given by

V  f  p - ho)nn' / k R T  
ii— J  n n  ^

' V , - ^ / I 7r (82>
n.n

where kB is the Boltzm ann constant and T is the temperature. As the temperature increases, 
the oscillator strength varies as the population of exciton states with different oscillator 
strengths is  modified. For quantum wires with higher-lying exciton states with much larger 
oscillator strengths than that of the lowest-lying exciton state, ( / )  increases quickly when 
the temper ature increases [52].
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2.4.1.2.2. Photoluminescence Decay Several experiments report nonexponential dccay of 
the P L  intensity in porous Si [133-136]. Both the effective mass and atomistic calculations 
exhibit strong size and symmetry-dependent radiative times. The nonexponential decay could 
be modeled by an ensemble of active nanostructures. The P L  decay characteristics of porous 
Si are observed to be strongly temperature dependent [134-136]. The lifetime decreases as 
the temperature increases. The P L  spectrum is inhomogeneous. which is related to the depen
dence of the lifetime on the wavelength. The P L  decay times increase monotonieally with 
decreasing detection energy (few microseconds for 2.2 e V  and 100 /xsec for 1.6 eV ). It is 
remarkable that long decay times were systematically found in porous Si compared with other 
direct band-gap materials. The P L  decay in porous Si has been modeled by several models. 
The distribution in the lifetimes has been attributed to the varying carrier localization in the 
porous Si nanocrystals [137]; to localized excitons that thermalize in the two excitonic states 
[52, 128, 138]; to the distribution of crystal shapes for a given porous Si volume [ 139]; and to 
transitions in a system of quantum wires or dots with dispersion in size, in shape, and in crvs- 
tallographic direction [116, 117]. Detailed lineshape fitting of the luminescence decays with 
stretched exponentials as a function of 7\ energy, and porosity are reported [120. 137. 140, 
141]. Recent papers question the presence of any carrier hopping [143, 144]. The different 
approaches conclude with similar results for the values of the mean lifetime.

2.4.1.2.3. Surface Passivation The surface passivation of the quantum wires strongly 
affects their optical properties. The presence o f dangling bond states gives rise to drastic 
changes in the optical properties [76, 80, 112. 145]. Dangling bond-to-band state transitions 
are found in the energy gap, whereas band-to-band transitions are found at higher energies. 
Dangling bond-to-dangling bond transitions are intense and dominate the spectrum [146] 
of the imaginary part o f the dielectric function. H  chemisorption passivates the dangling 
bonds at the surface of the quantum wires. It results in valence band maximum and conduc
tion band minimum wave function concentrated toward the interior o f the wire, and so the 
band-edge states are expected to reflect the properties of the Si skeleton. H  chemisorption 
changes the order of the states and gives denser level spacings.

The presence of oxygen reduces the band gap. The oxygen-related transitions are located 
in the energy gap, and the intensity of the lowcr-energy side peaks, in comparison with 
the H  case, is reduced [145, 146]. Experim ental findings [147] on the P L  o f porous silicon 
verify the theoretical findings. During oxidation treatment, a low-energy peak attributed to 
oxygen transitions appears. This peak is independent of the oxide formation. Another peak 
is observed that is blueshifted as the oxidation proceeds. This is related to the reduction of 
the confinement dimension and can be explained by quantum confinement.

2.4.1.2.4. Undulating and Interacting Wires Porous Si has been often modeled as a system 
o f undulating quantum wires, and the theoretical results have been reviewed in Ref. [I48|. 
M odel calculations [149], L D A  calculations [150, 151], and first-principles pseudopotential 
calculations [113] have shown that width fluctuations in a quantum wire may result in local
ized states.

The interaction between Si quantum wires causes reduction o f the band gap resulting 
from interwire bonded states [80]. These states are strongly localized at the surface of the 
Si wires, and their tails extend in the vacuum region. As expected, the energy separation 
between Si core crystalline states remains unchanged. Furtherm ore, the energy localization 
o f the interwire states reflects mostly the distance between wires and is practically insensitive 
to their dimensions. W hen  Si quantum wires are forced to get closer, the H atoms repel 
each other, the Si atoms at the interface move by 0.2-0.3 a.u., while the subsurface and inner 
Si atoms remain practically in the same position. The results on are [80]: the reduction 
o f the energy threshold, the increase of the absolute value o f e2 caused by the reduced 
porosity of the cell, and the presence of new transitions in the low energy tail related to the 
interface localized interwire states. The presence of states localized at the interfaces seems 
to be important for the enhancement of the transition probabilities.
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2.4.2. Quantum Dots
2.4.2.1. Effective Mass Approximation In Si quantum dots, the three pairs of hulk Si
valleys give distinct sequences of energy levels [Eqs. (22), (26), and (32)]. The effective mass 
equations are solved numerically [34), even for simple shapes such as cubic dots, because 
the anisotropy of bulk Si valleys causes a deviation of the electron states from the simple 
sinusoidal functions. The order and the separation of the energy levels depend on the size, 
on the crystallographic direction, and on the shape of the dot (Fig . I I ) .  The energy levels 
do not depend on the direction o f the dot for the energy levels from the valleys [0 0 1] (the 
1001  ]-leveIs), whereas they exhibit dependence for the other two sets of valleys.

Because of the indirect gap, band-edge optical transitions in bulk Si are only possible 
w ith the ass is ta n t o f phonons to supply the momentum in a second-order process. In Si 
quantum dots, the strong confinement of the electron and hole wave functions in real space 
leads to a spreac of the wave functions in momentum space. Thus radiative recombination 
can proceed by zero phonon transitions.

Fo r single electron-hole pair recombination, the radiative lifetime, t , is given by the fo l
lowing expressiors [131 ].

2.4.2.1.1. For Zero-Phonon Transitions

l 4 c~
- = ---- (̂h(o)\p[, \̂28(E + Ec + E h -  h ( 0 )  (83)
t  3 n -csE ()m-

where 77 i:s the S  refractive index, mc is the electron mass, //.]/ is the momentum matrix 
element between the final and the initial states, and hco is the emitted photon energy.

2.4.2.1.2. For Ptonon-Assisted Transitions

r  = T ^ 7 T -r-V /»-(/ w ) ^  + + E ‘- + £ * T  ha>*  ~ !iW) (84>J O c Aq • “  “  /

where the symbd ± is to denote that the upper (low er) sign is for phonon absorption 
(em ission). Surnnation over all phonon modes \(/ is included.

In the E M A  [3?],

Pci! = Pa f.iAK)

p T '  =  i>c t ( q - k „ W :
/,/,(q) = f  dr<f)*(r)(f>h(r )e ~ "l'r

where ka is  bulik ;i conduction hand minimum wave vector and <•/>,, are the electron and 
hole envelope furctions. respectively The bulk value \pi v\z/2mc — 4 e V  is used. The number

dot direction (deg.) dot direction (deg.)

Figure 11. Thie electrci energy levels versus the dot direction from the [001] valleys (solid line), the [100] valleys 
(dotted lines) and tlhe 310] valleys (dashed line) for a cubic dot of width 2 nm (9a) and for an orthogonal dot with 
L , = L y =2 nm amd = 0.9/.y (9h).



758 O p tica l P ro p e rt ie s  o f  S ilico n  Q u an tu m  W ire s  and Dots

o f atoms per crystallite Na enters explicitly, and the electron- and hole-phonon matrix ele
ments are combined with the energy denominator into the net ratio Rx for each phonon 
branch. The dependence on crystallite geometry is carried by the overlap integral I eh . 
Because the important phonon wave vectors q come from a restricted region, the phonon 
frequencies can be taken to be approximately constant, and the sum on q can be done 
explicitly:

E l 7.-/,(q)l: =  \ ( 86)

where V is the volume of the dot.
Calculated lifetimes for a 2-nm-wide cubic dot are shown in Figure 12 [34]. The lifetime 

for the [001 ]-level does not depend on the dot direction and is on the order of microseconds. 
Its magnitude depends on the overlap integral that is a function of the size of the dot and 
of the phase of the wave function. The phase of the electron wave function in Si dots, as 
in Si quantum wires, explicitly depends on the minimum of the bulk Si valleys, the effective 
masses, and the crystallographic orientation of the dot [Eqs. (24), (29), (30), and (35)]. The 
overlap integral in Si quantum dots, even in the nanometric regime, is much smaller than 
unity. The lifetime for the [100]-level shows a strong directional dependence, which varies 
in the range from micro- to milliseconds (Fig. 12).

A t room temperature, although thermal averaging [Eq. (70)] makes the features of the 
lifetime smoother, in dots that are so small, a considerable dispersion in the magnitudes of 
the lifetime is found as a function of the crystallographic direction (Fig . 12). This dispersion 
is less remarkable in bigger dots.

2A.2.2. Atomistic Calculations The electronic states of small spherical Si dots of sizes 
1-4 nm calculated within T B  [47] and E P M  [55] are in agreement. These methods have 
been compared with E M  A  [47, 55-63]. It is concluded that E M  A  produces a rough sketch 
of the dot’s microscopic wave functions. The limited accuracy originating from the neglect 
of multiband coupling restricts the accuracy o f the calculated wave-function expectation 
values such as energy levels, exchange energies, and interelectronic Coulom b repulsion, and 
overestimates the effect o f confinement. E M A  is still useful, however, to fit experimental 
results and for qualitative understanding of the optical behavior of systems of dots thal 
simulate the experimental conditions.

in Figure 13 [88, 89] results of the P L  recombination rate on hydrogen terminated dots 
with spherical shape are presented, and they are compared with experimental data [110]. In 
quantum dots of size lower than 2.5 nm (the optical gap is larger than 2.3 e V ), the mixing of 
different k-bulk states is important, and the dots get optical properties intermediate between

10'

0 1x10' £

1x10'

0  2 0  30  40

dot direction (deg.)

Figure 12. The lifetime versus the Jot direction for a cubic dot of width 2 nm for ttie [001 j-i.evcl (dots), the 11()'')- 
levei (squares), and the total lifetime (solid line). The dashed curves a'C guide for tin: eye.
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Figure 13. Calculated [89] recombination rate (ms ') of an excited electron-hole pair in silicon crystallites (crosses) 
with respect to the photon energy at 300 K. The spin degeneracy is not included: Its inclusion would divide the 
calculated recombination rates bv a factor 2. Continuous lines plot the experimental dependence [110] of decay 
rates on photon energy for the three 65'# porosity layers that differ by oxidation level. Reprinted with permission 
from [89], C. Delerue et al., Phys. Rev. li 48, 11024 (1993). © 1993, American Physical Society.

an indirect gap and direct gap material [52, 152). The radiative recombination is quite effi
cient with a characteristic time lower than 10 (is. In quantum dots of bigger size (lower 
photon energy lower than 2 e V ), the recombination rate presents an abrupt strong decrease. 
This is a result o f the indirect nature of bulk Si, which gives a radiative recombination rate 
equal to zero in the limit of bulk silicon. T he calculated radiative recombination rates are on 
average about one order of magnitude lower than the experimental decay rate, particularly 
for photon energy lower than 2 eV. This means that even if the confinement brings some 
momentum mixing to allow first-order optical transitions, the radiative recombination rates 
resulting from  dipolar transitions are not efficient enough to account for the observed va l
ues. Fo r large clusters, one must then take into account the contribution of phonon-assisted 
transitions,, which are the dominant mechanism in bulk Si.

An E M A  calculation on the strength of phonon-assisted transitions in Si quantum dots 
showed that the phonon-assisted transitions indeed dominate in large clusters, but the no- 
phonon transitions are likely to become comparable for dots sizes 1.5-2 nm [33]. Another 
more elaborated calculation showed different evidence, however [153]. In this model, the 
electronic structure is calculated in E T B ,  whereas the phonon matrix modes are obtained 
from a vadence force field model. The electron-phonon matrix elements are evaluated 
numerically for each individual phonon mode by using a d~2 dependence of the T B  
matrix elerments on distance, following Ref. [44]. The relative strengths of no-phonon and 
phonon-asisisted processes have been determined, using the Ferm i golden rule with Born-  
Oppenheim er products. It  has been concluded that phonon-assisted processes should dom
inate whatever the size of the dot. The discrepancy between the two calculations may be 
explained by the fact that E iM A  is not accurate enough for the smaller dots. Size effects 
on the phtonon modes in Si nanocrystals have been calculated in Refs. [154, 155], and a 
frequency-dependent behavior is obtained.

The polarization of the luminescence of Si quantum dots has been calculated within T B  
and interpreted using E M  theory [156]. It is show'n that simple selection rules cannot be 
established because the degree of linear polarization presents large oscillations with respect 
to the size of the clusters. This effect is a result of the indirect nature of the Si band 
gap, which leads to a dependence of the optical matrix elements on the oscillatory overlaps 
between ellectron and hole states in momentum space. However, in a statistical ensemble 
of crystallines elongated in a given direction, and with size larger than 2-3 nm, it has been

1 +
+

1 +  +  +
+

- v +  $
T = 300 K

+
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determ ined that the light is on average polarized along this direction, in agreement with 
experiments.

2.4.2.2.1 Surface Passivation Surface passivation effects have been recently investigated. 
Pseudopotential ( P P )  calculations of Si dots embedded in crystalline matrix have been per
formed [157], and the validity o f effective-medium theory for optical properties has been 
explored [158]. The minimum crystallite diam eter treatable by effective-medium theory is 
found to be approximately 1 nm. The influence o f synthesis conditions on the structural and 
optical properties of passivated S i quantum dots has been investigated with density-functional 
and quantum Monte Carlo  calculations [159]. The results demonstrate that kinetically lim 
ited nanostructures form different core structures than bulk-derived crystalline clusters, and 
the type of core structure that forms depends on how' the cluster is passivated during syn
thesis. It has been found that during the formation process of 1-nm dots, relaxation of the 
high strain induced by the curvature and dangling bond states at the surface is in direct 
competition with the preference of the interior atoms to be tetrahedrally coordinated. The 
resulting structures consistently have a noncrystalline, double tetrahedral core, with optical 
gaps in good agreement with experimental measurements, illustrating that in some cases 
noncrystalline clusters may in fact be responsible for experimentally observed lumincsccnce. 
Reconstructions unique to highly curved nanostructures that give evidence for larger opti
cal gaps than previously predicted in reconstructed 1-nm crystalline nanoclusters have been 
found.

The effects of surface reconstruction on the absorption spectra and optical gaps of 
hydrogen-terminated Si clusters has been studied within the time-dependent L D A  [160]. 
The calculations showed that the structural reconstruction o f cluster surfaces produces new 
absorption bands in the lower part of the spectrum and causes significant reduction of the 
optical gap. The optical gaps in surface-reconstructed silicon clusters appear to be similar in 
size to those in clusters with partially oxidized surfaces. The stability and optical properties 
of Si clusters (up to 148 atoms, ~  1.5—2 nm ) with reconstructed surfaces have been studied 
with density-functional and quantum M onte Carlo  calculations 11611. It is predicted that Si 
nanostructures with reconstructed surfaces are more stable than those with unreconstructed 
surfaces, and it is shown that surface step geometries unique to highly curved surfaces dra
matically (2-1 e V  for 1-1.8 nm) reduce the optical gaps and decrease (from one to two 
orders of magnitude in d < 1.6 nm) the excitonic lifetimes. These predictions provide an 
explanation of both the variations in the P L  spectra of coiloidally synthesized nanoparticles 
and observed deep-gap levels in porous silicon.

The comparison between calculations and observations revealed that experimental data on 
P L  energies are systematically lower than calculated, whereas the optical absorption obser
vations are in agreement with theoretical calculations (F ig . 14) [162]. This behavior has been 
first attributed by Koch [163] and Kanemitsu [164] to the existence of deep luminescence 
centers such as surface states. Theoretical calculations have indeed verified this assumption. 
E T B  total energy calculations and L D A  calculations have shown that in small crystallites 
(diam eter <1 nm), the exciton can indeed be trapped at surface atoms and recombine from 
this state of the self-trapped exciton, giving P L  a smaller energy than if it would give with a 
direct recombination [165]. Moreover, it has been shown that Si dots in their excited state 
relax to highly distorted equilibrium configurations that correspond to transitions with lower 
P L  energies [166, 167]. E T B  calculations [ 168] showed that the strong blue double peak (417 
and 437 nm) P L  obtained from fresh and therm ally annealed porous Si with crystallite sizes 
smaller than 3 nm can be explained by the electronic states caused by the vacancy defects 
in the gap of small Si nanocrystallites.

T B  calculations [37] have shown that in hydrogen-passivated quantum dots, recombina
tion is via free exciton states for all sizes. For oxygen-passivated dots, three recombination 
mechanisms are present depending on the size o f the cluster. In  dots with diam eter d big 
ger than about 3 nm, recombination occurs via free excitons, and the P L  energy increases 
as the size decreases in agreement with the quantum confinement model. For smaller dots 
(<  1.5 nm < d < 3 nm), recombination occurs via a trapped electron and a free hole. Now 
the P L  energy increases with decreasing size iess than predicted by the quantum confinement
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Figure 14. Compilation [200] of optical bandgaps of silicon crystallites and porous silicon samples obtained from 
optical absorption (empty symbols) and luminescence (full symbols). Straight line: one-electron bandgap calculated 
for sphericail silicon crystallites [88, 89|: dashed line: the same but including the excitonic binding energy. Reprinted 
with permission from [106], C. Delerue et al. Phys. Suit. Sol. (6) 227, 115 (2001). €> 2001. Wiley.

because tJhe trapped electron state is size independent. For even smaller dots (d < 1.5 nm), 
recom bination occurs via self-trapped excitons, and the P L  energy is now independent of 
the size.

The oxygen role on the structural and optoelectronic properties of Si nanodots has 
been systematically investigated in Refs. [169-172]. First-principle calculations based on 
the densitty-functional theory in the L D A  [169-174] and quantum Monte Carlo  [173, 174] 
dem onstrated that the structural, electronic, and optical properties of Si nanocrystals strongly 
depend on  the passivation regimes. Starting from H-covered nanocrystals, it has been shown 
that single-bonded O  atoms originate small variations in the electronic properties and huge 
changes in  the structural properties. In contrast, double-bond O  atoms make a small contri
bution to igeometry variations, but a strong reduction in the energy gap. Thus, the presence of 
double-bo>nd O  atoms seems more appropriate to explain the huge red shift in P L  observed 
after O  ex;posure in high porosity porous Si samples. In the case of Si nanocrystals embedded 
in S i0 2 rmatrix, the results show that the matrix is only slightly deformed by the presence 
of the namocrystals, that new electronic states are originated within the S iO : band gap. and 
that both the Si atoms in the dot and the O  atoms at the interface play a role in the optical 
properties;.

2.4.2.2.2. Excitons Excitons play an important role in the optical properties of quantum 
dots. They/ exhibit different physical behavior in quantum dots than do excitons in bulk semi
conductors. E M A  has been widely used to estimate the electron-hole Coulomb and exchange 
energies iin nanostructures [ 175— 178]. Assuming an infinite potential barrier at the bound
aries of thie quantum dot and using the envelope functions o f a noninteracting electron-hole 
pair, simpile, analytical expressions can be obtained for E Coul and &Ecxch [176, 177]:

*>

#;!,!/ = c c w jj i  <H7>

= (88)

where R i;s the dimension of the quantum dot; E x and ax are the bulk exciton exchange 
splitting amd exciton radius, respectively; and CCoilh C\,xch are dimcnsionless constants that 
depend oni the shape of the dot. The above equations show that the Coulomb energy ECotil 
scales as 1 JR. Considering that E M A  predicts that the single-particle energy gap shift Ae =

— ebulk scales as 1/i?2, w'ith the size of the dot, in small crystallites it is predicted that
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E Coul <$C As. As becomes apparent below, however, atomistic calculations have shown thit 
the electron-hole Coulom b energy is underestimated in E M A .

Excitonic transitions and exchange splitting in Si quantum dots have been calculated withn 
atomistic models for spherical Si dots, with all surface dangling bonds passivated with hydro
gen, and very good agreement with experimental data has been obtained. The single-partice 
wave functions are first calculated (e.g., within E P M  [179], within T B  [180, 181]). Fron 
the solutions of this single-particle problem, a set o f single-substitutions Slater determ inans 
{ ^ z , }  are constructed. These are obtained from the ground-state Slater determ inant ty 
promoting an electron from the occupied valence state iph of energy eh to the unoccupied 
conduction state i//c of energy ee. The exciton wave functions \̂rUl) are expanded in terms )f 
this determ inental basis set:

*<“ > = i :  e  c\:^ ,ue (8>)
('=i /i=i

where Nh and Nc denote the number of hole and electron states included in the expansitn 
of the exciton wave functions. The matrix elements of the many-particle Ham iltonian H  n 
the basis set { , , }  are calculated as

= («<• ~  Ei,)8ry&h.h' - hw.he' + K h..//•<■ 

where ./ and K are the electron-hole Coulomb and exchange integrals, respectively:

f f  (r2 )<//;, ( r ,,  cr2)
^  J J  e ( | r , - r 2|,/? )|r, - r J  1 2

K  _  e2 y  rr  >//;;(r i^ r |) i//,:(r: . cr2W (\ rx, f r , )<//,, ( r : , a2) ̂  ^
L ~ e(|r, -  r2|. /?)|r, -  r,| 1 :

The electron-hole Coulom b and exchange integrals of Eqs. (91) and (92) use a screcnhg 
function that depends on the inter-particle distance and on the quantum dot radius R 1182]. 
Correlation effects introduced via mixing of configurations of Eq. (87) shift the exciton 
energies downward [179, 180].

It has been found that the single-particle band-gap scales with size e ~  R 12 and Coulomb 
energy E Coui ~  R~[5 [179]. This scaling comes from two factors: the fact that the pseu
dopotential wave functions are different than the envelope functions, and that the dielectric 
screening entering in the Coulomb energy calculation depends on the size R . For Si dels, 
even E M A  using size-dependent screening gives E Coul ~  R~{ \  Thus, although simple theory 
indicates that Coulom b effects tend to become less important as size decreases, a more ac:u- 
rate calculation shows that Coulomb effects are more important than confinement effects 
at small sizes. O ther atomistic calculations also support these results [62, 115, 183-185]. \n 
E T B  [181] calculation has shown that the electron-hole Coulomb interaction is insensitive 
to different ways of optimizing the T B  parameters. However, it is sensitive to the choice 
o f the atomic orbitals; this sensitivity decreases with increasing dot size. Quantitatively, f B  
treatments of Coulomb interactions arc reliable for dots with radii larger than 1.5-2 rm, 
even for simple models for the basis orbitals. M ore detailed calculations o f basis oibi.als 
are required for smaller dots. The calculated excitonic gaps range from 2.5 to 1.5 eV for 
dots 1-2.5 nm and are in very good agreement w'ith experimental data [186]. The exciaige 
interaction is found to be oscillatory and to have a range of about 1.5 nm.

The calculations show that the electron-hole Coulom b interactions split the energies- of 
excitons, which are degenerate in the single-particle approximation. W hen spin-orbi' cou
pling is neglected, the lowest exciton level is split into two levels, the lowest triplet sta'.e and 
the singlet state. The calculated dark-bright excitonic splitting agrees well with expcrinental 
data. U ranges betw'een 0 and 30 m eV (R > M ).7 nm ) and has a size scaling of R~:>1 [179]. 
The  exchange interaction is found to increase with confinement. This can be understcoc by
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a sirnpe E M A  argument. The exchange splitting is written as A = 7/|< £(r, r')\2d*r, where 
(/>(/;, /•,) is the envelope function for the exciton and ./ is defined as twice the exchange inte
gral per unit inverse volume for the conduction-band-minimum and valence band-maximum 
states n bulk Si. On introducing the spin-orbit coupling, the singlet and the triplet state 
are completely mixed together, because this coupling is o f the same amplitude as the spac
ing between the levels [46, 187], As a consequence, all the levels have, on average, sim ilar 
lifetimes, and the two-level model is not valid. Fo r ellipsoid crystallites, the degeneracy of 
the higiest state in the valence band is lifted by the anisotropy. This behavior is also found 
in calcjlations on wires [69]. The excitonic spectrum remains quite complex, with several 
low-lying states having strongly varying lifetimes, because o f the remaining degeneracy of 
the corduction states. For undulating ellipsoids, for maximum amplitude of the fluctuation 
equal D 2 5 %  of the average value of the ellipsoids, the orbital degeneracies of the valence 
and the conduction bands are lifted [180]. The excitonic spectrum becomes much simpler, 
with {ht lowest state having systematically a much longer lifetime than the first higher state. 
The tw>-level model then becomes valid to describe such anisotropic crystallites.

The :alculated lifetimes [180] associated with the two levels of the undulating ellipsoids 
exhibit an important scattering that is consistent with the highly nonexponential decay of 
the luninescence in porous Si [188]. The difference of two or three orders of magnitude 
betweci the lifetimes of the upper and lower levels is in good agreement with experiments. 
Flowevir, the calculated lifetimes are between one and three orders of magnitude larger than 
the experimental ones. It has been found that this discrepancy can be partially explained by 
the Frm k-Condon shift [180, 189]. In Ref. [180], it is found that E abs = E { + 2drc, where 
Ei is tie luminescence energy, and d,.( is the Frank-C'ondon shift equal to the energy gain 
resultirg from lattice relaxation after capture. It turns out that the onset in the selectively 
excited luminescence would be equal to 2dF( . The obtained values for dFC are small but 
subslanial; for example, on the order of 25 m eV for a gap of 2.6 eV. As a consequence, 
the Fraik-Condon shift could explain only partially the difference between the onset in the 
selectively excited P L  and the calculated exchange splitting. It has become apparent that 
anothe mechanism, namely the existence of self-trapped excitons, is the main origin of this 
discrepincy.

2.4.2.23. Dielectric Constant The static dielectric constant es is given by the integral of 
the absuption spectra e 2( E ) :

V?
1 + -  

7T
f  e2(E )/E  clE (93)
0

In bulk semiconductors, the calculated static dielectric constants are generally in good agree
ment wth experiment [190-192]. In nanostructures, the size dependence of the dielectric 
const an is a key matter o f interest. However, no systematic experimental or theoretical 
knowleige is available so far for the size dependence of es. A  generalization [193] of Penn’s 
model 1194] to an isotropic, spherical semiconductor of radius R gives

-  1 + (94) 

where «= 2, a = 1.093 nm for Si, and eh = 11.4 is the bulk dielectric constant. The free 
exciton radius aeh is proportional to £r  The evidence so far that es is reduced as the size 
R dirniiishes implies that strong reduction of es from the bulk value can change the ratio 
aell/2R rom greater than 1 ( “ strong confinement”  [195]) to less than 1 ( “ weak confinement” 
[195]). "he generalized Penn's model (G P M )  predicts that ach/2R is very close to unity for 
all R <1 nm (i.e., “ weak confinement” ).

G PM turned  to be of questionable validity because an atomistic empirical pseudopotential 
calculaton has predicted strong confinement for R < 2 nm [196]. The calculated es(R) 
is show; in Figure 15. This measures the total polarization P  of a system of volume i l ,  
responcng to a constant electric field F, (i.e., es = 1 -j- P/Fil). This total polarization P 
consistsof contributions from the interior Si atoms, as well as from the surface S i-H  bonds.
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Figure 15. Dielectric constants (a) and the ratio between the free hydrogenic exciton radius and the quar urn dot 
diameter (h) as a function of quantum dot radius R. Here, ss is for total polarization and es is for exciton screening. 
The diamond symbols in (a) denote the calculated results, while the solid lines are the fitted curves. Tht dashed 
curve corresponds to the GPM model of Equation (94). Reprinted with permission from [184]. L. W. Wing and 
A. Zunger, Phys. Rev. Let!. 73, 1039 (1994). © 1994, American Physical Society.

It is found [ 196] that even though the surface-to-volume ration increases as the d )t gets 
smaller, most of ss comes from the dot interior Si atoms, not the surface. The large reduction 
of es with size (F ig . 15) cannot be explained in terms of surface effect and must reflect 
quantum confinement effects.

Another interesting quantity is the screening dielectric constant s,(R), which measures 
the reduction in the Coulomb potential of an electron or hole resulting from screening by 
the medium. Because of the wave vector (q) dependence of the bulk dielectric function t:h 
(q) and the small dimension of the dot, it is expected that ss(R ) < es{R). For a spherical 
quantum dot with radius R, the charge density of an uncorrelated electron or hole is [197]

P ( r )
77

2 ^
R (95)

and zero elsewhere. This produces an unscreened external potential vcxt(r) obtained from 
p(r) by solving Poisson’s equation with boundary condition vcxl(R) = 0. The ss is defined as 
the ratio between the unscreened and screened Coulomb energies:

= / V'e,M)P(r)d:'r/  J  V'scr(r )P(r)d*r (96)

where vscr(r) is the screened potential. W ith  this definition, using perturbation thecry, it is 
found that

es = 1 + -  I  £2(E )/Ed E
77 J

(97)

and
Z77

h (E )  = y E K / | v „ , ( r ) I O I ‘ S ( £ - £ fl) (98)

where ft — j  vca(r)p(r)d'r. Thus, s: can be calculated in the same way as the spectrum 
operator p, replacing the momentum operator by the external potential vCAI(r).

The calculated screening dielectric constants es for spherical dots [196] show tha . as ex
pected, es(R) is smaller than es(R). The ratio avh/2R between the bulklike (free ) hycrogenic 
exciton radius and the system’s size is predicted to be far larger than unity for R c 2 nm 
( “ strong confinem ent” ). An analytical expression for the size dependence of the d electric 
constant can be obtained. Fitting the results to the analytic form of Eq . (94) gives a = 4.25 A,O . . .  0 0
A = 1.25 A  for the total polarization dielectric constant £s and a = 6.9 A , / — 1.37 A for the0 o
screening dielectric constant es. The G P M  gives a = 10.93 A . / — 2 A.

The exciton binding energy E fix, with a carrier distribution close to sin(kr/r), s given 
by [198]

E bx ( R) =: 1.79c- ,/8tn R -  2̂ > I  (99)
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where is the shift in energy if an extra electron is put in the lowest conduction state. 
W hen  sjni + eoul 1, it holds 119N]

where the dot is considered a continuous medium of dielectric constant sin embedded in 
another m edium  of dielectric constant sflltr 

The results of a semiempirical L.CAO calculation on the dielectric constant lie between 
those o f Refs. [196] and [1W ], and their average value can be well approximated by ejn — 1 = 
(11.4 — ! ) / [ !  + (0.92//?)' Is]. with R in nanometers.

In this chapter, the different methods used in the study of Si quantum wires and dots were 
presented. The different models used in electronic structure calculations were discussed, 
including both continuum approaches ( E M A )  and atomistic approaches. The optical prop
erties, which are closely related with the electronic structure of these systems, were also 
discussed.. The results of calculations based on effective mass approximation were analyzed, 
and it w as shown that E M A  is useful for obtaining the physical evidence in an easy way and 
for incorporating into the calculations different effects, such as fluctuations in the wire thick
ness along its length, or the shape and crystallographic orientation o f quantum wires and 
dots. A tom istic calculations were also presented, which provide a more accurate description 
of the system. The calculated P L  lifetimes were discussed in comparison with experimental 
results from  the literature.
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1. INTRODUCTION
The physical and chemical properties of nanoscale objects are driven by their electronic 
structure. E ve r since the visionary words of D irac in the late 1920s there has been a 
tremendous effort to develop com putationally effective, yet accurate methods for electronic- 
structure calculations. For ground-state properties, density-functional theory (D F T )  in a m ul
titude of numerical implementations provides the most popular route, as its computational 
scaling with increasing degrees of freedom is much more favorable than for wave function- 
based theories, such as configuration-interaction (C l )  expansion of Hartree-Fock theory. For 
small systems, the C l, coupled-cluster, and sim ilar “ exact diagonalisation”  methods provide 
important benchmarks, as do quantum M onte Carlo  calculations with their explicit inclusion 
o f electron-electron correlations.

W ith in ground-state DFT, considerable attention has been paid to the construction of 
increasingly accurate exchange-correlation functionals, local, semilocal, or nonlocal. The ir 
ranges of accurate applicability obviously depend on the system at hand, that is, the strength 
and nature of the local correlations between electrons. For example, it appears that for 
semiconductors and insulators a certain amount of the long-range nonlocal character of the 
exchange interaction must be restored (e.g., via the exact-exchange or screened-exchange 
methods to obtain the correct value for the energy gap between occupied and unoccupied 
states.

For excited-state properties, such as those probed by various kinds of spectroscopies, 
density-functional theory can be generalised to its time-dependent form (T D D F T ) .  It pro
vides a powerful alternative to methods based on many-body perturbation theory, such as 
H ed in ’s G W  (one-particle G reen ’s function with screened Coulom b interaction) expansion 
and its generalizations.

The usual numerical implementation o f any of the methods mentioned above is based on 
an expansion in terms of mathematically convenient or physically motivated basis functions. 
The popular choices include plane waves (Fou rie r techniques), Gaussians, localized atomic- 
like orbitals, or the combinations of these. The choice of the basis set and its necessary 
truncation to a finite size is based on accuracy analysis and accrued experience. Systematic 
control o f basis set convergence is strictly possible only for plane waves, which basis set is in 
principle also free from Pulay corrections for interatomic forces (as the basis set accuracy is 
independent of atom ic positions).

The plane wave basis set, however, usually requires that periodic boundary conditions 
are applied to the computational unit cell. W h ile  this is usually not a serious limitation for 
bulk systems (even with disorder or defects), it is somewhat inconvenient for low-symmetry 
nanoscale objects, such as point contacts, constrictions, adsorbate islands on surfaces, and 
so on. There artificial periodicity has often to be avoided, with the cost o f the unit cells 
becoming exceedingly large.

For such systems, an alternative and attractive route is provided by discretising the equa
tions directly in real space, that is. without resort to any basis set whatsoever. The advantage 
is that boundary conditions can be chosen much more flexibly and no periodicity is required 
(although it can be required). The accuracy is controlled simply by the discretizing distance 
(the grid spacing). The drawback is obviously the large amount of data points that need to be 
stored during the calculation, and the convergence of iterative solutions for the eigenstates 
(and thus the efficiency of the scheme) is an important issue. Real-space finilc-difference 
( F D )  methods have won increasing popularity in recent years, both due to the advent of 
powerful large-memory computers and the introduction of new algorithms which can speed 
up the calculations considerably. Finite-element ( F E )  techniques provide another alterna
tive where boundary conditions can be efficiently implemented and where accuracy can be
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controlled via the element distribution in the regions critical for accuracy and convergence. 
The basis functions in the F E  method are piecewise polynom ial functions with a support of 
only a few neighboring elements. M any of the results described can be transferred to the F E  
case as well. The choice between the F D  and F E  methods for D F T  problems is not obvious, 
as both methods have their advantages.

This article provides an overview of the real-space FD-based program package called 
M IK A .  It consists of several different modules for solving the Kohn-Sham equations of 
the density-functional theory in different geometries. The program package is visualized in 
Fig. 1. It is emphasized in this figure that all the four application codes r s p a c e ,  c y l2 ,  
d o p p le r ,  and r s 2 d o t  share common numerical multigrid routines implemented in the 
subroutine library M G L IB . This, however, is in practice not quite true. There is a common 
ancestor to the multigrid subroutines, but in practice each code comes with its own ver
sion of the subroutine library. Current versions of each of the codes are available from the 
M IK A  W eb page [ I] .  The full source codes are also available, and the source codes are 
licensed with the G N 'U  general public license (G P L ) .  This seems to be a general trend in 
the electronic-structure community, advocated by the f s a to m  initiative [2], and followed, 
for example, by the a b i n i t  [3] and o c to p u s  [4] projects. Therefore, it is fully accept
able, and even recommended, for other researchers to take a piece of software that he/she 
considers useful, make further improvements, and start distributing the derived product on 
his/her own W eb page. W e believe that such a distributed mode of development, based 
on voluntary work of researchers, should in the long run be more efficient than a cen
tralized mode. O f  course, some form of centralized effort is necessary to coordinate such 
activity.

The outline of this article is as follows. In Section 2, we give, for the sake of completeness, 
the Kohn-Sham equations, the numerical solution of which is the subject of the rest of this 
article. In Section 3, we give first some motivation for using grid-based real-space methods 
as opposed to plane-wave schemes and techniques based on the use of atom-centered basis 
functions. W e use the standard and well-known multigrid solver for the Poisson equation to 
illustrate the basic ideas of the multigrid methodology. W e  then give a classification of three 
different types o f multigrid techniques appearing in the literature for the eigenvalue prob
lem. W ithout making any conclusions about the relative efficiency o f the three approaches, 
we proceed to describe in detail our generalization of the Rayleigh-quotient minimization 
multigrid ( R Q M G )  method [5]. In Section 4, we outline various technical improvements 
related to the R Q M G  method, to efficient methods for reaching self-consistency, and to the 
com putationally inexpensive use of auxiliary finer grids to improve the numerical accuracy 
o f real-space grid-based calculations in general. Sections 5-8 contain brief introductions to 
the applications of our M IK A  package in general three-dimensional pseudopotential cal
culations for both finite and periodic systems, quantum dots in two-dimensional electron 
gas, axially symmetric jellium  models for nanostructures, and for the calculation o f positron 
states in solids, respectively. In addition to these, a modification of the R Q M G  method for 
one-dimensional problems has been applied by Ogando et al. to treat thin metallic films on 
solid surfaces [6, 7J.

Figure 1. Schematic illustration of the software comprising the M IKA package. Each of the four applications comes 
with a version of the numerical multigrid subroutine library MGLIB. Examples of applications of each of these codes 
are given in the text.
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2. EQUATIONS OF DENSITY-FUNCTIONAL THEORY
In  the Kohn-Sham D F T  approach to electronic structure calculations one solves for a set o f 
equations self-consistently [8]. In the following, for the sake of completeness and simplicity,
we present the equations in the spin-compensated form. The generalization to the spin-
dependent formalism is straightforward and has been implemented in the actual computer 
programs. The set of equations reads as (atom ic units with h =  me = e = 1 are used):

( - ^ V 2 + Kcff( r ) ^ ,  (1 )

,7(r) =  E | * , ( r ) |2 (-)

K-rt(r) =  K „„(r) +  KH(r)  +  |/xc(r) (3;

f 'K O
-  r'i

^ ( r |  =  ^  ,5 ,on( r)

The first Eq. (1 ) is a Schrodinger equation for noninteracting particles in an effective poten
tial Kc)f(r ) .  For finite systems the wave functions are required to vanish at the boundaries 
of the computation volume. In the case of infinite periodic systems, the complex wave func
tions have to obey the Bloch theorem at the cell boundaries. The electron density /z(r) is 
obtained from a sum over the N occupied slates. The effective potential consists of an exter
nal potential Kion(r) due to ions (or nuclei in all-electron calculations), the Hartree potential 
K,,(r) calculated from the electron density distribution, and the exchange-correlation poten
tial K,c(r). In the examples of the present article we use the local-density approximation
(L D A )  for the exchange-correlation energy

£ .vcN r )l = J  eK( n ( r ) ) n ( r ) d r  (6 )

and for the exchange-correlation potential

K c ( r ) = e*c(n (r)) + n(r)~ J^ ( 7 )
ti-n(r)

The Hartree potential is solved from the Poisson equation

V2KH(r) =  -4 7 r« (r) (8)

In  practice, the electron density n(r )  is substituted by the total charge density p (r ) ,  which 
includes a positive charge neutralizing the system. This positive charge is composed of 
Gaussian charge (with charge Z , )  distributions centered at the ions /. Once Eq . (8 ) is 
numerically solved, the analytically known potential caused by the Gaussians is replaced by 
the local part o f the pseudopotential. Obviously, this correction has finite range, since both 
potentials have the asumptotic behavior Z,/\r -  r , |. In the case of finite systems, D irichlet 
boundary conditions are used with the Coulomb potential values calculated using a multi- 
pole expansion. For periodic systems, we fix the average Coulomb potential to zero— this is 
equivalent to setting Vc(G — 0) = 0 in the plane-wave approach— and allow the periodic 
boundary conditions to result in the corresponding converged potential.

The self-consistent solution of the above Kohn-Sham equations ’leads to the ground state
electronic structure minimizing the total energy

=  Y jl j 'K ( r ) J r  + j  KH(r)/i(r)< /r

+ j Vmn(r)>i(r)dr + E vc 4- (9)
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where £ j , o n _ io n  is the repulsive interaction between the ions (nuclei) of the system. Instead 
of the self-consistency iterations the solution of the Kohn-Sham problem can be found by 
m inim izing directly the toial energy with respect to the wave function parameters, e.g., plane- 
wave coefficients [9]. However. Kresse and Furthm uller [10, 11] have found this scheme less 
efficient than the self-con>istcncy iterations.

3. REAL-SPACE MULTIGRID METHODS
The plan<e-wave pseudopotential method has proved to be an excellent computational tool 
fo r solving large-scale electronic structure problems in condensed matter physics [9, 12]. 
Notable strengths o f the method are the ability to use the fast Fourier transform for updating 
the Kohn-Sham single-particle wave functions, lack of dependence of the basis on atom posi
tions, and! the clear control o f convergence with the cutoff energy determined by the shortest- 
wavelengtth mode. However, the method encounters difficulties when treating widely varying 
length scales. This issue is relevant for core electron calculations and the hard pseudopoten
tials o f first-row elements or transition metals. The periodic boundary conditions, also known 
as the supercell method, are often cumbersome for Iow-symmetry, nonperiodic systems such 
as isolated clusters, molecules, or point contacts between two media. Unlike with plane-wave 
methods, it is not necessary to use the supercell approximation when treating these types 
o f systems with real-space methods. However, it should be noted that techniques to avoid 
periodic boundary conditions have been developed also for plane-wave methods [13].

Approaches where the basis functions are atom-centered o r floating Gaussians or atomic 
orbitals are very well established and are used by the majority o f the quantum-chemistry 
com m unity as well as by a large number of condensed-matter theorists. A  wide selection 
of well-established codes based on atom-centered basis functions is available, including, for 
example, D m o l  [14], A d f  [15], T u r b o m o le  [16], N W C h e m  [17], and S ie s t a  [18], among 
others. T h e  basis sets used in these methods are at least an order of magnitude smaller than 
in the plane-wave methods, but the magnitude of the related basis-set truncation error is 
often difficult to estimate.

3.1. Previous Real-Space Approaches
Considerable effort has recently been focused also on developing “ fully numerical” real- 
space methods [19], which permit systematic studies of convergence in the spirit of the plane- 
wave methods. These methods are based on finite elements ( F E )  [20-24], finite-difference 
( F D )  discretizations [25-31], or wavelets [32]. Advantages of these approaches include the 
free choice of boundary' conditions, allowing, for example, the treatment of finite and peri
odic systems with equal effort. Near-locality o f the kinetic energy operator in real-space 
representations leads to simplicity in developing domain-decomposition parallel algorithms. 
In addition, it is possible to implement adaptive grid-rcfinement strategies to focus effort in 
spatial regions with large variations in the computed functions, for example near the nuclei. 
In finite-difference methods, the available strategies for mesh refinement include composite 
grids [33-35] and adaptive coordinates [31, 36]. In F E  methods, on the other hand, there 
is in principle complete freedom in the choice of the computational mesh. However, gener
ating an optim al F E  mesh (or a finite-difference composite grid) for a given problem is a 
nontrivial task [37-39], which either requires a priori knowledge of the spatial dependence of 
the required density of the mesh, or involves a repeated sequence of solving the problem in 
a given mesh, making an a posteriori error estimation and then remeshing. Representations 
on real space grids allow also the use of multigrid (M G )  algorithms with their excellent 
convergen-ce characteristics and scaling properties [40, 41]. A  real-space formulation is also 
often used in efficient implementations of O(N) electronic structure methods, in which the 
com putational work required scales linearly with the number o f atoms [42, 43].

Am ong the pioneers of real-space methods for molecular systems were Becke [44, 45] and 
Pyykko et al. [46-48], who made highly accurate fully numerical all-electron real-space cal
culations fo r  diatom ic molecules, employing the prolate spheroidal coordinate system. In the 
axial symmetry of diatomic molecules, the azimuthal dependence of the single-particle func
tions can be  treated analytically and the ensuing numerical problem is two dimensional. Their
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approach for diatomic molecules is very similar to our more general method for axially sym
metric systems, described in Section 7. Besides standard density-functional theory, Pyykko 
et al. applied their fully numerical approach to other quantum chemical approaches such as 
multiconfigurational Hartree-Fock methods and relativistic D F T  [46].

Several approaches employing the multigrid acceleration idea within electronic structure 
calculations have appeared during the last decade [5, 27-30, 43, 49]. The main idea of 
multigrid methods is to avoid the critical slowing-down (C S D ) phenomenon occuring when a 
partial differential equation discretized on a real space grid is solved with a simple relaxation 
method such as the Gauss-Seidel method. The discretized operators use information from 
a rather localized region o f the grid at a time. Therefore, the high-frequency error of the 
length scale of the grid spacing is reduced very rapidly in the relaxation. However, once 
the high-frequency error has effectively been removed, the slow convergence of the low- 
frequency components dominates the overall error reduction rate [40]. (i.e., C S D  occurs). 
In multigrid methods one stops the relaxation on a given (fine) grid before C S D  sets in 
and transfers the equation to a coarser grid (the so-called restriction operation) where the 
low-frequency components can be solved more efficiently. On the coarsest grid, the problem 
is solved exactly or as accurately as possible, after which one interpolates (the so-called 
prolongation operation) the correction to finer grids, performing simultaneously relaxations 
to remove the high-frequency errors introduced in the interpolation.

It is best to illustrate these ideas in the case of the simple Poisson problem \'2V = / . A fte r 
a few relaxation sweeps on the line grid /’, the rapidly varying components of the residual 
R, = f  — V 2 Vj- have been efficiently damped. A  smooth correction Vr (approximately sat
isfying V — V, + i '  Vc) is solved from another Poisson equation V 2 V( = I) R,. The transfer 
operators I 1, and /, are referred to as restrictor and prolongator, respectively.

References [50. 51] are classical textbooks on multigrid methods. Introductory material 
can be found in the recently appeared second edition of the Multigrid Tutorial by Briggs 
[52]. The full-approximation storage method [40] (F A S ) is a standard recipe for nonlinear 
problems. Beck et al. [30, 53] have applied the FA S eigensolver of Brandt et al. [41] for 
electronic structure calculations o f small molecules. Costiner and Ta'asan [54, 55] have made 
several technical improvements to overcome various obstacles related to the application of 
the FAS-method in electronic structure calculations. It has also been noted [55, 56] that the 
FAS-scheme, applicable to nonlinear systems of equations, can be directly applied to the 
nonlinear Kohn-Sham problem, bypassing the self-consistency iterations. However, according 
to the authors’ knowledge, none of these methods are yet routinely applied in large-scale 
electronic structure calculations. W hen many eigenfunctions are solved simultaneously, the 
FA S  methods may suffer from problems with representing the eigenfunctions accurately on 
the coarse levels, limiting the number of levels that can be used.

Briggs et al. [27. 49] apply a steepest descent method, with a special preconditioner. In the 
preconditioning step, the Ham iltonian is approximated by the kinetic energy term only— thus 
they end up solving a Poisson equation in the preconditioning step. The same precondi
tioner is applied also in the (almost) linear scaling method by Fattebert and Bernholc [43]. 
Mortensen et al. [57] apply this preconditioning technique in connection with the D IIS-  
method (direct inversion in the iterative subspace) in their real-space implementation o f the 
projector augmented wave method.

There are efficient solvers for the matrix eigenproblems arising from the F D  or F D  dis
cretizations of the Kohn-Sham equations involve that do not involve the multigrid concept. 
Chelikowsky et al. [25, 58--60] have succesfully applied iterative diagonalization schemes 
based on preconditioned Krylov techniques, such as the Lanczos method [61]. Their current 
implementation uses a preconditioned generalized Davidson algorithm [62]. Some form of 
a multigrid technique should probably play a role in the optimal preconditioning step of 
Kry lov subspace techniques as well. There exists interesting recent development in the held 
of preconditioned eigensolvers by Knyazev and Neymevr [63, 64].

3.2. RQMG Method
W e have developed a generalization of the so-called Rayleigh quotient multigrid method 
first introduced by M andel and M cCorm ick [65]. O ur generalization is presented in detail
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in R e f. [5]. In  this method, the coarse grid relaxation passes are performed so that the 
Rayl-eigh quotient calculated on the fine grid will he minimized. In this way, there is no 
requirem ent for the solution to he well represented on a coarse grid and thus the coarse 
grid representation problem is avoided. Mandel and M cCorm ick [65] introduced the method 
for th e  solution of the eigenpair corresponding to the lowest eigenvalue. W e have gener
alized it to the simultaneous solution of a desired number o f lowest eigcncnergy states by 
deve loping a scheme that keeps the eigenstates separated by the use of a penalty functional, 
G ram -Schm idt orthogonalization, and subspace rotations.

A  basic ingredient of the scheme is a very simple relaxation method called coordinate 
relegation [66]. Coordinate relaxation is a method of solving the discretized eigenproblem

by miinimizing the Rayleigh quotient

Hu — \Bu (10)

(u\H\u)
( 11)

A bove, H  and B  are matrix operators chosen so that the Schrodinger equation discretized 
on a real-space point grid with spacing h is satisfied to a chosen order 0(hn). In Eq. (11) 
ii is a vector, containing the values of the Kohn-Sham orbitals at the grid points. In the 
relaxation method, the current estimate u is replaced by u = u 4- ad, where the search vector 
d is simply chosen to be unity in one grid point and to vanish in all other points, and a is 
chosen to minimize the Rayleigh quotient. This leads to a simple quadratic equation for a. 
For complex eigenfunctions, it is possible to either solve a remarkably complicated coupled 
pair o f quadratic equations for the real and imaginary parts of a or to sequentially apply 
separate coordinate relaxation steps for the real and imaginary parts. A  complete coordinate 
relaxation pass is then obtained by performing the minimization at each point in turn and 
these- passes can be repeated until the lowest state is found with desired accuracy.

Naiturally, also the coordinate relaxation suffers from C S D  because of the use of local 
infor mation only in updating u in a certain point. To avoid it one applies the multigrid idea. 
In thie multigrid scheme by Mandel and M cCorm ick [65], the crucial point is that coarse
grid coordinate relaxation passes are performed so that the Rayleigh quotient calculated on
the fiine grid will be minimized. In this way, there is no requirement for the solution to be 
well irepresented on a coarse grid. In practice, a coarse grid search substitutes the fine grid 
solutiion by

n'f = uf + a I'. ec (12)

whene the subscripts /  and c stand for the fine and coarse grids, respectively, and // a
prolongation operator interpolating the coarse grid vector to the line grid. The Rayleigh 
quotient to be minimized is then

(uf + a lld c\Hf \uf + a I; dc) _  (uf \Hfaf ) + lajl^ H fLif \dc) + a2 {d c\H (d c)
(Uf + alj. dc\Bj-\uf + ali1 d(.) (lir\Bflif) + 2a (If8 fuf\dc) + a-(dc\Bcdc)

The second form is obtained by relating the coarse grid operators, Hc and Bc, with the fine 
grid ones, Hf and Bj, by the Galerkin condition

B ,= r fBf if- /; = ( / / y  (U )

Note,, however, that the Galerkin condition was not satisfied in our original implementation 
insteaid, we discretized the original equation separately on each grid to obtain Hc and Bc 
(discretization coarse grid approximation D C A ).

Thie key point to note is that when H,uf and Bfuf are provided from the fine grid to 
the coarse grid; the remaining integrals can be calculated on the coarse grid itself. Thus one 
really applies coordinate relaxation on the coarse grids to minimize the fine-level Rayleigh 
quoticent. This is a major departure from the earlier methods, which, to some extent, rely
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on the ability to represent the solution of some coarse grid equation on the coarse grid 
itself. Here, however, one can calculate the exact change in the Rayleigh quotient due to 
any coarse grid change, no matter how coarse the grid itself is. There is no equation whose 
solution would have to be representable.

Next we consider the generalization of the R Q M G  method to the simultaneous solu:ion of 
several (TV) mutually orthogonal eigenpairs. The separation of the different states is civided 
into two or three subtasks. First, to make the coarse grid relaxations converge toward the 
desired state, we apply a penalty functional scheme. G iven the current approximations for 
the k lowest eigenfunctions, the next lowest, (k + l) th  state is updated by minimizing the 
functional

(uk+l\H\uk + x) ^  |(»,|/<t+|)|:
(uk+l\B\uk + i) ^  ' (« ,> ,)  • (uk+[\uk+i)

The modulus of the overlap integral in the penalty term is squared to make the penalty 
positive definite. The denominator is required to make the functional independent of the 
norms of ut, i = 1 .. .k + 1. The minimization of this functional is equivalent to imposng the 
orthonorm ality constraints against the lower k states, when q{ —► oo. By  increasing the shifts 
qj any desired accuracy can be obtained, but in order to obtain a computationally efficient 
algorithm a reasonable finite value should be used, for example,

<?/ = — A,-) -f- Q (16)
where Q is a sufficiently large positive constant. In our calculations, we have typical y used 
the value Q — 2 Ha.

The substitution (12) is introduced in the functional (15) and the minimization with respect 
to a leads again to a quadratic equation. This time the coefficients contain terms due to the 
penalty part.

W h ile  the penalty functional keeps the states separated on the coarse levels, we apply 
a simple relaxation method (Gauss-Seidel) on the finest level. The Gauss-Seidel nethod 
converges to the nearest eigenvalue, so ideally no additional orthogonalizations would be 
needed. In practice, however, we use Gram-Schmidt orthogonalizations and subspace rota
tions. However, the number of fine-grid orthogonalizations remains small, for example, 
in comparison with the conjugate gradient search o f eigenpairs employing only the finest 
grid [26].

4. TECHNICAL ENHANCEMENTS
4.1. Double Grid Technique
Representing functions with high-frequency components on coarse grids has problems, 
sometimes referred to as aliasing (the high-frequency components, not representable on the 
coarse grids, are aliased to lower-frequency components), if one simply takes the pointwise 
values of the continuous functions at each grid point. The most direct way to set this in 
electronic structure calculations is to monitor the calculated total energy of an atom or a 
molecule as the system is moved with respect to the grid. Figure 6.16 on page 254 of Ref. [8] 
illustrates this egg-box effect in the case of C F I4 molecule when calculated with the reil-space 
code o c to p u s .  The total energy varies with an amplitude o f 70 rneV when the central atom 
is moved from one grid point to another (the molecule rigidly following the movement). The 
first cure suggested to this problem was to simply to Fourier filter away the high-frequency 
components of such a function [27, 49]. This, however, may not be the best solution to 
the problem.

A  much more elegant solution was suggested by O no and Hirosc [67]. This scheme 
applies most directly to the evaluation of the inner products of the wave-function vith the 
nonlocal projectors occuring in norm-conserving nonlocal pseudopotentials or the projector 
augmented wave (PAW)-m ethod.

A  careful and well-documented implementation of the Ono H irosc scheme was recently 
made by M oitensen et ai. in the context of the PA W  method [57]. A key facto* in lhis
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im plem entation was to use the scheme not only for the projector functions, but as a general 
recipe to transfer any function defined on a radial atom-centered mesh to the coarse grid 
where the wave functions are computed.

In a grid presentation, integrals o v v  space are turned into sums over grid points. In our 
im plem entation of the nonlocal norm- ;onscrving pseudopotentials, we often need to calcu
late the integral o f a localized function, centered on an atom, multiplied by the wave function 
extended over all space. The most obvious example is the projector function £ j'„(r -  R “ ) 
centered on atom a at position R  multiplied by an extended wave function t//m.(r ) defined 
by its values at the grid points of the computational grid (as indicated by the subscript c).

Using G  to index the grid points for the wave functions and transforming the integral to 
a sum over grid points with Vc being the volume per grid point, we obtain

= = ( i7 )
a

where = if/n(r G), and rG is the position of grid point G (only grid points in the localized 
region around atom a need to be summed over). For we could use £j'm( r(; — R(l). 
However, this is not accurate enough, unless we use a very fine grid that would compromise 
efficiency. Instead we use the elegant double grid technique o f Ono and Hirose [67]. Here 
we interpolate the wave function to a finer grid f  and evaluate the inner product there, using 
pointwise values of the projector function £j'/M , on the finer grid. It is most convenient in 
the follow ing discussion to use the prolongator (interpolation) operator /, and its transpose, 
the restriction operator If.

(m

H ere the relation // = ( I f )1' (Eq . [14]) is used. W e see, that the interpolation of the wave 
function needs not be done in practice. C omparing Eqs. (17) and (18) it is easy to see that

= (W)

that is, the projector is first evaluated on the auxiliary fine grid (this needs to be done only 
once in the beginning of the calculation) and then brought to the coarser grid used to rep
resent the wave functions by the restriction operator. The line grid can, for example, be a 
uniform grid with five times the density of the computation grid, as suggested in Ref. [67]. 
However, a more economic choice would be to select special integration points correspond
ing to a Gaussian quadrature for this finer grid and properly account for the integration 
weights.

The projector functions are not the only localized atom-centered functions in our imple
mentation of the pseudopotential method. In addition, we have atom-centered Gaussian 
positive charge distributions, used to neutralize the charge density occuring in (Eq . [8]), 
and associated local potential corrections A l',oc = -  ZCTr(r/rc)/r. In practice, we have
used the same scheme o f evaluating these functions on a fine grid and restricting them to 
the coarse computational grid, and found two orders of magnitude reduction in the egg-box 
effect, as reported also by Mortensen et al. in the case of the PA W  scheme [57].

Note, however, that strictly speaking a nonlocal operator on the coarse grid should replace 
the local potential of the fine grid:

< / '0 J (A K , ) / /  </v> = <t//m.|/;.(AK/.)//' K )  (20)

The sparse matrix IUAVf)l!- can be constructed in the same way as the Galerkin form 
Hc in Section 4.5. A  sim ilar accuracy— and similar nonlocal operator replacing the local 
potential— is obtained if the wave functions are expanded in the nonorthogonal basis of 
piecewise polynomial functions associated with the grid points (the finite-element method), 
and the matrix-elements of the potential in this basis are properly evaluated.

In practice, the simple restriction may be justified, besides, by the fact that it seems to 
work well iin practice, also by the fact that we evaluate the density directly from the pointwise
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values of wave functions on the coarse grid, and the related correction to the total energy 
satisfies (note that we use the notation (f\g) as a shorthand for J clrf 'g):

IA I/,-) = )) (21)

These relations seem to suggest that in a numerically correct implementation a local poten
tial (obtained by simple restriction from the auxiliary fine grid in the double grid scheme) 
should operate on the density, for example, in expressions for the total energy, while the 
nonlocal form I (f Vf!- should be used in the eigenvalue problem when operating on the 
wave functions. It could appear that treating the local potential numerically accurately and 
also computing the density, the exchange-correlation potential and the electrostatic Hartree 
potential on a grid finer than that used for the wave functions would allow the use o f even 
coarser grids for the wave functions. This would result in substantial memory and C P U  
savings. A fter all, plane-wave and grid presentations of the wave functions should in prin
ciple be equivalent. Yet the conclusion made in, for example, in Ref. [57] is that an order 
of magnitude more memory is needed to represent the wave functions on a real-spaec grid 
than by storing the plane-wave coefficients.

A  possible improvement to the existing methodology would indeed be to evaluate the 
density on a finer grid (with grid spacing halved):

" ,  = £ | / M , - I 2 ( 22>
i

The Hartree and exchange-correlation potentials would then be evaluated on this finer grid 
and returned to the coarse, wave function grid through either the above described method 
yielding a short-range nonlocal potential operator or by the simple restriction, which may 
be accurate enough in practice (or, as suggested, both of these operators would be needed 
for different purposes). Note that the use o f Eq . (22) requires also a modification for the 
normalization condition for the wavefunctions, («/a Ifllrff) = I- This would be analogous to 
the plane-wave scheme, where the cutoff wave-vector for the density is twice the cutoff wave 
vector for the wave functions. Such a scheme is not yet implemented in r s p a c e  (o r at least 
not properly tested), and not in any other real-space method either according to the authors 
knowledge. Note, however, that in the PAW-scheme by Mortensen et a L  such a finer mesh is 
used for the solution of the Poisson equation. However, the relation (22) is not used; instead 
the density is first evaluated on the coarse grid and then interpolated to the fine grid.

Finally, it would be interesting to see, if the idea can be applied also to the kinetic energy 
stencil T\ (o r / lmchr>c and # mchr-c of section 4.4), by replacing it with l ‘f-Tf //. Again this could 
be done using the same algorithm as explained for the 5-stencil in Section 4.5.

W e encourage the interested reader to obtain the source code of r s p a c e  from the 
W eb page [ I ]  (o r use his/her own favorite implementation o f real-space grid methods) and 
implement these ideas. There is no guarantee that we will have time to do so in the near 
future.

4.2. Traditional Mixing Schemes
Reaching self-consistency in the solution of the Kohn-Sham equations ( I )- (5 ) can be a tricky 
task for systems where the Hartree and exchange-correlation potentials dominate over the 
external potential (e.g.. quantum dots described in Section 6), and/or when the system size 
is large (e.g., thousands of electrons as in the axially symmetric jellium  model calculations 
described in Section 7). Defining the output density //oul as the density obtained from Eq. (2). 
when the orbitals are solved from Eq. (1) in the potential generated through Eqs. (3)--(5) by 
the input density /?in. the simplest stable iteration scheme results by choosing for the input 
density of the next iteration the linear combination

n™" = (1 -  K)r.m+K/iini, (23)

Instead of the density a?, the potential Vctt can equally well be mixed. In large systems, or 
quantum dots in low confinement, the mixing parameter k  may have to be chosen smaller 
than 1 %. C learly more sophisticated mixing schemes should be used.
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We have recently implemented the standard Pulay mixing scheme [68, 69] and its several 
variants. A n  interesting new variant is the guaranteed reduction Pulay (G R P u la y ) method 
[70), where no mixing parameter needs to be given. The key idea of the G R P u la y  method is 
that at the first iteration one computes also the residual of the output density. Then, in the 
two-dimensional space spanned by the input and output densities, the residual is minimized 
(assuming a linear dependence between input density and the residual), and the input and 
output densities for the next iteration are predicted, and the new residual of the output 
density computed.

A  preconditioning to the Pulay scheme that damps the long wavelength changes of the 
density was proposed by Kerker [71]. The Kerker scheme was originally motivated by a 
real-space scheme [72-74], where, instead of the Poisson equation, a modified Helmholz 
equation is solved. W e have implemented this idea as well and found it very useful in some 
calculations. A lso  the use of a special metric that weights long wavelength errors stronger 
than short wavelength errors was proposed by Kresse and Furthm uller [10, 11]. In these 
schemes, a Fourier decomposition of the density to components of different wavelengths is 
required. W e have used the following multigrid-based method to make this decomposition. 
H ere N  denotes the coarsest grid used, so that nN is the density component of the longest 
wavelength. /jv =  ̂ , is the restriction operator from the finest grid 1 to the coarsest
grid N:

"x = / U V"  (24)

» * ,  = o f -i j

It can be easily seen that this decomposition satisfies Ylr \fl, = and obviously each compo
nent n, contains features with a wavelength characteristic for level i. Furthermore, it can be 
checked that the norm of // v is equal to the number o f electrons in the charge distribution 
a/, while the norm of other components is zero.

4.3. Response-lteration Methods
W hile  the mixing schemes referred to above use mainly mathematical tricks in accelerating
the convergence towards self-consistency, Auer and Krotscheck [75-77] have suggested a
“ physical”  method where the static dielectric function of the nonuniform electron gas is 
utilized to obtain a rapidly converging algorithm. They define the functional ^ |/?i„](r) = 
A7omI/7in](r ) ~  /7m and obtain the following linear integral equation for the density correction 
8n(r) to be added to /?jn:

F\n](r) = f  d ' r e ( r. r ; 0)S/i(r') (26)

where

e (r , r , 0) = Sir - r ) -  f d }r 'Xu(r. r"; 0 )^ p_ „ (r ,  r ')  (27)

is the static dielectric function of non-uniform electron gas. ^ ( r ,  r ; 0) is the zero-frequency 
Lindhard function of the noninteracting system (and can be expressed in terms of the 
occupied and unoccupied orbitals), and the particle-hole interaction (or Hartree-exchange- 
correlation kernel) is defined as

e2 SK-(r)I/p_h(r, r ) = T------ + = A hxc(r , r ) (28)
1 |r — r | on( r  )

In a state-space formulation [76], they obtain the following form for this equation:

</>,,(r )</>,,(>) /■ , ,

P '

^  (/>„(r ) c/>/,(r ) r ,
M(r) = /7[/f](r) -  8n(r) = 2 ^  — ---- -—  / d*r d*r"if)t\v)4>h(r)Vp_h(T\ r")5/z(r")

n.h f̂t

= T , l<p.i'<t>p(r )<i>i'(r ) (29)
h.p
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where the subscript p refers to “ particle-states”  (unoccupied states) and h refers to 
“ hole-states”  (occupied states). In practice, the number of unoccupied states needed for a 
calculation to converge is often no more than the number o f occupied states. Nevertheless, 
a scheme were only occupied states are required is desirable, and was indeed derived [76) by 
making the collective approximation that the coefficients u h are matrix elements of a local 
function w (r ),  that is,

llp,h = f  ‘/3r<M r )< M  r )w ( r )  (30)

A fte r some manipulation one arrives at the following equation for <Z>(r) = v///(r)w(r):

[H{) + 2SF * V h * S,.] * a) = 25f  * Vp-h * "7= 0 0
' 1 s/n

where

^ V /;( r )«..(r) = =■ v- +
n( r )

(32.

VP I, = V "{r)V p hV” (r )  (33)

and

.SV(r. r ) = <5(r - r ) - - — L= = ^  <l>h(r)<l>h(r')4>'h(r)<l>'h(r') (34)
v y/n(r)n(r‘) h h

where v — 2 for a spin-restricted calculation, and v — 1 otherwise. Finally, one obtains the 
density correction from

u(r) = y/n(r)[SF * w ] ( r )  (35)

Above [A * ^ ] ( r ,  r ')  denotes the ordinary matrix product defined as fdr"A (r, r")B (r", /*'), 
referred to as a convolution in Ref. [76]. In collaboration with Aichinger, we have imple
mented the response iteration schemes utilizing both the state-space formulation of the 
full-response method (E q . [29]) and the collective approximation (Eq . [31]) in connection 
with the r s 2 d o t  and c y  12-programs. To solve the integral Eqs. (29) and (31), we have 
used either the conjugate gradient or the generalized mimimum residual (G M R ES )-m ethod  
[78]. In  the case of very large systems, a more efficient solver, maybe a multigrid scheme, 
for Eq. (31) could be useful.

4.4. Higher-Order Compact Discretizations
The Mehrstellen-discretized Schrodinger equation

^Meh rV', = -4M,.hrl//, + =  K,i //, (36)

was first introduced to electronic structure calculation by Briggs et al. [27, 49]. The matri
ces of this fourth-order discretization only have elements corresponding to the nearest and 
second nearest-neighbor grid points in three-dimensional space. This is in contrast to the 
traditional central finite difference (C D S )  fourth-order discretization, which is more non
local, and involves 13 points in a starlike-type constellation consisting of three orthogonal 
line segments of five grid points each. Going to higher order, the C D S  stencils become 
more and more nonlocal [25]. It is argued in Ref. [49] that the fourth-order Mehrstellen 
discretization has the accuracy comparable to the sixth-order C D S  stencil. In addition to the 
Mehrstellen discretization, we have derived and implemented a set of higher-order compact, 
Mehrstellen-type stencils for the Schrodinger and Poisson equations [79).

One immediately notes that although is herm itian [27], /7v1chr itself is not.
In the original implementation o f the R Q M G  method [5], the hermiticity of H  and B is 
assumed, and this can degrade the performance of the R Q M G  method when used with 
Mehrstellen-type stencils. A  generalization of the R Q M G  method to nonhermitian dis
cretizations is under construction.
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4.5. RQMG with Galerkin Conditions
A s explained in Section 3.2. our original implementation of the R Q M G  method does not 
respcct the Galerkin conditions of Eq. (14) hut replaces the H and B  matrices on the coarse 
levels by a rediscretization o f the original problem (D C A ).  This can in some cases result 
in a lim itation of the coarsest level that can be used during the multigrid V-cycle, and hin
der the convergence of the higher, unoccupied levels, that are needed in, for example, the 
linear-response calculations based on time-dependent D F T  (T D D F T )  or the full-response 
form ulation of the response-iteration scheme (see Section 4.3). In practice, convergence 
for the required number of states can be obtained by selecting a grid dense enough and 
tuning the coarsest grid size, but in large three-dimensional calculations, it is not desir
able to have to use dense grids simply because of an improperly implemented numerical 
scheme.

W e have recently implemented also the full Galerkin version of the R Q M G  method. Note 
that even for CDS-stencils, for which Bt = I on the fine level, Bc ^  / on the coarse level. 
W e  note that multiplying a coordinate vector e(/ (which has the value 1 at a single grid point 
G  and 0 in  all other points) by a matrix A produces the column vector of A  corresponding 
to the point G . Then, the column of H ' (the required row of Hc) corresponding to G is 
given by

//' <, - l}H}l(.e'a (37)

H ere, eG is first multiplied by //, and the (well-known) column vector of the prolongator is 
obtained. The result is multiplied by the transpose of Hf (given in stencil representation on 
the finest level, and compressed row storage (CRS)-form at [80] on coarse levels). Finally, 
m ultip lication with the restriction operator /; gives the row of the Galerkin H( . This vector 
w ill be nonzero only in the immediate vicinity of G , and thus we have obtained a row of the 
sparse matrix Hc, to be stored in C R S  format. This scheme is much faster than the more 
obvious allternative of representing each of the three matrices appearing above in Eq. (37) 
in C R S  fo>rmat and computing the two-matrix products by standard methods. The matrix Bc 
is obtained in exactly the same way. but since B( is independent o f r, so will Bc be also, 
and this can be stored in the simple stencil format, and is very fast to compute. The current 
im plem entation of this scheme is a bit slowei than using the stencil representation, but results 
in guaranteed convergence even on very coarse grids. M ore speed may be obtained by using 
the G a le rk in  matrices only on the very coarse grids, while keeping the C D A  on, for example, 
the two finest levels. A lso, more convenient formats than C R S  could result in additional 
speed— in fact on each row o f the matrix the nonzero elements have the same pattern, so 
that simple array could be a more convenient storage format. Note that the kinetic energy 
operator still allows a simple stencil representation, as does B; it is the potential energy 
which requires the nonlocal nonstencil form in the Galerkin formulation.

4.6. Alternative Eigenproblem Solvers
It would be desirable to implement a few alternative eigenvalue solvers, in addition to 
R Q M G , im connection with M IK A .  For example, the approach chosen by Mortensen et al., 
to follow as accurately as possible the plane-wave scheme of Kresse et al. [10, 11], based 
on the DUS-m ethod, only replacing the preconditioning operator by a multigrid V-cycle, 
seems promising. On the other hand, Krylov subspace methods such as Lanczos or block 
Davidson are well-known efficient schemes, and careful comparisons between them and 
the RQ M G -m ethod  would be interesting. A  parallel implementation of the generalized 
Davidson algorithm is used by Chelikowsky et al. [62] to treat three-dimensional systems 
of up to a thousand electrons. Recently, a new preconditioned, Krylov-space technique has 
been introduced by Knyazev [63, 64]— this method is claimed to be more efficient than 
its precursors. W e have made some comparisons, according to which it seems not to be 
com petitive with R Q M G , but more work needs to be done before making a definite conclu
sion. Auer, Krotcheck, and A ichinger [81. 77] have developed a surprisingly efficient scheme 
based on itime evolution in imaginary time with fourth order factorization of the operator 
exp (-6// ).
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5. STATUS OF THE GENERAL-PURPOSE REAL-SPACE TOOL
The development of rspace has been driven largely by thesis projects and student 
assignments for technical improvements as described in Section 4. It offers a versa
tile alternative for large-scale static D F T  calculations especially for geometries awkward 
for periodic boundary conditions. Am ong the most promising general directions where 
real-space grid methods are actively used, is in the applications of the real-time [82] 
as well as in the linear-response [83] formulations of time-dependent density-functional 
theory. This direction, including also the quantitative calculation of interatom ic forces in 
excited systems, carries also the highest priority in the future developments in the M IK A  
project.

The r s p a c e  code allows both periodic and cluster boundary conditions (Fig . 2). In the 
cluster case, the boundary values for the Coulomb potential in Eq. (8 ) are computed by a 
multipole expansion including terms up to the quadrupole term. In the periodic case, the 
average potential is set to zero. Boundary conditions for general k-points have been imple
mented. A  simple generalization to a combination of cluster boundary conditions in one or 
two directions and periodic in the other directions would allow computations for surfaces 
or polymers, respectively, avoiding the periodic images problematic in plane-wave calcula
tions. Even  a special boundary condition for long polymers where a unit cell is invariant with 
respect to a combination of a translation and a rotation about the axis of translation can be 
implemented in the real-space grid context.

The code has been parallelized through domain decomposition in real-space. and also over 
the k-points. Forces and structural optimization have been implemented; in fact we have 
two implementations of structural optimization, one written in Fort ran 9 0 and the other 
in Python. The Fortran90 implementation has been tested by relaxing the structures of 
various defects in silicon [84], the results being in agreement with plane-wave calculations.

Recently, the Perdew-Burke-Ernzerhof ( P B E )  [85] generalized gradient approximation 
(G G A )  has been included, adopted more or less directly from the other open-source real- 
space package o c to p u s  [4]. As a sequel to this project, we have observed that the numerical 
accuracy of this implementation can be improved by following the advice given by Mortensen 
et al. [57], and computing the potential K.c( r ( -) exactly as the numerical derivative of the 
discretized E xc (where the gradient of the density is evaluated via finite differences) with 
respect to the density at the grid point al rG, a trick similar to that of W h ite  and B ird  [86] 
used in the plane-wave context.

Next we move to describe a few application areas where the real-space codes from the 
M IK A  project have been applied. The chosen examples highlight the usage o f real-space 
methods in nanoscale systems in particular.

Figure 2. Typical applications of electronic structure calculations with periodic and cluster boundary conditions, 
(left) Electron-density isosurfacc corresponding to the deep states localized at the neutral, ideal (no ion relaxation) 
silicon vacancy in Si. (right) isosurface of the Kohn-Shain orbital corresponding to the lowest eigenvalue in the 
Cw,-molecule.



R e a l- Sp ace  E le c tro n ic - P ro p e rty  C a lcu la t io n s  fo r N an o sca le  S tru c tu res 785

6. TWO-DIMENSIONAL QUANTUM DOTS 
6-1- Introduction and the Model
In the rabidly expanding field of nanotechnology, semiconductor quantum dots (Q D ) repre
sent baisi: elements of novel nanoclectronic components. They have dimensions from nano
meters U a few microns and contain a controlled number of electrons, typically from one to 
several thousands. Sem iconductor Q D s are fabricated with several different methods [87). 
The com non objective between the techniques is to produce a lateral confinement of the 
two-dimensional electron gas (2 D E G )  at the interface of a semiconductor heterostructure, 
for example, G aA s/A IG aA s, so that the transverse dimensions are considerably larger than 
the thickness of the dot. Hence, the corresponding model system is usually two dimen
sional, and the shape of the lateral confining potential may be varied at will. The most 
com m on approximation is a parabolic confinement that has been shown to model the con
ventional y fabricated Q D s  with a reasonable accuracy [88]. In this section, however, we 
review seme recent results for various geometries with direct relevance to experimental 
studies.

W e defne the quantum dot to be located on the a t  plane and use the effective-mass approx
im ation v-ith the material parameters for G aAs, that is, the effective mass m* = 0.067 mc 
and the dielectric constant e =  12.4. The many-body Ham iltonian for this system in the 
presence of an external magnetic field can be written in S I units as

*  -  + i  + E i K»<ri )+ < w/-.-I i<j ii i / /i /-i

where the vector potential is chosen in the symmetric gauge, A  = f ( — y, x, 0). This deter
mines the magnetic field perpendicular to the dot plane, that is, B  = V x A = Bz. The last 
term is the Zeem an energy, where g* is the effective gyromagnetic ratio for G aA s  (typically, 
—0.44), fjH is the Bohr magneton, and s: — ±\ for the electron spin a  = f ,  respectively. 
The spin-orbit interaction is excluded in the Hamiltonian, since it is supposed to be relatively 
small in a wide gap material like G aAs.

6.2. Computational Aspects
In the calculations, we apply mostly the spin-density-functional theory (S D F T )  in the 
conventional self-consistent Kohn-Sham formulation. In high magnetic fields, we have 
also employed the com putationally more demanding current spin-density functional the
ory' (C S D F T ),  which does not, however, represent a major improvement over the S D F T  
A  detailed comparison between these two methods for a six-electron quantum dot can be 
found in Ref. [89].

W e have also tested different parametrizations for the exchange-correlation functionals in 
the local-spin-density approximation (L S D A )  [89]. Quantum M onte Carlo  energies for a six- 
electron Q D  in zero and finite magnetic fields were taken as benchmark results. According 
to our calculations, the functional by Attaccalite and co-workers [90] generally gives more 
accurate results than the form by Tanatar and Ceperley [91]. However, the C S D F T  suffers 
from the lack o f accurate interpolation forms between the zero and high magnetic field limits 
for a given spin polarization.

In  the real-space Q D  program r s 2 d o t ,  the RQ M G -m ethod  is used for solving the 
effective single-electron Schrodinger equation on a two-dimensional point grid. In practi
cal calculations, the number o f grid points is set between 80 and 128 in one direction. 
This gives — 1 nm for a typical grid spacing, which is sufficient for describing electrons 
in G aA s, when the discretizations are fourth order. The accuracy of the calculations has 
been checked with the Richardson extrapolation, leading to a typical error of less than 
in the total energy (< 3 %  in the low-density lim it). A  converged solution typically takes 
100.. .500 self-consistency iterations, but that number can be remarkably reduced by using 
the density-response functions [75-77] which are currently implemented into the computa
tional code.
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6.3. Zero-Field Results
As a symmetry-unrestricted method the real-space approach is suitable for treating Q D s 
defined by a noncircular confining potential. In zero magnetic fields, we have studied W igner 
crystallization in polygonal systems [92], namely, how the electrons localize into a regular 
lattice at sufficiently low densities as the dot size is increased. The phenomenon is due to 
the different scalings o f the potential and kinetic parts of the total energy. The former part 
becomes gradually dominant over the latter as the density decreases, and finally the kinetic 
energy remains in the zero-point motion of the vibrational modes.

For two-electron polygonal Q D s, we find the Wigner-molecule formation around the den
sity param eter value rs = J  A/(Ntt) %  3, where A is the area of the polygonal potential 
well. This agrees well with the exact diagonalization ( E D )  results by Creffield et al. [93]. 
The qualitative behavior in the electron density is similar in both D F T  and E D , leading to 
the localization to the corners of the Q D  as A increases (see Fig. 3). For N > 2, we find the 
formation o f extra density peaks along the sides o f the Q D . In the case of a double number 
o f electrons with respect to the number of corners in the dot, the enlargement of the dot 
area leads to N density peaks at rs — 4.0 in all polygonal Q D 's  studied. This value is defined 
as the critical density param eter for the W igner crystallization in those systems.

In Ref. [94], we have presented a detailed study on the electronic structure of rectangular 
Q D s with a hard-wall confinement potential sim ilar to the above presented polygonal system, 
that is.

y )  = | ° ’ (3 , ,
I oo, elsewhere

The deform ation param eter (3 thus determines the ratio between the side lengths of the 
rectangle, and the area of the rectangle is set to f3L2 = it2ci*b2 %  1,000 nm2.

The chem ical potentials and the addition energies are calculated as a function of [5 with 
both the S D F T  and the variational quantum M onte Carlo  method. The agreement between 
the two methods is very precise. In  addition, the comparison of our results with the experi
ments and previous simulations [95) shows that the hard-wall approximation is slightly more 
realistic than the elliptic one. However, more experimental data over a wider range of [3 
would be needed.

In agreement with H und’s rule, we find several partially spin-polarized states with S = 1 
as /3 and N are varied. In  the SD FT , those states are bracketed by spin-density waves where 
the spin-up and spin-down densities are symmetrically coupled with each other. In Ref. [96], 
we have proven explicitly that those states represent a wrong mixing of different spin states. 
The underlying problem is the fact that the S D F T  can not properly describe ensemble- 
u-representable densities, that is, systems with more than one major configuration in the 
ground-state wave function.

6.4. Magnetic Fields and the Vortex Clusters
The solutions in nigh magnetic fields predict the existence of a completely spin-polarized 
finite structure called the maximum-density droplet (M D D ).  The M D D  is related to the 
quantum H all effect with one completely filled Landau level, that is, the filling factor v = 1, 
and its existence has also been verified experimentally [97]. The M D D  state can be found 
in various Q D  geometries. In the M D D  state o f a circular Q D , electrons occupy successive

Figure 3. Electron densities for three different sizes of a pentagonal, two-electron quantum dot. As the size of the 
dot increases, the electrons localize in the corners and form a Wigner molecule.
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N

Figure 4. MDD-windov limits ohlained from the kinks in /x( N ) as a function of N  in different QD geometries. 
The line shows the preiiction for the MDD formation based on the number of flux quanta penetrating the dot.

angular m om cntun levels from / = 0 to / = —iVH- 1, where N is the number of electrons 
in the dot. The M D D  state is stable for a rather wide range of the magnetic field, but at a 
certain field strengh it reconstructs into a lower-density droplet (see the end of this section).

In R e f. [98], we study the M D D  formation in noncircular hard-wall Q D s as previously 
defined. W e  identify the M D D  window in the calculated chemical potentials /x ( jV ) .  In addi
tion, we predict tie onset of the M D D  from the number o f flux quanta /Vtl, penetrating 
through the Q D  aid find a good agreement with the kinks in the chemical potentials (see 
Fig. 4). Because oi the Coulomb interactions, the M D D  electron density in a hard-wall dot 
is pronouncedly lo:alized in the corners and on the edges, in contrast with the parabolic 
case that exhibits a smooth density distribution [99].

W hen the magnetic field is further increased the M D D  state breaks down to a lower 
density droplet. T ie  mechanism of this breakdown has been a focus of much theoretical 
and experimental vork. Recently, we have calculated beyond M D D  states of different QDs. 
S D F T  predicts fornation of vortex structures, that is, holes in the charge density associated 
with rotating currents around them [100]. They can be seen directly in the total electron 
density obtained by our symmetry-unrestricted approach. However, these symmetry breaking 
solutions do not ghe the physical particle density in the laboratory frame of reference (since 
it must remain rotitionally symmetric) but it may reveal electron-electron correlations in 
the true many-bod' wave function which is inaccessible in the density-functional approach.

Figure 5. (a-c) Vortex holes in the density-functional electron density of six-electron quantum dots and (d—f) the 
corresponding condition-1 wave functions from exact diagonalization. The fixed electrons are marked with crosses. 
The shading shows the v-ave function phase that changes by In  in a path around a vortex. There are vortices on 
lop of each electron and additional vortices moving between the electrons (-f signs). The right-most solution is 
related to th-e the v — 1, > quantum Hall state with three vortices near each electron.
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Figure 6. Measured transport spectrum (gray scale) of a GaAs/AIGaAs 01) and the calculated single-electron 
energies (red lines) corresponding to the model potential given in Ref. [98].

Detailed calculations using exact many-body methods lead to similar vortex structures giving 
credence to the interpretation of the S D F T  results [100].

Using different symmetry-breaking Q D  geometries it was found that the vortices are stable 
in high magnetic fields and they correspond to density minima also in the E D  results [101]. 
The vortex formation is a considerable energetic effect and it could be observed in transport 
experiments similar to those of Oosterkamp et al. [97].

Vortex solutions were analyzed further using conditional wave functions in both ihe E D  
and the S D F T  [102]. The results show that there are two types of vortices: vortices that are 
on top of an electron and additional vortices which are not bound to a particular electron 
(see Fig. 5). For the correct particle statistics (ferm ion antisymmetry), the number of vortices 
on top of each electron must be odd. The off-electron vortices were found to give rise to 
charge minima associated with rotating currents around them. The vortex formation reduces 
the interaction energy and cause strong correlations between the electrons. Some of the 
solutions have much in common with the fractional quantum Hall states. For instar.ee, the 
solution with three vortices near each electron was identified as a finite size precursor of 
the v =  1 /3 fractional quantum Hall state [see Fig. 5 (c) and 5(f)]. Moreover, there appear 
many similarities between vortex formation in bosonic and fermionic case, suggesting that 
the vortex formation is a universal phenomenon in 2D quantum systems [103].

6.5. Impurities in Quantum Dots
Theoretical modeling of quantum dots is usually based on the approximation of clean sam
ples, although in real semiconductor devices the effects due to impurities or donor-scittering 
centers may be remarkable. In Ref. [104], a measured transport spectrum of a vertical Q D  is 
shown to have clear deviations from the Fock-Darwin energies. We model the system with an 
external potential consisting of a parabolic confinement and a negatively charged Cojlom bic 
impurity placed in the vicinity of the Q D . As demonstrated in Fig. 6, the model leads to a 
good agreement between the calculated single-electron eigcnencrgies and the experimental
spectrum. W e also show with the S D F T  that in the high magnetic held regime the increasing
electron number reduces the distortion induced by the impurity.

7. NANOPHYSICS IN AXIAL SYMMETRY
In Refs. [105-107], we have applied the RQ M G -m ethod  for studies of various nanostructures. 
W'e have found it convenient in all these applications to use axially symmetric model systems 
instead of fully atomistic models. This approximation reduces the computational cemands 
and allows one to study rather large systems encompassing hundreds (Reis. [ 105. H 7 j) and
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even thousands (R e f. [106]) of election^. In aJd ition , by restricting the geomet 17 to the
axial symmetry and resorting To uniform-b;:ckgr >und ( “ jellium-like*') models, many random
effects related to the detailed and sonietin.es unimportant atom ic structure disappear, and 
the relevant physics is easier to extract Irorn the simulations.

In axial symmetry, Eq . (1 ) for the kohn-Sh trn orbital

i / W )  = <■' 2) (4())

can be replaced by the following equation:

1 /1 d d2 n r  n: , \ f
+ ----r  + + “  erf Z) — emknUmkn(r' Z) (41)2 \ r or dr- r- Oz- J

W e denote the components o f the k-vcctor by k. and kr  The 2 -component kz of the k-vector 
only has relevance in periodic systems, such as the nanowires studied in Ref. [107]. In the 
periodic case, the following Bloch boundary condition

Umkn(r,z + l.,M) = cik:l^ U mkn(r,z )  (42)

is satisfied. The radial component k enters in Ref. [106], where w'e approximate a planar 
system by a hexagonal lattice of circles. We see that the num erical problem is reduced to 
a two-dimensional one. Furthermore, the problem is conveniently split into a number of 
independent subproblems— a property that can be exploited in a massively parallel computer 
environment. The Kohn-Sham orbitals with different (m , k ) (o r (m ,k ,s ) ,  should we treat 
spin-polarized systems) are automatically orthogonal, and can be solved simultaneously.

7.1. Ultimate Jellium Model for a Breaking Nanowire
In  Ref. [107], we have studied the stability of nanowires and the nanowire breaking process 
perform ing self-consistent calculations within the so-called ultimate jellium  model (Fig . 7). In 
this model, both electron and the positive background charge densities acquire the optimal 
profile minimizing the total energy. The model enables thus studies of shape-dependent 
properties of Hanoscopic systems such as quantum dots or, as in the present work, quantum 
wires. The model advocates the idea the geometry and iomic structure, also in a partially 
confined s>ystem, are determined by the quantum-mechanical electronic shell structure.

First, w e  have analyzed the stability of infinite periodic quantum wires pointing out the 
ability of tthe electronic band structure to stabilize the nanowires at magic radii, that is, any 
small deformation of the nanowire along the z-axis always increases the energy. At the unsta
ble radii corresponding to maximum values in the energy oscillations, the wire is uniform up

(a) (b) (c) (d)

Figure 7. Snapshots from a simulation of nanowire breaking by the ultimate jellium model. A catenoid surface (a), 
cluster-derived structures (b and d), and uniform cylindrical shape (c) can be seen. Green rectangles mark the 
lead-constrictrion boundary.
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to a critical value o f the unit cell length. The critical values found are close to Lcc]\/R = 4.5. 
Above this limit the local energy minimum disappears and a deformation of the w ire lowers 
the total energy. This length is shorter than the classically expected 2ir value, thus the wire 
electronic structure also has a destabilizing effect.

Then we have investigated the elongation process of finite nanowires between two leads. 
The elongation force, conductance and effective radius of the constriction have been cal
culated simultaneously. The importance of the charge relaxation in order to obtain results 
in agreement with experiments has been shown, for example, in the case o f the elongation 
force. The ability of the ultimate jellium  (electron density) to acquire the optimal shape 
allows the selection of magic radii wires that stabilize the nanocontact, as well as the for
mation o f cluster derived structures (C D S )  showing the importance o f electron states in the 
formation of these structures. The related resonance states and their origin is also shown. 
W e have found C D S ’s that can be linked with the eight- and two-electron freestanding 
clusters.

In summary, three different types of nanocontact stabilization mechanisms have been 
found during the breaking process: catenoid-like shape stabilized by classical surface tension, 
straight magic wires stabilized by the wire electronic shell structure and C D S ’s stabilized by 
cluster electronic shell structure.

7.2. Adsorbed Na Quantum Dots on Cu(111)
In Ref. [106], we model electronic properties of the second monolayer Na adatom islands 
(quantum dots) on the C u ( l 11) surface covered homogeneously by the wetting layer of one 
monolayer of Na (Fig . 8). A n  axially-symmetric three-dimensional jellium model, taking into 
account the effects due to the first Na monolayer and the Cu substrate, has been developed. 
The model enables the study o f systems consisting of thousands o f Na-atoms.

We have modeled quantum dots as small cylindrical jellium  islands, and the underlying Na 
monolayer and Cu substrate as a two-density jellium  slab. The two parameters of the model 
have been chosen to fit experimental spectroscopic data and calculated first-principles band 
structures for one and two completed monolayers of Na on the C u ( l l  I )  surface.

The calculated results are compared with experimental findings in scanning tunneling 
microscopy and photoemission experiments. The model gives local densities of states which 
are in a quantitative agreement with constant current topographs and dl/dV  spectra and 
maps. Thereby the idea of surface states which are localized as resonances at the quantum 
dots is supported. The future applications of the model will include studies o f the adsorption 
and dissociation o f molecules in the vicinity of alkali metal quantum dots.

Figure 8. (top left) Hexagonal 'lattice of area-covering circles, (bottom left) Schematic view of the background 
charge density in a plane containing the 2-axis in our two-density model for a quantum dot on top of a full monolayer 
of Na on C u ( ll l ) .  (middle) Local density of states on top of a cylindrical QD of 550 electrons on iwo-jeliiurn 
substrate calculated at a height of 18 an above the jellium edge at the axis (solid line) and at r 20a:i (dashed line). 
The (shifted) experimental peak positions are given by vertical arrows pointing downward. The peaks are identified 
with (/??. A ) resonance states having two horizontal node planes in the QD. (right) Calculated isosurfaces of the 
electron density (upper-left corner) and LDOS at the energies corresponding to the dominant peaks of the middle 
oanel.
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8. POSITRON STATES AT NANOSCALE DEFECTS
The use of positron annihilation in defect studies is based on the trapping of positrons from 
a delocalized bulk state to a localized state at the defect (see Fig. 9). The trapping is due to 
the reduced nuclear repulsion at the open-volume defects. Because the electronic structure 
seen by the positron at the defect differs from that in the perfect bulk crystal the annih i
lation characteristics change. The positron lifetime increases because the average electron 
density decreases. For the same reason, the momentum distribution o f annihilating electron- 
positron pairs becomes more peaked at low momenta (see Fig. 10[aj) [108, 109]. However, 
the positron density may sample the different atomic species of a compound m aterial with 
different relative probabilities in the bulk and at a defect. The  defect may also be surrounded 
by impurity atoms. In these cases the high-momentum region of the distribution, which is 
mainly due to annihilations with core electrons, reflects the chemical structure of the defect 
(see Fig. 10[b]) [110]. The changes in the bond structure between the atoms neighboring 
the defect may also affect the low-momentum part of the distribution. To understand these 
changes and fully benefit from them in defect identification, theoretical calculations with 
high-predictive power are indispensable.

The description o f the electron-positron system can be form ulated as a two-component 
density-functional theory [111]. In the measurements there is only one positron in the solid 
sample at the time. Therefore the density-functional scheme has to be properly purified 
from positron self-interaction effects. Comparisons with the two-component and experimen
tal results have shown that the following scheme is adequate. First, the electron density ft (r ) 
o f the system is solved without the effect of the positron. This can be done using different 
(all-electron) electronic structure calculation methods. A  surprisingly good approximation 
for the positron lifetime and core-electron momentum calculations is to simply superimpose 
free atom charges. Then the potential K +(r )  felt by positron is constructed as a sum of the 
Coulomb potential </>(r) and the so-called correlation potential K.-olr ( r ) ’ which is treated in 
a local density approximation, that is

V, (r) =  </>(r) +  V,on.(n (r))  (43)

The ensuing single-particle Schrodinger equation can be solved using sim ilar techniques 
as the electron states. For example, we use the three-dimensional real-space Schrodinger 
equation solver of the M IK A  package.

Figure 9. (a) An isosurface of the positron wave function in a perfect Si lattice. The positions of the Si atoms are 
denoted by blue spheres, and the electronic interatomic bonds as blue sticks. The positron lifetime in this state is 
according to experiments and theory about 220 ps. (b) An isosurface of the positron wave function at a vacancy 
surrounded by one Sb impurity. The Sb atom is denoted by a yellow sphere. The positron lifetime in this state is 
according to theory about 210 ps.
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(bl

Electron momentum (10 m,c)

Figure 10. Momentum distributions of annihilating electron-positron pairs in Si. (a) Low momentum parts. The 
theoretical predictions [ 108] (lines) are compared with the spectra measured by the Doppler broadening technique 
(markers) [109]. (b) High-momentum parts (K. Saarinen et al. [110]). The theoretical predictions (s l̂id lines) are 
compared with the spectra measured by the Doppler broadening techniques (markers). The comparison identities 
vacancy-P complexes in electron-irradiated P-doped Si (green circles). vacancy-As complexes in electron-irradiated 
As-doped Si (blue circles), and vacancy-As, complexes in as-grown highly As-doped Si (red circles). The annihilation 
with As 3d electrons raises the intensity. The study concludes that the saturation of the free electron density in 
highly As-doped Si is mainly caused by the formation of vacancy-As, complexes.

W hen the electron density a?( r ) and the positron density n i ( r )  = |i//‘ (r )| : are known, the 
positron annihilation rate is calculated within the L D A  as an overlap integral

A = 7r r jc  / dr//4.(r)/z ( r ) y ( / i_ ( r ) ) (44)

where r.} is the classical electron radius, c the speed of light, and y  the enhancement factor 
taking into account the pile up of electron density at the positron (a correlation effect). The 
inverse of the annihilation rate is the positron lifetime.

The momentum distribution of the annihilating electron-positron pairs is calculated as

p(p) = mjc  | j  dr e ri/'' (r)i//)( r ) v/y(n_(r j) (45)

Good results, especially for high-momentum part due to the core electrons, are obtained 
using a state-dependent constant enhancement factor by replacing y (/ ?_ (r ) )  aoove with a 
constant y ;, which is determined from the annihilation rate of the state / [112). It is this 
state-dependent form, which we use in practice.

The d op p ler-p rog ram  delivered within the M IK A  package uses the atomic superposition 
method. The scheme cannot be used for the low-momentum part due to valence electrons. 
For that purpose, self-consistent all-electron wave functions have to be cons;ructed. For 
example, we have used the projector augmentcd-wave (P A W ) method implemented in the 
plane-wave code V A S P  [10, 11, 113. 114].

9. SUMMARY AND OUTLOOK
W e have given an overview of the real-space, multigrid-based program package called M IK A , 
and several examples of its applications in research o f quantum dots, nanostrjetures, and 
positron physics. We hope that the work invested in developing these codes will r>e use
ful to a wide group of researchers. Therefore, following the model given, for cxairple, by 
the o ctop us-p ro ject [4], and advocated by the f s a to m  -project (2), we have decided to 
license the code with the G N U  genera! public license (G P L ) ,  and distribute he software
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on a W eb  page |1|. This docs not imply that the codes are particularly easy to use or of 
com m ercial quality, neither does it include any promise of user support. On the contrary, we 
hope that other researchers will take parts of the code, inspect them critically, modify them 
for their purposes, and distribute the derived product further. Such a distributed mode of 
development should accelerate the development and adoption of real-space methods in the 
com putational nanoscience community.
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1. INTRODUCTION
Frequently one categorizes material properties at the macroscopic scale by terms such as 
“ intensive”  and “ extensive.” An  intensive property is not dependent on the sample size or 
mass. For example, if one specifies the temperature of a sample as that of room temperature, 
the description is complete. O ne does not need to specify the size of the sample. O ther 
intensive properties include pressure and density. A n  extensive property does depend on the 
size of the sample. Fo r example, the volume of a sample depends on the size: Two moles 
of a gas occupies twice the volume as one mole. Therefore, one often specifies volume in 
terms of the volum e per mole, or the specific volume. O ther extensive properties include 
thermodynamic properties such as the heat capacity, enthalpy, entropy, and free energy of 
the system.

M atter at the nanoscale is different. Properties that are intensive at the macroscopic 
scale may not be intensive at the “ nano-”  or “ subnano-”  scale. In fact, such properties may 
be hard to define at very small length scales. Consider a small cluster of atoms (e.g., a 
dozen silicon atoms). Such an ensemble contains so few atoms that it is difficult to define 
a property such as temperature or volume. Although extensive properties such as the heat 
capacity or free energy o f the system remain, in the sense of changing with the size of the 
system, such properties may no longer scale linearly with size. For example, the free energy 
of two dozen atoms o f silicon may not be twice the free energy of one dozen atoms of 
silicon.

In this latter example, one can make some simple arguments to explain this behavior. 
Suppose we consider the scaling of the free energy for a spherical sample of matter whose 
radius is R. The volum e energy term w'ould scale as R}: the surface term as R2. As R tends 
toward the nanoscale, the surface terms can become the dominant term in the free energy 
and do not scale linearly with the volume or mass of the sample. This different scaling 
between volum e and surface terms is well known in nucleation theory. A  manifestation of 
this effect is that particles must exceed a certain size before they are stable.

One definition of the nanoscale is the size at which deviations from intrinsic intensive 
and extensive properties at the macroscopic scale occur. Consider an intensive electronic 
property such as the band gap o f silicon. For specificity, let us consider a spherical sample 
o f silicon whose radius is R. I f  R changes from 10 cm to 1 cm, the optical gap will remain 
unchanged, as expected for an intensive property. However, if one considers values of R 
changing from 10 nm to 1 nm, the optical gap will be strongly altered. In this size regime, 
the optical gap is no longer an intensive property; the properties of such systems are said 
to characterize nanoscale. One of the first manifestations of this effect was observed in 
porous silicon, which exhibits remarkable room temperature luminescence [1J. This is in 
strong contrast to crystalline silicon, which is optically inactive. It is widely accepted that 
the localization o f optical excitations at the nanoscale results in the luminescence o f porous 
silicon.

In this chapter, the cornerstones of theoretical methods for understanding the electronic 
and structural properties of matter at the nanoscale will be reviewed.

2. QUANTUM DESCRIPTIONS OF MATTER
Quantum  mechanical laws that describe the behavior of matter at the nanoscaie were dis
covered in the early part of the twentieth century. These laws mark one of the greatest 
scientific achievements o f humankind. Using these laws, it is possible to predict the electronic 
properties of matter from the nanoscaie to the macroscale, at least in principle.
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Although it is relatively easy to write clown the Hamiltonian for interacting fermions, 
obtain ing a solution to th: problem that is sufficiently accurate to make predictions is another 
matter.

Consider N nucleons of charge Z „ at positions {/ ? „ }  for n = 1 , . . . ,  N and I electrons at 
positions { r j  for / =  ! , . . .  M . This is shown schematically in Fig. 1. The Ham iltonian for 
this system in its simples form can be written as

= + I  y .  - p f -
n-I 11 \^n *'m\

M V M z  2 | M e 2

M.n is the mass of the nuceon, h is Planck’s constant divided by 2tt, and m is the mass of the 
electron.. This expression omits some terms such as those involving rclativistic interactions, 
but it captures the essent al features for nanoscale matter.

Using the Hamiltonian in Eq. (1), the quantum mechanical equation known as the 
Schrodinger equation for the electronic structure of the system can be written as

R2, £3, . . . ;  F|. /s, r*--- )^ (R ln R2, R^ r2i . . . )

=  £ * ( / ? , ,  (2)

where E  is the total electronic energy of the system and is the many-body wave function.
Soon after the discover/ o f the Schrodinger equation, it was recognized that this equation 

provided! the means of solving for the electronic and nuclear degrees o f freedom. Using the 
variation.al principle, which states that an approximate wave function will always have a less 
favorable energy than the true ground-state energy, one has an equation and a method to 
test the solution. One car. estimate the energy from

fV*7fVd*Rid*R2d*R)---d*r{d} r2d*ry --
7  V - w - ’ m -'/?,</•% • • • • • •

How ever, a solution of Eq. (2) for anything more complex than a few particles becomes 
problem atic even with the most powerful computers. Obtaining an approximate solution for 
systems w ith  many atoms is difficult, but considerable progress has been made since the 
advent o f  reliable digital computers.

A  num ber of highly successful approximations have been made to solve for both the 
ground-sitate and excited-state energies. For the most part, these approximations are used

Figure 1. Axtomic and electronic coordinates. The electrons are illustrated by filled circles; the nuclei by open circles.
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to remove as many “ irrelevant" degrees of freedom from the system as possible. One com 
mon approximation is to separate the nuclear and electronic degrees of freedom. Because 
the nuclei are considerably more massive than the electrons, it can be assumed that the 
electrons will respond “ instantaneously”  to the nuclear coordinates. This approximation is 
called the Born-Oppenheim er or adiabatic approximation. It allows one to treat the nuclear 
coordinates as classical parameters. For most condensed matter systems, this assumption is 
highly accurate [2, 3].

2.1. The Hartree Approximation
Another common approximation is to construct a specific form for the many-body wave 
function. If  one can obtain an accurate wave function, then via the variational principle, an 
accurate estimate for the energy will emerge. The most difficult part o f this exercise is using 
physical intuition to define a trial wave function that is close to the true wave function.

One can use some simple limiting cases to illustrate the construction of many-body wave 
functions. Suppose one considers a solution for noninteracting electrons; that is, in Eq. ( I ) ,  
the last term in the Hamiltonian is ignored. In this limit, it is possible to write the many-body 
wave function as a sum of independent Hamiltonians. Using the adiabatic approximation, 
the electronic part of the Ham iltonian becomes

v/ v M y  e2
»A>\.ry r„  . . . )  = £  -  E E  <4 >

Let us define a nuclear potential, VN, which the /th electron sees as

K v (^ )  = - E ^ — V  ( ? )
" =  l I Rf i  r i I

One can now rewrite our simplified Schrodinger equation as

M

'Xc\(ry, r2, ... )«//(/rl , r2, r „  . . . )  = £  H'if/fa, r2, r , , . . .  ) (6)
/=i

where the Ham iltonian for the /th electron is

H i = + y (f.) (7)
2 m

For this simple Ham iltonian, let us write the many-body wave function as

^ (r ,,  r2, r} --- ) = ^i(r,)<^2(r2)^ 3 (r3) • • • (8)

The <f);(r) orbitals can be determined from a “ one-electron” Ham iltonian

—/r V 2 - 1 -
+ K v ( f‘) \<i>(r) = £/<M O ( c;)zm

The index i for the orbital <fij(r) can be taken to include the spin of the electron plus any 
other relevant quantum numbers. This type o f Schrodinger equation can be easily solved for 
fairly complex condensed matter systems. The many-body wave function in Eq. (8 ) is known 
as the Hartree wave function. If  one uses this form of the wave function as an approximation 
to solve the Flam iltonian including the electron-electron interactions, this is known as the 
H artree Approximation. By ignoring the electron-electron terms, the H artree approximation 
treats the electrons moving independently in the nuclear potential. The total energy of the 
system is given by the sum of the eigenvalues, Er
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To obtain a realistic Ham iltonian, the electron-electron interactions must be reinstated in 
Eq. ((i).

In this case, the individual orbitals cp,(r) can be determ ined by minimizing the total energy 
as per Eq . (3), with the constraint that the wave function be normalized. This minimization 
procedure results in the following Hartrec equation.

-h2?- ^  r e2\4)j(r')\2 ;
+ V A r ) +  £

: ' \f ~
d*r

j =  i • j
( 11)

Using the orbitals 4>(r) from a solution of Eq. (11), the H artrce many-body wave function 
can be constructed and the total energy determined from Eq. (3).

The Hartree approximation is useful as an illustrative tool, but it is not a very accurate 
approximation. A  significant failing of the Hartree wave function is that it does not reflect 
the antisymmetric nature of the electrons, as required by the Pauli principle [4]. Moreover, 
the Hartree equation is difficult to solve. The Ham iltonian is orbital dependent because the 
summation in Eq. (11) does not include the /th orbital. This means that if there are M 
electrons, then M Ham iltonians must be considered and Eq . (11) must be solved for each 
orbital.

2.2. The Hartree-Fock Approximation
It is possible to write down a many-body wave function that reflects the antisymmetric nature 
of the wave function. In this approach, the spin coordinate o f each electron is explicitly 
treated. The coordinates of an electron may be specified by r,sn where s, represents the spin 
coordinate. Starting with one-electron orbitals, </>,(r.s), the following form can be invoked.

^ (jy s ’n r2s2, .. . )  =

< M 'V l )  $ \(?2S2.
i) 2

< M 'V  i)

$  I ( fMSM)

( 12)

This form of the wave function is called a Slater determinant. It reflects the proper sym
metry of the wave function and the Pauli principle. If  two electrons occupy the same orbit, 
two rows of the determ inant will be identical, and the many-body wave function will have 
zero amplitude. Likewise, the determ inant will vanish if two electrons occupy the same point 
in generalized space (i.e., flsl = r-j-), as two columns o f the determ inant will be identi
cal. If  two particles are exchanged, this corresponds to a sign change in the determinant. 
The Slater determinant is a convenient representation, but it is an ansatz. It is probably the 
simplest many-body-waved function that incorporates the required symmetry properties for 
fermions, or particles with noninteger spins.

I f  one uses a Slater determ inant to evaluate the total electronic energy and maintains 
wave function normalization, the orbitals can be obtained from the following Hartree-Fock 
equations:

W h ir )  = m
+ y x < n  + t f p q - ^

J  \r - r

~ E  I r  -,i (l>*(r)<l>i(r)d}r'8 <f>j(r) = E,<t>,(r)U  j \r-r\ 1 ' (1 3 )
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It is customary to simplify this expression by defining an electronic charge density, p:

p ( r )  = £ > y( r ) | 2 (14)
7=1

and an orbital dependent exchange-charge density p-" for the /th orbital

yt r  « ( r ) * ( r )

This “ density”  involves a spin-dependent factor that couples only states ( i , j )  with the same 
spin coordinates (s,-,sy).

W ith  these charge densities defined, it is possible to define corresponding potentials. The 
Coulom b or Hartree potential VH is defined by

V „(r) = [  p ( r ) - ^ — d3r' (16)J \r - r |

and an exchange potential can be defined by
■>

V l(r) = - f p ? l-\r,F)j^-=r d3r' (17)

This combination results in the following Hartree-Fock equation

<l>j(r) = E,4>,(r) (18)
I- y

=—  + V s ( r )+ V „ ( f )+ V ‘t(r )) M

Once the Hartree-Fock orbitals have been obtained, the total Hartree-Fock electronic 
energy of the system, E Hi., can be obtained from

£■„, = £ E ,  -  \ Ip { r )V H{f)d3r - i f : / ^ ; ( F ) 0 (. ( r ) ^ ( r ) r f - V  (19)

£ //F is not a sum of the Hartree-Fock orbital energies E r  The factor of  ̂ in the electron- 
electron terms arises because the electron-electron interactions have been double counted 
in the Coulomb and exchange potentials. The H artree-Fock Schrodinger equation is only 
slightly more complex than the Hartree equation. Again, the equations are difficult to solve 
because the exchange potential is orbital dependent.

There is one notable difference in the Hartree-Fock summations compared to the Hartree 
summation. The Hartree-Fock sums include the i = j terms found in Eq . (13). This d iffer
ence arises because the exchange term corresponding to / = j cancels an equivalent term in 
the Coulomb summation. The / =  j  term in both the Coulomb and exchange term is in ter
preted as a “ self-screening" of the electron. W ithout a cancellation between Coulomb and 
exchange terms, a “ self-energy” contribution to the total energy would occur. Approximate 
forms of the exchange potential often do not have this property. The total energy then con
tains a self-energy contribution that one needs to remove to obtain a correct Hartree-Fock 
energy.

The Hartree-Fock equation is an approximate solution to the true ground-state many- 
body wave functions. Terms not included in the Hartree-Fock energy are referred to as 
correlation contributions. One definition for the correlation energy Ecorr is to write it as 
the difference between the exact total energy o f the system E cxacl and the Hartree-Fock 
energies: f corr = E CVIC[ — E HF. Correlation energies may he included by considering Slater 
determinants composed of orbitals that represent excited-state contributions. This method of 
including unoccupied orbitals in the many body wave function is referred to as configuration 
interactions or C Is  [5].

Applying Hartree-Fock wave functions to systems with many atoms is not routine. The 
resulting Hartree-Fock equations are often too complex to be solved for extended systems.
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except in special cases. The number of electronic degrees of freedom grows rapidly, with 
the number of atoms often prohibiting an accurate solution, or even one's ability to store 
the resulting wave function. As such, it has been argued that a “ wave function" approach to 
systems with many atoms does not offer a satisfactory approach to the electronic structure 
problem. An alternate approach is based on density-functional theory.

3. DENSITY-FUNCTIONAL APPROACHES
Descriptions of quantum states based on a knowledge of the electronic charge density 
[Eq . (14)] have existed since the 1920s. For example, the Thom as-Ferm i description, based 
on a knowledge o f p(r ), was one o f the first attempts at quantitative theory for the electronic 
structure of atoms [6-8]. However, most treatments of density-functional theory begin by 
considering a free-electron gas o f uniform charge density. The justification for this starting 
point comes from the observation that simple metals like aluminum and sodium have prop
erties that appear to resemble those of a free-electron gas. A  “ free-electron" model cannot 
bc applied to systems with localized electrons, such as highly covalent materials like carbon 
or highly ionic materials like sodium chloride.

3.1. Free-Electron Gas
Perhaps the simplest description o f a condensed matter system is to imagine noninteracting 
electrons contained within a box of volume 1). The Schrodinger equation for this system is 
sim ilar to Eq . (9 ) with the potential set to zero.

i- 2 y’ '
c b ( ? )  =  £ < ! > ( ? )  (20)

2 m
Ignoring spin for the moment, the solution of Eq. (20) is

(H r ) = exp (/A: • r) (21)

The variable k is called a wave vector. The energy is given by E(k) = Irk 1/2m, and the 
charge density by p = 1/il.

A  key issue in describing systems with a very large number of atoms is to account properly 
for the number of states. In the limit of systems corresponding to crystalline states, the 
eigenvalues arc closely spaced and essentially “ infinite”  in number. For example, if one has 
a mole o f atoms, then one can expect to have ~  1023 occupied states. In such systems, the 
number of states per unit energy is a natural measure to describe the energy distribution of 
states.

It is easy to do this with periodic boundary conditions. Suppose one considers a one
dimensional specimen of length L. In this case the w'ave functions obey the rule <p(x + L) =

as A' -f L corresponds in all physical properties to .v. Fo r a free-electron wave function, 
this requirement can be expressed as exp[/A(.v -f- L)\ = exp(ikx) or as exp(zA'L) — 1 or 
k = 27th/L, where n is an integer.

Periodic boundary conditions force k to be a discrete variable, with allowed values occur
ring at intervals of 2it/L. For very large systems, one can describe the system as continuous 
in the lim it of L  -> oo. E lectron states can be defined by a density of states, defined as 
follows

O ( E )  = . *22)A/r—o A E a t
where N (E )  is the number of states whose energy resides below E. For the one-dimensional 
case, N(k) = 2k/(2ir/L) (the factor of two coming from spin) and dN/ciE_ = (dN/dk) ■ 
( dk/dE). Using E(k ) — h2k2/2nu we have k — s/2mE/h and dk/dE — \j2m/E/h. This 
result for this one-dimensional density of states is

D (E)  -  J — j2m /E  (23)
277/1



804 E le c t ro n ic  S tru c tu re  o f  C lu ste rs  and  N anocrysta ls

The density of states for a one-dimensional system diverges as E  0. This divergence of 
D (E)  is not a serious issue, as the integral of the density of states remains finite. In three 
dimensions, it is straightforward to show

The singularity is removed, although a discontinuity in the derivative exists as E  -> 0.
One can determ ine the total number of electrons in the system by integrating the density 

o f states up to the highest occupied energy level. The energy of the highest occupied states 
is called the Ferm i level or Ferm i Energy, E f

[  1 V Ed E  (25)
./n

and
3tt2Nh ~  I  37T ~ I \  \ 

1 2m \ 11 /
(26)

By  defining a Ferm i wave vector as kt = (37r2//e() 1 where nc, is the electron density nd = 
N/Q of the system, one can write

h2k2
E f = ^  (27)2m

It should be noted that typical values for E, for simple metals like sodium or potassium are 
on the order of several eV s. If  one defines a temperature 7}, where Tf = E f/kh and kh is 
the Boltzmann constant, typical values for 7} might be 104 K. A t ambient temperatures, one 
can often neglect the role of temperature in determ ining the Ferm i Energy.

3.2. Hartree-Fock Exchange in a Free-Electron Gas
For a free-electron gas, it is possible to evaluate the H artree-Fock exchange energy 
directly [9, 10]. The Slater determ inant is constructed using free-electrons orbitals. Each 
orbital is labeled by a A: and a spin index. The Coulomb potential for an infinite free-electron 
gas diverges, but this divergence can be removed by imposing a compensating uniform pos
itive charge. The resulting Hartree-Fock eigenvalues can be written as

= t r k _ \_ _ 4ire- _
2m n ^ kf]k_ kr.

where the summation is over occupied k-states. It is possible to evaluate the summation by 
transposing the summation to an integration. This transposition is often done for solid-state 
systems, as the state density is so high that the system can be treated as a continuum

^kfric. \k-k'\- ( 2 - v h  L. - k - k ' r

This integral can be solved analytically [10]. The resulting eigenvalues are giver by

(30)
h2k2 e2kf E, = ---------- -a

\ — (k/kf )“ | k + k f 1 j ------ > jn
k j k f) I A — ki u

Using the above expression and Eq . (19), the total electron energy Ej'/j(' for a free-electron 
gas within the H artree-Fock approximation is given by
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The factor of 2 in tine first term comes from spin. In the exchange term, there is no extra 
factor of 2 because o ie  can subtract off a “ double counting term " [see Eq. (19)]. The 
suiThmations can be executed as per Eq. (29) to yield

E ^ '/ N  = -E f - ~ k ,  (32)

The first term corresponds to the average energy per electron in a free-electron gas. The 
second term corresponJs to the exchange energy per electron. The exchange energy is attrac
tive and scales with th: cube root of the average density. This form provides a clue as to 
w hat form the exchamce energy might take in an interacting electron gas or a nonuniform 
electron  gas.

Sl.ater was one of the first to propose replacing V[ in Eq . (18) by a term that depends 
only on the cube root jf  the charge density [11-13]. By  analogy to Eq. (32), he suggested 
that V ‘ be replaced by

y^'\l>(r)\  = (37TP ( r ) p  (33)111
This, expression is not orbital dependent. As such, a solution of the Hartree-Fock equa
tion [Eq . (18)] using j/>l:itcr is much easier to implement. Although Slater exchange was not 
rigoirously justified for nonuniform electron gases, it has been quite successful in replicat
ing tthe essential features of atomic and molecular systems as determined by Hartree-Fock 
calculations [11-13].

3.3. Density-Functional Theory
In a number of classic papers, Hohenberg, Kohn, and Sham established a theoretical basis 
for jjustifying the replacement o f the many-body wave function by one-electron orbitals 
[8, 14, 15]. In particular, they proposed that the charge density played a central role in 
describing the electronic structure of matter. A  key aspect o f their work is the local density 
approximation or L D A . W ithin this approximation, one can express the exchange energy as

£ ,l P(r)\= {  p(r)'t\[p(r)]d'r (34)

w here f x[p] is the exchange energy per particle of uniform gas at a density of p. W ithin this 
fram ework, the exchange potential in Eq. (18) is replaced by a potential determined from 
the functional derivative of Kx[p ]

K,[pl = S ’! (35)8p

One serious issue is the determination of the exchange energy per particle Xx or the cor
responding exchange potential Vx. The exact expression for either of these quantities is 
unkmown, save for special cases. If  one assumes the exchange energy is given by Eq. (32) 
(i.e., the Hartree-Fock expression for the exchange energy o f the free-electron gas), then 
one can  write

£ vlp] = ~ ^ ( 3 ^ : ) ' ■' f [ p ( r ) ] 4/- V r  (36)

and, taking the functional derivative, one obtains
*■>

v Ap\ = — —  [3?T2p {r)]r ' (37)n
Comiparing this equation to the form chosen by Slater, this form, known as Kohn-Sham 
exchamge VXKS, differs by a factor of 2/3 (i.e., Vxs = 2I/xslaler/3). For a number of years, some 
controversy existed as to whether the Kohn-Sham  or Slater exchange was more accurate 
for nealistic systems [8]. Slater suggested that a parameter be introduced that would allow
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one to vary the exchange between the Slater and Kohn-Sham values [13]. The parameter, 
a, was often placed in front of the Slater exchange: Vxa = a K vslalcr. The variable a was 
often chosen to replicate some known feature of a exact Hartree-Fock calculation, such 
as the total energy of an atom or ion. Acceptable values of a were viewed to range from 
a = 2/3 to a = 1. Slater’s so-called “ X a” method was very successful in describing molecular 
systems [13]. Notable drawbacks of the X a method center on its ad hoc nature through the 
a parameter and the omission o f an explicit treatment of correlation energies.

In contemporary theories, a is taken to be 2/3, and correlation energies are explicitly 
included in the energy functionals [8]. Numerical studies have been performed on uniform 
electron gases, resulting in local density expressions of the form Vxc[p(r)] = Vx[p(r)\ + 
Vc[p(r)], where Vc represents contributions to the total energy beyond the Hartree-Fock 
lim it [16]. It is also possible to describe the role of spin explicitly by considering the charge 
density for up signs and down spins: p = pt +pr  This approximation is called the local spin 
density approximation [8].

The Kohn-Sham  equation[15] for the electronic structure of matter is given by

( ~~ — + VN{r )  + V „(r ) + K u.[p (F )]|< £ ,(r) = £ > ,(/ : ) (38)
I 2m I

This equation is usually solved “ self-consistently.” An  approximate charge is assumed to esti
mate the exchange-correlation potential, and this charge is used to determine the Hartree 
potential from Eq. (16). These approximate potentials are inserted in the Kohn-Sham equa
tion, and the total charge density is determined as in Eq. (14). The “ output" charge density is 
used to construct new exchange-correlation and Hartree potentials. The process is repeated 
until the input and output charge densities or potentials are identical to within some pre
scribed tolerance.

Once a solution of the Kohn-Sham  equation is obtained, the total energy can be computed 
from

M
e ks  =  Y , E i ~  ] /2 / p i T ) V n ( r ) d yr ^  f p ( r ) { E X(, [ p ( f ) ]  - Vxc[p(f)\}d r  (39)

i

where EX( is a generalization o f Eq . (34), (i.e., the correlation energy density is included). 
The electronic energy as determ ined from E KS must be added to the ion-ion interactions 
to obtain the structural energies. This is a straightforward calculation for confined systems. 
For extended systems such as crystals, the calculations can be done using Madelung summa
tion techniques [17].

Owing to its ease of implementation and overall accuracy, the L D A  is a popular choice 
for describing the electronic structure of matter. It is relatively easy to implement and sur
prisingly accurate. Recent developments have included so-called gradient corrections to the 
local density approximation. In  this approach, the exchange-correlation energy depends on 
the gradient of the density. This approach is called the generalized gradient approximation, 
or G G A  [18].

W hen first proposed, density-functional theory was not widely accepted within the chem 
istry community. The theory is not “ rigorous” in the sense that it is not clear how to 
improve the estimates for the ground-state energies. For wave function-based methods, one 
can include more Slater determinants, as in a configuration interaction approach. As the 
wave functions improve via the variational theorem, the energy is lowered. The Kohn-Sham 
equation is variational, but because of its approximate form, it need not approach the true 
ground-state energy. This is not a problem, provided that one is interested in relative ener
gies and that any inherent density-functional errors cancel in the difference. For example, 
if the Kohn-Sham  energy of an atom is 10% too high and the corresponding energj o f the 
atom in a crystal is also 10% too high, the cohesive energies that involve the difference of 
the two energies can be better than the nominal 10% error of the absolute energies. An  
outstanding fundamental issue of using density-functional theory is obtaining an cib initio 
estimate of the cancellation errors.
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Ini some sense, density-functional iheorv is an a posteri theory. G iven the transference 
of the exchange-correlation energies from an electron gas, it is not surprising that errors 
wou ld arise in its implementation n> highl\ nonuniform electron gas systems, as found in 
realiistic systems. However, the degree of error cancellations is rarely known a priori. The 
re liab ility  of density-functional theory has been established by numerous calculations for a 
wide- variety  o f condensed matter systems. For example, the cohesive energies, compressibil
ity, structural parameters, and vibrational spectra of elemental solids have been calculated 
with in the density-functional theory [19]. The accuracy of the method is best for systems 
in w hich the cancellation of errors is expected to be complete. Because cohesive energies 
invoilve tJhe difference in energies between atoms in solids and in free space, error cancel
lations are  expected to be significant. This is reflected by the fact that historically, cohesive 
ener gies have presented greater challenges for density-functional theory; the errors between 
theory and experiment are typically -5-10%. depending on the nature of the density func
tion. In  contrast, vibrational frequencies that involve small structural changes within a given 
cryst alline environment are easily reproduced to within 1-2%.

3.4. Time-Dependent Density Functional Theory
O ne o f the most significant limitations of “ conventional”  density-functional formalism is 
its iniability to deal with electronic excitations. W ith in time-independent, or static, density- 
functtiona.1 theory, a quantum mechanical system is described through the ground-state elec- 
troniic ch.arge density. Although this approach can be accurate for the ground-state of a 
many-eletctron system, unoccupied electronic states cannot be identified as those belonging 
to e lectronic, or quasi-particle, excitations [20, 21]. The inability o f “ conventional”  density- 
functional theory to describe excitations severely restricts its range of applications, as many 
im portan t physical properties such as optical absorption and emission are associated with 
exciUed st.ates.

Explicitt calculations for excited states present enormous challenges for theoretical meth
ods. Accurate calculations for excitation energies and absorption spectra typically require 
com putationally  intensive techniques, such as the configuration interaction method [22, 231, 
quantum M onte Carlo simulations [24-26], or G reen 's function methods [27-29]. Although 
these methods describe electronic excitations properly, they are usually limited to very small 
systeims because of high computational demands. An alternative approach is to consider 
methods Ibased on time-dependent density-functional theory such as those using the time* 
dependen t local density approximation (T D L D A )  [20, 21, 30-38].

Th«e T D L D A  technique can be viewed as a natural extension of the ground-state density- 
funct;ionall L D A  formalism, designed to include the proper representation of excited states. 
T D L iD A  excitation energies of a many-electron system are usually computed from conven
tional, time-independent Kohn-Sham  transition energies and wave functions. Compared to 
other theoretical methods for excited states, the T D L D A  technique requires considerably 
less com putational effort. Despite its relative simplicity, the T D L D A  method incorporates 
screening and relevant correlation effects for electronic excitations [20, 21, 30, 31]. In this 
sense., T D L D A  represents a fully ah initio formalism for excited states.

As in the case of time-independent density functional theory, the time-dependent form al
ism neductes the many-electron problem to a set o f self-consistent single-particle equations 
[39, 40]

In thus casie, the single-particle wave functions <//,(r, /) and the effective potential uell[p (r , /)] 
explicitly depend on time. The effective potential is given by

(40)

ueff[p(r, 0 ]  = E  lV>»(r -  O  + Vn\p(r. /)] + usc[p (r, 0 ] (41)
il
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The three terms on the right side of Eq . (41) describe the external ionic potential, the poten
tial Hartree, and the exchange-correlation potential, respectively. In the adiabatic approxi
mation, which is local in time, the exchange-correlation potential and its first derivative can 
be expressed in terms of the time-independent exchange-correlation energy £ xc[p]

r , S i 'x c M r- 0 ] # 82E  [p]
VK p ( r - 0  = o T  s s ~, ~  • =o{t - t  ) (42)8p(r )  8p(r\ t ) 8p(r)8p{r')

The L D A  makes a separate local approximation (i.e., within the L D A , the exchange- 
correlation energy density is local in space).

Although L D A  in time-dependent density-function theory has proven itself for molecules, 
clusters, and small quantum dots and small clusters, several questions remain as areas of 
active research. The application of T D L D A  to large, extended systems remains problem
atic. It is widely accepted that T D L D A  as outlined here will approach the L D A  results for 
extended systems and, consequently, suffer the flaws of L D A  such as exhibiting band gaps 
much smaller than experiment [41-43].

Most implementations of time-dependent density-functional theory are based on the L D A  
or the G O A  [44, 45]. However, these approximations are known to have the wrong asymp
totic behavior (e.g., the potential does not scale as \/r for large distances). It is widely
believed that more accurate T D L D A  methods will necessitate other forms of the density 
function. Examples of such an approach are the asymptotically corrected LD A s  introduced 
by Casida and Salahub [46], and by van Leeuwen and Baerends [47]. These potentials have 
recently been investigated using the current formalism [48].

The linear response formalism within time-dependent density functional theory (T D D F T )  
provides a theoretical basis for the T D L D A  method. In this section, we illustrate how 
T D L D A  excitation energies and oscillator strengths are derived from single-electron Kohn- 
Sham eigenvalues and eigen wave functions. A  comprehensive analysis of time-dependent 
density functional response theory can be found elsewhere [20, 21, 30, 31]. The notation in 
the work by Casida [30, 31] is implemented w ithin this section.

The response of the Kohn-Sham  density matrix within T D D F T  is obtained by intro
ducing a time-dependent perturbation 8 u ippi(r ,  / )• Because o f the self-consistent nature of 
the Kohn-Sham  Ham iltonian, the effective perturbation includes the response of the self- 
consistent field, 8vsn.[p(r, /)]

Sv^f[p (r . 0 ] =  <5uippi(r ,  I) + 5uSCF[p (r . /)] (43)

w'here the self-consistent field is given by the last two terms in Eq. (41)

*’sn [P (r ,  0 ]  = /  7 '-  dr 4- i'xc[p (r , /)] (44)J [r — r |

W ith  the frequency domain, the response o f the Kohn-Sham  density matrix, 8 P (w ) to the 
perturbation can be derived using a generalized susceptibility ,¥(<*>)• F ° r quasi-independent 
Kohn-Sham  particles, the sum-over-states representation of the generalized susceptibility is 
given by

A',„,*/>■’) =
CO -  0) f k ,

where A,,.. = nlr — nkr is the difference between the occupation numbers, and o>/A.r — ekr — 
€ j- is the difference between the eigenvalues of the /th and kth single-particle states. The 
susceptibility in Eq. (45) is expressed in the basis of the unperturbed Kohn-Sham orbitals 

and the indices refer to space (/. /, or k. /) and spin (</ or r) w a v e  components. The 
linear response of the density matrix is
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E q u a tio n  (46) is, however, complicated by the fact that S i'SCT(w ) depends on the response 
of the density matrix

Sv^ (c j) = Y .K ijir_klT8PklT{<o) (47)
k lr

whe re the coupling matrix K  describes the response of the self-consistent field to changes in 
the charge density. W ithin the adiabatic approximation, this matrix is frequency independent. 
The analytical expression for the adiabatic coupling matrix K^{T kl. = /dPk,T can be 
derived  from  Eq. (44) bv making use of the functional chain rule

’ -  / / * » M r > ( j F r 7 i +  <48)

The functional derivative in Eq . (48) is evaluated with respect to the unperturbed charge 
densities.. B y  using the coupling matrix, Eq. (46) can be rewritten as

Becatuse the summation in Eq. (49) is performed over all occupied and unoccupied orbitals, 
it conta ins both the particle-hole and hole-particle contributions. These contributions can be 
writt en a:s two separate equations: the particle-hole part o f uapp,(o>) is given by

E  (  8l.k8] J 8 „ ' ” ~~ -  K ijir klT)  8PklT(co) -  £  K lj<rJkTSPlkT(a}) = 8v^\w) (50)
klr '  Alkr / kh

and the hole-particle part o f u lppi(w ) is

A A.,,r>{)

k I t  ^  /vk h  /  k I t

,T>() /  CO \  ^A/r

E 8i.k8iAr.T0~l—  -  ) 8PltA u ) - E K llirMM \ lT(w) = Svffito) (51)
l * r  V A k h  /  i  I t

Comibining Eqs. (50) and (51), one can separate the real and imaginary parts of the density 
matrix response 8P(a>). I f  the basis functions {tA„r } in Eq. (48) are real, the coupling matrix 
K  is also real and symmetric with respect to the interchange of space indices / j  and
k <-> I. Because 8P(co) is hermitian (i.e., 8P,iir = 8P* r), the real part o f (5F(o>) for a real 
perturbat ion u ippi(a>) is given by

a*/t>0 r 8. k8f- ,8ir - ,
‘■k l J  ( c o 2 - a > i h ) - 2 K iilT. k hE

k l r k l :

»i (SI\lT)(co) = 8iC'(<o) (52)

w here 5H(8Pij(J){co) denotes the Fourier transform of the real part of 8PIJ(T{t).
Eq u a tio n  (52) can be used to obtain the density-functional expression for the dynamic 

polarizabiility. This is accomplished by introducing a perturbation Sv pl(t) = yr£y(t), where 
is an external electric field applied along the y-axis, y = {x, y, z). The linear response 

o f thie dipole moment 8fi(co) is expressed through of the real part o f 8P(co) as

A(.,r >0

Sfipito) = —2 E  PilJ i (8 P ija)(a>) j8 -  {.v, y, z} (53)
i ja

The com ponents of the dynamic polarizability tensor are given by

al3y{w) = - - E  (3, y = {x ,y ,z }  (54)* y(CO)
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Solving Eq . (52) with respect to ))\(8Pil<r)((v) and substituting the result into Eq. (54), one 
obtains the following matrix equation for the polarizability components

apy(co) = 2/3R1 : (Q  -  co2\ y [R w2y 0 , y = {.v, y, z} (55)

where the matrices R  and Q  are given by

R i j a . k l r  =  & i .  k ^ j .  I ^ t r .  T ^ k h ^ k l r  ( ^ )

Q  i j a . A/r ^  i. k ^  j .  1^ a , r ^ k l r  ^  ijtr. k h ' J  ^ k l r ^ k l r  (~ ^ )

The T D L D A  expressions for excitation energies and oscillator strengths can be derived 
by comparing Eq . (55) with the general sum-over-states formula for the average d\namic 
polarizability, (a (co )) = tr (a ^ y(o>))/3 = E / / / / (^ /  -  The true excitation energies i l h 
which correspond to the poles of the dynamic polarizability, are obtained from the solution 
of the eigenvalue problem

QF, = n 2 F , (58)

The oscillator strengths /,, which correspond to the residues of the dynamic polarizability. 
are given by

// = ? E | B j R ,/2F /|2 (59)
i

where F , are the eigenvectors o f Eq. (58), (Z^),, = J  ijj*rpi/jjdr, and {/*,, r2, /•*}■ = {.v, v ,z }.
The adiabatic T D L D A  calculations for optical spectra require only the knowledge of the 

time-independent single-electron Kohn-Sham  transition energies and wave functions. The 
most com putationally demanding part in such calculations is the evaluation of the coupling 
matrix given by Eq . (48). This equation can be split into two parts: K  — K (/) _ j_  k (//). The first
term represents a double integral over l/ |r — r |. Instead of performing the costly double 
integration by direct summation, we calculate this term by solving the Poisson equation 
within the boundary domain. The conjugate-gradient method is employed to solve

V 2̂ r( r )  = - 4 7 T ^ 7(r)i///fr( r )  (60)

The first term in Eq . (48) is calculated as

Ku'd.kh=-- f  (61)

The Poisson equation method provides a considerable speed-up as compared to the direct 
summation. The second term in Eq. (48) represents a double integral over the func
tional derivative of the exchange-correlation energy S2E xc[p] / Sp(T(r)8pT{v'). W ithin the local 
approximation of the exchange-correlation potential, this term is reduced to a single integral

” \h = / ' ^ ( r ) 0 , r( r ) - ^ ^ - ^ 7( r ) ^ ( r ) r f r  (62)J 8p<r(r)bpT(r)

where the L D A  exchange-correlation energy £ xc[p] is analogous to Eq . (34).
Eq. (62) requires the evaluation of the second derivatives for the L D A  exchange- 

correlation energy with respect to spin-up and spin-down charge densities. The L D A  
exchange energy per particle is normally approximated bv that of the homogeneous electron 
gas [49]

<UPn-(r)j =  [6 7 T -p „ ( r ) ] l;-' i t  —  { "f, J,} ((13)
4 7T

The first derivative o f the total exchange energy determines the L D A  exchange potential

= --■ (67r p , r)["' (T =  {f , (ti4l
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The seco>nd derivatives are

<5-£Jp] / 2 v 1 ’ _2.„ 5 - £ Jp ]I  - \ ' ’ 5: £ J p l
~  ^  T— = " (65)V 9?7) bp, bp8 p ,5 p r V977/ Sp ,6 p j

A  parameterized form of the Ceperley-Aldcr functional [16, 50. 51] can be used for the 
L D A  correlation energy. This functional is based on two different analytical expressions for 
rs < 1 and rs > 1, where rs = (3/47rp )1 3 is the local Seitz radius and p — p] 4- p . One 
can adjust the parametrization for i\ < 1 to guarantee a continuous second derivative of 
the corre lation  energy. The adjusted interpolation form ula for the correlation energy per 
partiicle is given by [52]

u F I A In rs + B -f C/\ In t\ + Drs + XV; In rs rs <1 
6c =  | y / ( l + i 8 lv ^  + i3: r,) rs > I, (6

w here  tw'o separate sets of coefficients are used for the polarized spin (P )  and unpolarized 
spin (U) cases. The numerical values of all fitting parameters appearing in Eq. (66) can be 
foun<d in IRef. [53]. The adjusted interpolation formula for the correlation energy is continuous 
up to  its second derivative, whereas the original Perdew-Zunger parametrization is not [51].

Eq u a tion s  (63) through (66) describe only the cases of the com pletely polarized and unpo
larized sp>in. For intermediate spin polarizations, the correlation energy can be obtained with 
a sim ple interpolation formula

e. =e[.  + f ( p ) ( e ' ' - e f )  (67)

w here

'1  = 7  * . - 7 ?  «*>

The expression for the second derivative of the correlation energy in case of an arbitrary
spin polarization can be written as

+ t m  +
op,(T8pT 8p~ \ bp- 8p- ) \ dp,r dpT / \ tip Sp

+  ~ ~ r p { <  -  <  ) <r.T =  { t . U  (69)
Ptr  P t

w here the spin polarization function £(p) and its derivatives are given by

^ (P )  4 (70)

[.v--''-8.vJ/J + 7 ( A f  + A-{°)] (71)

9P t

r i 1'aro1

d2Up) 4
<3pt <9pt 9p-( 1 - 2  '«)

d2i(p ) 4
dprdpl 9p-(l - 2  '*)- f7 (A |- , + ^ ) - 4 ( . c ; /-, + A-;'-')] (72)

Thie T D L D A  formalism presented in previous sections can be further simplified for sys
tems with the unpolarized spin. In this case, the spin-up and spin-down charge densities are
equal,, .= p 4, and Eqs. (68) and (70)—(72) yield

;>:( ( p ) 4
£ (p ) = o -u ’<>p.r>pi 9p2 (2 1 ’ — 1)

(73)
dg(p) = 0 ’ht{p) = ________ 4 ______
ilp. (>p. i>p, i)p2 (2 1 ' — 1)
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Because the coordinate parts of spin-up and spin-down Kohn-Sham  wave functions for sys
tems with the unpolarized spin are identical, ipj] = (//, , it follows that Qtj]_ki\ = Qa\.k \ aiu* 
Qij ] kli = Qjj] . /c/1 * This allows us to separate "singlet" and “ triplet" transitions b\ represent
ing Eq. (58) in the basis set o f { F f , F  }, chosen as

In this basis, the matrix Q becomes

Q . i . k i  1 =  8 i . k s i . i <ah  +  2 \/A „ w „  K !t k i } \; K i m u  ( 75 )Y i) ij i)

where K ■■ k, = Kr]] kl] ± Kij] kli. The components of K ' • 1 in their explicit form are 
given by

.  /■ r iA,(r)'A7(r)iAA-(r,)iA ,(r')
>' = 2 I ------- n— 7 i-------- ' , r ' '

+ 2 / f  ( r ) i A , ( r ) ( ^ S _  -  —  ' ~  j I  ■'I '■! f r i ./r (7(i)
•/ ' V. op- (977op- (9 77*)1 'p-

*„.*/ = 2 I  li’i i r )^ ( r ) (^ 7 5 - r j |  ~ (9jr)! jpJ;, (r)V',(r) </r (77)

For most practical applications, only “ singlet” transitions represented by the F + basis /ectors 
are of interest. Triplet transitions described by the F  vectors have zero dipole os:illator 
strength and do not contribute to optical absorption. By solving Eq . (58) for the F + /ectors 
only, one can reduce the dimension of the eigenvalue problem by a factor of two. Ecs. (75) 
through (77), however, can only be applied to systems with unpolarized spin. In case of an 
arbitrary spin polarization, the general form of the matrix Q presented by Eq . (57), vith the 
coupling matrix given by Eq. (48) and the functional derivatives given by Eqs. (64) tirough 
(72), must be used.

O ther than the adiabatic local density approximation, no other approximations ha'e been 
made. The exact solution of the matrix equation (58) incorporates all relevant correlations 
among single-particle transitions.

The frequency-domain approach presented here lends itself naturally to a massively par
allel solution within the real-space grid. A  practical solution begins with solving the Kohn- 
Sham equation (Eq . 38). Once the Kohn-Sham  equation is solved, the wave functions and 
eigenvalues can be used to set up the T D L D A  equation for the excited states. Forrring the 
coupling matrix [Eq . (48)] is the most computationally intensive step. Fortunately, eich ijcr 
combination defines a row in the coupling matrix. As such, it is easy to parallelize a solution 
to Eq. (60). Once this step is accomplished, one may evaluate the integrals of Eqs. (->1) and 
(62) as simple sums for each element within a matrix row. The evaluation of each matrix 
row is completely independent of the evaluation of another row, leading to enbarnssingly 
simple parallelization, with no need for communication between processors working on d if
ferent matrix rows. The matrix is diagonalizcd once, using any off-the-shelf diagomlization 
approach. Further implementation details can be found elsewhere [54].

4. PSEUDOPOTENTIALS
The pseudopotential model of a soiid has led the way in providing a workable model for 
computing the electronic properties of materials [55]. For example, it is now possible to 
predict accurately the properties of complex systems such as quantum dots or semiconductor 
liquids with hundreds, if not thousands, o f atoms.

The pseudopotential model treats matter as a sea of valence electrons moving in a back
ground of ion cores (Fig. 2). The cores are composed of nuclei and inert inrer eedrons.
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Figure 2. Standard pseudopotential model of a solid. The ion cores composed of the nuclei and tightly bound core 
electrons are treated as chemically inert. The pseudopoteniial model describes only the outer, chemically active, 
valence electrons.

W ith in  this model, many of the complexities of an all-electron calculation are avoided. 
A  group I V  solid such as C, with six electrons, is treated in a sim ilar fashion to Pb, with 82 
electrons, because both elements have four valence electrons.

Pseudopotential calculations center on the accuracy of the valence electron wave function 
in the spatial region away from the core (i.e., within the “ chemically active”  bonding region). 
The smoothly varying pseudo-wave function is taken to be identical to the appropriate all- 
electron wave function in the bonding regions. A  similar construction was introduced by 
Ferm i in 1934 [56] to account for the shift in the wave functions of high-lying states of 
alkali atoms subject to perturbations from foreign atoms. In his remarkable paper, Fermi 
introduced the conceptual basis for both the pseudopotential and the scattering length. In 
his analysis, Ferm i noted that it was not necessary to know the details of the scattering 
potential. Any number of potentials that reproduced the phase shifts of interest would yield 
sim ilar scattering events.

A  significant advance in the construction of pseudopotentials occurred with the develop
ment of density-functional theory [8, 14, 15]. W ithin density-functional theory, the many-body 
problem is mapped onto a one-electron Hamiltonian. The effects of exchange and correla
tion are subsumed into a one-electron potential that depends only on the charge density. 
This procedure allows for a great simplification of the electronic structure problem. W ith 
out this approach, most electronic structure methods would not be feasible for systems of 
more tham a few atoms. The chief limitation of density-functional methods is that they are 
appropriate only for the ground-state structure and cannot be used to describe excited states 
without other approximations.

In this section, the procedure for constructing an ah initio pseudopotential within density- 
functional theory will be illustrated. Using the approach of Kohn and Sham [15], one can 
write dowm a Hamiltonian corresponding to a one-electron Schrodinger equation. It is not 
difficult to solve the Kohn-Sham  equation [Eq. (87)] for an atom, as the atomic charge den
sity is taken to be spherically symmetric. The problem reduces to solving a one-dimensional 
equation. The Hartree and exchange-correlation potentials can be iterated to form a self- 
consistent field. Usually the process is so quick that it can be done on a desktop or laptop 
computer in a matter of seconds. In three dimensions, as for a complex atomic cluster.
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the problem is highly nontrivial. One major difficulty is the range of length scales involved. 
For example, in the case of a multielectron atom, the most tightly bound core electrons can 
be confined to within ~0 .01 A. whereas the outer valence electrons may extend over ^T-5 A. 
In addition, the nodal structure of the atomic wave functions are difficult to replicate with a 
simple basis— especially the wave function cusp at the origin where the Coulomb potential 
diverges. The pseudopotential approximation elim inates this problem and is quite effica
cious when combined with density-functional theory. However, it should be noted that the 
pseudopotential approximation is not dependent on the density-functional theory: Pseudopo
tentials can be created without resorting to density-functional theory (e.g., pseudopotentials 
can be created within Hartree-Fock theory).

To illustrate the construction of an ab initio pseudopotential, let us consider a sodium 
atom. Extensions to more complex atoms are straightforward. The starting point of any 
pseudopotential construction is to solve for the atom within density-functional theory (i.e., 
the electronic structure problem for the Na atom is solved, including the core and valence 
electrons). In particular, one extracts the eigenvalue e3v and the corresponding wave function 
<Ks(0 for the single-valence electron. Several conditions for the N a pseudopotential are 
employed: the potential binds only the valence electron: the 3.v-electron; the eigenvalue of 
the corresponding valence electron is identical to the full-potential eigenvalue (the “ full 
potential" is also called the “ all-electron”  potential); and the wave function must ->e nodeless 
and identical to the all-electron wave function outside the core region. For example, we 
construct a pseudo-wave function </>;,*(/') such that c/>3v( r ) = for r > / , where /;.
defines the size spanned by the ion core (i.e., the nucleus and core electrons). For Na, this 
means knowing the spatial extent of the size of the ion core, which includes the \s22s?2ph 
states and the nucleus. Typically, the size of the ion core is taken to be less than .he distance 
corresponding to the maximum of the valence wave function as measured from he nucleus, 
but greater than the distance of the outermost node from the nucleus. These valence wave 
functions are depicted in Fig. 3.

The pseudo-wave function </>,,(/*) must be identical to the all-electron wave function 
i^Ai:(r ) outside the core: 4>P(r) ~ </y tiAr ) f ° r r > This condition will guarantee that 
the pseudo-wave function possesses identical properties to the all-electron wave function. 
For /• < rc, one may alter the all-electron wave function as desired within certain limitations 
(e.g., the wave function in this region must be smooth and nodeless).

f (a.u.)

Figure 3. Pseudopotential wave I unctions compared with all-electron wave functions for the sociurn ;,;om. Ihe 
all-electron wave functions are indicated by the dashed lines.
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A n o th e r very important criterion is mandated; namely, the integral of the pseudocharge 
density (i.e., square of the wave function |</>.,(/■)12) within the core should he equal to the 
integral of the all-electron charge density. W ithout this condition, the pseudo-wave function 
can differ by a scaling factor from the all-electron wave function; that is, <j>p(r) = C x if/A,.(/*) 
for ,r > rc> where the constant C may differ from unity. Because we expect the chemical 
bonding of an atom to be highly dependent on the tails o f the valence wave functions, it is 
im perative that the normalized pseudo-wave function be identical to the all-electron wave 
functions. The criterion by which one ensures C = 1 is called norm conserving [57]. Some 
o f the  earliest ab initio potentials did not incorporate this constraint [58]. These potentials 
are mot used for accurate computations. The chemical properties resulting from these ca l
culations using these non-norm conserving pseudopotentials are quite poor w'hen compared 
to experiments or to the more accurate norm-conserving pseudopotentials [55].

In 1980, Kerker [59] proposed a straightforward method for constructing local density 
pseudopotentials that retained the norm-conserving criterion. He suggested that the pseudo- 
wave: function have the following form

(br(r) = r1 exp[/;(/*)] for r < rc (78)

w here p(r) is a simple polynomial /;(/*) = —a{)rA — axr* — a?r2 — and

<t)r(r) = $AE(r) for r > r( (79)

This form of the pseudo-wave function for 4)p assures us that the function will be nodeless 
and have the correct behavior at large r. Kerker proposed criteria for fixing the parameters 
(fl(„  j, a2, and ay). One criterion is that the wave function be norm conserving. O ther criteria 
include that the all-electron and pseudo-wave functions have the same valence eigenvalue, 
that the pseudo-wave function be nodeless and be identical to the all-electron wave function 
for r > rc; and that the pseudo-wave function must be continuous as well as the first and 
secoind derivatives o f the wave function at rc.

O th e r  local density pseudopotentials include those proposed by Hamann, Schliiter, and 
C’hiaing [57]; Bachelet, Hamann, and Schliiter [60]; and Greenside and Schliiter [61]. These 
pseuidopotentials were constructed from a different perspective. The all-electron potential 
was icalculated for the free atom. This potential was multiplied by a smooth, short-range 
cu to ff function that removes the strongly attractive and singular part of the potential. The 
cu to ff function is adjusted numerically to yield eigenvalues equal to the all-electron valence 
eigenvalues and to yield nodeless wave functions converged to the all-electron wave functions 
outside the core region. Again, the pseudocharge within the core is constrained to be equal 
to thie all-electron value.

As indicated, there is some flexibility in constructing pseudopotentials. Although all local 
density pseudopotentials impose the condition that

/.(/-)

for r > rc, the construction for r < r, . is not unique. The nonuniqueness of the pseudo-wave 
function was recognized early in its inception [55]. This attribute can be exploited to optimize 
the convergence of the pseudopotentials for the basis of interest. Much effort has been made 
to construct “ soft”  pseudopotentials. By  soft, one means a rapidly convergent calculation 
using a simple basis such as plane waves. Typically, soft potentials are characterized by a 
large core radius rc. As the core radius becomes larger, the convergence between the all- 
electron and pseudo-wave functions is postponed to larger distances. The quality of the 
pseudo-wave functions starts to deteriorate, and the transferability of the pseudopotential 
between the atom and complex environments such as a cluster of atoms becomes limited.

Severa l schemes have been developed to generate soft pseudopotentials for species that 
extentd effectively the core radius while preserving transferability. The primary motivation 
for such schemes is to reduce the size of the basis. One of the earliest discussions of such 
issues is from Vanderbilt [62]. A  common measure of pseudopotential softness is to examine 
the behavior of the potential in reciprocal space. For example, a hard-core pseudopotential
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(i.e., one that scales as 1 jr2 for small r) will decay only as \/c/ in reciprocal space. This rat? 
o f decay is worse than using the bare coulomb potential, which scales as 1 /cj2.

The Kerker pseudopotential [59] does no better than the coulomb potential, as the Kerke* 
pseudopotential has a discontinuity in its third derivative at the origin and at the cutoff 
radius. This gives rise to a slow 1 /q2 decay of the potential, although one should examine 
each case, as the error introduced by truncation of such a potential in reciprocal space 
may still be acceptable in terms of yielding accurate wave functions and energies. Hamann- 
Schluter-Chiang [57] potentials often converge better than the Kerker potentials [59], h 
that they contain no such discontinuities.

A n  outstanding issue that remains unresolved is the “ best”  criterion to use in constructing 
an “ optim al” pseudopotential. A n  optimal pseudopotential is one that minimizes the number 
of basis functions required to achieve the desired goal; it yields a converged total energy yet 
does not sacrifice transferability.

One straightforward approach to optimizing a pseudopotential is to build additional con
straints into the polynomial given in Eq. (78). For example, suppose we write

P(r) = C„ + J 2 Cnr" (W )
//= 1

In K erker’s scheme, N = 4. However, there is no compelling reason for demanding thit 
the series terminate at this particular point. If  we extend the expansion, we may impose 
additional constraints. For example, we might try to constrain the reciprocal space expansicn 
of the pseudo-wave function so that beyond some momentum cutoff, the function van
ishes. A  different approach has been suggested by Troullier and Martins [63). They wri e 
Eq . (80) as

M O  = C\, + (X )
/#= I

As usual, they constrained the coefficients to be norm conserving. In addition, they 
demanded continuity of the pseudo-wave functions and the first four derivatives al /;. The 
final constraint was to demand zero curvature of the pseudopotential at the origin. These 
potentials tend to be quite smooth and converge very’ rapidly in reciprocal space.

Once the pseudo-wave function is defined, as in Eqs. (78) and (79). one can invert the 
Kohn-Sham  equation and solve for the ion core pseudopotential K ion

= En - yH(r) - V J r ,  p(r)] + ~ 7 r '”  <82)
— FrMPp  „

This potential, when self-consistently screened by the pseudocharge density

f)(r) = -e ]T  l^,..,.('r) l2
n .  occup

will yield an eigenvalue of En and a pseudo-wave function 4>r The pseudo-wave functicn,
by construction, will agree with the all-electron wave function awav from the core.

There are some important issues to consider about the details of this construction. First, 
the potential is state dependent, as written in Eq . (82) (i.e.. the pseudopotential is depen
dent on the quantum state n). This issue can be handled by recognizing the nonlocality of 
the pseudopotential. The potential is different for an .v-, /;-, or ^/-electron. The uonlocality 
appears in the angular dependence of the potential, but not in the radial coordinate.

A  related issue is whether the potential is highly dependent on the state energy (e.g.. if 
the potential is fixed to replicate the 3s state in Na, will it also do well for the 4.v, 5.s\ and >.y, 
states, etc.? O f  course, one could also question how dependent the pseudopotential is on the 
atomic state used for its construction. For example, would a Na potential be very different 
for a 3.yl3p" versus a 3.v‘ '3/;1 2 configuration? Finally, how important are loosely bound core 
states in defining the potential? For example, can one treat the 3c/ states in copper as part 
o f the core or part o f the valence shell?
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E a ch  o f  this issues has been carefully addressed in the literature. In most cases, the sep
aration between the core states and the valence states is clear. For example, in Si there is 
no issue that the core is composed of the I v: 2.v: // states. However, the core in Cu could be 
considered to be the ls22s1pf'3s23p('3dl" configuration, with the valence shell consisting of 
the 4 sl sitate. A lternatively, one could well consider the core to be the \s22s2 pf)3s23 pu con
figuration, with the valence shell being composed of the 3d]['4sl states. It is quite apparent 
that solely treating the valence state in Cu as a 4.v state cannot be correct: otherwise, K  and 
Cu w o u ld  be chemically similar, as K  has the same electron core as Cu, save the 3d shell. It 
is the ou te r 3d shell that distinguishes Cu from k. Such issues are traditionally considered 
on a case-by-case basis. It is always possible to construct different pseudopotentials, one for 
each core-valence dichotomy. O ne can examine the resulting electronic structure for each 
potential and verify the role of including a questionable state as a valence or core state.

A n o th e r  aspect of this problem centers on “ core-valence”  exchange-correlation. In the 
all ellectron exchange-correlation potential, the charge density is composed of the core and 
valence states; in the pseudopotential treatment, only the valence electrons are included. 
This separation neglects terms that may arise between the overlap of the valence and core 
states. T h e re  are well-defined procedures for including these overlap terms. It is possible to 
include a fixed-charge density from the core and to allow the valence overlap to be explicitly 
included. This procedure is referred to as a partial core correction [64]. This correction is 
especially important for elements such as Zn, C'd, and Hg, in which the outermost filled 
J-she ll can contribute to the chemical bonding. Again, the importance of this correction can 
be te sted by performing calculations with and without the partial core. O f  course, one might 
argue that the most accurate approach would be to include any “ loosely bound" core states as 
valenice states. This approach is often not computationally feasible or desirable. For example, 
the Z n  core without the 3d states results in dealing with an ion core pseudopotential for 
Z n +I 2. T h is  results in a very strong pseudopotential, which is required to bind 12 valence 
electrons. The basis must contain highly localized functions to replicate the cZ-states plus 
extended states to replicate the .v-states. Moreover, the number of occupied eigenstates 
increases by a factor of six. Because most “ standard” algorithms to solve for eigenvalues 
scale superlinearly in time with the number of eigenvalues (such as N 2 where Nt>i is the 
num ber o f require eigenvalues), this is a serious issue.

W ith  respect to the state dependence of the pseudopotential, these problems can be over
come w ith  little computational effort. Because the core electrons are tightly bound, the ion 
core potentia l is highly localized and is not highly sensitive to the ground-state configuration 
used to com pute the pseudopotential. There are well-defined tests for assessing the accuracy 
of the pse udopotential, especially in terms of the phase shifts |55]. In addition, it should be 
noted thatt higher excited states sample the tail o f the pseudopotential. This pseudopotential 
should comverge to the all-electron potential outside of the core. A  significant source of error 
here is th>e L D A . The L D A  yields a potential that scales exponentially at large distances, 
and not a:s one would expect for an image charge | i.e., intuitively, the true potential should 
incorporate an image potential such that Vu.(r —» oo) —► -e2/r].

N on loca lity  in the pseudopotential is often treated in Fourier space, but it may also be 
expressed in real space. The interactions between valence electrons and pseudoionic cores 
may be separated into a local potential and a Kleinrnan and Bylander [65] form of a nonlocal 
pseudopottential in real space [63]

I/ion (0<M ' r ) =  £  K A lr JW n ir )  + £  (84)
n u.n.hn

K n , im =  - \ L , T  I  « / ™( ) A V , ( r „ ) <//„(r ) d * r  ( 8 5 )
\ InJ '

and (AV{ami) is the normalization factor.

(8 6 )
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where r a  =  r  —  R (i, and the u h n  are the atomic pseudopotential wave functions o f  angular 
momentum quantum numbers (7 ,w ) ,  from which the /-dependent ionic pseudopotential 
V f ( r )  is generated. A V / ( r )  =  V f ( r )  -  V ] o c ( r )  is the difference between the / com ponent o f  
the ionic pseudopotential and the local ionic potential.

In the case o f  Na, one might choose the local part o f  the potential to replicate only 
the / =  0 com ponent as defined by the 3 s  state. T h e nonlocal parts o f  the potential would 
then contain only the I  =  1 and 1  =  2  com ponents. For simple metals like Na or  electronic 
materials such as Si and G a A s ,  the angular momentum components for / =  3  (or higher) 
are not significant in the ground-state wave functions. In these systems, one can treat the 
summation over / =  0, 1 ,  2 to be complete.

The choice o f  the angular component for the local part o f  the potential is somewhat 
arbitrary. It is often convenient to chose the highest /-component present. This  avoids the 
complex projections with the highest /. These issues can be tested by choosing different 
com ponents for the local potential.

In Fig. 4, the ion core pseudopotential for N a is presented using the Troullier-M artins 
formalism for creating pseudopotentials. The nonlocality o f  the potential is evident by the 
existence o f  the three potentials corresponding to the p and d-states.

5. SOLVING THE EIGENVALUE PROBLEM
Once the pseudopotential has been determ ined, the resulting eigenvalue problem needs to 
be solved for the system o f  interest

2 y2 |
Z 2 ~  + + Vh ('-) + K A r .  p(n]\<l>J>: ) =  E„4>n( r )  (87)

where V ? nx is the ionic pseudopotential for the system. Because  the ion cores can be treated 
as chemically inert and highly localized, it is a simple matter to write

K J r )  = T . y L J r - R a) m
R(l

where V ? m  a  is the ion core pseudopotential associated with the atom a  at a position R a .

r (a.u.)

Figure 4. Pscudopotemiai compared to the al!-ele»:tion potential for the sodium atom.
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A  m ajor difficulty in solving the eigenvalue problem in Eq . (<X7) is the length and energy 
scales involved. The inner (core) electrons are highly localized and tightly bound com pared 
to the outer  (valence electrons). A  simple basis function approach is frequently ineffectual. 
F o r  exam ple, a plane wave basis might require 10h waves to represent converged wave func
tions fo r  a core electron, whereas only 1(): waves are required for a valence electron [55]. 
T h e  pseudopotential overcom es this problem by removing the core states from the problem 
and replacing the all-electron potential by one that replicates only the chemically active, 
va lence electron states [55). By construction, the pseudopotential reproduces the valence 
state properties  such as the eigenvalue spectrum and the charge density outside the ion core.

B ecause  the pseudopotential is weak, simple basis sets such as a plane wave basis can 
be quite effective for crystalline matter. For example, in the case o f  crystalline silicon, only 
5 0 - 1 0 0  plane waves need to be used. T h e resulting matrix representation o f  the Schrodinger 
op erato r  is dense in Fourier (plane wave) space, but it is not formed explicitly. Instead, 
m atr ix-vector  product operations are perform ed with the help o f  fast Fourier  transforms. 
T h is  plane wave approach is akin to spectral techniques used in solving certain types of  
partial differential equations [66]. The plane wave method uses a basis o f  the form

' M ' 7) =  Y 1  G )  exp[/(A- +  G )  ■ r ]  (89)
G

w here k is the wave vector, G is a reciprocal lattice vector, and a(k , G) represent the 
coefficients o f  the basis. In a plane wave basis, the Laplacian  term o f  the Hamiltonian is 
represented by a diagonal matrix. T h e  potential term V ^ { g ives rise to a dense matrix.

In real space, it is trivial to operate with the potential term that is represented by a 
diagonal matrix, and in Fourier space it is trivial to operate with the Laplacian term, which 
is also represented by a diagonal matrix. The use o f  plane w ave bases also leads to natural 
preconditioning techniques that are obtained by simply em ploying a matrix obtained from 
a sm aller p lane wave basis, neglecting the effect o f  high-frequency terms on the potential. 

For periodic systems, where k is a good quantum number, the plane wave basis coupled 
with pseudopotentials  is quite effective. However, for nonperiodic systems such as clusters, 
liquids, o r  glasses, the plane wave basis must be combined with a supercell method [55]. 
T h e  supercell repeats the localized configuration to impose periodicity to the system. This 

preserves the validity o f  k and Bloch's  theorem, which Eq. (89) obeys. T h ere  is a parallel to 
be m ade with spectral methods that are quite effective for simple periodic geometries, but 
that lose their superiority when m ore generality is required. In addition to these difficulties, 
the two fast Fourier  transforms perform ed at each iteration can be costly, requiring n  log /i 
operations, where n  is the number o f  plane waves, versus O ( N )  for real space methods, 
where N  is the number o f  grid points. Usually, the matrix size N  x N  is larger than n  x n  but 
only within a constant factor. This  is exacerbated in high-perform ance environments where 
fast Fourier  transforms require an excessive amount o f  com munication and are particularly 
difficult to implement efficiently.

A n oth er  popular basis em ployed with pseudopotentials include Gaussian orbitals [67-70]. 
Gaussian  bases have the advantage o f  yielding analytical matrix elements, provided the 
potentials are also expanded in Gaussians. However, the implementation o f  a Gaussian 
basis is not as straightforward as with plane waves. For exam ple, numerous indices must be 
em ployed to label the state, the atomic site, and the G aussian  orbitals em ployed. On the 
positive side, a Gaussian basis yields much smaller matrices and requires less memory than 
plane w ave methods. For this reason, Gaussians are especially useful for describing transition 
metal systems.

A n alternative approach is to avoid the use o f  a explicit basis. For example, one can use a 
real space method that avoids the use o f  plane waves and fast Fourier  transforms altogether. 
This approach has becom e popular, and different versions o f  this general approach have 
been implemented [66, 7 1 -8 2 ] .

A  real space approach overcomes many o f  the complications involved with nonperiodic 
systems, and although the resulting matrices can be larger than with plane waves, they are
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sparse, and the methods arc easier to parallelize. Even  on sequential machines, real space 
methods can be an order o f  magnitude faster than the traditional approach.

Real space algorithms avoid the use o f  fast Fourier  transforms by performing all calcula
tions in real physical space instead o f  Fourier  space. Fast Fourier transforms require glob<l 
com munications; as such, they are not efficient for implementation on multiprocessor plat
forms. T h e only global operation remaining as real space approaches is that of the inner 
products. Th ese  inner products are required when forming the orthogonal basis used in th* 
generalized Davidson procedure, as discussed below.

The simplest real space method uses finite difference discretization on a cubic grid. A  ke/ 
aspect to the success o f  the finite difference m ethod is the availability o f  higher-order finite 
difference expansions for the kinetic energy operator (i.e., expansions o f  the Laplacian [83]. 
Higher-order finite-difference methods significantly improve convergence o f  the eigenvalue 
problem when com pared with standard finite-difference methods. I f  one imposes a simple, 
uniform grid on our system where the points are described in a finite domain by (.v,, y r  z k , 
we approximate j 4  at ( x j9 y j ,  z k )  by

y t  =  E  C „ i p ( x ,  +  n h , y l , z k )  +  ( ) { l r v  : ) (90)
(fX ~ n—~M

where h  is the grid spacing and M  is a positive integer. This approximation is accurate :o 
0 ( h 2 M + 2 )  on the assumption that *// can be approxim ated accurately by a power series in ?. 
A lgorithm s are available to compute the coefficients C n  for arbitrary order in h  [83].

With the kinetic energy operator expanded, as in Eq . (90), one can set up a cne-electrcn 
Schrodinger equation over a grid. One may assum e a uniform grid, but this is not a necessa*y 
requirement, y J9  z k )  is computed on the grid by solving the eigenvalue problem

1 1  
2m

M M  M

E  c n ^ n ( x i + n l h , y j , z k ) +  £  C „ 2 t l / „ ( x „  y t  +  n 2 h ,  z k )  +  £  y  , z k +  n y h

/?I — M H2 = --M n \= — M

+  [ y j t  z k ) +  V H ( x i , y r  z k )  +  V x c { x , -  Vj > z k )  }  > ’r  z k )

=  E„ v r z k )  (91)

If  we have L  grid points, the size o f  the full matrix resulting from the above problem is
L  x L .

The grid we use is based on points uniform ly spaced in a three-dimensional cube, as 
shown in Fig. 5, with each grid point corresponding to a row in the matrix. However, many 
points in the cube are far from any atoms in the system, and the wave function on these 
points may be replaced by zero. Special data structures may be used to discard these points
and to keep only those having a nonzero value for the w ave function. The size o f  t ie
Hamiltonian matrix is usually reduced by a factor o f  two to three with this strategy, which is 
quite important considering the large num ber o f  eigenvectors that must be saved. Further, 
because the Laplacian  can be represented by a simple stencil, and as all local potentials sim  
up to a simple diagonal matrix, the H am iltonian need not be stored. Handling the ionic 
pseudopotential is complex, as it consists o f  a local and a nonlocal term [ E : \ s .  (84) and 
(85)]. In the discrete form, the nonlocal term becom es a sum over all atoms a  and quantum 
numbers (/, m )  o f  rank-one updates

-  E  K k , „  +  E  c . m . U L . n ,  (°2)
o a. /, m

where U it t m  a re  sparse vectors that are only nonzero in a localized region iround etch 
atom; c\, t m  is a normalization coefficient.

Th ere  are several difficulties in solving the eigen problems, in addition to the size o f  
the matrices. First, the num ber o f  required  eigenvectors is proportional to .he atoms in 
the system and can grow up to thousands o f  vectors, if not more. In addition to storage, 
maintaining the orthogonality o f  these vectors can be a form idable task. Seconc, the relative 
separation o f  the eigenvalues becom es increasingly poor as the matrix size incresses, and *his
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Figure 5. L niform grid illustrating a typical configuration for examining the electronic structure of a localized 
system. The dark gray sphere represents the domain where the wave functions are allowed to he nonzero. The light 
spheres within the domain are atoms.

has an a d verse  effect on the rale o f  convergence o f  the eigenvalue solvers. Preconditioning 
techniques attempt to alleviate this problem. On the positive side, the matrix need not be 
stored, as> was mentioned earlier, and this reduces storage requirement. In addition, good 
initial e igenvector  estimates are available at each iteration from the previous self-consistency 
loop.

A  p o p u lar  form o f  extracting the eigenpairs is based on the generalized Davidson [84] 
method, in which the preconditioner is not restricted to be a diagonal matrix, as in the David
son m ethod. ( A  detailed description can be found in Ref. [85].) Preconditioning techniques 
in this approach  are typically based on filtering ideas and on the fact that the Laplacian is 
an elliptic operator [86]. T h e eigenvectors corresponding to the few lowest eigenvalues o f  
V 2 are sm ooth  functions and so are the corresponding wave functions. W hen an approxi
mate e igenvector  is known at the points o f  the grid, a smoother eigenvector can be obtained 
by averag ing  the value at every point with the values o f  its neighboring points. Assum ing 
a cartesian ( x , y 9 z )  coordinate system, the low-frequency filter acting on the value o f  the 
wave function at the point ( i , j , k ), which represents one element o f  the eigenvector, is 
described by:

{ ll,ri - \ J ' k + il, i J - \ 'k  +  il ' i J . k - \ + il, i+\tj.k +  ll/i . j + \ . k + ll'i.j.k + \ \  , ' I 'i J.k x /rv2x
I yj / / *  ̂''Filtered V /

It is w orth  mentioning that other preconditioners that have been tried have resulted in 
mixed success. T h e  use o f  shift-and-invert [87] involves solving linear systems with A  — a  I , 
where A  is the original matrix and the shift ( T  is close to the desired eigenvalue. These 
methods w o u ld  be prohibitively expensive in most situations, given the size o f  the matrix and 
the n u m b er  o f  times that A  —  c r l  must be factored. Alternatives based on an approximate 
factorization such as I L U T  [88] are ineffective beyond the first few eigenvalues. Methods 
based on approxim ate  inverse techniques have been somewhat more successful, perform ing 
better tham filtering at additional preprocessing and storage cost. Preconditioning “ interior” 
e igenvalues (i.e., eigenvalues located well inside the interval containing the spectrum) is still 
a very h ard  problem. Current solutions only attempt to dampen the effect o f  eigenvalues
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that are far away from the ones being com puted. This  is, in effect, what is achieved by 
filtering and sparse approximate inverse preconditioning. These techniques do not reduce the 
number o f  steps required for convergence in the same way that shift-and-invert techniques 
do. However, filtering techniques are inexpensive to apply and result in fairly substantial 
savings in iterations.

6. PROPERTIES OF CONFINED SYSTEMS: CLUSTERS
Th e electronic and structural properties o f  atomic clusters stand as one o f  the outstanding 
problems in materials physics. Clusters possess properties that are characteristic o f  neither 
the atomic nor solid state. For example, the energy levels in atoms may be discrete and 
well separated in energy relative to k T .  In contrast, solids have continuum of states (energy 
bands). Clusters may reside between these limits (i.e., the energy levels may be discrete, but 
with a separation much less than k T ) .

Real space methods are ideally suited for investigating these systems. In contrast to plane 
wave methods, real space methods can exam ine non-periodic systems without introducing 
artifacts such as supercells. In addition, one can easily examine charged clusters. In supercell 
configurations, unless a compensating background charge is added, the C oulom b energy 
diverges for  charged clusters.

A  closely related issue concerns electronic excitations. In periodic systems, it is nontrivial 
to consider localized excitation (e.g., with band theory, exciting an atom in one cell excites 
all atoms in all the equivalent cells). Density functional formalisms often avoid these issues 
by considering localized or nonperiodic systems.

6.1. Structure
Perhaps the most fundamental issue in dealing with clusters is determining their structure. 
B e fore  any accurate theoretical calculations can be perform ed for a cluster, the atomic 
geometry o f  a system must be defined. However, this can be a form idable exercise. Serious 
problems arise from the existence o f  multiple local minima in the potential-energy-surface 
o f  these systems; many similar structures can exist with vanishingly small energy differences.

A  convenient method for determining the structure o f  small or moderate sized clusters 
is simulated annealing [89]. Within this technique, atoms are randomly placed w;thin a 
large cell and allowed to interact at a high (usually fictive) temperature. Within th s  tem 
perature regime, atoms will sample a large num ber o f  configurations. A s  the system is 
cooled, the num ber o f  high-energy configurations sampled is restricted. If the anneal s done 
slowly enough, the procedure should quench out structural candidates for the ground-state 
structures.

Langevin m olecular dynamics is well suited for simulated-annealing methods. In Langevin 
dynamics, the ionic positions R, evolve according to R

M j R j  =  F( { R , }) -  y M j R j  4- G ,  (94)

where F ( { R , } )  is the interatomic force on the /th particle, and {/V/,} are the ionic masses. 
T h e  last two terms on the right-hand side o f  Eq . (94) are the dissipation and fluctuation 
forces, respectively. T h e dissipative forces are defined by the friction coefficient y. The 
fluctuation forces are defined by random G aussian  variables { G , } with a white noise spectrum

<G"'(0 )  =  0 and < G “ ( t ) G “ ( t ' ) )  =  2 y M i k H T 8 l j d ( t  -  /') (95)

Th e angular brackets denote ensemble or time averages, and a  stands for the Cartesian com 
ponent. The coefficient o f  T  on the right-hand side o f  Eq. (95) ensures that the f iucU ation- 
dissipation theorem is obeyed [i.e., the work done on the system is dissipated by the viscous 
medium ([90, 91])]. T h e interatomic forces can be obtained from the Hellmann-Feynman 
theorem , using the pseudopotential wave functions.

Langevin simulations using quantum forces can be contrasted with other techniques such 
as the C ar-Parr ine llo  method [92. 93]. Langevin simulations as outlined above do not
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e m p lo y  fictitious electron dynamics; at each lime step, the system is quenched to the B o r n -  
O p p e n h e im e r  surface and the quantum forces are determ ined. This approach requires a fully 
self-cons,istent treatment o f  the electronic structure problem; however, because the inter
a to m ic  fo rce s  are  true quantum forces, the resulting m olecular dynamics simulation can be 
p erf  o rm e d  with much larger time steps. Typically, it is possible to use steps an order o f  m ag
n itude  lairger than in the C ar-Parr ine llo  method [94]. It should be emphasized that neither 
o f  these  methods is particularly efficacious without the pseudopotential approximation.

T o  illustrate the simulated annealing procedure, we consider a silicon cluster o f  seven 
atorms. With respect to the technical details for this example, the initial temperature o f  the 
s im u lat io n  was taken to be about 3000 K; the final tem perature was taken to be 300 K. 
T h e  annealing schedule lowered the temperature 500 K each 50 time steps. The time step 
w as taken  to be 5 fs. The friction coefficient in the Langevin equation was taken to be
6 x  HO-4 a.u. (a.u. is defined by h  =  m  =  e  =  I. The unit o f  energy is the hartree [1 hartree =  
2 7 .2  eV]:; the unit o f  length is the bohr radius fl  bohr =  0.529 A ]). A fter  the clusters reached 
a teimperature o f  300 K, they were quenched to 0 K. The ground-state structure was found 
through  a direct minimization by a steepest descent procedure.

Clhoosjing an initial atomic configuration for the simulation takes some care. If the atoms 
are too far  apart, they will exhibit Brownian motion, which is appropriate for Langevin 
dynaimics with the interatomic forces zeroed. In this case, the atoms may not form a stable 
c luster  a s  the simulation proceeds. Conversely, if the atoms are too close together, they may 
fo rm  a m etastable  cluster from which the ground state may be kinetically inaccessible even 
at thie initial high temperature. Often the initial cluster is form ed by a random placement 
o f  th e  atom s, with a constraint that any given atom must reside within 1.05 and 1.3 times 
the b ond  length from at least one atom, where the bond length is defined by the crystalline 
enviironnnent. T h e cluster in question is placed in a spherical dom ain. Outside o f  this domain, 
the w a v e  function is required to vanish. The radius o f  the sphere is such that the outmost 
a to m  is a t  least 6 a.u. from the boundary. Initially, the grid spacing was 0.8 a.u. For the 
final quench to a ground-state structure, the grid spacing was reduced to 0.5 a.u. A s  a rough 
est im ate , one can compare this grid spacing with a plane wave cutoff o f  ( t t / I i ) 2 or about 
40 R y  f o r  h  =  0.5 a.u.

In Fig. 6, we illustrate the simulated anneal for the Si7 cluster. T h e initial cluster contains 
seve ra l  imcipient bonds, but the structure is far removed from the ground state by approxi
m a te ly  1 eV/atom. In this simulation, at about 100 time steps, a tetramer and a trimer form. 
Thes;e units come together and precipitate a large drop in the binding energy. A fter  another 
~  1 0(‘) timje steps, the ground-state structure is essentially form ed. The ground state o f  S i7 
is a b ic a p p e d  pentagon, as is the corresponding structure for the G e 7 cluster. The binding 
e n e rg y  sh-own in Fig. 6 is relative to that o f  an isolated Si atom. G radient corrections [18 , 45]

t / A t

Figure 6. Bimding energy of Si7 during a Langevin simulation. The initial temperature is 3000 K; the final temper
ature i*s 300 K. Bonds are drawn for interatomic distances of less than 2.5- A. The time step is 5 fs.
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or spin polarization [95] have not been included in this example. There fore , the binding 
energies indicated in the figure are likely to be overestimated bv ~ 2 0 %  or  so.

In Fig. 7, the ground-state structures for Si„ are presented for n  <  7. T h e  structures fo* 
G e „  are very similar to those o f  Si„. T h e  primary difference resides in the bond lengths 
Th e Si bond length in the crystal is 2.35 A , w hereas in G e  the bond length is 2.44 A .  Thi; 
difference is reflected in the bond lengths for the corresponding clusters; Si„ bond length; 
are typically a few percent shorter than the corresponding G e „  clusters.

It should be em phasized that this annealing simulation is an optimization procedure. 
A s  such, other optimization procedures may be used to extract the minimum-energy struc
tures. Recently, a genetic algorithm has been used to examine carbon clusters [99]. In thi> 
algorithm, an initial set o f  clusters is “ m ated’' with the lowest-energv offspring survving. '  
B y  examining several thousand generations, it is possible to extract a reasonable structure fo r  

the ground state. T h e genetic algorithm has som e advantages over a simulated anneal, espe
cially for clusters that contain more than ^ 2 0  atoms. O ne of  these advantages is that kinetic 
barriers are more easily overcom e. However, the implementation o f  the genetic algorithm 
is more involved than an annealing simulation (e.g., in some cases, “ mutations,’' or e e l  h o ?  

structural rearrangements, must be introduced to obtain the correct ground state [99’).

6.2. Photoemission Spectra
A  very useful probe o f  condensed matter involves the photoemission process. Incidert phc- 
tons are used to eject electrons from a solid. I f  the energy and spatial distribu.ions o f  the 
electrons are known, then information can be obtained about the electronic structure of 
the materials o f  interest. For crystalline matter, the photoemission spectra can be rented to 
the electronic density o f  states. For confined systems, the interpretation is not as straigh:- 
forward. One o f  the earliest experiments perform ed to examine the electroni: strictures 
o f  small sem iconductor clusters examined negatively charged Si„ and Ge,, ( n  <  12 )  clusters 
[100]. T h e  photoemission spectra obtained in this work were used to gauge the energy 
gap between the highest occupied state and the lowest unoccupied state. Large gaps we?c 
assigned to the “ magic n u m b e r ’ clusters, w hereas other clusters appeared  to have vanishirg 
gaps. Unfortunately, the first theoretical estimates [ 10 1 ]  for these gaps showed substantiil 
disagreements with the m easured values. It was proposed by Cheshnovsky et al. [100] tint 
sophisticated calculations including transition cross sections and final states were ne;essa*y 
to identify the cluster geom etry from the photoemission data. T h e  data were first interpreted 
in terms o f  the gaps obtained for neutral clusters; it was later demonstrated that atomic 
relaxations within the charged cluster are important in analyzing the photoenissicn da:a

(c) Si4

Figure 7. Ground-staic geometries and some low energy isomers o{ Si,. {n < 7) clusters Interatonie disunces ire 
in Angstroms. The values in parentheses are from Ret. j% —c)8|
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[102 , 10 3] .  In particular, atomic relaxations as a result o f  charging may change dramatically 
the electronic spectra o f  certain clusters. These charge-induced changes in the gap were 
found to yield very good agreement with the experiment.

T h e  photoem ission spectrum o f  G e , (( illustrates some o f  the key issues. Unlike S in) , the 
experim ental spectrum for G e l() does not exhibit a gap. Cheshnovsky et al. interpreted this 
to mean that Gej~0 does not exist in the same structure as S i l0. This is a strange result. Si 
and G e  are  chemically similar, and the calculated structures for both neutral structures are 
similar. T h e  lowest-energy structure for  both 10-atom clusters is the tetracapped trigonal 
prism (labeled [ I ]  in Fig. 8). The photoemission spectra for these clusters can be simulated 
by using Langevin  dynamics. T h e clusters arc immersed in a fictive heat bath and subjected 
to stochastic forces. I f  one maintains the temperature o f  the heat bath and averages over 
the e igenvalue spectra, a density o f  states for the cluster can be obtained. The heat bath 
resem bles a buffer gas, as in the experimental setup, but the time intervals for collisions are 
not sim ilar to the true collision processes in the atomic beam. The simulated photoemission 
spectrum for Si "̂0 is in very good agreement with the experimental results, reproducing both 
the threshold peak  and other features in the spectrum. If a simulation is repeated for G e f (), 
using the tetracapped trigonal prism structure, the resulting photoemission spectrum is n o t  

in good agreem ent with the experiment. M oreover, the calculated electron affinity is 2.0 eV, 
in contrast to the experimental value o f  2.6 eV. In addition, there is no reason to believe 
that the tetracapped trigonal prism structure is correct for G e ,0 when charged. In fact, we 
find that the bicapped antiprism structure is lower in energy for G e 10. T h e  resulting spectra, 
(using both structures [I] and [II] in Fig. 8), are presented in Fig. 9 and are com pared to the 
photoemission experiment. The calculated spectrum using the bicapped antiprism structure 
is in ve ry  good agreement with the photoemission. T h e  presence o f  a gap  is indicated by 
a small p e a k  rem oved from the density o f  states (Fig. 9a). This feature is absent in the 
bicapped antiprism structure (Fig. 9b) and is consistent with experiment. For G e )0, charging 
the structure reverses the relative stability o f  the two structures. This accounts for the major 
differences between the photoemission spectra.

It is difficult to assign a physical origin to a particular structure, owing to the smaller 
energy differences involved. However, the bicapped structure has a higher coordination. 
Most chemical theories of bonding indicate that G e  is more metallic than Si and, as such, 
would p re fer  a more highly coordinated structure. T h e addition o f  an extra electron may 
induce a structure reflecting the metallic characteristic o f  G e  relative to Si.

6.3. Vibrational Modes
Experim ents  on the vibrational spectra o f  clusters can provide us with very important infor
mation about their physical properties. Recently, Ram an experiments have been perform ed 
on clusters that have been deposited on inert substrates 1 104]. Because different structural 
configurations o f  a given cluster can possess different vibrational spectra, it is possible to 
com pare the vibrational modes calculated for a particular structure with the Ram an  exper
iment in a manner similar to the previous example with photoemission. G o o d  agreement

Figures. Two possible isomers for Si,,, or Ge1() clusters. (1) is a tricapped trigonal prism cluster, and ( I I )  is a 
bicapped antiprism cluster.
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E n e m y  (eV) E n e m y  (eV) Bindins: Enersx  ( eV  j

Figure 9. Calculated density of states for Geju in the tetracapped trigonal prism structure (a) and the bicapped 
antiprism structure (h). (c) Experimental photoemission spectra from Ref. [100].

between the predicted vibrational spectra and the m easured spectra is a necessary condition 
for  the validity o f  the predicted structure o f  the cluster.

Th ere  are two com mon approaches for determining the vibrational spectra o f  clusters. 
O ne approach is to calculate the dynamical matrix for the ground state structure o f  the 
cluster

M
r- E d F

i ff,  j f i m 3R“ (')R m O R1
(96)

w here m  is the mass o f  the atom, E  is the total energy o f  the system, F - '  is the force on atom 
/ in the direction a ,  and /?“ is the a  component o f  coordinate for  atom /. One can calculate 
the dynamic matrix elem ents by numerically calculating the first-order derivative o f  force 
versus atom displacement. From the eigenvalues and eigenm odes o f  the dynamical matrix, 
one can obtain the vibrational frequencies and m odes for the cluster o f  interest [105].

T h e  other approach to determine the vibrational modes is to perform  a molecular dynam
ics simulation. T h e cluster in question is excited by small, random displacements. By record
ing the kinetic (or binding) energy o f  the cluster as a function o f  the simulation time, it is 
possible to extract the power spectrum o f  the cluster and determ ine the vibrational modes. 
Th is  approach has an advantage for large clusters in that one never explicitly has to do a 
m ode analysis. A n oth er  advantage is that anharm onic mode couplings can be examined. It 
has the disadvantage o f  the simulation needing to be perform ed over  a long time to extract 
accurate values for  all the modes.

A s  an example, consider the vibrational modes for a small silicon cluster: Si4. T h e  starting 
geom etry was taken to be a planar structure for this cluster, as established from a simulated 
annealing calculation [1051.

Determ ining the dynamical matrix and eigenm odes for this cluster is straightforward pro
cess. In Fig. JO, the fundamental vibrational modes are illustrated, and in Table 1, the 
frequency o f  these m odes are presented. One can also determ ine the modes via a simula
tion. To initiate the simulation, one can perform  a Langevin simulation [102] with a fixed 
tem perature at 300 K. A fte r  a few dozen time steps, the Langevin  simulation is turned o ff  
and the simulation proceeds, following Newtonian dynamics with “ quantum” forces. This 
procedure allows a stochastic element to be introduced and establishes initial conditions for 
the simulation without bias toward a particular mode. For this example, time step in the 
molecular dynamics simulation was taken to be 3 .7  fs. The simulation was allowed to proceed 
for  1000 time steps, or roughly 4 ps. The variation o f  the kinetic and binding energies is 
given in Fig. 11  as a function o f  the simulation time. Although som e fluctuations o f  the total 
energy occur, these fluctuations are relatively small (i.e., less than — 1 m eV) and there is no 
noticeable drift o f  the total energy. Such fluctuations arise, in part, because o f  discretization 
errors. A s  the grid size is reduced, such errors arc minimized f 105]. Similar errors can occur 
in plane wave descriptions using supercells (i.e., the artificial periodicity o f  the supercell 
can introduce erroneous forces on the cluster). B y  taking the pow er spectrum o f  either the 
kinetic energy ( K E )  or  binding energy ( B E )  over this simulation time, the vibrational modes
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i
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Figure 10. Normal modes for a Si4 cluster. The + and signs indicate motion in and out of the plane, respectively.

can be determ ined . T h ese  modes can be identified with the observed peaks in the power 
spectrum , as illustrated in Fig. 12.

A  com parison  o f  the calculated vibrational modes from the molecular dynamics simulation 
and fro m  a dynamic matrix calculation is listed in Table 1. Overall, the agreement between 
the sim ulation and the dynamical matrix analysis is quite satisfactory. In particular, the softest 
m ode (i.e., the /?3„ mode, and the splitting between the ( A K ,  B U ( )  modes are well replicated 
in the p o w e r  spectrum. T h e  splitting o f  the ( A  B U l )  modes is less than 10 cm ', or about 
1 meV, which is at the resolution limit o f  any a b  i n i t i o  method.

T h e  theoretical values are also com pared to experimental values. The predicted frequen
cies for the two A K m odes are surprisingly close to Ram an  experiments on silicon clus
ters [ 104]. T h e  other allowed Ram an line o f  mode B } ,, is expected to have a lower intensity 
and has not been observed experimentally [104].

T h e  theoretical modes using the formalism outlined here are in good accord (except the 
lowest rmode) with other theoretical calculations given in Table 1: an L C A O  calculation [106] 
and a H ;artree-Foek calculation [96]. T h e calculated frequency o f  the lowest mode (i.e., the 
B h l  m od e)  is problematic. The general agreement o f  the B Ml  m ode as calculated bv the sim
ulation an d  from the dynamical matrix is reassuring. M oreover, the real space calculations 
agree  wi th the H a rtrc e-F o ck  value to within ^ 2 0 - 3 0  cm "'1 . However, the L C A O  method 
yields a value that is 5 0 - 7 0 %  smaller than either the real space or H artree-Fock calcula
tions. T h e  origin o f  this difference is not apparent. For a poorly converged basis, vibrational

Table 1. Calculated and experimental vibrational frequencies in a Si4 cluster.

A,. B lu

Experiment [104] 345 470
D’ynamical matrix [ 1051 160 280 340 460 480 500
Molecular dynamics simulation 1105) 150 250 340 440 490 500
H;artree-Fock [96] 117 305 357 465 489 529
Liinear combination of atomic orbitals [ I Oh] 55 248 348 436 464 495

Note: Sec Fig. 10 Cor an illustration of the normal modes. The frequencies are given in cm '.
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f/Af

Figure 11. Simulation for a Si4 cluster. The kinetic energy (K.E) and binding energy ( B I:) are shown as a function 
of simulation time. The total energy (K E  + BE ) is also shown, with the zero of energy taken ;i' the a/erage of the 
total energy. The time step A/ is 3.7 fs.

frequencies arc often overestimated, as opposed to the L C A O  result, which underestimates 
the value, at least when com pared to other theoretical techniques. Setting aside the issue 
of  the B y lt mode, the agreem ent between the m easured R a m a n  modes and theory for S i4 
indicates that Ram an  spectroscopy can provide a key test fo r  the structures predicted by 
theory.

6.4. Polarizabilities
Polarizability m easurem ents [ 107] have been perform ed for small semiconductor clusters. 
The polarizability tensor a tJ is defined as the second derivative o f  the energy with respect to 
electric field components. For a noninteracting quantum mechanical system, the expression

E=3
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Figure 12. Power spectrum of the vibrational modes of the S i; cluster. The simulation lime v>as tat ;n to he 4 ps. 
The intensity of the B KfS and (.4 ,̂ B Ut) peaks has been sealed by 10
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for the polarizability can he easily obtained bv using second-order perturbation theory, where 
the external electric field ' *  is treated as a w eak perturbation.

Within the density-functional theory, as the total energy is not the sum o f  individual 
eigenvalues, the calculation o f  polarizability becom es a nontrivial task. One approach is to 
use the density-functional perturbation theory that has been developed recently in G re en 's  
function and variational formulations [108. 109].

A n o th e r  approach, very convenient for handling the problem for confined systems, like 
clusters, is to solve the full problem exactly within the one-electron approximation. In this 

approach, the external ionic potential I l(1|1(r)  experienced by the electrons is modified to 
have an additional term given by C ' c • r. The K o h n -S h am  equations are solved with the 
full external potential Kion( r )  — e *  ■ r. For quantities like polarizability, which are derivatives 
o f  the total energy, one can compute the energy at a few field values, and differentiate 
numerically. R eal space methods are suitable for such calculations on confined systems, 
because the position operator r  is not ill-defined, as is the case for supercell geometries.

Th ere  is another point that should be emphasized. It is difficult to determine the polariz
ability o f  a cluster or molecule because o f  the need for a well-converged basis in the presence 
o f  an electric  field. Often polarization functions are added to achieve an accurate basis, 
and the response o f  the system to the field can be sensitive to the details o f  basis. In both 
real space  and plane wave methods, the lack o f  a “ pre judice”  with respect to the basis is 
a considerable asset. The real space method implemented with a uniform grid possesses a 
nearly “ isotropic”  environment with respect to the applied field. The response can be easily 
checked with respect to the grid size by varying the grid spacing. Typically, the calculated 
electronic response o f  a cluster is not sensitive to the magnitude o f  the field over several 
orders o f  magnitude. In Fig. 13 . we illustrate the calculated polarizability as a function o f  
the finite electric fields. For very small fields, the polarizability calculated by the change in 
dipole o r  energy is not reliable because of numerical inaccuracies such as roundoff errors. 
For very large fields, the cluster can be ionized by the field, and again the accuracy suffers. 
H ow ever, for a wide range o f  values o f  the electric field, the calculated values are stable.

In Table  2, we present som e recent calculations for  the polarizability o f  small Si and G e  

clusters. It is interesting to note lhal some o f  these clusters have permanent dipoles. For 
example, S i6 and G e fl both have nearly degenerate isomers. One o f  these isomers possesses 
a perm anent dipole, the other does not. Hence, in principle, one might be able to separate 
the one ;isomer from the other via an inhomogcncous electric field.

Electric Field (a.u.)

Fig u re  13. One component of the polarizability tensor of Si7 as a function of the electric field. The dashed curve 
is the polairizability component from the second derivative of the energy with respect to the field; the solid curve 
is from the dipole derivative. For very small fields, the values are not accurate because of the strict convergence 
criteria required in the wave functions to get accurate values. For high Helds, the cluster is ionized. The dashed 
value is the- predicted value for the cluster using a small, but finite, field.
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Table 2. Static dipole moments and average polar inabilities of small silicon and gcrmamium clusters.

Silicon Germanium

Cluster Im I(D ) (a ) (A  Vatom) Cluster Im I(D ) (a) (A ’/atom)

Si, 0 6.29 Ge, 0 6.67
Si, 0.33 5.22 Ge, 0.43 5.89
Si, 0 5.07 Ge4 0 5.45
Su 0 4.81 Ge, 0 5.15
Si„ (I) 0 4.46 Ge„ (I) 0 4.87
Si„ (11) 0.19 4.48 Ge„ (II) 0.14 4.88
Si7 0 4.37 Ge7 0 4.70

6.5. Optical Spectra
T h e time-dependent density-functional formalism (Section 3.4) is easy to implement in 
real space within the high-order finite difference pseudopotential method [72, 73, 8 1] .  The 
T D L D A  technique will be illustrated by considering the absorption spectra o f  sodium and 
hydrogenated silicon clusters. The ground-state structures o f  the clusters were determined 
by simulated annealing [102]. In all cases the obtained cluster geometries agreed well with 
the structures reported in other works [ 1 1 0 ,  1 1 1]. B ecause  the wave functions for the unoc
cupied electron states are very sensitive to the boundary conditions, these calculations need 
to be perform ed within a relatively large boundary domain.

Th e  calculated absorption spectrum for N a 4 is shown in Fig. 14 along with the m ea
sured spectrum. In addition, the spectrum generated by considering transitions between the 
L D A  eigenvalues is shown. The agreement between T D L D A  and experiment is rem ark
able, especially when contrasted with the L D A  spectrum. T D L D A  correctly reproduces the 
experimental spectral shape, and the calculated peak  positions agree with experiment within 
0 . 1 -0 .2  eV. T h e com parison with other theoretical work demonstrates that our T D L D A  
absorption spectrum is as accurate as the available C l  spectra [ 1 1 2 ,  1 13 ] .  Furtherm ore, the 
T D L D A  spectrum for the N a 4 cluster appears  to be in better agreement with experiment 
than the G W  absorption spectrum calculated in R ef. [ 1 14 ].

The study o f  optical excitations in hydrogen-term inated silicon clusters is essential for 
understanding absorption and emission o f  visible light in porous silicon [1] . O ver the last
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Figure 14. The calculated and experimental absorption spectrum tor Na,. (a) A local density approximation to the 
spectrum using K.ohn~Sham eigenvalues. ib> A time-dependent local density approximation calculation. Technical 
details of the calculation can be found in [32]. (c» Pane! is experiment from M15j.
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Photon energy (eV)

Figure 16. Calculated time-dependent local density approximation (TD LD A ) absorption spectra of Sil(HWJ clusters 
(solid lines). Spectra of time-independent Kohn-Sham LDA eigenvalues (dotted lines) are shown for comparison. 
All spectra are broadened by 0.1 cV using a Gaussian convolution.

Table 3. Excitation energies of hydrogenated silicon clusters.

Cluster Transition Experiment BS TDLDA ,-LDA
HOMO

SiH4 4s 8 .8 9.0 00 ho 8 .6

4 p 9.7 10.2 9.2
4d 10.7 11.2 9.7

Si H(, 4s 7.6 7.6 7.3 7.5
8.4 9.0 7.8

Sis H 12 — 6.5 7.2 6 .6 7.3

Note: The experimental optical absorption energies are taken from Ref. [1 1 6 ]  (silane and disilane) and 
Ref. [ 1 2 6 ) (neopentasilane). The assignment of electronic excitations for silane and disilane corresponds to 
the Rydbcrg transitions. The Bethe-Salpeter excitation energies are adapted from Ref. [1 2 1 } . — £,L| o m o  *s  l ^ e  
time-independent LDA ‘'ionization" energy. All values are in eV.
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decade, S i „H /;; clusters have been the subject o f  intensive experimental [ 1 1 6 - 1 2 0 ]  and theo
retical [ 1 2 1 - 1 2 7 ]  research. However, disagreem ents am ong different theoretical models ascd 
for  describing electronic excitations in these systems remain a subject o f  significant con
troversy. For the most part, the disagreements arise from the formulation o f  the optical 
gap in confined systems and the calculation o f  different components making up the optical 
gap  [ 1 2 8 - 1 3 1 ] .

A  common approach to hydrogenated silicon clusters is to consider S i/(H„, clusters in vhich  
the arrangement o f  the silicon atoms corresponds to bulk silicon fragments. This is illustrated 
in Fig. 15. T h e calculated absorption spectra o f  S i „H „( clusters are shown in Fig. 16 For 
the larger clusters shown, only electronic transitions below a chosen energy threshold are 
displayed as a result o f  computational constraints. The spectra o f  time-independent K ) h n -  
Sham  L D A  eigenvalues will be illustrated here. A s  in the case o f  metallic and semiconductor 
clusters with free surfaces [32, 132 ,  133] ,  the T D L D A  spectra o f  S i„H wl clusters are ilue- 
shifted with respect to the K o h n -S h a m  eigenvalue spectra. Unlike optical spectra o f  “ hare" 
sem iconductor clusters considered in previous sections, the spectra o f  hydrogenated silicon 
clusters do not display the low-energy transitions associated with the surface states. Pho
toabsorption gaps for Si^H,,, clusters are much larger than those o f  S i/; clusters with >pen 
surfaces.

In Table 3, T D L D A  values for the excitation energies o f  the first three Si„H„, clusters are 
com pared with experimental data [ 1 16 ,  126] as well as with the values calculated usin> the 
B e th e -S a lp e te r  technique [ 1 2 1 ] .  T h e  last column in Table 3 shows the K oh n -Sh am  L D A  
“ ionization”  energies o f  the clusters — gi vcn by the negative values o f  the energies 
for  the highest occupied L D A  electronic orbitals. Table 3 demonstrates that the calculated
T D L D A  excitation energies for the transitions below, or close to, I.DA 

HOMO agree well with
the experimental data and the B eth e -S a lp e ter  values. The agreement, however, dcteru rates 
for  higher excitations, which lie above —^homo* A s ^lc s 'ze ° f  clusters increases, the energy

SiH, Si2Hft

<4°

sisH12
S i,.1114' *.’’()

S i j 4 7 H i

f t # <» i ik  «» ! ' * # * •  

f i t *  ' * ! & »  V i#  i g

YO

Figure 15. Bal!-and-stick models for hydrogenated silicon clusters.
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o f  the first allowed excitation m oves further down from the L D A  “ ionization" energy, and 
a g reem en t with experiment improves.

For large  Si„H„, clusters, the first allowed optical transitions are always located below 
— 6 h o m o * • O n this basis, one can argue that T D L D A  should provide an accurate description 
for  the photoabsorption gaps and the low-energy optical transitions in larger S i „ H /;/ clusters.

7. QUANTUM CONFINEMENT IN NANOCRYSTALS
Nanocrysta ls  are assemblages o f  atoms at the nanoscale where the atomic positions are 
characteristic  o f  the crystalline state. Spherical nanocrystals are sometimes called “ quan
tum d ots .”  Understanding the role o f  quantum confinement in altering optical properties o f  
nanocry stals m ade from sem iconductor materials is a problem o f  both technological and fun
dam ental interest. In particular, the discovery o f  visible luminescence from porous Si [1]  has 
focused attention on optical properties o f  confined systems. A lthough there is still debate on 
the exact mechanism o f  photoluminescence in porous Si, there is a great deal o f  experim en
tal and theoretical evidence that supports the important role played by quantum confinement 
in producing this phenomenon [ 1 1 9 ,  134].

Excitations in confined systems, such as porous Si, differ from those in extended systems 
because o f  quantum confinement. In particular, the com ponents that make up the excitation 
energies., such as quasiparticle and exciton-binding energies, change significantly with the 
physical extent o f  the system. S o  far, most calculations that model semiconductor nanocrys
tals have been o f  an empirical nature because o f  the major challenges involved in simulating 
these system s from first principles [ 120 , 1 2 2 - 12 4 ,  1 3 5 - 1 3 9 ] .  Although empirical studies have 
shed som e light on the physics o f  optical excitations in sem iconductor nanocrystal, one often 
has to m a k e  assumptions and approximations that may not be justified. Efficient and accu
rate a b  i n i t i o  studies are necessary to achieve a better microscopic understanding o f  the size 
depend ence o f  optical processes in semiconductor quantum dots. A  major goal o f  our work 
is to d eve lop  such a b  i n i t i o  methods that handle systems from  atoms to dots to crystals on 
an equaE footing.

A  prob lem  using empirical approaches for semiconductor quantum dots centers on the 
transferability o f  the bulk interaction param eters to the nanocrystalline environment. The 
validity o f  this assumption, which postulates the use o f  fitted bulk param eters in a size regime 
o f  a few nanom eters, is not clear and has been questioned in recent studies [ 138 , 139]. M ore 
specifically, quantum confinem ent-induced changes in the self-energy corrections, which may 
affect the  magnitude o f  the optical gaps significantly, are neglected in empirical approaches 
by implicitly assuming a “ size-independent'’ correction that corresponds to that o f  the bulk. 
It follow/s that a reliable way to investigate optical properties o f  quantum dots would be 
to m odel them from first principles with no uncontrolled approximations or  empirical data. 
H ow ever , there have been two m ajor  obstacles for the application o f  a b  i n i t i o  studies to these 
systems. First, because o f  large computational demand, accurate first-principles calculations 
have been limited to small system sizes, which do not correspond to the nanoparticle sizes 
for which experimental data are available. Second, a b  i n i t i o  calculations perform ed within 
the local density approximation su ffer  from the underestimate o f  the band gap [29].

Recent advances in electronic structure algorithms, have indicated that using pseudopo
tentials ( a s  outlined earlier) [66, 7 1 - 8 2 ]  and computational platforms, and alternative fo r
mulations o f  the optical gaps suitable for confined systems, the above-mentioned challenges 
for  a b  i n i t i o  studies o f  quantum dots can be overcome. In particular, new electronic struc
ture m ethods [66, 7 1 —82], implemented on massively parallel computational platforms, allow 
one to m o d el  a cluster o f  more than 1000 atoms in a straightforward fashion [140]. Such 
approaches  can be illustrated by focusing on silicon quantum dots such as S i7()5H 3(){). This 
system corresponds to spherically bulk-terminated Si clusters passivated by hydrogens at the 
boundaries (Fig. 17 ) .  Computational details can be found in the literature [140].

For a n  ^-electron system, the quasiparticle gap s)!p can be expressed in terms o f  the 
ground-state total energies E  o f  the ( n  -f 1)-, (// -  1)-, and /7-electron systems as

=  E ( n  +  1)  +  E ( n  -  1) -  2 E ( n )  =  e " l  +  X (97)
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Figure 17. Atomic structure of a Si quantum dot with composition Si5:5H27,,. The gray and white balls represent 
Si and I I  atoms, respectively. This bulk-truncated Si quantum dot contains 25 shells of Si atoms and is 27.2 A in 
diameter.

where 1  is the self-energy correction to the highest occupied m olecular orbit-lowest unoc
cupied m olecular orbit gap ej,11 obtained within L D A . This definition is quite convenient 
for the calculation o f  the quasiparticle gap, as it is possible to excite individual electrons or 
holes from the ground-state electronic configuration o f  a confined system. The calculation 
o f  requires the self-consistent solutions o f  three different charge configurations o f  each 
quantum dot. T h e  computational dem and o f  this approach can be reduced significantly by 
using the wave functions o f  the neutral cluster to extract very good initial charge densities 
for the self-consistent solutions o f  the charged systems. Total energies for charged ( n  -f 1)- 
and ( n  -  l)-electron systems can be calculated in a straightforward fashion 1 140].

Equation  (97) yields the correct quasiparticle gap ejF, if the exact exchange-correlation 
functional is used. Within the local density approximation, in the limit o f  very large systems 
( n  — > cc), the gaps calculated using Eq . (97) approach the highest occupied molecular o rb it-  
lowest unoccupied molecular orbit gap sj,11 [130]. However, for  small systems. Eq. (97) 
captures the correction to the L D A  highest occupied molecular orbit-lowest unoccupied 
m olecular orbit gap quite accurately (Table 4) when com pared with available quasi-particle 
calculations using the G W  approach [ 1 2 1 ] .  Small deviations appear as the system size reaches 
approximately  1000 atoms.

The size dependence o f  the quasiparticle and L D A  highest occupied molecular orb it-  
lowest unoccupied molecular orbit gaps and self-energy corrections are shown in Fig. 18. 
Both gap values and self-energy corrections are enhanced substantially with respect to bulk 
values, and are inversely proportional to the quantum dot diameter c l  as a result ( I quantum 

confinement. Specifically, e ^ p ( d )  — £?'hll|k< e ^ i n d { d )  -  and - ( d )  -  l huik sca ê as ^ ' 2-
r t ' M, and d ~L\  respectively. The quasiparticle gaps shown in the figure are significantly 
higher com pared to the gap values obtained in earlier semiempirical calculations, although 
it is problematic in terms o f  any com parisons. The empirical gaps are obtained from poten
tials obtained from crystalline environments and scaled to dot sizes. The nature o f  these 
gaps is problematic in that they do not strictly correspond to quasi-particle gaps owing to
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Table 4. Highest occupied molecular orbit-lowest unoccupied molecular orbit 
and quasiparticle gaps [Eq. (97)] calculated for hydrogenated Si clusters 
compared lo quasiparticle gaps calculated within the GW approximation [121].

s '" eT GW

SiH, 7.9 12.3

| 
r-~ r >

Si H, 6.7 10.7 10.6
Su H r 6.0 9.5 9.8

4.4 7.6 8.0

Note: All energies are in eV.

their empirical roots. The main reason for the size difference in the gaps is the significant 
enhancem ent o f  electron self-energies because o f  quantum confinement, which cannot be 
properly  taken into account in semiempirical approaches.

Because the quasiparticle gap refers to the energy to create a noninteracting electron-hole 
( e  -  h )  pair, one cannot com pare these gaps directly to measurem ents o f  the optical gap. 
This  issue is especially important for quantum dots in which the exciton radius becom es 
com parab le  to the size o f  the dot. Q uantum  confinement in nanostructures enhances the bare 
exciton C oulom b interaction and also reduces the electronic screening so that the exciton 
C o u lo m b  energy £ (OUi becom es com parable to the quasiparticle gap. In order to extract the 
optical gaps

< :pl =  B f  -  £ Cllul (98)

the exciton C oulom b  energy needs to be calculated accurately. C om pared  to E Couh exci
ton exchange-correlation energies are much smaller fo r  the quantum dots studied in this 
work, and will therefore be neglected. Equation (98) is a rigorous expression, provided the 
C ou lom b energy can be properly computed.

A  crude, yet com monly used, approximation to E C ( m l  com es from the effective mass 
approximation [ 1 4 1 ,  142]. Within the effective mass approximation, one assumes an infi
nite potential barrier at the boundary o f  the quantum dot, and envelope wave functions o f  
the form <//(r)  ~  j;s in(27rr)/cl for a noninteracting e  —  h pair. This yields (in a.u.) £ ((nil =  
3 . 5 1 2 / e d .  T h e effective mass approximation, although commonly used, cannot be expected 
to yield accurate exciton Coulom b energies, as in this approximation the microscopic features

Quantum dot diameter (A)

Figure 18. Calculated quasiparticle (o) and highest occupied molecular orbit-lowest unoccupied molecular orbit 
(HOMO-LUMO) gaps ( + ) and self-energy corrections (x ) as a function of the quantum dot diameter d 
(in Angstroms). The solid lines are power-law fits to the calculated data approaching the corresponding bulk limits. 
For small deviations from the fits for large system sizes, see the text.
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o f  the e  -  h  wave functions inside the quantum dot are neglected, and the wave functions 
are constrained to vanish abruptly outside the quantum  dots, instead o f  decaying relatively 
slowly into the vacuum.

Thus, E CoU| is better calculated directly using a b  i n i t i o  pseudo wave functions. The exciton 
C oulom b  energy can be written as

^ C 'o u l =  1  d r A M  r . ) l2^ r(r i )

=  I  d r M 'i r ^ 2 jd r e  \ r t , r ) ^ lscr(r)

= / / / V ' (  ( W )
J J J  | r  — r 21

In this expression, V £ r and ^ lscr are screened and unscreened potentials resulting from the
hole, i p c and i f /h  are the electron and hole wave functions, and e ~ ] is the inverse o f  the
microscopic dielectric matrix. O ne can define i ~ ] as

f e~ '(r i, r)-—̂— -dr = e 1 ( r , , (100)
J | r - r 2| lr , — r2|

then the exciton C oulom b energy can be written as

^ ( r , ) | 2|<///}( r2)|2ff 6~1 ( r ,, r  ■>) y i i i h> -2i L dr dr, (101)
IJ - | r , -  r2j

I f  e  is taken to be unity, the unscreened £ Cou, can be determined. T h e results are shown 
in Fig. 19, along with the predictions o f  the effective mass approximation ( E M A )  and recent 
empirical calculations [ 143].  T h e  a b  i n i t i o  and em pirical calculations for the unscreened 
C oulom b  energy arc in quite good agreement with each other, both predicting smaller 
C oulom b  energies and a softer power-law decay com p ared  to the E M  A . In particular, fitting 
the calculated data to a pow er law o f  the d iam eter as d ~ P ,  we find /3 =  0.7.

A n accurate calculation o f  £ Cou, requires the inverse dielectric matrix e 1 ( r t , r2) in 
Eq . ( 1 0 1 ) .  A n  a b  i n i t i o  calculation o f  6_ I ( r , ,  r2) is com putationally very demanding, although 
recent progress has been m ade on this problem [144]. Earlier  calculations used either the 
bulk dielectric constant or the reduced dielectric constant o f  the quantum dot for  all e  — h

Quantum dot diameter (A)

Figure 19, Unscreened exciton Coulomb energies as a function of the quantum dot diameter J  (in Angstroms) 
calculated by effective mass approximation (dashed lineV direct empirical pseudopotential calculations (A  from 
Ref. [143]), and direct ah initio pseudopotential calculations ( \ ) as explained in the text. The solid lines are power- 
law fits to the calculated data
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distances. These are rather simple approximations, as the screening is different at different- 
length scales because o f  the wave vector dependence o f  e .  For example, when r, and r : in 
Eq . ( 1 0 1 )  are very close to each other, there will be practically no screening, and e % 1. 
Typically, both the hole and electron wave functions are well localized toward the center o f  
the quantum dot, and the screening will be reduced significantly, resulting in larger C oulom b 
energies  com pared to the case o f  using a single dielectric constant for all distances. A lso , 
extracting the appropriate dielectric constant for these small systems is problematic.

O ne can improve on these approximations by explicitly using the wave functions as calcu
lated by our pseudopotential approach and a realistic dielectric function that takes spatial 
variations o f  e  into account. To calculate the screening dielectric functions e(r, , r 2) o f  a 
particular quantum dot, one can proceed as follows: first, one applies spatially modulated 
electric fields at several wave vectors to calculate the ^/-dependent polarizability a ( q )  using 
a finite-field method. The ^/-dependent dielectric function €(q)  can be obtained using a 
dielectric sphere model [145]. The results for e(q)  o f  the S is7H 76 quantum dot are shown 
in Fig. 20. A fter  fitting the calculated e(q)  to a rational polynomial function o f  q  and 
Fourier-transform ing to real space [146]. we obtained the dielectric function i ( r  = |r, — r2|). 
Implicitly, we are assuming spatial isotropy in writing e ( r , ,  r 2) ^  e ( r  =  |r, — r2|). A s  shown 
in Fig. 20, the calculated i(q ) has a very sharp drop to ^  1 beyond q  =  0.2 a.u., which 
corresponds roughly to the wave vector set by the linear dimension (or diameter) o f  this 
quantum dot. This sharp drop is typical for all quantum dots studied. In real space, this 
implies that the e  — h  interaction is very inefficiently screened inside the dot, resulting in 
substantial excitonic Coulom b energies.

Th e  resulting optical gaps ejlpl =  ej!p — £Voui a long with the quasiparticle gaps and exper
imental absorption data ( 1 1 7 ]  from Si:M nanocrystals are shown in Fig. 2 1 .  Although the 
calculated quasiparticle gaps are ^ 0 . 6 - 1 . 0  e V  larger than the experimental absorption data, 
the calculated optical gaps are in very good agreem ent with the experimental data.

At this point, an interesting observation can be made about the good agreem ent o f  previ
ous semiempirical calculations with experimental data [ 1 3 4 - 1 3 6 ] .  In the above semiempirical 
approaches, it is the underestimate o f  both the excitation gap and the exciton Coulom b 
energies (through the use o f  a static dielectric constant o f  either the bulk or the quantum 
dot) that results in calculated values in agreem ent with experiment. A s  a matter o f  fact, 
the bare gaps o f  Refs. 1 1 3 5 1 and [136]  without the exciton C oulom b  energies are in better 
agreem ent with the experiment. T h e a h  i n i t i o  pseudopotential results demonstrate that the 
quasiparticle gaps in Si quantum dots are actually higher than previously thought, and the 
exciton C oulom b energies, because o f  the wave vector dependence o f  the dielectric response 
function e(r,, r 2), are higher than previously calculated, resulting in optical gap values that 
are in good agreem ent with the experimental absorption data.

q (a.u.)

Figure 20. Wave vector dependence of the dieiectric function for the Sis-H7(1 quantum dot.
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Figure 21. Calculated quasiparticle gaps (dotted line), optical gaps, and experimental absorption data trom Si:f 1 
nanocrvstals (x and o from Ref. ( I 17]) as a function of the quantum dot diameter d (in Angstroms), t he two sets 
of experimental data (x and o) differ b\ the method to estimate the nanocrvslal size.

T D L D A  methods can be used to examine hydrogenated silicon quantum dots. For large 
clusters or quantum dots, the absorption spectra becom e essentially quasi-continuous. and 
it is incumbent on us to use care in defining the optical gap. In particular, a large number 
o f  low-intensity transitions exist near the absorption edge. Taken individually, the oscillator 
strengths o f  these transitions would be located far below the experimentally detectable limit. 
A s  a result, identifying the first allowed optical transition in the case o f  large clusters is not 
a trivial task.

A s  the size o f  clusters increases, the absorption gaps gradually decrease, and the dis
crete spectra for small clusters evolve into quasi-continuous spectra for silicon nanocrystals. 
Figure 22 demonstrates that oscillator strength o f  dipole-allowed transitions near the absorp
tion edge decreases with increasing cluster size. T h is  fact is consistent with the formation o f  
an indirect band gap  in the limit o f  bulk silicon ( 126].

Rather than associating the optical gaps with the individual transitions, one can define 
a procedure for fixing the optical gap E ^ l  via  an integral o f  the oscillator strength.

-5 10 '

10 4

Figure 22. Oscillator strength for optical transitions in hydrogenated silicon clusters as a function of cluster size. 
The strength is determined b\ considciing transitions near the gap. The dashed line is a ii'iear ht.

Cluster diameter (A)

Quantum dot diameter (A )
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In particular, the following prescription has been suggested [147] to define the gap

/•/■-Jip

p F  =  / a ( ( o ) d  c o  ( 10 2 )
•M)

where F is the total optical cross section, (i(co) is the optical cross section for a given 
frequency, and c o  and /; are some prescribed fractions o f  the total cross-section for the fixing 
the gap. For the photoabsorption gaps, a typical value o f  p  might be 10  4. This definition for 
the absorption gap does not affect the values o f  the optical gaps for  small Si,;H,;/ clusters, 
as the intensity o f  their first allowed transitions is much higher than the selected threshold. 
A n  order o f  magnitude change in p  does not typically change the gap  size by more than 
± 1 0  meV. At the sam e time, Eq. ( 102 )  offers a convenient way to evaluate optical gaps in 
large clusters.

The variation o f  the optical absorption gaps as a function o f  cluster size is shown in Fig. 23. 
A lon g  with the T D L D A  values, we include optical gaps calculated by the B eth e -Sa lp e ter  
technique [ 1 2 1 ] .  For very small clusters, S iH 4, S i2H ft, and S i5H l2, the gaps computed by the 
T D L D A  method are close to the B eth e-S a lp eter  values, although for S i ,()H ,6 and S i 14H 20 our 
gaps are considerably smaller than the gaps calculated using the B e th e -S a lp e te r  equation. 
A t the same time, the T D L D A  gaps for  clusters in the size range from 5 to 7 1  silicon 
atoms are larger by ~ I  e V  than the gaps calculated by the H a rtre e-F o ck  technique, with 
the correlation correction included through the C l  approximation ( H F -C I)  [127].

These differences are consistent with the fact that the B ethe-Salpeter  calculations sys
tematically overestimate and the H F-C I calculations o f  Ref. [ 12 7 ]  underestimate the 
experimental absorption gaps. For example, for the optical absorption gap  o f  Si5H 12 the 
Bethe-Salpeter, T D L D A ,  and H F -C I  methods predict the values o f  7.2, 6.6, and 5 .3  eV, 
respectively, com pared  to the experimental value o f  6.5 eV. H ow ever, it is not clear whether 
the gaps o f  R ef. [ 12 7 ]  refer to the optically allowed or optically forbidden transitions, which 
may offer a possible explanation for the observed discrepancy. For large clusters, we find 
the T D L D A  optical gaps to be in generally good agreement with the photoabsorption gaps 
evaluated by the majority o f  self-energy-corrected L D A  [ 10 3 ,  126] and em pirical techniques 
[124 , 125, 136]. At present, the full T D L D A  calculations for clusters larger than a few

Cluster diameter (A)

Figure 23. Variation of optical absorption gaps as a function of cluster diameter. Theoretical values shown in 
the plot rscludc the gaps calculated by the time-dependent local density approximations (TDLDA) method 
(this work), by the Bethe-Salpeter technique (BS) (121] and by the Hartree-Fock method, with the correlation 
included nrough the configuration interaction approximation (HF-CI) (127). Experimental values are taken from 
Refs. [ I 16-118, i26j. The dashed lines are a guide to the eye.
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nanom eters can exceed the capabilities o f  most com putational platforms. Nevertheless, the 
extrapolation o f  the T D L D A  curve in the limit o f  large clusters com es very close to the 
experimental values for the photoabsorption gaps. Softw are and hardware advances should 
m ake a direct verification o f  this possible in the near future.

In determining the optical gaps within a linear response approach, only excitations with 
an induced dipole are incorporated. In real time methods, the induced dipole term is cal
culated directly [36-38]. Within our frequency dom ain description, two factors enter in the 
ascertaining the existence o f  an induced dipole: the existence o f  a transition energy and 
the corresponding oscillator strength. Within T D L D A ,  these terms can be obtained from 
Eq. (58) as and F , .  These terms must always be considered together when predicting 
optical properties, although som etim es this is not done [26].

In Fig. 24, we illustrate the lowest transitions without regard to oscillator strength for both 
L D A  and T D L D A  calculations. Transitions as defined by Eq. ( 10 2 )  are shown. For these 
transitions, the gap is defined when the oscillator strength assumes a value o f  at least 10 4 
o f  the total optical cross-section. The main d ifference between L D A  and T D L D A  for these 
system is a strong blue-shift o f  the oscillator strength.

It should be noted that real time methods for T D L D A  do not involve unoccupied eigen
values [36-38]. In this formalism, the absorption spectrum evolves from taking the power 
spectrum o f  the instantaneous induced dipole. T h e  resolution o f  an optical transition is 
determ ined by the length o f  the time integration [36-38]. Because the frequency domain 
method and the real time method should yield the sam e spectrum, “ virtual transitions,”  
that is, transitions that do not couple to the dipole, are not physically meaningful within 
frequency domain implementation o f  T D L D A .

7.1. Role of Oxygen in Silicon Quantum Dots
Porous and nanocrystalline silicon studied in experim ents are prepared under a variety o f  
surface conditions determined by the etching technique and external chemical environments 
em ployed. Only a fraction o f  published experimental data refers to “ p u re ” hydrogenated sil
icon dots [ 1 17]. O ther measurem ents are perform ed on partially oxidized nanocrystals [148, 
149]. For many cases, a precise chemical com position o f  nanocrystalline surfaces is not 
known [ 1 1 8 ,  150, 1 5 1 ]

However, most calculations for optical absorption and emission in silicon dots do not 
take into account differences in structure and chem ical composition o f  the dot surface. 
This creates an ambiguity in the interpretation o f  experimental data. A lm ost all a b  i n i t i o  

and empirical simulations available in literature use silicon dots passivated with hydrogen 
[ 10 3 ,  1 2 1 ,  122 , 1 2 5 - 1 2 7 ,  136, 152], although som e notable exceptions exist [ 15 3 ,  154). This 
limitation also is true for structural issues, w here only a few systems have been examined 
for reconstructed surfaces [ 15 5 ,  156].

2 » i- - i 2
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Figure 24. Gaps determined from local density approximation (LD A ) and lime-dependent LDA (TDLDA) for 
hydrogenated silicon clusters, (a) The gups plotted without regard to the oscillator strength, (b) The gaps determined 
using the criteria from Fq. (!02).
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T h e o re t ica l  calculations [ 103 ,  12 1 .  122. 12 5 - 12 7 .  136. 152]  based on a quantum con 
f in em en t model show general agreement with experimental m easurem ents [ 1 1 7 ]  for opti
cal absorption in hydrogen-passivated silicon clusters. In contrast, experiments perform ed 
on oxidized samples often display photoluminescence with energies significantly below the 
v a lu e s  o f  optical gaps predicted by the confinement model for clusters in the same size 
ra n g e  [ 14 8 ,  149]. This disagreem ent could be greater than I eV. It has been suggested that 
the onset o f  photoluminescence in silicon nanocrystals may be associated with the optical 
Stolkes shift [ 157 ]  and excitonic exchange splitting [158]. A lthough these effects could be 
significant in small silicon dots, it appears that neither the Stokes shift nor the excitonic 
e x c h a n g e  splitting alone could explain such a large disagreement between experiment and 
theory.

Rlecenit experimental data present strong evidence that surface effects have a very sub
stantial e f fec t  on the electronic and optical properties o f  nanocrvstalline silicon. Specifically, 
Wolikin e t  al. observed a large redshift o f  photoluminescence in porous silicon after exposure 
to o p e n  air [ 1 19 ] .  The study reported a shift of photoluminescence o f  the order o f  1 e V  
for  sam ples com posed o f  crystallites smaller than 2 nm in size. The observed redshift has 
beem attributed to surface oxidation o f  silicon nanocrystals. A ccording to the interpretation 
p ro p o se d  in Ref. [ 1 19 ] ,  oxygen creates trapped electron and hole states on nanocrystalline 
surfaces. T h e trapped surface states reduce the effective size o f  the optical gap. This mech
a n ism  cam explain the difference between the energy o f  the m easured photoluminescence 
and theoretical predictions based on the quantum confinement model.

A,s a result o f  the very large number o f  possible configurations for oxidized silicon clusters, 
current studies are often limited to the case o f  a single oxygen atom attached to the cluster 
surface . Oxidized clusters w ere prepared from regular hydrogen-term inated spherical dots 
by re p la c in g  two hydrogen atoms on the surface with a single atom o f  oxygen, followed by 
re laxat ion  o f  all interatomic forces. The model geometries for oxidized clusters are illustrated 
in F  ig. 25 .

s u o h 4 S isOHl0
SiOH:

(I) (II) (I) (II)

(I) Si -></') H -u| (II)

- Si
- O
- H

Figure 25. Model geometries for hydrogenated silicon with oxygen.
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T h e calculated absorption spectra o f  oxidized silicon dots are shown in Figs. 26 and 27. 
In Fig. 26 the spectra o f  small oxidized and nonoxidized clusters are illustrated. The addition 
o f  oxygen creates new absorption bands in the region o f  lower transition energies. O pti
cal excitations with higher energies are also affected by oxidation, although some intense 
absorption peaks observed in nonoxidized clusters (such as the peaks at 6.6 and e V  for 
S i5H ,2) appear to be only slightly shifted. F igure 27  shows the calculated spectra o f  the 
SUgO H 34 and S i35O H 34 clusters.

T h e overall change in the optical absorption spectra caused by the addition of a single 
oxygen atom is small larger clusters. To m ake the effect o f  oxidation m ore evident, we plot in 
Fig. 27 the differential spectra calculated as the difference in optical absorption of the same 
cluster before and after oxidation. Positive values o f  differential photoabsorption correspond 
to the new absorption peaks that appear only a fter  oxidation. T h e  differential absorption 
spectra for S i2i,OH34 and S i 15O H 34 clearly show the presence o f  low-energy optical transi
tions associated with surface oxygen. The calculated optical absorption gaps in oxidized and 
nonoxidized silicon dots are com pared in Fig. 28. T h e T D L D A  gaps for nonoxidized SUH- 
clusters are adapted from our previous work [ 152 ] .  The spectra are essentially quasicon- 
tinuous and exhibit a large number o f  low-intensity transitions near the absorption edge. 
A s  such, the effective optical gaps were evaluated at a very small but nonzero fraction o f  the 
com plete electronic oscillator strength as in Eq. ( 10 2 ) .  The same criterion in defining the gap 
for  silicon quantum dots was used for the oxidized silicon clusters. Fig. 28 demonstrates that 
surface oxidation reduces optical gaps in hydrogenated silicon clusters by as much as 1 - 2  eV. 
T h e  change in the size o f  optical gaps is consistent with the redshift o f  photoluminescence 
observed in Ref. [ 1 1 9]  and is likely responsible for  the disagreement between experimental 
photoluminescence from oxidized silicon nanocrystals and theoretical estimates based on the 
quantum confinement model.

A  surprising result o f  oxygen absorption is the small difference observed in the optical 
gaps between cluster isomers with Si — O and S i — O — Si bonds on the surface. At the same 
time. Figs. 26 and 27  reveal substantial d ifferences in the shape o f  optical spectra for these 
clusters. One can understand this difference by exam ining the mechanism o f  the gap form a
tion in two selected clusters: Si35O H v4 (I) and (II). T h e  order o f  electronic levels near the 
gap is illustrated for both isomers in Figs. 29 and 30, respectively. Th ese  diagrams repre
sent simplified schemes that show only the dom inant single-electron K o h n -Sh am  transitions

4 6 X 2 4 6 8 in

Photon Enercv (eV)

Figure 26. Left: calculated TDLDA absorption spectra of oxidized hydrogen-terminated silicon .lusters. Right: 
lime-dependent local density approximation spectra of nonoxidized clusters. All spectra were broaceneu hv 0.1 eV 
using a Gaussian convolution.
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Photon Hnergy ( e V )

Figuire 27. Left: calculated time-dependent local density approximation absorption spectra of Six,OH,4 and 
SitfOHu clusters. Right: difference in optical absorption between clusters with and without oxygen on the surface. 
All Sjpectra are broadened bv 0.1 eV.

withiin the T D L D A  description and do not account for correlations am ong individual excita
tions. T h e energies o f  optical transitions shown in these figures correspond to one-electron 
sing.let T D L D A  excitations (32). T h ey  differ from transition energies o f  the T D L D A  opti
cal sp ec tra  shown in Figs. 26 and 27 which correspond to collective electronic excitations. 
Nevertheless , the single-electron diagram s arc useful for the qualitative analysis o f  optical 
transitions in oxidized silicon dots.

Tlhe authors o f  Ref. [ 1 19)  proposed that photolumincscence in small oxidized silicon clus
ters occurs between the trapped electron and hole states, both o f  which are associated with 
the double Si =  C) bond on the cluster surface. Specifically, the trapped electron state is a 
p-staite localized on silicon and the trapped hole state is a p-state localized on oxygen. Spatial 
distr ibutions o f  electron densities for the lowest unoccupied m olecular orbital and the high
est o ccu p ied  molecular orbital o f  the Si35 Ol 1 u (II) cluster plotted in Fig. 26 confirm that 
theste states are indeed represented by p-states mainly localized on the silicon and oxygen

0 2 4 t s 10 12
CluMcr diameter (A t

Figure* 28. Comparison between the optical absorption gap1- of regular and oxidized hydrogen-terminated silicon 
clusters. The gaps for SiH clusters are adapted from Ref. |1̂ 2|. The dashed lines are a guide to the eye.
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Figure 29. Schematic representation of electronic levels in ihe vicinity of the gap for Si35OH;>4 (I) clusters Spa
tial distributions of electron densities are shown for the highest occupied molecular orbit and lowest unoccupied 
molecular orbit states.

atoms. H ow ever, the distributions o f  highest occupied  molecular orbit and lowest ur.occu- 
pied m olecular orbit electron densities for the S i35O H 34 (I) cluster shown in Pig. 27 reveal a 
different picture. The lowest unoccupied m olecular orbit state is, for the most part, localized 
on two silicon atom s that form the S i — O — Si bonds. At the same time, the highest occupied 
molecular orbit state is not localized on the oxygen atom. Instead, this electronic state is 
spread am ong the layers o f  silicon atoms surrounding the S i — O —Si fragment. In both cases, 
the direct d ipole transitions between the highest occupied molecular orbit and lowest unoc
cupied m olecular orbit states arc forbidden. T h e  absorption edge for S ^ O H ^  (II) is formed

S i„O H 34(i:

*  I  p

k  c c

Figure 30. Schematic representation of electronic levels in the vicinity of the gap for Siv,C)H^ (II)  ciusi rs. Spa
tial distributions of electron densities are shown for the highest occupied molecular orbit and lowest unoccupied 
molecular orbit states.
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mainly hy transitions from lower occupied orbitals to the lowest unoccupied m olecular orbit 
state. For this cluster, transitions from the highest occupied m olecular orbit state to higher 
unoccupied orbitals do not contribute to optical absorption near the gap. For S i35O H 34 (I), 
however, both o f  these types o f  electronic transitions are involved in the formation o f  the 
absorption edge.

Such calculations show that even a low concentration o f  oxygen on the surface can sub
stantially alter the optical properties o f  silicon nanoclusters. H ow ever, experimental studies 
are not always limited to clusters with low oxygen content. Som e limited studies have been 
perform ed on dots with a higher concentration o f  oxygen (e.g., Si-5O f,H-,4). This cluster was 
prepared from the hydrogen-terminated dot S i35H 3(1 by replacing 12  outer-shell hydrogen 
atoms with oxygen to form six double Si =  0  bonds at the positions symmetrically equivalent 
to that shown in Fig. 25 for S i35O H 34 (II). T h e increase in oxygen coverage caused a further 
reduction o f  the absorption gap to 2.4 eV. This value was approxim ately 0.4 e V  lower than 
the absorption gap for Si35O H 34 (II), and almost 1.6 e V  lower than the gap for the nonox
idized cluster Si35H 3fl. The principal mechanism of gap form ation for  Si35O hH 24 appears  to 
be similar to that for S i35O H 34. T h e additional reduction o f  the absorption gap in the case o f  
S i330 6H 24 could be explained by interactions am ong oxygen-induced electronic states. T h e 
absorption gap for  S i35O H 34 is reduced bv the presence o f  localized oxygen-induced levels. 
In the limit o f  large clusters, the positions o f  these levels should be essentially independent 
o f  the cluster size. Because the gaps in silicon dots decrease with increasing cluster size as 
a result o f  diminishing quantum confinement, at some point the oxygen-induced states are 
expected to cross over the electronic levels from the body o f  the cluster. A fte r  this point, the 
oxygen-induced states would no longer be located inside the gap. Calculations indicate that 
depending on the fraction o f  oxygen coverage, the oxygen-induced states should not cross 
over the levels from the body o f  the cluster for silicon dots up to approxim ately 2 0 -2 5  A  in 
diameter [ 153] .  For larger dots, the overall effect o f  surface oxidation on the optical prop
erties is likely to be less important.

7.2. Doping Quantum Dots
Electronic and optical properties o f  semiconductor nanostructures are strongly affected 
by quantum confinement because o f  the reduced dimensionality o f  these systems [159]. 
In nanocrystals or quantum dots, where motion o f  electrons (or holes) is limited in all three 
dimensions, quantum confinement results in a strong increase o f  the optical excitation e n e r
gies when com pared to the bulk. One expects that other electronic and optical properties 
such as the dielectric properties will be affected as well.

In bulk semiconductors, shallow donors (or acceptors) are  crucial in determ ining the 
transport properties required to construct electronic devices. H ow ever, these properties  are 
expected to be significantly altered in highly confined systems such as quantum dots. A s  a 
consequence, important questions exist as to whether dopants will continue to play a role 
similar to that in bulk semiconductors and on whether new applications such as quantum 
computation (160, 161 ]  will becom e possible in the nano regime.

Experim ental studies o f  shallow impurities in quantum dots, such as P in Si nanocrystals, 
have been slow to address such issues. In part, this is because o f  difficulties in the preparation 
of  sam ples in a controllable m anner (e.g., it is hard to ensure that a quantum dot contains 
only one impurity). For such reasons, only a few experimental studies have focused on the 
doping o f  quantum dots. T h ese  studies have used photolum inescence and electron spin 
resonance measurements, most o f  which have been perform ed on silicon quantum dots. 
Increasing the dopant concentration results in distinct changes in its photolum inescence 
properties such as suppression o f  the signal [162]  and a blue-shift o f  photolum inescence 
maxima with decreasing particle size in heavily p-doped porous silicon [ 163] . It is also not 
clear whether or not the doping o f  Si nanoervstals provides a generation o f  free charge 
carriers in these systems [ 163,  164].

Electron spin resonance measurem ents are a popular tool for examining impurities in 
semiconductors and have recently been applied to these systems. Spin resonance experi
ments determine the hypertine splitting ( H F S )  o f  the defective electron levels, which are
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directly related to localization o f  the dopant electron density on the impurity site [165]. 
In Si nanocrystals with radii o f  10  nm doped with P, a hyperfine splitting o f  1 1 0  G  has been 
observed [166]. This splitting is in sharp contrast to the bulk value o f  4 2 G . A  size depen
dence o f  the H F S  also exits in Si dots with radii around 50  nm [167], although in this case 
it is likely influenced by an asymmetrical shape o f  Si crystallites. Recently, a strong size 
dependence o f  the H F S  o f  P atoms was observed in much smaller nanocrystallites with radii 
o f  2 - 3  nm [168].

Theoretical studies o f  shallow impurities in quantum dots have also lagged relative to 
calculations for macroscopic systems. T h e large number o f  atoms and low symmetry hin
der such studies. Som e empirical studies have been perform ed for impurities in quantum 
dots [ 138 ,  169, 170]. T h ese  calculations involve various parameters, which are com monly 
assumed to have bulklike values. A  common drawback in these studies is the use o f  a generic 
hydrogen-like potential to model the impurity atom.

T h e  real space, a b  i n i t i o  pseudopotential density functional method [ 1 7 1 ]  has been applied 
to the electronic properties o f  a single phosphorus impurity in a hydrogenated Si quantum 
dot containing hundreds o f  atoms [ 172] .  The nanocrystals were m odeled as spherical, bulk- 
terminated Si clusters whose surface is passivated by hydrogen atoms. O ne silicon atom is 
substituted by a phosphorus atom.

P, Si, and H atoms were modeled using a h  i n i t i o  Troull ier-M artins  pseudopotentials 
[63, 65], Parameters for the Si and H pseudopotentials and other technical details are given 
e lsewhere [ 1 7 1 ,  172].

Several substitutional geom etries for the P atom have been explored (e.g., a P placed at 
the center o f  the dot, o f f  center, and on the surface). No significant relaxations o f  the Si 
atom s were found in the vicinity o f  the P atom. T h e largest change in position occurred 
when the P was positioned o f f  center. In this case, the P atom was shifted by about 0 .1 a.u. 
in the outward direction.

In contrast to supercell approach, the real space method allows one to examine charged 
clusters in a straightforward m anner [ 1 71 ] .  Ionization energies I d  for  P-doped nanocrystals 
and affinity energies A /} for pure Si nanocrystals have been determ ined using charged systems

/ , =  E ( n -  I ) - E ( n )  ( 10 3 )

A p  =  E { n ) - E ( n +  I) ( 104 )

where E  is the ground state total energies o f  the //-, (// +  I)-, and ( n  -  l)-e lectron systems. 
T h e  binding energy E B  for the donor atom can be calculated as a d ifference between these 
two quantities

E - n  =  I j  —  A p  ( 10 5 )

This  definition o f  the binding energy E B  corresponds to two separate processes. The doped 
dot is ionized (i.e., the electron is physically removed from the nanocrystal), and the affinity 
energy may be calculated by considering an isolated neutral dot o f  equal size and adding an 
electron. A  similar approach has been used in the tight-binding calculations [ 138]  in which 
the binding energy was calculated as a difference between the lowest conduction levels o f  
the same crystallite with one excess electron both with and without impurity.

This  definition o f  the binding energy for the donor atom can be contrasted with that for 
a bulk system, where this quantity is defined as the d ifference between the dopant electron 
level and conduction band continuum (i.e., the binding energy is equal ro the ionization 
energy o f  the defect atom). In nanocrvstals or quantum dots, such a definition is problematic 
because an electron being excited into an unoccupied state (below the vacuum level) will
be confined by the physical size o f  the dot and will continue to interact strongly with the
impurity atom.

T h e calculated ionization, affinity, and binding energy as functions o f  quantum dot radius 
R  are shown in Fig. 3 1 .  T h e ionization energies for pure, hydrogenated Si nanocrvstals are 
also given for comparison. T h e ionization and affinity energies for pure Si quantum dots 
have values close to those calculated recently for hydrogenated G e  nanocrystals. A  surprising



Electron!: Structure of Clusters and Nanocrystals 847

feature n  F: ig. 3 hi is that the ionization energy l d  shows virtually no dependence on the size 
o f  the dot.

Th e impendence o f  I ( / ( R )  is different from the behavior o f  the ionization energy in Si 
quantum dots where this quantity is very large at small radii and gradually decreases, scaling 
as R  11 to its bulk value. Although this dependence o f  the ionization energy on radius 
is weaker than R  2 law predicted by effective mass theory [ 1 73 ,  174], it is, nevertheless, a 
consequence o f  spatial confinement o f  electrons (holes) in quantum dots. It is surprising 
that this behavior is absent in the functional dependence o f  I j ( R ) .  The binding energy 
which scales as R  1 1 is shown in Fig. 3 1 b .  These values are close to results o f  the tight- 
binding method [138), even though the ionization energy has a constant value in this range 
o f  sizes. Also plotted in Fig. 3 1b  is the dependence o f  the “ band gap'* (i.e., the difference 
betw een the lowest level with single occupancy and the highest doubly occupied level) in 
P-doped systems. This quantity is blue-shifted with respect to the bulk values, where it should 
be approximately equal to Si band gap. C om parison  with results for pure hydrogenated Si 
dots [ 14t] o f  the sam e radius shows that it is smaller by about 10 %  than values o f  the highest 
occupied molecular orbit-lowest unoccupied molecular orbit gaps. The large values o f  the 
binding energy indicate that for dots in this size regime, the donors cannot be considered 
as shallow. This is largely a result o f  the w eak screening present in quantum dots and the 
physical confinement o f  the donor electron within the dot.

Th e nature o f  the S i - P  bond can be clarified by examining the charge density o f  the dopant 
electron ^ ( r ) ) 2 for several dot sizes. In Fig. 32, we illustrate the charge profile for the case 
when the impurity is at the dot center. The density is plotted along [ 100] direction; results in 
other directions are similar. At all dots radii, the dopant wave function is strongly localized 
around the impurity site (i.e., the majority o f  the charge is within the P—Si bond length). 
From effective mass calculations [ 1 73 ,  174], it follows that the envelope wave function o f  
the dopant electron is given by j ^ i r r / R )  oc sin(7T r / R ) / r .  T h e calculated charge profile in 
Fig. 32  is at variance with this description. This  difference in the spatial distributions can be 
attributed to the w eaker  screening in quantum dots. At these sizes, the dielectric constant 
is several times smaller than the bulk value [140, 144], giving rise to the increase o f  the 
effective clcctron-impurity potential and stronger localization o f  the electron around the 
defect atom.

Given the charge distribution o f  the dopant electron, one can evaluate the isotropic hyper- 
fine parameter, which determ ines the contact interaction between the electron and defect 
nuclei. The method o f  Van de Walle and Bloch! [ 175]  is used to extract the hypcrfine param 
eters from pseudo-ch arge densities. T h e  hyperfine param eters for a P atom positioned in 
the dot center are given in Fig. 33. At small sizes, the hyperfine param eter is very large 
because o f  the strong localization o f  the electron around impurity. As the radius increases, 
the value o f  A  decreases. Our calculated results scale with radius R  o f  the dot as R  1,5

4 6 8 10 12
Radius (A) Radius (A)

Figure 31. (a) Ionization energy /, for phosphorus-doped nanocrystal (▼) and electron affinity A /t ( A )  as a function 
of nanocrystaPs radius R. Ionization energy for pure hydrogenated Si nanocrystals (■) is also shown. Solid lines are 
the best tits to calculated points, dotted line is a guide to an eve. (b) Binding energy E lf (■) and energy difference 
between defect level with single occupancy and highest occupied state with double occupancy (□) as a function of 
the dot's radius
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Figure 32. Charge density for the dopant electron along [ 100] direction, x/R is the .v-coordinate normalized on the 
dot's radius R.

(effective mass theory gives R  '). In Fig. 33 , we also present the experimental data o f  Ref. 
[168]. T h e  measured values of the hyperline param eter falls on the best fit to calculated 
results; computational limitations prevent us from com paring directly to measured values.

T h e  hyperfine values are not strongly dependent on the choice o f  the P site. O ther sites 
have been tested by replacing one o f  the Si atoms in each shell with a P atom while retaining

Radius (A)

Figure 33. Calculated (•) and experimental (4) isotropic hvpertine parameter I versus dot's radius R. The solid- 
line is the best fit to calculations (bulk value of hyperfine parameter 42 G was used to obtain this lit). The Inset 
shows experimental data of Ref. 11621 together with thi_ fit to results of calculations. Two sets of experimental points 
correspond to the average size of nanocrystals ( x ) and the size of nanocrystais (A) estimated from comparison of 
photolumineseence energies for doped and undoped samples (for more details, see Ref. |
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Figure 34. Isotropic hyperfine parameter A in SiS(,H7()P quantum dot as a function of the normalized position r0/R 
of the P atom in the quantum dot. The dotted line is the average value of the hyperfine parameter.

the passivating hydrogen atoms. T h e  ionization and binding energies were unchanged to 
within ~ 5 % ,  independent o f  the impurity atom position [172].

T h e  value o f  the isotropic hyperfine param eter also remains largely unchanged, save for 
the outerm ost layers o f  the dot. This behavior is dem onstrated in Fig. 34, where the hyperfine 
p aram eter  is plotted as a function o f  defect position in a representative dot S iiSf)H 7hP. N e ar  
the surface, the P atom density becom es more delocalized and the hyperfine param eter 
shows a notable decrease in value from the value when P resides in the dot center. However, 
the average value o f  the hyperfine param eter over all sites is only about 1 5 %  lower than the 
value obtained when the P atom is at the center o f  the nanocrystal, which further increases 
agreem ent with experimental data.
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Chiral molecule

cell with a right-handed, 547 
Chiral slab, 547 
Chiral vector, 371 
Chromia/alumina catalysts, 631 
Chromium clusters. 622 
Chromosomes, 600 
Circuit theory. 669
Circumferential breathing frequency, 381 
C 2v isomers

NM R patterns, 487 
Ci isomers 

cyclic, 468, 469 
energy differences, 470 
linear, 468, 469 
relative concentrations, 469 

C7S isomers
,3C NM R spectra, 479 
mole fractions, 480 
symmetries. 479 

Cs4 isomers, 482, 483 
Classical continuum mechanics, 369 

analytical modeling with. 369 
Classical trajectory methods. 380 
Clausius-Clapeyron equation, 467 
Clay-filled polymers, 268 

microstructures of. 268 
C1 ay- n a nocom pos i t es. 288

partially intercalaled and partially exfoliated, 
314

Closed-she 11 contigurat ion 
40-election, 95
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Cluster-assembled solid. 44 
■applications, 63-97 
electric polarizability of, 70 

Cluster assembly, 92, 96 
Cluster-cluster distance. 96 
Cluster derived structures (CDS), 790 
Clustering degree, 468 
Cluster melting, 87 
Cluster models, 616 
Cluster radius, 70 
Clusters. 822

dynamical matrix, 826 
of aluminum group, 69 
structure, 822 
vibrational spectra, 826 

Cluster shape, 89
subshells and distortion of, 73 

Cluster structure 
description of, 79 

Cluster temperature, 88 
Coarse-grained model, 152-155 
Coefficient of thermal expansion (GTE), 300, 

367
Coexistence chemical potential, 157 
Cofacial dimmers, 227 
Cohesive energy, 65, 95 
Collective dipole resonance, 75 
Collective electronic excitations, 74 
Collective oscillation, 75 
Complete active-space self-consistent field 

( CASSCF), 210 
wave-function, 210 

Complex eigenvalue
comparison of the frequency dependence, 

591
problems, 556 

Complex periodic constant analysis
with respect to number of PhC layers, 590 

Composite applied strain, 282 
Composite doped metamaterials (CDMs), 539, 

5 77, 590, 595 
b ased sensors, 605 
optimization, 595, 596, 599 
selection of numerical methods, 578 
simulation of, 577
structures, 539, 540, 577, 579, 590, 595, 596, 

599, 601, 603, 605 
Composite model, 334 

two models, 334 
Composite modulus, 311 
Composites, 254 

a dvantages of, 254 
isotropic properties of, 317 

Compressed row storage (CRS)-format,
783

Computational chemistry, 459, 616 
periodic boundary conditions, 617 
three categories, 616 

Computational methods, 2 
Computational modeling, 616 
Computation-observation agreement, 486

Conductance. 665
two-probe differential, 665 

Conductivity, 237 
Cone-covered graphite aggregate 

FESEM  images, 516 
Cone formation, 510 
Cone-helix growth model. 516 
Cone shapes

H RTEM  images, 508. 509 
Configurational bias algorithm, 156, 168 
Configuration interaction (C l), 4, 211. 772 

calculations, 81 
Configuration interaction including single 

excitations (CIS), 212 
Confined systems, 822 

properties of, 822 
Confining potential, 66-67 
Conformational strain, 24 
Conic shapes

deviations from the ice-cream shape, 513,
514

geometrical stability considerations, 513 
in graphite, 510
topological stability considerations, 514 

Conic tip, 518, 519
Conjugated organic polymers (COPs), 204 

conducting state of, 229 
optical properties of, 209 
properties of, 204 

Conjugate gradient, 8 
method, 810 

Constant-current surface, 530 
Contact angle, 170 

macroscopic, 171 
of microscopic droplets, 170 

Contact lengths
the JK R  and molecular dynamics analyses, 

433
Contact size, 430, 433, 434 
Contact width, 431 
Continuum mechanics, 263, 400 
Continuum modeling, 380 
Continuum models, 523, 528, 529, 735 
Contour map, 96 
Control volume, 397, 421 

moving, 421-423 
size of, 398 

Convenient method, 822 
Conventional density-functional formalism, 807 
Convex/concave angle, 527 
Coordination numbers, 406 
Copper

temperature distribution in the atomic 
lattice, 427 

Copper monocrystal, 422 
Copper nanowhiskers 

atomic model, 447 
deformation, 446
effects of atomic orientation and specimen 

shape, 447
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effects of size, shape, and surface atomic 
structure, 448 

modeling, 447 
Cooperon propagator, 673 
Cooper-pair box, 672 
Cooper pairs, 649 
Cooper pair tunneling, 675 
Coordinate relaxation, 777 
Copper specimen

distribution of dislocations in the subsurface, 
425

C 0 2 reduction, 623 
schematic of, 623 

Correlation function 
direct, 167 

Corundum, 619 
Coulomb blockade, 671, 672 
Coulomb energy, 76, 822 
Coulombic empirical potentials. 31 
Coulombic potentials, 29, 45 
Coulomb interactions, 521 
Coulomb repulsions, 239, 758 
Coupler

optimized design. 572 
CPU time, 522 
Cr/alumina system, 631 
Crank-Nicholson scheme, 162 
Critical endpoint (CEP), 181 
Critical slowing-down (CSD) phenomenon, 776 
Crossover algorithm, 600 
Crystalline material cools, 8 
Crystallographers' cubic unit cell, 625 
C(1 structures

cyclic and linear, 470 
relative concentrations, 470 

Cc,0 structures, 487 
C 2v structure, 487 
NM R lines, 487 

Cubic close packing, 625 
Cuboidal system geometry, 157 
Cumelenic form, 444
Cumulative distribution function (CDF). 121, 

123-124, 138, 140 
Current density contours, 130 
Current spin-density functional theory 

(CSDFT), 785 
Cut-and-paste procedure, 525 

for making a nanocone, 512 
Cutoff energy, 618 
Cutoff frequencies, 585, 586, 592 
Cutting deformation, 421 
Cutting regime. 423-427 
CVD diamond films, 450 
CVD-grown MWCNTs, 261 

bimodal histogram of, 261

C y isomer, 493, 494 
schlcgel diagrams of 15 isomers, 493
7 isomer, 493. 494 

Cyclic indentations, 417

D
DACAPO, 617 
Dangling bonds, 745 
Dark atoms, 423 
Davidson procedure, 820 
Davydov components, 224 
Davydov splitting. 224 
Debye frequency. 678 
Debye’s model, 399 
Defect-free cell, 634 
Deformation

characteristics, 409, 441 
cross-sectional view, 435 
molecular dynamics prediction, 435 
of copper nanowhiskers. 446 
plastic, 438 
regimes, 436, 437 

Deformation regimes, 423. 424, 429 
cutting regimes, 424 
no-wear regime. 424 
transition diagram of. 424 

Deformation zone, 424, 426 
Delocalized orbitals, 239 
Density correction, 781

linear integral equation. 781 
Density distribution, 48 
Density fluctuations, 156, 177 
Density-functional approaches, 803 
Density-functional calculations, 152 

of clusters and cluster assembly, 43-97 
quantum mechanical, 152 

Density functional component, 142 
Density functional methods. 55 
Density functional theory (DFT), 2, 47, 49, 54, 

60, 63, 79. 104, 108, 209. 460, 470, 520, 521, 
525, 618, 774, 805 
a h  i n i t i o , 77 
approach, 106, 461 
calculational schemes, 92 
calculation of excitation energies employing,

213
calculations, 4, 23, 29. 31-32, 36, 66, 68, 72, 

77. 82, 85, 89 
Car-Parinello. 152 
codes, 4
exchange-correlation functionals in, 28, 79 
formalism, 160
Kohn-Sham form of, 46, 52. 91 
LDA calculations. 19 
linear response, 70 
MD simulations. 31 
methods. 3 
simulation, 54, 85. 91 
simulations of STM images. 529. 530 
snapshots of, 723 
Tarazona, 107 

Density gradient, 56 
Density of stales (DOS). 68°
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calculated local, 17 
Density profiles, 176, 182 

one-dimensional, 134-135 
radially averaged. 172 
two-dimensional, 13 3 

Deposition technique, 264 
Destabilizing effect, 790 
Deterministic algorithms. 599 
Deterministic optimizers, 596, 598, 599. 603, 

604
Dewetting experiments, 178 
Dewetting morphology, 175 
Dewetting process 

spi nodal. 175 
3D-FDTD 

analysis. 608 
of ILS experiment. 607 
of W1-waveguide, 606 
optimized power splitter, 611 
simulation, 606, 607, 609 

DFT algorithm, 522 
DFT-LDA calculations, 19 
DFT levels, 475, 492 
DFT-MD simulations, 31 
DFT orbitals, 215

band gap problem, 216 
HOMO-LUMO gaps, 215 

DFT simulations 
of melting, 91 

Diamond carbon coating 
silicon (100) and (110) surfaces, 451 

Diamond asperity, 430, 431, 432 
Diamond-copper interactions, 433 
Diamond-copper interface, 422 
Diamond-copper sliding systems 

nanofriction, 429 
nanowear, 429 

Diamond films, 449, 450 
Diamond in den ter. 410 
Diamondoid covalent solids, 380 
Diamond-silicon attraction, 436 
Diamond-silicon sliding systems, 433 

modeling, 433 
Diamond slides, 424, 425. 427 
Diblock composition, 133, 136-137 
Diblock-confined particle systems, 121 
Diblock copolymeric system, 122 
Diblock copolymers, 106. 117. 120-122, 124. 

293
architecture, 121 
asymmetric filled. 145-146 
domains, 118, 121 
filled, 118
morphological studies, 132
nanoparticle-filled, 142-147
particles confined in. 118
periodic structure of, 145
properties of mixtures of, 116, 132
root mean-squared end-to-end distance of.

143
symmetric, 132, 143

symmetric filled. 144 
symmetric unfilled. 143 
systems, 118 

Diblock entropic free energy, 107 
Diblock matrix, 133 
Dielectric constant. 763 
Dielectric functions, 837 
Dielectric lens

with relative permittivity, 553 
Diffuse jcllium model (D JM ), 71 
Diffusion coefficient. 90 
Diffusion equation 

modified, 162-163 
DUS-method, 783 
Dimcthylforrnamide (DMF), 279 
Dipole frequency, 75 
Dipole polarizability, 70 
Dirac equation, 524 
Direct approach

for photonic crystal waveguide analysis, 587 
Direct covalent functionalization, 22 
Discontinuous molecular dynamics (DMD), 302 
Discrete modeling, 377 
Displacement step, 441, 445, 446 
Dissociation 

barrier, 76 
channel, 6 

Dissociative adsorption, 640 
of NO and CO, 640 

Distribution function 
end-segment, 162 

Divergence theorem, 698 
2D MMP 

model, 610
optimized power splitter. 611 

Domain methods, 578, 579, 585 
Donohue's description, 406 
Dopants, 554 
P-Doped systems, 847 
Doping, 539, 595 
Doping quantum dots, 845 
Doping shifts, 206 
Double grid technique, 778 
Double peak phenomenon, 584 
Double-walled carbon nanotube, 385 

truss model of, 385 
Doubly percolating composites, 131 
Downhill movements, 8 
Droplet-like model. 97 
Drying transition, 173 
Dulong-Petit’s model, 399 
Dynamical electric dipole polarizability, 74 
Dynamic correspondence principle, 312 
Dynamic density functional theory (DDFT),

132
Dynamic mechanical analysis (DMA), 273 
Dynamic polarizability dating back, 75 
Dynamic polarizability tensor, 809



E
Edge dislocations 

determination, 423 
E E R M  model, 325

nanotube waviness ratio, 325 
Effective core potential (ECP), 488 
Effective electron-ion interaction, 46 
Effective external potential, 50 
Effective mass approximation (EM A), 735, 736, 

836
Effective mass theory (EM T). 523, 529 

Hamiltonian, 523, 524 
Effective reinforcing modulus (ER M ) model, 

324
Efficient stress transfer, 129 
Efficient time stepping methodology, 114 
Egg-box effect, 778 
Eigenfrequencies, 556 
Eigenproblem solvers, 783 

solving, 818 
Eigenvalue, 556, 585 

equations, 653 
problems, 556, 557, 562, 582 
search function, 588, 589 
solver, 584, 585, 588, 592 

Eigenvalue estimation technique (EET ), 585 
Eilcnberger equation, 668 
Einstein's model, 399 
Elastic energy, 111

:tv theory, 269 
Elastic ...odulus, 313, 448 
Elastic-plastic deformation process. 448 
Elastic shell model, 370 

schematic of, 370 
Elastic shell theory, 330 
Electric dipole moments, 81 
Electric dipole polarizabiIities, 70-71 
Elcctric-ficld operator. 236 
Electroabsorption spectroscopy, 225 
Electrochromism, 206 
Electroluminescence, 206 

interchain and intrachain, 227 
Electromagnetic field, 551 
Electromechanical coupling factor, 717 
Electron affinities (EAs), 77, 205 
Electron density, 4, 47-48, 88 

average bulk. 78 
ground state, 48 

Electron density distribution. 47, 49. 76 
Electron distribution, 47-48 
Electronegativity, 72
Electron-electron interactions, 46. 49, 61). (>6 
Electron-electron repulsion, 4 

classical. 4
Electron energy loss spectroscopy (EELS ). 636 
Electron-hole Coulomb, 762 
Electronic band gaps, 539 
Electronic charge distributions. 81 
Electronic conductance, 237

860

Electronic energy, 4 
Electronic shells, 77 

closing, 70 
effects, 66 
in clusters, 63-64 
in large clusters. 66 
structure, 67 

Electron-ion interaction, 58-59, 618 
two choices of pseudopotentials, 618 

Electron-ion interaction energy, 60 
Electron kinetic energy, 48^9, 52-53 
Electron-nuclear attraction, 4. 6 
Electron-positron system, 791 
Electron pseudowavefunctions, 46 
Electron spin resonance (ESR ) 

pulse, 458 
Electron wavefunction, 4, 47, 52 
Electrospinning, 264 
Electrospun polymer nanofibers. 264 
Electrostatic potential, 47, 64 
Electrostatic self-energy, 48 
Elliptic operator, 821 
Embedded atom method (EA M ) 

approach, 6 
potentials, 34 

Embedding energy. 6 
Empirical bond-order potential, 19 
Empirical methods. 5 
Empirical potential models, 617 
Empirical pseudopotential method (EPM ). 745 
Empirical tight binding (ETB), 736 

method, 743 
Empty core potential, 58 
EM T equation, 523

for one-electron wave function, 523 
EM  theory, 759
Endohcdral metallofullercnes, 488 
Energy-dependent Andreev, 660 
Enthalpic interactions, 107 
Epoxy-nanoclay composite, 289 
Epoxy-silica nanocomposites, 276 
Equiaxed nanoparticulate reinforcement, 274, 

258
Equilibrate dense polymer liquids, 156 
Equilibrium constants, 466 
Equilibrium structure, 95 
Equivalent-continuum modeling, 386 
Equivalent continuum models, 305 

recent application, 306 
Equivalcnt-truss model, 387 
Eshelby’s general formalism, 695 

for shape effects, 695 
Eshelby tensors, 310, 696 
Ethene, 211

through decapentaene, 212 
Euler buckling formula, 369 
Euler-Lagrange equations, 49, 56, 724 
Euler's polyhedral theorem. 463 
Euler’s theorem, 463 
Evanescent modes, 565. 590-593 

mode! truncation. 591

Index
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Evans-Hoovcr thermostat. 444, 445 
Evans-Hoover thermostat ting scheme. 445, 446 
Evaporation energy, 69, 84 
Evo 1 u t io n a ry optimizations, 601 
Evolutionary strategies (ESs), 599, 601. 602 
Exact diagonalization (ED ). 786 
Exchange-correlation. 52 

effects, 71
energy, 51-53, 521, 618 
functional, 52. 55 
hole. 52
potential, 61, 64, 77 

Excitation energies of oligomers, 221 
in liquid and solid solutions, 221 

Excite collective oscillations, 74 
Exciton binding energy, 206, 765 
Excitons, 761
Exciton transition energy, 755 
Expanded graphite (EG ), 291 
Extended X-ray absorption fine structure 

spectra (EXAFS), 636 
equations of, 774 

External body forces, 692 
External potential, 829

F
Fabrication process, 539
Face-centred cubic (FCC) lattice, 397
Far-field radial density, 308
I'D and FI codes, 578. 579
FEN E

interactions, 157 
potential, 163 

Fermi commutation relations, 650 
Fermi-Dirac energy distribution, 522 
Fermi-Dirac function, 659 
Fermi distribution, 661

of incoming quasi-particles, 661 
Fermi energy. 12, 659 
Fermi golden rule, 672 
Fermi level, 12, 95, 523, 527, 528, 804 
Fermi velocity, 523, 525, 668 
Fermi wavelength scale, 668 
Ferromagnet, 654 

dispersion curves. 655, 656 
Ferromagnet/superconductor interface, 657 
Fiber-reinforced polymer composites, 363 
Fictitious boundaries, 582, 583 
Fictitious eigenstrain, 349 
Field emission (FEM ), 509 

properties, 526 
Filled polymeric systems, 126 
Filling carbon nanotubes, 29 
Filter

band-pass and band-stop, 573 
photonic crystal, 575 
RLC, 575
simple bandpass photonic crystal, 574, 575

Fine-grained lattice models, 155 
Finite computational domain. 1 14 
Finite difference approximation, 113 
Finite difference model (FDM), 105, 113. 772 

advantages, 775 
electrical properties, 113 

Finite difference time domain (FDTD), 105 
calculation, 143 
method, 105, 114 
optical properties, 114 
simulation, 114-115, 143 
technique, 105 

Finite element approaches, 319 
Finite element method (FEM ), 128, 319 

simulations, 128 
Finitc-element (FE ) techniques, 772 

advantages, 775 
Finite-ficld method, 837 
Finitely extensible nonlinear elastic (FEN E ) 

potential, 154 
First-order optical transitions, 759 
First-order properties, 208 
First-principles methods, 617 
First-principles quantum mechanical methods, 

640
First-principles thermodynamics, 629 
Fissioning cluster, 76 

electron density of, 76 
Fitness definitions, 601 
Fitness function, 599, 603, 604 
Flat graphene sheet, 523, 532 
Flattening of the tetrahedron

in the diamond cubic structure, 407 
Floquet modes, 541-545, 547, 548, 588 

negative-order, 548 
zero-order. 542 

Floquet theory, 544 
Flory-Huggins model, 166 
Flory-Huggins parameter, 107, 152 
Fluctuation-dissipation relations, 110 
Fluctuation-dissipation theorem, 822 
Fluid-fluid correlations. 168 
Fluorescence excitation, 225 
Flux transformer, 682 
Fock-Darwin energies, 788 
Focused ion beam (F IB), 332 

technology, 605 
Folded spectrum method, 746 
Force-constant matrix, 460 
Force-displacement relationship, 399 
Force field model, 759 
Force minimization, 7 
Fourier basis, 617 
Fourier coefficients, 55 
Fourier transform, 56 
Fourier transform algorithm, 62 
Fourier transformations, 705 
Frank-Condon principle, 210 
Frank-Condon shift, 763 
Frank index, 524
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Free-electron gas, 803
Hartree-Fock exchange in, 804 

Free-electron model, 803 
Free-energy barrier, 170 
Free-energy density, 165 
Free energy functional, 108-109, 160, 163-164 
Frequency selective surface (FSS), 538, 

540-542, 545 
gratings, 540, 542 

Friction, 426 
transition, 430 

Frictional behavior, 426, 428 
Frictional force, 420, 429

relationship with contact length, 429 
Frictional model, 303 
Frictional stress, 430, 431

versus contact width for indentation depths, 
431

Friction coefficient, 420, 421, 426 
variation. 428 

Frictionless motion, 429 
Friedcl oscillations, 55 
Fries Kekule structures, 514, 515, 525 
Frozen orbital approximation, 214 
Full-approximation storage method (FAS),

776
Fullcrene cages, 471 

enumerations, 471 
Fullcrene cones, 508-510, 513 

schematic figures, 513 
STM image, 508, 509 

Fullerenes
cages, 473, 474 
C72 fullerenes, 475 
C74 fullerenes, 475. 476 
CX2 fullerenes, 482 
C72 isomers. 475, 476 
C„ isomers, 472, 473 
C?2 structures, 473 
derivatives, 493 
endohedral. 460 
Fermi level, 511 
halogenated, 493
heptagon-containing structures, 473
higher, 475
hydrogenated, 493
isomerizations, 471
isomers, 461, 462, 472
Kekule structure, 514
missing, 475
multishell, 514
quantum-chermcal calculations, 460 
quasi-. 473, 474 
shapes, 513, 514 
single-walled, 513 
smaller, 472 
structures. 461 
synthesis. 471, 481. 486 

Fullerite crystal, 95 
Fully coupled model, 717 

comparison, 718

Functional integral. 161 
Fundamental-measure theory (FMT). 1.08

G
GaAs/AlGaAs system, 707

measured transport spectrum, 788 
strain contours, 708 

Gaussian
behavior. 162
chain model, 162-163, 168, 178 
distributions, 157 
orientation. 321 
orthogonal ensemble, 678 
potential barrier, 68 
type functions, 3 
white noise. 109 

Gauss-Seidel method, 776 
Gauss theorem, 696
Generalized gradient approximation (GGA), 4. 

53, 56, 71, 521, 532, 618, 784 
parameterization, 28 

Generalized minimum residual 
(GMRHS)-method, 782 

Generalized multipole techniques (GMT), 581.
584

Generalized Penn’s model (GPM). 765 
General public license (GPL), 773, 793 
Genetic algorithms (GAs), 599-602, 824 

advantages, 824 
microGAs, 601, 602 

Genetic operations, 599 
Genetic programming 

basic principle, 600 
Geometrical surface structures, 640 
Geometry optimizations, 211, 461 
Gerade and ungerade states, 224 
Gibbs energies, 462, 492 
Gibbs free energy. 465, 533. 630 
Ginzburg-Landau

effective free energy, 680 
type equation, 680 

Glass transition temperature, 175, 270 
molecular dynamics calculation, 301 
physical aging, 271 

Global electronic structure, 621 
Global minimum energy crystal structure. 8 
Global round-off error, 398 
Global truncation error. 398 
Golden rule. 74 
Good lit arrangements. 5 i 6 
Gorkov equation, 668 
Gradient approximation, 57 
Gradient energy contributions. 109 
Gradient expansion, 57 
Gradient vector, 603 
Grafting density, 181 

high. 182 
intermediate, 181 
low. 182
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Grain boundaries, 424 
Giram-Schmidt orthogonalization. 1 1 1  

Grand canonical
ensemble, 156-157, 161. 170. 172-173 
free energy, 174 
reservoir, 170 
simulations, 157-158 

Graphene cell, 378
bond structures and corresponding energy 

terms, 378 
Graphene hexagonal lattice, 259 
Graphene sheet, 305, 511,512 

unit cell of, 305 
Graphite, 269
Gr aphite cones, 507, 513, 516, 519 

FESEM  images, 516 
SEM  and FESEM  images, 517 
tubular, 518 

Graphite nanoplatelet (GNP), 291 
Grating, 541-544, 553, 555

consisting of single layer of dielectric rods, 
543

consisting of two layers of dielectric rods, 544 
perfect, 555
relative permittivity, 542 
sinusoidal, 541, 542 
with single layer of dielectric rods, 541 
with two layers of dielectric rods, 541 

Green's function, 527 
Green’s tensors, 713 
Gr id-based real-space methods, 773 
Ground state density, 51 
Gr ound state energy, 51-52 

calculation, 63 
functional, 51 

Gr ound-state geometries, 824 
Ground-state structures, 822 
Guaranteed Reduction Pulay (GRPulay) 

method, 781 
Guiided waves, 585 
G- vectors, 62
G W  absorption spectrum, 830

H
FI aid a m a r d t r a n s f o r m a t i o n, 681 
Hailf-spacc solution, 709 
Ha.lpin-Tsai equations, 309 
Ha.Ipin-Tsai (HT) methods, 309, 317 
Ha.lpin-Tsai relations, 317 

{parameters, 317 
Ha maker constant, 152, 154, 176-177, 179, 181 
Ha.mann-Schluter-Chiang [57] potentials, 816 
Ha.miltonian, 3, 49-50, 62, 159 

Kohn-Sham, 63 
Ha.miltonian matrix. 820 
Ha.rd-sphere pressure, 167 
Ha.rmonic vibrational analysis, 488 
Ha.rtree approximation, 800 
Ha.rtree equation, 801

Hartrce-exchange correlation kernel, 781 
Hartrce-Fock

approximation, 50, 52, 801 
eigenvalues, 804 
electronic energy, 802 
kinetic energy, 50 
level, 52 
method, 476 
orbital energies, 802 
orbitals, 214
Schrodinger equation, 802 
theory, 772 

Hartree-Fock Moller-Plesset (FJF-MP) 
approach, 4 
energy eigenvalues, 54 
theory, 4

Hartree-Fock seif-consistent-field (H F SCF), 
460

Hartree potentials, 71, 654, 745, 774 
Hartree term, 521 
Hartree wave function, 800 
H chemisorption, 756 
Heavyside step function, 168 
Heine-Abarenkov potential, 58 
Heisenberg transistor, 676 

schematic drawing, 676 
Helical cone growth, 515

cone-helix growth model, 516 
H c 11 m a n n - Fey n ma n 

force, 522 
theorem, 63, 822 

Helmholz equation, 781 
Heptagon, 473, 475, 488 
Heptagon-pentagon pairs, 17 
Herringbone structure, 226 
Hertzian contact, 432 
Hertzian prediction 

of contact area, 410 
Hertz theory, 433 
Hessian matrix, 460, 603 
Hexagonal nanowhiskcr specimen 

atomic model, 447 
HF approach, 464 
HF/4-31G 

approach, 484 
computations, 474, 481, 484 
energetics, 481, 485 

Higher fullcrenes, 475 
Higher-ordcr compact discretizations, 782 
Highest occupied molecular orbital (HOMO), 

73, 208, 623 
High molecular weight (HM W). 289 
High-pressure CO conversion process 

(FliPCO), 262 
High-resolution electron microscopy (H REM ), 

620
Hilbert space, 682
Histogram extrapolation techniques, 158 
Histogram-reweighting techniques, 159 
HIV-1 virus 

core shell, 510
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Hohenberg-Kohn theorem, 51. 525 
Hole-phonon matrix elements, 758 
Holes, 740

heavy-hole (hh) and light-holc (lh). 740 
Holey photonic crystal structure 

SEM  image, 560 
Holy grail, 624 
H O M O  energies, 515
H O M O -LU M O  gap, 65, 68, 73, 91-94. 96-97, 

622
substantial, 86 

Homooligomers, 227 
Hooke’s law. 269. 693 
Hiickel shells, 515, 525 
Hiiekel theory. 216, 51 I 

Hamiltonian. 511 
modified, 511 

Hiickel tight-binding scheme, 238 
Huckel-type calculations, 459 
1 lund's rule, 786
Hybrid FE-micromcchanics model, 328 
Hybridization, 510. 511 

v/r, 510 
sp\  510 

Hybrid modeling methods, 322 
Hybrid systems, 648
Hydrogen-aluminum-spinel formula. 626 
Hydrogenated silicon clusters, 838

from local density approximation (LD A ), 840 
model geometries, 841 
oscillator strength, 838 
time-dependent LD A  (T D LD A ), 840 

Hydrogen spinel, 618 
Hydrogen-terminated 

diamond tips, 36 
nanocrystals, 735 

Hydrostatic pressure, 409 
Hyperfine splitting (H FS ), 845 
Hz-field, 608

Icosahedral 
cluster, 69. 87 
structure, 69, 85. 89 

Icosahedron. 90 
Ideal gas law, 630 
Identity tensor, 310, 693 
Implant loosening. 391 
iiiAs pyramidal-shaped quantum dots, 698 

strain components, 703 
Inclusion- inclusion interactions. 727 
Inclusion theory, 726

bonding conditions of inclusion, 726 
coated inclusions, 726 

Indentation. 402, 409. 414-420 
cycles, 415 
cyclic. 417 
effect of water. 415

elastic, 411 
inelastic, 411 
in water, 416 
length of bond. 407 
load-displacement curve, 411 
maximum indentation, 409 
phase transformations, 406 
repeated, 418 
residual, 416
second and third, 417, 419. 420 
variation of key quantities, 412 

Indentation force
versus contact area, 418 

Indenter
diamond, 419 

Indenter-silicon interface, 416 
Index materials 

negative. 548-550 
IN DO/SCI method, 226 
Inelastic deformation. 434 
Infinitesimal strain tensor, 693, 722 
InGaAs/GaAs quantum dots, 701

Shin et al.’s finite element model, 701 
Inorganic semiconductors, 229 
InP triangular wire, 707 

strain contours, 707 
Integral time step. 445 
Interaction 

energies, 2 
forces, 2 

Interatomic force, 400 
Interatomic potentials 

/2 -body, 401 
Interchain interactions, 224 

theory, 225 
Interface free energy. 159 
Interface potential, 170-171, 175-179 

effective, 173. 179 
Interface tension, 169 
Interfacial

friction model, 369 
shear stress, 367 
tension, 157, 174 

Intermediate neglect of differential overlap 
(IN D O ), 226 

Internal light source ( IL S ) technique, 606 
Interphase behavior, 314 
Inlertube corrugation. 330 
Intrinsic stress. 450

on diamond-like carbon film, 450 
Ion core. 814 
Ion deposition, 23 
Ionic charge distributions. 81 
Ionization affects, 80
Ionization potentials (IPs), 66. 68. 72, 83. 85. 

205
I P R  cages, 464. 471. 475. 484 

isomerism of C 7S. 479 
I PR  I u lie re nes. 464. 472 
I PR  isomers 

of C 7(S. 480
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of Cy(„ 4S7 
of C,2, 4S7 
of Q j,  4S7 
of C% , 4S7 
of Cy8, 4S8 

I PR rule, 525, 528
I PR structures, 471-473, 475, 476, 478 

cage isomerism, 478 
of Cso, 480 
of Cs2, 4̂ 2 
of Q 4, 483 
of CHft, 483 
of Cyo, 485 
of Ca@C74, 489, 491
topological symmetries D: and T lh  478, 479 

Irreducible Brillouin zone (IBZ ), 557, 558, 559, 
582
one-dimensional, 561, 562 

Ising universality class, 174 
two-dimensional, 174-175 

Isokinetic thermostatting, 440 
Isolated atomic clusters, 43 
Isolated pentagon rule (IPR ), 460, 514 

cage isomerism, 460 
energetics, 464 

Isolated pentagon rule set 
C7fl, 478 
C7S, 479 
Cs„, 480 
Cs2, 482 
CS4, 482 
CS6, 483 
Css, 483 
C,(), 485 
C,2-C,S1 487 

Isomeric cone tips
relative stability of, 525 

Isomeric fullerene systems, 483 
Isomeric stability problem, 467 
Isomerization transitions, 88-89 
Isotropic model, 718 
Isotropic-nematic ordering, 110 

j
Jahn-Teller deformation, 480 
Jahn-Teller distortion, 73, 475, 480, 484, 485,

515
Jahn-Teller effect, 69, 460, 484 

pseudo, 484 
Jahn-Teller theorem, 478 
Jellium background densities, 77 
Jellium calculations, 79 
Jellium model, 65-66, 73 
Jellium-on-jellium model, 77-78 
Jellium sphere, 77 
JK R  theory. 410. 411, 421, 431, 432 
Josephson arrays, 678 
Josephson junctions, 648

Josephson-junctions arrays (JJAs), 678 
Jump-to-contact (JC), 35

K
Kekule structures, 511, 514 

Fries, 514, 515 
Kelly-Tyson model, 370 
Kerker pseudopotential, 816 
Kinetic energy (KE), 826 

functionals, 55, 88, 91 
Kirchoff’s law, 113 
Kleinman-Bylandcr form, 618 
Knudson diffusion, 32 
Kochetov and Osipov model, 528 
Kohn-Sham (KS) 

approach, 51
band structure calculation, 54 
calculation, 59, 89 
density functional calculation, 46 
density matrix, 808 
effective potential, 57, 59 
eigenvalues, 52, 54 
energy eigenvalues, 54, 62 
equation, 4-5, 52, 60, 70-71, 74, 79, 88, 521, 

773
formulation, 64, 91 
Hamiltonian, 63, 521 
molecular dynamics simulations, 88 
one-electron energies, 63 
one-electron orbitals, 70 
one-electron wavefunctions, 61 
orbitals, 54. 62, 73, 521, 522, 789 
potential, 51, 53, 56, 70, 74 
procedure, 55, 91 
scheme, 50, 52, 54 
wavefunctions, 63 

Koopman's theorem, 54, 214 
Krcnchel expression, 319 
Krylov techniques, 776 
Kvecrner's carbon-black process, 509, 512 

measured apex angles, 518

L
La/Alumina system, 635 
Lagrangen multipliers, 9 
Lagrange undetermined multiplier, 48, 50 
Lame constants, 721 
Lamellar mesophase, 134 
Lanczos method, 777 
Landauer-Buttiker formula, 659 
Landauer formula, 237 
Langevin dynamics, 825 
Langevin equation, 109-110, 823 
Langevin molecular dynamics, 822 
Lanthanum, 635

undoped and La-doped, 636, 637 
Laplace operator, 162
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Laplace's equation, 105, 514 
Laplace transform, 711 
Laplacian term, 819 
Large ring defects, 530 
Laser vaporization processes, 261 
Lattice Boltzmann model, 112 
Lattice space

reciprocal, 557, 558 
Lattice spring model (LSM ). 105. 128, 138 

calculations, 141 
dynamic, 106
mechanical properties, 111 
network, 110 
purely elastic, 112 
simulation, 119, 128. 136-137 
technique, 128 
viscoelastic, 112 

Lattice vectors, 557 
reciprocal, 557 

Layer-hy-layer (LBL ) assembly, 389 
LCAO expression, 523, 529 
Leapfrog algorithm, 9 
Leapfrog principle. 514 
Lee-Yang-Parr's (LYP) correlation functionals,

214 
Left-handed 

materials, 549 
media, 538, 548 
medium, 549 

Lennard-Jones ( I J ) 
chains, 167, 178
interaction. 109, 154, 160. 165, 177 
model, 155
monomeric fluids, 164, 166, 174 
monomeric reference fluid, 166 
monomers, 166 
particles, 165
potential, 6. 25, 29, 32, 163-164, 166, 302,

416
potential function, 378 
potential parameters, 416, 417 
type, 154 
units, 178 

Leveraging experiments, 620 
Leveraging infrared spectroscopy. 641 
LimAl clusters 

electronic structure of. 83 
Lindhard screening function, 55 
Linear combination of atomic orbitals (LCAO), 

3, 61. 511. 620 
Linear elasticity theory. 11 i 
Linear low density polyethylene (LLD PE), 275 

dynamic mechanical properties of, 275 
Linear response theory, 55 
Li,„Pb clusters

calculated ground state geometries of, 83 
Lippman-Schwinger equation, 238 
Liquid drop model. 66 
Liquid-vapor coexistence, 156, 159, 174 

chemical potential. 173 
value, i 70

Liquid-vapor critical point, 159 
Liquid-vapor interface. 152. 158, 170-171. 177, 

178
free energy, 158 
tension, 173 

Lithium clusters, 67
Load-displacement curves. 411.412, 417, 419 

of repeated indentations, 41 ̂  
of second indentation cycle, 415 

Loading-unloading process, 41"
Local charge neutrality, 77 
Local density approximation (LDA). 4. 52-53, 

64, 92, 521, 618
diffuse jellium model (DJV1). 71 
cxchange-correlation potentijl, 71 
spin polarization (LSDA). 52-53 

Local density functional. 178 
Local density of states (LDOS). 526-530 

apical magnetic flux. 529 
to /z-membercd rings, 528 

Local pse udopoten t ia Is 
first-principles. 60 

Local spin density approximation (LSDA), 214 
Loss modulus, 272 
Loss parameter, 608, 609 
Lowdin orthogonalization procedure, 742 
Lower-density droplet. 787 
Lowest-unoccupied molecular orbital (LUMO).

73, 208, 622 
Low molecular weight (I MW) 289 
Low pressure chemical vapor ceposition 

(LPCVD ), 735 
Luminescence, 227 
LUM O  energies, 515 
Luo and Daniel approach, 314

M
Macroscopic drops dewets, 175 
Macroscopic material properties, 546 
Madelung constant, 6 
Madelung summation techniques, 806 
Magic 

clusters, 65. 622 
numbers, 64, 67, 75. 77. 87 

Many-body interactions, h 

Many-body theory, 208 
Marconi's time. 538 
Marcus theory, 238 
Masterbatch nylon 6, 2Sv 
Materials modeling. 377 

two kinds of techniques. 37"
Matrix equation, 810
Matrix-fiber stress transfer mechanism, 370 
Maximum-density droplet (MDD). 786 

MOD-window limits, "’87 
Maxwell’s curl equations 

discretization of. 1 !4 
Maxwell's equations, ! 05, 114



i I I index 867

I MVhaxwell solvers, 598 
f MVhaxwell theory, 549 
I MVltean-field approximation, 108 
f MVkcan field theory of superconductivity, 652 

key feature. 652 
\ MVltean spherical approximation (MSA), 166 
f NMteissner effect, 677 
F NMtelting temperature, 87, 90 
r NMtelting transition, 87-88 
T NMtcsoscopic Josephson junctions, 675 
r NMtesoscopic physics, 647 
I NMtctallocarbohedranes, 622 
f NMtetallofullerenes. 459 

endohcdral, 488 
isomerism, 460 
stability computations, 488 

P NMeetal oxide materials, 625 
f NMeetamaterials, 538-540, 548. 550, 555, 580, 611 

anisotropic effect, 546 
* coating. 580 

I" NMcethod of auxiliary sources (MAS), 581, 584 
(computation, 584 

f NMcethod of fictitious sources (MFS), 584 
NMcethod of moments (MoM), 579, 580, 581 

Is NMiicrocracking, 403
 ̂ NM i*i croe 1 ect ro mecha n i ca I sy s t c m s (M E  M S ), 396 

Iv NMidcroGA, 601, 602
i table-based, 602, 603 

 ̂ NMiocromechanical dislocation model, 429 
 ̂ NMkcromechanical simulation, 142 

Iv NMitcromechanics modeling, 310 
N NMiccrophase separation, 124 
I'1 NMiccroscopic monomer density, 160 
F' IVVl 11KA package, 773

.^schematic illustration, 773 
 ̂ IVVlil 11s-Nixon effect, 514 

IV NMI IN DO, 459
b NMimimum energy configuration, 112 
N NMirni-stopband, 608 
N M4NMA monomer, 282 
N M4IWIP code, 583, 584 
N M'lNvl simulations, 520, 525 
IV MINN DO heats

f for mat ion per atom. 465 
N MINN DO (modified neglect of differential 

overlap) method. 217. 464 
N Mloxle gaps or mini-stopbands (MSBs), 608, 

6509
N Mloxlel pseudopotentials. 57 
N Mlodel truncation lines, 593 
N Mloode matching technique, 566, 567, 571, 592. 

5593
wvaveguide discontinuities, 593 

N Mloodified embedded atom method (M EA M ) 
aapproach. 6 

N Mloodified neglect of differential overlap 
(fMNDO), 460, 466, 479, 482 

N MIoiilecular binding energies, 53 
N MloMecular dynamic modeling, 299 
N MloMecular dynamics analysis, 396, 397, 399, 

4123, 431, 433, 453

Molecular dynamics model
for nanoindentation in water. 416 
of silicon, 397 
of sliding processes, 421 

Molecular dynamics modeling 
of materials, 396 

Molecular dynamics (M D) simulations, 8-9, 18, 
20, 24-25. 30, 32, 34-36, 72, 87-88. 96, 368, 
420, 428-434, 440, 444, 448 
constant energy, 88 
elcctron-beam irradiation in. 19 
equilibrium, 30
hydrogen-terminated diamond surface in, 34 
nonequilibrium, 32 

Molecular mechanics force, 385 
Molecular mechanics (M M) methods, 616 
Molecular mechanics simulation, 364 
Molecular memory

based on an endohcdral fullerene, 458 
fu 1 lerene-based, 458 

Molecular orbital package (MOPAC). 461 
Molecular structural mechanics. 384 

major steps, 384 
Molecular transistors. 458 
Molecular wire bridge, 237 
Molecules 

chiral, 546 
curves, 546 
axis of, 545, 547 
relative permittivity, 545-547 

Mole fractions, 462 
Moller-Plessct (M P) 

calculations, 82
many-body perturbation theory, 79 
perturbation theory MP2, 210, 213 
theory, 4 

Molybdenum nanoclustcrs. 640 
interaction of N2, 640 

Monkhorst-Pack scheme, 618 
Monodisperse oligomers, 208 

polyenes, 208 
thiophcne, 208 

Monomer density. 162 
Monomeric molar fraction, 467 
Monomeric reference system, 165 
Monomer-monomer interactions, 155 
Monomer number density profile, 168 
Monomer-substrate interactions, 179 
Monomer-wall 

attraction, 172 
potential, 179 

Monte Carlo approach, 520 
Monte Carlo integration, 599 
Monte Carlo lottery, 156 
Monte Carlo (M C) methods, 304 

dynamic problems, 304 
Monte Carlo sampling, 159 
Monte Carlo (M C) simulations, 10, 32, 89-90, 

154, 156, 158, 166, 168-169, 175, 177. 183 
for thin polymer films, 151-199
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grandcanonical, 169 
tight-binding, 89 
wetting transition in, 170 

Monte Carlo statistical method, 331 
Montmorillonite. 255 

structure of, 267 
Mori-Tanaka method, 310 

derivation of, 334 
schematic of, 334 

Mori-Tanaka micromechanical model, 283 
Mori-Tanaka modulus, 311 

illustration of. 31 1 
Morphological transition, 183 
Morse pair potential, 401 
Morse potential. 405, 422, 447 

cutoff radius. 447 
parameters, 405. 422 

Mott insulator, 679 
M PB code. 583 
MPG code, 583, 584
Mulliken population analysis (MPA), 232 
Multiasperity contact sliding 

mechanics model, 438 
Multiasperity sliding. 437 

configuration I, 438 
configurations 11 and III, 437 
modeling. 437 
parallel asperities, 437 
spherical diamond asperities, 437 

Multichain partition function, 160 
Multi-complcx-origin-source method, 593 
Multigrid (M G ) algorithms, 775 
Multiple multipole program (M MP). 581, 584.

585
computation, 584 
eigenvalue solver, 588 

Multipole expansions, 583 
Multireference configuration interaction 

(M RCI), 210 
Multiscale methods, 329 
Multiscale modeling, 299, 383 
Multisource methods, 592 
Multiwalled coiled carbon nanotubes 

(MCCNTs), 389 
Multiwalled nanotubes (MWNT), 440 
Mutation 

rates, 600 
single-bit, 603 

MWNT-PMMA nanocomposites, 285 
MWNT-polycarbonate system, 281 

frequency domain data, 313 
M W NT-re in forced polymers, 283 

for glassy modulus of, 283 
M6X clusters, 85

N
Na clusters, 74. 79. 88 

chemical hardness of, 73 
polarizahiiity oS. 71

Na^ clusters
melting temperature of, 87 

Nambu space, 668 
Nanocatalysts, 620 
Nanoclay-polymcr composites, 288 
Nanoclay-polymer nanocomposites. 257 
Nanocomposites, 106, 254 

applications, 255 
cylindrical phase of, 136 
lamellar phase of, 133 
macroscale behavior of, 254 
macroscopic properties, 111-116 
micromechanical studies, 137 
model, 316
multifunctional properties, 331 
structure of, 106
thermo-mechanical properties, 331 

Nanocones, 507, 511
comparison of simulated STM images, 530 
formation energies. 532 
four configurations, 526 
hydrogen desorption curve, 509 
nucleation theory, 532 
simulated STM image, 530 
two-dimensional free-standing structures.

527
with one (a-c) and two (d-f) pentagons, 531 
with substitutional atoms (b, c, d. f). 531 

Nanocrystals, 620
quantization effects, 622 
quantum confinement in, 833 

Nanodeformation, 405 
Nanodevices, 648 
Nanodcwetting, 176 
Nanodroplets

on layered substrates, 175 
Nanoelectromechanical systems (NEM S), 396 
Nanofibers, 239 
Nanofibers electrospun, 259 
Nanofiller elements, 256 
Nanohorns, 518
Nanoindentation, 34, 36. 399, 401-403, 410, 

415, 417, 438, 453 
displacement field, 404 
modeling. 403
on monocrystalline silicon, 402 
simulation, 431 

Nanoindentation with water
cross-sectional view of simulation, 417 

Nanomaterials, 1 
Nanoniechanieal modeling, 298 
Nanomechanics, 254, 299 
N an ometer-sca 1 e systems 

application, 10 
Nanoparticle-filled diblock copolymers 

optical properties of. 142-147 
relation of morphology, 142 
structure of. 142-147 

Nanoparticles, 620
influences their chemistry, 620

i
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Nanophysics, 788
in axial symmetry, 7<SS 

Nanopipettcs, 518, 519 
Nan oplatelet reinforcement, 267, 288 

partially exfoliated nanoplatelets, 314 
Nan oprocessing operation, 397 
Nanoreinforced materials, 254 

critical issues, 256 
Nanoreinforced polymers, 274 

experimental results, 274 
interphase region, 292 
viscoelastic behavior, 292 

Nanorod/polymer blend system, 127 
Nanorods, 126, 258

electrical properties, 130 
in binary polymer blends. 126-132 
mechanical properties, 128 
properties of mixtures of. 132 
volume fraction of, 127-128, 130-131 

Nanoscale, 798 
Nanoscale defects, 791 

positron states, 791 
Nanoscale friction model. 368 
Nan-oscale reinforcement, 258 
Nanoseale reinforcement tillers, 258 

types of, 258 
Nanoscale rods, 126 

' Nanosilica-reinforced polymers, 293 
Nanospheres, 258 
Nanotechnology, 538, 624 
Nanotribology

introduction, 420-421 
’ Nanotube, 254

controlled orientation of, 280 
different chiral vectors, 259 
energy plots during the pullout of, 367 
potential applications, 390 
properties, 260
single-walled, multi-walled or nanotube 

bundle, 256 
snapshots, 366 

\ Nanotube/epoxy resin composite system. 364 
I Nanotube-matrix interfacial shear mechanism. 

370
T Nanotube-polymer composites, 297 

equivalcnt-continuum modeling, 307 
relaxation spectra of, 297 

T Nanotube/polymer composite system, 388 
equivalcnt-continuum modeling of, 388 

r Nanotube-polymer interface, 281 
load transfer, 281 

r Nanotube-reinforced polymers (NRPs), 278 
current issues in nanomechanics, 329 
electrical and thermal properties, 286 
mechanical properties of. 282 
nanotube dispersion, 279 
processing of, 278 
Young's modulus predictions, 237 

r Nano tube reinforcement, 258, 277 
r* Nano tubes’ walls, 23

chemically functionalize, 23

Nanowhisker, 446-449 
Na„,Pb clusters. 84

closed-shell structure of, 84 
Natural optimization algorithms, 599 
Navier's equations, 693 
Nb/a-Alumina system, 632 
Nearest-neighbor atoms, 6 
Negative illumination, 551 
Negative index lens, 553 
Negative index materials, 548-550, 553 

disk, 552 
Negative index slab, 550 
Negative refraction, 548 
Neighbors against time 

graph. 406 
Neutral cluster, 72 
Newtonian

atoms, 403, 423, 441, 444. 447 
copper atoms, 430 
dynamics, 396, 826 
equations, 63 
fluid, 270 

Newton-like optimizer, 569 
Newton’s constitutive law, 368 
Newton's equation, 9 
Ni tip, 35

indention of, 35 
NN system, 665

schematic picture, 665 
Noble metal clusters, 75 
Nonbulk interphase polymer, 292 

experimental evidence of, 292 
Non-dilutc composite, 349 
Nondimensional indentation depth 

versus lubrication/contamination, 426 
versus sliding speed, 426 
versus tip radius, 426 

Nondimensional parameters, 422 
Nonlinear effects, 714 
Nonlinear optical properties, 208 
Nonlinear truss rod, 385

load-displacement curve, 385 
Nonlocal effects, 723 
Nonlocal kinetic energy functional, 56 
Non-monotonic variation, 63 
N onove rI appi ng/1 ow-e n e rgy chain 

conformations, 156 
Nonselective interactions, 134 
Nonuniform mismatch strains, 726 
Nor m a I - me t a 1/s u pe rco n d u c to r i n t e rf ace. 65 9 
Normal-mode diffusion, 29 
Normal-superconductor-normal (NSN) 

transistor, 671 
No-wear regime, 423, 424, 426 
Nozzle tube temperature, 65 
NRP systems, 323 
NSN transistor. 674 
NS system, 666

non-monotonic behaviors, 670 
panorama on results, 670
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schematic picture, 666 
NT phase, 325 
NT-polymer composites, 330 

load transfer, 330 
NT structure, 303
Nuclear magnetic resonance (N M R) 

pulse, 458 
Nuclear-nuclear repulsion, 2 
Nucleation puzzle, 532 
Nucleation theory, 798 

for nanocones, 532 
Numerical methods, 381 
Numerical optimization, 596, 598 

deterministic optimizers, 596 
Numerical strain concentration tensor (NSCT) 

method, 325 
Nylon-clay systems, 322

o
Oblate distortion, 86 
Occupied valence orbitals, 83 
Octahedral sites. 626 
Octatctraene, 211 
Octithiophene (8-T), 224 
Octupole deformation, 91 
Off-axis orientations, 321 
Off-lattice model, 155 
Ohmic current, 679 
Ohm’s law, 113, 669 
Oligothiophene, 225 
One-electron excitation energies, 54 
Ono-Hirose scheme, 778 
Open port approach, 594 
Open-shell electronic configuration, 69 
Optical coupler 

improved, 570 
Optical gaps. 760 
Optical spectra, 830 
Optimal polymer matrix, 106 
Optimal polymer-particle interactions. 106 
Orbital angular momentum, 64 
7r-Orbital axis vector (POAV) analysis, 511 
Orbital-dependent potential, 53 
Orbital-free (O F) 

approach, 54 
calculations, 91 
energy functional, 88 
method, 60, 87 
scheme, 60 
simulations, 87, 89-91 

Orbital-free totai energy simulations. 60 
Orbitals, 511
Organic light emitting diodes (OLED)s, 206 
Ornstein-Zernike equations, ! 66 
Orthogonality wiggles, 46 
Oscillator strengths, 755, 810 
Out-of-plane scattering, 605-608 

loss. 605 -607

Overbinding effect. 443 
Oxidized clusters, 841 
Oxidized nanocrystal, 735 
Oxygen penetration 

effect of, 413 

p
Packing fraction, 167 
Pade approximant. 56 
Pair correlation function, 118, 167 
Pair potentials, 87, 401. 404 
Pairwise functional, 6 
Parallelepiped dot, 699 
Parallel hard cubes (PHC), 108 
Parallel hard rectangles (PHR), 108 
Parameterization, 743
Pariser-Parr-Poplc approximation (PPP). 217 
Parity effects, 671 
Parrinello-Rahman approach, 380 
Particle-based model, 163 
Particle center distribution, 135, 138 
Particle centers. 133 
Particle correlation function, 118 
Particle density. 133 

profiles, 137 
Particle distribution function, 138 
Particle entropic contributions, 107 
Particlc-hole 

excitations, 75 
space, 668 
symmetry, 661 
transitions, 78 

Particle-in-a-box (P IB ), 617 
Particle-matrix interface, 119 
Particle—particle interactions, 110 
Particle-polymer interactions, 135 
Particle swarm optimization (PSO), 602 
Particle-to-diblock volume ratio, 107 
Particle volume fraction, 107, 125 
Partition function, 107, 163 

single-chain, 162 
Pauli matrices, 523 
Pauli principle, 801 
Pb clusters, 84
PBG lithographic tuning. 606
Pb4Li4 clusters, 95
PbNa alloy, 98
Pb4Na4 clusters. 94. 98
Peapod-in-nanotube structures. 33
Peapods, 458
Peapod structure, 33
Peierls distortions. 12, 233
Penning-trap, 68
Penn's model, 763
Pentagon/hexagon rings, 472
Pentagon-pentagon junctions, 472. 473. 475
Pentagon road model, 532
Pentagon rule energetics, 464
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Pentagons, 509, 511-514, 518, 519, 523, 525-533 
Percolating cluster, 119 
Percolating nanorods, 131 
Percolation threshold, 119 
Percolation type process, 286 
Percus-Yevick closure. 167 
Perdew's 86 (P86) correlation functionals, 214 
Perdew-Zunger parametrization, 811 
Perfect lens. 549, 550, 553, 580 

Ray model of, 550 
Perfectly matched layer (PM L), 114-115 

boundaries, 115 
media, 115 
structure, 115 

Perfect photonic crystals, 555, 583, 584 
idealization, 555 
original lattice space of, 558 
symmetry considerations, 557 

Periodic boundary conditions force, 803 
Periodic symmetry 

structures with. 541 
Periodic waveguide 

problems, 586 
structures, 585, 586 

! Permutational isomers, 89 
1 Perturbation theory, 764 

first-order, 70 
second-order, 46. 55 
t he r m odyn a m ic, 166-16 7 

I Perturbed clusters, 70 
1 Perturbing periodic potential, 57 
1 Petal superstructures, 529, 530 

origin, 529 
STM images, 529 

1 Phase coexistence, 158 
equal-weight-rule of, 158 

I Phase-coherent conductor. 659 
I Phase-separating 

blend, 126, 128 
polymer blend, 131 
system, 129-130 
system corral, 131 

1 Phase separation dynamics, 105 
1 Phase transformation, 405, 406, 438 

in silicon, 408 
Phenomenological 2D model. 606 
Phenomenological two-dimensional modeling 

of planar photonic crystal devices, 605 
Phonon-assisted transitions, 757 
Photoabsorption cross section, 74, 89 
Photocatalysis, 616, 638 
P^hotodetachment spectroscopy, 68 
P^hotoelectron spectrum, 622 
P5hotoemission spectra, 824 
P3hotoex-citation, 623 
P^hotoluminescence (PL). 606, 734 

decay, 756 
P^hotonic atom, 554
P>hotonic band gaps (PBGs), 543, 544, 553, 554, 

560, 586, 605, 608 
materials, 106

Photonic crystals (PhCs), 539, 542, 543, 544. 
548. 553-555, 559-577, 586 
analysis of structures, 577 
antenna, 568
band diagram computation, 582 
cells, 539 
circular rods, 583 
classes of problems, 555 
coupling energy into, 568 
coupling energy out of, 568 
devices, 605, 606 
dispersion relation, 562 
filter consisting of four coupled cavity 

resonators, 575 
filtering T-junction, 577 
filters, 573-575
frequency characteristics and geometry, 597 
hole-type, 563, 588 
improving in-coupling of light, 608 
modification of waveguide termination, 569 
perfect crystals, 555 
planar, 605
positions and radii of two rods, 570 
power divider, 575-577, 595 
power divider search area, 597 
power divider sensitivity analysis, 604 
power splitter, 61 I 
radiating waveguide, 589 
reciprocal lattice space, 558 
resonators, 574 
rods, 568 
rod-type, 563, 587 
simple bandpass filter, 574 
simple open waveguide, 570 
structures, 554, 556, 577, 579, 605, 606 
three-dimensional, 557, 558 
two-dimensional, 558, 559 
walls, 563, 588 
waveguide bending, 570 
waveguides, 555, 559-564, 567-572, 578, 586. 

594
waveguide termination, 568, 569 
with different dopants, 554 

Photons, 554
Physioabsorbing surfaces, 316 
Physisorption, 152 
Piezoelectric constant, 715 
Piezoelectricity, 715

effect around any dot, 716 
effect around spherical dot, 715 

Piezoelectric material, 717 
Piezoelectric pseudopotential, 716 
Piezoelectric tensor, 715 
Planar photonic crystal

bends and power splitters, 609 
devices, 605 

Planar photonic crystal tapers 
modeling, 607 

Planck's constant, 799
Plane wave approximation (PWA), 583, 584
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Plane-wave coefficients, 780 
Plane wave method, 819 
Plane wave refraction

at negative index material slab, 548 
Plane waves, 581 

expansions, 581, 584 
time-pulsed. 582 

Plasmon effects, 546 
PI asm on peak, 78 
Plasmon resonances, 546. 556 
Platonic solid, 624 
Ploughing, 424, 425, 436

regimes, 424, 425. 426. 428, 429 
PM3-computed energy, 495 
PMMA, 275

function of nanosilica loading in, 275 
PM3 methods, 494 
Point-forcc formalism. 712 
Poisson's equation. 47-48, 701 
Poisson's ratios. I l l ,  441, 446, 693 
Polarization 

effects, 544 
incident wave, 546 
of incident wave, 547 
orthogonal, 545 
p , 545 
,v, 543-545 

Polaron model, 232 
Polarons, 226 

hi polaron, 230 
Polar surface terminations, 629 
Poly acetylene (PA), 204 

photocurrent, 206 
Polyamide-nanociay composite, 288 
Polyaniline (PAn), 204, 286 
Polya's enumeration theorem. 472 
Polycarbonate (PC), 293 
Polydiacetylene (PDA). 226 
Polyenes, 209, 22̂  

a h  i n i t i o  ealeuunions, 209 
HOMO-LUMO gaps of, 216 
TDD FT excitation energies for, 214 
theoretical excitation energies. 209 
two low-lying singlet excited states, 209 

Polyene spectra, 217
Polyethylene (PE ) composite systems. 368 
Poly(et hvIened ioxyth iophene) (PE  DOT). 204 
Polyfuran (PFu), 236 
Polyhedral cages. 459 
Polyhydroxyaminoelher (PH AE). 281 
Polyimide, 288 
Polyimide-clay hybrid. 290

permeability coefficient of. 290 
Polyisothianaphthene (PITN), 204 
Polymer brush 

wetting on. 180 
Polymerization index, 132 
Polymer lattice, 229 
Polymer liquids,

one-component, 156 
wetting of. 170

Polymer matrix composites, 254 
Polymer nanocomposites, 329

multiscale modeling strategy for, 331 
strength and toughness modeling, 329 

Polymer/nanoparticle composites, 103 
heterogeneous, 105 

Polymer-NT unit cell, 306 
Polymer-particle coupling, 108 
Polymer-particle interactions, 105, 117, 122. 

134
Polymer-processing simulation, 111 
Polymer reference interaction site model 

(P-RISM) theory, 167 
Polymers, 227

articles available in the literature, 335-348 
comparison between theory and experiment 

227
evolution of excitation energies. 228 
polymer mobility, 269 
thermosetting and thermoplastic. 362 

Polymer-substratc interactions, 107 
Polymethylthiophene (PMcT), 228 
Poly(m-phenylenevinylene-co-2,5-dioctoxy-p- 

phenylenevinylene) (Pm PV),
286

Polyparaphenylene (PPP), 204 
Poly(paraphenylenevinylene) (PPV). 232 
Poiy(phenylencethynylene) (PPE), 279 
Polypyrrole (PPy), 205 
Polystyrene (PS), 175. 277 

comparison of, 278 
Polythiophene (PT), 204 
Pop-out phenomenon, 403 
Popping atoms, 35 
Porous silicon (PS), 734 
Position vector, 8 
Positive charge density, 64 
Posteri theory, 807 
Potential energy contributions, 50 
Potential energy surface (PES). 44. 642, 822 
Potential function, 401 
Potential well, 64

effective spherical. 64 
Power dividers. 575-577 

intuitive design, 576 
three most crucial rods, 598 
T-shaped structure, 575. 576 

Power reflection. 610 
Power spectrum, 827 
Power transmission, 610 
Povnting vector, 543. 549

intensity of the time average. 552 
time-average. 561 

Povnting vector field, 550. 552. 567. 569-571, 
580
for single layer photonic crystal waveguide. 

573. 589
Preconditioning “ interior" eigenvalues. 821 
Preconditioning techniques. 821 
Predict or-corrector algorithm, 9
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Pre-preg lamina, 281 
Pressure volume (PV), 629 
Prewetting coexistence, 171, 174 
Prewetting critical point. 174 
Prewetting line, 174 

toward coexistence, 174 
Printed circuit boards (PCBs), 540 
Pri ori, 807
Probabilistic optimizers, 599, 602 

deterministic search, 599 
random search, 599 

Probability distribution, 157-160, 162, 183 
Projector-augmented wave (PAW), 636, 778 
Prolongation operation, 776 
Prony coefficients, 297 
Prony series representation, 271 
Propagation constant, 563, 585-590 
Proximal probe microscopes, 34 
Proximal probe tip indentation, 36 
Proximity effect, 650 
Pse ud oa toms 

valence electron density of, 56 
wave function s. 60 

Pseudo-direct, 748 
Pseudo-elastic state, 271 
Pse udoion potential, 58 
Pse udomolecular mechanics approach, 305 
Pseudo-orbitals, 60
Pseudopotentials (PP), 46, 57, 61-62, 79, 760, 

812
first-principles nonlocal, 60 
local, 88 
method, 745 
model, 57, 812 
nonlocal, 66 
nonlocal Pb, 83 
normconserving. 58, 60 
scheme, 60 
solid, 813 

Pseudo-vectors, 549 
Pseudo-wave function, 61, 814 
Pt/alumina system, 632 
Pulay corrections, 772 
Pull out energy, 366 

fiber-pullout model. 372 
pullout of the nanotube, 367 
three terms, 366 

Pullout force, 376 
Pyracylene transformation, 471 
Pyramidal dot, 699 

geometry of, 699 
radial and axial strains, 702 

Pyrrole oligomers, 223
theoretical excitation energies, 223

Q
Quantized colloids, 620 
Quantum chemical calculations, 152 

outline, 460

Quantum computation (QC), 680 
Quantum computer 

concept. 459 
Quantum computing, 458 
Quantum confinement (QC), 735, 746 

model, 841 
Quantum descriptions of matter, 798 
Quantum dot-quantum dot interaction, 728 
Quantum dots (QDs), 689, 698, 738 

configurations of, 695 
Quantum dots and wires, 691 

effect of shape, 694 
impurities in, 788 
of arbitrary shape. 695 
review of strain field calculations, 691 
simple illustrative example, 692 
size effects, 727 
two physical mechanisms, 720 

Quantum mechanical (QM) 
approaches, 2-3 
equation, 799 
information, 2 
laws, 798 
methods, 3, 5 
modeling, 616 
principles, 2 
scattering matrix, 660 
wave function, 2 

Quantum Monte Carlo calculations, 760 
Quantum number, 64 

principal, 66 
Quantum phase model (QPM), 679 
Quantum statistical methods, 208 
Quantum wires (QWRs), 689, 703, 736 

configurations of, 695 
Quasi-classical Green’s function theory. 650, 

668
Quasi-classical theory oi superconductivity, 668 
Quasicontinuous energy bands, 66 
Quasioctahcdral, 626 
Quasi-particle excitations, 648 
Qubit-qubit coupling, 682 
Qubits, 681
Quick and dirty modelers, 590, 591 
Quiniod structures, 222 
Quinoid form, 229

R
Radar technology, 538 
Radial atomic density distribution, 90 
Radiating modes, 566 
Radio frequency (R F ) regime, 538 
Raman experiment, 825 
Raman spectroscopy, 260, 281 

technique, 390 
Random-matrix theory, 667 
Random number, 603 
Random phase approximation (RPA), 212
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Random vector, 602 
Rayleigh models, 541, 588 
Rayleigh quotient. I l l  

Rayleigh-quotient minimization multigrid 
(RQ M G) method, 773, 776 
with Galerkin conditions, 783 

Rayleigh-Ritz variational principle, 50 
Real space algorithms, 820 
Real-space approaches, 775 
Real-space multigrid methods, 775 
Real-space superlattice, 62 
Real-space tool, 784 
Reciprocal lattice vector, 819 
Reciprocal-space situations, 62 
Recrystallization, 412 
Reentrance effect, 670 
Reference electron density, 56 
Reference hypernetted chain (RHNC), 166 
Reflected waves 

compensation scheme for, 594 
Reflection coefficients, 594-597, 605 
Reflectionless tunneling, 670 
Refraction index. 548, 550, 608 
Reinforcement efficiency, 121 
Relative concentrations 

fullerene isomers, 462 
of C t\ ( ( i C72 isomers, 489 
of Cafa C74 isomers, 490, 491 
of Ca(« Cs2 isomers, 492 
of Q l()F36 isomers, 494 
of C(j0H3h isomers, 495 
of C4 isomers, 469 
of C6 isomers, 470 
of C72 isomers, 477 
of C74 isomers, 478 
of CS() isomers, 481 
of C(% isomers, 484 
of Css isomers, 485 
of C«j isomers. 486 

Relative density, 164
of transformed silicon versus indentation 

depth, 419 
Relative elastic fields, 139 
Relative local strain field. 121, 124, 139 
Relative normal stress field, 140 

contours, 129 
Relative potential energies. 463 
Relative root mean square (RM S) 

bond length fluctuation. 88-89 
Relative stress field, 140 
Relaxation spectrum, 272 
Relaxation steps, 441. 445. 446 
Representative volume element (RVE), 125.

307
effective isotropic properties, 308 
schematic of three types of, 382 
two-dimensional. 125 

Residual deformation 
in silicon, 416 

Residual stress ratio, 453 
Resonators, 556

Response-iteration methods, 781 
Restricted active-space SCF (RASSCF) 

method. 210 
Restriction operation, 776 
Reverse-mapping technique, 306 
Rigid indenter simulations, 35 
Rigid-rotor and harmonicoscillator (RRH O ) 

approximation, 462 
Ring-stacking model, 532, 533 
RLC filters, 601 
Rod distribution, 130 
Rod-rod interaction. 110 
Rod-rod repulsion, 110, 127 
Rolling graphene model, 371 
Rotational-vibrational partition function, 476 
Rudimentary methods, 310 
Rutile band structures, 634 
Rydberg character, 210

s
Saddle points, 108

approximation. 161, 163 
values, 165 

SAMI
computations, 484, 486 
energetics, 485 
levels, 473-475 
lowest-energy structures, 486 
methods. 461, 483 
optimized structures, 474 
quantumchemical method, 487 
semiempirical method, 483 

Scaled velocity, 398 
Scale effect, 429, 430

of contact size on friction transition, 429 
Scanning near-field optical microscopes 

(SNOMs), 549 
Scanning probe microscopy (SPMs), 332 
Scanning tunneling microscopy (STM). 237, 624 
Scattering formalism, 650 
Scattering matrix, 566 
Scattering problem, 555, 556, 593, 658 
SCF/DFT

approach, 104-105 
calculation. 114-115. 138-139 
grid of points, 114 
LSM approach, 132 
methodology, 132, 137. 142 
model, 137-138, 147 
morphological studies. 105 
simulation, 115, 138 
structure. 106 

Schrodinger equation. 4, 49, 654. 799 
M e h rst e 11 e n -d i sc re t i zc d. 782 
N-electru n , 4 ‘) 

radial, 59
single particle, 50-52 
timc-dependeru, 520
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t ime-independent, 3 
S'icrew dislocations, 530 

model in graphite, 531 
Search direction vector, 7—<S 
Sue arch spaces. 596, 59X, 599, 604 
S&ector angles, 512 
Sseicz radius, 811 
Scelective interactions, 132 
Stelf-assembled monolayers (SAMs), 222 
Stelf-consistency loop, 821 
Stelf-consistent field (SCF)

calculations, 160, 166, 168-169, 175, 178-180 
t heory, 174

Stelf-consistent field/density functional theory 
approach, 106 

Stelf-consistent field technique, 156 
Stelf-consistent field theory' (SCFT), 104, 

106-107, 169
for thin polymer films, 151-197 

! Stelf-interaction corrections (SIC), 71 
I Stemiconduclors, 554 
J Stemicore electrons, 61 
.4 Seemi-coupled model, 717 

comparison, 718 
‘ Sejmiempirical methods, 5, 216, 461 
J St-smiempirieal quantum-chemical methods, 487 
J’Scimi-inlinite domain, 709 

illustration of, 709
5 Sc^nsitivitv analysis, 604, 605

of 90-degree photonic crystal bend, 605 
J-Se^xithiophene (6-T), 224 

differences, 225 
SShiape deformations, 76 
SSIiiarp-kink approximation, 177, 179 

: SShiarp melting transition, 89 
: SShiear banding and necking, 44(S 

evolution process of, 449 
: SShiear bands, 448, 449 
: SShiear modulus, 265 
I SShicl 1-closing numbers, 74, 77 
; SShicl 1 clusters

closed, 65-66, 69, 72-73 
J SShiell effects. 66. 72

in cluster fragmentation, 75 
J SShael! index, 66 
J SShaell oscillations, 67 
J SShnift-and-invcrt techniques, 821 
f SSi bulk unit cell, 755 

SSi41 cluster, 827
; absorption spectrum, 830 
dynamic matrix calculation, 827 

i excitation energies of, 832 
Power spectrum of, 828 

: simulation for, 828 
i time-dependent density-functional 

formalism, 830, 833 
 ̂ SSiSfxf)H ?f)P quantum dot, 849

i isotropic hypertine parameter, 849 
5- SSis-7H 7r> quantum dot, 837 

< absorption spectra of, 843 
\wave vector dependence, 837

Silica, 258
Silica-polyimide, 306

interfacial conditions, 306 
Silica-polyimide nanocomposites, 308 

radial density profiles, 308 
Silicate clays, 267 
Silicon

effect of water, 415 
mechanical properties, 415 
monocrystalline, 415, 417, 453 
phase transformation, 438 
volume of transformed, 418 

Silicon and germanium clusters, 829 
static dipole moments, 829 

Silicon atoms
comparison of the total number, 415 
transformed from diamond cubic to other 

structures, 419 
Silicon monocrystals, 403, 415 

subsurface microstructure, 434 
Silicon nanoelectronic devices, 735 
Silicon nanoindentation

in loading-unloading cycle, 410 
Silicon on insulator (SO I) layer systems, 605 
Silicon-oxygen coordination, 413 
Silicon quantum wires and dots, 734 

different forms, 734 
electronic structure calculations, 735 
optical and charging properties, 735, 749 
SiO: layers, 735 

Silicon specimen, 403, 405 
subsurface microstructure, 403 
variation of average temperature, 420 

Silicon workpiece
through center of asperities, 438 

Silver di-anionic clusters, 68 
Simple weighted density functional (MOM),

174
Simplified interaction-free functional (MGM), 

180
Simulated annealing (SA), 602 

methods, 822 
Simulation temperature, 397 
Si nanodots, 761 

oxygen role, 761 
Single-chain partition function, 162 
Single-electron methods, 212 
Single-electron transistor (SET), 671, 672 
Singles configuration interaction (SCI), 226 
Single-walled carbon nanotubes (SWCNT), 

12-13, 303, 440
calculated band structure of, 12 
dissolution of, 23 
electronic properties of, 10, 14 
from a polystyrene matrix, 303 
functionalization of, 23 
semiconducting singlewalled, 28 

Single-walled nanotube/epoxy resin composite 
system, 365
interaction energies of, 366
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molecular model of, 365 
Singly charged magic fragment, 75 
Sinusoidal buckling pattern, 451 
Si-O bonds, 414 
Si35OH 34 (I) clusters, 844 

principal mechanism, 845 
schematic representation, 844 

Si quantum dot, 834 
atomic structure of, 834 
role of oxygen in, 840 

Slab
relative permittivity and permeability, 546, 

550,551
Slater determinants, 50, 762, 801 
Slater orbital, 61 
Slater-type functions, 3 
Sliding

copper atomic lattice, 423 
friction, 368 
interactions, 437 
interface, 424 
interfacial, 421 
multiasperity, 437 
noncontact, 426 
regime transition, 426 
speed, 425 
three-body, 421 
three-body contact, 433-437 
two-body, 421
two-body contact, 421, 433-436 
variation, 435 
zones, 428 

Sliding forces, 426 
variation, 428 

Sliding simulation
with diamond asperities of different tip 

radius, 430 
with indentation depth, 432 

Sliding systems
diamond-copper, 422. 435 
diamond-silicon, 433, 435 
methods of modeling and analysis, 422 
no-wear, 424 

Slithering snakelike movements, 156 
Small carbon clusters, 468 
Smaller fullcrenes, 472 
Smart animals, 602 
S-matrix elements, 661 
Sodium clusters, 74, 79 

chemical hardness of, 73 
neutral. 82
optimized geometries of, 80-82 
polarizability of, 71 
singly charged, 91 

Sodium dodecvl sulfate (SDS), 279 
Sodium quantum dots, 790 

on Cu( 111), 790 
pseudopotential compared. 818 

Solid cohesive energies, 53 
Solid state physics community, 617 

three categories, 617

Solid-state polarization. 221 
Soliton, 232 
Sommerfield model, 57 
Spatial inhomogeneity, 162 
sp3d2s* model, 744 
Specific energy terms, 386 
Specific polymer configurations, 160 
Specimen types, 447. 448 

hexagonal, 447, 448 
Spectroscopic gap, 677 
Spectroscopic techniques, 225 
Spherical jellium model (SJM ), 64, 66, 67-68 
Spherical nanoparticles

properties of mixtures of, 116 
Spherical quantum dot, 693

radial strain tensor component, 713 
schematic of, 693 

Spherical sodium clusters, 67 
Spheroidal inclusion model, 711 
Spin-down electron densities, 52 
Spin-orbit interaction, 744 
Spin-polarization, 670 

function, 811 
Spiral algorithm, 471 
Square well 

potentials, 58 
rounded, 64 

Stability function, 74 
Standard rule of mixtures, 318 
Standing wave ratio (SW R ) analysis, 594 
Static dipole polarizabilitics, 70 
Statistical-mechanical calculations 

outline, 460 
Statistical segment length, 162 
Steady-state behaviour, 421 
Steepest desccnt method, 776 
Steering effect, 610 
Stillinger-Weber potentials. 701 
Stochastic forces, 825 
Stochastic time evolution, 672 
Stoner model, 650 
Stone-Wales rearrangements, 473 
Stone-Wales transformation, 471-473 
Storage modulus, 272 
Strain-displacement law, 696 
Strain distributions in QD/QWRs, 701

atomistic versus continuum calculations of.
701

Strain energy, 20 
Strain gradient theory, 727 
Strain-stress ielation, 382 
Strain tensor. 692 
Stress analysis. 399, 40i 
Stress concentrations, 140 
Stresses 

biaxial. 452 
Cauchy, 452, 453 
compressive, 45 
frictional, 430. 431 
intrinsic, 450
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residual, 451 
shear, 433, 435 
shrinkage. 447 
thermal, 450 
tensile, 451 
uniaxial, 452 

Stress perturbations, 129 
Stxess ratio, 451 
Stress relief patterns, 450 
Stiress-strain behavior. 446 
Stiress-strain curves, 441, 445

with Tersoff and Tersoff-Brenner potentials, 
442

Stress-strain relation, 441 
Stress-strain relationship

of Si( 100) and Si( 110) under a biaxial 
tension, 452 

of silicon under a uniaxial tension, 451 
true, 452 

Str ess tensor, 401 
Str ess vector, 400, 401 

on atomic scale, 400 
Stretching frequency, 381 
Stroh formalism, 713 
Str uctural polymers, 263 

mechanical properties, 263 
Sulnband’s energy, 751 
Substrate

structural changes, 414 
Sum over states (SOS) scheme, 236 
Supercell approach, 561, 564, 586-588 

f or photonic crystal waveguides, 561 
Supercell method, 775. 819 
Sui 3 C icell model. 562 
Supercells, 631 
Supercell structure, 67 
Superconducting 

flux quantum, 675 
nanocircuits, 681 
nanoparticles, 677 

Superconducting nanostructures, 647 
c haracteristic. 647 
properties of, 647 

Superconducting quantum interference device 
(SQ U ID ), 675 

Superconductivity, 668, 671 
granular films. 679 
mechanisms, 671 

Superconductor, 656
Superconductor-normal-superconductor (SNS) 

transistors. 677 
Superconductor-superconductor- 

superconductor (SSS) transistors,
6 77
I—V characteristic of, 677 

Superlattice geometry, 61 
Superposition law, 238 
Supier-resolution, 549, 551 

le ns, 551 
microscopes, 549 

Supershell

effect, 67 
node, 67 
oscillations, 67 

Supramolecular networks, 126 
formation of, 126 

Surface adhesion, 411 
Surface elastic effects, 721 
Surface elastic modulus, 722 
Surface free-energy difference, 159 
Surface gradient operator, 721 
Surface/interface energy effects, 720 
Surface melting temperature, 90 
Surface passivation, 756 
Surface projection tensor, 721 
Su-Shrieffer-Hceger (SSH) Hamiltonian,

230
SWNT-epoxy nanocomposites, 286 
SWNT-reinforced polymers, 285 

for glassy (elastic) modulus of, 285 
Sword-insheath mechanism, 263 
Symmetric power splitter, 611 
Symmetry operations, 461 
System configuration, 10 
77-Systems, 204

theoretical approach, 206

T
Tamm-Dancoff approximation, 212 
Tangent hard chains, 167 
Taper model 

2D, 609 
Taper structures

top view’ on staggered PhC. 609 
TB Hamiltonian, 523, 527, 528 
TB interactions, 523 
TBM D simulation, 522 
Temperature conversion, 399 
Temperature conversion models 

comparison, 400 
Tensile modulus, 318 

wall layers, 372 
Tersoff-Brenner (T-B) potential, 300, 440-444, 

446
Tersoff energy, 404
Tersoff potential, 399, 402, 404, 409. 416, 

441-443, 451, 520, 701 
curve, 443
parameters, 404. 405 

Tert-butyl-capped polyenes, 222 
Tetracapped trigonal prism structure, 825 
Tetragonal body-centered crystal structure,

409
Tetrahedral sites, 626
Theoretical gas phase calculations, 221
Thermodyna mic eq ui 1 ibrium

between carbon gas phase and graphite, 466 
treatment, 496 

Thermodynamic gas-liquid equilibrium, 467
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Thermodynamic gas-solid equilibrium, 467 
Thermodynamic perturbation theory (TPT1), 

165-167 
scheme, 166 

Thermoset system, 271 
Thermostat atoms, 443 
Thermostat schemes 

influence of, 444 
Thermostatting methods, 440 
Thieno[3,4-b]-thiophene (TT), 220 
Thin film buckling analysis 

simulation model, 450 
Thiophene oligomers, 218, 222 
Third-law entropies, 628 
Thomas-Fermi 

approach, 54 
description, 803 
equation, 47, 49 
kinetic energy functional, 50 
method, 49 
model, 47, 53 
result, 55 

Thouless energy, 670 
Three-body contact sliding, 433-437 

material removal via adhering, 437 
Three-way catalysis (TWC), 628 
Tight-binding (TB) 

calculations, 18 
formalism, 667 
method, 5, 617, 742 
model, 522 

Time-dependent density functional theory 
(TDDFT), 4. 74, 772, 783, 807 
calculations, 75 

Time-dependent Hartrec-Fock (TDHF) theory. 
212

Time-dependent modulus, 272, 315 
Time-domain methods, 590 
Time-independent Schrodinger equation 

(T ISE), 617 
Time marching algorithm, 105 
Time-reversal symmetry, 678 
Time steps

different types of errors, 398 
integration, 398 

Time-temperature superposition, 273 
application, 273 

Timoshensko beam, 380 
/3-Tin. 402. 406-409 

phase, 414 
/3-Tin silicon, 411, 439. 440 

atoms in structures, 408 
crystal structure, 408 
in configurations II and III. 439 
phase, 439 

Tip-surface interactions, 34 
Tip-surface separations, 35 
Titania, 258 
Titanium oxide. 638 

optical properties. 638 
qualitative differences. 638

Tool-workpiecc interactions. 417 
Top-down approaches, 309 
Topological defects, 526 
Topological generations

enumerations and generations, 470 
of cages, 470 

Torsional twisting frequency, 381 
Total dielectric function, 755 
Traditional mixing schemes, 780 
Transcendental equation. 381 
Transferability, 618 

limits, 618 
Transitional aluminas, 618

computed material densities, 619 
Transition-mode diffusion. 29 
Translational entropy. 180 
Transmission electron microscope (TEM ), 260, 

402
Transport mechanisms, 649 
Transverse kinetic energy. 659 
Transverse loss modulus, 313 
Transverse modulus, 313

two-phase frequency domain, 313 
Tricritical point (TCP), 181 
Troullier-Martins formalism. 8!8 
Troullier-Martins pseudopotentials, 62. 846 
True ground-state energy, 3 
Truncation boundary, 587 
Truss mechanics, 305 
Truss rod model, 385 
Tuning parameter, 580 
Tunneling rates, 671 
Two-body contact sliding, 433-436 
Two-dimensional electron gas (2DEG), 785 
Two-dimensional quantum dots, 785 
Two-level model, 763

u
Ultimate Jellium model, 76-77, 789 

for a breaking nanowire. 789 
snapshots from a simulation of nanowire 

breaking, 789 
types of nanocontact stabilization 

mechanisms, 790 
Ultimate tensile strength (UTS), 448 
Ultrahigh molecular weight polyethylene 

(U H M W PE), 390 
Ultrasoft potentials, 60
Ultrasoft pseudopotentials of Vanderbilt US P. 

618
Ultraviolet spectra. 205 
Undulating and interacting wires. 756 
Unit-cell techniques. 620 
Unloading

bond lengths and bond angles. 446 
Unsaturated metal atoms, 629 
Uphill movements. 8 
Urethane acrylate1 polymer, 280



UJSctdel equation, 668 
U JV  spectroscopy, 210

v
Walenee electron. 67 

densities. 52, 88 
wave functions, 46 

Walenee energy eigenvalue, 58-59 
Wale nee force field (VFF), 701 
Wale nee Hamiltonian (V EH ) technique, 217 
Wale nee pseudo-orbital, 57. 59 
Walenec radial wavefunction, 59 
Wale nee state properties, 819 
Walenec wavefunctions, 46 
Wanadium, 640 
Wanadium pentoxide, 641

types of surface exposed oxygen, 641 
' Wande rbilt’s scheme, 60 
' vaa n der Waals

attraction, 152, 514 
bonding, 12
interactions, 175-176, 178, 227, 260 
theory. 167 

'W an  Hove singularities, 16 
’ waan't Hoff equation, 467

' Wapor-grown carbon fibers, 287 
' Wapor-liquid-solid (VLS), 734 
' Wariati onal density functional, 55 
' Vcelocitry scaling method, 440 
Weerlct algorithm, 9 
Weerlet s method, 399 
' Vi’ibratiional contribution, 630 
\ Vi ibratifonal frequencies, 642 

two approximations, 642 
W i ’ibrat; onal modes, 825 

of a cylinder, 380 
\Wibration theory, 369 
Wiiennai a h  i n i t i o  simulation package (VASP), 

617
\ Vi irtual transitions, 840 
\ Vi iscoe iasticity, 254 

introduction to, 269 
molecular theory of, 270 
of the interphase region. 257 
viscoelastic phases, 257 
volume fraction, 257 

' Whscoei astic materials
mechanical response of, 271 

Whscoelastic time-dependent modulus, 271 
' \Vo.)lume fraction, 107. 123, 133 

combined, 125 
profiles, 142-146 

' Worm W«eizsackcr functional. 55 
' Womex clusters, 786 
' Wo.irtex solutions. 788

types, of vortices. 788 
' \Vo.)sko-'vVilk-Nusair (VW N ) [389] correlation, 

.214

Irndex

w
Wave equation. 380 
Wavefunction, 3, 49-50, 63 

electronic, 79 
Kohn-Sham, 63 
one-electron, 61 

Waveguide bend, 610, 611 
frequency response, 610 
phenomenological 2D model, 610 

Waveguide discontinuities, 555, 564-568, 577, 
578, 590-593
S matrix computation, 593 

Waveguide modes 
excitation, 592 

Waveguides
abrupt transitions, 566 
ahromatic 90-degree bend in a PhC defect, 

574
analysis of discontinuities, 565 
bend, 610 
bending, 570
coupling of dielectric slab and defect, 569 
cylindrical, 562-564, 585 
defect, 563
design of different types, 564 
discontinuities, 564-568, 577, 590 
in photonic crystals, 560 
light coupling, 571 
main purpose, 564 
modification of termination, 569 
numerical treatment of discontinuity, 567 
optimized design of open photonic crystal,

571 
other, 563
output ports, 594, 596
periodic, 585, 586
PhC 563, 564, 567-572, 578, 586
radiating PhC, 589
simple open photonic crystal. 570
single-layer PhC, 589
single-mode, 578, 592, 593
slab, 568-572
slab bend improved by small PhC patch, 573 
structures, 560, 585, 595 
TE-polarized, 607 
termination, 568, 569 
transition obtained by tapering. 566 
transitions, 566 
W l, 607 
W3, 607 

Wave propagation. 585 
Wavevector, 62 
Wear

deformation regimes, 423 
diagram, 436 
mechanisms, 423 
play, 420 
process, 436 
regimes, 435. 436

879



880 Index

Weighted density approximation (WDA), 71, 
165

Weight function, 159 
Weighting function, 56, 165, 167-169 
Welded CNT system, 19 
Wertheim’s perturbation theory, 165 
Wetting phase diagram, 175, 181 
Wetting transition, 172-174, 177 

first-order, 170-171, 173 
in Monte Carlo simulations, 170 
temperature, 170-171 

White noise spectrum, 822 
Wick’s theorem, 651
Williams-Landis-Ferry (W LF ) representation, 

274 
W metal, 640
Work-tool interactive potential, 401

x
X„ method, 806
X-ray photoelectron spectroscopy (XPS), 254 
XY-model, 678

Y
Yec cell, 114-115
Young’s equation, 171, 173, 175, 180

Young’s modulus, 20-22, 33-34, 111-112, 
120-121, 124-126, 130, 140, 142, 262, 441, 
446, 698
global, 124, 128, 141

z
Z-contrast scanning transmission electron 

microscopy (Z-STEM), 636 
Zeeman energy, 650 
Zeolites, 29, 263, 629 
Zero bias anomaly (ZBA), 670 
Zero-field results, 786 
Zero-frequency Lindhard function, 781 
Zero-order efficiencies, 545 
Zero phonon transitions, 757 
Zero-point energy 

vibrational, 463 
Zero-point motion, 786 
Zigzag tubes, 441, 443, 445, 446 

atomic chain, 444 
deformation, 445
structural changes in different stages, 443 

Zinc-blende semiconductors, 744 
ZINDO, 475 

entropy, 478 
method, 491 

Zipped structures, 518, 519 
Zirconia, 628






	NANOTECHNOLOGY

	AMERICAN SCIENTIFIC PUBLISHERS

	Foreword

	Preface

	Dr. Michael Rieth Prof. Dr. Wolfram Schommers


	Contents

	CHAPTER 1. Computational Studies of Nanomaterials: A Historical Perspective

	CHAPTER 2. Density Functional Calculations of Clusters and

	Cluster Assembly

	CHAPTER 3. Modeling the Structural Evolution, Equilibrium Morphology, and Macroscopic Behavior of Polymer/Nanoparticle Composites

	CHAPTER 16. Real-Space Electronic-Property Calculations for

	Nanoscaie Structures


	About the Editors

	List of Contributors

	J. A. Alonso (43)

	Anna C. Balazs (103)

	L. Cate Brinson (253)

	Gavin A. Buxton (103)

	James R. Chelikowsky (797)

	Daniel Erni (537)

	Rosario Fazio (647)

	Frank T. Fisher (253)

	Jihua Gou (361)

	Christian Hafner (537)

	Henning Heiberg-Andersen (507)

	Douglas L. Irving (1)

	Kaoru Kobayashi (457)

	V. Lindberg (771)

	I. Makkonen (771)

	R. Maranganti (689)

	Shigeru Nagase (457)

	Androula G. Nassiopoulou (733)

	E. Ogando (771)

	Sergey N. Rashkeev (615)

	Yousef Saad (797)

	H.	Saarikoski (771)

	Ulrike Salzner

	Susan B. Sinnott (1)

	Zdenek Slanina (457)

	Jasmin Smajic (537)

	Karl Sohlberg (615)

	M. J. Stott (43)

	T. Torsti (771)

	Liangchi Zhang (395)

	Xanthippi Zianni (733)

	Volume 1. BASIC CONCEPTS, NANOMACHINES, AND MEDICAL NANODEVICES

	Volume 2. ATOMISTIC SIMULATIONS—ALGORITHMS AND METHODS

	3. QUANTUM AND MOLECULAR COMPUTING, QUANTUM SIMULATIONS

	Volume 4. NANOMECHANICS AND MULTISCALE MODELING

	Volume 5. TRANSPORT PHENOMENA AND NANOSCALE PROCESSES

	Volume 6. BIOINFORMATICS, NANOMEDICINE, AND DRUG DESIGN

	7.	MAGNETIC NANOSTRUCTURES AND NANO-OPTICS

	8.	FUNCTIONAL NANOMATERIALS,

	NANOPARTICLES, AND POLYMER DESIGN

	Volume 9. NANOCOMPOSITES, NANO-ASSEMBLIES, AND NANOSURFACES

	Volume 10. NANODEVICE MODELING AND NANOELECTRONICS


	Computational Studies of Nanomaterials: A Historical Perspective

	Douglas L. Irving, Susan B. Sinnott

	1.	INTRODUCTION

	2.	INTRODUCTION TO COMPUTATIONAL METHODS

	2.1.	Calculating Interaction Energies and Forces

	2.1.1.	Ab Initio Methods

	f:tllIJl =	(J)


	£[p] = 7'Jp| + KvIp] + K„[pJ + KAp\	(4)

	p = m2	(5)

	2.7.2.	Semiempirical Methods

	2.1.3.	Empirical Methods

	2.2.	Structure Optimization and Simulation

	(9)

	(10)

	2.2.1.	Force Minimization




	P, = r, +/3,._|P,_|	(17)

	2.2.2.	Molecular Dynamics Simulations

	2.2.3.	Monte Carlo Simulations

	3.	APPLICATION TO NANOMETER-SCALE SYSTEMS

	3.1.	Electronic Properties of Single-Walled Carbon Nanotubes

	3.2.	Structure and Properties of Nanotube Junctions

	3.3.	Mechanical Properties of Carbon Nanotubes

	3.4.	Chemical Modification of Carbon Nanotubes

	3.5.	Carbon Nanotube Gas Sensors

	3.6.	Filling Carbon Nanotubes

	3.7.	Nanoindentation

	4.	SUMMARY AND FUTURE OUTLOOKS

	ACKNOWLEDGMENTS

	REFERENCES



	Density Functional Calculations of Clusters and Cluster Assembly

	J. A. Alonso

	1.	INTRODUCTION

	2.	THEORY

	2.1.	Density Functional Theory

	(2)

	(3)



	£" = 2JJ ‘'r"r

	= M	(13)

	2.1.1.	Kohn-Sham Scheme

	h, ~	~f-	K,/;/(rJ


	(bj(r) = 6,</;>,(r),	/	=	1. 2	N	(14)

	^■['l’rl = T7T	(21)

	£o = E + I fl	+	I	‘lr "„(*) I K,,(r) ~ t'Ys(i')] + EV1["J (24)

	2.1.2.	Exchange-Correlation

	2.7.3. Orbital-Free Approach

	2.2.	Pseudopotentials

	2.2.1.	Model Pseudopotentials




	Z,

	KC = E vi(r) K’ '"></■ "'I	P?)

	2.2.2.	First-Principles Normconserving Pseudopotentials


	(K,AK‘	'O

	2.2.3.	First-Principles Local Pseudopotentials

	2.3.	Synthesis

	2.3.1.	The Pseudopotential

	2.3.2.	Superlattice Geometry

	2.3.3.	Plane Wave Basis

	2.3.4.	Ground State Energy Calculation

	2.3.5.	Atomic Arrangement

	3.	APPLICATIONS TO CLUSTERS AND CLUSTER-ASSEMBLED SOLIDS

	3.1.	Electronic Shells

	3.1.1.	Electronic Shells in Clusters of Simple Metallic Elements

	3.1.2.	Electronic Shells in Large Clusters

	3.1.3.	Electronic Shell Effects in Noble Metal Clusters

	3.1.4.	Clusters of the Aluminum Group


	3.2.	Perturbed Clusters

	3.2.1.	Electric Polarizability of Clusters

	3.2.3.	Subshells and Distortion of the Cluster Shape


	3.2.4.	Collective Electronic Excitations





			<68>

	3.2.5.	Shell Effects in Cluster Fragmentation

	3.2.6.	Ultimate Jellium Model

	3.3.	Clusters with Impurities

	3.3.1.	Monovalent and Divalent Impurities in Alkali Metal Clusters

	3.3.2.	A Full Description of the Cluster Structure

	o o

	3.3.3.	High Valence Impurities in Alkali Clusters

	3.3.4.	Impurities in Aluminium Clusters

	3.4.	Cluster Melting

	3.4.1.	Orbital-Free Simulations of the Melting Transition

	s =	1	£	(79)

	N(N-\)fr,	(r,j),

	3.4.2. Ab Initio DFT Simulations of Melting

	3.5.	Cluster Assembly

	3.5.1.	Clustering in Crystalline Alloys of

	Alkali Metals and Elements of the Lead Group

	3.5.2.	Simulation of Assembling of Alkali-Lead Clusters

	3.5.3.	Assembling of Al-Based Clusters

	4.	CONCLUSIONS

	ACKNOWLEDGMENTS

	REFERENCES



	CHAPTER 3

	Anna C. Balazs, Gavin A. Buxton

	2.1.	Self-Consistent Field/Density Functional Theory Approach

	Pp(r), by


	2.2.	Cahn-Hilliard/Brownian Dynamics Model


	(l2)

	3.	MODELS FOR DETERMINING MACROSCOPIC PROPERTIES OF NANOCOMPOSITES

	3.1.	Mechanical Properties: Lattice Spring Model

	3.2.	Electrical Properties: Finite Difference Model

	3.3.	Optical Properties: Finite Difference Time Domain Method


	4.	RESULTS AND DISCUSSION

	4.1.	Properties of Mixtures of Diblock Copolymers and Spherical Nanoparticles

	4.1.1.	Uniform Particle Size

	4.1.2.	Binary Particle Systems

	4.2.	Behavior of Nanorods in Binary Polymer Blends

	4.2.1.	Morphology: Formation of Supramolecular Networks

	4.2.2.	Mechanical Properties

	4.2.3.	Electrical Properties

	4.2.4. Summary

	4.3.	Properties of Mixtures of Nanorods and Diblock Copolymers

	4.3.1.	Morphological Studies

	4.3.2.	Micromechanical Studies




	P, =	(23) £/P,,0)

	4.4.	Structure and Optical Properties of

	Nanoparticle-Filled Diblock Copolymers

	4.4.1.	Relation of Morphology to Optical Properties

	4.4.2.	Summary

	5.	CONCLUSIONS

	ACKNOWLEDGMENTS

	REFERENCES



	Monte Carlo Simulations and Self-Consistent Field Theory for Thin Polymer Films

	Marcus Muller

	2.	COARSE-GRAINED MODELS

	(2)


	3.	MONTE CARLO SIMULATION AND SELF-CONSISTENT FIELD TECHNIQUE

	3.1.	Simulation Techniques for One-Component Polymer Liquids


	:a)

	n = E Pgc("i/wv,t).

	3.2.	Self-Consistent Field Technique for One-Component Polymer Liquids

	3.2.1.	General Formalism

	(12)



	jl =	=	i ,„*!!_ 11„ oi„(0]]	UK)

	n f	4>m	, flA4>\ i

	3.2.2.	An Approximation for the Excess Free-Energy Functional Fex[c/>]


	= j cl;><Mr){shc[<iv(r)] +&m[<Mr)] j	(28)



	**<*'-	-	MH	«*»

	V N) (1 -77)'

	= +2wV-(r -	+ I dr"	-■ Owv-O" -

	3.2.3.	Comparison Between Monte Carlo Simulations and Self-Consistent Field Calculations


	4. WETTING OF POLYMER LIQUIDS

	4.1.	Locating the Wetting Transition in Monte Carlo Simulations

	4.1.1.	Contact Angle of Microscopic Droplets

	4.1.2. Measurement of the Liquid Film Thickness in the Grandcanonical Ensemble

	4.1.3.	Young’s Equation

	4.1 A. Extrapolating the Prewetting Line toward Coexistence

	AWL-3//^_ 1	(46)


	4.2.	Nanodroplets on Layered Substrates


	■lr = TT77V	r-—+ <r+,u; )	(	1

	(51)

	4.3.	Wetting on a Polymer Brush


	Jin - y«i + y < <)	(52)

	4.3.1.	Low Grafting Density



	- V

	4.3.2.	Intermediate Grafting Density

	4.3.3.	High Grafting Density

	4.4.	Adsorption on Laterally Structured Substrates

	5.	BINARY POLYMER BRUSHES: SELF-ASSEMBLED

	STRUCTURES WITH SWITCHABLE WETTING PROPERTIES

	6.	INCOMPRESSIBLE BINARY POLYMER FILMS

	6.1.	Generalization of the Computational Techniques to Binary Polymer Blends


	6.2.	Wetting Transition in Incompressible Binary Polymer Blends

	(68)



	Ay(/0 = ym (A) - 7„, (••'!) = y,m {A) - yBA~A)

	ki,TbJxlb

	6.3.	Interplay Between Wetting and Phase Behavior in Confined Geometry

	7.	OUTLOOK

	ACKNOWLEDGMENTS

	REFERENCES



	Conjugated Organic Polymers: From Bulk to Molecular Wire

	Ulrike Salzner

	1.1.	Properties of Conjugated Organic Polymers

	1.2.	Theoretical Approach


	2.	ACCURACY OF THEORETICAL EXCITATION ENERGIES FOR POLYENES IN THE GAS PHASE

	2.1.	High Level Ab Initio Calculations


	2.2.	Single-Electron Methods

	2.3.	Calculation of Excitation Energies Employing Density-Functional Theory

	2.4.	Frozen Orbital Approximation

	2.4.1.	Hartree-Fock Orbitals

	2.4.2.	DFT Orbitals

	2.4.3.	Semiempirical Methods


	3.	EXTRAPOLATION TO INFINITELY LONG CHAINS

	4.	EXCITATION ENERGIES OF OLIGOMERS IN LIQUID AND SOLID SOLUTIONS

	4.1.	Polyenes

	4.2.	Thiophene Oligomers

	4.3.	Pyrrole Oligomers


	5.	INTERCHAIN INTERACTIONS

	5.1.	Experiment

	6.	COMPARISON BETWEEN THEORY AND EXPERIMENT FOR POLYMERS

	7.	CONDUCTING STATE OF CONJUGATED ORGANIC POLYMERS

	8.	POLARIZABILITY

	9.	CONDUCTIVITY

	10.	SUMMARY

	ACKNOWLEDGMENTS

	REFERENCES



	Nanomechanics of Nanoreinforced Polymers

	Frank T. Fisher

	L. Cate Brinson

	1.	INTRODUCTION

	1.1.	Motivation for Nanoreinforced Materials


	vr = p vr	(1

	-3---£3l	,2,

	K + K, I-Vf

	1.2.1.	Equiaxed Nanoparticulate Reinforcement

	1.2.2.	Nanotube Reinforcement


	S 8

	1.2.3.	Nanoplatelet Reinforcement

	1.3.	Introduction to Viscoelasticity

	"/>(') =	‘It	(3)

	1.3.1.	Molecular Theory of Polymers and Viscoelasticity

	1.3.2.	Mechanical Response of Viscoelastic Materials


	(5)

	L (8)

	2.	NANOREINFORCED POLYMERS—EXPERIMENTAL RESULTS

	2.1.	Equiaxed Nanoparticulate Reinforcement


	2.2.	Nanotube Reinforcement

	2.2.1.	Issues Related to Processing of Nanotube-Reinforced Polymers

	2.2.2.	Mechanical Properties of Nanotube-Reinforced Polymers

	2.2.3.	Electrical and Thermal Properties of Nanotube-Reinforced Polymers

	2.3.	Nanoplatelet Reinforcement

	2.4. The Interphase Region and Viscoelastic Behavior in Nanoreinforced Polymers

	3.	NANOMECHANICAL MODELING

	3.1.	Bottom-up Approaches

	3.1.1.	Molecular Dynamic Modeling




	b)

	c)

	3.1.2.	Monte Carlo Methods

	3.1.3. Equivalent Continuum Models



	um = J2 us + E u° + ELJl + E u” + E u"‘lw + E ues

	Equivalent-truss Equivalent- model	continuum	model

	3.2.	Top-down Approaches

	3.2.1.	Micromechanics modeling

	if-|i - sx.V , - < .)!	(16)

	r = ^EcV{c;^} + c0c*^f:cr{^}


	L

	(a)	(b)

	3.2.2. Finite Element Approaches

	3.3.	Hybrid Modeling Methods

	E^A =	(28)


	4.	CURRENT ISSUES IN NANOMECHANICS OF NANOREINFORCED POLYMERS

	5.	CONCLUSIONS

	ACKNOWLEDGMENTS

	APPENDIX

	A.1. Derivation of Mori-Tanaka Method

	(A2)

	(A12)

	^ = /uC||^(i + .frCrAr



	c = Ucn + E f,CrA?\^/„/ + E	(A	15)

	{/U =	{fl55}	=	i[fl55	+

	A.2. Summary of Related Literature

	REFERENCES








	Modeling and Simulation of Carbon Nanotube/Polymer Composites

	Jihua Gou

	Kin-tak Lau

	Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong

	1. INTRODUCTION


	2.	INTERFACIAL BONDING OF CARBON NANOTUBE/POLYMER COMPOSITES

	2.1.	Molecular Mechanics Simulation

	2.2.	Molecular Dynamics Simulation

	2.3.	Analytical Modeling with Classical Continuum Mechanics

	^	E/^v)




	LY( i-^

	Pi. =	VM)	O9)

	AM = 27rh\Np,+ £</(C-l)l

	J1

	y = ,/%	(25)

	KNTA/U[£-0 + 3:)cosh(A/.)]

	3.	MECHANICAL BEHAVIOR OF CARBON NANOTUBE/POLYMER COMPOSITES

	3.1.	Molecular Mechanics and Molecular Dynamics Simulations



	<50)

	Ur = l,	E A\\ +cos(/;,t, - </>,)]	(51)

	\	E UdR,y + \ E Cjicie,)-	(52)

	3.2.	Continuum Modeling



	w,=r(p)	("8)

	« . = — - (6

	\ pA

	3.3.1.	Molecular Structural Mechanics

	(80)

	(81)


	3.3.2.	Equivalent-Continuum Modeling

	E--EEK-v-py- + E E K"V>-«>! + E £(S-	5)	m

	=	(87)

	4.	EXPERIMENTAL INVESTIGATION OF CARBON NANOTUBE/POLYMER COMPOSITES

	4.1.	Interfacial Bonding of Carbon Nanotube/Polymer Composites


	4.2.	Mechanical Properties of Carbon Nanotube/Polymer Composites

	5.	CONCLUSION

	REFERENCES



	CHAPTER 8

	Liangchi Zhang

	School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, New South Wales, Australia

	1.	INTRODUCTION

	2.	MOLECULAR DYNAMICS MODELING OF MATERIALS

	2.2.	Simulation Temperature

	2.3.	Size of Control Volume

	2.4.	Integration Time Steps

	2.5.	Temperature Conversion

	2.6.	Stress Analysis


	s


	J,,p = m E vip + 1 E ruftFija	(4)

	2.7.	Potential Function

	3.	NANOINDENTATION ON MONOCRYSTALLINE SILICON

	3.1.	Introduction

	3.2.	Modeling



	- E E, = \ £ w„	(6)

	w„ = fc(n/)1/r(0 +	>!	(7)

	B,i	= (flf/i,)|/2,	Su	=

	3.3.	Phase Transformation

	3.4.	Deformation Characteristics

	3.5.	Effect of Oxygen Penetration

	3.6.	Effect of Water

	3.7.	Cyclic Indentations

	4.	NANOTRIBOLOGY

	4.1.	Introduction

	4.2.	Moving Control Volume

	4.3.	Diamond-Copper Sliding Systems

	4.3.1.	Methods of Modeling and Analysis

	4.3.2.	Mechanisms of Wear

	4.3.3.	Friction

	4.4.	Scale Effect of Contact Size on Friction Transition

	4.4.1.	Introduction

	4.4.2.	Friction Transition




	* * 		%••••••* *

	4.4.3.	Contact Width

	4.4.4.	Mechanism—An Open Question

	4.5.	Diamond-Silicon Sliding Systems

	4.5.1- Modeling

	4.5.2.	Inelastic Deformation

	4.5.3.	Wear Regimes

	4.6. Multiasperity Sliding

	4.6.1.	Modeling

	4.6.2.	Configurations II and III

	4.6.3.	Configuration I

	4.6.4.	Phase Transformation

	5.	CHARACTERIZATION OF CARBON NANOTUBES

	5.1.	Introduction

	5.2.	Modeling

	5.3.	Deformation Characteristics

	5.4.	Potential

	5.5.	Number of Thermostat Atoms

	5.6,	Influence of Thermostat Schemes










	jgP&SK

	5.7.	Integral Time Step, Displacement Step, and Relaxation Step

	5.8.	Summary

	6.	DEFORMATION OF COPPER NANOWHISKERS

	6.1.	Introduction

	6.2.	Modeling

	6.3.	Effects of Atomic Orientation and Specimen Shape

	6.4.	Elastic Modulus and Ultimate Tensile Strength

	6.5.	Shear Banding and Necking


	7.	BUCKLING OF DIAMOND THIN FILMS

	7.1.	Background

	7.2.	Theory and Simulation Method

	7.3.	Uniaxial Stress

	7.4.	Biaxial Stresses


	8.	CONCLUDING REMARKS

	ACKNOWLEDGMENTS

	REFERENCES

	CHAPTER 9

	Zdenek Slanina

	Kaoru Kobayashi, Shigeru Nagase

	1.	INTRODUCTION

	2.	OUTLINE OF QUANTUM-CHEMICAL AND STATISTICAL-MECHANICAL CALCULATIONS

	cxp[-AE°,./(/?-n]


	3.	ENERGETICS AND THERMODYNAMICS OF CARBON CLUSTERS

	3-1. Basic Topology

	(8)

	(9)

	3.2.	Isolated Pentagon Rule Energetics

	3.3.	Stabilities of Clusters of Different Dimensions


	1 = -v'i +Y.K'P.iX\P' '•


	4.	SMALL CARBON CLUSTERS

	5.	TOPOLOGICAL GENERATIONS OF CAGES

	6.	SMALLER FULLERENES

	7.	HIGHER FULLERENES

	7.1.	C72 Fullerenes

	7.2.	C74 Fullerenes


	/ft \ i /~A\

	71 \M/

	A*

	1 "V/ / \ jl/



	m/ ¥4fi

	Or v H'

	M y \ k\

	% \ _ fiZvi


	I rr v » ■* Ajh^ 5?

	t vA a

	7,3.	C76 Isolated Pentagon Rule Set

	7.4.	C78 Isolated Pentagon Rule Set

	7.5.	C80 Isolated Pentagon Rule Set


	7.6.	C82 Isolated Pentagon Rule Set

	7.7.	C84 Isolated Pentagon Rule Set

	7.8.	C86 Isolated Pentagon Rule Set

	7.9.	C88 Isolated Pentagon Rule Set

	7.10.	C90 Isolated Pentagon Rule Set


	8.	ENDOHEDRAL METALLOFULLERENES

	[,\y/ S^A"f

	// <_> w

	/a'^/V\V/\i

	\N „ N

	9.	FULLERENE DERIVATIVES

	10.	CONCLUSIONS

	ACKNOWLEDGMENTS

	REFERENCES



	Carbon Nanocones

	Henning Heiberg-Andersen

	1.	INTRODUCTION

	2.	CONIC SHAPES IN GRAPHITE: TOPOLOGY. GEOMETRY,

	AND STABILITY CONSIDERATIONS

	2.1.	Carbon Chemistry in Two and Three Dimensions

	2.2.	Nanocones


	Slll(l) =	2* ("='-2	<2)

	2.2.1.	Geometrical Stability Considerations

	2.2.2.	Topological Stability Considerations

	2.3.	Helical Cone Growth

	2A Horns, Pipettes, Zipped Structures, and Tubular Graphite Cones

	3.	ATOMIC AND ELECTRONIC STRUCTURE: THEORETICAL/COMPUTATIONAL METHODS AND PREDICTIONS

	E = £ = ‘ E Kj	(6)

	Kj = fAn,)\A CXP(—A,/„) - Bn exp(—Aw-,)]	(7)

	3.2.	Density Functional Theory

	K*(r) = Vtt	(,2)

	3.3.	The Tight-Binding Model

	3.4.	The Effective Mass Theory and Continuum Models

	3.5. Predictions

	3.5.1.	Relative Stability of Isomeric Cone Tips

	3.5.2.	Meta-Stable Structures

	3.5.3.	Local Density of States, Field Emission, and Magnetic Properties


	dm*

	3.5.4.	The Origin of Petal Superstructures

	3.5.5.	Large Ring Defects and Screw Dislocations

	3.5.6.	Effect of Substitutional Atoms

	4.	THE NUCLEATION PUZZLE

	REFERENCES



	CHAPTER 11

	Christian Hafner, Jasmin Smajic, Daniel Erni

	1.	INTRODUCTION

	2.	METAMATERIALS

	2.1.	Frequency Selective Surfaces: Gratings

	2.2.	Artificial Anisotropic Media

	2.3.	Artificial Chiral Media

	2.4.	Negative Index Materials: Left-Handed Media


	3.	PHOTONIC CRYSTALS

	3;.1. Perfect Photonic Crystals

	3.1.1.	Symmetry Considerations

	3.1.2.	Band Diagrams

	3.2.	Waveguides in Photonic Crystals


	" 1 (> .

	<>i

	o:

	3.2.1.	Defect Waveguides

	3.2.2.	Other Waveguides

	3.3.	Waveguide Discontinuities in Photonic Crystals

	(20)

	ficiinous looooooooo

	3.3.1.	Coupling Energy into Photonic Crystals

	3.3.2.	Coupling Energy Out of Photonic Crystals

	3.3.3.	Waveguide Bending

	3.3.4.	Filters

	3.3.5.	Power Dividers

	3.3.6.	More Advanced Structures

	4.	SIMULATION OF COMPOSITE DOPED METAMATERIALS

	4.1.	Selection of Numerical Methods

	4.1.1.	Domain Methods

	4.1.2.	Boundary Methods

	4.2.	Band Diagram Computation

	4.2.1.	Plane Wave Approximation

	4.2.2.	MAS Computation

	4.2.3.	MMP Computation

	4.3.	Guided Waves

	4.3.1.	Supercell Approach

	4.3.2.	Direct Approach

	4.4.	Waveguide Discontinuities

	4.4.1.	Model Truncation

	4.4.2.	Excitation of Waveguide Modes

	4.4.3.	S Matrix Computation

	4.4.4.	Node Matching Techniques

	4.4.5.	Compensation Scheme for Reflected Waves

	4.4.6.	Optimized Open Port Approach


	5. OPTIMIZATION OF COMPOSITE DOPED METAMATERIALS

	5.1.	Probabilistic Optimizers

	5.7.7. Genetic Algorithms

	5.12. Evolutionary Optimizations


	5.1.3.	Other Methods

	5.1.4.	Development of New Methods

	5.2.	Deterministic Optimizers

	5.3.	Sensitivity Analysis

	5.4,	Towards Phenomenological Two-Dimensional Modeling of Planar Photonic Crystal Devices

	5.4.1.	The Phenomenological 2D Model

	5.4.2.	Modeling of Planar Photonic Crystal Tapers




	© o o O O O O © o O O O O O OOOOOOOOOO

	5.4.3.	Planar Photonic Crystal Bends and Power Splitters

	6.	CONCLUSIONS

	REFERENCES






	Theoretical and Computational Atomic-Scale Studies of Complex Catalytic Materials

	Karl Sohlberg

	1.	INTRODUCTION

	2.	THEORETICAL METHODOLOGIES

	2.1.	Cluster Models

	2.2.	Models Employing Periodic Boundary Conditions

	2.3.	Analysis Techniques

	2.4.	Leveraging Experiments


	3.	TYPICAL STUDIES AND RESULTS

	3.1.	Nanocatalysts

	3.2.	Metal Oxide Materials




	• •

	3.2.2.	k-Alumina

	3.2.3.	Ceria

	3.2.4.	Zirconia

	3.2.5.	Zeolites

	3.2.6.	Ru02 and First-Principles Thermodynamics

	3.3.	Catalytic Systems Based on Supported Metal Particles

	3.3.1.	Cr/Alumina System

	3.3.2.	Pt/Alumina System

	3.3.3.	Ub/a-Alumina System

	3.3.4.	Au/Titania System

	3.4.	Stability of the Support Material

	3.4.1.	y-Alumina 0-Alumina Transformation

	3.4.2.	La/Alumina System

	3.5.	Photocatalysis

	3.5.1.	Ti02


	4. FUTURE DEVELOPMENTS

	4.1.	Some Selected Outstanding Problems

	4.1.1.	Interaction of N2 with Molybdenum Nanoclusters

	4.1.2.	Dissociative Adsorption of NO and CO

	4.2.	Leveraging Infrared Spectroscopy


	ACKNOWLEDGMENTS

	REFERENCES

	Properties of Superconducting Nanostructures

	Rosario Fazio, Fabio Taddei

	1.	INTRODUCTION

	2.	HYBRID SYSTEMS

	2.1.	Andreev Reflection and Proximity Effect

	2.2.	Derivation of the Bogoliubov-de Gennes Equation


	*At = £»(“',O')y»t - w»*('7)yli)

	yL] = £,,7,1,

	[*/V ^//l = [«n - + //T('r)l«AT +

	2.3.	Solutions of the Bogoliubov-de Gennes Equation

	2.3.1.	Ferromagnet



	/«-*. \ l37) \ /?’ H + h \u'-(r ) J \u[ (r ) J

	2.3.2.	Superconductor

	2.3.3. Ferromagnet/Superconductor Interface

	A(.V)	\/h'w\	/«/'(a)\



	,//,(()) = <M0)

	2.4.	Scattering Theory

	/i;; = f (IEZ[^’i'T(E)8i)8<ri, - p™-+a'(E) + />;''■+,r'(£)]	(82)


	A = Ha7j(vj -l’)

	<	= J f dE(-T£ )	L [Nr'(E)8i}8air,8nf3	-	(afrP^ ^iE)]

	<> = ~ [ dE{-j^) 'L{W,T\E)8iJ8ITir, - rrr-”(E) + r;:r- •'(/ )!

	= T Ef.NT'(0)8Air. - p^'-+€,(0) + P’"- "((1)1

	2.5.	Two-Probe Differential Conductance and Conductance in More Details

	(102)


	2.6.	Quasi-Classical Green’s Function Approach

	2.7.	Panorama on Results in NS Systems

	3.	COULOMB BLOCKADE AND SUPERCONDUCTIVITY

	3.1.	Tunneling Rates and Parity Effects



	y{ (H. <2r,)-		7,r- ,^-T	<121)

	3.2.	NSN Transistor


	/A(SC?ci. n = CA(V -	(122)

	v> v^m = ~ (fct - ~+^)	(>23)

	3.3.	Cooper Pair Tunneling

	[<p. Q] = 2ei

	1-/3'


	3.4.	Superconducting Nanoparticles

	3.5.	Josephson Arrays

	3.6.	Quantum Computation with Superconducting Nanocircuits


	io —	-	i»

	4.	CONCLUSIONS

	ACKNOWLEDGMENTS

	REFERENCES




	Strain Field Calculations in Embedded Quantum Dots and Wires

	R. Maranganti, P. Sharma

	1.	INTRODUCTION

	2.	STRAIN FIELD CALCULATIONS IN QUANTUM DOTS AND WIRES

	2.1.	Simple Illustrative Example

	(3)

	2.2.	Effect of Shape

	2.2.1.	Eshelby’s General Formalism for Shape Effects


	aij = 2/i(e/y - tfH) +	~	e^H)	(12)

	fiUiji + (/x + A)uu, — —[(hs"}8lk + 2fie'-l.)H(\)] k


	(\e"'i8jk +	/	g,/.a(x	-	x')JK(x')

	(15)

	2.2.2.	Quantum Dots

	2.2.3.	Atomistic versus Continuum Calculations of Strain Distributions in QD/QWRs

	2.2.4. Quantum Wires




	D,

	A, .	'	(34>

	2.3.	Effect of Presence of a Free Surface in Near Vicinity



	) +	:nv,- v, )(>,-,) j |

	2.4.	Effect of Material Anisotropy and Nonlinearity

	2.4.1.	Anisotropic Effects

	1 + (C12 + C44) £ tj,/t

	C = Cm - Cn -2C


	Tr{e) = e"’JlTT2jlX<jn(r)	(49)

	2.4.2.	Nonlinear Effects

	2.5.	Effect of Coupled Fields: Piezoelectricity

	2.5.1.	Piezoelectric Effect Around a Spherical Dot

	2.5.2.	Piezoelectric Effect Around Any Dot

	V(r) = ——r	  f	i			(65>

	2.6.	Effect of Size

	2.6.1.	Surface/Interface Energy Effects


	" = r„P + —	(68)


	(70>

	21.0 A).

	2.6.2.. Non I ota I Effects

	IV(x) = fj.E,.ell +

	2.7.	Some Results from Inclusion Theory Useful

	for Strain Calculations in Quantum Dot Structures



	3. SUMMARY AND OPEN ISSUES

	ACKNOWLEDGMENTS

	REFERENCES



	Optical Properties of Silicon Quantum Wires and Dots

	Xanthippi Zianni

	1.	INTRODUCTION

	2.	ELECTRONIC STRUCTURE CALCULATIONS

	2.1.	Effective Mass Approximation

	2.1.1.	Electrons

	(3)

	Ec = E^ + E\y + -(6)

	(X)


	V /W, m,)

	(22)

	2.1.2.	Holes




	ni„

	K(x,y,z)=. r :=-=s.n( tr)”(tr)

	= k;(tt)’- w,(=1'2-'	(42)

	27^-2^ + 2^ +	v.	Z	.45)

	e-=sdT7) +^(t7)	(4<>»

	2.2.	Atomistic Approaches

	2.2.1.	Tight Binding Method

	sPact' c*>«.*l,k|[54]:

	= E C.h (k,)<Km .k	(57)

	^a.R -k =	R *a.R	(58)

	2.2.2,	The Pseudopotential Method

	2.3.	Quantum Confinement

	2.3.1.	Quantum Wires

	2.3.2.	Quantum Dots

	2.4.	Optical Properties

	(66)


	2.4.1.	Quantum Wires





	m

	o,) =	-	2-„)


	' V,-^/I7r	(82>

	2.4.2. Quantum Dots

	r = T^7T-r-V/»-(/w) ^	+	+	E‘-	+	£*	T ha>* ~!iW) (84>

	/,/,(q) = f dr<f)*(r)(f>h(r)e~"l'r


	El7.-/,(q)l: =	\(86)

	= (88)


	*<“> = i: e c\:^,ue	(8>)

	h(E) = yEK/|v„,(r)IOI‘S(£-£fl)

	(100)

	3. CONCLUSION

	REFERENCES




	Real-Space Electronic-Property Calculations for Nanoscale Structures

	T. Torstti,1’2 V. Lindberg,3 I. Makkonen,1 E. Ogando,4 E. Rasanen,1

	H.	Saarikoski,1 M. J. Puska,1 R. M. Nieminen1

	2.	EQUATIONS OF DENSITY-FUNCTIONAL THEORY

	3.	REAL-SPACE MULTIGRID METHODS

	3.1.	Previous Real-Space Approaches

	3.2.	RQMG Method

	(Uf + alj. dc\Bj-\uf + ali1 d(.) (lir\Bflif) + 2a(If8fuf\dc) + a-(dc\Bcdc)



	4.	TECHNICAL ENHANCEMENTS

	4.1.	Double Grid Technique

	=	=	(i7)


	(m

	", = £|/M,-I2	(22>

	4.2.	Traditional Mixing Schemes







	»*, = of-i j

	4.3.	Response-lteration Methods

	e2 SK-(r)


	4.4.	Higher-Order Compact Discretizations

	4.5.	RQMG with Galerkin Conditions

	4.6.	Alternative Eigenproblem Solvers

	5.	STATUS OF THE GENERAL-PURPOSE REAL-SPACE TOOL

	6.	TWO-DIMENSIONAL QUANTUM DOTS 6-1- Introduction and the Model

	* -	+i +EiK»<ri)+<w

	6.2.	Computational Aspects

	6.3.	Zero-Field Results

	y) = |°’	(3,,

	6.4.	Magnetic Fields and the Vortex Clusters

	6.5.	Impurities in Quantum Dots

	7.	NANOPHYSICS IN	AXIAL SYMMETRY

	7.1.	Ultimate Jellium Model for a Breaking Nanowire

	7.2.	Adsorbed Na Quantum Dots on Cu(111)


	8.	POSITRON STATES AT NANOSCALE DEFECTS

	9.	SUMMARY AND OUTLOOK

	ACKNOWLEDGMENTS

	REFERENCES


	Electronic Structure of Clusters and Nanocrystals

	James R. Chelikowsky

	Yousef Saad

	1.	INTRODUCTION

	2.	QUANTUM DESCRIPTIONS OF MATTER

	=	+	I	y.	-pf-

	= £*(/?,, (2)


	7 V-w-’m-'/?,</•% • • •	•	• •

	2.1.	The Hartree Approximation

	2.2.	The Hartree-Fock Approximation



	+ yx<n + tfpq-^

	ytr «(r)*(r)

	3.	DENSITY-FUNCTIONAL APPROACHES

	3.1. Free-Electron Gas







	O(E) = 		*22)

	3.3.	Density-Functional Theory

	8p

	vAp\ = — — [3?T2p{r)]r'	(37)

	3.4.	Time-Dependent Density Functional Theory


	’ - //*»Mr>(jFr7i+	<48)

	Sfipito) = —2 E PilJi(8Pija)(a>) j8 - {.v, y, z}	(53)

	Ku'd.kh=-- f	(61)

	u F I A In rs + B -f C/\ In t\ + Drs + XV; In rs rs <1 6c = |y/(l+i8lv^ + i3:r,) rs > I,	(6

	<>p.r>pi 9p2 (21 ’ — 1)

	4.	PSEUDOPOTENTIALS

	MO = C\, +	(X )

	5.	SOLVING THE EIGENVALUE PROBLEM

	6.	PROPERTIES OF CONFINED SYSTEMS: CLUSTERS

	6.1.	Structure

	6.2.	Photoemission Spectra

	6.3.	Vibrational Modes

	6.4.	Polarizabilities




	B,

	6.5.	Optical Spectra

	7.	QUANTUM CONFINEMENT IN NANOCRYSTALS

	= E(n + 1) + E(n - 1) - 2E(n) = e"l + X



	= 1 drAM r.)l2^r(ri)

	7.1.	Role of Oxygen in Silicon Quantum Dots

	7.2.	Doping Quantum Dots

	ACKNOWLEDGMENTS

	REFERENCES



	Index

	A

	B

	c

	G

	H

	K

	L

	M

	N


	o

	Q

	R


	s

	T


	u

	v

	w

	x

	Y


	z



