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Foreword
Nanoscience is fashionable. All administrations in the Western world have stressed their 
interest in nanoobjects and nanotechnologies. As usual, this type of large scientific movement 
has its pluses and minuses. Many scientists join the crowd without necessarily changing 
anything in their actual work. Most chemists, for instance, build new molecules that may be 
called nanoobjects; but again, as usual, the movement does generate significant new content.

Let us. for instance, follow the role of nanostructures in chemistry. On one side, nature 
has provided us with beautiful, robust objects such as fullerenes and carbon tubes, which 
have some admirable properties. The current challenge is to obtain them in large amounts 
and at a reasonable price. Here is the real problem.

A completely different sector is obtained from chemical nanomachines, for which a molec
ular unit of nanometric size moves with respect to another one through a change in redox 
potential or pH. Some of these machines have been built. At the moment, I feel rather skep
tical about them because they are extremely costly, extremely fragile (sensitive to poisons), 
and not easy to protect with a suitable coating— or by a local “antipoison" center. But, here 
again, there is a challenge.

Let us now turn to biology. Here we find an immense group of working nanomachines, 
enzymes, ionic channels, sensor proteins, adhesion molecules, and so on. They are extremely 
impressive, but o f course they represent progressive construction by trial and error over 
more than a billion years. Should we try to mimic these machines or, rather, use them 
for technological purposes, as they a n \  for instance, to grow plants or create proteins at an 
industrial level according to the techniques of molecular genetics? This is a major question.

A third, open side is quantum  physics and the (remote) possibility of quantum computers. 
In my youth, I had hopes for digital storage via quantized flux quanta: The corresponding 
technology, based on Josephson functions, was patiently built by IBM, but they ultimately 
dropped out. This shows the hardship of nanotechnologies even when they are handled by 
a large, competent group. But the cause is not lost, and it may well be that our children use 
some unexpected form of quantum  computers.

Thus, we are facing real challenges, not just the vague recommendations of some anony
mous boards. And, we need the tools. We need to know the behavior of materials at the 
nanolevel, the clever tricks of physical chemistry required to produce nanoparticles or nano
pores, the special properties of small cooperative systems (nanomagnets, nanosuperconduc
tors, nanoferroelectrics, etc.), the ability for assembling functional units, and so on.

The aim of the present handbook is to help us with the tools by suitable m o d e ra t io n s .  It 
is written by leading experts, starting from general theoretical principles and progressing to 
detailed recipes.

In the second half o f the 18th century, all the knowledge (fundamental and practical) of 
the Western world was condensed into an outstanding encyclopedia constructed energetically 
by Denis Diderot just after the industrial revolution started. Here, at a more modest level, we 
can hope for something similar. Soon after the first wave, including this handbook, a certain 
form of nanoindustry may be born.

The discussions started in this handbook will continue in a journal (Journal o f  Computa
tional and Theoretical Nanoscience) launched by the present editors. I wish them the best.

Professor Pierre-Gilles de Gennes
Nobel Prize Laureate, Physics 

College de France 
Paris, France
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Preface
This is the first handbook that deals with theoretical and computational developments in 
nanotechnology. The 10-volume compendium is an unprecedented single reference source 
that provides ideal introduction and overview of the most recent advances and emerging new 
aspects of nanotechnology spanning from science and engineering to neurogenetics. Many 
works in the field of theoretical and computational nanotechnology have been published to 
date, but no book or handbook has focused on all aspects in this field that deal with nano
machines, electronics, devices, quantum computing, nanostructured materials, nanorobotics, 
medicine, biology, biotechnology, and more.

There is no doubt that nanoscience will be the dominant direction for technology in this 
new century, and this science will influence our lives to an extent impossible in years past: 
Specific manipulations of m atter  at its ultimate level will open completely new perspectives 
on all scientific and technological disciplines. To be able to produce optimal nanosys
tems with tailor-made properties, it is necessary to analyze and construct such systems in 
advance by adequate theoretical and computational methods. The handbook gives a com 
plete overview of the essential methods, models, and basic pictures.

But, as is well known, there are also threats connected with nanotechnology, specifically 
with respect to biological systems: Self-assembly can be an uncontrolled process, and the 
final state of a developing system is in general uncertain in such cases. To avoid undesir
able developments, the theoretical (computational) analysis of such processes is not only 
desirable but also absolutely necessary. Thus, the computational and theoretical methods of 
nanoscience are essential for the prediction of new and custom nanosystems and can help 
keep nanoscience under control. There is basically no alternative. Therefore, one possible 
answer to the question. “Why a book on theoretical and computational nanotechnology?" is 
to give nanotechnology' a direction!

In the design of macroscopic and microscopic systems, engineering is essentially based on 
intuitive concepts, which are tailored to observations in everyday life. Classical mechanics is 
also based on these macroscopic observations, and its notions have been chosen with respect 
to our intuitive demands for visualizabdity. However, when we approach the nanolevel, the 
tools used for the design o f  macroscopic and microscopic systems become more and more 
useless. At the nanolevel, quantum  phenom ena  are dominant, and the main features in con
nection with quantum  effects are not accessible to our intuitive concepts, which are merely 
useful at the macroscopic level; the framework of quantum  theory is in striking conflict 
with our intuitive dem ands for visualizability, and we are forced to use abstract physical 
laws expressed by mathematical equations. In o ther  words, effects at the nanolevel are 
(almost) not accessible to our usual engineering concepts. Therefore, here we rely on the 
abstract mathematical relations of theoretical physics. In nanotechnology functional systems, 
machines and the like cannot be adequately designed without the use of these abstract 
theoretical laws and the application of suitable computational methods. Therefore, in nano
technology, theoretical and computational methods are centrally important: This makes the 
present handbook an indispensable compendium.

Nanometer-seale units are by definition very small atomic structures and functional sys
tems; it is the smallest level at which functional m atter can exist. We already learned to 
manipulate m atter at this ultimate level: Atoms can be moved experimentally in a controlled 
manner from one position to another. This is astonishing because one nanom eter only cor
responds to one millionth of a millimeter. For example, an electrical nanogenera tor could 
be designed consisting of various parts that included a very fast revolving rotator. O ne mil
lion of these generators could be arranged side by side on a length of two centimeters; it 
is remarkable that not only static nanostructures could in principle be produced and sig
nificantly manipulated but also artificial dynamical nanosystems. But, the downscaling of 
functional structures from the macroscopic to the nanom eter scale is only one of the essential
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points in connection with nanotechnology. In addition— and maybe much more im portant— 
nanosystems provide unique properties in comparison to those we observe at the macro
scopic level. For example, a metal nanocluster shows a melting temperature that strongly 
deviates from that of a macroscopic piece of metal; its melting point is significantly lower. 
A decrease down to a fraction of only 20%  is typical, depending, however, on the material 
and particle number.

A professional treatment of the various problems in nanoscience and nanotechnology 
makes the application and development of theoretical and computational methods in this 
field absolutely necessary. In o ther words, the discipline of theoretical and computational 
nanotechnology has to be considered as a key topic to be able to treat nanotechnology ade
quately and to reach optimal solutions for certain tasks. It is therefore desirable to get a 
timely overview about the specific topics presently relevant in this field. In this respect, the 
handbook gives a complete overview of the specific topics so far established in nanotechnol
ogy. Each chapter gives a certain overview of actual activities of the envisaged topic and in 
most cases an adequate description of the basics, so advanced students also can benefit from 
the handbook. It was our strategy to provide consistent and complete representations so the 
reader would be able to study each chapter without consulting o ther works. This o f  course 
leads to certain overlaps, which was also part of our strategy to enable an approach to the 
same topic from various points of view.

The handbook reflects the spectrum of questions and facts that are and could be relevant 
in the field of nanotechnology. Not only formal developments and methods are outlined, 
but also descriptions of a broad variety of applications in particular are typical for the 
handbook. All relevant topics have been taken into account, from functional structures— like 
an electrical nanogcncrator— or quantum computing to questions that deal directly with basic 
physics. Almost all fields related to theoretical and computational nanotechnology could be 
covered, including multiscale modeling, which is important for the transition from microscale 
to nanoscale and vice versa.

All theoretical and computational methods used in connection with the various topics in 
nanoscience are directly based on the same theoretical physical laws. At the nanolevel, all 
properties of our world emerge at the level of the basic theoretical laws. In traditional tech
nologies, engineers do not work at the ultimate level. They use more or less phenom enolog
ical descriptions that generally cannot be deduced from the basic physical theoretical laws. 
We have as many phenomenological descriptions as there are technological disciplines, and 
each is tailor-made to a specific topic. An exchange of concepts is either not possible or 
ra ther difficult, ln contrast, at the ultimate nanolevel the world is based on only one theory 
for all disciplines, and this is expressed by basic theoretical physics. This situation opens 
the possibility for interconnections between the various topics in nanotechnology to bring 
about new effects and chances for further applications. In o ther words, nanotechnology and 
nanoscience can be considered interdisciplinary. Clearly, the handbook reflects the interdis
ciplinary character of this new science and technology.

The Handbook o f  Theoretical and Computational Nanotechnology includes 138 chapters 
written by hundreds of the world's leading scientists. Topics cover mainly the following areas:

(i) Computational biology: DNA, enzymes, proteins, biomechanisms, neurogenetic infor
mation processing, and nanomedicine

(ii) Computational chemistry: quantum chemistry, molecular design, chemical reactions, 
drugs, and design

(iii) Computational methods and simulation techniques from ab initio to multiscalc 
modeling

(iv) Materials behavior at the nanolevel, such as mechanics, defects, diffusion, and dynamics
(v) Nanoscale processes: membranes, pores, diffusion, growth, friction, wear, catalysis

(vi) Nanostructured materials: metals, composites, polymers, liquid crystals, photonic crys
tals, colloids, and nanotubes

(vii) Nanostructures: fullerenes, nanotubes. clusters, layers, quantum dots, thin films, sur
faces. and interfaces

(viii) Nanoengineering and nanodesign: nanomachines. nano-CAD, nanodevices, and logic 
circuits
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(ix) Nanoelectronics: molecular electronics, nanodeviccs, electronic states, and nanowires
(x) Nanomagnetism: magnetic properties of nanostructures and nanostructured materials

(xi) Nanooptics: optical response theory, quantum dots, luminescence, and photonic 
crystals

(xii) Quantum computers: theoretical aspects, devices, and computational methods for sim
ulating quantum com puters  and algorithms

The handbook provides broad information on all basic and applied aspects of theoretical and 
computational nanotechnology by considering more than two decades of pioneering research. 
It is the only scientific work of its kind since the beginning of nanotechnology, bringing 
together core knowledge and the very latest advances. The handbook is written for audiences 
of various levels while providing the latest up-to-date information to active scientists and 
experts in the field. This handbook is an indispensable source for research professionals and 
developers seeking the most up-to-date information on theoretical and computational nano
technology among a wide range of disciplines, from science and engineering to medicine.

This handbook was written by leading experts, and we are highly grateful to all contributing 
authors for their tremendous efforts in writing these outstanding state-of-the-art chapters 
that altogether form a unified whole. K. Eric Drexler (designer of nanomachines, founder of 
the Foresight Institute, coiner o f  the term nanotechnology) gives an excellent introductory 
chapter about possible trends of future nanotechnology. We especially express our sincere 
gratitude to Dr. Drexler for his instructive and basic representation.

We cordially extend our special thanks to Professor Pierre-Gillcs de Gennes for his valu
able and insightful Foreword.

The editors are particularly thankful to Dr. Hari Singh Nalwa, President and CEO of 
American Scientific Publishers, for his continuous support of the project and the enthusiastic 
cooperation in connection with all questions concerning the development o f  the handbook. 
Furthermore, we are grateful to the entire team at Bytheway Publishing and especially to 
Kate Brown for copyediting.

Dr. Michael Rieth 
Prof. Dr. Wolfram Schommers

Karlsruhe, Germany
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1. NANOELECTRONICS DEFINED
Nanotechnology, by its name, implies technology at small scales, literally at nanometer scale 
dimensions (10_CJ m). Certainly, nanotechnology in the broadest sense is not new. Nanocrys
talline materials have been used since antiquity to enhance the chemical and material prop
erties of man-made objects. Also, the transition from the “nano" to “micro’* to “macro” 
worlds is not abrupt, but occurs smoothly over multiple length scales. As a result, there is 
often confusion, and a certainly ambiguity, in what is truly “ nanotechnology” as opposed 
to microelectronics, micromachining, and cellular biology. Somewhat arbitrarily, we define 
nanometer scale to characteristic feature sizes on the order of 100 nm, or less in terms of 
the separation of the micro and nanoworlds. The fact that almost all such structures contain 
nanoscale features in one form or another has led to nanotechnology being regarded as a 
somewhat broad umbrella encompassing a host o f scientific and engineering disciplines.

Nanoelectronics generally refers to nanom eter scale devices, circuits, and architectures 
impacting continued scaling of information processing systems, including communication 
and sensor systems, as well as providing an interface between the electronic and biological 
worlds. The present attention on nanotechnology and nanoelectronics has been driven from 
the top down by the continued scaling of semiconductor device dimensions into the nano
meter scale regime, as discussed in more detail below. It is predicted that the scaling down 
of dimensions in present semiconductor technologies will continue for the next 10— 12 years, 
until a hard limit of M oore’s Law is finally reached clue to manufacturability, or finally due 
to reaching atomic dimensions themselves. By the end of that time it will be necessary for 
radical new technologies to be introduced if continued progress in reducing device dimen
sions and increasing chip density is to be maintained. This ’'end of the roadm ap” implies 
that industry faces an enorm ous challenge of developing commercially viable nanoscale chip 
technologies within the next 10 years. Fundamental advances are needed in new switching 
mechanisms, new computing paradigms realized from locally connected architectures such 
as cellular nonlinear networks (CNN), new ways to design for fault tolerance, new methods 
to achieve low power circuit design, and new methods for testing very dense and highly 
integrated nanoscale systems-on-a-chip.

From the molecular scale side or ‘bottom up', the nanotechnology ‘revolution* has been 
enabled by remarkable advances in atomic scale probes and nanofabrication tools. Structures 
and images at the atomic scale have been made possible by the invention of the scan
ning tunneling microscope (STM), and the associated atomic force microscope (AFM> (1|. 
Such scanning probe microscopy (SPM) techniques allow atomic scale resolution imaging of 
atomic positions, spectroscopic features, and positioning of atoms on a surface. Concurrently, 
there have been significant advances in the synthesis and control of self-assembled systems, 
semiconductor nanowires, molecular wires, novel states of carbon such as fullerenes and 
carbon nanotubes, etc. These advances have led to an explosion of scientific breakthroughs 
in studying the properties of individual molecular structures with potential application as 
components of molecular electronic (moletronic) devices and circuits. As discussed below, 
such bottom up technology for novel materials growth and potential device fabrication is 
more closely akin to the self-assembly and complex templated structure formation found in 
biological systems, that is, biomimetic structures.
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1.1. Issues in Semiconductor Device Scaling
As the density of integrated circuits continues to increase, there is a resulting need to shrink 
the dimensions of the individual devices of which they are comprised. Smaller circuit dimen
sions would reduce the overall die area, thus allowing for more transistors on a single die 
without negatively impacting the cost of manufacturing. However, getting more functions 
into each circuit generally leads to larger die size, and this requires larger wafers. As semi
conductor feature sizes shrink into the nanom eter scale regime, device behavior becomes 
increasingly complicated as new physical phenomena at short dimensions occur, and limita
tions in material properties are reached.

For conventional silicon M O SFE T device scaling, the device size is scaled in all dimen
sions, resulting in smaller oxide thickness, junction depth, channel length, channel width, 
and isolation spacing. Advances in lithography have driven device dimensions to the deep- 
submicrometer range, where gate lengths are currently 65 nm and below. The Semiconductor 
Industry Association (SIA) projects that by the end of 2009, leading edge production devices 
will employ 25 nm gate lengths and have oxide thickness of 1.5 nm, or less [2J. In fact, 
laboratory M O SFE T  devices with gate lengths down to 15 nm have been reported at the 
time of the present review, which exhibit excellent I-V  characteristics [3]. Beyond that, there 
has been extensive work over the past decade related to nanoelcctronic or quantum scale 
devices which operate  on very different principles from conventional M O SFE T devices, but 
may allow the continued scaling beyond the end of the current scaling roadmap [4]. This 
trend has been motivated by the fact that the performance of the scaled devices in the 25-nm 
regime and below is itself problematic [5], as discussed below.

For example, to enhance device performance, the gate oxide thickness has to be aggres
sively scaled. However, as the gate oxide thickness approaches 1 nm through scaling, tun
neling through the gate oxide results in unacceptably large off-state currents, dramatically 
increasing quiescent power consumption [6], and rendering the device impractical for ana
log applications due to unacceptable noise levels. Another consequence of scaling is that 
the stack of layered materials that comprise electronic devices is becoming more like a 
continuum of interfaces rather than a stack of bulk thin films. Therefore, topology effects 
arising from surface (interface)-to-surface (interface) interactions now dominate the forma
tion of potential barriers at interfaces. Interface inhomogeneity effects include morphologi
cal and compositional inhomogeneities. Morphological inhomogeneities, typically manifested 
as atomic-scale roughness, are often responsible for increased leakage currents in M OS
FE T  gates and degraded transport properties. Fluctuations in the elemental distribution are 
expressions of compositional inhomogeneities. For finite dimensions and number of atoms, 
interface domains cannot be represented as superpositions of a few homogeneous thin 
film regions. Instead, the challenge o f  characterizing this complex system requires accurate 
atomic level information about the three-dimensional structure, geometry and composition 
of atomic-scale interfaces.

The anticipated replacement of silicon dioxide by new gate oxide materials may ensure 
a combination of superior dielectric properties (small, effective oxide thickness) with very 
low leakage current density. However, the diffusion of oxygen through the growing metal 
oxide films and the consequent oxidation of silicon lead to the formation of a multilayer 
stack of materials with different electrical properties. Current C A D  tools for device design 
are not able to describe the complex electronic structure and transport behavior needed in 
these structures to provide engineers a reasonable estimate of the tunneling current at the 
different gate voltages. This leaves expensive experiments as the only option to derive these 
highly important electric characteristics of new devices.

Yet another issue that will pose serious problems for the operation of future ultra
small devices is related to substrate doping, particularly the high values required in bulk 
Si devices for control of the channel in short gate-length devices. The distribution of 
dopants is traditionally treated as a continuum in semiconductor physics, which implies: 
(1) the number of impurity atoms is small as compared to the total number of atoms in 
the semiconductor matrix, and (2) the impurity atom distribution is statistically uniform, 
while the position of an individual atom in the lattice is not defined, for example, is ran
dom. The assumption of statistical uniformity requires large num ber of atoms, which is not
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the case in, for example, a 25-nm M O SFET device in which one has less than one hun
dred dopant atoms in the junction region. In these future ultrasmall devices, the num ber 
and location of each dopant atom will play an important role in determining the overall 
device behavior. The challenge of precisely placing small number of dopants may repre
sent an insurmountable barrier, which could end conventional M OSFET scaling. Even in 
undoped alternative device concepts, the presence of a single impurity may significantly 
influence the device threshold voltage, and its on-state current, based on the location of 
the unintentional dopant atom. Hence, a full statistical analysis must be performed on 
the role of the randomly placed impurity atoms within the channel region of the device 
on the device subthreshold slope, threshold voltage, and transconductance degradation, as 
these parameters are exploited in circuit design for fault-tolerant nano-system integrated 
circuits.

Quantum-mechanical effects, due to, for example, spatial quantization in the device chan
nel region, also play a significant role in the operation of nanoscale field-effcct transistors. In 
MOSFETs, such quantization influences two basic quantities affecting device performance: 
(1) the channel charge induced by the gate at the surface of the substrate and (2) the car
rier transport from source to drain along the channel. In the second case, because of the 
two-dimensional (2D) confinement of carriers in the channel, the mobility (or microscopi
cally speaking, the carrier scattering) will be different from the three-dimensional (3D) case. 
Theoretically speaking, the 2D mobility should be larger than its 3D counterpart due to the 
reduced density of states function, that is, reduced number of final states into which the car
riers can scatter. It is important to note, however, that in the smallest size devices, carriers 
experience very little or no scattering at all (ballistic limit), which makes this second issue 
less critical when modeling nano-scale devices.

Regarding channel charge, quantum effects in the surface potential will have a signif
icant impact on both the amount of charge which can be induced by the gate electrode 
through the gate oxide and the profile of the channel charge in the direction perpendicular 
to the surface. The critical param eter in this direction is the gate-oxide thickness, which 
for a 25-nm M O SFET device, as noted earlier, is on the order of 1 nm. One of the most 
important consequences of quantization effects in the M O SFET channel is the displacement 
of the charge carriers away from the interface proper due to the vanishing of the envelope 
function there. This displacement gives rise to an effective increase in oxide thickness, and 
hence a reduction of the total gate capacitance. Additional degradation of the total gate 
capacitance arises from polydeplction effects (if a poly-Si gate is used), thus leading to an 
additional capacitance component in series with the oxide and the inversion layer capaci
tances, which reduces drive current. The total gate capacitance degradation, on the other 
hand, when combined with the quantum-mechanical band-gap widening effect and reduced 
density of states for a quasi-two-dimensional (Q2D) system, gives rise to a reduction of 
the sheet electron density. This effect, in turn, increases the threshold voltage and, at the 
same time, degrades the device transconductance. Hence, to properly describe the opera
tion of future ultra-small devices, it is clearly necessary to incorporate quantum-mechanical 
effects into device simulators as described in more detail in Sections 5 and 6 of this review 
article.

1.2. Nonclassical and Quantum Effect Devices
To fabricate devices beyond current scaling limits, CMOS technology is rapidly moving 
toward quasi-3D structures such as dual-gate, tri-gate, and Fin-FET structures [7], in which 
tne active channel is increasingly a nanowire or nanotube rather than bulk region. Such 3D 
gate structures are needed to maintain charge control in the channel, as channel lengths 
scale toward nanometer dimensions. The heavily doped Si substrate is increasingly being 
replaced by SiGe and Si on insulator technology as well.

Beyond field effect transistors, there have been numerous studies over the past two 
decades of alternatives to classical CMOS at the nanoscale. As dimensions become shorter 
than the phase-coherence length of electrons, the quantum mechanical wave nature of elec
trons becomes increasingly apparent, leading to phenomena such as interference, tunneling.
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and quantization of energy and momentum as discussed earlier. Indeed, for a one-dimen
sional wire, the system may be considered a waveguide with “modes,” each with a conduc
tance less than or equal to a fundamental constant 2e2/h .  Such quantization of conductance 
was first measured in split-gate field-effect transistors at low temperatures [8, 9], but mani
festations of quantized conductance appear in many transport phenom ena such as universal 
conductance fluctuations [10] and the quantum Hall effect [11]. While various early schemes 
were proposed for quantum interference devices based on analogies to passive microwave 
structures (see, for example, [12-14]), most suffer from difficulty in control of the desired 
waveguide behavior in the presence of unintentional disorder. This disorder can arise from 
the discrete impurity effects discussed earlier, as well as the necessity for process control 
at true nanom eter scale dimensions. More recently, promising results have been obtained 
on ballistic V-branch structures [15], where nonlinear switching behavior has been dem on
strated even at room temperature [16].

In the previous section, the role of discrete impurities as an undesirable element in the 
performance of nanoscale FETs was detailed. However, the discrete nature of charge in 
individual electrons, and control of charge motion of single electrons has in fact been the 
basis of a great deal of research in single electron devices and circuits (see, for example, 
Ref. [17]). The understanding of single electron behavior is most easily provided in terms 
of the capacitance, C, of a small tunnel junction, and the corresponding change in elec
trostatic energy, E  =  e2/2 C, when an electron tunnels from one side to the other. When 
physical dimensions are sufficiently small, the corresponding capacitance (which is a geom et
rical quantity in general) is correspondingly small, so that the change in energy is greater 
than the thermal energy, resulting in the possibility of a “Coulomb blockade,” or suppres
sion of tunnel conductance due to the necessity to overcome this electrostatic energy. This 
Coulomb blockade effect allows the experimental control of electrons to tunnel one by one 
across a junction in response to a control gate bias (see, for example, Refs. [4, 18]). Single
electron transistors [19], turnstiles [20, 21], and pumps [22] have been demonstrated, even at 
room tem perature  [23]. Computer-aided modeling tools have even been developed based on 
Monte Carlo simulation of charge tunneling across arrays of junctions to facilitate the design 
o f single-electron circuits [24]. As in the case of quantum interference devices, the present- 
day difficulties arise from fluctuations due to random charges and other inhomogenieties, 
as well as the difficulty in realizing lithographically defined structures with sufficiently small 
dimensions to  have charging energies approaching k T  and above.

There has been rapid progress in realizing functional nanoscale electronic devices based 
on self-assembled structures such as semiconductor nanowires (NWs) [25] and carbon nano
tubes (CNTs) [26]. Semiconductor nanowires have been studied over the past decade in 
terms of their transport properties [4], and for nanodevice applications such as resonant 
tunneling diodes [27], single electron transistors [28, 29], and field effect structures [25]. 
Recently, there has been a dramatic increase in interest in NWs due to the demonstration of 
directed self-assembly of NWs via in situ epitaxial growth [30, 31]. Such semiconductor NWs 
can be elemental (Si,Ge) or III-V  semiconductors, where it has been demonstrated that 
such wires may be controllably doped during growth [32], and abrupt compositional changes 
forming high quality ID heterojunctions can be achieved [33, 34]. Nanowire FETs, bipolar 
devices and complementary inverters have been synthesized using such techniques [35, 36]. 
The ability to controllably fabricate heterostructure nanowires has led to demonstration of 
nanoelectronic devices such as resonant tunneling diodes [37] and single electron transistors 
[38]. The scalability of arrays of such nanowires to circuits and architectures has also begun 
to be addressed [39], although the primary difficulty is in the ability to grow and orient NWs 
with desired location and direction.

Likewise, CNTs have received considerable attention due to the ability to synthesize NTs 
with metallic, semiconducting and insulating behavior, depending primarily on the chiral
ity (i.e., how the graphite sheets forming the structure of the CNT wrap around and join 
themselves) [40]. Complementary n- and /^-channel transistors have been fabricated from 
CNTs, and basic logic functions demonstrated [41]. The primary difficulty faced today is 
the directed growth of CNTs with the desired chirality, and positioning on a semiconductor 
surface, suitable for large-scale production.
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In the previous sections, a brief synopsis was given of developments in nanoelectronics rang
ing from the rapid scaling of present-day field-effect transistors to nanoscalc dimensions, 
through alternative devices and potential architectures based on quantum interference and 
single-electron behavior, to self-assembly of potential components for nanoelectronic devices 
based on nanowires and nanotubes.

In addition to the problems related to the actual operation of such ultrasmall devices, 
the reduced feature sizes require more complicated and time-consuming manufacturing pro
cesses. This fact signifies that a pure trial-and-error approach to device optimization will 
become impossible since it is both too time consuming and too expensive. Because comput
ers arc considerably cheaper resources, simulation is becoming an indispensable tool for the 
device engineer. Besides offering the possibility to test hypothetical devices that have not 
(or could not) yet been manufactured, simulation offers unique insight into device behav
ior by allowing the observation of phenomena that can not be measured on real devices. 
Computational nanoelectronics in this context refers to the physical simulation of nanoscale 
devices in terms of charge and thermal transport and the corresponding electrical behavior 
of devices at the nanoscale.

In general, transport itself is a phenomena described theoretically at the microscopic level 
by methods of nonequilibrium statistical mechanics. As discussed in more detail in Section 7, 
many nanoelectronic devices have a generic three-terminal representation as illustrated in 
Fig. I, in which an active device region (whose properties are controlled by a separate gate 
contact), is coupled to left (source) and right (drain) contacts that source and sink carriers 
from the active region. The whole nonequilibrium device structure is coupled to the “cnvi- 
ronm ent’* with which energy and particles are exchanged. A complete microscopic descrip
tion that includes the full details of the coupled active region, contacts and environment is 
computationally intractable; hence, idealized simplifications of this model must be employed. 
The environment itself most often is treated as an infinite heat bath which transfers energy 
and particles into and out o f  the system represented by the device itself. The contacts are 
most often idealized as equilibrium conductors characterized by quasi-equilibrium chemical 
potentials, /xs and / i n , as shown in Fig. I, from which particles are injected and absorbed 
from the active region, the net flux of which represents the current flowing through the 
device. Hence, the most detailed level of transport modeling occurs in the active device 
regions. This approximate decomposition of the device into an active region coupled to ideal 
contacts and environment becomes increasingly inaccurate as device dimensions approach 
the nanoscale, where device, contacts and the environment are all strongly coupled.

In Section 1.1, we have detailed how the physics of device behavior becomes increas
ingly complicated as nanoscale dimensions are approached. The goal of Computational 
Nanoelectronics is to provide simulation tools with the necessary level o f sophistication to

Environm ent
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Figure 1. C onceptual represen tation  of a generic three-term inal device com posed o f left and right contacts, gate 
and active region.
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capture the essential physics, while at the same time minimizing the computational bu r
den, so that results may be obtained within a reasonable time frame. Figure 2 illustrates 
the main components of device simulation at any level. There are two main kernels, which 
must be solved sclf-consistently with one another, the transport equations governing charge 
flow, and the fields driving charge flow. Both are coupled strongly to one another and hence 
must be solved simultaneously. The fields arise from external sources, as well as the charge 
and current densities which act as sources for the time varying electric and magnetic fields 
obtained from the solution of Maxwell’s equations. Under appropriate conditions, only the 
quasi-static electric fields arising from the solution of Poisson’s equation are necessary.

The fields in turn are driving forces for charge transport. As shown in the upper part of 
Fig. 2, a fundamental description of transport requires knowledge of the electronic states in 
a device structure or material (which in general is modified as the system is driven out of 
equilibrium), as well as the coupling of the charge carriers with the host material through 
energy exchange and scattering with the vibrational modes of the atoms in the environ
ment. These vibrational modes arc the basis for thermal transport of heat, which is often as 
important a problem as charge transport itself in device behavior.

Figure 3 illustrates the various levels of approximation for treating transport in devices 
within a hierarchical structure ranging from compact modeling at the top to an exact quan
tum mechanical description at the bottom. At the beginning of semiconductor technology 
development, the device electrical characteristics could be estimated using simple one
dimensional (ID ) analytical models (the gradual channel approximation for MOSFETs), 
based on the so-called drift-diffusion (DD) formalism. Various approximations had to be 
made to obtain closed-form solutions, but the resulting nonlinear models captured the basic 
device features. These approximations include simplified doping profiles and device geom e
tries. Such nonlinear models form the basis of circuit analysis and design using compact 
models in an equivalent circuit representation.

With ongoing refinements and improvements in technology in terms due to scaling down 
of device dimensions, these simplified ID approximations lost their basis as an accurate 
predictor of device behavior, and a more accurate description was required. This goal was 
realized by solving the D D  equations numerically. Numerical simulation of carrier transport 
in semiconductor devices dates back to the famous work of Scharfetter and Gum m el [42], 
who proposed a robust discretization of the DD equations which is still in use today.

However, as semiconductor device dimensions scaled into the submicrometer regime, the 
assumptions underlying the DD model lost their validity. Therefore, the transport models 
have been continuously refined and extended to more accurately capture transport phenom 
ena occurring in these devices. The need for refinement and extension is primarily caused 
by the ongoing feature size reduction in state-of-the-art technology. As the supply voltages 
cannot be scaled accordingly without jeopardizing the circuit performance, the electric field 
inside the devices has increased. A large electric field which rapidly changes over small 
length scales gives rise to nonlocal and hot-carrier effects that begin to dominate device

Electronic Structure, 
Lattice Dynamics

Electromagnetic Fields 3 =
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Figure 2. Schem atic description of the device sim ulation sequence. R eprinted with perm ission from D. Vasileska 
el al.. Mater. Sci. Eng. R  38, 181 (2002). © 2002. Elsevier.
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performance. An accurate description of these phenom ena is required and is becoming a 
primary concern for industrial applications.

To overcome some of the limitations of the DD model, extensions have been proposed 
which basically add an additional balance equation for the average carrier energy [4]. Fur* 
thermore, an additional driving term is added to the current relation, which is proportional 
to the gradient of the carrier temperature. However, a vast number of these models exist, 
and there is a considerable am ount of confusion as to their relation to each other. It is now 
a common practice in industry to use standard hydrodynamic models in trying to understand 
the operation of as-fabricated devices, by adjusting any num ber of phenomenological param 
eters (e.g., mobility, impact ionization coefficient, etc.). However, such tools do not have 
predictive capability for ultrasmall structures, for which it is necessary to relax some of the 
approximations in the Boltzmann transport equation. Therefore, one needs to move down
ward to the quantum transport area in the hierarchical map of transport models shown in Fig.
3, where, at the very bottom, we have the G reen ’s function approach. The latter is the most 
exact, but at the same time the most difficult of all. In contrast to, for example, the Wigner 
function approach (which is Markovian in time), the G reen ’s functions method allows one 
to consider simultaneously correlations in space and time, both of which are expected to be 
important in nanoscale devices. However, the difficulties in understanding the various terms 
in the resultant equations and the enormous computational burden needed for its actual 
implementation make the usefulness in understanding quantum effects in actual devices of 
limited value. For example, the only successful utilization of the G reen’s function approach 
commercially is the N E M O  (nanoelectronics modeling) simulator [43], which is primarily ID.

From the discussion above it follows that, contrary to the recent technological advances 
discussed in Section 1.1, the present state of the art in device simulation is currently lacking 
in the ability to treat these new challenges in scaling of device dimensions from conventional 
down to quantum scale devices. For silicon devices with active regions below 0.2 microns in 
diameter, macroscopic transport descriptions based on drift-diffusion models (see Fig. 3) are 
clearly inadequate. As already noted, even standard hydrodynamic models do not usually 
provide a sufficiently accurate description since they neglect important contributions from 
the tail of the phase space distribution function in the channel regions [44, 45]. W'ithin the
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requirement of self-consistently solving the coupled transport-field problem in this emerging 
domain of device physics, there are several computational challenges, which limit this ability. 
One is the necessity to solve both the transport and the Poisson's equations over the full 
3D domain of the device (and beyond if one includes radiation effects). As a result, highly 
efficient algorithms targeted to high-end computational platforms (most likely in a multi
processor environment) are required to fully solve even the appropriate field problems. The 
appropriate level o f approximation necessary to capture the proper nonequilibrium trans
port physics relevant to a future device model is an even more challenging problem both 
computationally and from a fundamental physics framework.

In this review chapter, we give an overview of the basic techniques used in the field of 
computational electronics and nanoelectronics related to nanoscale device simulation. Since 
electronic structure is the basic input to transport as illustrated in Fig. 2, we begin with 
a review of the electronic bandstructure of semiconductors, and the associated dynamics 
of carriers under external fields (Section 2). This allows one to calculate relevant material 
parameters, such as effective masses and effective density-of-states function. Afterward, we 
present a discussion of the basic equations governing transport in semiconductors, leading 
to the description of the Monte Carlo (M C) method for the solution of the scmiclassical 
Boltzmann transport equation (BTE) (Section 3.1), and the hydrodynamic and drift-diffusion 
models for device simulation, that follow from moments of the BTE (Section 3.3). In 
Sections 4.1 and 4.2, we give an overview of field solvers for both high-frequency (solution of 
the Maxwell equations) and low-frequency (solution of quasi-static Poisson equation) appli
cations, respectively. Some key elements of particle-based simulation, such as grid-size and 
time-step criteria, charge-assignment scheme, inclusion of the short-range electron-electron 
and electron-ion interactions, are described in Section 5.1. In Section 5.2, we give an overview 
of commercially available drift-diffusion/hydrodynamics device simulators. The simulation of 
the optoelectronic and high-frequency devices via the solution of the full set o f Maxwell’s 
equations coupled with a Monte Carlo transport kernel is discussed in Section 5.3. The 
inclusion of quantum  corrections into particle-based simulators, using the effective po ten 
tial approach, is discussed in Section 6.1. A brief description of the quantum hydrodynamic 
model (Q H D ) for device simulation and its application to modulation-doped high-electron 
mobility transistors (HEMTs) is given in Section 6.2. An overview of some of the major 
quantum transport approaches listed in the hierarchy of Fig. 3, as well as issues in quantum 
transport, are then discussed in Section 7.

2. ELECTRONIC STRUCTURE CALCULATION
The basis for discussing transport in semiconductors and o ther crystalline solids is the under
lying electronic band  structure of the material arising from the solution of the many-body 
Schrodinger equation in the presence o f  the periodic potential of the lattice, as discussed in 
a host of solid-state physics textbooks. The solutions in the presence of the periodic potential 
of the lattice are in the form of Bloch functions.

0 „ k =  «„( k y kr ( i )

where k is the wavevector, and n labels the band index corresponding to different solutions 
for a given wave vector. The cell-periodic function, u n(k), has the periodicity of the lattice 
and modulates the traveling wave solution associated with free electrons.

A  brief look at the symmetry properties of the eigenfunctions greatly enhances the under
standing of the evolution of the band structure (Fig. 4). First, consider the energy eigenvalues 
of the individual atoms that constitute the semiconductor crystal. Almost all semiconductors 
have tetrahedral bonds corresponding to sp* hybridization. However, the individual atoms 
are comprised of outermost (valence) electrons in s- and p -type orbitals. The symmetry (or 
geometric) properties of these orbitals are made most clear by considering the angular part 
of the wave function of each:
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Wc denote these states by |S), |X), |Y), and |Z). When the individual atoms form in a 
crystal, the valence electrons hybridize into sp7' orbitals that lead to tetrahedral bonding. The 
crystal develops its own band structure with gaps and allowed bands. For semiconductors, 
one is typically worried about the band structure of the conduction and the valence bands 
only. Because of symmetry, the states near the center of the Brillouin zone (k  =  0) are very 
similar to the |S) and three /Mype states of the individual atoms, as shown in Fig. 4.

Electronic band structure calculation methods can be grouped into two general categories 
[46]. The first category consists of ab initio methods, such as Hartree-Fock or density func
tional theory (D FT), which calculate the electronic structure from first principles, that is, 
without the need for empirical fitting parameters. In general, these methods utilize a vari
ational approach to calculate the ground state energy of a many-body system, where the 
system is defined at the atomic level. The original calculations were performed on systems 
containing a few atoms. Today, calculations are performed using approximately 1000 atoms 
but are computationally expensive, sometimes requiring massively parallel computers.

In contrast to ab initio approaches, the second category consists of empirical methods, such 
as the orthogonalized plane wave (OPW ) [47], tight-binding [48] (also known as the linear 
combination of atomic orbitals (LCAO) method), the k • p method [49], and the local [50] or 
the nonlocal [51] empirical pseudopotential method (EPM). These methods involve empiri
cal parameters to fit experimental data such as the band-to-band transitions at specific high- 
symmetry points derived from optical absorption experiments. The appeal of these methods 
is that the electronic structure can be calculated by solving a one-electron Schrodinger wave 
equation (SWE). Thus, empirical methods are computationally less expensive than ab initio 
calculations, and provide a relatively easy means of generating the electronic band structure 
necessary for transport calculations. Because of their wide spread usage in this context, in 
the rest of this section we will review some of the most commonly used techniques, namely, 
the empirical pseudopotential method, the tight-binding and the k • p method. The em pir
ical pseudopotential method is described in Section 2.1, the tight-binding is discussed in 
Section 2.2, and the k - p method is described in Section 2.3. Applications of the k - p method 
are given in Section 2.4, which is followed by solutions of the effective mass Schrodinger 
equation for metal-oxide-semiconduetor devices and for heterostructures (Section 2.5). 
We finish this chapter by a brief description of the carrier dynamics that is given in 
Section 2.6.

(2)
/■

/?, =  -  =  >/3 cos 0
r

S p in -O rb it C o u p lin g , Before proceeding with the description of the various empirical 
band structure methods, it is useful to introduce the spin-orbit interaction Hamiltonian.
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The effects of spin-orbit coupling are most easily considered by regarding the spin-orbit 
interaction energy H sn as a perturbation. In its most general form, H sn operating on the 
wave functions t/yA is then given by

H s n  =  7  V j V I /  x  p |  • (T (3)
4/71“ c -

vvhere V  is the potential energy term of the Hamiltonian, and a  is the Pauli spin tensor. It
can also be written in the following form as an operator on the cell-periodic function:

/ / , „  =  - 4 ^ [ V P '  x p ] - (7 + - ^ [ V l / x k ] . , 7  (4)
4/77 “ C" 4/7Z-C -

The first term is A-independent and is analogous to the atomic spin-orbit splitting term. The 
second term is proportional to k and is the additional spin-orbit energy arising from the 
crystal momentum. Rough estimates indicate that the effect of the second term on the energy 
bands is less than \%  of the effect o f the first term. The relatively greater  importance of the 
first term comes from the fact that the velocity of the electron in its atomic orbit is very much 
greater than the velocity of a wave packet made up of wave vectors in the neighborhood of k.

The spin-orbit splitting occurs in semiconductors in the valence band because the lower- 
lying valence electrons are more tightly bound to the nucleus, just like electrons around 
the proton in the hydrogen atom. Furthermore, we can make some predictions about the 
magnitude of the splitting— in general, the splitting should be greater for crystals whose 
constituent atoms have a higher atomic num ber— since the field in the vicinity of  the nuclei 
is much greater due to the greater number of protons. In fact, the spin-orbit splitting energy, 
A, of semiconductors increases as the fourth power of the atomic num ber (i.e., number of 
protons) of the constituent elements. In Fig. 5, the spin-orbit splitting energy A is plotted 
against an average atomic num ber and a rough fit using power law is used.

R a s h b a  a n d  D r e s s e lh a u s  S p in  S p littin g . The manipulation of the spin of charge car
riers in semiconductors is one of the key problems in the field of spintronics [52]. In the 
paradigmatic spin transistor proposed by Datta and Das [53], the electron spins, injected 
from a ferromagnetic contact into a two-dimensional electron system, are controllably 
rotated during their passage from source to drain by means of the Rashba spin-orbit cou
pling [54]. The coefficient, a ,  which describes the strength of the Rashba spin-orbit coupling, 
and hence the degree of rotation, is dependent on the average electric field which can be 
tuned externally by a gate voltage. This coupling stems from the inversion asymmetry of 
the confining potential of two-dimensional electron (or hole) systems. In addition to the 
Rashba coupling, caused by structural inversion asymmetry (SIA), a Dresselhaus type of

A verage atom ic num ber L (amu)

Figure 5. The spin-orbit splitting energy. A. for different sem iconductors p lo tted  against the average atomic 
num ber Z 1V.
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coupling also contributes to the spin-orbit interaction [55j. The latter is due to bulk inver
sion asymmetry (BIA), and the interface inversion asymmetry (IIA). The BIA and the IIA 
contributions are phenomenologically inseparable and described below by the generalized 
Dresselhaus param eter (3. Both Rashba and Dresselhaus couplings result in spin splitting of 
the bands and give rise to a variety of spin-dependent phenomena that allow one to evaluate 
the magnitude of the total spin splitting of electron subbands.

However, it is not usually possible to extract the relative contributions of Rashba and 
Dresselhaus terms to the spin-orbit coupling. To obtain the Rashba coefficient, a , the Dres
selhaus contribution is normally neglected. At the same time, the Dresselhaus and Rashba 
terms can interfere in such a way that macroscopic effects vanish though the individual 
terms are large. For example, both terms can cancel each other, resulting in a vanishing 
spin splitting in certain k -space directions. This cancellation leads to the disappearance of 
antilocalization, the absence of spin relaxation in specific crystallographic directions, and the 
lack of SdH beating. In Ref. [56], the importance of both Rashba and Dresselhaus terms was 
pointed out: turning a  such that a  =  /? holds, allows one to build a nonballistic spin-effect 
transistor.

The consequences of the Rashba and Dresselhaus terms on the electron dispersion and 
on the spin orientation of the electronic states of the two-dimensional electron gas are 
summarized below. If we consider QWs of the zinc-blende structure grown in the [001] 
direction, the spin-orbit part of the total Hamiltonian contains the Rashba as well as the 
Dresselhaus term that are calculated according to

where k is the electron wave vector, and a  is the vector of the Pauli matrices. Here, the 
A-axis is aligned along the [100] direction, y-axis is aligned along the [010] direction and 
z-axis is the growth direction. Note that this Hamiltonian contribution contains only terms 
linear in k. As confirmed experimentally [57], terms cubic in k change only the strength of 

leaving the Hamiltonian unchanged.

2.1. The Empirical Pseudopotential Method
The concept of pseudopotentials was introduced by Fermi [58] to study high-lying atomic 
states. Afterward, Heilman proposed that pseudopotentials be used for calculating the energy 
levels of the alkali metals [59]. The widespread usage of pseudopotentials did not occur until 
the late 1950s, when activity in the area of condensed matter physics began to accelerate. 
The main advantage of using pseudopotentials is that only valence electrons have to be con
sidered. The core electrons are treated as if they are frozen in an atomic-like configuration. 
As a result, the valence electrons are treated as moving in a weak one-electron potential.

The pseudopotential method is based on the orthogonalized plane wave (OPW) method 
due to Herring [47]. In this method, the crystal wave function </>k is constructed to be 
orthogonal to the core states. This is accomplished by expanding ij/u as a smooth part of 
symmetrized combinations of Bloch functions <pk, augmented with a linear combination of 
core states. This expansion is expressed as

where bk , are orthogonalization coefficients and <Pk , are core wave functions. For Si-14, the 
summation over t in Eq. (6) is a sum over the core states, \s 22s22ph. Since the crystal wave 
function is constructed to be orthogonal to the core wave functions, the orthogonalization 
coefficients can be calculated, thus yielding the final expression

a ( a , k v -  a  k j  + (i(<rxk x -  it k ) (5)

(6)

<Ak =  <fk -  I <Pk>cJ\. (7)

To obtain a wave equation for <pk, the Hamiltonian operator,

(8)
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is applied to Eq. (6), where V( is the attractive core potential, and the following wave 
equation results:

2/77

where VR represents a short-range, non-Hermitian repulsion potential, of the form

( £ - £ , ) < cDk. f |<pk)<l>k.

(9)

<Pk
(10)

E, in Eq. (10) represents the atomic energy eigenvalue, and the summation over / represents 
a summation over the core states. The result given in Eq. (9) can be thought of as the wave 
equation for the pseudowave function, <pk, but the energy eigenvalue E  corresponds to the 
true energy of the crystal wave function, if/k. Furthermore, as a result of the orthogonalization 
procedure, the repulsive potential, VR, which serves to cancel the attractive potential, Vc , 
is introduced into the pseudo-wave function Hamiltonian. The result is a smoothly varying 
pseudopotcntial Vr =  Vc -f VR. This result is known as the Phillips-Kleinman cancellation 
theorem [60], which provides justification why the electronic structure of strongly bound 
valence electrons can be described using a nearly free electron model and weak potentials.

To simplify the problem further, model pseudopotenials are used in place of the actual 
pseudopotential. Figure 6 summarizes the various models employed. Note that the 3D 
Fourier transforms (for bulk systems) of each of the above-described model potentials are 
of the following general form

2^2
V(Q) -------—7  cos(c//t.)

«<)</-
( i i )

(a) Constant effective potential in the core region:

-  Ze~

47ttVV (/•)

-Y.C-
4icf,

(h) Empty core model:

V(r)  =
-Ze-
4 jce0/-

0 ; /• < /•,

(c) Model potential due to Heine and Abarenkov:

V {r) =

Ze

47ce()/-
A : r < r,

(d) Lin and Kleinman model potentials:

V/ (/•) -
-Ze~

47IE(1/‘
{ I -exp |- |3 (/•-/• -)II : /•>

0 ;

Figure 6. Various m odel potentials. R eprin ted  with perm ission from S. G onzalez, M.S. Thesis, Arizona State U ni
versity. 2002. © 2002.
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This {/-dependent pseudopotential is then used to calculate the energy band structure along 
different crystallographic directions, using the procedure outlined in the following section.

2.1.1. Description of the Empirical Pseudopotential Method
Recall from the previous section that the Phillips-Kleinman cancellation theorem provides 
a means for the energy band problem to be simplified into a one-electron-like problem. For 
this purpose, Eq. (9) can be rewritten as

where Vr is the smoothly varying crystal pseudopotential. In general, VP is a linear com
bination of atomic potentials, Vir which can be expressed as a summation over the lattice 
translation vectors, R, and atomic basis vectors 7, to arrive at the following expression:

To simplify further, the inner summation over r  can be expressed as the total potential, V0, 
in the unit cell located at R. Eq. (13) then becomes

Because the crystal potential is periodic, the pseudopotential is also a periodic function and 
can be expanded into a Fourier series over the reciprocal lattice to obtain

and 11 is the volume of the unit cell.
To apply this formalism to the zincblende lattice, it is convenient to choose a two-atom 

basis centered at the origin (R =  0). If the atomic basis vectors are given by r ,  =  r  =  
— Tt, where r ,  the atomic basis vector, is defined in terms of the lattice constant a{) as 
r  =  a{)( 1/8,1/8,1/8), K0(r) can be expressed as

where V} and V2 are the atomic potentials of the cation and anion. Substituting Eq. (17) into 
Eq. (16), and using the displacement property of Fourier transforms, Kn(r) can be recast as

Writing the Fourier coefficients of the atomic potentials in terms of symmetric (Ks(G) =  
V\ +  V2)) and antisymmetric ( VA(G ) =  \ \ -  V2)) form factors. I/(,(G) is given by

where the prefactors are referred to as the symmetric and antisymmetric structure factors. 
The form factors above are treated as adjustable parameters that can be fit to experimental 
data, hence the name empirical pseudopotential method. For diamond-Iattice materials, with 
two identical atoms per unit cell, the V A ~  0 and the structure factor is simply cos(G • r) .  For 
zinc-blende lattice, like the one in GaAs material system. V , ^  0 and the structure factor is 
more complicated.

With the potential energy term specified, the next task is to recast the Schrodinger equa
tion in a matrix form. Recall that the solution to the Schrodinger wave equation in a periodic

(12)

M r )  =  E E K , ( r - R - r ) (13)
R T

M r )  =  £ K , ( r - R ) (14)

(15)

where the expansion coefficient is given by

(16)

K ( r )  =  y \ ( r  -  r )  +  K : ( r  +  r ) (17)

Ki(G) =  c’'g '71/|(G )  +  c' '(' r l7: (G) (18)

f/n(G )  — c o s (G  • r ) Vs (G ) +  / sin(G  • r ) V , (G ) (19)
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lattice is a Bloch function, which is composed of a plane wave component and a cell periodic 
part that has the periodicity of the lattice, that is,

Vrk(r) =  £''k ri/k( r )  =  cikr £  ( 7 ( G > '<; r (20)
( i

By expanding the cell periodic part uk(r) of the Bloch function appearing in Eq. (20) into 
Fourier components, and substituting the pseudo-wave function ipk and potential V{] into 
the Schrodinger wave equation, the following matrix equation results

h 2(k +  G)
l m

£/(G) +  E K , ( | G - G 1 ) f / ( G ' )  = 0  (21)
c;

The expression given in Eq. (21) is zero when each term in the sum is identically zero, which 
implies the following condition

:m
t f (G )  +  £ V o( | G - G ' | K / ( G ' )  =  0 (22)

G'

In this way, the band structure calculation is reduced to solving the eigenvalue problem 
specified by Eq. (22) for the energy E.  As obvious from Eq. (20), U(G' )  is the Fourier 
component of the cell periodic part of the Bloch function. The number of reciprocal lattice 
vectors used determines both the matrix size and calculation accuracy.

The eigenvalue problem o f  Eq. (22) can be written in the more familiar form HU =  E U, 
where H is a matrix, U is a column vector representing the eigenvectors, and E  is the energy 
eigenvalue corresponding to its respective eigenvector. For the diamond lattice, the diagonal 
matrix elements of H are then given by

Hi-i =  £|k + G,,: (23) 

for i =  j \  and the off-diagonal matrix elements of H are given by

H i.j =  Kv(|G,- -  G ;|)cos[(G , -  Gy) ■ t \ (24)

for / =£ j .  Note that the term Ks(^) *s neglected in arriving at Eq. (23), because it will 
only give a rigid shift in energy to the bands. The solution to the energy eigenvalues and 
corresponding eigenvectors can then be found by diagonalizing the matrix H.

2.1.2. Implementation of the Empirical Pseudopotential Method 
for Si and Ge

For a typical semiconductor system, 137 plane waves are sufficient, each corresponding to 
vectors in the reciprocal lattice, to expand the pseudopotential. The reciprocal lattice of a 
face-centered cubic (FCC), that is diamond or zinc-blende structure, is a body-centered cubic 
(BCC) structure. Reciprocal lattice vectors up to and including the lOth-nearest neighbor 
from the origin are usually considered which results in 137 plane waves for the zinc-blende 
structure. The square of the distance from the origin to each equivalent set o f  reciprocal 
lattice sites is an integer in the set |G2| = 0 , 3 , 4 ,  8, l l ,  1 2 , . . . ,  where |G21 is expressed in 
units o f (27t/ ci(,)2. Note that the argument of the pseudopotential term Vs in Eq. (24) is 
the difference between reciprocal lattice vectors. It can be shown that the square of the 
difference between reciprocal lattice vectors will also form the set of integers previously 
described. This means that Vs is only needed at discrete points corresponding to nearest- 
neighbor sites. The pseudopotential, on the o ther hand, is a continuous quantity. Therefore, 
its Fourier transform Vs (q)  is also a continuous function that is shown in Fig. 7. The points 
corresponding to the first three nearest neighbors are also indicated on this figure.

Recall that the pseudopotential is only needed at a few discrete points along the V(q)  
curve. The discrete points correspond to the </2-valucs that match the integer set described 
previously. There is some controversy, however, regarding the value of Vs as q vanishes.
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0.4

q~—8 q~-1 I

q (2n/a0)

Figure 7. Fourier transform  o f the pseudopotential. (N ote that q =  |G -  G I). Reprinted with perm ission from 
S. G onzalez, M.S. Thesis, Arizona S tate University. 2002. © 2002.

There arc two common values seen in the literature: K, (0) =  —3 /2 E F and V x(0) =  0. In 
most cases, the term Kv(0) is ignored because it only gives a rigid shift in energy to the 
bands. The remaining form factors needed to compute the band structure for nonpolar 
materials correspond to q 2 =  3, 8, and 11. For q 2 =  4, the cosine term in Eq. (24) will always 
vanish. Furthermore, for values of q 2 greater than 11, V ( q )  quickly approaches zero. This 
convergence comes from the fact that the pseudopotential is a smoothly varying function, 
and only few plane waves are needed to represent it, that is, if a function is rapidly varying in 
space, then many more plane waves would be required. Another advantage of the empirical 
pseudopotential m ethod is that only three parameters are needed to describe the band 
structure of nonpolar materials.

Using the form factors listed in Table 1, where the Si form factors are taken from Ref. [61] 
and the Ge form factors are taken from Ref. [62], the band structures for Si and Ge are 
plotted in Fig. 8 [63]. Note that spin-orbit interaction is not included in these simulations. 
The lattice constants specified for Si and Ge are 5.43 A and 5.65 A, respectively. Si is 
an indirect band gap semiconductor. Its primary gap, that is, minimum gap, is calculated 
from the valence band maximum at the F-point to the conduction band minimum along 
the A direction, 85% of the distance from F to X. The band gap of Si is calculated to 
be E f  =  1.08 eV, in agreement with experimental findings. Ge is also an indirect band- 
gap semiconductor. Its band gap is defined from the top of the valence band at T  to the 
conduction band minimum at L. The band gap of Ge is calculated to be — 0.73 eV. The 
direct gap, which is defined from the valence band maximum at F to the conduction band 
minimum at T, is calculated to be 3.27 eV and 0.82 eV for Si and Ge, respectively. Note that 
the curvature of the top valence band of Ge is larger than that of Si. This corresponds to the 
fact that the effective hole mass of Si is larger than that of Ge. Note that the inclusion of the 
spin-orbit interaction will lift the triple degeneracy of the bands at the F point, leaving doubly 
degenerate heavy and light-hole bands and a split-off band moved downward in energy by 
few tens of microelectronvolts (depending on the material under consideration).

In summary, the local empirical pseudopotential method (EPM ) described in this section 
is rather good for an accurate description of the optical gaps. However, as noted by 
Chelikowsky and Cohen [64], when these local calculations are extended to yield the

Table 1. Local pseudopotential form  factors.

Form  Factor (Ry) Si Ge

-0.2241 
0.0551 
0.0724

-0 .2 7 6 8
0.0582
0.0152
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Figure 8. (Left panel) EPM  hand structure  of silicon. (R ight panel) EPM  hand structure  o f germanium . R eprinted 
with perm ission from S. G onzalez, M.S. Thesis, A rizona S tate University, 2002. © 2002.

valence-hand electronic density of states, the results obtained are far from satisfactory. The 
reason for this discrepancy arises from the omission of the low cores in the derivation of 
the pseudopotential in the previous section. This, as previously noted, allowed the usage of 
a simple plane wave basis. To correct for the errors  introduced, an energy-dependent non
local correction term is added to the local atomic potential. This increases the number of 
param eters  needed but leads to better  convergence and more exact band-structure results 
[65, 66].

2.1.3. Empirical Pseudopotential Method for Hexagonal GaN
In the previous section, the EPM  implementation for the diamond and zinc-blende material 
systems was explained in detail, and representative bandstructure calculations for Si and Ge 
were presented. The m ethod is not limited to cubic structures, it is used as well for state-of- 
the-art materials such as GaN, AIN, InN, and their alloys, that crystallize in the hexagonal 
wurtzite structure (or-nitrides). The current interest in the group-III nitride material system is 
due to their wide-bandgaps, which has application in short-wavelength optoelectronic devices 
(LEDs, lasers), and high-power electronic devices. The main computational difference com
pared to zincblende and diamond is in the set of reciprocal lattice vectors, G, defining the 
hexagonal lattice, as well as the more complicated atomic basis vectors, r ,  corresponding 
to four atoms per unit cell ra ther than two for diamond and zincblende. Generalizing the 
EPM  m ethod for this less symmetric material system, a limited set of pseudopotential form 
factors can again be introduced, resulting in the bandstructure shown in Fig. 9 [67]. In this 
particular example, since transport was the major goal of the calculation, the form factors 
were adjusted to optimize the effective mass compared, at the cost of a reduced bandgap, 
which has been artificially adjusted to match the experimental value. Necessary ingredients 
in these calculations are the use of the continuous ionic model potentials, which are screened 
by the model dielectric function derived for semiconductors by Levine and Louie [68]. Such 
an approach allows for a continuous description in the reciprocal space, the explicit inclusion 
of bond charges, and the exploitation of the ionic model potential transferability to other 
crystal structures, namely, the wurtzite crystal. In Ref. [69], it was shown by way of an exam
ple of wurtzite phase nitrides, that crystal-specific anisotropies can be taken into account via 
proper choice of the screening function.

2.2. The Tight-Binding Method
l i g h t  binding (TB) is another semiempirical m ethod for electronic structure calculations. 
While it retains the underlying quantum  mechanical description of electrons in a solid, the 
Hamiltonian is parameterized and simplified before the calculation, rather than constructing 
it from first principles. The m ethod is detailed by Slater and Koster [70], who laid the initial 
ground work. Conceptually, tight binding works by postulating a basis set which consists 
o f  atomic-like orbitals (i.e., they share the angular momentum components of the atomic

Z O o f

n
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Figure 9. GaN hand siructurc calculated from via I:PM  (after Yamakawa et al. [67]). The direct gap has been 
shifted to  obtain be tte r lit o f the effective masses. R eprinted with permission from |67 |, S. Yamakawa e t al., Compul. 
Electron. 2. 481 (2003). €> 2003. Springer.

orbitals and arc easily split into radial and angular parts) for each atom in the system, 
and the Hamiltonian is then parameterized in terms of various high symmetry interactions 
between these orbitals. For tetrahedral semiconductors, as already noted, a conceptual basis 
set of one .y-like orbital and three /;-like orbitals has been used. In the most common form of 
tight binding (nearest neighbor, orthogonal TB), the orbitals are assumed to be orthogonal 
and interactions between different orbitals are only allowed to be non-zero within a certain 
distance, which is placed somewhere between the first and second nearest neighbors in the 
crystal structure. A further simplification made, is to neglect three-center integrals (i.e., an 
interaction between orbitals on atoms A and B which is mediated by the potential on atom 
C), meaning that each interaction is a function of the distance between the atoms only.

The quantitative description of the method presented below is due to Chadi and Cohen 
[48]. First denote the position of the atom in the primitive cell as

r „  =  R, +  r, (25)

where Ry is the position of the j  th primitive cell and r, is the position of the atom within 
the primitive cell. Let //,(r) be the Hamiltonian of the I th isolated atom, such that

*/<£»,/(r  ~  r,l) =  EnA m tiT  ~  r //) (26)

where E ml and $ m/ are the eigenvalues and the eigenfunctions of the state indexed by m. The 
atomic orbitals. <bmh are called Lovvdin orbitals [71], and they are different from the usual 
atomic wave functions in that they have been constructed in such a way that wave functions 
centered at different atomic sites are orthogonal to each other. The total Hamiltonian of 
the system is then

/ V - = £ / f/( r -  r / ;) (27)
I . I

Note that the sum over / refers to a sum within the different atoms in the basis, therefore,
I =  1.2 for diamond and zinc-blendc crystals. The unperturbed Bloch functions, that have 
the proper translational symmetry, are constructed to be of the following form:

<lV'« =  " T t t  zL e 'r’! — r (7) (28 )
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The eigenvalues of the total Hamiltonian / /  =  H{] +  / / jnl (where H un is the interaction 
part of the Hamiltonian) are then represented as a linear combination of the Bloch 
functions

'K. Cm l(^m lk
m l

(29)

Operating with the total Hamiltonian of the system H  on xVk, and using the orthogonality 
of the atomic wave functions, one arrives at the following matrix equation

^ n u n '^ U ' nil ^
m l

where the matrix element appearing in the above expression is given by

H , „ r . „ A k ) =  E e'lR"r'"r',)'k(̂ ».ft(r “  ril)\H\(l)mlk(r -  •> )>

30)

(31)

Note that in the simplest implementation of this method, instead of summing over all the 
atoms, one sums over the nearest-neighbor atoms only. Also note that the index m  represents 
the .v- and p-states of the outermost electrons ( |s), \ X) ,  \ Y)  and |Z )) ,  and / is the number 
of distinct electrons in the basis. For the case of tetrahedrally coordinated semiconductors, 
the number of nearest neighbors is four and are located at

d 2 = ( 1 , - 1 , - 1 )

£/., =  ( -  1, 1 , - 1 )  

rf4 =  ( - 1 ,  - 1 ,  1)

For a diamond lattice, one also defines the following matrix elements:

V,. = 4 V ....

4

4

4

(32)

v ,> =

K ,  =  4

V = 4r  v v  - r

4V,v ju t

v/3
V 2 VPPir  _|_ PPrr

3

V VP P " PP‘

(33)

3 3

As an example, consider the matrix element between two 5-states

=  K d| +  ^  ^  =  s , ( k ) K « (34)

Notice the appearance of the Bloch sum gj(k) in Eq. (34). This observation suggests that 
for different basis states, there will be four different Bloch sums, g ] through g4, of the 
form

c, i k d, c, ik  d: 4 -  <?lk d > _j_ 6y k d4 j

^,/k-dj ^ /k d ^ _  .,/k
dJ]

^ /k  d | _ +  e lk ■d* __ £jtk ■ *]

£>/k d | _ ^ /k  dj __ ^ k d' +  etk, 4]

(35)

It is also important to note that the Hamiltonian matrix elements between s- and /7-states on 
the same atom, or two different /7-states on the same atom, are zero because of symmetry
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in diamond and zincblende crystals. The 8  x  8 secular determinant representing al possible 
nearest-neighbor interactions between the tight-binding s- and /7-orbitals centerel o n  each 
atom in the crystal is

S 1 -VI Y 1 Z 1 S 2 X 2 y  2 Z 2

S  l 0 0 0 K»g\ Kpgi K Pgy KpgA

X I 0 E n -  E k 0 0 - K Pg2 Kxgi V.yg* K y g 3

Y 1 0 0 Ep -  Ek 0 - K p g , Kyg* K . g , K y g l

Z1 0 0 0 E P -  E k -  Kpgi Kyg? K y g  2 K x g  i
52 K g ; - K Pg; - K Pg; - K Pg; E, -  Ek 0 0 0

X 2 K Pg; K , g ; V*yg\ Kygj 0 Ep -  E: 0 0

Y 2 K Pg; K y g t K xg; Kygl 0 0 E r -  Ek 0

Z2 K p8'a K , g ; Kyg i K , g ; 0 0 0 Ep -  E,

The tight-binding param eters appearing in Eqs. (33) and (36) are often obtained by com 
parison with empirical pseudopotential calculations, as reported in Ref. [48] (Tabfe 2).

Using the method described one can quite accurately describe the valence bands whereas 
the conduction bands are not reproduced that well due to the omission of the interaction 
with the higher-lying bands. The accuracy of the conduction bands can be improvei with the 
addition of more overlap parameters. However, there are only four conduction bands and 
the addition of more orbitals destroys the simplicity of the method.

2.3. The k • p Method
In contrast to the previously described empirical pseudopotential and the tight-bincing m eth
ods, the k -  p  method is based upon perturbation theory [72, 73]. In this method, the energy 
is calculated near a band maximum or minimum by considering the wave num ber (measured 
from the extremum) as a perturbation.

2.3.1. k- p General Description
For a better understanding of the method, first assume that the Schrodinger equation is one
dimensional and stationary. To further elaborate the problem, also assume that the particle 
sees a potential, V  = V„ +  Kl;, where K_ is the periodic potential that has the periodicity of 
the I D lattice, and Vu is the confinement potential. The one-dimensional Schrodinger wave 
equation is written

f -  +  V ( x )  
2 m

M x )  =  W ( x )  (37)

and V0 =  0 if x  £ [—,v,,, x {j]; and Vu =  -  V{] otherwise. Here, V(] and x {) are some arbitrary’ pos
itive constants. If V(J is small, then the solutions to the one-dimensional Schrodinger equation 
are of the Bloch form  (as discussed in the introduction part of this section), repeated here 
for completeness for a ID case:

=  e'k '*uk(x ) (38)

Table 2. C had i and C ohen tight-binding param eters |4<S].

V%s \ \ , K\}

C 7.40 -1 5 .2 10.25 3.0 8.3
-Si 7.20 -8 .1 3 5.88 1.71 7.51
Ge 8.41 -6 .7 8 5.31 1.62 6.82
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where uk(x)  is cell periodic part of the Bloch function. The Schrodinger equation can then 
be written as

H kuk ( x ) =
p 2 h

V ( x )  -\------k ■ p
m m

~ h r k 2'
Uk (A ) = E k -

2 m
u k ( x ) (39)

The term (h / m ) k  ■ p is treated as a perturbation to H{] for determining uk(x)  and E k in 
the vicinity of k =  0 in terms of the complete set of cell-periodic wave functions and energy 
eigenvalues at k =  0, which are assumed known. To simplify the form of Eq. (39), it is 
convenient to define

~  (40)E- = E
2 m

To deal with this problem, we now assume that we have an orthonormal basis {^}"=! of 
eigenvectors (associated to their eigenvalues, Af) of the operator p 2/ 2 m  +  that are of a 
fixed parity (the orbitals may be of s- or p-type). We then project operator H k on the finite 
dimensional space generated by the f / s ,  to obtain

{C,\Hk\ij) = a s ,  +  - H C M C i )  +  Cj)
J  J  J  m

=  A jSjj +  kPjj +  Qjj 

that is, we arrive at the symmetric eigenvalue matrix

A, (kP u)

H ( k )  = Q +

(41)

(42)

(kPl}) • • • A„

the solutions of which provide us the eigenvalues and the corresponding eigenvectors. 

2.3.2. k- p Theory near the F Point for Bulk Materials
In general, one either has a bulklike system or lower-dimensional systems such as 2D and ID 
electron gases, in which there is a confinement in one and two directions, respectively. Such 
lower dimensional systems are frequently encountered in nanoscale devices, which makes 
this general discussion of the k • p method very useful. For a general system, with spin-orbit 
interaction included in the model, and using the result for the ID  case given in the previous 
section, the Schrodinger equation is of the following general form

h h2k 2 hk

2m {, +  4m ^ - {°  x V V ) ' P + 2 ^  + ^  V  H e
P + - ( a  x V V )

The Hamiltonian in Eq. (43) can be divided into two terms

[ H( k  =  0) +  H / ( k ) K k =  E„k«,lk

« „k (0  =

(43)

(44)

where the only k-dependence is preserved in W(k). Next, as in the ID  case, we assume 
that the local, single particle solutions of the Hamiltonian H ( k  =  0) has a complete set of 
eigenfunctions un0, that is,

H  (k — 0)m/iO — E n[)un{) (45)

An arbitrary (“ŵ ell behaving”) lattice periodic function can be written as a series expansion 
using the eigenfunctions u n{). We then insert an expansion

Unk = E C (k )"» ll
m

(46)
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in Eq. (44), and find matrix equation for determining the unknown coefficieits, c ^ (k ) .  We 
multiply from left by i/*n, integrate, and use the orthogonality of the basis functions, obtain

E 7  c  t: h 2 k l \ z  h k  , A
I /tO ~  E nk  +  ~-------  I nm  "t---------- --  ( » „ »  I

A  2 m , , /  V
c  k) -  0 (47)

Solving the above matrix equation then gives the exact eigenstates of Eq. (43). However, 
this looks good only in principle, the reason being that the calculation becomes increasingly 
complicated as k increases. One has to increase the number of states in the eipansion given 
in Eq. (47), and the calculations become numerically unfeasible. Therefore, this approach is 
practical only for small wave vector values.

When k is small, the nondiagonal terms are small, and the lowest-order solition for eigen
state is c " (k )  =  8nnr and the corresponding eigenvalue is given by

-/iA £/iu +
h 2 k 2

Irth
(48)

If the nondiagonal terms are small, one can improve the above result by using the second- 
order perturbation theory

F  + II
h : k :

u  \nk ~
2  m „

" /M l /

where

H , =
h k

nh P +

£

a

4 m nc
-(<r x VK)

(49)

(50)

Since the kinetic energy operator is a scalar, the second-order eigen energies can be 
written as

h 2k 2 h 2 „  17t • k l:
E nk 2/77,

+
m h i(I nnzn

where

7T =  p +  ---------- ~((T  X  V V  )
4 m()c~

Hnm \^/»() I ^  I ^/«o)

(51)

(52)

The vector k can be taken outside the integral in Eq. (51). It is seen that the eigenvalue 
depends quadratically on the wave vector in the vicinity of the f  point. Then, Eq. (51) is 
often written as

\  E k « — ~ k p ’ a ' P : x - y - z
“  a / i  P t t l i

where
7Ta TT^run nm

m, m F  — F0 m^n

(53)

(54)

is an effective mass tensor.

2.3.3. Kane’s Theory
k • p theory, as discussed in Section 2.3.2, is essentially based on perturbation theory. 
A more exact approach, capable of including strong band to band interactions, is provided by 
Eq. (47). Note that the inclusion of a complete set of basis states in Eq. (47) is not feasible 
numerically. However, one can improve the k -  p theory drastically if it includes in Eq. (47) 
those bands that are strongly coupled, and correct this approximation by treatirg the influ
ence of distant (energetically) bands perturbatively. This procedure may be made consistent 
if the electron bands can be divided into two groups. In the first group of bands, there is a 
strong interband coupling— the number of bands in this group is very limited (uo to 8, say). 
The second group of bands is only weakly interacting with the first set. This irteraction is
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treated by perturbation theory. This approach is called Kane's [72, 73) model, and has been 
shown to be very predictive for the III-V compound semiconductors.

Within Kane's theory, one constructs a new basis of /^-symmetric atomic Bloch states as 
a linear combination of the “directed orbital” atomic Bloch states |u nl]) discussed in the 
previous section. The new basis set will consist of eigenfunctions of operators J and its 
component in the z-direction Jz. The new basis set is then denoted by \ j n i j ) ,  where j  =  1/2,
3/2 and w  — / ,  j  -  1.........—j ,  giving six subbands. These can be considered together with the
s-symmetric conduction band. The resulting eight-band model gives a good description of 
the electronic structure of 11I-V semiconductors near the F point. The new basis set is given 
in terms of the directed orbitals shown in Table 3. In the literature, there are o ther sets of 
basis functions that differ from the set of functions given here by a unitary transformation 
\ jmi )' = U \ j m f o U U *  = I.

The atomic Bloch states in Table 3 are eigenstates of the Hamiltonian H ( k  =  0), and 
include spin-orbit interaction. Ffi corresponds to the conduction band, Fs denotes the heavy- 
hole (/??,- — ±3/2) and Fs (m, =  ±1/2) the light-hole band. F? is known as split-off band. If 
we neglect in Eq. (4) the spin-orbit term that depends on the wave vector; that is the term

h k  hk
------- (7T -  p )  =  ------
m  M Win

h  t (<r X V K )
4 m {]c2

(55)

then the matrix representation of the Hamiltonian

/ / ( k )  =  / / ( k  =  ()) +  ^  +  ftl^  (56)
2m ,, /«„

is given in Table 4 using the basis set of Table 3. Note that this Hamiltonian does not yet 
include the influence of distant bands, which makes the effective mass of the valence band 
to differ from the electron rest mass. Some of the notations used in Table 4 are given below

k ±  =  —^ ( ^ .v  ±  ' M

(37)
=  I'- -  /•,

^  — l'-i\ I'-;

P = — (S\Px \X)  = — (S\Pr\Y)  = — m P:\ Z ) 
m  „ m n m„

Table 3. T he atom ic basis sta tes at f  point. T he eigenvalues in the fourth colum n correspond to Eq. (44). T he zero 
point of energy has been set to the bottom  o f the conduction band.

It, Ii. I " , )
E , ( k  =  0 )

" l i | 5  t > 0 r (t

lh

3 - i )

’A )

A i i

A = \ X  +  i Y )  t ) - E ,

i s

i ;

it- -  £ „  -  A r .

tt: i

i

1 i

•-> ' i ) i |5 i > 0 r .

3  1

•1 * -)

\  ^  1
- \ Z l ) - - =  \ X - i Y )

1 V  j  v 6
- E t, i ;

j)

"i ' i
~ E u i ;

u s

i l
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Table 4. E ight band Ham iltonian / / ( k).

iS l

|, vT  >
I M > 1 f f I f f

|,,1. >
I M ) I f - 1 ) I f -  f

h'k~
2m 0

J — Phk 
V

Phk. , 7

\ I T  m 1) J i ™ (.)

f i ' V 0
J t  <"»*-

( \

V  3 * 2/»(|
u

Phk_ 0
hrkr

" + X -
0 0 1) 0 0

J i m . 0 0
trk1

-/•,) + ------------
2mh

J -  Phk 
V 3

0 0 0

0 0
/ ■>

J— PhL 
V  3

Irk2

~w n

11 

v T
Phk_

J j  m . 0 0 0 J j  m . ( ^ 0 0

II (1 0 (l Phk + n
rrk2 

1 " - «*(,

0

[2
]j 3 Phk •

n 0 (1

r~

^  / ■ « 0 0
h2k:

+  a -------------2/n„

We now calculate the dispersion as a function of k for the eight-band k • p theory by 
diagonalizing the Hamiltonian in Table 4. For bulk systems, or heterostructures in which we 
have confinement only in one direction, the Hamiltonian in Table 4 is easy to diagonalize 
if the z-axis of the coordinate system is taken in the direction of the wavevector. In this 
case, k z — k , and accordingly k  L =  0. This choice is possible since it can be shown that 
the Hamiltonian is isotropic and, therefore, the eigenvalues and eigenvectors depend on the 
magnitude of k-only. In this coordinate system, the Hamiltonian is brought into a block form

/ /  =
0

0

^4,4
(58)

where the 4 x 4  matrix is given by

"4*4 =

h 2k 2 
2 m (l

0

I 2- P M , - £ „ + r :
2 m u

0 0

0 0
^  ft2/;2 

- £ ■ » + - —  
2/77,,

0

\ -Phk . 0 0
ft2 ̂ 2

£(.i A +
m,

(59)

and where for bulk case, one can assume k .  k.  The eigenvalues (doubly degenerate) are 
obtained by finding the roots of the determinant equation

Denoting A(k) — E (k )

iH -  £ (k ) I |  =  0 

the eigenvalues, that is, the roots of Eq. (60) are 

A(kj -

A(k )[A(k ) +  £„J[A(k) +  £„ -f A] — h ' k : P 2 A(k) +  Et) +  ^

(60)

(61)

This last equation corresponds to the original formulation of Kane (72, 73]. In his derivation, 
he uses a different basis set corresponding to eigenfunctions of the operators L ~, L T, S 2, 5,,
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hut the eigenvalues and dispersion relations are equal since the basis sets are related by a 
unitary transformation. From the first equation, one obtains the dispersion for the /W -band:

Ehh ~ En ~
h 2k
m hh m hh

(62)

Note that the effective hole mass is still equal to the bare electron mass. From the second 
equation, we obtain the other three dispersion relations as follows. We assume that the 
coefficient h 2k 2P 2 is small. We then obtain the lowest-order solution by setting this term 
equal to zero and obtain (as expected) the original band-edge positions:

A?- =  0, mm /li- — o (63)

The zero of the energy scale is taken to be at the conduction band edge. Now, the first 
order solution is obtained for each band by inserting the zero order solution on the rhs of 
Eq. (61) and also in the left-hand side in all o ther terms except for the one becoming zero 
if the substitution is made. The first-order eigenvalues are then obtained analytically. For 
example, for the conduction band one obtains

A^kHAS*. (k) +  £ ()][A(/. (k) +  £ (} +  Aj =  h 2k 2P 2 

\ l ( k ) [ E {)]{E„ + A] = h 2k 2P 2 

A,1- (k) =  h 2k 2P 2

Xy (k) +  £„ +

2A
K + y

2A

(64)

that is.

E y ( k ) = h 2k 2P 2
[£ 0 + = ^ ]  h 2k 2 h 2k 2 (  1

+
2m,

4 P 2 
+  —  +

2 P
m, 3 £ () 3 (£„  + A )

(65)
\E[)}\E() +  A]

which means that the effective mass of the electrons in the vicinity of the conduction band 
edge is

1 _  1 4 P 2 2 P 2
m v m„ 3 £„ 3(£„ + A)

For the light hole and the split-off bands, one obtains by similar procedure

i r k 2 1 1 4 P 2
: “  3 ^

(66)

Elh — £
m lh m lh m<

E. =  - £
h 2k
,m lh m,

2 P 2
(67)

3(£„ +  A)

Note that because of the relative magnitudes of the matrix elements of the dipole operator, 
the conduction band has a positive effective mass, whereas the light-hole and split-off bands 
have negative effective electron masses. Kane [72, 73] used this method to describe the 
energy band structure in a /?-type germanium and silicon, and indium antimonide.

2.3.4. Coupling with Distant Bands
To describe the coupling with distant bands, we consider the wave equation

( H [} +  W ) i / j  = Eifj (68)

where
h h-k-

W  =  — k ■ p +  - —  
!(, 2w„m,

(69)

We assume that the eigenvalues E t corresponding to eigenstates | /) /  =  1 ,2 ........ 8 of  the
Hamiltonian H{) are close to each others on the energy scale. These are the eight bands 
considered in Kane's model. These eigenstates are strongly coupled by the operator W .
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We assume that there is another set of eigenstates \v) of H {) only weakly coupled by W . 
We now calculate the correction to the eight lowest eigenvalues of H{) caused by the distant 
bands. Let ifr be solution to Eq. (68) including this correction, that is,

'/' =  £ < , ! / >  +  £ < • »  (70)
/ r

Inserting Eq. (70) into Eq. (68), we obtain

£ > , [ ( £ ,  -  E ) 8 lm + {m\W\ l ) ]  +  £ c, , {m\W\v)  =  0

' " (71)
! > , . [ ( £ , .  -  £ )5 „ ,  + <ji \W\V)] + ' £ c , { n \ W \ l ) =  0

Since the coupling to the distant bands \v) is weak, one can conclude that if (// is one of the 
lowest eight eigenvalues, the relative magnitudes of the expansion coefficients are: |c,| = 1 
and |c*,,| <$: 1. The second of the above equations then gives

(72)
I

Inserting this into the first o f Eq. (71), we obtain

(£ ,  -  E)8,„, + (m\ W\ l )  +  ( m \ W  £  10 =  0 (73)

It is obvious that the influence of the distant bands can be taken into account by the 
replacement

k X Hw — w = \\

It can be shown that the Hamiltonian of the distant band interaction, W  — H7, is given by 
Table 5, where the following notation has been used

o
F ( k) =  A k : +  t (A: -  3k:)

G (k )  =  A k : -  ~ ( k : - 3 k ] )

H ( k) =  - i D k ( k  ~ i k y) (75)

Table 5. H am iltonian of the d istan t hand interaction.
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v/3
H k )  = - y B { k ~  — k~) — i D k x.ky

A
L + 2 M  

3
L -  M

C 2 =  D2 - 3 B : . I) =
N

w h ere

E  -  E

hr_ ( X \ p t \i>){v\p,\Y) +  ( X \ p r\ y) (V\ p , \ Y )  

~  ml  4 -  £

(76)

‘0 r

r?h

2.3.5. The Luttinger-Kohn Hamiltonian
In the Luttinger-Kohn approximation [74] it is assumed that E{) and A are large enough, 
so that coupling of the Fs bands with the split-off band is weak. This allows one to derive 
a 4 x 4 Hamiltonian submatrix. The derivation consists of unitary transformation from the 
basis set \X) ,  | / ) ,  |Z )  multiplied by the spin functions 1f J,) parts to the //'— coupled subspace 
|3 /2 ,3 /2> , |3 /2 , —3/2) (// / /-s ta tes) and |3/2 , 1/2), |3 /2 , —1/2) (L//-states). The Hamilto
nian is

3 3 
2" 2

H =

3 3\
3 l \ 3

3 3 \
2 '  2 / 2 ’ 2 / 2 ’ 2 / 2 1 2 /

' - H - / 0

1■*a: 0 /

- / * 0 G -  £„ / /

0 r t r £  -  £n

(77)3 l_ 
2 ’  2

3 1
2 '  ~  2

3 3
5 ’ ~  i

The eigenvalues of the above Hamiltonian are obtained from the determinant equation 
IH -  £11 =  0, which »ives

£ , ; ( * )  =  - E (l+ - ( F  +  G ) : t
F -  G

(78)

Eys(k )  =  - £ „  +  A k 2 ±  y j B zk 4 +  C 2(k~k2. +  k 2vk 2: +  k ] k 2x)

If one assumes that k||z-axis, one obtains

E\ s(k)  =  —£ () +  (A ±  B ) k 2 

Inserting for the matrix elements A and B, the HH- LH  dispersion is given by

h r k 2
E  =  —E,

m r
J L  =  _ _ L  +  A  y  ( l ± $ \ P : \ " mu)
nr Em +  £<

(79)

(80)

The last term is a correction coming from the coupling with the distant bands. This gives 
the / / / /-band  a negative electron effective mass (and a positive hole effective mass).
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The Hamiltonian given in Eq. (77) can be written in a more familiar form in terms of 
Luttingcr parameters. First, the Luttinger parameters y2, y:> are written in terms o f  L, 
M,  N ,  /?, 5, and T  (see the discussion in Ref. [75]). The matrix elements of the HH- LH  
Hamiltonian are then given by

2.4. Applications of k • p to Quasi-2D Electron and Hole Systems
2.4.1. Heterostructure Devices
Development of molecular beam epitaxy (MBE) [76, 77] has been pushed by device tech
nology to achieve structures with nanoscale and atomic scale dimensions, and this has 
led to an entirely new area of condensed matter physics and investigation of structures 
exhibiting strong quantum size effects. MBE has played a key role in the discovery of 
phenomena like the two dimensional electron and hole gases, quantum Hall effect [78], 
and new structures like quantum wires [79] and quantum dots [329]. The continued minia
turization of solid-state devices is leading to the point where quantization-induced phe
nomena become more and more important. These phenomena have shown that the role 
of material purity, native defects, and interface quality are very critical to the device 
performance.

Modulation doping is a technique employed to achieve adequate carrier densities in one 
region of the device which is physically separated from the source of the carriers, the ion
ized impurities. The low-temperature mobility of modulation doped GaAs/AIGaAs struc
tures is a good measure of the GaAs/AIGaAs material quality. This depends very strongly 
on the epitaxial structure, particularly the placement and quantity of dopant impurities. 
The two-dimensional electron gas (2DIEG) that exists at the interface between GaAs and 
the wider band gap AIGaAs exhibits a very high mobility at low temperatures. Even at 
room temperatures, the mobility is larger than that of bulk GaAs. Two factors contribute 
to this higher mobility, both arising from the selective doping of AIGaAs buffer layers 
rather than the G aA s layers in which the carriers reside. The first is the natural separa
tion between the donor atoms in the AIGaAs and the electrons in the GaAs. The sec
ond is the inclusion of an undoped AIGaAs spacer layer in the structure. Such structures 
are quite complicated but can be easily fabricated using MBE techniques. A typical het
erostructure begins with the bulk GaAs wafer upon which a GaAs buffer layer or superlat
tice is grown. The latter is used to act as a barrier to the out-diffusion of impurities and 
defects from the substrate. It also consists of a GaAs cap layer and alternating layers of 
AIGaAs and GaAs. The common practice is to use a doping for the AIGaAs layers in the 
active region, but nowadays undoped AIGaAs layers are used and a delta doped layer is 
included. This delta doped layer along with the growth of superlattices restricts the for
mation of defects, known as D -X  centers [81 j, to a minimum. There are two important 
AIGaAs layers on either side of the S-doped layer and they are called buffer and spacer 
layer, respectively. The spacer layer is closer to the GaAs quantum well and is of high purity 
to prevent scattering of the channel carriers bv the ionized impurities. A usual practice is 
to use undoped AIGaAs layers to have very good confinement of the charge carriers in 
the well.

A prototypical GaAs/AIGaAs heterostructure used, for example, for quantum wires and 
dots formation that utilizes the split-gate technique, is shown in Fig. 10. The calculated

t ">
F ( k) =  -  —  [(y, + y 2) ( k :l + A ; )  + ( y l -  2y : )k:]2 m /

G ( k) =  [(y, -  y2)(k]  +  lc;) + (y,  + 2y: )k:]
LmK |

(81)

H ( k ) = ~ ^ y , k : ( k y - i k v)
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Figure 10. M odulation (de lta) doped G aA s/A lG aA s quantum  well structure. The left is a schem atic o f the layer 
structure, the right side the calculated conduction band profile. R eprinted with permission from [83], A. Ashwin, 
M aster's Thesis, A rizona S ta te  University, 2005. © 2005.

zero-tempcrature conduction band profile along the growth direction is shown on the right 
panel of Fig. 10. One can see relative to the position of the Fermi energy, that the electrons 
are localized in the quantum-well region, forming a 2DEG. The top surface has a patterned 
Schottky gate structure, called a quantum point contact (QPC), which depletes the electrons 
underneath with negative bias, forming a quasi-one-dimensional waveguide through which 
electrons are injected [see, for example, Ref. [9]]. The particular structure shown in Fig. 10 
has been used in the investigation of spin filtering of electrons through the quantum point 
contact structure [82, 83].

2.4.2. Spin-Resolved Band Structure in GaAs Quantum Wells
Today, research in spintronics— the field of semiconductor electronics based upon exploit
ing the quantum mechanical property of electron spin as an information carrying entity— 
owes its existence, in general, to two primary factors. The first is theoretical: the spin 
component of the electron’s wave function can retain its form (i.e., it's orientation or, 
if referring to an ensemble of electrons, the coherence) in semiconductor transport for 
much longer times than can the spatial components. In fact, the spin relaxation time, r v, 
can be on the order of nanoseconds, as opposed to picoseconds for the spatial momen
tum relaxation time [84, 85]. The second factor is technological: improvements in lithog
raphy and the continuing progress in developing efficient spin filter injection/detection 
mechanisms that polarize (or detect polarized) electrons by various means o ther than by 
applying a cumbersome external magnetic field [86], have prompted the development of 
novel spintronic devices such as the spin transistor (SPINFET) [53]. The starting point 
for understanding spin injection/detection, spin-flip scattering mechanisms and their rela
tive impact on transport is, of course, the determination of an accurate spin-resolved band 
structure.

This section is organized as follows. We first present an application of the multiband k- p 
to calculate the full band-structure in quantum confined systems in the absence of stress, 
strain, or magnetic fields. The effect of bulk inversion asymmetry, a source of spin-splitting 
in bands, is then introduced into the model. The k -  p model discussed in Section 2.3.1 is 
further extended to account for spin splitting in the conduction band due to any structural 
inversion asymmetry (SIA) that may exist.

2.4 .2 .1 . G en era l C h a ra c te r is tic s  o f  th e  k  • p  So lver. The Fermi energy of the electrons 
involved in the transport through the QPCs is on the order of 10 meV. This energy is low 
enough such that a band structure calculation accurate only around a point of high symmetry 
in the Brillouin zone (V point) is sufficient. For this situation, the k • p method of calculating 
band structure, explained in details in Section 2.3, is applicable.
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Eppenga et al. [87], using the Kane basis set and including spin-orbit coupling and rem ote  
band effects via Lowdin perturbation theory [71], arrive at the following Hamiltonian

E,

H =

ments arc

P: s f U \ 0 —P - y / 2  P_ 0

G \ s/2 G\ - p ; 0 - n /3  G_ G 2

E.so -c*< -v /2  PI \ /3 G \ 0 y/2 G :

t u n 0 — G i - s f l G 2 0

y/2Pz ~ P Z - 7 3  P

Eu\ G. y/2 G_

Eso - G

E'1111

(82) denote Hermit ian con jug;:ites. The diagonal

E,i. == + sc

k-i.n z= +  y.2̂ 1

(82)

I 7-SO =  -  A -  y ,e  

t u n  =  ~7i<?+ 72

(83)

where E K is the band gap and A is the spin-orbit split-off energy. The y ]? y 2, and .v parameters 
are effective mass param eters  that modify the free-electron term. Also,

e —
h 2
:m

h ft-
(k i  +  k i  + k:) .  e l = — ( 2 k : - k i - k ; ) ,  e2 = — (k;. -  k;.) (84)

The off-diagonal terms are given as

p :  =  ^  ~ ( i P k : + p k t k y )

! j
I \  =  y l  -  v ±  i k y )  +  p ' k : ( k v ±  / A ' V) J

G t =  s / 2 y :c |

G : = — v/3y2t'2 +  i 2y/3y^kxk v

G t =  \ /6y \ k : ( kx ±  i k Y)

In these terms, p — f unh n J r  </>*-£</>., and accounts for the coupling of the conduction 
band ^-states of the Kane basis with the valence band z-state. Terms containing y:> result in 
an anisotropic band structure near the V point if y2 ^  y v 

The param eter (3 is due to the bulk inversion asymmetry (BIA) and causes spin-splitting 
of the bands. Also known as Dresselhaus splitting [55], BIA induced spin-splitting occurs 
in zinc-blende semiconductors because two different kinds of atoms (e.g., Ga and As, Ga 
and Sb. etc...)  exist, resulting in asymmetrical wave functions about an axis of symmetry 
(e.g., [100] axis). This means that while K ram ers  theorem, E(k  | )  =  E ( - k  j )  is satisfied 
for all values of A', the situation away from k  =  0 is such that E(k  ] )  ±  E ( —k  | ) .  In 
fact, spin-splitting of the conduction band (Th band) due to BIA is proportional to A3 for 
small values of k  in bulk zinc-blende semiconductors. However, in 2D EG  systems such as 
heterostructures, a linear dependence on k  occurs too. The valence bands exhibit linear BIA 
splitting in both the bulk and the 2DEG cases. Thorough discussions of the A'-dependence of 
BIA spin-splitting can be found in Zawadzki and Pfeffer [88], Silsbee [89], and Winkler [90].

(85)
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Finally, note that the matrix operator of Eq. (82) does not include the effects of stress and 
strain or the influence of a magnetic field. O f course, these effects undoubtedly will modify 
the A’-dependence on spin-splitting. However, it must be mentioned that the Kane model 
inclusive of these effects has been derived by several researchers, notably Trebin et al. [91].

2A.2.2. Quantum Well Structures. To test the applicability of the Kane approach, the 
Hamiltonian given in Eq. (82) is applied to the symmetrical quantum well shown in Fig. 1 I, 
Ref. [92].

To start, one applies the operator p  —> —ih Y  to all k z terms in the eigenvalue equation 
with matrix operator given in Eq. (82). This operation is done to the k z terms only, since 
quantization is assumed to be along the z-direction. In doing this, it is convenient to note 
that the resultant matrix, with the matrix operator given explicitly included, then takes the 
form.

/r F,,Vr +  f l IIV. +  C m +  D, F\-fiS~ 4- 4- C |X 4- D \IS IS

\  h \ +  fisi +  Q ,  +  D S[ • • • F ^V :  4- BHHV. -f Css +  DSiS /

( X l A (X' A
Xl . :

— £
Xl,:

Xi ... Xl.:

{ X x . J \ X x . J

(86)

where the F and B terms denote coefficients to second- and first-order partial derivatives 
w.r.t. z, respectively. The C  terms denote potential offsets, and the D  terms indicate all 
o ther terms not operated on by the momentum operator. All terms /?, C, £), and F  are 
actually z-dependent functions, though not denoted as such, to ease the notation.

To ensure Hermiticity of the resulting matrix at the heterostructure interfaces, the dis
cretization scheme as noted in Eppenga et al. [17] is used, where

d 1 /  d d 
B(z )  —  -  - / * ( z ) — +  — fl(z)

d2
d i 

rt z dz

d „  v d 
—  F ( z ) ~
dz dz

(87)

(88)

Equations (87) and (88) yield

dv
B ( z ) ^

dz
- [ 2 B ( z )X : + \ - 2 B ( z )X: -  I + ( B ( z +  \ ) - B ( z - l ) ) Xs

4Az

B(z ) Xz X;-\
2Az

(89)
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conduction 
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Figure 11. Sym m etrical quantum  well. Though not shown here, the valence split off band also exhibits a band 
offset. The dim ensions o f  the well are chosen so as to be able to com pare to the tight-binding model results of 
Chang and Schulm an [931.
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and

<!X  l:t  ^ X  (  F(z )  , F ( z + \ ) ~  F ( z - l )  
T z H z ) T z =  ( i ?  + ------------ 4 S ? -------------

A z2 4A z2

F(z)Xz+\ +  F { z ) X : - 1  -  2F (z),y , 
Az:

/ 2/7(Z) 
V Az- ATr

(90)

Equations (89) and (90) are then used to transform the matrix from the bulk to the z 
quantized situation. Thus,

F ( z ) 92x  F ( z ) X; +\ + n z ) X : - i - 2  F ( z ) x z
d z 2

B ( z
clz

B ( z

A z2

Xz + \ ~ Xz-\ 
2A z

(91)

(92)

Applying Eqs. (91) and (92) to the eigenvalue equation results in a matrix of the form shown 
in Table 6.

The results, depicted in Fig. 12 for the valence bands, are in good agreement with the 
Chang and Schulman tight binding calculation [93], which requires several more adjustable 
fitting parameters o ther than y h y2, y3, .v, and p used here.

Although Fig. 12 indicates that the 8-band k -  p model is useful for accurately describing 
band structure in the vicinity of a point of symmetry in the Brillouin zone, the model does 
of course have severe limitations. Indeed, it was found that in calculating the bulk band 
structure of GaAs, the conduction band suddenly curves down and goes negative at about 
10% of the path length along 111 (F -» L). Thus, at large real values of k,  the bandgap 
can “disappear” and “spurious” solutions to the eigenvalue problem exist [94]. Therefore, 
at large values of /c, the 8-band k * p approach is not appropriate. O ther methods such as 
tight-binding methods must be used. Higher order k * p models, such as the 24-band k • p 
model recently reported by Radhia et al. [95], could also possibly be used, though they would 
be computationally inefficient and computer-memory intensive.

2.4 .2 .3 . In c lu s io n  o f  S IA E f f e c t s  in to  th e  E ig h t-B a n d  M odel. As previously mentioned, 
SIA is of great interest in spintronics, since the promise of many proposed spintronic devices 
relies on the principle of being able to modulate the SIA via application of an external

Table 6. G eneral form  o f the expanded eight-hand Kane Matrix. Each point in real-space, along the quantized 
z-axis corresponds to  an eight-row  block in this matrix.

8xX

8x8

8 x 8

8x8

8x8

8x8

8x8 8x8

8x8 8x8 8x8

8x8

8x8 8x8

*Y.

— J

=0
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GaAs/AIGaAs QW dispersion. 19.2 nm QW width, 20nm AIGaAs sides.

Figure 12. Valence band dispersion in 19.2-nm quantum  well, as calculated with eight-band k p method.

electric field. The “Rashba effect” [54] predicts that an electric field applied perpendicular to 
the plane o f  a 2D E G  will cause SIA. In turn, this electric field will then relativistically induce 
an effective magnetic field in the plane of the 2DEG, effectively lifting the spin-degeneracy 
of the charge carriers.

Aside from external electric fields, SIA can in principle be caused by anything that results 
in an asymmetrical quantum well. Effectively, this means that the penetration of the wave 
function in the cladding layers is not identical to both sides of the well. As reported by 
Silsbee [89], this can occur during M BE growth. For example, if one attempts to grow a 
heterostructure formed by a cation and anion of one kind of atom (denoted by C l and A l,  
respectively) and a cation and anion of another type of atom (C2 and A2), one would desire 
the following growth pattern:

...A1-C1-AI-C1-A1-C1-A1 =  C2-A2-C2-A2-C2-A2-C2 =  A1-C1-A1-C1-A1-C1...,

where the “= ” sign indicates the heterostructure interface. Typically, though, MBE growth 
yields

. . .A l -C l-A l -C l-A l -C l-A l  =  C2-A2-C2-A2-C2-A2-C2-A2 =  A1-C1-A1-C1-A1-C1....

Note that the second structure is asymmetrical.
The general form of the SIA term to be added to Eq. (82) to account for SIA splitting of 

the conduction band is given in Eq. (5), and repeated here for convenience

H so = af(r ■ (k  x  z)  (93)

The term a | is a coefficient, typically called the “ Rashba coefficient.” In fact, the precise
nature of this term has been controversial. Until recently many people believed that this
term is proportional to the electric field of the conduction band. However, Zawadzki and 
Pfeffer [88] point out that the average electric field in a bound state of a quantum well is 
zero. Interestingly, they report that a ,  has a dependence on the valence band offsets at the 
interfaces. Furthermore, Winkler [96] has stated that the SIA splitting of the H H  and L H  
valence bands ( r 8 bands) should take a form,

H Sv — a 2J (k  x z)  +  otyJ' • (k  x z) (94)

Since the basis set considered is the same as the Kane basis, J is defined as the angular 
momentum matrix operator for particles of momentum j  =  3/2, and J ' is defined as J 3.

Most models of SIA induced spin-splitting include only a 2 x  2 term. However, both 
Eqs. (93) and (94) may be added to the Hamiltonian matrix operator given in Eq. (82).
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Using an eight-band solver, Cartioxa et al. [97] have recently investigated the relative con
tributions of the BIA and SIA terms to conduction band splitting in an asymmetrical 
AlSb/lnAs/GaSb/AlSb quantum well, as depicted in Fig. 13. Note that the band offset of the 
InAs and GaSb form a so-called broken-gap Type II heterostructure, where the VB of GaSb 
overlaps the CB of InAs. In this structure, each layer is ~3.0 nm thick. In Fig. 13(b), they 
show the BIA and SIA splitting for a particular magnitude of k  (k  =  0.01(27t/ ci), a is the 
lattice spacing) as this vector is rotated through the k xk x plane.

2.4.3. k- p for NanoScale p-Channel MOSFET Devices
Electron transport in Si inversion layers has been a primary subject of research for many 
years now; however, hole transport has been relegated to the background mainly due to 
the complex valence band-structure in Si. Hole transport is affected by the warping and 
anisotropy of the valence bands, and the band structure cannot be approximated with a 
simple effective mass picture. The advent of alternate device structures [98—100] aimed at 
boosting the speed and density of VLSI circuits, however, seems to have revived interest 
in hole transport. The important alternate device technologies are buried channel strained 
SiGe /7-channel MOSFETs and surface channel strained Si.

As an example of application of the k • p method in simulation of hole transport in a 
nanoscale Si p-channel MOSFETs, we develop here a method for incorporating band struc
ture and quantum effects. This is achieved by coupling a 2D Poisson-ID  discretized 6 x 6  
k • p Hamiltonian solver (discussed in Section 2.4.2, for the case when the conduction band 
contribution is neglected) self-consistently to a Monte Carlo transport kernel. Monte Carlo 
methods for semiclassical transport are described in more detain in Section 3.1. This method 
is generic and can easily be extended to model strained layer MOSFETs by incorporating 
an additional strain Hamiltonian into the band-structure kernel.

The band structure is calculated using the k-  p method, where the Hamiltonian is written

H
Hk p

0

0

Hkp
(95)

where Hk#p and H are the 6 x 6 k • p and the spin-orbit Hamiltonians respectively, I is a 
6 x 6  identity matrix, and V( z )  is the confining potential along the device depth. Replac
ing the vector k z with its operator notation as k 2 =  - i d / d z , and using a finite difference 
discretization, Eq. (96) can be recast into an eigenvalue equation for the eigenenergies in 
the A y -p la n e , for different values of the in-plane K-vector, Kn(A v, A'v). The solution of the

(b)
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eigenvalue problem involves the diagonalization of a tridiagonal block matrix whose rank 
is given by 6 x Ny , where N z  is the number of mesh points along the depth direction. For 
the 3D (bulk) carriers in the source and drain, we only have the first two terms of Eq. (95). 
This 6 x 6  Hamiltonian can easily be diagonalized to give the eigenvalues of 3D carriers at 
( k x, k y, k : ).

To include carrier scattering within the transport kernel, the density of states of the system 
(2D and 3D) are required. For the 2D case, we tabulate the in-plane K- vector, KM, as a 
function of carrier energy ( s 2{{), band (v)  and subband (n)  indices, and the in-plane azimuth 
angle (<p). For the 3D case, the K-vector, K3/; is tabulated as a function of carrier energy 
(e :v/), band index (v),  and the azimuthal (<b) and polar (6) angles. In order to set up the 
inverse problem, the discretized eigenvalue Eq. (95) for the 2D system can be recast into an 
eigenvalue equation for |K||| [101] as shown by the following equation, where Dn operates 
on |K m|«.

0 I ’ <Ak " ’ K  ‘
=  K

. 'I'k ._ - D , 1 ■ [D,, — \ E \  - D t1 D,

Since e" ( k x, k v) is quadratic in |K|||, the problem involves diagonalizing a matrix whose 
rank is twice as large as that o f  the discretized k* p Hamiltonian (i.e., 12 x N z ). In the 
3D case, using a similar technique, one can show that the problem involves diagonalizing 
a matrix whose rank is twice that o f the k • p Hamiltonian (i.e., 12). Thus, for the 3D 
case, one can tabulate the values initially and these can be used throughout the simulation. 
The computational complexity for the 2D case led us to make the following simplifying 
assumptions.

Using a sufficiently high vertical electric field ~5MV/cm, a triangular test potential was 
generated and used to tabulate the dispersions and density of states (DOS) of the ground 
state subbands in each band (heavy-hole H H , light-hole LH,  and split-off SO). It was then 
assumed that for the case of a real confining potential in the device, the dispersion in each 
subband for a particular band would be given by the tabulated (triangular-well) dispersion 
of the ground state subband of the corresponding band, thus allowing the capture of basic 
features of  the subband anisotropy, warping and nonparabolicity. The only effect of the 
“ re aP  confining potential in the device would be the translation of the dispersion on the 
energy axis by the subband energies at the V point.

£”(* , ,  k y) *  [e"(kx9 ky)  -  e\ 1(0, 0)] +  e ”(0, 0) (97)

For the inverse problem, a similar approach is used. The triangular test potential is used in 
the inverse solver, in order to tabulate the in-plane K-vectors K!!'"(e2</, (j>) for a set of chosen 
( e2f), <£)• Having tabulated the in-plane K-vectors for the lowest subband in each band, we 
assume that the same dispersion holds also when employing the actual device potential for 
all the subbands of the given band, that is,

(98)

The Monte Carlo particle-based simulator handles the transport of holes through the 
device and is described in much more details in Section 3.1.3. Having calculated the hole 
band structure in the contacts and the active device region, that is, under the gate, the quan
tum mechanical hole density in the channel, is calculated self consistently with the Poisson 
equation and the 2D band-structure code. Holes are then initialized in real space based on 
the local carrier density and their energy is initialized by assuming a thermal distribution. As 
the carriers drift under the influence of the electric field due to the applied bias, the con
fining potential changes and this in turn changes the eigen energies and the eigenfunctions. 
As a result, the scattering rates must be updated frequently during the simulation. Within 
the scope of the current model, it is assumed that holes are quasi-3D particles in the source 
and drain regions, and have used appropriate models to treat these boundary conditions 
effectively.
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The isosurfaces of the lowest heavy, light, and split-off subbands, for the case o f  the 
triangular test potential are shown in Fig. 14. Note the strong warping of the heavy hole band 
when compared with the fairly regular shapes for the light hole and the split-off bands, which 
makes it extremely difficult for analytical band models to describe the valence band-structure 
accurately. The hole density of states is determined by performing a surface integral over 
these isosurfaces, and these are then used to determine the carrier scattering rates in the 
channel.

The density of states for the confined carriers is shown in Fig. 15. The deviation of the 
density of  states obtained by a full band calculation from a regular steplike profile expected 
for an ideal two-dimensional systems described in the effective-mass approximation is clearly 
seen in the case of the light-hole and split-off bands, whereas the heavy hole density of  states 
looks more like a step function.

The output characteristics of a 25-nm p-channel conventional Si M O SFE T are shown 
in Fig. 16. Significant drain-induced barrier lowering (DIBL) is seen in the output charac
teristics in this case, as evidenced by the increasing drain current with drain-source volt
age after saturation is reached. Only phonon scattering (acoustic and optical phonons) are 
included in this calculation, as discussed later. An equivalent effective mass two band (heavy 
and light hole bands) model with similar scattering mechanisms included, underestimates 
the current by about 14%. Thus, it is clear that the effective mass approximations is not 
reliable and, therefore, band-structure calculations are required to accurately predict the 
output current under high field transport conditions in nanoscale MOSFETs, in particular 
p-channel ones.

2.5. Solving the Effective Mass Schrodinger Equation in 
State-of-the Art Devices

It has been known for many years that carriers in the inversion layer of a Si M O SFE T 
are confined by the barrier between the semiconductor-oxide interface on one side and the 
band bending o f  the conduction band on the other side. Since the average thickness of the 
inversion layer is comparable to the de Broglie wavelength of the electrons, this confinement 
is sufficient to produce quantization in the direction normal to the oxide-semiconductor 
interface. The space quantization effect is very im portant in determining the num ber of 
carriers in the inversion layer for devices with very high substrate doping, representative of 
current state-of-the art technology. In principle, the solution of even the equilibrium prob
lem in these structures requires self-consistent solution of the Poisson and the Schrodinger 
equations using any of the methods described in Sections 2.1-2.3. This is a difficult and 
time-consuming problem, however. In many practical situations, it is sufficient to utilize the 
band-structure solvers to get the proper band-edge effective masses, which are then used 
in the time-independent Schrodinger equation for stationary potentials. O ne such tool that 
has been successfully utilized in the calculation of the energy-level structure in simple MOS 
or dual-gate capacitor structures is SCH RED  that has been developed at Arizona State 
University and is currently residing on the Purdue N anoH U B  [102].

K x ( m 1) K x (m ') K x (m ')

Figure 14. Isosurfaces of the lowest lying HH, LH , and SO  subhands on a (001) oriented  substrate. R eprinted with 
perm ission from S. Krishnan et al.. Micntelectnmics (in press). £ : 200:1. Elsevier.



Computational Nanoelectronics 37

04 0.6
Energy (eV )

0.8
Energy (eV)

Figure 15. D ensity  of sta tes for channel (triangular test potential) and bulk (3D) carriers, respectively, from k • p 
calculations. R eprin ted  with perm ission from S. Krishnan et al.. Microelectronics (2005). © 2005, Elsevier.

2.5.1. Description of SCHRED
SC H R E D  is a one-dimensional solver that solves self-consistently the ID  Poisson equation

d

dz
/ \ dtP

dz =  ~ e [N D(Z) ~  N A Z) +  P(Z) -  n (Z)]

and the ID  one-electron effective-mass Schrodinger equation

hr d2
2m f  dz2

(99)

(100)

In Eqs. (99) and (100), (p(z) is the electrostatic potential, s ( z )  is the spatially dependent 
dielectric constant, N p ( z )  and N ^ ( z )  are the ionized donor and acceptor concentrations, 
n(z )  and p ( z )  are the electron and hole densities, Veff(z) is the effective potential energy 
term, m l  is the effective mass normal to the semiconductor-oxide interface of the i th valley, 
and Ej, and i///;(z) are the energy level and the corresponding wave function of the electrons 
residing in the ; th  subband from the i th valley. The effective potential energy term, Veli(z), in 
the ID  Schrodinger equation equals the sum of the Hartree [VH = —e<p(z)], image [V-m ( z ) \

V„(V) Vp( V)

Figure 16. O u tpu t characteristics o f a 25-nm />-channel Si M O SFET  calculated using a full band and an effective 
mass m odel. R eprin ted  with perm ission from S. Krishnan et al.. Microelectronics (2005). (0 2005. Elsevier.
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and exchange-correlation [ I ^ U ) ]  terms. The Hartree term represents the solution of the 
ID Poisson equation, including the average charge density of the free electrons.

If Poisson’s equation is solved fully as a boundary value problem, then appropriate elec
trostatic boundary conditions are imposed at the dielectric interface between regions of 
different permittivity. If, rather, the electrostatic potential in ID is derived from integration 
of the charge density in the Hartree approximation, then one can account for the dielec
tric boundary conditions by introducing a fictitious “image” charge, which gives the proper 
boundary conditions at the dielectric interface between, for example, Si and S i0 2. The image 
potential felt by and electron at a position 2 from the interface, is given by

K M )  = - ~  — ( i oi )167TeSL.2 £„, +  F.m

where esc and eox are the semiconductor and the oxide dielectric constants, respectively.

2.5.1.1. In c lu s io n  o f  E xch a n g e-C o rre la tio n  C o rrec tio n s .  In silicon inversion layers, 
due to the large effective mass, many-body effects such as exchange and correlation can 
play an important role. For example. Stern [ 103] has calculated that the exchange energy 
is comparable to or  even larger than the energy separation between subbands calculated 
in the Hartree approximation. In general, the exchange energy is the contribution to the 
overall energy of the electron gas that arises from the correlation between two electrons 
whose positions are reversed, o r exchanged [104). In o ther words, as a consequence of the 
Pauli exclusion principle, electrons with equal spin tend to avoid each other (exchange repul
sion) so that each electron is surrounded by an exchange hole. The presence of the exchange 
hole indicates that the mean separation between electrons with equal spin is larger than it 
would be without the Pauli principle. The existence of the exchange hole reduces the overall 
Coulomb repulsion, which explains the reduction in the ground-state energy of the system.

According to Hartree-Fock theory, electrons with different spin do not avoid each other, 
since the states are chosen to satisfy the exchange principle, but they do not include Coulomb 
correlations [218). In reality, there exists an additional correlation, which leads to the so- 
called Coulomb hole. To treat these effects, one has to go beyond the Hartree-Fock theory. 
Therefore, if one writes the exact ground state energy of the system as

e  =  +  E am ( 1 0 2 )

it is obvious that the correlation energy represents the correction to the ground-state energy 
of the system beyond the Hartree-Fock approximation. Therefore, the correlation energy 
is not a quantity with physical significance; it merely represents the error incurred in mak
ing a fairly crude first-order approximation. Since an exact calculation of £ corr is generally 
not possible, one of the main tasks of the many-body theory is to obtain good estimates 
for £ airr.

In a series of three papers, H ohenberg and Kohn [106], Kohn and Sham [107], and Sham 
and Kohn [108] laid the foundations for a “new'’ theory of electronic structure. The theory 
represents a systematic extension of the Thomas-Fermi ideas, and is capable in principle of 
providing exact answers. The theory is based on two theorems which center on the particle 
density as a fundamental variable for the description of any many-body system. The first 
theorem states that the total ground-state energy E  of any many-body system is a functional 
of the one-particle density, /?(r). In this context, different many-body systems differ only by 
the local potential felt by the electrons. Furthermore, splitting off from the total energy the 
explicit interaction with the external potential. I7cxt(r), the theorem also states that the rest 
is a universal functional of //(r ), that is, independent of the external potential. Thus, if

E[n]  =  F[n\  -f j cl:"rVcx[(r )n( i )  (103)

then the functional, F, depends only on n and not on K*Xi(r )* The second theorem states 
that for any system (any external potential), the functional, Zl|//]. for the total energy has 
a minimum equal to the ground-state energy al the physical ground-state density of the
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system. These theorems, although rather abstract in nature, were of immense importance to 
the rapid development of density-functional theory. It is customary to extract from F \n\ the 
classical Coulomb energy and write

In this notation, the energy functional becomes

E\n] = G [ n ] + I d*rVe%l{r)n(r)  +  —'—  f cf'r f d yr ' t~ ^ L   ̂ (105)
J ott£ {) J J |r — r |

The stationary functional, E[n\, allows in principle a much simpler determination of the 
ground-state energy, E, and density, n ( r), than the conventional Rayleigh-Ritz method [109]. 
The functional, G[//], is further divided into two parts

G[n] = Ts[n] + E x<\n ]  (106)

where T,[/z] is the kinetic energy of a non-interacting electron gas of density, /i(r), in its 
ground state and E xc[n] represents the exchange and correlation energy. With these new 
quantities, we can write

E[n] =  TJ/z] +  j  d ?rV,M(r)n(r)  + j  d ' r  f  +  £,,.[//] (107)

The energy functional given in Eq. (107) has to be minimized with respect to the electron 
density, //(r), subject only to the normalization condition

N  = /Y '/7 !( r )  (108)

where N  is the total num ber of the electrons in the system under consideration. The stan
dard method for taking care of the constraint given in Eq. (108) is to write the variational 
principle as

8 { E - f x N )  =  0 (109)

where fi  is a Lagrange multiplier. Carrying out the variation, one obtains the Euler condition:

where

, , (r) = ^  ( I I1 )  on(r)

is the exchange-correlation potential. The variational derivative of the kinetic energy, 
<5rv[/?]/fi/j(r), is then replaced with the kinetic operator, —h 2V 2/lm * .  At this point, Kohn and 
Sham [107, 108] make a crucial observation, that the Euler Eq. (110) is the Euler equation 
of noninteracting particles subject to the effective external potential, Kcff(r), given by

K=fr(r) =  K„t(r) +  f  + Kv,( r )  =  VH(x) +  Kv,(r)  (112)
4 tT£{ ) J  I r — r I

where the H artrec potential is obtained from the solution of the corresponding Poisson 
equation. This scheme allows one to construct an equivalent one-particle formulation of the 
complicated many-body problem at hand.

The exchange-correlation energy, £ vt.[/i], is in general an unknown functional of the elec
tron density. However, for slowly varying density, one can make the local-density approxi
mation (LDA):

E ,,.[«] % j  d :' reX[. (n(r))n(r)  (1 13)
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where e V4.(/?(r)) is the exchange and correlation energy per electron of a uniform electron 
gas with density //,, =  /?(r). The original idea for this approximation comes from Slaer [110]. 
Using LDA, we find

potential. Therefore, Kv. O') can be interpreted as the exchange-correlation contrimtion to 
the chemical potential of a homogeneous electron gas of density //„ equal to the heal elec
tron density n(r)  of the inhomogeneous system. As pointed out by Kohn and Bati.ta [112], 
the LDA works surprisingly well in calculating the electronic structure of confined electronic 
systems where the electron density

is not slowly varying in space. The exchange-correlation potential, Vu„ for LDA uts been 
parameterized by many authors. A standard parameterized form due to Hedin and Lundqvist 
[113-116]. used also in SCH RED , is

where x  = a (z ) =  r s/21, rs = rs(z)  = [47r/?3//(z)/3] 1/3 and b = 4 7r e ^ h 2/ m*e2. The irst term 
on the rhs of Eq. (116) is the exchange energy correction due to the attractive ineraction 
between other electrons and the Fermi hole resulting from the displaced charge. The second 
term represents the correlation energy correction to the chemical potential, fi. Ising this 
parameterized expression for VX(\ z ) ,  one calculates the electronic subband wave unctions 
and the corresponding subband energies by solving the so-called Hohenberg-Koin-Sham 
(HKS) equation, which is formally the same as the Schrodinger equation in which, a; already 
noted, one takes K .m t ( 2 )  =  ^ / / ( 2 )  +  K * {- ( z ) +  K m ( 2 )*  1 °  s u c ^  a calculation, one obains not 
only the total energy and the electron density, but also the eigenvalues of the KS equa
tions [117]. For silicon inversion layers, by analogy to the spin-densitv formalism [118], the 
exchange-correlation correction to the chemical potential is different for the unprined and 
primed valleys, and it depends only on the volume density of electrons in the unprined and 
primed subbands.

The extension of this formalism for nonzero temperatures was formally set up by Mermin 
[119], and the finite temperature exchange-correlation functions that enter the Koln-Sham- 
Mermin formulation were calculated by G upta et al. [120, 121]. The finite-terrperature 
exchange correction to the chemical potential calculated by G upta et al. is

where the Fermi temperature, T , , is defined in terms of the zero-temperature ariables

Boltzmann statistics. In the Debye limit, the corresponding correlation energy conecion  is 
given by

From the results given in Eqs. (117) and (118), it is obvious that the correlation cortribu- 
tions can still be important for temperatures where the exchange contribution has become 
vanishingly small.

A comparison of the calculated self-consistent potentials for (100) /Mvpe Si w th N u ~

0 K, with (thick lines) and without (thin lines) the inclusion of the exchange--correlation 
correction to K.|.(z), is given in Ref. 1172]. Here il was found that the subband energies are

( 1 1 4 )

which, according to the Seitz theorem [111], is equivalent to the definition of the :hemical

n ( r) =  n(z )  = £  N,\ i//,2(z)| (115)

X
(116)

(117)

k f. — [37r2/i(r)]1 3, E t. = h 2k 2r /2m *  and k BTF — E ,.. The result given in Eq. (117) isva.id for

r

(118)

2.8 x ID1-"' cm 3 (corresponding to — 2.02 x 1011 cm : ). /Vs =  4 x 1()|: cm : , and T  =
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lowered considerably by the exchangc-corrclation effect. The energy of the ground subband 
is lowered by 35 meV, whereas the energy of the first excited subband is lowered by 20 meV. 
which is in agreement with results obtained by Vinter [123] (Fig. 17). Since the inclusion of 
the exchangc-corrclation effects increases the subband separation, this many-body correction 
leads to an increase of the carrier concentration at which the occupation of the second 
subband begins. We also find that, in contrast to the image term which tends to increase the 
spatial extent of the wave functions, the exchange-correlation term tends to compress the 
wave functions.

In Fig. 18. comparison is made of the simulation results for the energy spacing between 
the lowest two subbands (subbands e„ and £, from the unprimed ladder) with the infrared 
absorption measurements of Kneschaurek et al. [124] on a p-type Si(100) at T  =  4.2 K. The 
doping concentration is Na -  N(l =  (2 ±  0.2) x \{)]? cm -3. The experimental data shown in 
the figure represent the dark sweep spectroscopy results. For these experimental conditions, 
the depletion layer length and the depletion charge density do not reach their thermal 
equilibrium values and the measured value of the experimentally relevant effective depletion 
charge density is Nj , =  (1.0 ± 0 .1 )  x 10M cm -2. To be in agreement with the experimental 
conditions, a value of A/ticp) = 1 x 1 0 "  cm -2 is assumed. The experimental data shows a faster 
increase in the level splitting than the H artree theory (with and without the image term). The 
inclusion of the exchange-correlation correction to the chemical potential in the Kohn-Sham 
equation significantly improves the situation, especially at higher inversion charge densities 
(In the space-charge layer, the condition of slowly varying potential translates into Ns 
/Vd* ,). It is believed that the so-called exciton-likc and depolarization corrections nearly 
cancel each o ther except at very high electron concentrations [125, 126]. (The exciton shift 
is the interaction of the excited electron with the hole in the ground state, analogous to the 
exciton associated with the valence-to-conduction band transition. The depolarization shift 
is a plasmon shift of the transition caused by the screening response of the electron gas.) 
The simulation results shown in Fig. 18 for the energy spacing are in close agreement with 
those obtained by A ndo [127].

In principle, the finite-temperature extension of the density-functional theory presented 
in this section is obtained by using the finite-temperature expressions for the exchange and 
correlation corrections to the chemical potential and through the change of the occupancies 
of various subbands. However, Das Sarma and Vinter [128, 129] have shown that neglect
ing any tem perature dependence of the exchange-correlation potential, but retaining its 
implicit tem perature dependence through the electron density n ( z ), which is calculated at 
finite tem perature, leads to results which are in very good agreement with the measured

Distance from the interface [A]

Figure 17. C alculated  potential energy profile, subband structure and norm alized wave functions for (100) p - type 
Si with ,\’(J =  2.8 x 101'  cm \  .V, =  4 x  I0 i: cm “: and in terface-trap  density N„ — L).5 x Id 111 cm The thick (thin) 
lines correspond  to the case when the exchange-correlation effect is included (om itted) in the calculation. Reprinted 
with perm ission from  11221. D. Vasileska et al., J. iiic. Sci. Tcchnol. B  13. 1841 (1W 5). €> 1W5. A m erican Institute 
o f Phvsics.
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Transmission-Line Arrangement

Figure 18. Density dependence o f the separation  o f the /•;, and suhhands in a ( KM)) /Mype silicon inversion layer. 
The filled triangles represent the infrared absorption m easurem ents. R eprinted with perm ission from D. Vasileska, 
Ph.D. Thesis. A rizona State University. 1W5. 0  1W5.

subband separations, especially the ones for the unprimed ladder. To check this argument, 
we calculated the subband separation of a />type Si with effective depletion charge density 
N *[cp| =  6 x 1010 cm -2 and (100) orientation of the surface at T  = 300 K using first the 
parameterized expression given in Eq. (116), and then the finite-temperature results for the 
exchange-correlation corrections to the chemical potential given in Eqs. (117) and (118). 
The difference in the calculated subband energies for various inversion charge densities N s 
was found to be always less then 5%, even for the worst case. The simulation results for the 
subband separations and s r(r and various inversion charge densities, for the same sam
ple, are shown in Figs. 19-20, respectively. The filled triangles in both figures represent the 
room-temperature infrared resonant absorption measurements due to Schaffler et al. [130]. 
It is believed that the net correction to the subband separation due to depolarization and 
exciton-like shifts is less that 4%. A total of 10(5 + 5 )  and 5(3 +  2) subbands were used in 
these simulations. It is observe that the use of 10 instead of 5 subbands leads to the increase 
in the subband separations in both cases throughout the whole range of N s. However, this 
increase is more pronounced for the primed ladder of subbands. For comparison, in both 
figures the Hartree results are given for the subband separation. It is seen that the H artree 
approximation becomes a better approximation for the subband energy difference at ele
vated temperatures due to the decrease of the exchange energy correction to the chemical

Figure 19. Subband energy difference k !:, versus inversion charge density ai /  — 3(10 k. R eprim ed w in  perm ission 
from D. Vasileska. Ph.D. Thesis. Arizona Slate University. l lW5. < l LK>5.
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5 x 10 1 x 10 1 .5 x1 0 '- 2x 10 2 .5 x 1 0 '- 3x10 '

Inversion charge density Ns(cm_"l

Figure 20. Suhband energy difference e,<„. versus inversion charge density al T  =  300 K. R eprinted with perm ission 
from D. Vasileska, Ph.D. Thesis. A rizona State University. 1995. © 1995.

potential. These simulation results for the subband energy difference for the unprimed lad
der of subbands arc in agreement with Refs. [128, 129]. However, for the primed ladder of 
subbands, they are in better agreement with the experimental data compared to the results 
of Das Sarma and Vinter. The major difference comes from the fact that they use 5 instead 
of 10 subbands as well as the conductivity instead of the density-of-states mass.

2.5.1.2. O th er  S im u la to r  D eta ils. In all the calculations presented here, it is assumed that 
the S i0 2/Si interface is parallel to the [ 100] plane. For this particular case, the six equivalent 
minima of the bulk silicon conduction band split into two sets o f  subbands (Fig. 21).

The first set (A: -band) consists of the two equivalent valleys with in-plane effective mass 
/72 j j =  0.19 m 0 and perpendicular effective mass m L =  0.91 m {}. The second set (A4-band) 
consists o f the four equivalent valleys with =  0.42 m 0 and m L =  0.19 m 0. The energy 
levels associated with the A2-band comprise the so-called unprimed ladder of  subbands, 
whereas those associated with the A4-band comprise the primed ladder of subbands.

A2-bana:
m ± = nri\ = 0 .9 1 6  m 0, = m t = 0 .196  m Q

A4-band:
m ± = m t = 0 .1 96 m 0, mu = (/7?|/rjt)1/2 = 0 .42  m 0

Figure 21. (a) C onstant energy surfaces in Si together with the description of the A: - and A4-bands. Also shown are 
the appropria te  transverse and in-plane masses for the two equivalent bands, (b) Schematics of the band bending 
in MOS capacitors. Also shown are the energy levels belonging to the unprim ed and prim ed ladder of subbands 
corresponding to the A: - and A4-bands, respectively. T he first index describes the band (=1 for the A: -band, and 
= 4  for the  A4-band), w hereas the second one refers to  the appropriate  energy level within the band. R eprinted 
with perm ission from D. Vasileska, Ph.D. Thesis, A rizona State University, 1995. © 1995.
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The self-consistent solution of the ID Schrodingcr-Poisson problem is obtained in the 
following way: One starts with some initial guess for the electrostatic potential and uses 
it to solve the ID Schrodinger equation numerically [109]. After the eigenfunctions are 
determined, and the eigenvalues that characterize the electrons in the inversion layer, the 
inversion layer electron density appearing in the ID Poisson equation is obtained by summing 
over all subbands to yield

n(z)  = ' £ N ijiPjj(z) = Y .S ,
m In +  expj^

k uT fi , (119)

In Eq. (119), E,. is the Fermi level, k n is the Boltzmann constant, T  is the temperature, m t 
is the in-plane effective mass of the /th band, N tj is the sheet-charge density corresponding 
to the / th subband from the /th band, and g{ (#, =  2 for the A: -band, and g2 = 4 for the 
A4-band) is the band degeneracy. It is important to note that the inversion layer electrons 
are treated quantum mechanically only when confined by the surface field. If the electrons 
are not confined, or if one relied on the validity of the classical description of the inversion 
layer electron density, then the solution of the ID Schrodinger equation is skipped, and one 
uses instead

~ E , - E c ( z f
n( z )  = N, h\ ,

k „ T
(120)

where N c is the effective density of states of the conduction band. For holes, which
are always treated classically for /;-tvpe substrates, the classical density is correspondingly 
written

L ( (z) — E (; — E f.
p ( z )  =  N r f

k h 7
121)

where /V, is the effective density of states of the valence band, and E a is the semiconductor 
bandgap. For the evaluation of the Fermi-Dirac integrals, which appear in Eqs. (120) and 
(121), we use the analytical approximation due to Bednarczyk and Bednarczyk [131]

e ' x + .VS

where

v(x)  =  .v4 + 50 -f 33.6.v{ 1 -  0.68 exp[—0.17(.v -f l ) 2]}

(122)

(123)

The polysilicon gates are modeled as heavilv-doped single-crystal silicon. Both the electrons 
and holes are treated classically and assuming general Fermi-Dirac statistics, valid for degen
erate semiconductors.

After the electron and hole concentrations are updated in the semiconductor and/or the 
polysilicon gates, the ID Poisson equation is solved numerically for the electrostatic poten
tial using finite-diffcrence discretization scheme and LU decomposition method. The ID 
Schrodinger equation is then solved to find the updated values for the electron density at 
each mesh point, and the previously described procedure is repeated  until a self-consistent 
solution is found. It is important to note that the potential energy profile for the next itera
tion is obtained by using fixed-convergence factor scheme for the first 10 iterations, and the 
extrapolated convergence-factor scheme thereafter. T he  error criterion for the convergence 
of the self-consistent field iterations is that the absolute value of the difference between the 
input and output potentials at each mesh point is less than 0.01 mV.

At self-consistency, that is. once the self-consistent results are determined for the variation 
of the charge distribution on the semiconductor side of the MOS capacitor as a function of 
the gate voltage, VCr the calculation is performed of the total gate capacitance Ctol. Clol is 
determined by differentiating the total induced charge density in the channel with respect to 
Va . In contrast to some previous studies [132], where Cim was approximated with £sc/(z) . iv,
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where (z). lK is the centroid of the electron density distribution, here the inversion layer 
capacitance is calculated by differentiating the total sheet charge density.

A- = ! > ' „ ■  (124)
i. i

with respect to the surface potential [133]. The depletion-layer capacitance Cdcp| and the 
polygate capacitance Cpoly are evaluated in an analogous manner.

2.5.2. Some Sample Simulation Results Obtained with SCHRED
To dem onstrate the existence of the two physical origins of the inversion layer capacitance, 
Cjnv, discussed in Ref. [134], in Fig. 22 the variation of Cinv is shown with inversion charge 
density N s in the channel of a MOS capacitor with substrate doping N A = 5 x  1017 cm "3, 
oxide thickness rox =  4 nm and metal gates. Exchange-correlation and image contributions 
to the effective potential energy term appearing in the ID Schrodinger equation,
have not been included in these simulations.

The pronounced double-slope behavior of the quantum mechanically calculated Cinv comes 
from the fact that the total inversion layer capacitance can be represented as a series capac
itance of two contributions. The first contribution is classical and comes from the finite 
density of states, that is. because a finite change in the surface potential is always necessary 
to increase N s (inset of Fig. 22), which, in turn, leads to finite value for Cjnv. This term 
dominates at low values of /Vs (low gate voltages). The second contribution to Cjnv is due to 
the finite inversion layer thickness, which effectively increases the oxide thickness in terms 
of the total gate capacitance, thus providing an additional capacitance component. This term 
dominates at large gate voltages, where the inversion charge density Ns significantly influ
ences the band bending and leads to a steeper rise of the conduction band near the SiO: /Si 
interface.

In Fig. 23, simulated Clo, to oxide capacitance Cox is shown for metal//?-substrate and 
/ /+ -poly//;-substrate MOS capacitors, as a function of the physical oxide thickness /ox and 
the doping of the polysilicon gates N n , assuming V(; =  3 V. The high value for V(i, used 
here, may overestimate the severity of the bias dependent attenuation for thinner oxides, 
but a consistent value for VG is useful for the purpose of tabulating the simulated results. 
The results shown clearly demonstrate that classical charge model and Maxwell-Boltzmann 
(nondegenerate) statistics are clearly inadequate for oxide thickness below 10 nm. Even use 
of Fermi-Dirac statistics in the classical charge description can lead to significant errors in 
the estimate of the total gate capacitance for devices with metal gates and oxide thickness

Inversion charge density {cm “J

Figure 22. Variation of the inversion layer capacitance with inversion charge density at T  =  300 K. In the inset 
the self-consistent results are shown for the variation o f the surface potential with /V when using both SC and 
QM  descrip tions of the electron density in the inversion layer. The surface potential is calculated using </\ =  
(E , -  / : , ) scox -  {E,: -  E ,)b.,,k. w here E, is the intrinsic energy level. R eprinted with permission from  D. Vasileska 
and  D. K. Ferry. Proceeding o f the 1st Conference MSM. Santa C lara. CA. 1998, p. 408. © 1998, D. Vasileska.
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Oxide thickness lox (nm)

Figure  23. Sim ulated CIO, to oxide capacitance C,,x for m eial//;-suhstralc  and /?+-poly//;-suhstrale M OS capacitors, 
as a function of the physical oxide thickness it)K and the doping of the polvsilicon gates N n . We use Y(i = 3 V.

less than 5 nm because o f  the higher surface fields and, therefore, pronounced quantum- 
mechanical, size-quantization effects in the channel. For example, the classical model that 
uses Maxwell-Boltzmann (Fermi-Dirac) statistics predicts that, for the device with /ox =  1 nm, 
C,ot/ C ox =  0.983 (0.882). Flowever, the quantum-mechanical model predicts that CU)1/ C ox =
0.795, which leads to relative error of 23.65 (10.94)%. As previously noted, the depletion of 
the poly-silicon gates will further degrade the total gate capacitance.

The linear region threshold voltage shift between the O M  and SC predictions for a device 
with N a = 5  x 1017 c m '3 and /ox =  4 nm as a function of the doping of the polysilicon 
gate is shown in Fig. 24. The threshold voltage Vlh equals the gate voltage for which Q inv =  
10"3(2depi- As expected, the QM  description of the charge in the channel increases V{h and 
the shift in the threshold voltage is about 74 mV. This is due to the fact that the QM 
picture differs from the SC one in two ways: First, the energy spectrum is not continuous, 
but consists of discrete energy levels which, in turn, reduces the DOS function. Second, the 
energy of the ground subband from the unprimed ladder of subbands does not coincide with 
the bottom of the conduction band and Ihe energy difference I E  = E n — E ( increases with 
increasing substrate doping. The depletion of the polysilicon gate, due to insufficient doping, 
further increases the threshold voltage. The additional shift in the threshold voltage due to 
the inclusion of the polygate depletion can be as large as 68 mV for N n =  1019 cm "3, and 
drops down to about 18 mV for Nn =  2 x  1(P cm-3.

Nn [eitH j

Figure 24. L inear reg ion  threshold  voltage shift he tween the OM  and ihe SC predictions versus N h . We use N  — 
5 x !()’ ’ cm s and /„x -- 4 nm.
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The linear region threshold voltage shift for the device with /ox =  4 nm, N n =  10:n cm \  
and different substrate doping is shown in Fig. 25. Also shown in this figure are the van Dort 
et al. [135] experimental data for a device with metal gates and oxide thickness tox =  14 nm. 
Very close agreem ent between the experimentally derived threshold voltage shifts and the 
S C H R E D  simulation results for the device with 14-nm-thick oxide can be observed. A major 
difference from the results shown in Fig. 24 is that the inclusion of both the QM  effects in 
the channel and polygate depletion leads to strong dependence of the threshold voltage shift 
upon the substrate doping N A. For example, for a device with tox =  4 nm, N A =  1018 cm -3 
and N n =  i():o c m '3, the inclusion of the quantum-mechanical, space-quantization effect 
leads to a threshold voltage shift of about 106 mV. The addition of polygate depletion leads 
to a further shift in the threshold voltage of about 34 mV. This observation, together with 
the results shown in Fig. 25, suggests that both a QM description of the charge density 
distribution in the channel and polygate depletion must be accounted for if accurate results 
for the threshold voltage are desired.

2.5.3. Modification of the Effective Mass Schrodinger Equation 
for Heterostructures

Note that in a solid in general, the momentum space is periodic and the true wave func
tion is approximately the product of a periodic Bloch function and an envelope function. 
The Schrodinger equation can be used to study the evolution of the envelope wave function 
for an electron in the conduction band, provided that the effective mass m* is used in the 
Hamiltonian. When the Schrodinger equation is applied to semiconductors in the effective 
mass approximation, the potential V ( r )  is assumed to be only the electrostatic potential, 
since the effect of the periodic crystal potential is accounted for by the effective mass itself. 
Such models can be used for relatively low energies close to the bottom of the conduction 
band, where a parabolic dispersion relation is a good approximation. In semiconductors, 
some of the most interesting applications of the Schrodinger equation involve spatially vary
ing material compositions and heterojunctions. The effective mass approximation can still 
be used with some caution. Since the effective mass is a property of a bulk, it is not well 
defined in the neighborhood of a sharp material transition. In the hypothesis o f slow mate
rial composition variations in space, one can adopt the Schrodinger equation with a spatially 
varying effective mass, taken to be the mass of a bulk with the local material properties. 
However, it can be shown that the Hamiltonian operator is no longer Hermitian for vary
ing mass. A widely used Hermitian form brings the effective mass inside the differential 
operator as

- f v - ( - L V )  (125)

IO16 I0I? IO18
Na [cnr-’l

Figure 25. L inear region threshold  voltage shift betw een the QM  and the SC' predictions versus /V.t.
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This approach is extended to abrupt heterojunctions, as long as the materials on the wo 
sides have similar properties and bandstructurc, as in the case of the GaAs/AIGaAs sysem 
in a certain range of the Al concentration. One has to keep in mind that very close to the 
heterojunctions the effective mass Schrodinger equation provides a reasonable mathematcal 
connection between the two regions, but the physical quantities are not necessarily veil 
defined. For instance, in the case of a narrow potential barrier obtained by using a thin kyer 
of AlGaAs surrounded by GaAs, it is not clear at all what effective mass should be ised 
for the AlGaAs, since such a region cannot be certainly approximated by a bulk. Even rrore 
difficult is to treat the case when there is a transition between direct and indirect bandjap 
materials (for example, GaAs and AlGaAs with large Al concentration).

Assuming a uniform mesh size A.v. the Hamiltonian given in Eq. (125) can be discretized 
in ID by introducing midpoints in the mesh intervals on the two sides of the generic ijid 
point /. First, the ou ter  derivative at point / is evaluated with centered finite differen:es, 
using quantities defined at points (/ — 1/2) and (/ +  1/2),

h 2 d 1 dip' hr 7  1 _  /  J _ # \
T d x n r  dx _ \  n r  dx )  j ., : \  n r  dx )  t -i

126)

and then the derivatives defined on the midpoints are also evaluated with centered differ
ences using quantities on the grid points:

2Aa*:
i / /( /+  ! ) -< / / ( / )  iM O - * / / ( / -  1)

n r ( i  +  1/2) m*(i — 1 /2)
(127)

The effective mass is the only quantity which must be known al the midpoints. If an abrjpt 
heterojunction is located al point /, the abrupt change in effective mass is treated withmt 
ambiguity. It can be shown that the box integration procedure yields the same result. 

Another hermitian Hamiltonian operator proposed for variable mass has the form

V2*// +  V (128»

which is the linear combination of two non-Hermitian operators. It is instructive to compare 
the two formulations. In 1D, the operators can be rewritten as follows

h 2 d 
~ 2 d x

1 dtf/
m* dx

h 2
T

i a1
n r  d.

h r_

h :

1 d2ip dif.f d /  1 
m* dx2 dx dx  \  m*

V (  1 h  1 d-i/j dip d /  1 \  i d~ /  1 \
dx2 dx2 \  n r  )  2 n r  dx2 ^  dx d x \ m * )  +  2 cU*2 \  nr* )

(129

(130

The second operator has an additional term involving the second order derivative of the 
effective mass. For smoothly varying mass, the two approaches are approximately equivalent 
If one were to use the form on the right-hand side of Eq. (130) for discretization of the 
operator, it is easy to see that a direct application of finite differences is awkward. The 
proper procedure is to apply box integration to the interval [/ — 1/2; / +  1/2]

h 2 I :
/  dx

1 d2 ip dip
T i - )', i.: n r  dx2 dx dx \  n r  J _

(13

Integration by parts of the first term yields

h 2

i

1 dip ~ ' ‘ 1 r> ■ \ - dljf d_ I / / 1* _____ _
n r  dx _

/ A -
i 2 -Vi : <K\ dx

(132

The two integrals cancel, and il the result is divided by the integration length A.v. Eq. (127 
is recovered.
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2.6. Carrier Dynamics
Under the influence o f  an external field. Bloch electrons in a crystal change their wavevector 
according to the acceleration theorem

=  P ( J33)
(U

where F is the external force acting on the particle. The effect on the actual velocity or 
m omentum of the particle is. however, not straightforward as the velocity is related to the 
group velocity of the wave packet associated with the particle, and is given by

v = i v k£ (k )  (134)
h

where E ( k )  is one of the dispersion relations from Fig. 8. As the particle moves through 
k-space under the influence of an electric field, for example, its velocity can be positive or
negative, eventually leading to Bloch oscillations if scattering did not limit the motion. Only
near extremum of the bands, for example, at the V point in Fig. 8 for the valence band, or 
close to the L point in the conduction band, does the dispersion relation resemble that of 
the free electrons, £(k) =  h 2k 2/ 2 m \  where m* is the effective m ass, which is different from 
the free electron mass. There, the electron velocity is simply given by v =  h k / m \  and the 
momentum is p =  hk.

In the case of the valence band, the states arc nearly full, and current can only be carried 
by the absence of electrons in a particular state, leading to the concept of holes, whose 
dynamics are identical to that of electrons except their motion is in the opposite direction 
of electrons, hence they behave as positively charged particles. In relation to transport and 
device behavior, these holes are then treated as positively charged particles in the presence 
of external fields, and one has to simulate the motion of both electrons and holes.

For device modeling and simulation, different approximate band models are employed. As 
long as carriers (electrons and holes) have relatively low energies, they may be treated using 
the so called parabolic band approximation, where they simply behave as free particles having 
an effective mass. If more accuracy is desired, corrections due to deviation of the dispersion 
relation from a quadratic dependence on k may be incorporated in the nonparabolic band 
model. If more than one conduction band minimum is important, this model may be extended 
to a multivalley m odel, where the term valley refers to different conduction minima. Finally, 
if the entire energy dispersion is used, one usually referes to the model as fu ll band , and 
some of the previously described methods is usually employed.

3. SEMICLASSIC AL TRANSPORT MODELING
Figure 3 illustrated various levels of approximation in describing charge transport within a 
hierarchical structure ranging from the exact quantum mechanical solution of the /7-particle 
problem at the bottom, to analytical ID phenomenological modeling used in circuit simu
lation at the top. The exact quantum mechanical solution of even a few particle system is 
a challenging computational task, and clearly impossible for a semiconductor device with 
typical free-carrier electron densities that are on the order of 1017 cm ' 3 or more. Hence, 
simplifying approximations are necessary.

For conventional semiconductor devices, such as bipolar junction transistors (BJTs) and 
field effect transistors (FETs), the device behavior has been adequately described within the 
semiclassical model of charge transport, since the characteristic dimensions are typically at 
length scales much larger than those over which quantum mechanical phase coherence is 
maintained. Hence a particle-based description is adequate as described within the Boltz
mann equation framework, and approximations thereof. As device dimensions continue to 
shrink, the channel lengths are now approaching the characteristic wavelength of parti
cles (the de Broglie wavelength at the Fermi energy, for example), and quantum effects 
are expected to be increasingly important. It has in fact been well known for 30 years 
that quantum confinement effects occur for electrons in the inversion layers of Si metal- 
oxide-semiconductor field effect transistor (M O SFET) devices as discussed in Section 2.5.
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However, at room tem perature and under strong driving fields, such quantum  effects have 
usually been found to be second order at best in terms of the overall device behavior. How
ever, as discussed in Section 1.1, it is not clear that this situation will persist as all spatial 
dimensions are reduced, and consideration of quantum effects, such as tunneling and inter
ference, may in fact dominate.

As mentioned earlier, the classical description of charge transport is given by the BTE in 
the hierarchy of Fig. 3. The BTE is an integral-differential kinetic equation of motion for the 
probability distribution function for particles in the 6-dimensional phase space of position 
and (crystal) momentum

( 1 3 5 )
Coll

where / ( r, k, /) is the one-particle distribution function. The right-hand side is the rate of 
change of the distribution function due to randomizing collisions, and is an integral over the 
in-scattering and the out-scattering terms in momentum (wavevector) space. Once / ( r ,  k, t)  
is known, physical observables, such as average velocity or current, are found from averages 
of / .  Equation (135) is scmiclassical in the sense that particles are trea ted  as having dis
tinct position and momentum in violation of the quantum uncertainty relations; yet, their 
dynamics and scattering processes are treated quantum mechanically through the electronic 
band structure (discussed in Section 2) and the use of time-dependent perturbation theory. 
Through moment expansion of the BTE, a set of approximate partial differential equations 
in position space, similar to those arising in the field of fluid dynamics, are obtained lead
ing to the so-called hydrodynamic model for charge transport, which will be discussed in 
Section 3.3. The simplification of the hydrodynamic model to include just the continuity 
equation and the current density written in terms of the local electric field and concentration 
gradients leads to the so-called drift-diffusion model, also discussed in Section 3.3. Finally, 
the reduction of the drift-diffusion model to one dimensional nonlinear analytical expres
sions allows for the development of lumped param eter behavioral models suitable for circuit 
level simulation of many individual devices as well as passive elements.

The BTE itself is an approximation to the underlying many body classical Liouville equa
tion, and quantum mechanically by the Liouville-von Neumann equation of motion for the 
density matrix. The main approximations inherent in the BTE arc the assumption of instan
taneous scattering processes in space and time, the Markov nature of scattering processes 
(i.e., they are uncorrelated with the prior scattering events), and the neglect of multiparticle 
correlations (i.e., the system may be characterized by a single particle distribution func
tion). In semiclassical simulation, some of these assumptions are re la ted  through the use 
of molecular dynamics techniques discussed in Sections 3.1.5 and 3.1.2 (in the context of 
device simulations). However, the inclusion of quantum effects such as particle interference, 
tunneling, and so on, which take one further down the hierarchy of Fig 3, is more problem
atic in the semiclassical Ansatz and is an active area of research today ;as device dimensions 
approach the quantum regime.

3-1. Direct Solution of Boltzmann Transport Equation: 
Monte Carlo Method

The ensemble M onte Carlo technique has been used now for more than 30 years as a numer
ical method to simulate nonequilibrium transport in semiconductor materials and devices 
and has been the subject of numerous books and reviews [136-138]. In application to trans
port problems, a random walk is generated to simulate the stochastic motion of particles 
subject to collision processes in some medium. This process of random walk generation may 
be used to evaluate integral equations and is connected to the general random sampling 
technique used in the evaluation of multidimensional integrals [139].

The basic technique is to simulate the free particle motion (referred to as the free flight) 
terminated by instantaneous random scattering events. The Monte C arlo  algorithm consists 
o f generating random free flight times for each particle, choosing th e  type of scattering 
occurring at the end of the free flight, changing the final energy a n d  momentum of the
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particle after scattering, and then repeating the procedure for the next free flight. Sampling 
the particle motion at various times throughout the simulation allows for the statistical 
estimation of physically interesting quantities such as the single particle distribution function, 
the average drift velocity in the presence of an applied electric field, the average energy 
of the particles, and so on. By simulating an ensemble o f particles, representative of the 
physical system of interest, the nonstationary time-dependent evolution of the electron and 
hole distributions under the influence of a time-dependent driving force may be simulated.

The particle-based picture, in which the particle motion is decomposed into free flights 
terminated by instantaneous collisions, is basically the same picture underlying the derivation 
of the semi-classical BTE. In fact, it may be shown that the one-particle distribution function 
obtained from the random walk Monte Carlo technique satisfies the BTE for a homogeneous 
system in the longtime limit [140].

3.1.1. Free Flight Generation
In the Monte Carlo method, the dynamics of particle motion is assumed to consist of free 
flights terminated by instantaneous scattering events, which change the momentum and 
energy of the particle. To simulate this process, the probability density P(t )  is required, in 
which P(t )dt  is the joint probability that a particle will arrive at time t without scattering 
after the previous collision at t =  0, and then suffer a collision in a time interval dt around 
time t. The probability of scattering in the time interval dt around t may be written as 
r [ k ( /)]<//, where T[k(/)] is the scattering rate of an electron or hole of wavcvector k. The 
scattering rate, F [k(0],  represents the sum o f  the contributions from each individual scat
tering mechanism, which are usually calculated using perturbation theory, as described later. 
The implicit dependence of F[k(/)] on time reflects the change in k due to acceleration by 
internal and external fields. For electrons subject to time independent electric and magnetic 
fields, Eq. (133) may be integrated to give the time evolution of k between collisions as

where E is the electric field, v is the electron velocity [given by Eq. (136)], and B is the mag
netic flux density. In terms o f  the scattering rate, F [k(/)], the probability that a particle has

Random flight times may be generated according to the probability density P(t )  above 
using, for example, the pseudorandom number generator implicit on most modern corn-

direct method (see, for example, Ref. [136]), random flight times sampled from P(t )  may 
be generated according to

where r is a uniformly distributed random number and /,. is the desired free flight time. 
Integrating Eq. (138) with P(t )  given by Eq. (137) above yields

Equation (140) is the fundamental equation used to generate the random free flight time 
after each scattering event, resulting in a random walk process related lo the underlying

k(/) =  k ( 0 ) -
c'(E +  v x B)t

(136)
h

not suffered a collision after a time t is given by exp( — /’[ F [k (t ' )]dt').  Thus, the probability 
of scattering in the time interval dt  after a free flight of time t may be written as the joint 
probability

puters, which generate uniformly distributed random numbers in the range [0,1]. Using a

(138)
o

Since 1 — r is statistically the same as /*, Eq. (139) may be simplified to

(139)

o
(140)
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particle distribution function. If there is no external driving field leading to a change of 
k between scattering events (for example, in ultrafast photoexcitation experiments with no 
applied bias), the time dependence vanishes, and the integral is trivially evaluated. In the
general case where this simplification is not possible, it is expedient to introduce the so
called self-scattering method [141], in which we introduce a fictitious scattering mechanism 
whose scattering rate always adjusts itself in such a way that the total (self-scattering plus 
real scattering) rate is a constant in time

r  =  r [ k ( 0 ]  +  r sclf[ k ( 0 ]  ( i 4 i )

where Fsd, [ k ( 0 |  is the self-scattering rate. The self-scattering mechanism itself is defined 
such that the final state before and after scattering is identical. Hence, it has no effect on 
the free flight trajectory of a particle when selected as the terminating scattering mechanism, 
yet results in the simplification of Eq. (140) such that the free flight is given by

= - p l n r  (142)

The constant total rate (including self-scattering) F is chosen a priori so that it is larger than 
the maximum scattering encountered during the simulation interval. In the simplest case, a 
single value is chosen at the beginning of the entire simulation (constant gamma method), 
checking to ensure that the real rate never exceeds this value during the simulation. O ther 
schemes may be chosen that are more computationally efficient, and which modify the choice 
of T at fixed time increments [142].

3.1.2. Final State after Scattering
The algorithm just described determines the random free flight times during which the 
particle dynamics is treated semielassically according to Eq. (136). For the scattering process 
itself, we need the type of scattering (i.e.. impurity, acoustic phonon, photon emission, etc.), 
which terminates the free flight, and the final energy and momentum of the particle(s) after 
scattering. The type of scattering which terminates the free flight is chosen using a uniform 
random number between 0 and F, and using this pointer to select among the relative total 
scattering rates of all processes including self-scattering at the final energy and momentum 
of the particle:

r  =  r sc!f[/i, k] +  r , K  k] +  r 2[n, k] +  • • ■ +  r *[«, k] (143)

with n the band index of the particle (or subband in the case of reduccd-dimensionality 
systems), and k the wave vector at the end of the free-flight.

Once the type of scattering terminating the free flight is selected, the final energy and 
momentum (as well as band or subband) of the particle due to this type of scattering must 
be selected. For this selection, the scattering rate, F^//, k; m, k ], of the yth scattering mech
anism is needed, where n and m  are the initial and final band (subband) indices, and k 
and k are the particle wavcvcctors before and after scattering. Defining a spherical coor
dinate system around the initial wavevector k. the final wavevector k' is specified by |k'| 
(which depends on conservation of energy) as well as the azimuthal and polar angles, ip 
and 6 around k. Typically, the scattering rate, F J ^ k ;  /??, k'j, only depends on the angle 0 
between k and k . Therefore, ip may be chosen using a uniform random number between 0 
and 277 (i.e., 27rr), while 0 is chosen according to the cross section for scattering arising from 
! ,[/?, k; /??, k ]. If the probability for scattering into a certain angle P(0)d0  is integrable, then 
random angles satisfying this probability density may be generated from a uniform distribu
tion between I) and l through inversion of Eq. ( 140). Otherwise, a rejection technique (see. 
for example. Ref. [ 136, 137]) may be used to select random angles according to P(0).

3.1.3. Ensemble Monte Carlo Simulation
The algorithm above may be used to track a single particle over many scattering events in 
order to simulate the steady-state behavior of a system. Transient simulation requires the 
use of a synchronous ensemble of particles in which the algorithm above is repeated for each 
particle in the ensemble representing the system of interest until the simulation is completed.
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Figure 26 illustrates an ensemble Monte Carlo simulation in which a fixed time step. A/, is 
introduced lo which the motion of all the carriers in the system is synchronized. The symbols 
illustrate random, instantaneous, scattering events, which may or may not occur during one 
time step. Basically, each carrier is simulated only up to the end of the time step, and then 
the next particle in the ensemble is treated. Over each time step, the motion of each particle 
in the ensemble is simulated independent of the o ther particles. Nonlinear effects such as 
carrier-carrier interactions or the Pauli exclusion principle are then updated at each times 
step, as discussed in more detail below.

The nonstationary one-particle distribution function and related quantities such as drift 
velocity, valley or subband population, and so on, are then taken as averages over the ensem
ble at fixed time steps throughout the simulation. For example, the drift velocity in the 
presence of the field is given by the ensemble average of the component of the velocity at 
the n th time step as

1 _
v . ( n \ t )  =  — v i ( n M )  (144)

.1=1

where N  is the num ber of simulated particles and j  labels the particles in the ensemble. This 
equation represents an estimator of the true velocity, which has a standard error given by

( ,45)

where (r: is the variance which may be estimated from [139]

N  ( 1 v I
O’2 "  T7--------------------------------------------7 5 - 1  ( 14 fi)

Similarly, the distribution functions for electrons and holes may be tabulated by counting the 
number of electrons in cells of A:-space. From Eq. (145), we see that the error in estimated 
average quantities decreases as the square root of the number of particles in the ensemble, 
which necessitates the simulation of many particles. Typical ensemble sizes for good statistics 
are in the range of 1()4-1(F particles. Variance reduction techniques to decrease the standard 
error given by Eq. (146) may be applied to enhance statistically rare events such as impact 
ionization or electron-holc recombination [137].

3.1.4. Scattering Processes
Free carriers (electrons and holes) interact with the crystal and with each other through a 
variety of scattering processes which relax the energy and momentum of the particle. On the 
basis of first-order, time-dependent perturbation theory, the transition rate from an initial 
state k in band n to a final state k' in band m  for the yth scattering mechanism is given by
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Figure 26. Ensem ble M onte C arlo  sim ulation in which a tim e step. A/, is in troduced over which the m otion of 
particlcN is synchronized. T he crosses ( x ) represent scattering events. R eprin ted  with perm ission from D. Vasileska 
and S. G oodnick. "Encyclopedia o f M aterials. Science and Technology.” Elsevier, 2001, p . I. €■ 2 0 0 1. Elsevier.
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Fermi’s golden rule [143]:

I ,[», k; m,  k'] =  ^ | < w ,  k'lK,(r)|«, k) |25 (£ k. -  Ek ^ h o )  (147)

where K,-(r) is the scattering potential of this process, and E k and E k> are the initial and 
final state energies of the particle. The delta function results in conservation of energy for 
long times after the collision is over, with hco the energy absorbed (upper sign) or emitted 
(lower sign) during the process. Scattering rates calculated by Fermi's golden rule above are 
typically used in Monte Carlo device simulation as well as simulation of ultrafast processes. 
The total rate used to generate the free flight in Eq. (142), discussed in the previous section, 
is then given by

l > . k ]  =  ^  £  |(/H,k'|Ky(r ) |H,k) | -5 (£k. - E k T hw) (148)
ni. k

There are major limitations to the use of the golden rule due to effects such as collision 
broadening and finite collision duration time [140]. The energy conserving delta function is 
only valid asymptotically for times long after the collision is complete. The broadening in the 
final state energy is given roughly by AE  ~  / i / r ,  where r  is the time after the collision, which 
implies that the normal E(k)  relation is only recovered at long times. Attempts to account 
for such collision broadening in Monte Carlo simulation have been reported in the literature 
[144, 145], although this is still an open subject of debate. Inclusion of the effects of finite  
collision duration in Monte Carlo simulation have also been proposed [146, 147]. Beyond 
this, there is still the problem of dealing with the quantum mechanical phase coherence of 
carriers, which is neglected in the scatter free-Hight algorithm of the Monte Carlo algorithm. 
This topic is discussed later in Section 6.

Figure 27 lists the scattering mechanisms one should in principle consider in a typical 
Monte Carlo simulation. They are roughly divided into scattering due to crystal defects, 
which is primarily elastic in nature, lattice scattering between electrons (holes) and lat
tice vibrations or phonons, which is inelastic, and finally scattering between the particles 
themselves, including both single particle and collective type excitations. Phonon scattering 
involves different modes of vibration, either acoustic or optical, as well as both transverse 
and longitudinal modes. Carriers may either emit or absorb quanta of energy from the 
lattice, in the form of phonons, in individual scattering events. The designation of inter- 
versus intravaliey scattering comes from the multivalley band-structure model mentioned 
in Section 2 and refers to whether the initial and final states are in the same valley or in 
different valleys. The scattering rates F^/i, k; w, k ] and f ; [/7, k] arc calculated using time- 
dependent perturbation theory using Fermi’s rule, Eqs. (147) and (148), and the calculated 
rates are then tabulated in a scattering table to select the type of scattering and final state 
after scattering as discussed earlier.

Scattering Mechanisms

Figure 27. Scattering m echanism s in a typical sem iconductor. R eprin ted  with perm ission from D. Vasileskfc and 
S. Goodnick. "Encyclopedia of M aterials. Science and Technology." Elsevier. 2001. p. 1. <0 2001. Elsevier.
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3.1.5. Multicarrier Effects
Multiparticle effects relate to the interaction between particles in the system, which is a 
nonlinear effect when viewed in the context of the BTE, due to the dependence of such 
effects on the single particle distribution function itself. Most algorithms developed to deal 
with such effects essentially linearize the BTE by using the previous value of the distribution 
function to determ ine the time evolution of a particle over the successive time-step. Multi
carrier effects may range from simple consideration of the Pauli exclusion principle (which 
depends on the exact occupancy of states in the system), to single particle and collective exci
tations in the system. Inclusion of carrier-carrier interactions in Monte Carlo simulation has 
been an active area of research for quite some time and is briefly discussed below. Another 
carrier-carrier effect that is of considerable importance when estimating leakage currents in 
M OSFET devices, is impact ionization, which is a pure generation process involving three 
particles (two electrons and a hole or two holes and an electron). The latter is also discussed 
below.

3.1.5.1. P auli E x c lu s io n  P rincip le . The Pauli exclusion principle requires that the bare 
scattering rate given by Eq. (147) be modified by a factor I —/„,(k ')  in the collision integral 
of the BTE, where f m(k') is the one-particle distribution function for the state k' in band 
(subband) m  after scattering. Since the net scattering rate including the Pauli exclusion 
principle is always less than the bare scattering rate, a self-scattering rejection technique 
may be used in the Monte Carlo simulation as proposed by Bosi and Jacoboni [ 148] for one 
particle simulation and extended by Lugli and Ferry [ l 49] for EMC. In the self-scattering 
rejection algorithm, an additional random number r is generated (between 0 and l), and 
this num ber is com pared with ./’„(k ), the occupancy of the final state (which is also between
0 and l when properly normalized for the numerical k-space discretization). If r is greater 
than /,„(k '),  the scattering is accepted and the particle's mom entum  and energy are changed. 
If this condition is not satisfied, the scattering is rejected, and the process is treated as a 
self-scattering event with no change of energy or momentum after scattering. Through this 
algorithm, no scattering to this state can occur if the state is completely full.

3.1.5.2. C arrier-C arrier In tera c tio n s . Carrier-carrier interactions, apart from degeneracy 
effects, may be treated as a scattering process within the Monte Carlo algorithm on the same 
footing as o ther mechanisms. In the simplest case of bulk electrons in a single parabolic 
conduction band, the process may be treated as a binary collision where the scattering rate 
for a particle of wave vector k<, due to all the o ther particles in the ensemble is given by f 150):

where / ( k) is the one-particle distribution function (normalized to unity), e is the perm it
tivity, n is the electron density, and /3 is the screening constant. In deriving Eq. ( 149), one 
assumes that the two particles interact through a statically screened Coulomb interaction, 
which ignores the energy exchange between particles in the screening which in itself is a 
dynamic, frequency-dependent effect. Similar forms have been derived for electrons in 2D 
[ 15 1, 152] and ID  [ 153], where carrier-carrier scattering leads to inter-subband as well as 
intra-subband transitions. Since the scattering rate in Eq. ( 149) depends on the distribution 
function of all the o ther particles in the system, this process represents a nonlinear term as 
discussed earlier. O ne method is to tabulate / ( k) on a discrete grid, as is done for the Pauli 
principle, and then numerically integrate Eq. (149) at each time step. An alternate method 
is to use a self-scattering rejection technique [154], where the integrand excluding / ( k) is 
replaced by its maximum value and taken outside the integral over k. The integral over / ( k) 
is just unity, giving an analytic form used to generate the free flight. Then, the self-scattering 
rejection technique is used when the final state is chosen to correct for the exact scattering 
rate compared to this artificial maximum rate, similar to the algorithm used for the Pauli 
principle.

The treatment of intercarrier interactions as binary collisions above neglects scattering 
by collective excitations such as plasmons or coupled plasmon-phonon modes. These effects

(149)
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may have a strong influence on carrier relaxation, particularly at high carrier density. One 
approach is to make a separation of the collective and single-particle spectrum of the inter
acting many-body Hamiltonian, and treat them separately (i.e., as binary collisions for the 
single particle excitations), and as electron-plasmon scattering for the collective modes [155]. 
Another approach is to calculate the dielectric response within the random phase approx
imation, and associate the damping given by the imaginary part of the inverse dielectric 
function with the electron lifetime [156].

A semiclassical approach to carrier-carrier interaction, which is fully compatible with the 
Monte Carlo algorithm, is the use of Molecular Dynamics [157], in which carrier-carrier 
interaction is treated continuously in real space during the free-flight phase through the 
Coulomb force of all the particles. A very small time step is required when using molecular 
dynamics to account for the dynamic distribution of the system. A time step on the order 
of 0.5 fs  is often sufficiently small for this purpose. The small time step assures that the 
forces acting on the particles during the time of flight are essentially constant, that is f ( t )  = 
f ( t  -f A/), where / ( / )  is the single particle distribution function.

Using Newtonian kinematics, we can write the real space trajectories of each particle as

m

Here, F(/) is the force arising from the applied field as well as that of the Coulomb interac
tions. We can write F (t) as

where qE is the force due to the applied field and the summation is the interactive force 
due to all particles separated by distance r,, with <p(r,) the electrostatic potential. As in 
Monte Carlo simulation, one has to simulate a finite num ber of particles due to practical 
computational limitations on execution time. In real space, this finite number of particles 
corresponds to a particular simulation volume given a certain density of carriers, V  =  N / n ,  
where n is the density. Since the carriers can move in and out of this volume, and since 
the Coulomb interaction is a long-range force, one must account for the region outside
V by periodically replicating the simulated system. The contributions due to the periodic 
replication of the particles inside V  in cells outside has a closed form solution in the form 
of an Ewald sum [158], which gives a linear as well as l /r : contribution to the force. The 
equation for the total force in the molecular dynamics technique then becomes

The above equation is easily incorporated in the standard M onte Carlo simulation discussed 
up to this point. At every time step the forces on each particle due to all the other particles 
in the system are calculated from Eq. (152). From the forces, an interactive electric field is 
obtained which is added to the external electric field of the system to couple the molecular 
dynamics to the Monte Carlo.

The inclusion of the carrier-carrier interactions in the context of particle-based device 
simulations is. discussed in Section 3.1.2. The main difficulty in treating this interaction term 
in device simulations arises from the fact that the long-range portion of the carrier-carrier 
interaction is included via the numerical solution of the quasi-static Poisson equation (see 
Section 4.2). Under these circumstances, special care has to be taken when incorporating 
the short-range portion o f  this interaction term to prevent double counting of the force.

3.1.5.3. B a n d -to -B a n d  im p a c t  Ion iza tion . Another carrier-carrier scattering process is 
that of impact ionization, in which an energetic electron (or hole) has sufficient kinetic 
energy to create an electron-hole pair. Impact ionization therefore leads to the process of

2 m
(150)

and

(I5 l)

F(l) = q  E - £ V * > ( r , ( 0 ) (152)

(153)



Com pu t at ion a I Nan oc 1 e ct ron i cs 57

carrier multiplication. This process is critical for example in the avalanche breakdown of 
semiconductor junctions, and is a detrimental effect in short channel MOS devices in terms 
of excess substrate current and decreased reliability.

The ionization rate of valence electrons by energetic conduction band electrons is usually 
described by Fermi's rule Eq. (147), in which a screened Coulomb interaction is assumed 
between the two particles, as discussed earlier in this section, where screening is described 
by an appropriate dielectric function such as that proposed by Levine and Louie [159]. In 
general, the impact ionization rate should be a function of the wavevector of the incident 
electron, hence of the direction of an electric Held in the crystal, although there is still some 
debate as to the experimental and theoretical evidence. More simply, the energy dependent 
rate (averaged over all wavevectors on a constant energy shell) may be expressed analytically 
in the power law form

V ^ E )  =  P[E -  E J '  (154)

where is the threshold energy for the process to occur, which is determined by m om en
tum and energy conservation considerations, but minimally is the bandgap of the material
itself. P and a are parameters that may be fit to more sophisticated models. The Keldysh
formula [160] is derived by expanding the matrix element for scattering close to threshold, 
which gives a =  2, and the constant P = C /  E~h, with C =  1.19 x 10l4/s and assuming a 
parabolic band approximation,

3 - 2 m j m v r  , 1 W
=  “j--------- 7-----( 155)1 — m v/ m (.

where m v and m c are the effective masses of the valence and conduction band respectively, 
and is the bandgap. More complete full-bandstructure calculations of the impact ioniza
tion rate have been reported for Si [161, 162], GaAs [162, 163] and wide bandgap materials 
[164], which are fairly well fit using the power law model given in Eq. (159).

Within the ensemble Monte Carlo method, the maximum scattering rate is used to gener
ate the free flight time. The state after scattering of the initial electron plus the additional 
electron and hole must satisfy both energy and momentum conservation within the Fermi 
rule model, which is somewhat complicated unless simple parabolic band approximations 
are made.

3.1.6. Full-Band Particle-Based Simulation
The Monte Carlo algorithm discussed in this section initially evolved during the 1970s and 
early 1980s using simplified representations of the electronic bandstructure in terms of a 
multivalley parabolic or nonparabolic approximation close to band minima and maxima. This 
simplifies the particle tracking in terms of the E-k  relationship and particle motion in real 
space, and greatly simplifies the calculated scattering rates such that analytical forms may 
be used. It soon became apparent that for devices where high field effects arc important, 
or for the correct simulation of high energy processes like impact ionization, the full band 
structure of the material is required. Particle based simulation which incorporates part or all 
of the band structure directly into the particle dynamics and scattering is commonly referred 
to as full-hand  Monte Carlo simulation [138].

Typically, the empirical pseudopotential method (EPM ) discussed in Section 2.1 has been 
utilized in full band Monte Carlo codes due to the relative simplicity of the calculation, 
and the plane wave basis which facilitates calculation of some scattering processes. Early 
full band codes developed at the University of Illinois utilized the full bandstructure for 
the particle dynamics, but assumed isotropic energy dependent scattering rates using the 
full band density of states [138]. This is due to the computational difficulty and memory 
requirements to store the full /.'-dependent scattering rates throughout the whole Brillouin 
zone. Later simulators relaxed this restriction, although often assuming quasi-isotropic rates. 
Probably the most completely developed full-band code for full-band Monte Carlo device 
simulation is the DAM OCLES code developed at IBM by Fischetti and Laux [261]. which 
has been used extensively for simulation of a variety of device technologies [ 166].
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The full-band codes above are based on essentially the same algorithm as was discussed 
in Section 3.1, in which a particle scatters based on the total scattering rate, then the type 
of scattering and the final state after scattering are selected using the full A--dependent rates 
for each mechanism. An alternative approach, referred to as Cellular Monte Carlo [167], 
stores the entire transition table for the total scattering rate for all mechanisms from every 
initial state k  to every final state k \  Particle scattering is accomplished in a single step, at 
the expense of large memory consumption (on the order of 2 Gbytes of RAM) necessary to 
store the necessary scattering tables.

Figure 28 shows the calculated steady state drift velocity and average energy for Si as a 
function of electric field for the CM C  method and the earlier results from DAM OCLES 
which are essentially the same. In such simulations, steady state is typically reached after
2 ps of simulation time, and then averages are calculated over the ensemble and in time for 
several picoseconds thereafter.

3.2. Semiclassical Transport for Low-Dimensional Systems
As mentioned earlier, confinement of electrons in a heterojunction or oxide-semieonductor 
interface result in quantum confinement of the motion, and reduction of the dimensionality 
of carriers to form a quasi two-dimensional electron gas (2DEG). The properties of two- 
dimensional electrons in the inversion layer of a Si-SiO: MOS structure were extensively 
studied in the 1970s and 1980s, where a thorough review is in Ref. [168]. The band edge 
profile across an MOS structure is shown in Fig. 29. Typically MOS structures are fabricated 
on (100) Si substrates, where the SiO: layer is an insulator due to its wide bandgap. A 2DEG 
is induced electrostatically by application a positive voltage V(r forming an inversion layer 
if the substrate is p-type. The sheet density of 2DEG can be described as

N\ = ( K - y , ) (156)

where V r is the threshold voltage for the formation of an inversion layer.
Another important 2DEG system is the modulation-doped GaAs-AIGaAs heterostruc- 

tures, shown in Fig. 30. The bandgap of AIGaAs is wider than in GaAs, hence confining 
electrons into the GaAs side. As Fig. 30 illustrates, when chemical equilibrium is established 
after formation of a heterojunction, an inversion layer is formed at the interface.

The 2DEG created by modulation doping can be further confined into narrow one
dimensional ( ID) channels by selective depletion in spatially separated regions. The simplest 
lateral confinement technique is to create split metallic gates [8. 9], or quantum point con
tacts, as shown in Fig. 31.

3.2. 1. Wave Functions
In Section 2.5, a ID self-consistent Schrodinger-Poisson solver (SC H R ED ) for calculating 
the energy eigenvalues and the corresponding eigenfunctions for a MOS capacitor structure
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Figure 29. Band diagram  showing conductance band E t , valence band £ , and quasi-Ferm i level A 2D EG  
is form ed at the interface betw een the oxide (SiO ): and p- type silicon substrate  as a consequence of the gale 
voltage I ..

was described. As discussed earlier in connection with SC H R E D , VH is the Hartree con
tribution to the total potential energy, which is obtained as a solution o f  the ID Poisson 
equation. Under certain conditions, one can approximate the potential energy term and 
obtain approximate analytical values for the eigenvalues and the eigenvectors.

For example, if the inversion layer contribution to the Hartree potential energy is negli
gible compared to the depletion layer contribution uk for small values of z (z  <£ w) one can 
approximate the potential energy profile given in a MOS capacitor by

e2 N w
V (z) ^  — ——  = eE (157)

where E s is the electric field at the semiconductor-insulator interface (z =  0) and w  is the 
width of the depletion region. This is called the triangular-potential approximation. It leads 
to the Airy equation with solutions [169. 170]:

il'i(z) = A i
2 m* e E s

( - £ ) (158)

and

t  n 2 \ - r  3 / .  3 \

'"Us) —  , + 5 (159)
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Figure 30. Band structure o f the interface between n -AIGaAs and intrinsic GaAs. (a) before and (b) a fter the 
charge transfer.
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Figure 31. On the form ation o f a ID channel by a split gate superim posed over a 2DEG structure.

The eigenvalues e, are asymptotic values for large /, but they are quite close even for the 
ground state i =  0. The exact eigenvalues for the three lowest states have / +  |  in Eq. (159) 
replaced by 0.7587, 1.7540, and 2.7525, respectively.

The triangular-potential approximation is a reasonable approximation when there is little 
o r no charge in the inversion layer, but fails when the inversion charge density is comparable 
to or greater than the depletion charge density N ikp[ = N, w.  At low temperatures and mod
erately high inversion charge densities and (100) orientation of the surface, only the lowest 
subband of the two equivalent valleys with longitudinal mass perpendicular to the interface 
is usually occupied. In this case, a variational approach gives a good estimate for the energy 
of the lowest subband. One can approximate the wave function of the lowest subband with 
some trial function. The trial function proposed by Fang and Howard [171] is

/  iy  \ 1 :
fM2) = I t )  ẑ /2 (160)

where h is a param eter which is determined by minimizing the total energy of the system 
for given values of the inversion and depletion charges. The total energy per electron, the 
quantity that needs to be minimized, is then given by

E  ^  /  h 2lr  \  /3<?2/Vdepl 6 e2N , \  1 / 3 3 e 27 V \
S  = 7 + ^  + F' = ( ^ )  + ( ^ - ^ )  + 2 ( W )  <‘61>

The first term in Eq. (161) represents the expectation value of the kinetic energy of the 
electron, while the second and third terms correspond to the average potential energies of 
the electron interacting with the depletion and inversion charge. The factor 1/2 in Eq. (161) 
prevents double counting of the electrons. After some algebra, one finds that the value of b 
that minimizes the average energy per electron is

/  U n i t e 2 N*  \ ! '
* = ( - * & - )  <l62>

where

N-  = N ^ + ^ N ,  (163)

The energy of the lowest state is found after a straightforward calculation to  be

£() =  T  -f Vd -f V, (164)

and the inversion charge contribution to ! / / ( - )  reduces it)

(165)
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3.2.2. Density of States
The density of states g ( E )  is defined as the num ber of states per energy interval /:. E +clE. 
It is clear that

j?(£) =  £ 5 (  £ - £ , , )  (166)
11

where cx is the set of quantum  numbers characterizing the states. In the present case, it
includes the subband quantum  number n, spin quantum num ber <r, valley quantum number
v and the in-plane quasi-momentum k. If the spectrum is degenerate with respect to spin 
and valleys, one can define the spin degeneracy vs and the valley degeneracy v v to get

8 {E )  = ^ y ^ S d,'k 8 ( E - E ’' ) (167)

Here we calculate the num ber o f  states per unit volume, cl being the dimension of the space. 
For 2D case, we obtain easily

V V  HI

=  (>68)„

Within a given subband the 2D density o f  states function is energy independent. Since there 
can exist several subbands in the confining potential, the total density of states can be repre
sented as a set o f  steps, as shown in Fig. 32. At low temperature (k HT  E,,) all the states 
are filled up to the Fermi level. Because of energy-independent density of states, the sheet 
electron density is linear in the Fermi energy, namely

(1W)
Irrn-

The Fermi momentum in each subband can be determined as

1
k,„  =  -  v/2m( £ , , - £ „ )  (170)

h

In Eq. (169), N  is the num ber of transverse modes having the edges E n below the Fermi 
energy.

The situation is more complicated if the gas is confined in a narrow, ID channel, say,
along y-axis. In a similar way, the in-plane wave function can be decoupled as a product

(//(r )  a  r}(y)e‘k x (171)

the corresponding energy being

=  £  +  £ , ( * , )  + ^  (172)
lm

Ei Bj

Figure 32. D ensity of stales for a quasi-2D  system.

^ 3  Energy
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In Eq. (172), E ns =  E n 4- E s characterizes ihe energy level in the potential confined in both 
(z and y) directions. For square-box confinement, the terms are

( s t t H ) 2
=  0 7 3 )

where W  is the channel width, while for the parabolic confinement U(y )  =  (1 /2 )m w ^y2 
(typical for split-gate structures)

£ , =  ( s  -  (174)

For such system, the total density of states is

vj>,s /m „  B (E  — E„k)

/iv V

which is singular at the ID subband edge. The energy dependence of the density of  states 
for the case of parabolic confinement is shown in Fig. 33.

3.2.3. Scattering Rate Calculation for Low-Dimensional Systems
Calculation of the scattering rates for confined carriers proceeds in a similar manner as in 
the 3D case (see Section 3.1), although with initial and final states defined by not only the 
initial final wavevector of the electron, but the confined states corresponding to initial and 
final subbands as well. Before going into the details of the matrix elements of some of the 
major scattering mechanisms listed in Fig. 27, some general expressions are first derived. 
Suppose we want to calculate the scattering out of some initial state k in subband /z, Fermi's 
golden rule can then be employed, which gives the transition rate from a state k in subband 
n into a state k belonging to a subband /?/:

S „ J k ,  k ) =  ^ | M ( k ,  k ' ) | - E ' ±  hw)  (176)

Assuming a plane-wave basis for the wave functions in the unconfined direction (.vy-plane), 
the total wave functions of the initial and the final states are of the following general form 
(for a quasi-2DEG):

t//„(k,z) =  - J= c ' ,k'V „(z ) .  (Am(k', z )  =  ~ e ik'ri p j z ' )  (177)
sj A y/A

Figure 33. Density ol stales lor a quasi-!1) system (solid line) ami ihe num ber o! states idashed  lines).
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where A  is the area of the sample, r  is the waveveclor in the .vv-plane and R =  (r, z) is a 3D 
wavevector. The matrix element for scattering between states k and k in subbands n and m  
is then given by

M ( k . k ' ) ... =  L f e i i k k h 'cl: r J (178)

where H (jr is the interaction potential and the form of the integral with respect to z depends 
upon the type of the scattering mechanics considered [172]. It is also important to note that 
in low-dimensional systems, since the momentum is quantized in one or two directions to 
form subbands, there are additional intrasubband  and intersubband transitions, which compli
cates the generation of scattering tables and choice of the final state after scattering. Below, 
the matrix elements for some of the most important scattering mechanisms are discussed in 
detail for quasi-2D systems.

3.2 .3 .1 . C o u lo m b  S ca tte r in g .  Scattering associated with the Coulomb centers near the 
plane of the 2D EG in either a heterostructure system or MOS devices can be separated in 
contributions from the depletion layer, the interface charge and the barrier/oxide charge. An 
extensive discussion of the role of multiple-scattering contributions to the electron mobility 
o f a doped semiconductor and the apparent difficulties with the impurity averaging is pre
sented in the papers by Moore [173], and Kohn and Luttingcr [174, 175]. The expressions 
for the potential due to a single charge located in the region of interest in which the image 
term is properly included, are given by Stern and Howard [176], which is generalized below 
for the many-subband case.

Using the usual method of images [177], one easily finds that, in the presence of a dis
continuity at z — 0 in the dielectric constant between two materials, the potential due to a 
charged center located at R, =  ( r f, z t ) equals

Uj(r,  2 ) =  -7—r  f= = L  =  (179)
4 ^ '  y (r  — r f)2 +  (z — z,Y-

for 2 , < 0, and

U l( r , z ) =  C
47Tk

n  i £ < > n \
-  ( 1 + -  — -

U v £ s c  /

I 1 /  e.w \  1
+

v V  — r,)2 +  (z -  2,)- 2 \  e sJ  v/ ( r _  r , )2 +  (z -  z , )2.
(180)

for z, > 0. In Eqs. (179) and (180), k  — ().5(£sc +  e ox) is the average dielectric constant at 
the interface.

Depletion charge scattering is due to the ionized charges in the depletion layer, which 
is relevant for both the MOS case, and for a simple AlGaAs/GaAs heterojunction. Using 
Eq. (180), the matrix clement squared for scattering between subbands n and rn due to the 
depletion charge is equal to

|( / ; | ( / Jcpl(£/)|/?i)|2 =  | t C ( q ) | : =  K w J  —  )  A-nm(q)  f  clz,Ol , (ch z,)  (181)
\  ZKC] /  'Ml

where /VJcp) is the depiction charge density, R, = (rh z t ) is the location of an arbitrary charge 
center in the depletion region and A,Im(cj) and Onm(ch z i) afe the form factors due to the 
finite extension of the electron gas in the quantization direction of the form
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respectively, where

a {,w, (q-  Zi) =  [  d z i p A z ^ i p J z )‘Ml
(184)

In the above expressions, q is a wavevector in the plane parallel to the interface (.vy-plane 
in our case).

At the Si/S i02 interface, there are always a large num ber of Coulomb centers near the 
interface, due to the disorder and defects in the crystalline structure in the neighborhood of 
the interface. They are associated with the dangling bonds and can lead to charge-trapping 
centers which scatter the free carriers through the Coulomb interaction. In MBE grown 
heterolayers, this interface state density is usually much lower, as there are relative few 
dangling bonds in such lattice matched structures. Using Eq. (179), the matrix element 
squared for the scattering from a sheet charge with charge density Nit located in the oxide, 
at a distance 2 , (2 , < 0) from the interface is

|<«|t/"(q)i/77>|- =  | t / , ' ' ( q ) |2 =  M
j V

V.2*J . <■i .
(185)

For interface-trap scattering, 2 , =  0. By similar arguments, one finds that the matrix element 
for scattering from the charges in the oxide or A lGaAs barrier region, with charge density
N m , is given by

K / i | ^ “ (q)|/n>|2 =  |f;™(q)|2 =  A/ra
2 1 _

2q
(186)

where d ox is the oxide thickness. For a modulation doped heterostructure system, where 
an undoped spacer layer of thickness cl exists, the lower limit of the integration over the 
impurity configuration is no longer zero, resulting in multiplication of Eq. (186) by a factor 
e which attenuates the scattering rate, resulting in higher mobility generally.

3.2.3.2. S u r fa c e -R o u g h n e s s  S c a tte r in g . This scattering mechanism is associated with 
interfacial disorder due to the random variation of the position of the interface, again in 
either oxide-semiconductor or heterostructure systems. For a MOS system, the degree of 
interface roughness depends upon the oxidation tem perature and ambient as well as postox
idation anneal and removal of the wafer from the furnace. In heterostructure systems, the 
degree of roughness is related to issues in epitaxial growth, such as the relative diffusivitv 
of  column V elements on the surface during growth. Early theories on surface-roughness 
were based on the Boltzmann equation, in which the surface is incorporated via boundary 
conditions on the electron distribution function f 178-180). The first quantum-mechanical 
treatment of the problem was given by Prange and Nee [181]. Subsequently, the theory 
followed two different paths.

The basic idea of the first approach is to incorporate the variations in the confining poten
tial of the rough surface as a boundary condition on the Hamiltonian of the system. Since 
there is no simple perturbation theory to treat arbitrary changes in the boundary condi
tions, the problem of a free-electron Hamiltonian with complicated boundary conditions is 
then transformed by an appropriate coordinate transformation into a problem with sim
pler boundary conditions (i.e., into a problem where we have flat surfaces). This coordinate 
transformation technique has been proposed by Tesanovic et al. [1821 and was later used 
by Trivedi and Ashcroft [183]. As a consequence of this transformation, the Hamiltonian of 
the system now has additional terms that play the role of potential interaction terms. These 
additional terms are treated by perturbative techniques, which are valid when the roughness 
of the surface is small com pared to the thickness of the well.

In the second approach [104], the effect of the surface roughness is taken into accoun: 
through a random local potential term

K M A(r>] -  y „ m - z )  = K M z ) M r ) (187
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which is then treated perturbatively. The random function A(r) is a measure of the rough
ness and is most conveniently expressed in terms of the auto covariance function of A(r). 
The power spectrum S(q)  is the two-dimensional Fourier transform of the auto covariance 
function of A(r). For the Gaussian correlated roughness that is usually assumed [184-188], 
the power spectrum is given by

(188)

Parameters A and (  characterize the r.m.s. height of the bumps on the surface and the rough
ness correlation length, respectively. Goodnick et al. [189] made extensive analysis of high- 
resolution transmission electron microscopy (HRTEM ) measurements to test the assumption 
of Gaussian correlation. They found that exponential correlation describes roughness much 
better than the Gaussian correlation irrespective of growth conditions. Roughly speaking, it 
means that the interface may be regarded as consisting of terraces of a few nanometers in 
size separated by atomic steps of a few tenths of nanometers, as shown in Fig. 34. This result 
has recently been confirmed by Atomic Force Microscope (AFM ) measurements [190]. The 
power spectrum for the exponential correlation is given by

^ " >  =  < T T W 7 5 F  (189)

A generalization of the result given in Eq. (189) is a self-affine roughness correlation 
function, which in two-dimensions is of the form

5" W =  (1 +  ^ / 4 - , ) - '  " 9t' )

where, n > 0 is an exponent describing the high-c/ fall-off of the distribution. It reduces to 
exponential correlation for n =  0.5.

For identical roughness parameters, the Gaussian spectrum decays slower for small 
wavevectors and then falls to zero rapidly for large wavevectors. The exponential model also 
leads to a rougher interface due to the tails in the spectrum, which allows for short-range 
fluctuations to be considered as well. For n < 0.5 and small values of q, the power spectrum 
of the self-affine model decays faster compared with the previous two models, but then falls 
slowly for large wavevectors. This essentially means that, in this regime, it also allows for 
short-range fluctuations to be considered. For large exponents, the power spectral density of 
the self-affine model approaches the one for the Gaussian model.

In general, the matrix element for scattering between subbands n and m  for this scattering 
mechanism is of the form

|</i|i/sr(q) | /n) |2 =  5(<7) r i ( 9 ) (191)

Figure 34. (a) H igh-resolution transm ission electron  m icrograph o f  the interface betw een Si and SiO: . The oxide 
is in the top half o f  the picture, while the rows o f Si atom s can be observed in the bottom  half. The image is a 
lattice plane image lying in the (111) plane, while the interface is a (100) plane, (b) Relevant dim ensions for the 
steps occurring at the interface.
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For large Fn. the matrix element r#l#M reduces to

pim =  h : d>l/n chh,,
2m 2 dz dz

=  (  ~g , H +  E> , , ( * ) ^  } (192)

The last expression is the result obtained by Prange and Nee [181]. Matsumoto and Uem ura 
[191] calculated that in the electronic quantum limit, Vnm =  e £ av, where £ av a  (~yVv +  jVdep!).

The change in the potential energy of the system due to surface-roughness was corrected 
by Ando [192], by considering the change in the electron density distribution and the effective 
dipole moment of the deformed Si-SiO: surface. The later scattering rate becomes

r „mUl) =  C  +  ... U / ) W . p, +  /VJ -  \  £  N , A :, (q ) \  (193)
sc "i ^o\ I “ , J

where is given by Eq. (192). Because of the presence of the dielectric medium, one 
needs to correct the expression given in Eq. (193) with the contribution of the image term

"m w Ul) = — - ■* I  dzil,„(z)
fisc +  1677

inn «M *) (194)

In Eq. (194), K {) and /C, are the modified Bessel functions. An additional complications asso
ciated with the finite oxide thickness, which may further reduce the mobility via scattering 
with remote roughness, will be ignored in the present treatment.

3.2.3.3. E lec tro n -P h o n o n  In tera c tio n . Phonon scattering can cause three different types 
of electronic transitions in the Si-inversion layer: transitions between states within a sin
gle valley via acoustic phonons (called intravalley acoustic-phonon scattering) and nonpolar 
optical phonons (called intravalley optical phonon scattering), and transitions between dif
ferent valleys via nonpolar optical phonons (called intervalley scattering) 1193-200]. The 
intravalley acoustic-phonon scattering involves phonons with low energies and is almost an 
elastic process. The intravalley optical-phonon scattering is induced by optical phonons of 
low momentum and high energy. The inlervalley scattering can be induced by the emission 
and absorption of high-momentum, high-energy phonons, which can be of either acoustic- or 
optical-mode nature. Intervalley scattering can therefore be important only for temperatures 
high enough that an appreciable number of suitable phonons is excited or for hot electrons 
which can emit high energy phonons [201].

In order to evaluate the scattering potential that describes the electron-phonon interac
tion, a Hamiltonian is needed that describes the coupled electron-phonon system. The total 
Hamiltonian of the system may be written [202, 203]

/? -  H , + H tl +  H ni (195)

where Ht. is the electronic part. H tt is the atomic part of the Hamiltonian that describes the
normal modes of vibration of the solid and H c<i is the electron-ion interaction term of the
form

£ „ ,  =  £ > ; « (  r , - R , )  (196)

In general, each ion is at a position R ; =  R' +  Q ;, which is the sum of the equilibrium 
position R m) and the displacement Q ;. Under the assumption of small displacements, one 
can expand 1^, in a Taylor series

K J r  -  R:) = K J r  -  R {!])) -  Q,  • V, l \ J r  -  &!") +  0 ( Q ?) (197)

The zero-order term is the potential function for the electrons when the atoms are in their 
equilibrium positions, which forms a periodic potential in the crystal. The solution o f  the
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Hamiltonian for electron motion in this periodic potential gives the Bloch states of the 
solids. Since the first-order term is much smaller than the zero-order term, the electron- 
phonon interaction can be treated perturbatively. Therefore, the lowest order term for the 
electron-phonon interaction is of the form

//, ,,/,(!•) =  - £ Q ;  • V, K,„(r -  R)"1) (19K)

It is obvious that this interaction Hamiltonian does not act on the spin variables in this 
approximation. Under the assumption that the clectron-atom potential possesses a Fourier 
transform, one can write

K , M )  =  ^ E K J q K ' 1 ( m

where N  is a number of primitive cells, and wave vector q spans the whole c/-space. Ionic 
displacement may be decomposed into normal-mode representation and it is customary to 
write

where ekA is the unit polarization vector that obeys the standard orthonormality and com
pleteness relations, cokA is the phonon frequency for wavevector k running over the whole 
Brillouin zone of the phonon branch A, cikA(a£A) are the phonon annihilation (creation) 
operators. In acoustic waves, Q ; refers to the relative displacement of the unit cell: in optical 
waves it refers to the relative displacement of the two atoms in the unit cell. Thus

r)  =  £  +  G )(q  +  G) • eqA (  («qA +  < a) (201)
q. (i \ ~ P V W i \ \ /

where M N  ^  p V , and p  is the density of the solid. The summation over G represents 
summation over all reciprocal lattice vectors of  the solid. If one defines a function

— )  E < ’,<ir(q +  G) ■ el|AK , ( q  +  G) (202)

then the Hamiltonian for the electron-phonon interaction becomes

« 1- , / . ( r )  =  E ^ A ^ r(«,A +  V )  (203)
M

The exact form of the matrix elements for acoustic and nonpolar-optical phonon scattering 
(zero- and first-order terms) are given below. Since distinction between 3D and 2D vectors 
needs to remain clear, in the following, we use the following notation: capital bold letters 
will refer to three-dimensional vectors, whereas small bold letters will be used for two- 
dimensional wavevectors that lie in the .vy-plane.

Deformation potential scattering. In general, the application of mechanical stress alters the 
band structure by shifting energies, and, where it destroys symmetry, by removing degenera
cies. It is usually assumed that the mechanical stress does not change the band curvature, 
and therefore does not change the effective masses, but introduces shift in the energy states 
that are close to the band extremum [204-207].

For isotropic elastic continuum, matrix element for deformation potential scattering 
(acoustic phonons) can be obtained by taking the long-wavelength limit of the Eq. (202) 
[208]. For small values of q, the summation over reciprocal lattice vectors can be neglected, 
except for the term G =  0. The screened electron-ion interaction becomes a constant which 
is usually denoted as E  (it gives the shift of the band edge per unit elastic strain). Under 
these assumptions, /VfQA simplifies to
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where coQA = vsXQ,  where vsX is the sound velocity, coOA is the phonon frequency. Long wave
length acoustic phonons (LA mode) have Q | |eQA which makes the matrix element nonzero. 
TA phonons have Q-Le0A which makes the matrix element vanish. Therefore, the deform a
tion potential mainly couples electrons to LA phonons.

For anisotropic elastic continuum such as silicon, the deformation potential constant H 
becomes a tensor. The anisotropy of the intravalley deformation potential in the ellipsoidal 
valleys in silicon has been extensively studied by Herring and Vogt [207]. Expanding the 
electron-phonon matrix element over spherical harmonics and retaining only the leading 
terms, they have expressed the anisotropy of the interaction in terms of the angle 0Q between 
the wavevector Q of the emitted (absorbed) phonon and the longitudinal axis of the valley. 
They have shown that the matrix element is proportional to Q via the deformation potential

Equation (206) accounts for the contribution of both TA branches. Therefore, the acoustic 
mode scattering is characterized by two constants: E H (uniaxial shear potential) and 3,, 
(dilatation potential) that is believed to have values of approximately 9.0 eV and —11.7 eV, 
respectively (Sec Fig. 35).

In bulk silicon, this anisotropy is usually ignored by using an effective deformation poten
tial constant for the interaction with longitudinal modes, and ignoring the role of the 
lower-cnergy TA modes. This approximation can be justified due to the following reasons. 
The acoustic modes are most effective at low energy. In this regime and in the usual elastic 
and equipartition approximation that will be described later, due to the linear dependence 
on Q , scattering of electrons at some energy e  samples almost uniformly the equal energy 
ellipsoid, so that one can take the average values of Aa over the ellipsoid. Since there is 
nothing to fix the energy scale in the problem, this averaging procedure is independent of 
the electron energy. Moving to the two-dimensional situation, one cannot follow a parallel 
path to arrive at an isotropic, energy independent effective deformation potential, which 
complicates the treatment of this scattering process.

Since the wave functions of the initial and final states are usually expressed as a product 
of a one-electron wave functions (Bloch functions) and harmonic oscillator wave functions, 
after the averaging over the phonon states is performed, the terms inside the brackets of 
Eq. (203) that represent phonon absorption (term tfqA) and phonon emission (term a qA)

at temperature T , the phonon occupation num ber NqA is given by Bose-Einstein statistics

^ a(^q ) — LA or TA) given by [209-211]

^  — d +  cos-(0Q) (205)

and

^ 7, i(0q) ^  £=w cos(0o )sin (0o ) (206)

processes reduce to y /N qA and y / NqX +  1, respectively. In thermal equilibrium with a lattice

(207)

V

principal axis 
of the valley

Figure 35. A ngular dependence o f the deform ation  po tential for longitudinal m odes.
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where k H is the Boltzmann constant. At high enough temperatures, the acoustic phonon 
energies are much smaller than the thermal energies of the electrons. Therefore, one can 
expand the exponent in the denominator of Eq. (207) into a series and, in the equipartition 
approximation, approximately obtain

+  1 *  A/qA % »  1 (208)

Incorporating these terms as well as the exponential term eu,:Z into the definition of A/qA, 
after a straightforward calculation one finds that the matrix element squared for scattering 
between subbands n and m  due to acoustic phonons for both, absorption plus emission 
process, after the averaging over q: is performed, reduces to

|< » | t / r ( q ) |m ) l2 =  ^ [ A f ^ q  )]2Fnm (209)
p V vtk

where

F„„, = f  dz\lil(z)i]jlXz) (210)
■'0

The effective deformation potential constant is calculated from

[A f„,„(q)]2 =  7~ f  d q A l i e j f a M f  (211)
r nm

where

( q , ) =  I (lzip„(z) e“<̂z <//„, (2) (212)
•A)

The main result that can be deduced from the expression above is that the form-factor, 
l nn,(qz), introduces an energy scale in the problem by fixing the fuzzy  component, the
wavevcctor qz. This result is an expected one and follows immediately from the uncertainty
principle A,A/,_ > h. Since the electrons are frozen into their wave functions, and cannot 
oscillate in the quantized direction, the uncertainty in the particles location along the z-axis 
has been reduced. Therefore, there must be a corresponding increase in the uncertainty in 
the particles z-directed momentum [212].

Nonpolar optical phonon scattering. The scattering of electrons by zone-center optical and 
intervalley phonons in semiconductor crystals has been treated rather extensively by Ferry
[201, 213, 214]. The nonpolar optical interaction is important for intra-subband scattering as
well as for scattering of electrons (and holes) between different minima of the conduction (or 
valence) band. This later interaction is important for scattering of carriers in semiconductors 
with many-valley band structure, as it is usually the case in Si and Ge, and in the Gunn 
effect, where scattering occurs between different sets of equivalent minima. Harrison [206] 
pointed out that the nonpolar optical matrix element may be either of zero or higher order 
in the phonon wavevector. In subsequent treatments of electron transport in which the 
nonpolar interaction is important, only the zero-order term was considered, generally owing 
to the impression that the higher order terms are much smaller. Although this is usually the 
case, there arise many cases in which the zero-order term is forbidden by the symmetry of 
the state involved. In these cases, the first order term becomes the leading term, and can 
become significant in many instances. For example, the first-order intervalley scattering plays 
an important role in hot-electron transport in the rt-type inversion layer in Si. Ignoring this 
scattering process means that there will be no saturation of the drift velocity at high electric 
fields, because the zero-order intervalley scattering rate is weakly dependent on the electron 
energy of high-energy electrons, while the first-order intervalley scattering rate increases as 
the electron energy increases.

The matrix element for nonpolar optical phonon scattering is generally found from a 
deformable ion model explained in the introduction part o f this section. If one thinks of an 
optical phonon as occurring at finite G, then the q dependence is unimportant, so that the
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entire matrix element becomes constant, resulting in

riDi
= ( 2^

(213)

where D x is the deformation field (usually given in eV/cm) and u)oX is the frequency of the 
relevant phonon mode which is usually taken to be independent of the phonon wave vector 
for optical and intervalley processes. Fourier transforming back to real space, a constant in 
q -space produces a delta-function in real space. Therefore, this zero-order term represents 
a short-ranged interaction. A local dilatation or compression of the lattice produces a local 
fluctuation in the energy of the electron or hole. Incorporating the exponential term eu,:Z 
into the definition of A/„a, after averaging over £/., the following result is obtained

2pV  co(tA
(214)

for the squared matrix element for scattering between subbands n and m  that belong to the 
a  and /3 valley, respectively.

When the zero-order matrix element for the optical or intervalley interaction vanishes, 
then D a is identically zero. In this case, one has to consider the first-order term of the 
interaction whose matrix element is

(215)

In this context, a first-order process means a process similar to acoustic phonon scattering. 
Following the previously explained procedure, we find that the matrix element squared for 
scattering between subbands n (a-valley) and m  (/3-valley) is given by

h i):IA

where

=  /  ch

2pVw„ A 

d

( cr  F,,m +  C'

dz

(216)

(217)

The constant term c,lm is a small correction term that we have found [172].
In the scattering among the equivalent valleys, there are two types of phonons that might 

be involved in the process (see Fig. 36). The first type, so-called g-phonon couples the two

Figure 36. D iagram m atic rcprcNcniatic n o f in tervalky  transition* due to t>- and  /'-phonons.
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valleys along opposite ends of the same axis (i.e.. (100) to (100)). This is an Umklapp 
process and has a net phonon wave vector 0.377/a. The /-p h o n o n s  couple the (100) valley 
with (010), (001). and so on. The reciprocal lattice vector involved in the ^-process is G m() 
and that for an /-p rocess  is G m . Degeneracy factors (gr ) for transition between unprimed 
(a = 1) and primed ( a  =  2) set o f  subbands, for both g- (r — 1) and /-phonons  (/* =  2) are 
summarized in Table 7.

Within a three-subband approximation, scattering between the two valleys in the e0 and £, 
subbands involves only g-type phonons. The scattering between these two minima is usually 
treated by using a high-energy phonon of 750-K activation temperature (treated as zero- 
order interaction) and 134-K phonon treated via first order interaction. Scattering between 
the two £, and the four e'{] subbands involves / -p h o n o n s  with activation temperatures of 
630 K and 230 K treated via zero-order and first-order interaction, respectively. Scattering 
between the subbands s', involves both g-  and / -p h o n o n s  with activation temperatures of 
630-K (zero-order interaction) and 190-K (first-order interaction). All of the high-energy 
phonons are assumed to be coupled with a value of D x =  9 x 10s [eV/cm] and all o f  the 
first-order coupled phonons are assumed to be coupled with D u  =  5.6 [eVJ (This value 
is consistent with the results given in Ref. [215].) The first Born approximation result for 
the total electron-bulk phonon scattering rate for p-type silicon with N a =  1 x 10l> cm ’ 3, 
A/v =  1 x 1012 cm - and T  =  300 K, with (thick line) and without (thin line) the inclusion 
of the correction term for the first order process, for the lowest subband of the unprimed 
ladder of subbands, is given in Fig. 37. We see that, throughout the whole energy range, 
there is an increase of approximately 10% of the total electron-bulk-phonon scattering rate 
due to the correction term introduced previously that could lead to mobility reduction. The 
same trend was also observed for the higher-lying subbands.

3.2A. Screening of Coulomb and Surface-Roughness Scattering
It is well known that Coulomb and surfacc-roughness scattering significantly affect the elec
tron mobility in Si inversion layers, particularly at low- and high-inversion charge densities. 
As mentioned earlier, the scattering potentials for these two processes are strongly affected 
by screening of the mobile charges in the inversion layer. Therefore, any theory that tries 
to explain the density and temperature dependence of the electron mobility must account 
for these screening corrections. Since the calculation of the exact dielectric function of 
homogeneous electron gas is a formidable problem, various approximate solutions for the 
dielectric function exist in the literature [216-218]. Some of these have been very success
ful, perhaps because they are simple (Thomas-Fermi method) or perhaps because they are 
accurate (mean-field approximation, also known as random-phase approximation [RPA]). 
The Thomas-Fermi method is basically the semiclassical limit of the Hartree calculation. 
On the o ther side, RPA is an exact H artree calculation of the charge density in the pres
ence of the self-consistent field o f  the external charge plus electron gas. More precisely, in 
the mean-field approximation, one includes only the long-range Coulomb interaction in the 
dielectric response, leaving out all exchange-correlation corrections. It leads to the so-called 
Lindhard dielectric function that is extensively employed in the literature [219-226].

The Thomas-Fermi theory of screening is described first. The quantum theory of plasma 
screening is discussed afterwards. Application of this theory for the calculation of the 
screened matrix elements for Coulomb and surface-roughness scattering is given at the end 
of this section.

Thomas-Fermi theory. Suppose that a positive test-eharge pex,(r)  encxt(r) is placed at 
a given position r in a 3D-electron gas. The test-charge attracts the electrons, inducing a 
disturbance 5p (r)  =  —e8n(r)  in the charge-density distribution within the plasma. The net

Table 7. Degeneracy faetors for transition  betw een unprim ed and 
prim ed subbands, for both and /-p h o n o n s .

ft =  1

r t 1!

a  =  1 o, =  1 : ^ = 0 A'i =  0; =  4
ft — 1 Si =  R: =  - Si =  1: Hi _
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Figure 37. Total electron-bulk phonon scattering  rate for the e lectrons in the lowest unprim ed subband calculated 
within the first Born approxim ation. R eprin ted  with perm ission from D. Vasileska. Ph.D. Thesis, A rizona S tate 
University, 1995. © 1995.

result of the movement of the entire ensemble of charges is a potential that does not behave 
as a simple Coulomb potential due to the initial charge. In essence, this is a self-consistent 
process, in which the charges produce a potential, which modifies the total charge, which 
modifies the total potential, and so on. The modification of the strength of the Coulomb 
potential of a single charge in the presence of electron plasma is called screening effect.

In treating screening, it is convenient to define two electrostatic potentials. The first one, 
<pext(r), arises solely from the test-charge itself, and satisfies the following Poisson equation

~ V 2<P,A r) =  f)̂ r-  =  — /i (r)
£ . En

(218)

The second one, the so-called effective electrostatic potential, </>ctf(r), arises from both the 
positively charged test-charge and the induced charge-density. It therefore satisfies

(219)

Introducing ^rf/cxtC1*) — e,<Pcif/exi(r ) anc* Fourier transforming Eqs. (218) and (219) yields

and

r K J q )  =  — K x , ( q )  -  M q ) J
S . .

(220)

(221)

respectively, where q is a 3D-wave vector and 8 n (q) is the Fourier transform of the induced 
electron density. Using the results given in Eqs. (220) and (221), the expression for Keff(q) 
simplifies to

K-X,(q) Kxi(q)
1 +  ( t '7 s„ r / : ) l5n (q ) /K d:f(q)] 1 +  V: (q ) [« » (q ) /K ,ir(q)!

(222)

where P7( (q) =  e2/ e t)q2 is a Fourier transform of the Coulomb interaction for a 3D-system. 
From the theory of dielectric media, it follows that the effective electrostatic potential and 
the external one are linearly related to each o ther

(223)
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which implies that the corresponding Fourier transforms satisfy

<pcx.(q) = xit-Ofc tifq)

where ^ (q )  is the wave vector-dependent relative dielectric constant of the medium. From 
the above results, one has that

X(q)  = 1 +  K (q )
S n j  q)

Krir(q)J
If the effective potential energy, Kcff(r) ,  varies slowly on the length scale of the Fermi 

wavelength then, within the Hartree approximation, the electron energy is modified from its 
free-electron value by the total local potential, i.e..

e ( k )  =
h 2k 2 
2 m * Kxi (r)  =  fik -  K tT(r) (226)

For an electron plasma in thermal equilibrium, the electron-density distribution is repre
sented by the Fermi-Dirac distribution function, so that the plasma density is calculated 
from [227]

n ( r)  =  s f [  ___ _______ _ (227)
V j JJ  (2ttY  1 +  exp[(ek -  Kcff(r) -  p ) / k HT]

If the change induced by the potential, K-ft'(r K small, the induced electron density can be
approximated as

5/i ( r ) ^ 5 r K clI(r) (228)
c)fX

Inserting the Fourier transformed result yields

A'(q) =  1 +  K ^ i ) ~  =  i +Ofl

where

Qs =
<?2 dn 
e0 Op

(229)

530)

is the so-called Thomas-Fermi screening wave vector. For a nondegenerate Boltzmann dis
tribution, On/dp = n / k BT.  Inserting this result into Eq. (230) leads to the Debye-Huckel 
screening wavevector for a 3D system.

From the above results, one immediately finds that for a Q2D-system, the relative dielec
tric function is given by

A'(q) =  i +  -  
‘ i

where q is a 2D-wavevector in the plane parallel to the interface and

m*e-
Qsi =  S i 27T£tth 2

— exp
77 h ~  N j

g , m * k Bf

(231)

(232)

is the screening wave vector o f  the / th subband. In Eq. (232), g, is the valley degeneracy 
factor. It is interesting to note that, in contrast to the 3D case (Eq. [230]), the screening 
wavevector for a Q2D-system becomes density-independent at very low temperatures and/or 
high-enough inversion charge densities.

Mean-field approximation. In this section we present the derivation of the Lindhard dielec
tric function for a 3D system from the equations of motion for the density operator

«(q.O = IX-cA  
k

(233)
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which is a Fourier transform of the real-space operator /?(r, 0  =  i//1 (r ,  f)t//(r, /).  In the 
self-consistent Hartree approximation, the effective single particle Hamiltonian is

H  =  I  J :V(//+ ( i \ i )  +  j  c/VKotT( i \  (r, /)«A(r, t)

=  E  ek +  E  K it (q • 0 t'k-K, < k (234)
k k. q

where the effective potential K.-f, (r , 0  equals to the sum of the Coulomb potential Vc(r)  
of a test-chargc and the induced potential Vs( r , / )  of the screening particles. The induced 
potential satisfies the Poisson equation

V2 Vs(r ,  t) = ------------ 8 n ( r , t )  (235)
£ t,

where <5/z(r, t) is the deviation of the electron density from its equilibrium value //„. To
calculate the induced potential, it is necessary to derive the expression for the screening
particle density S n ( r, /). This is obtained by writing an equation of motion for the density 
operator given in Eq. (233), and then solving it approximately. In the homogeneous electron 
gas, the particle-density operator has an expectation value zero, unless there is a perturbation 
in the system. A perturbation in the system polarizes the plasma, so that the average value 
8 n ( q , t )  — ( / / (q , /)) becomes finite. In the linear screening model, one assumes that this 
average is proportional to the effective potential, that is, (/i(q, w)) a  K tl(Q' (°)" where co 
is the frequency. Therefore, the goal of the derivation presented below is to determine the 
form of this constant of proportionality.

The density operator satisfies the Liouville equation

= | /?, /;(q, / )| (236)
(H

In deriving the Lindhard dielectric function, it is more convenient to evaluate the equation 
of motion of one component of the density operator, i.e.,

l h y t <-\V k =  l /7 ’ ck Ml'kl

=  (ek <, -  <A +  E  Kff(P- 0 (fp+k-^L -  K  Mc'k p) (237)
P

If the Coulomb potential, Kt.(r),  of a test-charge is assumed to oscillate at a single frequency 
exp[—i(o) 4- /5)], the time derivative on the left-hand side of Eq. (237) is (7ico + /S)c£_qck. 
The term oj 4- iS(S —> 0) establishes an adiabatic switch-on of the test-charge potential. With 
this assumption, Eq. (237) becomes

(h(0 +  -  ek _q +  iS )( \  qt\  =  V  |/.tT(P w )(r+ ,k ((<\ -  <\+ p) (238)
I"*

Within the mean-held approximation, the summation on the right-hand side of Eq. (238) is 
approximated by keeping only the term which has p =  q and neglecting all other terms. (It is 
assumed that the terms with o ther values of p average out to zero.) In o ther words, one keeps
only those terms on the right-hand side of Eq. (238) that represent the local density. These
terms are then replaced with their expectation values f k — (ck ck) and / k_q =  \^k_qck_q), 
where / k is the Fermi-Dirac distribution. Under these circumstances, the approximate equa
tion can be easily solved, to give

A ~ ./
-

Performing the summation over k. one tinallv arrives at

d t A )  =  Kn(q-  (239)ha> -h e L - +  i8

Sn (q, co) =  Y ( c \  (lck) =  <o)Pi{)](q, co) (240)
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where

/’""(q. u» =  £  (241)
k ^  +  ^ k  “  f ; k q +  l d

is the so-called bare polarizability function. Equations (235) and (240) may now be solved 
to obtain the dielectric function. In the Fourier transformed equation (235), one substitutes 
first the result given in Eq. (240) and then solves for the effective potential. This gives

i/ / \ K ( q )
Kif (q ' c° )  =  - K -(q )^ (W)( q ^ )

Unlike the bare interaction, Kt.(q), the effective interaction, ^ . i t ^  ‘s frequency depen
dent. If Kcl,(q.o>) is Fourier transformed to (q, f)-space, it will thus be a time-dependent 
interaction. This is due to the inertia of the polarization charge. In o ther words, it takes a 
finite amount of time for the electrons to come to their screening positions, which makes 
the whole system behave dynamically.

The ratio of the Coulomb potential of the test charge and the effective potential in 
Eq. (242) is just the RPA dielectric function

*(q,  co) =  1 -  K( (q) /5lll|(q, w)  (243)

which was the dielectric function in the early days of the electron gas theory, since it is 
rather easy to derive and it also predicts correctly a number of properties of the electron 
gas such as plcismons. The results given in Eqs. (241) and (243) complete the derivation of 
the Lindhard dielectric function from the method of self-consistent fields.

At this point, it is interesting to show that in the static (cj =  0) and long-wavelength
(q —> 0) limit, the Lindhard dielectric function reduces to the classical Thomas-Fermi result.
In this limit, the denominator in Eq. (241) is

^  (244)

and the num erator can be approximated with

<V k / _  \  l, fv
c)k V dk /  0ek

In this case, the barc-polarizability function simplifies to

k ^

Since d /k/rtek — —df \ /d / i  and

/’•"’(q, 0) ~ Y ,- .—  (246)

» = £ A  (247)
k

where n is the electron density, we find

chi
* (q ,  0) =  1 +  ^ ( q )  —  (248)

tlfL

which is identical to the classical result given in Eq. (231).
Calculation o f  screened matrix elements. For external potentials which are local in space 

(such as those that represent impurity and surface-roughness scattering), screened matrix 
elements are calculated using

W f { q, W) =  Vj]an(q ) +  I  £  F: j ... ( q ^ J q ,  ^ " ( q ,  w) (249)
. II
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where ^ arc(q) is the matrix element of the unscreened scattering potential for scattering 
between subbands i and j .  and represents the matrix element of the effective
or screened scattering potential and Fij nm is the form factor. For small values of q, the 
intersubband form-factors (terms with i ^  j  and/or n ^  m )  are at least two-orders of mag
nitude smaller than the intrasubband form-factors (terms with / =  j  and n = m )  due to the 
orthonormality of the subband basis. Therefore, it is reasonable to assume

so that the diagonal terms of the screened matrix elements can be calculated from

It is obvious that, adopting the diagonal approximation given in Eq. (250), we have reduced 
considerably the size of the matrix that needs to be inverted in order to calculate the screened 
matrix elements. The off-diagonal elements are then calculated from

It is interesting to point out that if we replace the screened matrix elements on the RHS 
of Eqs. (251) and (252) with the bare ones, in the static and long-wavelength limit we arrive 
at the classical result (Hartree approximation).

Note that screening significantly affects the transport properties in a 2DEG layer, so 
that an appropriate screening approximation needs to be employed. It is straightforward 
to employ static screening for Coulomb and surface-roughness scattering, but its applicabil
ity for phonon scattering is questionable. For example, if we consider the long-wavelength 
acoustic phonons, they always have a nonzero component of the wavevector in the direction 
perpendicular to the interface. Hence, for q —► 0, the frequency of the phonons is finite, 
whereas the plasma frequency,

of the 2D EG  (in the electronic quantum limit case) approaches zero as q —* 0. Since the 
phonon frequency is much larger than the plasma frequency, the screening is ineffective and 
the use of the bare matrix element, rather than using a statically screened one is less wrong 
[static screening is valid in the limit when copl(q) <i>c*(q), where coL'*(q) is the frequency of 
the external perturbation]. Similar arguments are valid for intervalley scattering with short- 
wavelength phonons. Because the large wave vectors enter the transition and also because 
the frequencies of  these transitions are usually much larger than the frequencies at which 
the plasma can respond, the intervalley scattering is weakly affected by screening, so that 
static screening is not justified and one has to perform dynamical calculations or leave the 
bare matrix elements in order to treat screening properly.

3.3. Hydrodynamic and Drift-Diffusion Model
In a num ber of practical applications, it is not necessary to know the exact distribution 
function obtained bv solving the Boltzmann transport equation (BTE). Instead, if suffices 
to know only the lowest moments, like the mean and the variance, for example. For this 
purpose, semi-classical transport equations are derived based on either the first three or 
four moments of  the distribution function that describe the carrier concentration, current, 
average carrier energy and energy flux variation (if four moments are retained). The various 
coefficients that appear in these equations may be assumed to be a function of the average 
carrier energy. The relationship between these coefficients and the energy is usually deter
mined from steady-state Monte Carlo calculations and experimental data for homogeneous 
samples.

(250)

( 2 5 1 )

( 2 5 2 )

(253)
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The first three moments of the BTE for electrons, which describe conservation of particles, 
momentum (mass flow) and energy, are expressed by the following set of equations [228]

dn
—  =  - V  • ( / I V )  (254 )

dP r>H7 I 1
— L = -  Y  2 ------- -  -  ncEj  -  P,
at f  ox.

f  (256)

where n is the electron density, v is the average electron velocity, P, and (/ =  J, 2, 3 for a-, 
y-, and 2-coordinate) are the ith components of the total momentum and the electric field, 
Wjj is a component of the total kinetic energy density tensor, W  is the total kinetic energy
density ( W{) being the equilibrium electron energy corresponding to the lattice tem perature
T, ), J  =  -e P /m *  is the current density, and S w is the kinetic energy flux. The mom entum  
and energy relaxation rates that appear in Eqs. (255) and (256) are defined as

1 \ P m / T , „ ( k) and n \  =  Ek s( k ) / ( k ) / r f (k ) (257)
T , „ l  p  \ T j  W - W {i

Assuming that the carrier velocity v equals the sum of a drift ( \ d) and a thermal com ponent 
(c), that is, v =  \ d +  c, one can express the total kinetic energy as being equal the sum of 
a drift and a thermal energy component due to the random thermal motion of the carriers; 
that is,

W  =  X- n n f v ]  +  ~ k HTc = K  + ± k BTc (258)

where k H is the Boltzmann constant and K  is the drift component of the kinetic energy 
density. The kinetic energy flux term appearing in Eq. (258) then reduces to

J j( =  W v t, + y d - ( n k H Tc ) + Q (259)

where T( is the tem perature tensor and Q is the heat flux vector.
Further simplifications to the momentum and energy balance equations are usually made 

assuming a displaced Maxwellian form for the distribution function, which leads to a diagonal 
temperature tensor. This approximation is valid for systems in which the electron-electron 
interactions play a significant role. The use of a displaced Maxwellian distribution function 
leads to the following set of balance (also known as hydrodynamic) equations

^  = -  v • (/IV) (260)
ot

- -  +  V, • Vv(/ +  - ± - V ( n k BT)  = - v , ( l )  (261)
d t  n m * \ t

7 T  =  ' { W X d  +  n k " T v < l  ~  k W T )  +  j  ' E  _  { W  ~  ( 2 6 2 )

Note that the displaced Maxwellian distribution, which is symmetric in momentum space, will 
lead to zero heat flux, since it involves the third moment of the distribution function. How
ever, BMtekjaer [229] has pointed out that this term may be significant for non-Maxwellian 
distributions, so that a phenomenological description for the heat flux Q - kV7  has been 
used in Eq. (262), where k  is the thermal conductivity. As already mentioned, the ensemble 
averaged energy dependent momentum and energy relaxation rates that appear in Eqs. (261) 
and (262), are determined by steady-state Monte Carlo simulation for bulk material under 
uniform electric fields.

For simulations where steady state solutions are required, or transient events with rel
atively large time scales are being investigated, it is possible to neglect the terms d \ d /c ) t ,
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f i W/dt  and V • (//v(/) in the momentum and energy balance equations. Furthermore, if carrier- 
heating effects are negligible, then the drift component of the kinetic energy density can be 
ignored. With these simplifications, and assuming that there are no temperature gradients in 
the system, the steady-state momentum balance equation leads to the following expression 
for the current density

J =  —c n \({ =  en /iE  -j- eDX'n (263)

where the mobility and the diffusion coefficient are calculated using [230]

M„ =  - -  j' and D„ = - k BT^„ (264)
/?/ < 1 /  ~nt) t’

The result given in Eq. (264), together with the Eq. (260), constitutes the drift-diffusion 
model for electrons. A similar set of equations can be written for holes. Since a low-field 
limit has been assumed in order to arrive at the result given in Eq. (263), the mobility and 
the diffusion coefficients are energy independent quantities. To extend the validity of the 
drift-diffusion model to the high-field regime, ad hoc inclusion of field dependent mobilities 
and diffusion coefficients is usually used in standard device simulators, such as Silvaco's 
ATLAS. However, the applicability of such an approach becomes questionable in nanoscale 
devices in which non-stationary and ballistic transport effects play significant role.

4. FIELD EQUATIONS
In the previous sections, we have discussed transport models within the context of the semi- 
classical BTE. O f equal or greater importance in terms of the behavior of electronic devices 
are the self-consistent fields inside the device associated with the external bias and inter
nal charge and current distributions. In particular, the carriers within a semiconductor are 
accelerated by the electric and magnetic fields according to the Lorentz force equation

d k
F =  h —  =  (/(E +  v x  B) (265)

dt

where B and E are the magnetic flux density and electric field intensity respectively. In 
general, these fields correspond to the solution of Maxwell's equations originating from the 
microscopic charges and currents in the device. For high frequency device modeling, in which 
the device dimensions are comparable to the wavelength, wave propagation effects may be 
important, and full wave solutions of Maxwell's equations are necessary. In considering opto
electronic devices, direct solutions of e ither Maxwell's or the associated Helmholtz equation 
are necessary to represent optical field within the device. Such approaches has been taken, 
for example, in modeling microwave transistors under the context o f “global modeling'’ [231], 
as well as for the analysis of semiconductor device, in which optical cavity modes are coupled 
to semiconductor device simulation [232]. For most device modeling applications, the mag
netic contribution to the Lorentz force is much smaller than the electric field contribution, 
and wave propagation effects arc negligible, so that quasi-static representation of the fields 
in terms of the solution of Poisson's equation are sufficient.

In Section 4.1, we first discuss direct solution of Maxwell’s equations using the finite differ
ence time domain m ethod (FDTD), which has been used extensively in the electromagnetics 
community, and is employed in simulation of high frequency devices and circuits. The sub
sequent section (Section 4.2) is devoted to the description of efficient numerical solution 
methods for the Poisson's equation, as applied to semiconductor device simulation. The 
coupling of the various field solvers in semiconductor device simulation is then discussed in 
Section 5.

4.1. Finite Difference Time Domain Techniques
For electromagnetic solvers in general, there exist a num ber of general commercial packages 
for solv ing Maxwell's equations, such as A N S O F T s HFSS program [233]. For semiconductor 
device simulation, the time domain FD TD  method mentioned above is convenient since time
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domain methods are also used in the solution of the transport equations as discussed ea r
lier. Commercial codes are available for FDTD electromagnetic simulation (see for example 
the X F D T D  [234] and Fidelity [235] codes). ISE has recently released a commercial simu
lation tool combining their device simulation tool DESSIS with an FD TD  based simulator 
(EM LA B) for high-frequency simulation of semiconductor devices [236]. In the following, 
we give a brief description of the FDTD method itself, and its coupling to particle based 
simulators.

Maxwell's equations in SI units are written as

d b
dt

V x H =  J +
dD
dt

V ■ D =  p 

V • B =  0
(266)

Here p is the free charge density

P( r) q ( N n -  N a + p  -  n ) (267)

where N n and N  A are the ionized donor and acceptor concentrations, while p  and n are the 
hole and electron concentrations which are functions of position. For linear isotropic media, 
the relations for the various fields above is simplified by the constitutive relationships

D =  sE, and B =  p. H (268)

where p  is the permeability (p„ =  47r x 10 7 for nonmagnetic semiconductors) and e is the 
permittivity.

In Cartesian coordinates, the curl equations are expanded as

dt

aJ L
in

dH.
~JT

dE^  
dt 

d j ^  
dt 

dE z 
dt

d E ,
dz dy

d E :
dx

_
dz

d E L _ d E 1
dy dx

d H : d H y
dy dz

» H X d H z
dz dx

dHy d H x
dx dy

(269)

4- */,

-f Jy

These may then be discretized [237] using the so-called Yee cell [238]. The Yee cell consists 
of a set of interpenetrating finite difference grids, one representing the electric the o ther 
the magnetic fields, over which the derivatives in space are expanded. The electric fields are 
assumed to be updated at time step n while the magnetic fields are updated at time step 
n +  1/2. Using central differences, the discretized Maxwell’s equations are written as

j , k  +  0.5) =  £■"(/, j \  k +  0.5)

H!!+i)5(i + 0.5, j \  k  + 0 .5 )A/
+  —  

£

H (/ — 0.5, j ,  k  +  0.5)

A.v

j  +  0.5, k +  0.5) -  f / ; ,+ll5(/, j  -  0.5, k  +  0.5)
Ay

+  j ,  k +  0.5) (270)
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W r°-5(/, j  +  0.5, k  +  0.5) =  (/, j  +  0.5, A +  0.5)

£ ? ( / ,  j  +  1, A: +  0.5) -  £ " ( / ,  y, £ +  0.5)

fo r  th e  e le c tric  fie ld , an d

A/
Ay

£ ; ( / ,  j  +  0.5, A' +  i) -  £;:(/, j  +  0 .5 , *)  __ (271)

for the magnetic field strength. Similar equations hold for the o ther components of E and
H. As can be seen in Eqs. (270) and (271), the electric field at time step n + l  is determined 
explicitly by the electric field at time step n, and the magnetic fields in the adjoining Yee 
cell mesh points at the previous half time step, n +  1/2. Likewise, the magnetic field at 
time step n -f 1/2 is calculated explicitly by the magnetic field at time step n — 1/2 and the 
electric field in adjacent mesh points at time step n. Hence the time evolution of the electric 
and magnetic fields is calculated noniteratively in a time marching fashion in half time-step 
intervals. The stability of this technique naturally depends on the time step and grid spacing.

The grid cell size is typically chosen to minimize the effects of numerical dispersion. If 
the highest frequency component in the simulation is characterized by a wavelength A =  
c/ v ,  then empirically, the cell size should be smaller than approximately A /10 to avoid 
artificial dispersion effects. O ther  considerations in the grid size depend on the geometrical 
considerations of the structure being simulated. Once the spatial grid has been determined, 
the time step, A/, used to propagate the electric and magnetic fields forward in time, has 
an upper bound determined by the furthest distance a signal can propagate over this time 
interval [239]. Setting this distance equal to the minimum grid spacing, this constraint yields

A? < =  _ _ _  (272)

where dr is the minimum space increment in any direction, and v is the phase velocity. 
More generally, the Courant stability' condition [240) is of the form

A, < — — = = ! = = = =  (273)
VP\J (At)- +  (ATT5 (Az)-

where A.v, Av, and Az are the minimum grid spacings in the three Cartesian coordinate 
directions.

In the FDTD method, the current density, J, appearing above is the primary coupling 
between charge transport and the coupled electromagnetic fields. During the half time inter
val between the calculation o f  the electric or magnetic field components, charge transport 
is simulated over this time interval using the frozen field components of the previous time 
step. The updated current density at each grid point is then used in Eq. (270) to update the 
electric field in the FD TD  algorithm. Within the drift diffusion or hydrodynamic models, the 
current density is calculated directly from the continuity equation. Within a particle-based 
scheme, one has to map the continuous particle motion onto the discrete grid points. In a 
nearest grid point (NG P) scheme, the weighted velocities of the particle in the ensemble 
that lie within a unit cell volume around a given grid point, are summed according to

t) = - J —  £  ' S„ vn (274)
A.vAvAz “

where 5„ and vn refer respectively to the charge and velocity of the /?th particle associated 
with the grid point, and N( i .  /, k)  is the total number of particles within a unit cell around 
the grid point (/, / . k).

The solution of Maxwells equations using the FD TD  technique requires the imposition of 
boundary conditions. The usual conditions for the continuity of the tangential and perpen
dicular components of the electric and magnetic fields arc applied at dielectric and metallic
boundaries. The simulation o f  open systems (e.g., an infinite domain) requires special care 
in that boundary conditions on  the simulation domain must be specified to minimize the
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artificial reflection of the outgoing wave. Various types of absorbing boundary conditions 
have been proposed in the literature [241, 242]. Currently, the most popular technique that 
minimizes artificial reflection on open boundaries is the so-called perfectly matched layer 
(PML) m ethod proposed by Berenger [243]. This method utilizes a fictitious magnetic loss 
for impedance matching of the outgoing wave to a highly lossy material. The PML has been 
found effective in attenuating outgoing waves for a wide range o f  frequencies and incident 
angles on the boundary surface, and is currently the state of the art in the FDTD method.

4.2. Poisson’s Equation
For most nanoscale semiconductor device modeling, the device dimensions themselves are 
much smaller than the characteristic wavelengths associated with the maximum frequency of 
operation, so that quasi-static solutions of Maxwell's equations are sufficient. In this case, 
the electric field may be expressed as the gradient of a scalar potential. The divergence 
equation for the electric displacement in Eq. (266) then yields Poisson's equation, which in 
2D or 3D is written

W l ,  ) = - > /W ,- 'V ,| + p-_ -| ) = -> ^ ) (275)
f i s c  fi s c

where, as previously noted, N f) and N A are the ionized donor and acceptor concentrations, 
while p  and n are the hole and electron concentrations, which are functions of position. Pois- 
son’s equation assumes that the field may be described as the gradient of a scalar potential 
V H valid in the quasi-static limit for the associated temporal variation.

In the numerical solution of the 2D or 3D Poisson equation, the application of a con
ventional finite-difference or finite-clcments scheme leads to algebraic equations having a 
well-defined structure, defined over a finite mesh or grid. For example, using central differ
ences in 2D to write the Laplacian appearing in Eq. (275), the discretized form becomes a 
system of linear equations

i +  asK. j - \  +  +  (l\\ K i. j +  ac K , j  — — ~ ~  (276)£sc

where / and j  label the two-dimensional coordinates of a particular grid point, and the 
coefficients representing the grid cells to the north (/V), south (5), and so on, are determined 
from the grid spacing in the usual way.

In general, the resulting system of equations can be represented by the matrix equa
tion Ax =  b [244]. The most suitable methods for the solution of this matrix equation are 
direct methods, but the computational cost becomes prohibitive as the number of equations 
increases, which is normally the case in 2D and 3D device simulations. This has led to the 
development of iterative procedures that utilize the well-defined structure of the coefficient 
matrix. The simplest and most commonly used iterative procedures are the successive overre
laxation (SOR) and the Alternating Direction Implicit (ADI) methods [245]. Both methods 
lose their effectiveness when complex problems are encountered and when the equation 
set becomes large, as it is usually the case in 3D problems. O ne alternative to avoiding 
this problem is the Incomplete Lower Upper (ILU) decomposition method described in 
Section 4.2.1, which provides a significant increase in the power of iterative methods and is, 
therefore, more suitable for solving 3D problems. O ther alternatives for solving large-scale 
3D problems are the multi-grid and the conjugate gradient methods that are also discussed 
below.

4.2.1. Incomplete Lower-Upper Decomposition (ILU) Method
Within incomplete factorization schemes [246] for 2D problems, the matrix A is decom
posed into a product of lower (L) and upper (U) triangular matrices, each of which has four 
nonzero diagonals in the same locations as the ones of the original matrix A. The unknown 
elements of the L and U matrices are selected in such a way that the five diagonals com
mon to both A and A' =  LU are identical and the four superfluous diagonals represent the 
matrix N; that is. A' =  A +  N. Thus, rather than solving the original system of equations
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Ax =  b, one solves the modified system LUx =  b +  Nx, by solving successively the matrix 
equations LV =  b +  Nx and V =  Ux. where V is an auxiliary vector. It is important to note 
that the four superfluous terms of N affect the rate of convergence of the ILU method. 
Stone [247] suggested the introduction of partial cancellation, which minimizes the influence 
of these additional terms and accelerates the rate of convergence of the ILU method. By 
using a Taylor series expansion, the superfluous terms appearing in A' are partially balanced 
by subtracting approximately equal terms.

4.2.2. Multigrid Methods
The multi-grid method represents an improvement over the SOR and ILU methods in 
terms of iterative techniques available for solving large systems of equations [248]. The basic 
principle behind the multigrid method is to reduce different Fourier components of the 
error on grids with different mesh sizes. Most iterative techniques work by quickly eliminat
ing the high-frequency Fourier components, while the low-frequency ones are left virtually 
unchanged. The result is a convergence rate that is initially fast, but slows down dramatically 
as the high-frequency components disappear. The multigrid method utilizes several grids, 
each with consecutively coarser mesh sizes. Each of these grids acts to reduce a different 
Fourier component of  the error, therefore increasing the rate of convergence with respect 
to single erid based methods, such as an SOR.c o

The initial setup for the multigrid solver is to create a sequence of grids. The finest grid is 
generated according to the device structure, and each consecutive grid is obtained by dou
bling the spacing of the previous one. This is repeated until the final, coarsest grid contains
3 x 3 points. The coarsening process must ensure propagation of the boundary conditions to 
all grids in order to obtain a unique solution. The Poisson equation is solved on the finest 
grid, and the residual, which is a computational measure of the error, is passed down or 
restricted to the next, coarser grid. The next grid solves the error equation. This results in a 
reduction of the relatively lower-frequency error components, as compared with the initial 
error on the previous grid. This process is continued through all subsequent grids. At the 
coarsest grid, the error equation is solved exactly and the error is prolonged up through 
the finer grids, adding its correction al each grid level. At the finest grid, the correction is 
used to update the final solution. In this way, the multiple error components are reduced 
simultaneously and the procedure is repeated until convergence of a solution is obtained.

4.2.3. Conjugate Gradient Methods with Preconditioning
The basic conjugate gradient (CG) algorithm is one of the best known iterative techniques 
for solving sparse symmetric positive definite (SPD) systems, but it loses its applicability 
when the resulting system of equations is not SPD. In such circumstances, the best alternative 
are the Lanczos-type algorithms, which solve not only the original system Ax =  b but also 
solve the dual linear system A7x* =  b \  In recent years, the conjugate gradient squared (CGS) 
method due to Sonneveld [249] has been recognized as an attractive transpose-free variant 
of the biconjugate gradient (Bi-CG) iterative method [250]. This method works quite well 
in many cases, but the very high variations in the residual vectors often cause the residual 
norms to become inaccurate, which can lead to substantial buildup of rounding errors and 
overflow. The Bi-CGSTAB m ethod due to Van der Vorst [251] is a variant of the CGS 
algorithm, which avoids squaring of the residual polynomial. It has been demonstrated that 
the convergence behavior of this method is smoother because it produces more accurate 
residual vectors and, therefore, more accurate solutions. In conjunction with the Bi-CGSTAB 
method, a successful preconditioning matrix can be obtained by using ILU factorization 
[252J. if L and U are the strictly lower and the strictly upper triangular parts of A, then the 
preconditioning matrix is

=  ( L 4  D)L) 1 (U + D ) (277)

where dicig(K///a> ) — dicigiA). The case k =  0 is used here, and means no fill-ins are allowed.
Once the diagonal I) is computed, scaling of the original matrix A is performed using

A -  D 1 AD ! : =  diag(A ) +  L +  V (278)
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The preconditioning matrix for this symmetrically scaled matrix is of the form

K =  (L +  I)(I +  0 )  (279)

where I is the identity matrix. The Bi-CGSTAB method is now applied to the preconditioned
system:

(L +  I ) ' 1A (I +  U) 'x =  (L +  I) 'b  (280)

where b =  D 1 2b. and the solution of the original system of equations is obtained via x =  
D 1 2(I +  U) 'x. In the calculation of the product (L +  I) 1A (I +  U )_lx, extra work is avoided 
by using the Eisenstat's trick [253]

(L +  I) JA(I +  U ) - ’p =  i  +  (L +  I) ’{p +  [diag{A) -  2I]t} (281)

where t =  (I +  0 ) _lp.

5. SEMICLASSICAL DEVICE SIMULATION
In previous sections, we introduced the numerical solution of the BTE using Monte Carlo 
methods (Section 3.1), the approximate solutions of the BTE using either hydrodynamic or 
drift-diffusion model (Section 3.3), and the solution of Maxwell's equations (Section 4.1) and 
Poisson's equation (Section 4.2) over a finite mesh. Within a device, both the transport kernel 
and the field solver arc coupled to each other. The field associated with the potential coming 
from Poisson's equation is the driving force accelerating particles in the Monte Carlo phase, 
for example, while the distribution of mobile (both electrons and holes) and fixed charges
(e.g., donors and acceptors) provides the source of the electric field in Poisson's equation
corresponding to the right-hand side of Eq. (275). Below we give an extensive description of 
the Monte Carlo particle-based device simulators with emphasis on the particle-mesh cou
pling and the inclusion of the short-range Coulomb interaction (Section 5.1). This discussion 
is followed by a brief summary of hydrodynamic/drift-diffusion device simulators with refer
ence to commercially available simulation software (Section 5.2). We finish this section with 
an application of the FDTD methods coupled with a MC transport kernel on the example 
of a coplanar strip on a GaAs substrate (Section 5.3).

5.1. Particle-Based Device Simulations
Within the particle-based EM C method with its time-marching algorithm, Poisson's equation 
may be decoupled from the BTE over a suitably small time step (typically less than the 
inverse plasma frequency corresponding to the highest carrier density in the device). Over 
this time interval, carriers accelerate according to the frozen field profile from the previous 
time-step solution of Poisson's equation, and then Poisson's equation is solved at the end of 
the time interval with the frozen configuration of charges arising from the Monte Carlo phase 
(see discussion in Ref. [157]). Note that Poisson’s equation is solved on a mesh, whereas 
the solution of charge motion using EM C occurs over a continuous range of coordinate 
space in terms of the particle position. Therefore, a particle-mesh (PM) coupling is needed 
for both the charge assignment and the force interpolation. The PM coupling is broken 
into four steps: (1) assign particle charge to the mesh; (2) solve the Poisson equation on 
the mesh; (3) calculate the mesh-defined forces; and (4) interpolate to find forces on the 
particle. There are a variety of schemes that can be used for the PM coupling and these are 
discussed in the next section.

A nother issue that has to be addressed in particle-based simulations is the real space 
boundary conditions for the particle part o f the simulation. Reflecting boundary conditions 
are usually imposed at the artificial boundaries. As far as the Ohmic contacts are con
cerned, they require more careful consideration because electrons crossing the source and 
drain contact regions contribute to the corresponding terminal current. In order to conserve 
charge in the device, the electrons exiting the contact regions must be re-injected. Commonly 
employed models for the contacts include [254]:

• Electrons are injected at the opposite contact with the same energy and wavevector k.
If the source and drain contacts are in the same plane, as in the case of M OSFET
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simulations, the sign of k, normal to the contact will change. This is an unphysical 
model, however [255].

• Electrons are injected at the opposite contact with a wavevector randomly selected 
based upon a thermal distribution. This is also an unphysical model.

• Contact regions are considered to be in thermal equilibrium. The total number of 
electrons in a small region near the contact are kept constant, with the number of 
electrons equal to the number of dopant ions in the region. This is a very good model 
most commonly employed in actual device simulations.

• Another method uses ‘reservoirs' o f  electrons adjacent to the contacts. Electrons natu
rally diffuse into the contacts from the reservoirs, which are not treated as part o f  the 
device during the solution of Poisson’s equation. This approach gives results similar to 
the velocity weighted Maxwellian [254], but at the expense of increased computational 
time due to the extra electrons simulated. It is an excellent model employed in few 
most sophisticated particle-based simulators.

There are also several possibilities for the choice of the distribution function— Maxwellian, 
displaced Maxwellian, and velocity-weighted Maxwellian [256].

To simulate the steady-state behavior of a device, the system is started in some initial 
condition, with the desired potentials applied to the contacts, and then the simulation pro
ceeds in a time stepping m anner until steady state is reached. This typically takes several 
picoseconds of simulation time, and consequently several thousand time-steps based on the 
usual time increments required for stability. Figure 38 shows the particle distribution in a 
3D metal semiconductor held effect transistor (M ESFET) structure, where the dots indicate 
the individual simulated particles [257]. In these simulations, the charge-neutral method, 
discussed earlier, is used.

After sufficient time has elapsed, so that the system is driven into a steady-state regime, 
one can calculate the steady-state current through a specified terminal. The device current 
can be determined via two different, but consistent methods. First, by keeping track of the 
charges entering and exiting each terminal, the net num ber of charges over a period of the 
simulation can be used to calculate the terminal current. The method is quite noisy due to 
the discrete nature of the carriers. In a second method, the sum of the carrier velocities 
in a portion of the device are used to calculate the current. For this purpose, the device 
is divided into several sections along, for example, the .v-axis (from source to drain for the 
case of a M OSFET or M E SFE T  simulation). The number of carriers and their correspond
ing velocity is added for each section after each free-flight time step. The total jc-velocity 
in each section is then averaged over several time steps to determ ine the current for that 
section. The total device current can be determined from the average of several sections, 
which gives a much smoother result compared to counting the terminal charges. By break
ing the device into sections, individual section currents can be compared to verify that the 
currents are uniform. In addition, sections near the source and drain regions of a M OS
FE T  or a M ESFET may have a high y-component in their velocity and should be excluded 
from the current calculations. Finally, by using several sections in the channel, the average 
energy and velocity of electrons along the channel is checked to ensure proper physical 
characteristics.

As in the case of solving the full Maxwell's equations, for a stable Monte Carlo device 
simulation, one has to choose the appropriate time step, A a n d  the spatial mesh size (Ax, 
Ay, and/or Az). The time step and the mesh size may correlate to each o ther in connection

Figure 38. Example ol the particle distribution in a M H S F tT  structure  sim ulated in 3D using an EM C approach. 
R eprinted with perm ission from |28h |. S. M G ood  nick et al.. Int. ./. S tun. Mode'. S. 205 ( W 5 ) . 1W5. Wiley.
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with the numerical stability. For example, the time step A/ must be related to the plasma 
frequency

where n is the carrier density. From the viewpoint of the stability criterion, A/ must be much 
smaller than the inverse plasma frequency. The highest carrier density specified in the device 
model is used to estimate Ar. If the material is a multi-valley semiconductor, the smallest 
effective mass to be experienced by the carriers must be used in Eq. (282) as well. In the 
case of GaAs, with the doping of 5 x 1017 cm -3, (op =  5 x 1013; hence, A/ must be smaller 
than 0.02 ps.

The mesh size for the spatial resolution of the potential is dictated by the charge varia
tions. Hence, one has to choose the mesh size to be smaller than the smallest wavelength 
of the charge variations. The smallest wavelength is approximately equal to the Debye 
length (for degenerate semiconductors the relevant length is the Thomas-Fermi wavelength), 
given as

The highest carrier density specified in the model should be used to estimate A/} from the 
stability criterion. The mesh size must be chosen to be smaller than the value given by 
Eq. (283). In the case of GaAs, with the doping density of 5 x 1017 cm 3, \ n =  6 nm.

On the basis of previous discussion, the time step (A/), and the mesh size (A.v, Ay, an/or 
Az)  are specified independently based on physical arguments. However, there are numerical 
constraints as well. This means that A/ chosen must be checked again by calculating the 
distance /max, defined as

where vmax is the maximum carrier velocity that can be approximated by the maximum group 
velocity of the electrons in the semiconductor (on the order of 10s cm/s). The distance /max 
is the maximum distance the carriers can propagate during A/. 'The time step is therefore 
chosen to be small enough so that /max is smaller than the spatial mesh size chosen using 
Eq. (283). This constraint arises because for too large of a time step, A/, there may be 
substantial change in the charge distribution, while the field distribution in the simulation is 
only updated every Ar, leading to unacceptable errors in the carrier force.

5.1.1. Partide-Mesh (PM) Coupling
The charge assignment and force interpolation schemes usually employed in self-consistent 
Monte Carlo device simulations are the nearest-grid-point (NG P) and the cloud-in-cell (CIC) 
schemes [258]. In the NG P scheme, the particle position is m apped into the charge density 
at the closest grid point to a given particle. This has the advantage of simplicity, but leads to 
a noisy charge distribution, which may exacerbate numerical instability. Alternately, within 
the CIC scheme a finite volume is associated with each particle spanning several cells in the 
mesh, and a fractional portion of the charge per particle is assigned to grid points according 
to the relative volume of the ‘cloud’ occupying the cell corresponding to the grid point. This 
method has the advantage of smoothing the charge distribution due to the discrete charges 
of the particle based method, but may result in an artificial ‘self-force’ acting on the particle, 
particularly if an inhomogeneous mesh is used.

To better understand the NG P and the CIC scheme, consider a tensor product mesh with
mesh lines a,, i =  l .........N x and y r  j  — l. . . . ,  N  . If the mesh is uniformly spaced in each
axis direction, then (.v^.j -  v,) =  (a'/42 — A'/+,). The permittivities are considered constant
within each mesh element and are denoted by e kh k =  l ........./Vv — I and I = I , . . . ,  N v — l.
Define centered finitc-differences of the potential t// in the .v- and y-axis at the midpoints of

(282)

(283)

(284)
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element edges as follows:

llfk f i. / llfk.
'' v _  r

' *+; ’ * (285)
*v _  llfk . l + \ ~ llfkJ 

”  v _ v
> / + l  > /

where the minus sign is included for convenience because the electric held is negative of 
the gradient o f  the potential. Consider now a point charge in 2-D located at (jt, y)  within 
an element (/, j ) .  If the restrictions for the permittivity (P) and the tensor-product meshes 
with uniform spacing in each direction (M) apply, the standard NGP/CIC schemes in two 
dimensions can be summarized by the following four steps:

1. Charge assignment to the mesh. The portion of the charge p L assigned to the element
nodes (k , /) is wkfp r , k  =  /, i + 1 and I — y\ j  +  1, where w k/ are the four charge weights 
which sum to unity by charge conservation. For the NGP scheme, the node closest to 
(.v, y) receives a weight wkf =  1, with the remaining three weights set to zero. For the 
CIC scheme, the weights are w h = ivxw v* win  ; — (1 — u\K) w ^  w L j + 1 =  w v( 1 — w v), and 
w :+ i./+i =  (> - « ’.,■)(* -  »’, )• =  (•'■/+, --v)/(-v,-tl — Xj) and w,  =  (y,+ 1 -  y ) / ( y J+, - > ’,)•

2. Solve the Poisson equation. The Poisson equation is solved by some of the numerical 
techniques discussed in Section 4.2.

3. Compute forces on the mesh. The electric field at mesh nodes (A, / )  is computed as

Elt  =  +  A *..,i. / ) / 2  a n d  EL =  ( A a j  \ +  A a . / i  > ) / 2 ' l o r  k ^  ^  1 +  1 a n d  1 =  •/’

7 +  1*
4. Interpolate to find  forces on the charge. Interpolate the field to position (.v, y) according 

to E x =  w kiEii and ~  51 A:/ wkiEkr> where A =  /, i + 1, / =  j ,  j  -h 1 and the w -  
are the NG P or CIC weights from step 1.

The requirements (P) and (M) severely limit the scope of devices that may be con
sidered in device simulations using the NGP and the CIC schemes. Laux [259] proposed 
a new particle-mesh coupling scheme, namely, the nearest-element-center (NEC) scheme, 
which relaxes the restrictions (P) and (M). The NEC charge assignment/force interpolation 
scheme attempts to reduce the self-forces and increase the spatial accuracy in the presence 
of nonuniformly spaced tensor-product meshes and/or spatially dependent permittivity. In 
addition, the N EC  scheme can be utilized in one axis direction (where local mesh spacing 
is nonuniform) and the CIC scheme can be utilized in the o ther (where local mesh spac
ing is uniform). Such hybrid schemes offer smoother assignment/interpolation on the mesh 
compared to the pure NEC. The new steps of the pure N E C  PM scheme are as follows:

1'. Charge assignment to the mesh. Divide the line charge p L equally to the four mesh
points of the element ( / , / ) .

3'. Compute forces on the mesh. Calculate the fields AJ+(I/,v r  / =  j\  j  -f 1, and S k />() ny  
k =  /, i +  1.

4'. Interpolate to find force on the charge. Interpolate the field according to the following 
£ f -  (A ? ,,, 2 , j  +  A , W „ - +J) / 2  a n d  E>' =  (A ,'7Hl +  A ;'.LyV(l 2. ) /2 .

The NEC designation derives from the appearance, in step (i ) of moving the charge to 
the center of its element and applying a CIC-like assignment scheme. The N EC  scheme 
involves only one mesh element and its four nodal values of potential. This locality makes 
the method well-suited to nonuniform mesh spacing and spatially varying permittivity. The 
interpolation and error properties of the NEC scheme are similar to the NGP scheme.

5.1.2. The Short-Range Force
In modern deep-submicrometer devices, for achieving optimum device performance and 
eliminating the so-called punch-through effect, the doping densities must be quite high. 
This necessitates a careful treatment of the electron-electron (c'-e) and electron-impurity 
(e-/) interactions, an issue that has been a major problem for quite some time. Many of 
ihe approaches used in the past have included the short-range portions of the e-e and e-i
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interactions in the k-spacc portion of the Monte Carlo transport kernel, as discussed in 
Section 3.1.5, thus neglecting the important inelastic properties of these two interaction 
terms (260, 261 ]. An additional problem with this screened scattering approach is that, unlike 
the o ther scattering processes, e-e and e-i scattering rates need to be re-evaluated frequently 
during the simulation process to take into account the changes in the distribution func
tion and the screening length. The calculation of the distribution function is highly CPU 
intensive, and it cannot account for local variations of the electron density in real space. 
Furthermore, ionized impurity scattering is usually treated as a simple two-body event, thus 
ignoring the multi-ion contributions to the overall scattering potential. A simple screen
ing model is usually used that ignores the dynamical perturbations to the Coulomb fields 
caused by the movement of the free carriers. To overcome the above difficulties, several 
authors have advocated the use of the coupled ensemble Monte-Carlo-molecular dynamics 
approach [262-264], that gives simulation mobility results in excellent agreement with the 
experimental data for high substrate doping levels [264]. However, it is proven to be quite 
difficult to incorporate this coupled ensemble Monte-Carlo-molecular dynamics approach 
when inhomogeneous charge densities, characteristic of  semiconductor devices, are encoun
tered [261, 265]. An additional problem with this approach in a typical particle-based device 
simulation arises from the fact that both the e-e and e-i interactions are already included, 
at least within the Hartree approximation (long-range carrier-carrier interaction), through 
the self-consistent solution of the three-dimensional (3D) Poisson equation via the PM cou
pling discussed in Section 5.1.1c. The magnitude of the resulting mesh force that arises from 
the force interpolation scheme, depends upon the volume of the cell, and, for commonly 
employed mesh sizes in device simulations, usually leads to double counting of the force.

To overcome the above-described difficulties of incorporation of the short-range e-e and 
e-i force into the problem, one can follow two different paths. One way is to use the P3M 
scheme introduced by Hockney and Eastwood [258]. An alternative to this scheme is to use 
the corrected-Coulomb approach due to Gross et al. [266-269].

5.1 .2 .1 . The F*M M ethod . The particle-particle-particle-mesh (P3M) algorithms are a 
class of hybrid algorithms developed by Hockney and Eastwood [258]. These algorithms 
enable correlated systems with long-range forces to be simulated for a large ensemble of 
particles. The essence of the method is to express the interparticle forces as a sum of two 
component parts; the short range part Fsr, which is nonzero only for particle separations 
less than some cutoff radius rc. and the smoothly varying part F, which has a transform that 
is approximately band-limited. The total short-range force on a particle Fsr is computed by 
direct particle-particle (PP) pair force summation, and the smoothly varying part is approx
imated by the particlc-mesh (PM) force calculation.

Two meshes are employed in the P M  algorithms: the charge-potential mesh and a coarser 
mesh, the so-called chaining mesh. The charge potential mesh is used at different stages 
of the PM calculation to store, in turn, charge density values, charge harmonics, potential 
harmonics and potential values. The chaining mesh is a regular array of cells whose sides 
have lengths greater than or equal to the cutoff radius rc of the short-range force. Associated 
with each cell of this mesh is an entry in the head-of-chain array: This addressing array is 
used in conjunction with an extra particle coordinate, the linked-list coordinate, to locate 
pairs of neighboring particles in the short-range calculation.

The particle orbits are integrated forward in time using the leapfrog scheme:

x"+l = x? +  - ------A t (286)
m

p r l/2 =  Pr ,/2 +  (F(. + F r ) A f  (287)

The positions {x,} are defined at integral time-levels and momenta {p,} are defined at 
half-integral time levels. Momenta {p,} are used rather than velocities for reasons of com
putational e c o n omy.

To summarize, the change in momentum of particle / at each time step is determined 
by the total force on that particle. Thus, one is free to choose how to partition the total
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force between the short range and the smoothly varying part. The reference force F  is the 
interparticle force that the mesh calculation represents. For reasons of optimization, the 
cutoff radius of  Fsr has to be as small as possible, and therefore F to be equal to the total 
intcrparticle force down to as small a particle separation as possible. However, this is not 
possible due to the limited memory storage and the required CPU time even in the state- 
of-the-art computers.

The harmonic content of the reference force is reduced by smoothing. A suitable fo rn  o f  
reference force for a Coulombic long-range force is one which follows the point particle force 
law beyond the cutoff radius rc, and goes smoothly to zero within that radius. The smoo:her 
the decay of F(x) and the large r c becomes, the more rapidly the harmonics R(k) decay vith 
increasing k. Such smoothing procedure is equivalent to ascribing a finite size to the chaiged 
particle. As a result, a straightforward method of including smoothing is to ascribe some 
simple density profile S(x) to the reference intcrparticle force. Examples of shapes, wiich 
are  used in practice, and give comparable total force accuracy are the uniformly chaiged 
sphere, the sphere with uniformly decreasing density, of the form

and the Gaussian distribution of density. The second scheme gives marginally better ax u -  
racies in 3D simulations. Note that the cutoff radius of the short-range force implied by 
E£q. (288) is a ra ther than rc. In practice, one can make r significantly smaller than a , because 
continuity of derivatives at r =  a causes the reference force to closely follow the point parti
cle force for radii somewhat less than a. It has been found empirically that a good measure 
o f  the lower bound of rc is given by the cube root of the autocorrelation volume of the 
charge shapes, which for the case of uniformly decreasing density gives

Once the reference interparticle force F for the PM part o f the calculation is chosen, the 
short-range part Fsr is found by subtracting F from the total intcrparticle force, i.e.,

5.1 .2 .2 . T h e  C o rrec ted  C o u lo m b  A p p ro a c h .  This second approach is a purely numerical 
scheme that generates a corrected Coulomb force look-up table for the individual e-e and e-i 
interaction terms. To calculate the proper short-range force, one has to define a 3D box with 
uniform mesh spacing in each direction. A single (fixed) electron is then placed at a known 
position within a 3D domain, while a second (target) electron is swept along the “device*’ in, 
for example, 0.2 nm increments so that it passes through the fixed electron. The 3D box is 
usually made sufficiently large so that the boundary' conditions do not influence the potential 
solution. The electron charges are assigned to the nodes using one of the charge-assignment 
schemes discussed previously [259]. A 3D Poisson equation solver is then used to solve for 
the node or mesh potentials. At self-consistency, the force on the swept electron F =  Fmoh 
is interpolated from the mesh or node potential. In a separate experiment, the Coulomb 
force Flol — Fcoul is calculated using standard Coulomb law. For each electron separation, 
one then tabulates Fm.sh. Foull and the difference between the two F' =  Fc<m, — Fim.sh=  Fv , 
which is called the corrected Coulomb force or a short-range force. The later is stored in .t 
separate look-up table.

As an example, the corresponding fields to these three forces for a simulation experiment 
with mesh spacing of 10 nm in each direction are shown in Fig. 39. It is clear that the mesh 
force and the Coulomb force are identical when the two electrons are separated several 
mesh points (30-50 nm apart). Therefore, adding the two forces in this region would resu.t 
in double-counting of the force. Within three to five mesh points. Fmcsh starts to deviate 
from FOUi!. When the electrons are within the same mesh cell, the mesh force approaches

r <
a

(-88)

(289)

Fsr =  F"" -  F (290)
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Figure 39. Mesh, C oulom b, and corrected  C oulom b field versus the distance betw een the two electrons. Note: 
F — eE. Reprinted with perm ission from  [266], W. S. G ross et al.. IE E E  Electron Devices Leu. 20. 463 (IW )). 
© 1 W . IEEE.

zero, due to the smoothing of the electron charge when divided amongst the nearest node 
points. The generated look-up table for F also provides important information concerning 
the determination of the minimum cutoff range based upon the point where Fcou, and Fmcsh 
begin to intersect, i.e., F' goes to zero.

Figure 40 shows the simulated doping dependence of the low-field mobility, derived from 
3D resistor simulations, which is a clear example demonstrating the importance of the proper 
inclusion of the short-range electron-ion interactions. For comparison, also shown in this 
figure are the simulated mobility results reported in [270], calculated with a bulk EM C 
technique using the Brooks-Herring approach [271] for the e-i interaction, and finally the 
measured data [272] for the case when the applied electric field is parallel to the (100) 
crystallographic direction. From the results shown, it is obvious that adding the corrected 
Coulomb force to the mesh force leads to mobility values that are in very good agreement 
with the experimental data. It is also important to note that, if only the mesh force is used in 
the free-flight portion o f  the simulator, the simulation mobility data points arc significantly 
higher than the experimental ones due to the omission of the short-range portion of the 
force.

The short-range e-e and e-i interactions also play significant role in the operation of semi
conductor devices. For example, carrier thermalization at the drain end of the M OSFET 
channel is significantly affected by the short-range e-e and e-i interactions. This is illustrated 
in Fig. 41 on the example of a 80-nm channel-length //-MOSFET. Carrier thermalization
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Figure 40. Low-field electron mobility derived from 31) resistor sim ulations versus doping. Also shown on this 
figure arc the Ensem ble M onte Carlo results and the appropria te  experim ental data. R eprinted with perm ission 
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Figure 41. Average energy of the electrons com ing to the drain from the channel. Filled (open) circles correspond 
to  the case when the short-range e-e and c-i in teractions are included (om ilted) in the sim ulations. The channel 
length extends from 50 to 130 nm. R eprinted with perm ission from [267]. W. J. Gross et al., VLSI Design 10. 437 
(2000). © 2000. Taylor and Francis.

occurs over distances that arc on the order of few nm when the e-e and c-i interactions are 
included in the problem. Using the mesh force alone does not lead to complete thermal- 
ization of the carriers along the whole length of the drain extension, and this can lead to 
inaccuracics when estimating the device on-state current.

5.2. Hydrodynamic/Drift-Diffusion Device Simulations
As already discussed in Section 3.3, the balance equations are a set of coupled conservation 
laws in the form of differential equations that can be easily derived from the BTE. In fact, 
BTE can be fully represented by an infinite set o f such conservation laws, starting with 
particle density conservation, followed by momentum conservation, energy conservation, etc. 
This set can be regarded as equivalent to a series expansion of the BTE. However, in order to 
be of any use, the expansion has to be truncated after a suitable number of terms. Hence, in 
practice, only a limited number of the most important conservation laws are retained, which 
may suffice for a satisfactory analysis o f most devices. In fact, the much used drift-diffusion 
formalism, discussed at the end of Section 3.3, is based on the first two conservation laws 
only— the particle density and the momentum balance equations. But in order to describe 
important effects in modern-day devices related to nonstationary electron transport and 
heating of the carrier gas, the third conservation law—the energy balance equation— is also 
needed, which leads to what is known as the hydrodynamic formulation, described in details 
in Section 3.3. With this model, phenom ena such as velocity overshoot and thermalization 
of energetic carriers via collisions are described. When the corresponding hydrodynamic 
or drift-diffusion equations are coupled with a field solver, one has a hydrodynamic or a 
drift-diffusion device simulator.

Commercial 2D and even 3D simulators based on either drift-diffusion or the hydrody
namic formalism, such as PISCES [273), M EDICI [274], M INIM OS [275]. DESSIS from 
ISE [276], SILVACO [277], etc., are quite popular, especially for analyzing silicon devices, 
because the effects of electron heating are not as pronounced in silicon as in compound 
semiconductors. But these simulators are usually not accurate enough for a quantitative 
description of short-channel compound semiconductor devices. Still, the drift-diffusion for
malism may be quite useful for numerically challenging tasks, such as three-dimensional 
FET modeling. Another example may be the analysis of the field distribution near the pinch- 
off for estimates of the breakdown voltage in MESFETs and HFETs. They also have been 
very successfully used in investigating fluctuations in the threshold voltage and the off-state 
power dissipation in nano-scale MOSFETs, in which there are very few impurity atoms in 
the device active region, and the position of each impurity will have significant influence on 
the actual device performance [278].

An example for the role of the atomistic description of the impurity atoms on the poten
tial profile and current stream lines is given in Figure 42 for a device with gate-length equal 
to 0.1 fiw. and gate-vvidth equal to 0.05 /xm. The effect of the randomly sited impurities can
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Figure 42. Conduction hand edge (left panel) and current siream  lines in /^-channel ultrasm all M O SFET  devices 
in which atom istic description o f the impurity atom s is used in the device active region.

be seen on the potential plots on the left for two devices with different number and differ
ent impurity distribution. The potential fluctuations force the current to divert around the 
potential peak of the random impurity. This may be seen on the figures on the right where 
the current flow vectors avoid several regions, which represent the role of the impurities. 
Such nonuniform current flow leads to threshold voltage and off-state current fluctuations 
amongst devices fabricated on the same chip. The effect becomes more prominent as channel 
lengths are scaled into the nm range, thus giving rise to device reliability concerns.

5.3. Electromagnetic Device Simulation
Simulation of optoelectronic and high frequency devices requires the solution of the full 
set of Maxwell's equations rather than just the Poissorvs equation. We previously discussed 
the FD TD  method for solving Maxwell's equations in Section 4.1. Numerous other solution 
techniques are of course available such as finite elements methods (FEM ), moment meth
ods. and frequency domain techniques [279]. For semiconductor lasers, drift diffusion and 
hydrodynamic models have been coupled to solutions of, for example, the Helmholtz wave 
equation in the optical cavity to simulate laser performance in MINILASH-II [280, 281].

The modeling of optoelectronic devices such as semiconductor lasers and light-emitting 
diodes using particle based device simulation is computationally difficult due to the char
acteristic time scale for spontaneous emission, which is on the order of nanoseconds. In 
contrast, the time-step in a Monte Carlo simulation is typically a femtosecond, which requires 
an enorm ous number of time-steps just to characterize a few radiative transitions. Monte 
Carlo is still used to calibrate the moment m ethod models used in MINILASE. For example. 
Rota et al. [282] used Monte Carlo simulation to investigate the capture process for electrons 
into a quantum well laser for calibrating the rate models used in MINILASE. However, the 
issue of dealing with vastly different time scale phenomena within a time-domain algorithm, 
such as the EM C method, is challenging.

For high frequency devices and circuits, the characteristic time scales of scattering events 
and the inverse frequency are somewhat commensurate, and FDTD methods, as discussed in 
Section 4.1. have been successfully applied. For time domain techniques, such as the FD TD  
method, the same coupled algorithm for device simulation is used as already discussed in
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this section, in which the field equations are decoupled from the transport equations over a 
small time interval, and the solution of one is used as the input for the other. For coupled 
Monte Carlo/FDTD simulation, the carriers are accelerated by the full Lorentz force given 
by Eq. (136), while the source for Maxwell’s equations is provide by the current density on 
the FDTD mesh, calculated by projecting the carrier velocities onto the nearest mesh point.

As an example of the application of the coupled Monte Carlo/FDTD simulation method, a 
structure which has been utilized to study carrier dynamics under high field conditions is the 
biased co-planar strip configuration shown in Fig. 43 [283, 284]. In this structure, an ultra- 
short optical pulse (switching beam) is used to excite electron-hole pairs between the co- 
planar strips. Due to the dc bias on the strips, the electrons and holes are excited in opposite 
directions giving rise to a time-dependent photocurrent induced in the waveguide structure. 
The pulse propagates down the waveguide, where it is detected by a time-delayed pulse 
(sampling beam). The change in electric field due to the propagating pulse is detected (for 
example) by the shift in an excitonic resonance due to the Stark effect [284]. Measurement 
of the time-dependent photocurrent detects the time-dependent velocity of the electrons and 
holes as they accelerate in the electric held from an initial state of essentially zero velocity.

Monte Carlo simulation has been employed in the interpretation of these results using 
FDTD solutions of Maxwell's equations, which are solved self-consistently with the particle 
dynamics [285, 286]. In these simulations. Maxwell's equations for the electric and mag
netic fields are discretized onto a 3D Yee cell grid using the FDTD method described in 
Section 4.1, and solved at each time step using as a source term the current density calculated 
from the previous Monte Carlo phase of the simulation during the previous time step. Using 
the solutions for E and B from this step, the particles then accelerate under the influence of 
the Lorentz force during the next Monte Carlo phase. Assuming the time step is properly 
chosen, this method allows the evolution of the system to be modeled during and after pho
toexcitation by the switching beam. Figure 44 shows a typical result of the calculated particle 
current induced by the switching beam for an average field of 40 kV/cm in a GaAs co-planar 
strip structure with an excited carrier population of 1 x  10,7/cm;> in a 1 ^im spot diameter 
between the strip-lines. The particle current shows an overshoot behavior, which is expected 
for the short-time dynamics of carriers accelerated in an electric field [137]. However, the 
decay of the current back to zero, and the undershoot is not expected from simple carrier 
dynamics in a constant field, and arises due to the self-consistent field of the electrons and 
holes themselves which collapses the dc field existing in the gap. W hether one uses full solu
tions to Maxwell's equations, or simply Poisson's equation (quasi-static solutions), the result 
is fairly similar, and this is clearly seen from the results shown in Fig. 44.

The time-dependent separation of electrons and holes after photoexcitation in the above 
experiments resembles a Hertzian dipole, which has a characteristic frequency in the
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Figure 43. Illustration of I lie experim ental configuration for e lectro-optic  sam pling of a biased co-planar .strip on 
a G aA s substrate. R eprin ted  with perm ission from |2N(»|. S. M G oodnick et al.. Int. J. Num. A/rx/i7. S. 205 (1995). 
a }W5. Wilev.
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Figure 44. C alculated particle current versus tim e for the solution based on Poisson's equation  only, and solutions 
considering FD T D  solutions to  Maxwell's equations for the structure  shown in Fig. 43 and an average held o f 
40 kV/cm. R eprin ted  with perm ission from [286], S. M. G oodnick cl al., Int. J. Num. Model. 8. 205 ( l*W5). €> 1W 5. 
Wiley.

terahertz range (based upon the time scale shown in Fig. 44). The emission of tera-hertz radi
ation in such structures has long been recognized and has potential applications in sources 
and detectors in this frequency range [287]. Son et al. [288] have used the measured tera
hertz radiation in a similar experimental structure to Fig. 43 in order to study the particle 
dynamics after photoexcitation. Modeling of such tera-hertz radiation using the coupled 
Monte Carlo/FDTD simulation described above is accomplished by modeling a much larger 
domain than the co-planar strip structure of Fig. 43 to include the free space outside. A tten
tion must be paid to the proper boundary conditions on the larger domain, which should be 
purely absorbing to first order. Recent improvements in the FDTD m ethod to approximate 
absorbing boundary conditions have been developed which result in very little reflected radi
ation [237]. Figure 45 illustrates the calculated FD TD  results for the normal and tangential 
electric fields in the near-field regime at an observation point directly above the co-planar 
strips [289]. The results are shown for a time corresponding to the delay time for the elec
tromagnetic pulse to arrive at the observation point. The results bear a close resemblance 
to the expected wave forms due to radiation from an ideal Hertzian dipole.

6. QUANTUM CORRECTIONS TO SEMICLASSICAL APPROACHES
As devices scale toward nanom eter dimensions, and new nanoscale devices emerge, the 
scmiclassical techniques in computational electronics discussed in the previous few sections 
become inaccurate, and new phenom ena need to be accounted for, such as quantum mechan
ical tunneling. In the past, quantum effects have been known to dominate the operation

Figure 45. C alculated near-field electric field outside o f the niicroslrip. (a) The tangential com ponent, (b) The 
radial com ponent [28*)]. T he x  and y scales are  in m icrons. R eprinted with permission from  K. A. Remley et al.. 
/ /:/:/:  Trans. Microwave Theory Tech.'4(\ 2476 ( l*)*>8). €• 1WX. IE EL:.
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of resonant tunneling diodes [290], quantum cascade lasers [291], etc. As discussed in the 
introduction (Section 1.1), tunneling through the gate oxide [292], source to drain tunneling 
and space-quantization effects are expected to he important in nanoscale MOSFETs and will 
require solution of the one-dimensional ( ID )  Schrodinger-Poisson problem. Solutions of the 
two-dimensional (2D) Schrodinger-Poisson problem are needed, for example, for describ
ing the channel charge in narrow-width MOSFETs. With regard to gate-oxide tunneling, 
the one-electron effective-mass approximation may not be sufficiently accurate and ab initio 
calculations will most probably be needed [293, 294].

It is also relevant to recall from the discussion given in the Section 1.1 that discrete impu
rity effects in nanoscale MOSFETs will lead to potential fluctuations which, in turn, will 
affect the magnitude of the device terminal characteristics (threshold voltage, off-state cur
rent, off-state power dissipation, etc.). In nanoscale MOSFETs. these potential fluctuations 
will eventually lead to further electron confinement into small boxes containing only a few 
electrons as device dimensions scale even further. This implies that understanding transport 
in future ultra-small devices will also require understanding transport in single and coupled 
quantum dots. The quantum dots by themselves have been the focus of numerous studies 
(see, e.g.. Ref. [295]). For example, controllable loading of these dots with few electrons has 
already been achieved, thus allowing one to speak of artificial quantum-dot hydrogen atoms 
and quantum-dot helium atoms [296]. Computing architectures for quantum devices, so 
called quantum cellular automata, which consist of cells of coupled quantum dots occupied 
by only a few electrons, have also been proposed [297. 298] and realized experimentally [299].

In these nanoscale devices, the time scale for the carrier transport is relatively short, as 
they leave the source with a memory of its distribution, traverse the channel under high 
fields, and enter the drain. Questions that arise in this context are, for example, what are 
the requirements for proper transport equations, and how can these be incorporated into 
existing simulators? Understanding transport in quantum  dot structures is yet another chal
lenging problem that needs further consideration. For example, one of the main difficulties 
in explaining transport in open quantum dots is the determination of the exact energy spec
trum and how the dot states couple with the leads (the quasi-two-dimensional electron gas) 
via the quantum point contacts (QPC). Fluctuations in the confining potential, due to the 
atomistic nature of the impurity atoms and how they affect the energy level spectrum in 
the dot, is yet another issue that prevents one in establishing a one to one correspondence 
between experiments and device simulations.

Because of the complexity of dealing with quantum transport at the lowest level of the 
hierarchy of Fig. 3 (Green 's function m ethod or direct solution of the /7-body Schrodinger 
equation), and due to the desire to have device simulation tools which are able to deal with 
multiple levels of length scales and complexity, from the quantum regime to the classical 
regime, increasing interest is being focused at present on the use of quantum mechanically 
derived potentials that may be added as “corrections” to the semi-classical simulation tools. 
A way to include quantum effects into classical simulation tools is to add such quantum 
potentials to the mean field potential computed from Poisson's equation. In the past, such 
potential corrections have been employed mostly in the context of fluid approximations 
leading to the so-called quantum-hydrodynamic (Q H D ) equations [300], where the corre
sponding equations are usually derived under the assumption that the electron gas is near 
thermal equilibrium. Even so, they were expected to be more generally valid and allow one 
to simulate quantum effects in ultra-small scale semiconductor and nano-electronic devices. 
More recently, these quantum corrections are introduced as modifications of the Hartree 
potential obtained from solving the Poisson's equation. Also note that this concept of mul
tiscale simulation, currently in the focus of the scientific research, is particularly critical in 
semiconductor devices where much of the device domain is in quasi-equilibrium and behaves 
classically (e.g., substrate, source-drain contacts, gate, etc.). whereas the critical regions gov
erning the current are spatially small, subject to high fields and high degrees of potentia. 
confinement leading to quantum effects. It is, there fore, expected to be quite successful ir 
overcoming some of the limitations of the semi-classical transport approaches discussed ir 
Sections 3 and 5 of this review article. An in-depth description of the effective potentia 
approach, utilized in particle-based simulations, is given in Section 6.1. In Section 6.2, we
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give brief description of the quantum hydrodynamic model and its use in device simulations 
on the example of a high electron mobility modulation doped SiGe device structure.

6.1. The Effective Potential Approach
From a circuit modeling point o f  view, even the ID solution of the Schrodinger-Poisson 
problem is a burdensome approach in terms of both complexity and computational cost. 
Because of this, it is common practice in industry to use analytical and macroscopic (in the 
sense of retaining the classical transport framework by adding correction terms to account 
for the quantum-mechanical effects) models that have provided some practical solutions. 
However, there are a number of problems associated with these approaches and all of them 
are directly related to the nonstationary nature o f  carrier transport (velocity overshoot) in 
deep submicrometer devices. Hence, more sophisticated models are needed that are able to 
capture the appropriate transport physics of the processes occurring in the smallest device 
sizes.

The idea of quantum potentials originates from the hydrodynamic formulation of quantum 
mechanics, first introduced by de Broglie and Madelung [301-303], and later developed by 
Bohm [304, 305]. In this picture, the wave function is written in complex form in terms of 
its amplitude R ( r, /) and phase i//(r, t) = /?(r, /) cxp[/S(r, t ) / h\ .  These are then substituted 
back into the Schrodinger equation to obtain the following coupled equations of motion for 
the density and phase

+  V - f p ( r . / ) - V . V ( r ,  /)") = 0  (291)
(U \  m

=  J - | V 5 ( r .  / ) ] ’ +  V (r ,  t) + Q ( p . r ,  /) (292)
(U 2 m

where p(r,  t) =  R ( r, t) is the probability density. By identifying the velocity as v — VS/ nu  
and the flux as j  =  pv, Eq. (291) becomes the continuity equation. Hence, Eqs. (291) and 
(292) arising from this so-called Madelung transformation to the Schrodinger equation have 
the form of classical hydrodynamic equations with the addition of an extra potential, often 
referred to as the quantum , or Bohm potential, written as

v <! = - T - T ^ l R ^ ~  T ^ r 'v :  '/Tl (293)v 2m  R 2 niy/n

where the density, //, is related to the probability density as n ( r, t) — N p ( r, t) =  N R 2( r, /),
where N  is the total number of particles. The Bohm potential essentially represents a field
through which the particle interacts with itself. It has been used, for example, in the study 
of wave packet tunneling through barriers [306], where the effect of the quantum potential 
is shown to lower or smoothen barriers, and hence allow  for the particles to leak through.

An alternate form of the quantum potential was proposed by Iafrate, Grubin and Ferry 
[307], who derived a form of the quantum potential based on moments of the Wigner- 
Boltzmann equation , the kinetic equation describing the time evolution of the Wigner dis
tribution function [308]. Their form, based on moments of the Wigner function in the pure 
state, and involving an expansion of order 0 ( h 2), is given by

8m
V(J = -  —  V 2(\n n)  (294)

which is sometimes referred to as the Wigner potential, o r  as the density gradient correc
tion. Such quantum  potentials have been extensively used in density-grcidient and quantum- 
hydrodynamic methods. Their use in particle-based simulation schemes becomes question
able due to the presence of statistical noise in the representation of the electron density and 
the considerable difficulty to calculate the second derivative of the density on a completely 
unstructured mesh given by the particle discretization.

To avoid this problem. Ferry and Z hou derived a form for a smooth quantum poten
tial [309], based on the effective classical partition function of Feynman and Klcinert [310].
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More recently, G ardner and Ringhofer [311] derived a smooth quantum potential for hydro- 
dynamic modeling, valid to all orders of / r ,  which involves a smoothing integration of the 
classical potential over space and temperature. There, it was shown that, close to the equilib
rium regime, the influence of the potential on the ensemble can be replaced by the classical 
influence of a smoothed non-local barrier potential. While this effective potential depends 
nonlocally on the density, it does not directly depend on its derivatives. Through this effec
tive quantum potential, the influence of the barriers on an electron is felt at quite some 
distance from the barrier. The smoothed effective quantum potential has been used success
fully in quantum-hydrodynamic simulations of resonant tunneling effects in one dimensional 
double-barrier structures [312].

In analogy to the smoothed potential representations discussed above for the quantum 
hydrodynamic models, it is desirable to define a smooth quantum potential for use in quan
tum particle-based simulations. Ferry [313] has suggested an effective potential scheme that 
emerges from a wave packet description of the particle motion, where the extent of the 
wave packet spread is obtained from the range of wavevectors in the thermal distribution 
function (characterized by an electron temperature). The effective potential, KcfJ, is related 
to the self-consistent Hartree potential, V\ obtained from the Poisson equation, through an 
integral smoothing relation

where G  is a Gaussian with standard deviation a{). The effective potential, Vcif, is then used 
to calculate the electric field that accelerates the carriers in the transport kernel o f the 
Monte Carlo particle-based device simulator as discussed in Ref. [314]. The calculation of 
Vc{{ has a fairly low computational cost. However, the explicit trea tment of particles moving 
in the smoothed electric field at for example in the vicinity of the Si/SiO: interface (where 
the fields are the strongest) requires the use of a small time step less than 0.01 fs to eliminate 
artificial heating of the carriers, which adds to the computational cost. Note, also, that within 
this approach the parameter, a{), has to be adjusted in the initial stages of the simulation 
via comparisons of the sheet/line density of the Q2D/Q 1D  structure being investigated using 
the effective potential approach and the 1D/2D Schrodinger-Poisson simulations.

The effective potential approach due to Ferry [314] is based on an Ansatz given by Eq. (295) 
of a Gaussian smoothing associated with the spatial extent of the wave packet characterized 
by an effective radius, a(). While some guide to the choice of this param eter is given by 
effective classical partition function of Feynman and Kleinert [310], it is more typically chosen 
as a fit parameter in comparing to the self-consistent solution of the ID  Schrodinger-Poisson 
equation corresponding to the direction of confinement experience by carriers.

In order to put this on a more rigorous basis, an effective quantum  potential for use in 
Monte Carlo device simulators is described below based on the Wigner-Boltzmann equation. 
This approach is based on perturbation theory around thermodynamic equilibrium and leads 
to an effective potential which depends on the energy and wavevector of each individual 
electron, thus effectively lowering step-function barriers for high-energy carriers [315]. The 
quantum  potential is derived from the idea that the Wigner and the Boltzmann equation 
with the quantum corrected potential should possess the same steady state. The resultant 
quantum potential is. in general, two-degrees sm oother than the original Coulomb and b ar
rier potentials, i.e., possesses two more classical derivatives, which essentially eliminates the 
problem of statistical noise. The computation of the quantum potential involves only the 
evaluation of pseudodifferential operators and can, therefore, be effectively facilitated using 
Fast Fourier Transform (FFT) algorithms. The approach is quite general and can easily be 
modified to modeling of, for example, triangular quantum wells. The previously described 
approach has been used in simulation of 25-nm M O SFE T device with oxide thickness o f
1.2 nm and dual-gate device structures, as discussed in Section 6.1.2.

6.1.1. Thermodynamic Effective Potential
The basic idea of the thermodynamic approach to effective quantum potentials is that the 
resulting semiclassical transport picture should yield the correct thermalized equilibrium

(295)
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quantum state. Using quantum potentials, one generally replaces the quantum Liouville 
equation

(I,P +  t \ H ' (A =  () n

for the density matrix, p (x \ y), by the classical Liouville equation

d , f  +  ■ Vr/  -  |  Vt V  ■ V , /  =  0 (297)
2/77* h

for the classical density function f ( x \  k) .  Here, the relation between the density matrix and 
the density function, / ,  is given by the Weyl quantization

/ ( x ,  k)  =  W[p] = I p ( ^ x  +  X  -  }-^ jc x p ( ik  ■ y ) dy (298)

The thermal equilibrium density matrix in the quantum mechanical setting is given by p l'q =  
e -P7/, where /3 =  1/A:#r is the inverse energy, and the exponential is understood as a matrix 
exponential; that is, p t,(f( x , y )  =  £ A t^A(A*) exp (- /3A )^A(y)* holds, with the orthonor
mal eigen-system of the Hamiltonian, H.  In the semiclassical transport picture, on the 
other hand, the thermodynamic equilibrium density function, /  , is given by the Maxwellian 
f ni{x*k)  =  -  f i V) .  Consequently, to obtain the quantum mechanically correct
equilibrium states in the semiclassical Liouville equation with the effective quantum poten
tial, V Q, we set

k ) = cxp ( ~ ^ ~ 7 "  ~  =  W [PVI,\ =  /  e ' W p ^ x  +  ^  x  -  0  exp( ik  • y ) dy

(299)
This basic concept was originally introduced by Feynman and Kleinert [310]. Different forms 
of the effective quantum potential arise from different approaches to approximate the matrix 
exponential e -/j//.

In the approach presented in this paper, we represent e Pn as the Green's function of the 
semigroup generated by the exponential. Introducing an artificial dimensionless parameter, 
y, and defining p(x,  y , y) =  <Aa(x ) exP ( ~ 7 j8 A)^A(y)*, we obtain a heat equation for p 
by differentiating p  w.r.t. y and using the eigenfunction property of the wave functions t//A. 
This heat equation is referred to as the Bloch equation

(>yP = - ~ ( H  ■ p +  p - H ), p(x ,  y, y  =  0) =  8(x  -  y)  (300)

and p cc/(.v, y) is given by p(x .  y, y =  1). U nder the Weyl quantization, this equation becomes,
with the usual Hamiltonian H  = - ^ A x +  V  and defining the effective energy E  by /  =
W\p] =  c-PE

dvE  = ^ ( A xE - p \ V , E \ 1)
8 m *

+  l ^ r  +  2 ( 2 7 7 ^  /  K ( x  +  y ) exp W E (x,  k , y )  -  f iE{x  ,q , y )  + iy{k -  q) \dqdy,

E ( x , k , y = 0 )  = 0 (301)

The effective quantum potential is in this formulation given by E(x ,  k,  y  =  1) =  V Q +
The logarithmic Bloch equation is now solved 'asymptotically', using the Born approxima
tion, i.e., by iteratively inverting the highest order differential operator (the Laplacian). This 
involves successive solution of a heat equation for which the Green 's  function is well known, 
giving (see Ref. [316] for the details)
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Note that the effective quantum potential. V (\  now depends on the wave vector k . For 
electrons at rest; that is, for k — 0, the effective potential, JA\ reduces to the Gaussian 
smoothing given in Ref. [313]. Also note that there are no fitting parameters in this approach; 
that is, the size of the wavepacket is determined by the particle’s energy.

The potential V( v) that appears in the integral of Eq. (302) can be represented as a sum 
of two potentials: the barrier potential, VH(x),  which takes into account the discontinuity 
at the Si/SiO: interface due to the difference in the semiconductor and the oxide affinities, 
and the H artree potential, Kw(.v), that results from the solution of the Poisson equation. 
Note that the barrier potential is ID, independent of time, and needs to be computed only 
once in the initialization stage of the code. On the other hand, the Flartree potential is 
2D and time dependent, as it describes the evolution of charge from quasi-equilibrium to 
a nonequilibrium state. Since the evaluation of the effective Hartree potential, as given by 
Eq. (302). is CPU intensive, approximate solution methods have been pursued to resolve 
this term within a certain level of error tolerance.

We recall from the above discussion that the barrier potential is just a step function. Under 
these circumstances. c'VaK„(a*) =  B(  1, 0,  0 ) 7"/5(a*i ), where B is the barrier height (on the 
order of 3.2 eV for the Si-SiO: interfaced) and a , is a vector perpendicular to the interface. 
We actually need only the gradient of the potential, so that, using the pseudodifferential 
operators, one obtains

Vr ^ ( . v ,  /?) =  exp 

This equation gives

8 nr
I m - w W r - T . / W  (303)

P l p - f ,

i r d a w i
j exp - P - T T -  S n r ' " ' h  i,

c-V.K/^.v, /;) =  (1, 0, (
ZlT

Note that is only a function of ( a , ,  that is, it remains lo be strictly one-dimensional, 
where a , and p, are the position and the momentum vector perpendicular to the interface. 
When combined with the fact that one has to calculate this integral only once, this fact 
motivates the tabulation of the result given by Eq. (304) on a mesh.

The Hartree potential, as computed by solving the ^/-dimensional Poisson equation, 
depends in general upon d  particle coordinates. For example, on a rectangular mesh, the 
2D Hartree potential is given by VH(x^, a s , /), and one has to evaluate V{j (x{. a s , P |,  p 2> 0  
using Eq. (302) N  times each time step for all particles position and momenta: a " ,  p' \
n =  1.........N  (where N  is the num ber of electrons, which is large). This task is, of course,
impossible to accomplish in finite time on present state-of-the-art computers. The follow
ing scheme is therefore suggested. According to (302), one evaluates the quantum potential 
by multiplying the H artree potential by a function of h Vv, or by multiplying the Fourier 
transform of the Hartree potential by a function of h£.  The expression in Eq. (302) may be 
factored into

2 im * I  Ph2k ' Vv \  , (  P hZ it- i2
2/m* /  t?

(ih'-k • V \  „

« (x- A} =  m r f ; sinh I  ) cxp I  ^ 1 v - ' 1 v " {x

with

.....

V]) ( a  ) =  exp ( | Vv | ■- J I ), ( v) (306)

The evaluation of the potential, ^ ( a ) ,  which is a version of the Gaussian smoothed po ten
tial due to Ferry [313], is computationally inexpensive since it does not depend on the wave 
\cc to r  k.  However, because of the Gaussian smoothing, \^ ( a )  will be a smooth function of 
position, even if the H artree potential Vn(x)  is computed via the Poisson equation where 
the electron density is given bv a particle discretization. Therefore, the Four er transform
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of the po ten tial will decay rapidly as a function of and it is admissible to use a
Taylor expansion for small values of h t  in the rest of the operator. This approximation gives

(307)
f3h-k • Vv v 2i nr  J 24 ( n r ) 2

or

a ir vfi(x".  p") = V"(x") -  ^  t  P ] P ' W XL tx,< ( * " ) •  n = \ ............N  (308)
j.k=  1

for all particles. This computation is done by simple numerical differentiation of a suffi
ciently smooth grid function, Vj]r  and interpolation. The evaluation of (308) is the price we 
have to pay when comparing the computational cost of this approach as opposed to the 
original approach of Ferry [313], which uses simple forward, backward or centered differ
ence scheme for the calculation of the electric field. The advantage is that this generalized 
effective potential approach avoids the use of adjustable parameters.

6.1.2. Quantum Effects in a Conventional Nanoscale MOSFET
As an application of the generalized effective potential approach detailed above, examples 
are given of particle based simulation of nanoscale gatc-length MOSFETs including quantum 
effects through this method. The parameters of the device structure simulated are as follows: 
the average channel/substrate doping equals 10N cm “ \  the doping of the source and drain 
regions is IO11' cm \  the junction depth is 30 nm, the oxide thickness is 1.2 nm and the 
gates are assumed to be metal gates with work function equal to the semiconductor electron 
affinity. The gate/channel length is 25 nm. Figure 46 shows the carrier confinement within 
the triangular potential w ell with and without the inclusion of the quantum-mechanical 
size-quantization effects. These results are shown for the bias conditions V(i =  Vn =  IV. 
From these results, it is evident that the low-energy electrons arc displaced little more than 
the high-energy electrons; the reason being the fact that the high-energy electrons tend to 
behave as classical particles and hence are displaced relatively less. Also note that there is 
practically no carrier heating for the case when the effective potential is used in calculating 
the driving electric field. The carrier displacement from the interface proper is also seen from 
the results presented in Figure 47. Notice that there is approximately 2-nm-averagc shift 
of the electron density distribution near the source end of the channel when quantization 
effects are included in the model. Also note that carriers behave more like bulk carriers at 
the drain end of the channel and are displaced in the same m anner when using both the 
classical and the quantum-mechanical model.

Figure 46. F.lcclron localization within the triangular potential barrie r for the case when quantization effects are 
not included in the m odel (left panel) and for the case when we include quantum -m echanical space-quantization 
effects by using the effective potential approach presented in this paper (right panel). R eprinted with permission 
from S. Ahm ed et al.. IE E E  Dans. Nanotcchnol. 4, 4(t5 (2005). V  2005. IEEE.
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10 20 30 40 53 60 70
Distance Along the Channel [nm]

10 2 0 3 0 4 0 5 0 60 70
Distance Along the Channel [nm]

Figure 47. E lectron distribution in the dcvice without (left panel) and with (right panel) the incorporation o f 
quantum -m echanical, sizc-quantization effects. R eprinted with permission from S. Ahm ed et al., IEEE Trans. N ano- 
technol. 4. 465 (2005). €> 2005. IE EE .

The device transfer characteristics are shown in the left panel of Fig. 48. Again, it is clear 
that the full quantum potential and the barrier potential give similar values for the current. 
Looking more in detail at the device transfer characteristics, one finds that quantization 
effects lead to a threshold voltage increase of about 220 mV. When properly adjusted for the 
oxide thickness difference, this result is consistent with previously published data. Evidently, 
as deduced from the output characteristics shown in the right panel of Fig. 48, the shift in the 
threshold voltage leads to a decrease in the on-state current by 30%. The later observation 
confirms earlier findings that one must include quantum effects into the theoretical model 
to be able to properly predict the device threshold voltage and its on-state current.

Next, the simulation results of a 15 nm conventional //-channel M OSFET device are dis
cussed. Similar devices have been fabricated by Intel Corporation. The physical gate length 
of the device used is 15 nm. The source/drain length equals 15 nm and the junction depth 
is also 15 nm. The bulk substrate thickness used for simulations is 45 nm. The height of the 
fabricated polysilicon gate electrode for this device is 25 nm. The gate oxide used was S i0 2 
with physical thickness of only 0.8 nm. The source/drain doping density is 2 x 10iy cm-3
and the channel doping is 1.5 x 1019 cm "3. The substrate doping used is 1 x 1018 cm "3. The 
simulated device output characteristics are shown in Fig. 49.

There are again several noteworthy features in these results:

1. Quantum-mechanical size quantization increases the threshold voltage as observed 
from the decrease in the slope in the linear region, and hence degrades the device 
transconductance.

2. Drain current degradation due to quantum effects is not uniform, rather decreases 
with the increase in drain bias. The reason may be attributed again to the fact that the
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Figure 49. (L eft panel) C onventional 15-nm M O SFET device ou tpu t characteristics. (R ight panel) Average electron 
velocity along the channel. R eprin ted  with perm ission from S. S. A hm ed, Ph.D. Thesis, Arizona State University. 
2005. ©  2005.

electrons tend to behave as classical particles as average carrier energy increases with 
the increase in drain bias.

3. There is a considerable difference between the barrier-correction and the barrier- 
H artree  (full) correction which is mainly due to the use of higher doping density 
(1.5 x 10ly c m '3) in the channel region than was used in the 25 nm M O SFET (1 x 
1(T cm ’ 3) case.

The higher doping density has a direct impact on the Hartree potential, making 
the triangular channel potential steeper and hence introducing a pronounced quantum 
effect. But the overall degradation of the drain current as compared to the 25-nm 
M O SFE T device structure is reduced in the 15-nm device because of the ballistic nature 
of the carrier motion in the latter case. This fact becomes clear if one observes the 
velocity profile of the device as depicted in the right panel of Fig. 49.

What is important in this figure is that the carriers attain a velocity, which is com
parable to that in the 25-nm device structure even with a lesser biases applied; i.e., 
V(i = VD =  0.8V. Also, the gate oxide thickness is less in the 10-nm device, which means 
that the gate oxide capacitance constitutes the major portion of the total effective gate 
capacitance thereby reducing the impact of the quantum capacitance.

4. The discrepancy between the experimental and the simulated results is attributed 
mainly to two reasons: (a) the series resistance coming from the finite width of the 
actual device structure and the contact resistances, and (b) the gate polysilicon deple
tion effects which as previously mentioned can introduce further degradation of the 
drain current on the order of 10-30% depending on the doping density and the height 
of the polysilicon gate used. The limited data as supplied by the Intel Corporation 
shows that the polysilicon gate is 25 nm in height, which can indeed contribute to a 
significant degradation of the drain current.

5. The use of a commercial simulator like the drift-diffusion based SILVACO Atlas fails 
to predict the device behavior mainly because of the ballistic and quantized nature of 
the carriers in these nanoscale device structures.

6.1.3. Size Quantization in Nanoscale SOI Devices
Size-quantization effects in nanoscale fully depleted silicon on insulator (SOI) devices arise 
due to the physical nature of the confined region, which is sandwiched between the two 
oxide layers. In o rder to verify the applicability of the quantum potential approach discussed 
above for this technology, a single gated SOI device structure is simulated. The SOI device 
used here has the following specifications: gate length is 40 nm, the source/drain length is 
50 nm each, the gate oxide thickness is 7 nm with a 2 nm source/drain overlap, the buried 
oxide (BOX) layer thickness is 200 nm, the channel doping is uniform at l x 10!7 cm the 
doping of the source/drain regions equals 2 x 10|l> cm "3, and the gate is assumed to be a 
metal gate with work function equal to the semiconductor electron affinity. There is a 10-nm
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spacer region between the gate and the source/drain contacts. The silicon (SOI) Him thick
ness is varied over a range of 1—J0 nm for the different simulations that were performed 
to capture the trend in the variations of the device threshold voltage. Similar simulations 
were performed in Refs. [317, 318] using the Schrodinger-Poisson solver and Ferry's effec
tive potential approaches, respectively. For comparison purposes, the threshold voltage is 
extracted from the channel inversion density versus gate bias profile and extrapolating the 
linear region of the characteristics to a zero value. This method also corresponds well to the 
linear extrapolation technique using the drain current-gate voltage characteristics.

The results showing the trend in the threshold voltage variation with respect to the SOI 
film thickness are depicted in Fig. 50. One can sec that Ferry's effective potential approach 
overestimates the threshold voltage for a SOI thickness of 3 nm due to the use of rather 
approximate value for the standard deviation of the Gaussian wave packet which results 
in a reduced sheet electron density. As the silicon film thickness decreases, the resulting 
confining potential becomes more rectangular due to the combined effects of both the inver
sion layer quantization and the SOI film (physical) quantization, which also emphasizes the 
need for using a more realistic quantum-mechanical wavepacket description for the con
fined electrons. The favorable comparison of the generalized quantum  potential to the exact 
Schrodinger-Poisson results indicate that this generalized approach can be applied to the 
simulation of SOI devices with a greater accuracy and predictive capability as it will be seen 
from the results presented in the next section.

6.1.4. Size Quantization in Nanoscale DG SOI Devices
As a final example of application of the effective potential method, a dual gate SOI (DG  
SOI) M OSFET device is considered. Such dual gate devices were originally designed to 
achieve the ITRS performance specifications for the year 20 16. Figure 5 1 shows the simu
lated DG SOI device structure used in this section, w'hich is similar to the devices reported 
in Ref. [319]. The dotted portion of the device, referred to as the intrinsic device, is the 
portion of the device in which quantum effects are taken into consideration.

The effective intrinsic device consists of two gate stacks (the gate contact and SiO: gate 
dielectric) above and below a thin silicon film. For the intrinsic device, the thickness of 
the silicon film is 3 nm. Use of a thicker body reduces the scries resistance, and the effect 
of process variation but it also degrades the short channel effects (SCE). From the SCH 
point of view, a thinner body is preferable, but it is harder to fabricate veiy thin films of 
uniform thickness, and the same amount of process variation (± 1 0 % ) may give intolerable 
fluctuations in the device characteristics. A thickness of 3 nm seems to be a reasonable 
compromise, but o ther body thicknesses have also been examined. The top and bottom 
gate insulator thickness is 1 nm, which is near the scaling limit for SiO: . As for the gate 
contact, a metal gate with tunable work function. is assumed, where <t>f; is adjusted to 
4.188 to provide a specified off-current value of 4 ^A//xm. The background doping of the 
silicon film is taken to be intrinsic; however, because of diffusion of the dopant ions, the

Figure 50. T hreshold voltage variation with SOI film thickness. R eprin ted  with perm ission from S. S. Ahmed. Ph.D . 
Thesis. Arizona State University, 201)5. 2005.
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Tox = 1 nm 7si = 3 nm
Lg = 9 nm L j = 17 nm
Lsd = 10 nm A/Sd = 2 x 1020 cm
Nb = 0 g  = 1 nm/decade
<J>G = 4.188 yG = 0.4 V

Figure 51. DO device structure . R eprinted with perm ission from S. S. Ahm ed, Ph.D. Thesis, Arizona Stale U ni
versity, 2005. €; 2005.

doping profile from the heavily doped S/D extensions to the intrinsic channel is graded with 
a coefficient of g  which equals to 1 nm/dec. For convenience, the doping scheme is also 
shown in Fig. 51. According to the 1TRS roadmap, high performance devices should have a 
gate length of L (i =  9 nm by the year 2016. At this scale, both 2D electrostatic and quantum 
mechanical effects play an important role, and traditional device simulators may not provide 
reliable projections. The length, is an important design param eter in determining the 
on-current, while the gate metal work function, <J\;, directly controls the off-current. The 
doping gradient, g, affects both on-current and off-current.

The intrinsic device is simulated using the generalized effective potential approach in 
o rder to gauge the impact of size-quantization effects on DG SOI performance. The results 
are then com pared to that from a full quantum approach based on the nonequilibrium 
G reen’s function (N E G F) formalism (NanoM OS-2.5) developed at Purdue University [320]. 
The N E G F  method is discussed later in Section 7.7. In this method, scattering inside the 
intrinsic device is treated by a simple Buttiker probe model, which gives a phenomenological 
description of scattering, and is easy to implement under the Greens’ function formalism. 
The simulated output characteristics are shown in Fig. 52. Devices with both 3 nm and 1 nm

Figure 52. G eneric  DG SOI device ou tpu t characteristics. R eprin ted  with perm ission from S. S. Ahm ed, Ph.D. 
Thesis. A rizona S late University. 2005. €> 2005.
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channel thickness are simulated, with an applied gate bias of 0.4 V. The salient features of 
this figure are as follows:

1. Even with an undoped channel region, the devices achieve a significant improvement 
with respect to the short channel effects (SCEs) as depicted in flatness of the saturation 
region. This improvement is due to the use of the two gate electrodes and an ultrathin 
SOI film, which allow the gates more control on the channel charge.

2. Reducing the channel SOI film thickness to 1 nm further reduces SCEs, and improves 
device performance. However, the reduction in the drive current at higher drain bias 
is due to series resistance effects in the ultrathin body, which are naturally more pro
nounced for large drain currents.

3. Regarding quantum effects, one can see that quantum-mechanical size quantization 
does not play a major role in degrading the device drive current, primarily because of 
using an undoped channel region. Also, looking at the 3 nm (or 1 nm) case alone, one 
can see that the impact of quantization effects reduces as the drain voltage increases 
because of the growing bulk nature of the channel electrons.

4. The percentage reduction in the drain current is more pronounced in the 1 nm case 
throughout the range of applied drain bias because of the stronger physical confinement 
arising from the two S i0 2 layers sandwiching the silicon film.

5. Finally, the comparison between the quantum potential formalism and the N E G F  
approach for the device with 3-nm SOI film thickness shows reasonable agreement 
which further establishes the applicability of this m ethod in the simulations of different 
technologically viable nanoscale classical and nonclassical M OSFET device structures.

6.2, Quantum Hydrodynamic Model
As mentioned earlier, the hydrodynamic model described in Section 5.2 arising from 
moments of the semiclassical Boltzmann transport equation can itself be corrected for quan
tum mechanical effects based on introduction of a quantum  potential added to the electro
static potential. The hydrodynamic equations which explicitly include quantum corrections 
and describe the particle conservation, m om entum  conservation and energy conservation 
(see Ref. [321] for a detailed discussion) are the following:

^  +  V • («v) =  0 (309)
at

dv q E  1 v
» + ' " ' * ' — k - i s z v <"k ‘ r ' > - r m (3 ,0)

J -  +  -,1-* w „  =  - f - T  1*7,) +  r r - f  —  -  -  — -  <31 '>(>< 3y 3y 3 y k „ \ T „  tw

where n is the average electron density, v is the average electron velocity, T  is the effective 
electron temperature, m* is the effective electron mass, E is the electric field, rm is the
momentum relaxation time, t w is the energy relaxation time, and T  is given by

T* = y T + * T - U: <312>

with

3 k B

(313,

where U is the quantum correction. The explicit quantum correction, as already discussed 
in Section 6.1, involves the second order space derivative o f  the log of the density. Hence, 
it tends to smooth the electron distribution, especially w here the electron density has sharp 
changes. The factor, y. is the degeneracy factor [322], given by

I - A/,7 )
/  Ft - , (Hf /knT)

(314)
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Figure 53. (Left panel) Schem atic description o f the device structure  under investigation. (Right panel) Sim ulated 
I - I '  characteristics. R eprinted with perm ission from J. R. Z hou et al., in “ Proceedings of the International W ork
shop on C om putational E lectronics." OSU, 1993. © 1993, D. K. Ferry.

where f i f is the Fermi energy measured from the conduction band edge, and is introduced 
as a correction to the total average electron kinetic energy

W =  w?7*v2 +  ^  yk  H T  +  Uq (315)

The relaxation times, rm and t„„ are functions of energy, and, as discussed in Section 3.3, 
arc determined by fitting the homogeneous hydrodynamic equations to the velocity-field and 
energy-field relations from Monte Carlo simulations described in Section 3.1.

This quantum  hydrodynamic model has been applied to a variety of device structures 
realized in different material systems. As an example, the investigation of transport in a
0.18 f im  gate-length, modulation-doped structure, is discussed here as shown schematically 
in the right panel o f Fig. 53. The doping of the top Si() 7G c()3 layer is 3.5 x 1018 cm \  and 
a doping of 1 x 1014 cm "3 is used in the Si()7G e(U substrate. The lattice temperature in the 
simulation is taken to be 300 K. The typical simulation domain is 1 \xm x 0.09 jxm. The 
thickness of the top Sin7Ge(U layer is 19 nm, and the strained-Si channel is 18 nm.

Ihe simulated l - V  characteristics for gate biases 0.7, 0.5, 0.2, and 0 V, respectively, are 
shown on the right panel of Fig. 53. The small thickness of the top Si()7G e1)3 layer pro
vides a normally off device, since the Schottky barrier height of 0.9 eV leads to an esti
mated depletion width of 18.4 nm. The peak transconductance is about 300 mS/mm, and a 
good saturation with a drain conductance of 4.6 mS/mm is obtained for 0.5 V on the gate. 
Approximately the same current level and transconductance is found in a 0.25 f im device. 
These simulation results are comparable with corresponding experimental measurements. 
The relatively larger current level (0.3 /xA/mm) and transconductance (330 mS/mm) found 
in the experiment is thought to be because of a higher sheet-charge density (2.5 x 1012 e n r 2 
compared with 1 x 1012 cm "2 in this simulation) in the quantum well for their particular 
modulation-doped structure. It is interesting to note that the transconductance of this device 
approaches the same order of magnitude as that of an AIGaAs/GaAs device with the same 
geometry, although the transconductance of the SiG^ device is about three times smaller. 
The inclusion of quantum  corrections leads to about 15% current increase for gate voltage 
of 0.5 V. By inspecting the electron density distribution along the channel region of the 
device (not shown here), one can see that this is due to the rapid change in the electron 
density at the gate end close to the drain contact within a region that is much shorter than 
the gate-length. The inclusion of the quantum potential also leads to increase of the electron 
density in the channel.

7. FULLY QUANTUM APPROACHES
As noted above, channel quantization in the direction normal to the oxide-semiconductor 
interface of MOSFETs has been a fact of life for many years. This leads to important 
modifications which arc readily seen in smaller devices. Two such effects are a shift in the
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threshold voltage, due to the rise of the lowest occupied subband above the conduction 
minimum, and a reduction in the gate capacitance, due to the setback of the maximum 
in the inversion density away from the interface. This latter produces a so-called quantum 
capacitance, which is effectively in series with the normal gate capacitance [323]. If these 
are the major effects produced by the quantization, then they can be readily handled in a 
normal semiclassical theory by the introduction of an effective potential, as was discussed in 
the previous section. However, if the individual quantum levels in the inversion layer become 
resolved, or if the lateral quantization (in either width or thickness of an SOI layer) becomes 
important, then a full quantum mechanical model is required to handle the device. In the 
following, we turn to the description of a full quantum mechanical simulation for ultrasmall 
devices, although we concentrate mostly upon the MOSFET.

There have been many suggestions for different quantum methods to model ultrasmall 
semiconductor devices [324-326]. However, in each of these approaches, the length and the 
depth were modeled rigorously as a two-dimensional simulation, while the third dimension 
(width) is usually included through the assumption that there is no interesting physics in 
this dimension (lateral homogeneity). O thers have made the assumption that only a single 
mode (or a few modes) is important (discussed later) and that the mode does not change 
shape as it propagates from the source of the device to the drain of the device [327, 328]. 
These are not likely to be valid assumptions, especially as we approach devices whose width 
is comparable to the channel length, both of which may be less than 10 nm.

It is important to consider all the modes that may be excited in the source (or drain) 
region, as this is known to be responsible for some of the interesting physics that we wish 
to capture. In the source, the modes that are excited are three dimensional (3D) in nature, 
even in a thin SOI device. These modes are then propagated from the source to the channel, 
and the coupling among the various modes will be dependent upon the details o f the total 
confining potential at each point along the channel. Moreover, as the doping and the Fermi 
level in short-channel MOSFETs increases, we can no longer assume that there is only 
one occupied subband. Indeed, it is well known that the quantization of the channel in the 
M O SFET is strongest at the source end, and is generally much weaker, or non-existent, at 
the drain end (the latter is true in the case of a pinched-off channel). Thus, the number 
of modes varies down the channel, and the coupling of the modes is not subject to an 
orthogonality rule, as the dimension over which the mode is defined varies with the position 
in the channel. This latter breaks the normal orthogonality relationship.

As interest in nanodevices extends beyond just the MOSFET, but to more general types 
of “device” structures which involve quantum transport, a general development of quantum 
transport theory will be given, and its application to such device-like structures. In the next 
section, we will deal with the general idea of transport between two contact regions, and 
how it may be viewed in terms of a modal transport. In the subsequent section, we will 
address the problems of the contacts themselves as well as some important constraints upon 
the solutions, and, in Section 7.3, we turn to a general treatment of a “device” embedded 
in its environment. This latter is quite important as quantum mechanics normally deals with 
closed systems. On the o ther hand, devices are open systems in which current and energy flow 
through the active region, but are measured in an external region, known as the environment. 
Thus, one must understand how quantum mechanics is applied to such open systems.

In Section 7.4, we develop the Schrodinger equation solutions for a self-consistent study of 
devices, primarily through the iterative scattering matrix approach. This will be applied to a 
simple two-dimensional structure and to a three-dimensional simulation of a small M O SFET 
We then turn to a short discussion of density matrices and Wigner functions as they arc 
applied to device simulation, before finally turning to the nonequilibrium Green 's function.

In each of these approaches, we deal with quantization of a single electron in the region 
of interest. That is. we deal with the single particle wave function, rather than the full 
many-body wave function. Simulations still are described with the normal electron densities 
and Fermi functions, but the many-bodv interactions within the electron (or hole) gas are 
treated at best through a mcan-Held approximation, such as the local density approximation 
(LDA). Here, the details of the exchange and correlation within the electron (or hole) gas 
are approximated bv a functional of the local density, which provides a correction to the
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solutions obtained from the Poisson equation. The fact is that exact many-body wave func
tions are extremely complicated and require O (N ')  partial wave functions in a Fock space 
just to diagonalize the Hamiltonian. Even with a simple quantum dot. only total numbers 
of electrons of the o rder of 11) have been solved [329, 330]. However, it is known that LDA 
approximations can still give relatively good results for the energy levels of these struc
tures [331], although there are some limitations to this statement, which will be examined in 
Section 7.8.

7.1. General Conductivity and the Landauer Formula
The general treatment of transport through quantum  systems is best described by a treat
ment of  the conductivity, or conductance, of the overall device structure. In particular, for a 
structure with very small transverse dimensions, the conductance can be described in terms 
of a few transverse modes. In general, the conductivity in a homogeneous semiconductor 
can be written as

(T, =
m

(316)

where d ( — 1 ,2 ,3 )  is the dimensionality of the semiconductor, t„, is the momentum relax
ation time, and the o ther symbols have their usual meaning. In a degenerate semiconductor, 
which is the normal case in MOSFETs and o ther quantum  systems, the density is related to 
the Fermi energy or, more important, to the Fermi wave vector, as

n =

2kj.
cl = 1
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k i

2 tt
cl =  2

k / cl =  3
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(317)

Hence, the conductivity is written as
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(318)

where v }. is the Fermi velocity ( = h k , , /m*). If the conductance is now computed, using the 
transverse area as W  (the width) in two dimensions and ttW 2I4 in three dimensions, we find

c;

I. '
d  =  1

2c2 v , T m k , W
cl = 2

h 21. 2 '

v,.Tm /  k ,, W \ 1 II

3 L \  2 J '

(319)

The factor involving the Fermi velocity arises only when the transit time is large compared 
to the relaxation time. That is, for ballistic transport, the term in v,.-Tni/ L  will disappear from
(319). leaving just the universal unit o f  conductance

G,
2e2

(320)

and the num ber of transverse modes, given by the term in k r W . Hence, this relationship, in 
the ballistic limit, reduces to the famous Landauer formula [332, 333]

G =
2c-

N (321)
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where N  is the number of transverse modes. To be sure, the actual Landauer formula also 
includes the probability (or transmission) for each of those modes.

To see how the transmission enters into the picture, we begin not with the conductivity for 
a homogeneous semiconductor, but with the general form of the current for a “tunneling” 
structure. If an arbitrary barrier between a “ left” contact and a “right” contact is considered, 
the current in terms of a left-originated current and a right-originated current can be devel
oped. The left contact may be thought of as the source and the right contact thought of as 
the drain, as in a M O SFE T  The general gradual channel approximation for the current can 
be rewritten as

u ^ { v u - v T -

=  /.*.*.“  (322)

That is, the channel current is a difference between a source-derived current and a drain- 
derived current, and saturation occurs when the latter vanishes (at V{) =  V(; — Vr ). In a 
tunneling structure, the left-derived current is written as [334]

/ ,  =  A(2c)  l ^ v : ( k : ) T ( k : ) f hl)( E L) (323)
J (27t Y

In a similar manner, the right-derived current is written as

IR = — A(2c)  I j ! ^ ^ v ,: ( k [ ) r ( k [ ) f / l )( E /<) (324)
J (2tt)•

In general, the two energy scales are separated by the applied voltage,

/ • ,  =  £ ,  E H = E + eVa (325)

which leads to the conservation of the velocity through

v:dk .  =  v':tlk': (326)

Hence, the total current may be written as

I = A i h l  j < I E--T i E M , A E )  -  f i  n ( E  +  eVa)} (327)

Now, it is clear that the integration over the transverse momentum provides the number of 
transverse modes in a small, laterally quantized structure.

In the quantum limit, the transverse integration in (327) becomes a summation over the 
discrete states. It is also important to note that the energy in the Fermi-Dirac functions is 
the total energy, the sum o f  the z-component plus the transverse energy of the quantized 
mode. Thus, Eq. (327) may be written in the quantized limit as

/  =  4  £  I  d E - T„(E: ) \ f H)( E : + E , ) -  f n>( E : +  E, + e V J ]  (328)

The sum is over the various transmissions from mode / in the left contact to mode j  in the 
right contact. If is assumed that the applied voltage is vanishingly small, the Fermi function 
can be expanded, approximating the derivative as a delta function to obtain

/  -  y  r ij: (329)
i. J

under the constraint that modes i . / lie below the respective Fermi energies. If i = j  =  A \ 
then Eq. (329) reduces to Eq. (321). Equation (329) is the more general form of the 
Landauer formula, but it must be emphasized that the left contact and the right contact are
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regions which are in equilibrium (or near equilibrium) with a well defined Fcrmi-Dirac distribu
tion function. The transmission must be computed from the far left, where this constraint is 
valid, to the far right, where this constraint is also valid. No approximations, which compute 
the transmission from only small regions within the solution space of the Poisson equation, 
can be made— they will yield incorrect results. This means that the transmission must be 
recomputed for each iteration of the Poisson equation in any self-consistent calculation! In 
fact, as will be seen later, the role of the shift in the Fermi energy in the contacts, which pro
duces current-carrying contacts, must often be part of the self-consistent loop— the current 
itself is self-consistently varied during the solution iteration [335, 336].

7.2. Modes, Contacts, and Constraints on Solutions
In the foregoing, we have developed the relationship between conditions in left- and right- 
contact regions and the current that results from transmission through the arbitrary struc
ture which lies between these two contact regions. The general result (328) connects the 
current to the quantum transmission between modes in the left-contact and modes in the 
right-contact. This assumes that the left and right contacts are of finite extent so that one 
may develop a mode structure within these contacts. This, in itself, is an approximation, as 
real contacts are usually metallic and contain a very high density of electrons. Thus, the 
assumption of modes in the contacts needs to be supported via a relationship that shows a 
connection to the more likely metallic behavior. In particular, it is a well known fact that 
a potential barrier arises between the source contact and the channel in a MOSFET. This 
barrier is not unlike the potential barrier that arises near any electron-emitting cathode. 
The nature of the barrier and how it responds to applied potentials largely determines the 
analytical behavior of the current in such a device. Hence, the conditions that are placed 
upon a “contact” in any device simulation may well determine the results o f the simulation, 
and often can result in nonphysical output. The nature of the contact has long been known 
to be an experimental problem in measurements of transport; it has not been recognized 
that it is also a significant theoretical problem in computations of the transport.

Contacts have been discussed relative to their effect on transport for quite some time. 
One of the earliest important discussions dealt with the role that the contact played in 
non-equilibrium transport in semiconductors [337, 338). If the region is equilibrated at an 
effective temperature, and carrying a current, the most general form of the “drifted" Fcrmi- 
Dirac function has been given by an expansion of the density matrix in generalized integrals 
of the motion developed by Zubarev [339] and by Fano [340]. In general, then, one expects to 
have the Fcrmi-Dirac show a shift due to the dynamical momentum arising from the current. 
In the case of the right contact, one may also expect to have an elevated temperature, 
similar to the “electron tem perature” discussed previously. These integral invariants must 
be evaluated within the overall self-consistent loop of the device simulation.

But, there is more to the role of the “contact.” In general, we expect the need for a 
quantum treatment of the transport to arise from coherence in the transport itself. That 
is, quantum interference effects can be expected to occur in the device, and these will be 
exhibited in the observable transport. Thus, one needs to fully incorporate this coherence. 
Yet, the connection of the device to the outside world is through the contacts. A device 
within a circuit must not allow for coherent effects to impact o ther devices, if the circuit is to 
be evaluated as a collection of discrete devices [341]. For this to occur, correlation functions, 
which exist within the active device, must be terminated by relaxation processes within the 
contact regions [342, 343]. The relaxation processes must decay faster than the buildup of 
correlations due to the current flow in the device, if the system is to reach a steady state. 
Thus, the contact must not only provide a smooth transition into the quantum system, but 
it must also provide the equilibration necessary for the coherence and the nonequilibrium 
nature of the carriers. In a modal situation, this will require that the number of modes in the 
contact be much larger than the num ber of modes in the active region of the device. This 
situation will also allow for excitation via evanescent modes of the transition into the active 
region, an effect well known to be important in modal transmission mismatch situations [4].

Finally, we need to consider again the role of the evanescent states at interfaces such as 
that between the contact and the active region of the device. People familiar with microwave
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waveguides arc aware that discontinuities give rise to the excitation of evanescent waves. The 
number and type of these determine inductive and capacitive “storage" effects at the discon
tinuity (or interface). It is similar in quantum “waveguides.” Evanescent waves are excited at 
interfaces, and these correspond to capacitive and inductive effects or, more exactly, produce 
phase shifts in the quantum wave that are important in resonance effects. Tunneling itself is 
via the propagation of evanescent waves through a barrier. In the resonant tunneling diode 
(RTD), where two barriers are separated by a quantum  well, the phase shifts introduced by 
the barriers are important in determining the exact energy level of the bound state in the 
quantum well. Since these phase shifts change as bias is applied to the RTD, the position of 
the energy level also changes with bias [344]. In the MOSFET, carriers get into the channel 
by excitation over, or tunneling through, a potential barrier. Hence, proper treatment of 
the evanescent waves in this region is quite important in ballistic transport and quantum 
resonances within the device. Even in the absence of the tunneling barrier, the excitation 
of evanescent waves at a discontinuity is very important in quantum transport as it changes 
the coupling of the various modes on either side of the discontinuity [4, 345]. Thus, it is 
important to consider an adequate number of evanescent modes at each discontinuity or 
interface if accurate results are to be obtained.

7.3. Separating the Device from Its Environment—
Open Quantum Systems

The central feature of a small quantum device in which quantum  transport is to be eval
uated is the coupling of the device to its environment. As mentioned, one normally con
siders a quantum system as closed and isolated from any environment. One then solves
the Schrodingcr equation for the eigenstates of that system and no transport is considered. 
When transport is of interest, then the system (device) must be opened to its environment, 
and the interactions between the system and the environment determine a large part of the 
transport problem. Consider Fig. 54(a) for example. Mere we consider a device embedded 
within its environment. The red “wall” totally isolates the system from its environment. The 
Hamiltonian for this system may be written as

H — H s + H c (330)

where the first term describes the Hamiltonian of the system and the second term that o f 
the environment. The density matrix may be written as a product of that for the system and 
that for the environment

p ( r ,  r  ) =  ( ' J '1 ( r ') 'J '( r ) )  =  p s ® p ,  (331)

where the symbol “0 ” represents a tensor product. Hence, by tracing over the environmental
variables, the system density matrix is immediately retrieved, and the Liouville equation for 
the system is merely that of the isolated entity

i h ^  = \H>,pt) =  H iPs (332)
at

The last form of Eq. (332) introduces the commutator-generating superoperator notation.

jsXBE
Environment Environment

(a) (b)

Figure 54. (a) A  system em bedded in an environm ent, hut isolated from that environm ent, th) An open system 
which interacts with its environm ent.
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When the system is opened to the environment, as indicated in Fig. 54(h), there is an 
interaction between the system and its environment. The Hamiltonian is no longer the simple 
version of Eq. (330), but now includes this interaction as

H  =  H s + / / , .  +  (333)

While one can still write the density matrix as a tensor product of the system and environ
ment states, tracing out the environment states no longer yields a simple expression for the 
system evolution. Rather, we now have the more complicated situation of

i h ‘4 ~  = H sp s +  Tr i p s <g> f),\ (334)
at

Now, the evolution of the system can be completely governed by the last term, which repre
sents the effect of the environment on the system (device). This results is both good and bad, 
as one wants external potentials to yield controllable currents, but, for quantum transport, it 
is necessary to know the nature of the quantum states within the system. This is no trivial task.

Open quantum  systems interact with their environment, which usually contains the m ea
surement system itself. The output of a m easurement is presumed to be classical in nature. 
The m anner in which the quantum properties of the system are revealed in the classical 
results o f  the measurement, as well as the m anner in which these quantum  properties evolve 
into intrinsic classical properties, have been the focus of investigation since the formulation 
of quantum theory. One interpretation, which explicitly includes the coupled systems, is that 
of decoherence [346]. Decoherence is thought to be an important part of the measurement 
process, especially in selecting the classical results; that is, in passing from the quantum 
states to the measured classical states of a system [347]. However, the description (and inter
pretation) of the decoherence process has varied widely. A key point is that the interaction 
o f  the system upon the environment, as well as the interaction of the environment upon the 
system, is important. Zurek has proposed that the interaction of the system on the envi
ronment leads to a preferred, discrete set of quantum states, known as pointer states, which 
remain robust, as their superposition with o ther states, and among themselves, is reduced 
by the decoherence process. In general, any quantum system interacts with external degrees 
of freedom, which are representative of the environment in which the quantum system is 
embedded. This interaction is important if the properties of  the quantum  system are to be 
observed in the environment. This interaction, though, causes decoherence, which results in 
the loss of “purity" of the states in the quantum system. Not all the states in the quantum 
system are equally susceptible to this, however, and there remains a smaller set of initial 
states that is relatively robust with respect to the interaction with the environment. These are 
the pointer states, and their existence is a universal property of the quantum system [348]. 
This decoherence-induced selection of the preferred pointer states was termed einselection 
by Zurek [347].

In addition to the pointer states, there exists a sea of states that are heavily damped by 
the decoherence process. It has been recently shown that, in an open quantum dot, most of 
the eigenstates (of the closed dot) are heavily coupled to the environment and are generally 
washed out. There  remain, however, a set of states which are not washed out, as they are 
only very weakly coupled to the environment [349]. These pointer states are responsible for 
the quasi-periodic oscillatory behavior (with gate voltage or magnetic field) in these dots 
1350]. Classically, these dots are found to have a mixed phase space, which has a set of 
Kolmogorov-Arnold-Moser (KAM) islands surrounded by a sea of chaos [351]. Full self- 
consistent Poisson solutions coupled to quantum transport simulations have shown that the 
behavior of the states on the KAM islands (with voltage) is exactly that of the quantum 
pointer states [352]. Moreover, it has also been demonstrated that these pointer states have 
classical Poissonian statistics, whereas the totality of the states in the dots exhibit Gaussian 
statistics [353]. Consequently, it is clear that the pointer states, which remain observable in 
the open quantum  system and are connected to the environment via phase-space tunneling, 
provide the transition to the classical regular orbits found in the device.

While the pointer states in the open quantum dot have been identified, we may easily 
conjecture that the quantum modes which remain in the channel of the M OSFET are the
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equivalent pointer states in the latter system. An important point is that the pointer states 
compose a set of orthogonal basis vectors for the remaining quantization within the system 
(device). That is, the density matrix for the pointer states (which would be a portion of the 
system density matrix p s) is diagonal with no connection to the washed out states, and only 
a weak connection to the environment. It has been shown in a generalized density matrix 
formulation that one can develop a projection superoperator for which the basis states are a 
diagonal set, just as for the pointer states [354]. In this formulation, the interaction between 
the environment and the system is characterized by a generalized memory term [355], as has 
been previously found by a variety of authors [356-358]. This may be described schematically 
as shown in Fig. 55. While the figure is expressed in terms of the less-than (correlation 
function) G reen ’s function, which will be described later, the terms are directly interpretable 
in terms of Eq. (334). There remains a term arising from the first term on the right-hand 
side of this equation, which is the evolution of the system density matrix without any effect 
of the environment, although these states may be renormalized due to the interaction. Then, 
there are three terms which arise directly from the last term in Eq. (334). The first o f  these 
is a second-order process in which the system operates on the environment followed by an 
interaction of the environment on the system, as shown schematically in Fig. 55(b). Flere, 
this provides a continuing entanglement of  the system states with the environment. The next 
two arc direct interactions of the environment upon the system, the first at the initial time 
(and therefore representing memory of the environments initial state) and the second at a 
later time, which includes evolution of the environment itself by these interactions. These 
terms yield an effective interaction of the environment on the system, which is a modification 
of the real environment. With the effective interaction, one can solve for an approximate 
solution for the system evolution [359].

It is clear that, while we can deal with open quantum systems, it is quite complicated due 
to the interaction with the environment. In classical transport, the environment might be the 
phonon bath which provides the scattering processes for the carriers, and this is included 
in a relatively simple and straightforward manner, as discussed in previous sections. Here, 
however, the environment plays a much larger effect here, as discussed above in terms of 
the contacts. This makes it much more difficult to properly include all of these effects, and 
is a general limitation on most treatments of  quantum transport that have been presented 
to date. We will try to elucidate some of this in the following.

7.4. The Usuki Solution to the Schrodinger Equation
We now turn to numerical solutions of the Schrodinger equation for a device connected to 
two “ reservoirs.” which represent the contacts and the environment. Within this approach,
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the environmental effects are treated only through the initial set of modes in the con
tacts and the Fermi-Dirac distribution for the occupancy of these modes, using Eq. (328) 
to describe the total current through the structure. As displayed in Fig. 56. the quantum 
mechanical problem can be solved either directly or via an iterative technique [360]. Usu
ally, the number of discretized nodes needed to represent the Schrodinger equation in the 
solution domain is such that the latter approach is to be preferred, and this is the one which 
we will describe in this section.

One may write the Schrodinger equation in terms of a wave function ipj for the slice j. 
Then the discretized version of the Schrodinger equation is obtained, keeping only terms up 
to first order in the approximation for the derivatives, as

(Eyl + H/./+i^/+i -  () (335)

Here, i//, is an Af-dimensional vector whose elements are described by the index i. The 
problem is solved on a square lattice whose grid spacing is a. with the wires extending M  
lattice sites across in the x-direction and N  lattice sites in the y-direction. In this equation, 
the H • matrices represent Hamiltonians for each slice, and contain the local potential at each 
grid point. The matrices H ; j±l give the interslice coupling. By approximating the derivative, 
the kinetic energy terms are mapped onto a tight-binding model with the nearest-neighbor 
hopping energy given by

h 2
n v a - H  , / i .  =  ' I

(336)

This equation can be used to derive a transfer matrix that allows us to translate across 
the system, evaluate the transmission coefficients, and evaluate the conductance using the 
Landauer formula. Transfer matrices, however, are notoriously unstable due to the expo
nentially growing evanescent waves, which must be included. This difficulty can be overcome 
by performing some clever matrix manipulations and calculating via the scattering matrices, 
commonly used in microwave waveguide approaches [361, 362].

7.4.1. Two-Dimensional Approaches
The wave function for each slice may now be written. That is, one can write the wave function 
as a vector

'!J.i =

M -

%

(337)

where the superscript refers to the a - ax is and the index i. There are M values for the 
matrix, and this represents a wire of width ( M  +  l )ci. From the nature of the discretization,

i=M

r

t
i=0

j=0 j=N+1

Figure 56. G eom etry of a quantum  dot em bedded in a quantum  wire which serves as contacts u> the structure. The 
grid represents the underlying mesh on which the calculations are perform ed, though, in practice, the mesh is much 
liner. R eprinted with perm ission from [360]. R. Akis et al.. Phys. Rev. H 54. 17705 (19% ). © 1996. Am erican Physical 
SocictN.
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il is automatically assumed that the wave function vanishes at / =  0 and / =  M  +  I. There 
are o ther important points that relate to the hopping energy. The discretization of the 
Schrodinger equation introduces an artificial band structure, due to the periodicity that this 
discretization introduces. As a result, the band structure in any one direction has a cosinu
soidal variation with momentum eigenvalue (or mode index), and the total width of this band 
is 4/. Hence, if one wants to properly simulate the real band behavior, which is quadratic in 
momentum, one needs to keep the energies of interest below a value where the cosinusoidal 
variation deviates significantly from the parabolic behavior desired. For practical purposes, 
this means that E m.lx < t.

With the discrete form of the Schrodinger equation defined, the scattering matrices relat
ing adjacent slices in our solution space need to be obtained. The Hamiltonian matrix is 
defined by

4/ 0

1/(2, /) -  4/ /

/ V( 1, /') -  4/

(338)

With this formulation of the matrices, the general procedure follows that of Usuki et al. 
[361 J. One first solves the eigenvalue problem on slice 0 at the end of the source (away 
from the channel), which determines the propagating and evanescent modes for a given 
Fermi energy in this region. The wave function is thus written in a mode basis, but this is 
immediately transformed to the site basis, and one propagates from the drain end, using the 
scattering matrix iteration:

C j (/ 4- 1) C\( / +  1) " 0 I C ;( . /) ' I 0

() 1 - I  ( / l)  ' ( £ ! -  H,)
X

0 I „ p , 0 )  P2O ') .
(339)

The dimension of these matrices is 2 M  x 2A7, but the effective propagation is handled 
by submatrix computations, through the fact that the second row of this equation sets the 
iteration conditions

C 2( j  +  1) -  P : (7) =  [ - C : (j )  +  ( / I ) -1 ( FA -  Hj)\  

C 1(; +  l) =  P l (y) =  P 2a ) C 1(7)
(340)

At the source end, C |(0 ) — 1, and C2(0) =  0 are used as the initial conditions. These are now 
propagated to slice N ,  which is the end of the active region, and then onto the N  ~  1 slice. 
At this point, the inverse of the mode-to-site transformation matrix is applied to bring the 
solution back to the mode representation, so that the transmission coefficients of each mode 
can be computed. These are then summed to give the total transmission, and this result is 
used in a version of equation (328) to compute the current through the device (there is 
no integration over the transverse modes, only over the longitudinal density of states and 
energy).

If it is desired to incorporate a self-consistent potential within the device, Poisson’s equa
tion must additionally be solved. Here, the density at each point in the device is determined 
from the wave function squared magnitude at that point, and this result is used as the charge 
source in Poisson's equation. The solution for C ,(yV -j- 2) is the wave function at this point, 
and this solution is back-propagated using the recursion algorithm

./) =  p , ( j )  + p : (p ‘ (341)

Here. Eq. (341) is in the mode representation, and £ is the mode index. The density at any 
site (/,./) is found by taking the sum over £ of the occupied modes at that site, as

(/. /) =  y\*i> < \
( M ) (342)
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Within the group al Arizona State University (ASU) and many others, this iterative scat
tering matrix has been applied to simulate transport in a variety of systems, including the 
quantum dots discussed above, quantum wires with a quantum point contact, and so on. In 
many of these applications, a magnetic Held has been present, and this modifies the hopping 
energy by a PeieiTs phase factor, which is why the inverse matrices have been kept in the 
form shown in Eqs. (339) and (340), Ref. [360].

7.4.2. The Three Dimensional Case
We now present the extension of the Usuki recursive scattering matrix approach to a full 3D 
quantum simulation, which is being used at ASU to simulate short-channel, fully depleted 
SOI M OSFET devices [363. 364]. One major change in the notation is that the .v-axis is taken 
as the direction along the channel, and in the formulation it is assumed that this direction 
is parallel to the (100) direction. This notation makes the conduction band of Si, with which 
we are primarily interested in the present section, to be composed of three sets of valleys. 
In practice, the actual direction down the channel is the [110] direction, but the present 
notation allows the most general situation. The v-direction is taken in the plane of the 
semiconductor-oxide interface, normal to the channel direction, which makes the z-direction 
normal to this interface. This choice of axes is most useful, as the resulting Hamiltonian 
matrix will be diagonal. In contrast, if we had chosen the [110] direction to lie along the 
channel, the six ellipsoids would have split into a twofold pair (those normal to the [100] 
plane) and a fourfold pair, hut the Hamiltonian would not be diagonal since the current 
axis makes an angle with each ellipsoid of the fourfold pair. Using the present orientation 
complicates the wave function, as will be seen, but allows for simplicity in terms of the 
amount of memory needed to store the Hamiltonian and to construct the various scattering 
matrices (as well as the amount of computational time that is required). It is relatively simple 
to change to the [110] case, as has been done in a number of simulations [365].

We can now write a total wave function which is composed of three major parts, one for 
each of the three sets of valleys. That is, the wave function can be written as a vector

%  = (343)

where the superscript refers to the coordinate axis along which the principal axis of the 
ellipsoid lies (the longitudinal mass direction). Thus, ^ (A) refers to the two ellipsoids oriented 
along the .v axis (the (100) ellipsoids). Each of these three component wave functions is a 
complicated wave function on its own. Consider the Schrodinger equation for one of these 
sets of valleys (/ corresponds to v, y, or z  valleys):

(  —  ~  +  —  T ^  +  —  +  V (x - v' Z)M/I' 1 =  £ ^ (' ’ (344)2 \  m x dx-  m y dy~ m : dz~ ]

Here, it is assumed that the mass is constant, in order to simplify the equations (for non-
parabolic bands, the reciprocal mass enters  between the partial derivatives). The mass is
labeled corresponding to the principle coordinate axes, and these take on the values of m L 
and m T as appropriate. One then implements this on a finite difference grid with uniform 
spacing a. The derivatives appearing in the discrete Schrodinger equation are replaced with 
finite difference representations of the derivatives. The Schrodinger equation then reads

i . / . A  +  ' A,  I . , . * )  -  I . A> -  M l / ' . . , . A . .  +  * - , )

+  (K. / .A + 2 / v +  2 / ,  +  2 =  M// , . , . ,  (345)

where / v, i s, and t: are the hopping energies

_  1)2
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(346)

2m.  a1

Each hopping energy corresponds with a specific direction in the silicon crystal. The fact 
that there are now three sets of hopping energies is quite important. The smallest value 
of t corresponds to the longitudinal mass, and if energies are desired of the order of the 
source-drain bias ( M  V), then one must have a < 0.2 nm. That is, one must take the grid 
size to be comparable to the Si lattice spacing!

With the discrete form of the Schrodinger equation defined, one can obtain the transfer 
matrices relating adjacent slices in the solution space. For this, the method is developed 
in terms of planar slices, and follows a procedure first put forward by Usuki et al. [361, 
366]. This approach is modified here by the two dimensions in the transverse plane. The 
transverse plane has N v x  N : grid points. Normally, this would produce a second-rank tensor 
(matrix) for the wave function, and it would propagate via a fourth-rank tensor. However, 
the coefficients can be re-ordered into a N VN : x 1 first-rank tensor (vector), so that the 
propagation is handled by a simpler matrix multiplication. Since the smaller dimension is 
the z direction, N : is used for the expansion, and the vector wave function is written as

Now. Eq. (345) can be rewritten as a matrix equation as, with .v an index of the distance 
along the x  direction,

Here. I is the unit matrix, E  is the energy to be found from the eigenvalue equation, and

(347)

(348)

0

H [i) = (349)

0

and

0

0
(350)

0 0

The dimension of these two super-matrices is N : x N while the basic Hamiltonian terms of 
Eq. (349) have dimension of N\ x yV\ . so that the total dimension of the above two matrices 
is i \ \N : x A/\./V:. In general, if one takes A and j  as indices along v. and rj and r as indices
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and

V ( .  V, 1 , 7 ] ) +  W 7

o

(/)

V ( s , 2 .  r)) +  W

0 t[h K(.v, Ny'Tf) + W

tv
(352)

The quantity is 2 ( / ' ,) +  /I0 -j- t[n ), and is therefore independent of the valley index.
With this setup of the matrices, the general procedure follows that laid out in the two- 

dimensional case above. One first solves the eigenvalue problem on slice 0 at the end of the 
source (away from the channel), which determines the propagating and evanescent modes 
for a given Fermi energy in this region. The wave function is thus written in a mode basis, 
but this is immediately transformed to the site basis, and one propagates from the drain end, 
using the scattering matrix iteration

+1

) c f ( s + l f '  0 1

0 1 _ - l (Tlh ) l ( E I  -  H {i))_

c V V f ' 1 0 "

0 1 1 i'Z
L

1

(353)

The dimension of these matrices is 2 N yN : x 2N VN :, but the effective propagation is handled 
by submatrix computations, through the fact that the second row of this equation sets the 
iteration conditions

CV’(.Y +  1) =  p \‘\ s )  =  l-CV'Cs) +  ' ( E l  -  //"'•

+ I) =  P '‘\ s )  = Pi1'(*)€'■'(s)
(354)

At the source end, C|(0) — 1, and 0,(0) =  0 are used as the initial conditions. These are now 
propagated to the N A slice, which is the end of the active region, and then onto the N.  +  1 
slice. At this point, the inverse of the mode-to-site transformation matrix is applied to bring 
the solution back to the mode representation, so that the transmission coefficients of each 
mode can be computed. These are then summed to give the total transmission and this is used 
in a version of Eq. (328) to compute the current through the device (there is no integration 
over the transverse modes, only over the longitudinal density of states and energy).

As mentioned above, if one is to incorporate a self-consistent potential within the device, 
then Poisson’s equation must be solved. Here, the density at each point in the device is 
determined from the wave function squared magnitude at that point, and this is used to  drive 
Poissons equation. The solution for C \ ( N y +  2) is again the wave function at this point, and 
this is back-propagated using the recursion algorithm:

cl>'V|+:-w , (7. n) = P\ ii(s)  +  p “W * '+ 2-i+ u \ j .  V) (355)

Here, as before, the superscript "i"  denotes the valley, while j  and rj denote the transverse 
position. Again, we are in the mode representation, and £ is the mode index. The density at 
any site (.v. /', rj) is found by taking the sum over £ of the occupied modes at that site, as

i?) =  E K
(,V. 4-2. S.i)

(./'• v ) \ (356)

The devices considered here are trigate quantum wire SOI MOSFETs. In general, the 
source ind drain regions are doped 6 x !Oh) cm 3 //-type. The dimensions of the source and 
the drain are 18.47 nm wide. 10.32 nm long, and 6.51 nm high (integer multiples of the Si 
atom spacing) corresponding to the thickness of the silicon layer. The channel of the device 
is a /)-[:ype region which is left undoped. The channel region has dimensions identical to that
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of the source and drain dimensions. A uniform 1-nm oxide layer covers the top and sides of 
the device to isolate the gates from the semiconductor.

Because there are only a finite number of actual dopants in the entire device, the) are 
placed discretely on the lattice sites. To achieve this, the silicon lattice is scanned to distribute 
dopant atoms to the various regions of the device using the m ethod presented in Ref. [367]. 
A typical potential profile is shown in Fig. 57, Ref. [365]. Note that the channel is undoped, 
although this does not eliminate fluctuations in threshold voltage either from device to 
device, or as the potentials are varied within a single device. The reason for this can be seen 
from the figure— the separation between the source and the channel is a random variable 
of lateral (and depth) position.

We now examine results obtained from the simulation of the SOI MOSFET, but w th a 
lightly doped channel region. The l (!-V,, curves obtained from six different dopant distribu
tions are shown in Fig. 58(a), Ref. [368]. The spikes present in the plots give an excellent 
example of the quantum interference effects that occur in this system. When the discreteness 
of the doping is taken into account, the landscape of the potential is drastically altered [367]. 
The potential peaks now present in the channel set up additional reflections in the device, 
as well as forming resonant levels. These effects lead to the observance of the spikes ir. the 
curves shown in Fig. 58(a). Further, device to device variation in the threshold voltage is 
seen due to the differing dopant distributions. In Fig. 58(b), the Ij-V ,/ curves are plo:ted. 
Additional peaks in the current give further evidence of the formation of resonant levels in 
the channel based on the position of the dopants in the channel. It can be concluded that 
this resonant behavior persists even at greatly elevated drain voltages. These results outline 
the impact of  quantum interference and the existence of discrete dopant induced effects in 
SOI quantum wire MOSFETs.

7.5. The Density Matrix and the Wigner Function
The simulations discussed in Section 7.4 were based on calculation of the wave function 
itself, which arises from the discretized solution of the Schrodinger equation. There are 
other functions which are useful in treating quantum transport, and were already mentioned 
earlier— the density matrix and the less-than Green 's  function. In this section, and the next 
two, we will define and discuss these functions in more detail.

In general, any arbitrary time-dependent wave function may be expanded in a basis set, as

'H r .  I ) =  J 2 cn‘P ,M )e-iL"'/h =  c„«P„(r- 0  (357)
n n
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Figure 57. A  typical sell-consistent potential profile lo r ;i quan tum  wire tribute transistor. The localized donors in 
lhe source and drain form preferen tia l sites in the potential. R eprinted with perm ission from |365 |. M. J. Gilbert 
and 1). K. F e rn . //:/:/:  Trans. N ano iahnn l. 4. 355 (2005). 0  2005. IFHLi.
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Gate Voltage (V) Drain Voltage (V)

Figure 58. (a) /,/-K , curvcs lo r six different dopant d istributions for \ 'tl =  10 mV, exhibiting the effects of the 
quantum  interference. T he electron  density interacting with the acceptors causes the observed spikes, (b) 
curvcs for the SOI M O SFE T  devices. From bottom  to top the gate voltages are: 1.5. 2, 2.5, and 3 V. The peaks are 
evidence o f the form ation o f resonant levels in the channel. R eprin ted  with perm ission from [365J. M. J. G ilbert 
and D. K. Ferry, IE EE  Trims. Nanorec/mof. 4, 355 (2005). (0 2005, IE EE .

where a time-dependent basis set has been introduced in the last term. At time / =  0 (or an 
arbitrary initial time /<,), the coefficients can be expressed as

c„ =  I  <p;,(r)'I'(r. 0 )c / 'r  (358)

Then, the general solution can then be written as

^ ( r , /) = j  <P,*(r )'J/ ( r . 0V/;'r<p,,(r)t> ,h"'/h
II

=  E  r)ip„(r)e-ih-',:hn r ,  0 ) d }r (359)
II

In general, the initial time could be any initial time, as mentioned above, and the argument 
of the exponential would take on the time value t — We could then sum over all values 
of  this initial time so that we could write Eq. (359) as

* ( r , / )  =  f '  K( r ,  r '; t, t{]) xV(r,  t{))dt {) (360)
i

n

= Y , (Pn(r - l ' ) iPn(r, t) (361)
II

In the last line, the time-dependent basis functions defined in (357) have been reintroduced. 
The quantity K  is term ed the propagator kerne!, which is related to the G reen’s functions
discussed in the next section. A more general form o f  Eq. (361) allows for the fact that the
basis functions at different times may not be orthogonal to one another, so that the more 
general expression may be written as

K (r ,  r  ; / , / ' ) =  £  "
n. m

=  £  0<P,„(r, I) (362)
II. Ill
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The equal time version of the propagator kernel is termed the density matrix [369], and 
is written as

p ( r, r ' ; 0  =  £  0<P,„(r - 0  (363)
/J, /«

This quantity is written in this reduced m anner for convenience, but the density matrix is 
properly a square matrix whose dimension is defined by the size of the basis set (which 
is often infinite in many systems). Normalization requires that the trace of the matrix be 
unity:

Tr(p)  = T .c „ „ =  1 (364)
II

The density matrix is a particularly useful form in discussing entanglement between two sub
spaces (or subsets of wave functions). The density matrix has been used to study the changes 
arising from the quantum distribution in a high uniform, high electric field [370-373], and 
some ensemble Monte Carlo techniques have been developed to study the density matrix 
in this regime of transport [374, 375]. It has been used in numerical studies of quantum 
transport in resonant tunneling diodes [376, 377], and a general review of this has appeared 
earlier [378], The density matrix has also been coupled to a Poisson solver to study small 
dual-gated MOSFETs [379].

The problem with the earlier approach using the wave functions, and with approaches that 
utilize the density matrix, is that one is limited to use of the position representation. N or
mally, in classical transport, the distribution function is also a function of carrier momentum
(or energy). This has not been the case so far. However, one can introduce the center-of-
mass and difference coordinates through

r +  r'
^  ~  —2— s =  r " r (365>

and then Fourier transform on the difference coordinate to obtain the Wigner distribution 
function

./i r ( R , p , / )  =  / ) . ' " ' ' '  (366)

When this is done, the equation of motion for the Wigner distribution function has a form 
reminiscent of the Boltzmann transport equation (in the absence of scattering):

+  - p  ■ V,,/,, -  1  i' (/ W ( R ,  P)/n (R, P +  P, /) =  0 (367)
at m  Ir  J

where
P q

PF(R, P ) = j  d yqsin
h ' l R + ? W  ( R - ? (368)

is the nonlocal potential. I  he use of the Wigner function is particularly important in scat
tering problems [380], and it clearly shows the transition to the semiclassical world [381]. As 
with the density matrix, it has been used to study the resonant tunneling diode, and its use 
in a variety of transport venues has been reviewed recently [378].

More recent approaches have used variants of Monte Carlo techniques to study the 
scattering process with the Wigner function [382J, and io study the resonant tunneling diode 
via particle techniques [383, 384]. In these simulations, it is necessary to discretize both real 
space and momentum space, and then to develop a technique to handle the phase interfer
ence that is not well treated by particle techniques. In work al ASU, an additional property 
of the particle, known as the affinity has been introduced, which relates to its effectiveness 
[385]. In Fig. 59, we plot the current voltage curve for a resonant tunneling diode at 300 K 
that is obtained by this technique [383]. Here, the contact regions were doped to 10ls cm - ', 
and the barriers were 0.3 eV. 3-nm barriers surrounding a 5-nm quantum  well. A lightly
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Voltage (V)

Figure 59. T he current-voltage characteristics for an upsw eep and a down sweep o f the voltage. An additional 
sweep is shown to dem onstrate the level o f  M onte C arlo  noise in the com putation. Reprinted with perm ission from  
[383], L. Shifren et al., IE E E  Trans. Electron Devices 50, 769 (2003). © 2003, IEEE.

doped ( 10,h cm " ')  region, of 30 nm length was placed on either side of the barrier structure, 
between the latter and the contacts. It is clear that the negative differential conductance is 
nicely reproduced with a peak-to-valley ratio that is comparable to that observed experimen
tally at this temperature.

In the above simulations, scattering by all the normal phonon processes present in GaAs 
were included. Normally, one does this with the scattering rates computed from the Fermi 
golden rule, just as done for semiclassical transport. Here, however, a technique has been 
included for evaluating the intracollisions field effect [387, 388]. In this approach, the sim
ilarities between the path integral form of the Wigner equation of motion and that for the 
re tarded density matrix [389] has been used to evolve a numerical technique for inclusion of 
the intracollisional field effect [390]. This intracollisional field effect is a distinctly quantum 
effect that treats directly the temporal duration of the scattering process itself, the so-called 
collisional retardation.

7.6. The Recursive Green’s Function
As with the direct solution of the wave function, one can approach the use of Green 's 
functions in two ways. One can either write the entire G reen’s function for the system or 
one can develop a recursive approach which propagates from one end to the other. It is 
this latter approach which is discussed in this section, primarily as it is utilized for low 
tem perature calculations of degenerate systems, where only transport at the Fermi surface 
is of interest. Here, we will limit ourselves to a two-dimensional system (the single G reen ’s 
function for the entire system is reviewed in [140]). This recursive G reen’s seems to date 
from a one-dimensional discussion of Czycholl and Kramer [391], but it was popularized 
by Thoulcss and Kirkpatrick [392] and Lee and Fisher [393, 394]. Incorporation of a local 
potential, needed for self-consistency, has been reviewed by Kramer and Masek [395, 396]. 
This approach has been utilized to study fluctuations in semiconductor quantum wires by 
Baranger et al. [397].

In the previous section, we developed the propagator kernel for the wave function. In a 
similar manner, we can develop the retarded Green 's  function as [22]

G ,( r .  r  : /. t ‘) =  -  0 < { 'M r.  t). </'+( r \  0}> (369)
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where the angle brackets have been added to symbolize an ensemble average at non-zero 
temperatures or a summation over the basis set and the curly brackets indicate the anti
commutator of the two field operators  (wave functions in some sense). The advanced G reen’s 
function is given by

C „ ( r , r ' ;  / ,  / ' )  =  i t i ( i  -  l ) ( { i p +{ r \  / ' ) .  *A(r. /)}> (370)

so that the kernel can be rewritten in terms of these functions. The field operators themselves 
satisfy the anticommutation relationship

{(//(r, /).  /')} =  tA(r. / ) i /T (r , (') +  ( r \  r, t)

=  fi(r -  r )8(t  -  / ') (371)

In equilibrium (or very near to equilibrium), the Green 's  functions can be related to a basic 
Green's function G t), which is a function only of the differences in the two positions and the 
two times, as expected for a homogeneous system. Then, this latter Green's function can be 
written as. in the Fourier transform representation,

G„(k, w) = ------L -  (372)
hu) -  L ( k)

which leads to the form for the re tarded and advanced equilibrium functions

Gn "(k, o>) =  ---------- - ----------  (373)
" v hw -  E ( k) ±  i-q v ’

where r\ is a small convergence factor that insures the correct time ordering for (361) and 
(3~0). Here, the upper sign corresponds to the first superscript, and this convention will be 
followed in the remainder of the section.

When there are interactions in the system, either between the electrons, or due to impu
rities or phonons, then the re tarded and advanced functions can be found from Dyson’s
equation

G’r "(k, w) =  G,','" (k . co) +  ( / ' , '" (k, w ) ~ r '  " ( k ,  w )G r "(k, w)  (374)
h

This equation is written in the Hartree approximation as a self-consistent Born approximation. 
That is, the last two parts o f the second term on the right is more properly written as a 
two-particle Green 's function. Here, it has been expanded using perturbation theory with the 
perturbation terms resummed into the self energy Xr ". One must examine each and every 
circumstance to be assured that this perturbation and re-summation is valid, especially in 
devices with strongly inhomogeneous charge and potential distributions. The more common 
form of (374) is

G r °(k, co) = -------------------- ?—  ---------------  (375)
[G;-‘' ( k , w ) ] - ' - i ^ - " ( k , a / )

It is Dyson’s equation that allows one to develop the recursive Green's function for 
transport in a two-dimensional quantum  “wire.” Here, as in the recursive scattering matrix 
approach above, the G reen 's  function is developed in terms of slices transverse to the cur
rent How' direction. The G reen 's  function may be written in terms of evaluations at two 
longitudinal slices / and /  as [397] (We try to keep the same notation as for the recursive 
scattering matrix approach above.):

(}\C>(ij, E) \ j )  =  Gjj (/. E)  (376)

In this equation, we have Fourier transformed on the time difference and rewritten the 
frequency as E — hco. which is not the same as the kinetic energy, but the latter does 
not appear in the position representation. We are interested at an interior slice r/, and the 
sections to the left and right o f  this point are represented by Green 's functions G 1 and 
G '\ The Green's function of the coupled system is denoted G 1 In the wave function 
approach above, the coupling between sites was described in terms of a hopping term /.
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Hero, the interaction an energy, I', couples two adjacent slices. Hence. Dyson's equation 
mav he written as

a 1: , . a -, Ura ^ K (3 7 7 )

One can use this to build up sets of equations for the on-slice Green 's functions and the 
slice-to-slice coupling Green 's functions, which eventually leads to the two equations [140]

r j l  .-!< _  q R  y  / j _  q L \ /<)(]>
Kj r/> 1 . 1/ r\  U  </</“ '/ * <IP H 7 8 )

G l+k = C 1 +  G L £ * ( !  -  G L 1 R) G L- p p  p p  ~  w /». . / — </ '■* c m - « / 1 ( ip

with

v _‘q </. </~\ </’ !• </1-1 </-!•</

In practice, the recursive Green's function approach treats a region that is coupled to two 
perfect quantum wires. The transverse modes of these wires are critical to the excitation 
of the active region and are used to compute the transmission from one side to the other. 
The coupling potential from one slice to the next is the hopping energy discussed before. 
The perfect wire is supposed to have a width (M  +  \ )a as previously. The value of the wave 
function at site / in the wire for mode £ is (which defines the mode to site transformation 
matrix)

UILS)~ H w h )  (38")
which is unnormalized. The contact wire is assumed to have a node of the wave function at 
the point j  =  — 1, the initial slice. If the mode is propagating, then the wave function has 
a sinusoidal variation away from this point (to the left). If the mode is evanescent, then it 
decays away from this point, which gives it an imaginary velocity. Now, the slice Hamiltonian 
matrix is set up as (338), including the PeieiTs phase for the off diagonal terms if there is a 
magnetic field. Similarly, the hopping potential term is //, with the PeieiTs phase for the off 
diagonal terms if there is a magnetic field. The Green's function at slice zero is then

ft... =  „  ~ r  <381)n {) -t- 11 wwv ,|l{)

Here. G ww is the adjusted site representation for the contact wire at the slice j  — — i, and 
has the velocity of the mode included and V,r{] =  V  is the hopping potential coupling. Then, 
the recursion is built up with iterating on the slice index j  as

Gjj = \H j -  V G l_l j_ iV*]~l

Guj =  G n j_]V * G ! j (382)

Gjn — G jiV G j _ 1 „

1̂)1) =  l̂M) j V G

This is then connected to the end boundary contact and the conversion back to modes made. 
The conductivity then comes from the mode to mode transmission, including the various 
velocities of each mode [398].

As examples of this approach, Takagaki has considered a number of structures, including 
crossed wires with a box resonator [399, 400], tunneling from a quantum point contact into 
an subsidiary channel [401], the role of disorder on quantum point contacts [402], and edge 
state interactions with a repulsive potential [403, 404]. In Fig. 60, we plot the case of a single 
antidote embedded in a quantum wire whose width is three times the size of the antidot.
The potential height is twice the Fermi energy, and the Fermi wavelength is 6*7, where a is
the grid spacing (this allows fully normalized units).
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TioVEp

Figure 60. M agnetoconductancc o f an antidot em bedded in a quantum  waveguide with a m agnetic held applied. 
R eprinted with perm ission from [404), Y. Takagaki and D. K. Ferry, Rhys. Rev. B 4K, 8152 (1993). <D 1993, Am erican 
Ph\ sical Society.

7.7. Nonequilibrium Green’s Functions
In the discussion of the previous two sections, the system (device) was assumed to be in 
equilibrium with its environment, so that the distribution function was given by the Fermi- 
Dirac distribution. In the non-equilibrium case, this is no longer the case and we must now 
find the distribution function, exactly as was the situation for the semi-classical transport 
where we needed to solve the Boltzmann transport equation. In quantum transport, this 
entails two new G re en ’s functions, the so-called correlation functions [405, 406]:

G ( r, /; r , / ') =  /<t//+( r \  0<//(r, 0 )

G  (r,  /; r , /') =  - / ( < / / ( r, /)<//+ ( r', / ' ) )
(383)

These are called the less-tluw  function and the greater-than function, respectively. Because 
of the dependence upon the wave functions, there are of course relationships between these 
G reen’s functions and the previous ones. These four form a complete set, although other 
combinations are possible [111]. As with the o ther G reen ’s functions, there are equations 
of motion for these two correlation functions. The entire set is usually written together in a 
matrix form as [407]

~ G r G  +  G
(j k =

0 Gli
(384)

{ 'hJi ~ '/L/°(r) =  h l  +  - K C-‘k

i h ~  -  H J r ')  -  K (r ')  C<- =  h i  + G , X

Under the same situation as the previous section, when the two-particle G reen ’s function 
can be separated via a perturbation expansion and resumed into a self-energy, the equations 
of motion can be written as

(385)

Here, the self energy is a matrix having the same form as Eq. (384). and the product of 
the self-energy and the G reen ’s function implies a convolution integration over an internal 
set of space and time variables. It is important to note, however, that this form neglects 
important correlations that may exist in the initial state of the system. Here, the initial 
state at which external potentials are applied may. in fact, be nonequilibrium situations such 
as those which exist in semiconductor devices. The carrier densities are likely to be very 
inhomogeneous and therefore significant built-in potentials will exist [409, 410]. In one form, 
the set of equations (385) is replaced with an equivalent set in which the potential is the
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built-in potential, and the self-energy terms are replaced by the Hartree-Fock self-energy 
terms [409)

t: r , /') =  iV ( r -  r')G (r, /; r , t ) |/=f, (386)

Even in this form, however, we are still ignoring important initial correlations (for when 
the external potentials arc switched “o n / ’ These correlations can only be included via an 
additional set of G reen’s functions, which are not often expressible in terms of the set defined 
so far [411-415]. Many of these initial state problems arise from the failure of the Wick 
decomposition, which is crucial to the perturbation expansion and the formulation o f  the 
resummed self-energy. Nevertheless, in spite of these concerns, the non-equilibrium G re en ’s 
functions have been applied to transport and devices.

Transport in homogeneous semiconductors subjected to high electric fields has been 
treated by Barker [416] and others [417, 418]. Datta has formulated a general trea tment for 
device simulation, and has applied it to the resonant tunneling diode [419], even in the pres
ence of optical phonon scattering [420], although the latter was treated in the local approxi
mation rather than considering the temporal retardation effects (mentioned above). In fact, 
a relatively successful simulation package was developed for treating the resonant tunneling 
diode, including a more detailed energy band structure [421]. This has been extended to 
two-dimensional studies of MOSFETs [422], and to molecular structures connected between 
two metal or semiconductor contacts [423].

O ther work has used the G reen ’s function method to couple a quantum dot to two contact 
leads [424, 425]. In this approach, the dot is coupled to the leads via a param eter F. As was 
discussed above, in connection with tunneling, this param eter must be a complex quantity, 
since it must describe both the tunneling probability (a real part) and the phase shift (an 
imaginary part) which the transparent barrier produces at the edge of the dot. Without the 
latter, one cannot determine the proper energy levels within the dot, since this phase affects 
the latter just as in the resonant tunneling diode.

As remarked earlier, one usually utilizes a recursive algorithm, whether solving for the 
wave function or for the G reen ’s functions. The reason for this is that the matrices for direct 
solvers (at all grid points simultaneously) are usually too large. A novel and efficient method 
has recently been introduced [426-430], which allows one to calculate the ballistic transport 
properties of a two- or three-dimensional device of arbitrary shape, potential profile, and 
number of leads. In this method, which is termed the contact block reduction (CBR) method, 
such quantities as the transmission function and the charge density of the open system can be 
obtained from the eigenstates of a corresponding closed system, that need to be calculated 
only once as the solution of a very small linear algebraic system. Importantly, the calculation 
of relatively few eigenstates of the closed system is believed to be sufficient to obtain very 
accurate results.

The first step of the CBR method consists of dividing the device coordinate space into 
two regions: the boundary region corresponding to the contact with the leads, C, and the 
region corresponding to the rest the device, D. In the ballistic case, the self-energy matrix, 
representing the coupling of the device to the leads, is non-zero only in the region C  and 
has the following structure

v _
0

0 0
(387)

The three submatrices are identically zero in this approach, so that only that of the contact- 
coupled region is required. In a similar manner, one can subdivide all the Green's function 
matrices as

G ( G cn
G =

G DC I)
(388)

Importantly, one can rewrite the Dyson’s equation (375) as

1
G =  7 7 - - —  =  [ / -  S] - 1 C {t == A - 1 G„ (389)

0
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in o rder to introduce the inverse operator A. Then, the retarded G reen’s function matrix 
can be found to be

The transmission function is determined by the elements of the following submatrix (of the 
small size) of the contacts

Any o ther  quantity of interest, such as the density matrix and particle (charge) density, 
can be found with similar computational effort. The calculation of the Green’s function of 
the decoupled device is made through its spectral representation. The eigenfunctions are 
obtained by solving the Schrodinger equation of the decoupled device only once, employing 
generalized von Neumann boundary conditions at the contacts. The use of these boundary 
conditions significantly reduces the required range of the eigenvalue spectrum of H{] in the 
calculation of the transmission function, as only a few percent of the eigenvalues are usually 
sufficient to define the interaction with the contact. The remaining task of solving Dyson’s 
equation for each energy value is also reduced to a manageable level.

As flexible as it is, the CBR method provides a very efficient way to solve the ballistic 
quantum transport problem in an open system. The CBR computational cost is mainly de ter
mined by the partial solution of the eigenvalue problem of a closed system. This method is 
capable of handling several connected leads precisely (i.e., not neglecting any off-diagonal 
elements of the self-energy as in the recursive Green's function method). In Fig. 61, the 
characteristic curves for a small double-gate M OSFET are shown, in which the dimensions 
are taken from the experimental device [431]. Here, the gates and oxide tunneling barriers 
are fully included in the self-consistent scheme. The band-structure is modeled by assuming 
parabolic bands with anisotropic effective masses for silicon and an isotropic effective mass 
for the oxide. Figure 62 depicts the charge density in the entire device region. Using the 
self-consistent CBR simulator, the calculation of a single bias point for the entire 2D device 
with more than 7000 grid points requires 2 to 3 hours on a regular 3 GHz Pentium 4 P C  The 
potential profile and density are shown in Fig. 62 for a case when the device is turned on.

7.8. Problems in Quantum Transport, Especially for the Future
In the discussion of quantum  transport so far, it has been assumed that the energy band 
structure o f  the semiconductor remains that of the bulk material. In fact, in future ultrasmall 
devices, this may no longer be the case. Even when one couples, for example, a molecule 
to the a pair of leads, be they semiconductors or  metals, usually the energy levels need to 
be determ ined of the molecule (or quantum wire or carbon nanotube), especially as the 
local configuration of the atoms may well have changed in this situation. One normally

G r = (390)
(^n . DC ' 4 i ) C A c [ (7„ r ) (G„ n  A [ ) C A C 1 G q c d )

(391)

102
Source-Draui current

- 0.5  -0.4 - 0.3  - 0.2  -0.1 0.0

Figure 61. C alculated transfer characteristics o f ballistic IXiFfcT. showing the drain  and (tunneling-induced) gate 
current lor two sourco-drain voltages.
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Figure 62. Polcntial profile (a ) and electron density (h) for the douhle-gate M O SFET when the channel is fully 
form ed at a gate voltage o f V,, =  0.4 V.

approaches this via some form of a density-functional calculation (DFT). Normally, these 
arc first-principles calculations, but with the exchange and correlation energy expressed in 
some form of a local density approximation (LDA). DFT calculations have some well-known 
problems. They are techniques for computing the ground state of the system. However, elec
trons in the conduction band represent excited states of the semiconductor, and the DFT 
approaches, in general, do not give good results for even the band gap of most semicon
ductors. To be sure, there have been some new approaches which have improved upon this 
situation, such as the GW approach [432] or the “exact exchange" approach [433], but the 
problem still remains.

One might think that metals would be easier, but there one has to deal with the surface 
potential. The fact that electrons do not fall out of the metal means that there is a barrier 
to this process, and this barrier is commonly called the work function. The presence of the 
work function is due to a charge dipole at the surface of the metal, where the electron 
cloud moves closer to the surface than the bulk atomic charge. DFT approaches, in general, 
do not model this potential correctly. The importance of this lies in the situation where 
one chemisorbs a molecule, such as a dithiol, onto the metal (such as gold). The chemical 
bonding of the sulpher to the gold results in a modification of the surface dipole in the 
gold and a different barrier between the bulk gold and the sulpher states. Without a good 
knowledge of the details of this barrier, one cannot use the above approaches to determine 
the tunneling through this interfacial barrier and the consequent current flow through the 
molecule. Consequently, it is not unexpected that simulations give orders of magnitude more 
expected current than is seen experimentally.

Approaches to the study of molecules have often just solved for the DFT properties of the 
molecule itself, ignoring the metal, and then applied the transport calculation treating the 
metal as a boundary condition [434]. While the results are interesting, leaving the interfacial 
potential out of the self-consistent loop is not the best approach. Nevertheless, these are 
important first steps to obtaining transport information, and will not be improved upon 
until adequate DFT calculations can be done to yield the interface potential to acceptable 
accuracy.

While this review has dealt with semiconductors principally, the idea of transport through 
small regions, such as molecules or quantum wires, is similar to problems in o ther arenas. 
One which has drawn interest of late is that of ion channels, where we have to deal with 
transport through a small channel that connects two reservoirs. Here, the interface potential 
is the lipid layer potential that exists on either side of the layer through which the ion 
channel passes. As in the above situation, no good approaches exist to calculate the value 
of this layer from first principles, and it is usually introduced via an assumed dipole charge 
layer [435]. Nevertheless, semiclassical approaches have made some inroad in studying the 
transport through these channels, but no quantum  transport has been made to date.
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8. CONCLUSIONS
To summarize this review, we have attempted to overview the field of Computational Nano- 
electronics with particular emphasis on the main numerical methods used in semiconductor 
nanodevice simulation, with examples taken primarily from our own research. The review 
is by no means inclusive of the extensive research in this field since the mid-1970s, which 
is continuing at an uninterrupted pace. The interested reader is referred to several of the 
books and review articles referenced in the present review.

In this review, we have tried to emphasize contemporary issues and techniques used in the 
simulation of both scaled semiconductor devices, and new devices such as quantum dots, res
onant tunneling diodes and quantum wave guides. The challenges of simulating increasingly 
smaller devices with more complicated geometries include the necessity of full 3D modeling, 
inclusion of atomistic effects in terms of discrete dopant profiles and other device inho
mogeneities, nonstationary/ballistic transport with proper treatment of  both the long-range 
and the short-range particle-particle interactions, quantum mechanical interference effects, 
tunneling, quantization of motion, and nonlocal effects. The inclusion of all these effects 
comes at the cost of vastly increased computational burden, as one would expect. Fortu
nately, there has been a concurrent improvement in the performance in terms of speed and 
memory of the computational platforms available, based on the same technologies this field 
is attempting to ameliorate. The desktop com puter system today has essentially the same 
computational performance of the worlds fastest supercom puter of only a decade ago. There 
is increasingly improvement in the performance of supercomputer clusters composed of n e t
worked arrays of microprocessors. Over the same time-frame, there has also been significant 
algorithmic speedup of many of the techniques discussed herein, which has greatly aided 
the development of this field. The prospect of having a fully “first-principles” approach to 
nanoelectronic modeling in which the input is ultimately the position of atoms themselves, 
seems less of a fantasy today with this continued exponential growth in computation.
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1. INTRODUCTION
1.1. Rise of Modeling Through Falling Dimensions
The silicon-based metal oxide semiconductor field effect transistor (M O SFET) is at the 
heart of today’s semiconductor industry (Fig. 1) [1]. Gate, insulating oxide (between gate 
and channel), and channel form a capacitor. A voltage on the gate attracts a conductive 
layer of charge in the channel region, which connects source and drain— areas, where a high
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Figure I. Transm ission electron m icrograph of a M otorola mixed-gatc M O SFET [1]. R eprinted with permission 
from | l | ,  B. Maiti et al.. h o c . I EDM  I99N. 7SI (I WK). 0 IWN, IEEE.

concentration of “dopant" impurities injects charge carriers like electrons—electrically and 
switches a sourcc-drain current on. Thus, the M O SFE T  acts as a switch, which can be turned 
on and off by the gate voltage. Individual switches can be connected to form the basic build
ing blocks for circuit design, which are in turn used to form microprocessors and memory 
chips. Since the switching speed of MOSFETs increases with shrinking dimensions, which, in 
turn, also allows packing more MOSFETs on a chip of a given area, the semiconductor indus
try has managed to constantly improve the performance of computers by continuously scaling 
a more or less unchanged device geometry, resulting in performance doubling approximately 
every 18 months. By now, the industry has entered the nanoelectronics era, where nearly all 
the critical device dimensions including the feature size, which is the dimension of the small
est feature that is created on the wafer during patterning, are (in part significantly) below 
100 nm with revolutionary changes necessary to continue further performance improvement. 
As an example, Fig. 2 shows the decrease in thickness of the gate oxide (between gate

Year of first product shipment

Figure 2. Range o f SiO equivalent gate dielectric thickness ( T ts) as a function of year of first product shipm ent. 
Predictions for the future are taken from the 2003 In ternational Technology R oadm ap of Sem iconductors [2|. The 
line is an exponential tit to guide the eye. Also shown are typical sizes for pro tein  m olecules ant: single atom s for 
com parison.
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and channel, see Fig. I) with time [2], Current devices have gate oxides on the o rder of
1.2 nm.

The by now nanoscale dimensions of the traditional devices require several significant 
changes in the device engineering approach, since the increasing importance of single atoms 
and their random distributions as well as quantum effects visible in the device performance 
require a departure from the traditional picture, which is based on classical continuum 
theory. Extensive, time-consuming and costly engineering work is currently going on at 
semiconductor companies and in academia to further push the miniaturization process of 
semiconductor devices toward its physical limits and to ultimately define revolutionary new 
paradigms. In this situation, modeling and simulation has become an increasingly critical 
cost and especially time saving component of integrated-circuit technology development, 
provided it is accurate enough.

The physical limits will be reached for a number of device dimensions and materials 
properties within a few years. State-of-the-art transistors in industry are currently at the 
90 nm node [3, 4], while transistors with gate lengths of 6 nm [5], comprising just a few 
dozen atoms, have been demonstrated. Although this represents a technological tou r  de 
force, it will be progressively difficult to continue downscaling at this rate, as increasing sheet 
resistance and solubility limits for dopants (which we will elaborate in Section 1.2) next to 
o ther factors such as gate oxide reliability, quantum tunneling, excessive power dissipation, 
and interconnect delays start hampering the performance of such devices [6, 7J.

As the field of electronic devices ventures further into the nanometer regime, the current 
strategy consists of two parts. For the near future, the evolutionary “top-down” approach 
is continued, where traditional device structures are mostly kept. The M OSFET scaling 
problems are addressed by introducing new materials in places where the traditional ones 
fail [8] and by improving device design, packaging, and processing. In parallel, “bottom-up" 
synthetic chemical approaches of assembling nanodevices and circuits directly from their 
molecular constituents [9] are explored.

Independent of the chosen architecture or materials, one of the grandest challenges of 
electronic devices at the nanoscale is their fabrication or processing. In conventional semicon
ductor technology, processing is perform ed by only six different process steps, diffusion, pho
tolithography, etch, ion implantation, thin film deposition and polishing (Fig. 3) [10]. While 
this technology has successfully been applied through the history of traditional semiconductor 
device fabrication and is transferable in principle to many nanoelectronic devices, especially 
the rapidly increasing cost of fabrication motivates exploration of entirely new paradigms.

In the following, we will discuss as our focus example ultrashallow junction formation, a 
prominent end-of-the-roadmap problem from the front-end (before the first metallization 
step) of the fabrication in more detail, which has pioneered to a large fraction the devel
opment of  new and improved modeling techniques that have taken process simulation from 
a purely phenomenological continuum approach to more and more phvsics-based atomic- 
scale methodologies suitable for nanoelectronics devices. This will be complemented by a 
discussion of molecular electronics devices in the next section (including especially the use of 
carbon nanotubes as channel materials in field-effect transistors), which have largely driven a 
similar development in the field of electron transport (or “device” ) simulation by establishing 
an atom-based framework as addition or replacement for continuum-based approaches.

1.2. The Ultrashallow-Junction Problem
Device miniaturization does not simply mean that the channel length is shortened and the 
electrons, traveling with the same drift velocity as before, can make their way from source 
to drain faster through a shorter channel for a M O SFE T device such as the one depicted in 
Fig. 1. Instead, device scaling requires that all vertical and lateral dimensions of the transistor 
be scaled [6], As an example. Fig. 4 shows that the electrical insulation between source and 
drain in the “off-state” (i.e., with a voltage applied between source and drain, but none at the 
gate) is much better with a shallow source and drain. This can be seen from the simulated 
plotted electrical potential values for two M O SFE T  structures with the only difference being 
the depth of source and drain (usually referred to as “junction d e p th / ’ as described next). In
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Oxidation Photoresist Mask-Wafer Exposed Photoresist
(Field oxide) Coating Alignment and Exposure Photoresist Develop
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Figure 3. Fabrication steps for top-down lithography-based processing from [10]. R eprinted with perm ission from 
[ 10|, G. Bourianoff, Computer 36, 44 (2003). CO 2001, Prentice Hall.

Fig. 4(a), the potential goes nearly to the background value in the middle of the channel, 
which means a charge carrier gets little Coulomb acceleration and would not easily travel 
from source to drain. In Fig. 4(b) with a deep source and drain, the electrical field will 
be strong, causing a considerable leakage current (i.e., amount of charge to flow between 
source and drain), which makes it hard to switch the transistor off at all in the worst case.

Since we still need a large enough drive current to flow through the device in the on-state 
o f  the MOSFET, we need to increase the dopant (and thus the charge carrier) concentration 
in the source and drain areas when making them shallower, since the current is proportional 
to the carrier concentration. The common measure for the amount of doping for a given

(a) Gate (b) Gate

Figure 4. C olor con tour plot in a rb itrary  units ol the electrical potential for (a) shallow and (b) deep source/drain 
profiles. The transistors are in the ‘•off" state with no bias on the gate, source, and channel and a high bias on 
the drain.
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junction depth is the "sheet resistance," which is inversely proportional to the product of 
carrier concentration and junction depth.

Common dopant atoms are elements from group III and V of the periodic system like 
boron, arsenic, or phosphorous. Substituting a silicon atom (group IV) with an arsenic atom, 
for example, leads to a situation where four of the arsenic a tom ’s five valence electrons 
participate in the strong covalent bonds with the silicon atom, whereas the fifth one is 
weakly bound with a binding energy of only about 32 meV. Since this energy is very close 
to the thermal energy per atom at room temperature, the arsenic atom is easily ionized 
with the fifth electron becoming a free charge carrier. Similarly, a boron atom (group III) 
is missing an electron to form four covalent bonds with silicon and can easily accept an 
electron from a neighboring bond, thus creating a hole. G roup V doped silicon is usually 
referred to as /7-type, whereas group-III doping leads to p-type silicon. Usually, both n-type 
and /;-type channel devices are used in a complimentary fashion (resulting in Complimentary 
Metal Oxide Semiconductor (CM OS) devices) to achieve small geometries and low power 
consumption. In /7-type (p-type) material, electrons (holes) are the majority charge carriers.

The source and drain regions are doped to be of the same type, p  or n, while the channel 
region is doped to be the opposite type of the source and drain. This results in the source and 
drain regions being electrically isolated from one another when no voltage is applied to the 
transistor, provided source and drain are shallow enough. However, when a voltage is applied 
to the gate in a way that it attracts the source/drain charge (positive for //-type, negative for 
p-type) and drives the channel majority carriers away from the gate, a conducting layer of 
charge can form, electrically connecting the source and drain regions. A voltage between 
source and drain will then lead to current flow through the device.

Although the common dopant atoms, which are the ones that can be easily ionized at 
room temperature, have different solubilities (Fig. 5), the contributed maximum carrier con
centration (or the “active fraction" of the dopant atoms) is fairly constant for all o f them at 
approximately 2 x 102t) cm~} [II]. The inactive dopant atoms do not occupy substitutional 
sites but form different structures with changed bonding situations, where all electrons are 
participating in the bonding and do not contribute to the conduction. An example for this is 
a “B , / ” complex (Fig. 6; /  stands for Si self-interstitial, meaning there is one more atom than 
lattice sites in the cluster), where a dumbbell with two boron atoms replaces a silicon lattice 
atom, leaving all silicon atoms in fourfold coordination with three bonds for each boron atom 
[ 12]. Thus, in the best case, the doping distribution consists o f  a box profile with a concentra
tion of 2 x 1 (P  cm -3, which immediately goes to zero at the end (or "junction depth") of the 
doped source and drain regions. This is of course an idealization, since real dopant profiles 
are created by ion implantation, where the leading edge is not perfectly sharp (Fig. 7). The 
projections of the International Technology Roadmap for Semiconductors (ITRS, [2]) for

Figure 5. Solid solubility lim its o f dopants in Si as a function o f tem pera tu re  (values taken from Ref. [1 1 ]).
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Figure 6. **B. / "  complex, where a dum bbell consisting o f two boron atom s has replaced a silicon lattice atom . 
Reprinted with perm ission from [12], X. V. Liu et al.. Appl. Phys. Lett. 11, 2018 (2000); 77, 4064 (2000). €> 2000, 
Am erican Institute o f Physics.

future performance requirements ask for junction depth versus sheet resistance values which 
require to exceed the practical solubility limit of 2 x 10:o cm 3 and to make the profile as 
steep as possible (Fig. 8).

Combining the continuing miniaturization while increasing the dopant concentration leads 
to the “ultrashallow junction problem" of approaching the solubility limit for the dopant 
atoms in silicon and even having to exceed it by processing techniques that stabilize the 
metastable supersaturated solid solution. This field has seen intense research during the 
past decade and has resulted in many interesting findings, like the identification of sub- 
microscopic nano precipitates of dopant phases, which deactivate the dopants electrically, 
or nanoscale processing techniques that stabilize metastable solid solutions. Many of the 
techniques currently used for the modeling and simulation of nanoelectronics devices have 
their roots in applications for end-of the-roadmap microelectronic devices. We thus have 
chosen key applications and methods from such work as application examples in this article.

Figure 7. Real dopant distribution of it 2 x  l()!' cm - boron Jose  ion-im planted  with an energy of 10 keV. in 
comparison to the ideal case o f a box profile with the maximum active concentra tion  of 2 ■< 10:" cm
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Figure 8. ITRS requirem ents [2] for junction  depth versus sheet resistance as a function of year. The shaded area 
requires exceeding the dopan t solubility limit. The separation  line between shaded and white area is calculated 
from the box profile in Fig. 7.

1.3. Molecular Electronics
From its literal meaning, molecular electronics is defined as electronics whose properties are 
determined by the chemical, physical, and electronic structures of molecules. This definition 
is veiy broad; it includes conductive polymers and even the insulating polymer layers on 
metal wiring. In common use, molecular electronics refers to molecular structures whose 
characteristic features are on the nanoscale and that contain between one and a few thousand 
molecules.

Molecules are naturally small, and their abilities of selective recognition and binding can 
lead to cheap fabrication using self-assembly. In addition, they offer tunability through syn
thetic chemistry and control o f  their transport properties due to their conformational flexi
bility. Remarkable progress in this field has been made in the last few years, as researchers 
have developed ways of growing, addressing, imaging, manipulating, and measuring small 
groups of molecules connecting metal leads. Several prototype devices such as conducting 
wires, insulating linkages, rectifiers, switches, and transistors have been demonstrated [13].

In parallel, there has been significant theoretical activity toward developing the descrip
tion of nonequilibrium transport through molecules [14]. It is hard to say whether in time 
such devices could conceivably complement the current silicon-based integrated circuit (IC) 
industry or generate entirely new areas of applicability. It is clear, however, that in any case 
we will need to develop models to describe large-bias transport through ultrasmall devices, 
whether based on silicon or molecules. The fundamental challenge for modeling of molecular 
electronic involves determining the structure/property relationships for electronic transport 
(intra- o r  intermolecular) through a junction containing one or a few molecules as the trans
port medium and with either two (source/drain) or three (source/gate/drain) electrodes. Such 
transport structures are a dominant theme of contemporary molecular electronics. A very 
good summary of the current developments in this field can be found in Ref. [15].

Theoretical ideas for interpreting the current/voltage characteristics in molecular junctions 
began to appear in the 1990s. Some early approaches used the Landauer formulation [16], 
originally developed for semiconductor devices. In this simple picture, transport through 
molecular junctions is interpreted in terms of elastic scattering, and the conductance is 
given as the product of  the quantized unit o f conductance (12.9 k f2)_ 1 and a transmission 
coefficient describing how effective a molecule is in scattering the incoming electron from 
the upstream lead into the downstream lead. More powerful formulations, including the 
nonequilibrium Green 's  function (N E G F) approach, were also introduced in the mid-1990s 
[17, 18].
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Because the conductance through a molecule depends very sensitively on the correct 
description of its contact structure with its leads, an atom-by-atom description of the system 
and fully atomistic process modeling becomes necessary. To cover the necessary time scales, 
methods beyond straightforward molecular dynamics (M D) simulations such as accelerated 
molecular dynamics (which will be described in Section 2.2.3) are necessary. This is still a 
very young field with few existing publications (except for ad hoc relaxed contact structures) 
and thus is not the focus of the current article, although the discussed methods can be 
applied to molecular systems in a straightforward manner. An example of a carbon nano- 
tube device with titanium leads with contacts optimized with ab initio accelerated dynamics 
is shown in Fig. 9(d) (side view, Fig. 9[b]), which is very different from the metastable struc
ture that a plain relaxation would predict (Fig. 9[c]). The change in the structure affects 
the contact resistance and thus the conductivity considerably (Fig. 9(e]), with the optimum 
conduction for an intact nanotube with just rim contact to the titanium leads (Fig. 9[a]) 
[19]. Because of the large numerical requirements of the calculation, the studied system was 
rather small, and the periodic boundary conditions and the short overlap between nano
tube and leads prevent the nanotube in Fig. 9(c) from completely opening. A more realistic 
optimized structure is shown in Fig. 9(f).

(a)

(b)

(c) ( d )

Figure 9. C arbon nanotubc m olecular electronic devices with titanium  leads in different contact configurations, 
(a) C arbon nanotubc in end con taci with titanium  leads; (b) lateral view o f carbon nanotubc ir. side contact with 
titanium  leads: front view o f con tact region o f (c) relaxed and fd) tem perature-accelerated  cynamies annealed 
side-contact structure; (e) current versus voltage characteristics of structures (a), (c). and (d). (f) '.arge-scale contact 
structure  between carbon nanotubc and Ti leads. R eprin ted  with perm ission from |19 |, K. Rivichandran et al., 
up published.
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2. PROCESS SIMULATION THEORY FROM MICRO- 
TO NANOELECTRONIC DEVICES

During the fabrication of nanoelectronic devices, most mechanisms that lead from the raw 
materials to the finished product can be described by only two processes, diffusion and reac
tion (in addition to the radiation effects due to ion implantation, which is not a central 
focus of the current chapter). In the following, vve will discuss their traditional treatment 
in modeling of microelectronic systems, which are mostly concerned with solid-state diffu
sion, solid-solid and solid-liquid reactions. We will describe the methodology for dopant and 
defect diffusion and reaction in a host semiconductor material to introduce the important 
concepts. As a footnote, the diffusion-reaction picture seems to be more general than pre
viously thought, since a recent application of reaction-diffusion kinetics to the modeling of 
oxide growth rates [20] was found to be more successful for the modeling of growth of ultra- 
thin gate oxides from dry oxidation than the more ad hoc classical Deal-Grove model [21] 
and its extensions [22, 23].

2.1. Micro- and Nanoscale Process Simulation 
within the Continuum Approximation

2.1.1. Diffusion-Reaction Equations
A totally rigorous physical model for the redistribution of impurities and defects in semi
conductors does not exist and would probably be too complicated to be implemented into 
continuum-based process simulation programs. Am ong the various simplifications, the so- 
called methodology of diffusion-reaction equations was shown to be very efficient for the 
numerical simulation of diffusion phenomena. It was developed by Yoshida et al. [24] to 
describe the diffusion of phosphorus and can be generalized to design a set of coupled par
tial differential equations from some assumptions about possible reactions between intrinsic 
point defects and impurities. The following discussion follows closely the description of 
Pichler [25].

A basic assumption of all diffusion-reaction schemes is that interactions between impuri
ties and point defects lead to distinguishable defect configurations. Each of them is charac
terized by its diffusion coefficient and charge state. Substitutional impurities are generally 
assumed to be immobile. Interactions are approximated by binary reaction schemes as dis
cussed below. All possible charge states of the point defects and their possible reactions have 
to be considered individually at first. Charge states of intrinsic as well as of extrinsic point 
defects are assumed to result from binary reactions with charge carriers which are assumed 
to act as quasi-particles.

Development of  a model starts with defining the point defects and complexes considered 
within the model and the possible reactions between them. As an example, the important 
case of the diffusion of substitutional impurities (dopants) will be considered in the fol
lowing. Basically all interactions between such substitutional impurity atoms X s, interstitial
impurity atoms X h vacancies K, and self-interstitials /  fall into the three categories of 
reactions:

1. An interstitial impurity reacts with a vacancy and becomes substitutional according to 
the reaction

X I + V - X S ( l )

This reaction is called “Frank-Turnbull reaction.” The reverse reaction is also known 
as “dissociative mechanism.”

2. A self-interstitial displaces a substitutional impurity atom to an interstitial site according 
to the reaction

I + X ^ X ,  (2)

which is known as “kick-out reaction.” The reverse reaction is known as “Watkins 
replacement mechanism."
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3. A vacancy or sclf-intcrstitial forms a mobile pair with a substitutional impurity accord
ing to the reactions

A comparison of the pair reaction with self-interstitials and Eq. (2) shows that both 
reactions have the same structure. Because the atomistic form of the mobile complex is 
only of secondary importance in diffusion-reaction equations, only pair reactions with 
vacancies present a complementary third reaction to the Frank-Turnbull reaction and 
the kick-out reaction.

Since charge has to be conserved in the reactions, electrons or holes may also appear at 
the right-hand sides of the reaction equations. In addition to reactions between extrinsic 
and intrinsic point defects, reactions between intrinsic point defects may also be considered. 
The number of considered species (defects and complexes) can be freely chosen to include 
processes deemed important for the simulation problem at hand. In conjunction with the 
somewhat hand-waving definition of the reaction constants, discussed in the following sec
tion. one can truly speak of a fundamentally phenomenological theory.

As an example to demonstrate the methodology and to introduce the concepts, a fictitious 
system, consisting of negatively charged and neutral impurities on substitutional sites X ~  and 
X[\  negatively charged interstitial impurities X t , and positively charged self-interstitials /+ 
will be considered in the following. Their concentrations will be denoted by CA~, C vo, Cx  
and C, . The holes involved in the reactions will be symbolized by /?+, their concentration 
by p.  Between these species, the reactions

direction, respectively. For each of the point defects considered, a continuity equation

needs to be provided, where J is the flux or diffusion current of the species under con
sideration, defined as the number of respective atoms passing a unit area within a unit 
time interval, and G  and R stand for the generation and loss rates (often called generation 
and recombination terms) [25]. In the absence of sinks and sources (G =  R  =  0) o r when 
G -  R =  0, Eq. (6) is known as Fick's Second Law. In the absence of driving forces, which 
are all influences which make the jum p frequency to depend on the direction of the jum p 
[26], one can use Fiek's first law.

to calculate the flux from diffusivity D  and the gradient o f the concentration. The presence 
of a driving force F adds a second term to Eq. (7).

where k H is Boltzmann's constant and 7' is the tem perature of the system. For the example 
of a charged defect/atom with charge q in the presence of an electrostatic field E (which can 
be due to external bias or to a charge distribution in the system), the driving force would be 
given by F — q E.

This limits llie useful range of the model to m oderate  doping,-'temperature regimes, since otherwise p  needs to 
he m ultiplied by the activity coefficient y, [25].

I +  X  s =  X I

(3)

(4)

(5)
k '

+ I ' ±  X,  + li

arc assumed. The symbols k\  and k\  stand for the rate constants in forward and reverse

(6)

J  -  - D V C (7)

J  =  - D V C  +  D C  *
k ij I (8)
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As an example for generation and loss, the first reaction in Eq. (5) describes the generation 
of a while consuming a \ \  and a l r .  Thus, the continuity equation for species X \] 
needs to contain a generation term, which depends on the availability of X ;  and / r  , and 
the equation for X s needs to contain a corresponding loss term. How do these terms look?

In general terms, the i = 1.........N  allowed reactions between the reactants A,  /?, C. D. . . .
can be written as

k'
a, A  4- bjB 4  ■ ■ • ?=* CjC 4  dj D  4  ■ • ■ (9)

where the stoichiometric num ber of species A in reaction / is denoted by ar  By definition, 
stoichiometric numbers appearing on the left-hand side are negative. The extent of a reaction 
can be described by a reaction constant i  [27]. For our purposes, we define C as the num ber 
of completed reaction events as described in Eq. (9) per volume V.  Thus, when only one 
reaction has to be considered, the change in the concentration of species A in a closed, 
constant volume is simply given by

d C ,  = a d £  (10)

When several parallel reactions have to be considered, the change in the concentration of 
any of the species A

= Y ,« id C i  (11)
i

is the sum of the changes associated with the particular reactions /. Taking the derivative 
with respect to time of Eq. (11) relates the generation and loss terms of Eq. (6), G, — R r  
to the reaction rates d £ , / d t , since the concentration change due to reactions in Eq. (11) 
excludes the diffusion term —V J,

A C  reactions

V - 0 ' - * ' - ^  ( l2 )

How can we determine the reaction rates d £ J d t l  Besides the well-known mass action law 
for equilibrium concentrations of products and reactants [25], there is also a kinetic law of 
mass action [28-31], which relates reaction rates to the concentrations of the reactants and 
thus allows to formulate the generation and loss terms G -  R  from Eq. (12) explicitly. In 
our notation, the kinetic law of mass action reads

^  k ( < €,:■■■ k ’.C.. (13)

We have now all necessary expressions in place and can return to setting up the conti
nuity equations for our example system. Assuming substitutional defects to be immobile as 
postulated above, we use Eqs. (8), (12), and (13) to formulate

• = k ’ C X' P - k \ C x,
dt

dCx
—k  J C y p  +  k | C — A: ( C x-  (-1 4- k \ ( ,v( P

eE
dt

dCj_
dt

(U

=  V 

=  V

D.v

D,

V C ,  -  C ,  

V Q  -  c .

k B 7 
eE

IT T

4  k 2Cx Cf . — k'2C \  P

k{ C x Gj ■ 4  k'2C y P

(14)

(15)

(16) 

(17)

T he form presented in Eq. (13) is strictly only valid for ideally dilute solutions. For higher concentrations, 
the concentnitions should be multiplied by the activity coefficient y i (— I for dilute solutions) which is used to 
introduce non-ideal effects and will, in general, depend  on local param eters like the concentrations of all species 
in the system as well ;is on m acroscopic param eters like tem pera tu re  and pressure.
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It should be kept in mind that point-defect-impurity pairs and interstitial impurity atoms 
considered here as individual point defects are just abstractions for the complicated interac
tions of intrinsic point defects and impurities. Also, the inclusion of the hole concentration 
in the product k r2C x  p  is not mandatory. It serves just to keep k '  Fermi-level-indepencent.

The resulting system of coupled partial differential equations can be solved directly .vith 
one of the general-purpose process simulation tools which became customary or with any 
general partial differential equation solver. Examples for such simulation codes incude 
P R O P H E T  [32], A LA M O D E [33], TAURUS-PM EI [34], and FLOOPS [35]. In general, 
however, it is often desirable to reduce the num ber of equations, in order to understanc the 
macroscopic behavior of the system or to speed up solving the equations. The latter is due 
to the fact that the fastest reaction determines the maximum allowable time step for solving 
the partial differential equation system. Eliminating the fast reactions thus by physical argu
ments or equilibrium relationships allows to use a longer time step. Because of the rnuch 
higher mobility of charge carriers than of atoms, equilibrium between the charge states of 
a point defect will be established on a time scale on which concentration changes due to 
diffusion or reactions are negligible. On such a time scale, the generation of X 1' from X j  
(first term in Eq. [14]) will be equal to the loss of X[] to form X (second term in Eq. [14]), 
meaning that Eq. (14) is equal to zero. Equation (14) then gives for Cx

Q ,  = — p - 7 7  c v. <18)Pk ; +A-;

using the total concentration Cx  =  C x» +  Cx  of substitutional dopant atoms. The assump
tion of local equilibrium between the charge states also means that the first two terms in 
Eq. (15) are zero. With that and Eq. (18), Eqs. (14) and (15) can be combined into one 
continuity equation,

()CX +  £ a\  ) k \ k {
Cy  cr + k r2Cx p  (19)

Another customary assumption valid at least for long diffusion times (but inadmissible 
for short diffusion times [25]) is that the mobile complexes and the substitutional atoms are 
also in local equilibrium. This means the sum of generation and loss term (terms 3 and 4 in 
Eq. [15]) is also zero, which leaves us with just two continuity equations from Eqs. (16) and 
(17) and allows us to express the concentration of interstitial impurities Cx  in the form

=  T 7 - ~ ^ r , r Z r ~ c * <2‘»
r x:

k 2 p  (p k \ -\~ k \ ) +  k r, k \  C i

using the total concentrations of impurities C x — C x  +  C x  and self-interstitials C.} =  Cn , 
and to combine Eqs. (16) and (19) into a continuity equation of the form

dCv
~ = V I ) ,

(It
k\k'2Cx C, \ k\k\Cx C, e E

k /) (p k  | +  k | ) +  k | k i C j J k \ p  (p k  'j +  k \ ) +  k 'i klC  / k a T
(21)

With that, all continuity equations for extrinsic point defects were finally combined in.o 
one nonlinear diffusion equation for the total concentration. In fact, the physical assumptions 
contained implicitly in such macroscopic diffusion models and their range of validity can be 
made clear by comparison with diffusion-reaction models.

Typical assumptions for the intrinsic point defects are equilibrium, a time-dependent bit  
depth-independent oversaturation as for oxidation-enhanced diffusion, o r even a function )f 
space and time, as for implantation-enhanced diffusion. The last simplification often found in 
the literature for dopant diffusion is that the concentrations of mobile extrinsic complexes a~e 
much smaller than the concentration of substitutional atoms. Using the equilibrium condition 
for interstitial with substitutional impurities, this means C v / C v ~  k': C} / (k-p)  <<c 1 and 
that the second term in the denom inator of the right-hand side (r.h.s.) of Eq. (20) cm 
be neglected, which leads to C x c x  C \ C r  It should be noted that this last simplification
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leads to a break-down of the resulting equation in all situations where point defects are 
present in large oversaturation (where the neglected term would guarantee limiting C v to 
no more than C v ).

In addition to the simple reactions between intrinsic and extrinsic point defects, reac
tions between extrinsic point defects have to be considered at high concentrations. Typical 
examples arc the formation of ion or defect/ion pairs, that is complexes of a donor and an 
acceptor impurity or defect at adjacent lattice sites (see, e.g.. Section 3.1.2), or of clusters 
of intrinsic point defects or impurities of the same kind (see, e.g., Section 3.2.2). Ion pairing 
and the formation of a cluster of two impurities can be incorporated straightforwardly into 
the diffusion-reaction approach via binary reactions of, for example, a mobile donor com 
plex and a substitutional acceptor ion in case of the ion pair. Clusters with a higher number 
of atoms can be included, in principle, by considering the complete chain of cluster sizes 
up to the largest one. Their evolution with time is then determined by a system of binary 
reactions. However, the expenses in terms of computer resources are considerable and they 
are usually inadmissible for precipitates which may consist o f  thousands of intrinsic point 
defects or impurity atoms. Therefore, the ad hoc formation of extended defects or clusters 
of a certain size is often assumed and formulated as a reaction. While this is certainly a 
possible simplification, it has to be noted that the absolute values of the forward and back
ward rate constants can no longer be derived from kinetic considerations. Their ratio, on 
the o ther hand, is still determined by the law of mass action.

2.1.2. Reaction Rate Constants
As described in Section. 2.1.1, the reaction-diffusion scheme needs as input parameters dif
fusion constants D  and reaction rate constants k.  The latter again are usually approximated 
as functions of the diffusion constants, as we will see. We want to discuss the theory of the 
reaction rate constants in the present section, while leaving the calculation of the diffusivities 
from atomistic hopping mechanisms for Section 2.1.3. An excellent review of the reaction 
rate theory can be found in [25].

Von Smoluchowski [36] presented in 1917 the first theory of rate constants within a 
diffusion-reaction scheme, applied to the coagulation in colloidal solutions. According to his 
theory, the rate of coagulation is determined mainly by the diffusion of the reactants toward 
each other. As soon as the distance between the reactants is as low as a capture radius a{ , 
the reaction is assumed to take place immediately.

It is evident that this mechanism will lead predominantly to binary reactions in the form

A  +  B ^ C  (22)
kr

Assuming the reaction to be diffusion-limited, the von-Smoluchowski approach leads to a 
rate constant given by

k f = 4irac ( D A +  D B) (23)

The symbols D A and D fi stand for the diffusion coefficients of the reacting species. The 
theory presented by von Smoluchowski contained implicitly limiting statistical assumptions. 
However, based on a more solid statistical basis, Waite [37] came to virtually the same 
conclusion. The capture or reaction radius a( for reaction between point defects has been 
usually assumed to be on the order of the distance between two substitutional silicon atoms 
(ac — 2.5 A), but recent atomistic simulations have shown that it might be about two to 
three times larger, as discussed in Section 3.1.2. For reactions between point defects and 
extended defects, an increased capture radius is sometimes introduced which reflects the 
geometry of the extended defect (see Section 2.2.2) . The treatment of von Smoluchowski 
and Waite is valid only if, at least, one of the reacting species is electrically neutral. When 
both reacting species are electrically charged with charges c/j and <y2, Coulombic attraction 
and repulsion has to be taken into consideration. As demonstrated by Debye [38], this leads 
to a modification of the rate constant in the form
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w ith  th e  C o u lo m b  en e rg y

£ c - „ u iK )=  < ihCh (25)4 7T£0e,.fl(

The physically correct value for the relative dielectric constant s r that might be different 
from the macroscopic value on this extreme nanoscale (a( is on the order of a few A) 
has been a long-standing question [25]. However, it can be determined from atomistic first- 
principles calculations to be more or less unmodified from the macroscopic value and will 
be discussed in Section 3.1.2.

In case there is a energy barrier higher than the diffusion barriers to overcome before 
the reaction can happen, it makes sense to not longer assume that the reaction will happen 
instantaneously once the reactants are closer than the capture radius. Instead, one assumes 
a thermally activated process [25, 39],

k> =  4 ir«c (D  , + D „ ) e x p ^ - ^ j  =  4 v a c ( D  +  D /() e x p ^ - ^ ^  j  exp ( - ^ 0  (26)

where M7 stands for the barrier in excess of the Gibbs free energy of diffusion of the fastest
reactant. The energy barrier might be an enthalpy barrier or an entropy barrier. The meaning 
of an entropy barrier is that the entropy of the system is lowered during the reaction. Similar 
modifications can be made for the case of two charged reactants, Eq. (24).

The situation becomes slightly more complicated when charge states and charge carrier 
concentrations are involved. Let us consider the ionization reaction of an acceptor,

A"  +  e ^  /I (27)
k '

For an order-of-magnitude estimate, the electron will be assumed to be a quasi-defect to 
which Waile’s theory can be applied. Then, the change in the concentration of neutral accep
tors is given by

(>L ^  _  _ k < c r "  ~ k ' C  | =  - L i  +  . . .  (28)
(it T

Therein, r  is the characteristic time constant for the charging process. Using Waite’s theory, 
an estimate for t  can be given in the form

T =  ---------  (29)4 ttD(m c n

The diffusion coefficient of the electrons can be estimated via the Einstein relation f i  = 
D q / ( k HT)  [40, 41] from the mobility given, for example, by Sah et al. [42]. From ab initio 
calculations of As-K interactions, the electronic reaction radius is at least 1 nm as will be 
shown in Section 3.1.2. Assuming a reaction radius of  2 nm and the electron concentration to 
correspond to the intrinsic concentration leads to time constants of less than one picosecond 
at temperatures of 500°C and above. Thus, it is in general assumed that steady state between 
the charge states of a defect is established quasi-instantaneously in comparison to process 
times.

When charge states are involved in binary reactions, as in the reaction equation

A k +  / ? '* £ ! ( ’" + ( ; t +  r„, -~za)c (30)
k '

additional care has to be exercised in estimating the reaction constants. According to the 
kinetic reaction theories discussed above, the forward reaction rate depends just on the 
reactants and corresponds to the total concentration of defects C  forming per unit time by 
this reaction. How many of the defects C  form in a particular charge states is not predicted. 
The most straightforward assumption seems to be that charge is conserved so that the pairs 
forming have charge state z k -f z m. But this is just as artificial as any other assumption since 
it is not even guaranteed that such a charge state exists for defect C. However, at least at
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elevated temperatures, it can he assumed that steady state between the charge states n of 
the products C is established more or less instantaneously. Then, the concentration of pairs 
forming in a specific charge state per unit time is given by the product of the total rate times 
the Fermi-level dependent probability that the pair exists in this charge state. It is convenient 
to use only the total concentrations of reactants and products then, but when individual 
forward reaction constants have to be given explicitly, they can be written in the form

. =  O')

The rate constants k [ m therein can be estimated as we have discussed.
Waite's theory in the form of Eq. (23) and its extensions are valid only for a uniform 

distribution of the reacting species. Such conditions are not expected under conditions of, 
e.g., electron irradiation or ion implantation where vacancies and self-interstitials may occupy 
closely correlated sites. Extensions to include spatial correlation effects were discussed, e.g., 
by Peak and Corbett [43].

Having quantified the forward reaction constant k 1, we need to quantify also the backward 
reaction constant k r. However, it is often not possible to derive the reverse reaction con
stant from kinetic theories. Instead, one uses the fact that, in steady state, the forward and 
backward rates have to be equal so that d ^ / d t  in Eq. (13) vanishes. This allows writing the 
backward reaction constant in terms of the forward reaction constant and the concentrations 
in steady state,

k ' = k f ( C £ j i \  (32)
\  C '  steady slate

where the concentrations again need to be multiplied by the corresponding activity coef
ficients in the case of non-dilute concentrations. For the temperature dependence of the 
backward reaction constant, k 1 will contribute with the enthalpy of diffusion of the faster- 
migrating reactant plus eventual reaction barriers, and CACIi/ C c with the binding energy. 
The sum of these contributions, that is the barrier, which has to be overcome thermally to 
dissociate the pair, is usually called “dissociation energy."

2.1.3. Macroscopic Diffusion Constants from Atomic Hopping
Besides the formation energies, which control the equilibrium concentrations and which 
are reasonably easy to calculate (at least for elemental systems), the diffusion constants 
are the central param eters for diffusion reaction systems. For simple systems, only a few 
species (concentrations) need to be considered in the equation system, and a fit of the 
kinetic parameters to experimental diffusion data can help to identify them. For nanoscale 
device systems, on the other hand, where the concentration and nature of many different 
nanoclusters and molecules become important, this becomes a daunting, if not impossible 
task. In these cases, atomistic calculations can help to determine the kinetic constants as a 
function of tem perature.

On the atomic scale, diffusion happens when defects, impurities or their complexes per
form hops between the different equivalent positions of the crystal structure. Equivalently, 
reactions, where atoms perform hops, change positions, and create new complexes, are also 
dominated by atomic hopping. Whereas it is in some cases trivial to extract the macroscopic 
diffusion constants (such as in the case of a migrating vacancy in an otherwise perfect crystal), 
it is in general a difficult task to statistically combine the jum p rates into the correct macro
scopic diffusion constant, and a complete and general recipe how to do it was not available 
in the literature until 2001 [44]. The complicated nature of this process is not always obvious. 
We will show in the following that in case there is one step with a much higher energy bar
rier than all the o ther hopping events of a diffusion path, the simplified assumption that the 
highest energy barrier controls the complete diffusion mechanism is reasonable. However, 
when the barriers start to be comparable, this is o f course not the case anymore [45].

A very simple example illustrates the need for a more general treatment. Consider dif
fusion along an alternating chain, illustrated in Fig. 10, where long-range diffusion along
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Figure 10. D iffusion along an ideal alternating  chain. The sites are successively labeled 1. 2, 1'. 2', and so on. 
T he hops betw een sites are o f two types, with rates p , and p n . Long-range diffusion occurs in series, so that the 
resulting diffusivity is lim ited by the slower o f rates p , and p , , .  R eprin ted  with permission from [44], M. S. Daw 
et al., Phys. Rev. B  64. 045205 (2001). © 200L APS.

the chain must combine two hopping rates (p l and p n ) in series. A steady current j  flow
ing along the chain requires that the differences in concentrations on the sites (c,) obey 
j  =  (<': -  Ci) /Pi  =  ( < Y  -  c2) / p n  = (cy -  c,)//7cff which gives p cff = p , p u / ( p ,  +  Pn) ,  thus 
combining the rates in series. As expected, for strongly different rates like p { p n , our 
result finds that p cff ~  p lh  i.e., the slower rate determines the overall diffusion, which is of 
course not the case anymore when the two rates start to be comparable. Nevertheless, the 
“non-Arrhenius" behavior of the diffusivity in such a case can still be surprising [45].

In the following, we will outline the general theory of [44] that describes how to combine 
the atomic hopping events into macroscopic diffusion constants. We assume that there are 
well-defined states (i.e., energy valleys) which the system can occupy. The concept of state 
here is quite general. A state can be simply a defect, such as a vacancy, located on a particular 
lattice site, so that a state is distinguished entirely by specifying its location: this is clearly 
the case for vacancies in elemental metals.

More generally, however, the defect can have other degrees of freedom. For example, 
the primitive cell in Si has a two-atom basis. In that case, one must specify on which basis 
site the defect is located, in addition to which primitive cell. Or, for another example, a 
vacancy in Si might undergo a Jahn-Teller distortion (where electrons in defect states in the 
band gap can lower their energy by a symmetry breaking, which adds a little (tetragonal) 
strain energy to the system, but lowers the position of the occupied defect state), which 
has three independent orientations. In that case, one must specify orientation in addition to 
location. An even more complex example would be a cluster of impurity atoms which migrate 
together— the internal degrees of freedom in this case can be numerous, as we will show.

We assume furthermore that the basic assumptions of transition state theory (Section 2.2.1) 
hold and the rate of jumping from one state to another is controlled by the difference in 
energy from the initial valley to the saddlepoint. In the presence of stress, the energy differ
ence, of course, must account for the additional work done against an external stress field. 
It is convenient to introduce a local reference, which is the perfect system subjected to the 
local value of the external stress. A defect is introduced into the local reference, and changes 
are measured in the system relative to that reference. We follow the convention of Ref. [44], 
where the word “creation” has been used to label values calculated with respect to this local 
reference. To keep the following description simple, we do not consider any trapping, reac
tion, or dissociation of the defects; we take only hops which maintain the unity of the defect.

An example for defects with a simple basis is an unreconstructed vacancy in a metal having a 
primitive cell with one atom (e.g.. simple cubic, body-centered cubic, and face-centered cubic). In 
this case, the state is specified completely by designating the spatial location of its primitive 
celk A . We can describe the system by hopping rates between the different sites A  and
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p \ A ^  B] = p t) exp [ - p f f l * '

M\ ah\

with

H.-i/*!

(33)

M , -  < V i |  EH p„ exp (-/?£;,;;■) (34)

S.f =  exp (35)

where fi — \ / ( k nT ), is a basic hop rate, and £ - | n and £ li,/)>' are the creation energies of 
the valley at position A  and the saddlepoint energy between A and B.  respectively. In these
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definitions, we separate the “solubility factor" S  of the defect in the valley, .S’ ,, from the 
“mobility factor" M\,\n\•

We will begin the treatment by assuming a uniform host, and then extend the results at 
the end to a nonuniform host. In a uniform host, all valleys have the same energy, so that 
£  j =  El{r) and .S'., =  .S. The saddlepoint energies do not depend on the absolute 
positions A  and B< but only on the relative position. (The saddlepoint energies are not all 
the same because the host is not assumed to be isotropic. In the presence of stress, even a 
cubic crystal is not isotropic.)

The concentration cA on site A develops in time by

Ca = ~Ca E P\a  ^  B \ + E cbP[B -  A] (36)
H li

We can make use now of the translation symmetry of the host by expanding the solutions 
into a Bloch form,

cB =  [  w(k, t) exp (/k • R B)cI}k  (37)
J  BZ

Matching Fourier components of the rate equation (Eq. [36]) then gives

u( k, t) = y(k)w (k, t ) / S  (38)

T(k) =  E  M |nfl|[exp(/k  ■ R„„) -  1] (39)
li

where the site 0 has been chosen arbitrarily and R ;/ =  R, — R,. Because w>e are looking for
the longtime and macroscopic, that is, long-wavelength evolution of the system, we expand
y(k )  in powers of k,

y (k )  =  —^T r y  M|(IW|RW(( (8) R/m I • (k (8) k) + 0 ( k A) (40)

(The dyad a (g> h defines a matrix with components ,/>,.) There are no terms of order unity 
because, by num ber conservation, y (k  =  0) =  0. There are no terms linear in k because 

'W|u/jjRrtn — 0 (in a solid with a simple basis, for every neighbor there is an opposite 
neighbor which cancels).

When we substitute the series expansion of y (k )  (Eq. [40]) into the equations of motion 
(Eq. [38]) and transform back to real space, each power of k in y will be associated w'ith a 
spatial derivative. Thus the second derivative of y (k )  at k =  0 will have physical significance 
in the resulting diffusion equation. We therefore define a “solid permeability tensor”

P =  _ I  *2y<k >l 
2 lk-0

and the resulting diffusion equation in the general case is

c ( x , t)
c ( x , / )  =  V P(x, t) ■ V

(41)

(4 ;
,S'(x, t

where the diffusion tensor D is obtained from the microscopic hop parameters by

D = 4 E  M \ m R«o ® R«u (43)S B

In the case of a uniform host, the hop rates and the solubility are independent on position 
and are not affected by the gradient operator.

The explicit introduction of the solid solubility factor S  is very helpful because it illustrates 
clearly that the equilibrium condition is c ( x , /) oc 5 ( x , /) and also that a gradient in the
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solubility factor acts as a driving force for diffusion [46]. The solubility is related to the 
local chemical potential by jjl =  k HT \ n ( c / S ) .  Also, we have introduced the tensor quantity 
P, which is the product of the diffusivity and solubility factor. In analogy to gaseous and 
liquid systems, we have chosen to call this the “solid permeability factor”; in an anisotropic 
medium, the permeability factor in general is a tensor quantity. The solid solubility factor 
depends only on the valley energy (Eq. [35]), the solid permeability factor depends only on 
the saddlepoint energy (Eqs. [34], [40], and [41]), and the solid diffusivity depends on the 
migration energy (difference between saddlepoint and valley; Eq. [43]).

Clearly the choice of a local reference for the energies discussed previously does not 
affect the diffusivity (which depends on differences in energy), but does affect the solubility 
factor. In comparing the relative solubility factors of a defect at two different (stressed) 
locations, one must calculate the energy required to insert the defect into each (stressed) 
location. Thus, using the stressed but otherwise perfect Si as a local reference is natural for 
the diffusion problem.

When dealing with systems with a degenerate basis, some care is required beyond the 
previously discussed case of the simple basis. In this category are crystals with primitive cells 
having more than one atom in the basis, or defects with internal (e.g., orientational) degrees 
of  freedom. For example, the diamond and hexagonal close-packed (hep) structures have a 
two-atom basis. Also, complex defects, such as a dumbbell self-interstitial or vacancy with 
Jahn-Teller distortion, have an orientation which must be specified in addition to the site.

We identify now a lattice site by {Aa},  with its cell index A  and the index a which denotes 
the state within the cell. The number of states in the basis is /Vslalcs. For a symmetric vacancy 
in diamond, as an example, NMalcs =  2, because there are two sites in the primitive cell. 
However, if we admit Jahn-Teller distortions, then on each of two atomic sites a vacancy can 
have one of three orientations, so that in this case /Vs(atCN =  6. It is easy to imagine more 
complex defects (clusters, for example) where the number of states could be quite large.

The rate of jumping from state {Aa}  to state {Bb}  through the saddlepoint [AaBb]  is 
now given by

where the cell A  — 0 has been chosen arbitrarily. Note that number conservation is 
expressed as

(44)

with

(45)

(46)

The concentration of state a in cell A  develops in time according to 

Ca., =  E  P\-A a B b \ +  E cr<hP[Bb -> Aa] (47)
Bb Hb

Making use of the translation symmetry of the host yields

f/H- =  E M k - Oexp(/ 'k  • R„,,) (48)
k

Matching Fourier components of the rate equation then gives

0  =  E  r.,/.(k)»,,(k. i ) / s h (49)

w ith

(50)

v  r  , (k =  0) o
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The complete dynamics of the system arc contained in Fif/l(k). which is a symmetric rate 
matrix of size /VsUllcs x  ;VslaIcs. The eigenvalues are the rate constants of the relaxation pro
cess. At least one eigenvalue vanishes at k =  0 because of num ber conservation (Eq. [51]). 
We expect generally that only one eigenvalue vanishes for k =  0. This is because a con
served quantity is associated with each vanishing eigenvalue at k =  0. We anticipate that the 
only conserved quantity associated with diffusion will be the total defect number (we have 
assumed that the defects diffuse intact). For small k. we have then only one relevant mode 
(that is, the slowest). All the other modes are fast and correspond to short-range relaxation 
among the members of the primitive cell.

Consider, for example, the alternating chain discussed in the introduction. In this system, 
the primitive cell consists of two sites, so that F is a 2 x 2 matrix:

F (k )
“ Pii p / e ,k{X: 1,1 4- PnC,k{X: ' r  a)

where .v, and x 2 are the site positions within the unit cell, a is the periodicity of the chain, 
and p,  and p n  are the rates associated with transitions over the two different saddlepoints. 
The two eigenvalues are y ± =  — p t — p N ±  J p ]  -f- p ) t +  2P / P n  cos(Atf). The relaxation mode 
associated with (the “optical m ode” ) has finite lifetime even when k =  0. This corresponds 
to a relaxation within the primitive cell which occurs very quickly to bring the sub-lattice 
into equilibrium. The rate of the o ther (“acoustic” ) mode vanishes at k =  0 (that is, 
small, long-wavelength deviations from uniformity take a very long time to relax) and so this 
is the only relevant mode. The leading order term for small k  is y+ ~  ~ - a2^ 2P i P u / ( P /  +  
/ ; ; / ), which, when we transform to real-spacc, will become the operator P A .  Thus. P =  
(a: / 2 ) p l p , l / ( p i  +  pi , ) ,  as we expect for processes in series.

In general, /Vst;i[cs is potentially large, and it is very difficult to obtain an analytical form 
for the relevant eigenvalue. However, because we need only the behavior near k =  0 per
turbation theory can be used to obtain the permeability, as discussed in depth in [44].

Finally, we note that for a degenerate basis, the appropriate solubility factor is the aver
age solubility over all states; that is, the proper solubility to use in the diffusion equation 
(Eq. [42]) is

S.;  -  =  - L _  E e x p ( - 0 O  (53 )
' ’'slates a * slalcs a

Since modern nanoeiectronic CM OS device structures use very often strained channel 
materials to enhance the charge carrier mobilities and make the device faster, it is often 
necessary to specify how stress affects the valley and saddlepoint energies in the hop rates 
(Eq. [44]). For this, we will assume that the host, in the absence of stress, is uniform.

When a defect is created, the solid changes shape from its original condition. In linear 
elasticity, the change in the shape of a volume can be expressed as a real, symmetric tensor. 
For example, a sphere is distorted into an ellipsoid, and the difference can be described in 
complete generality (within linear elasticity) by three principal values i l cj and axes t,,

i \  = n (.,t, ® t, +  n l2t2 ® t : +  <s> t, (54)

where “r ” denotes again the term “creation” as defined in [44]. The symmetry of the shape 
change is determined by the symmetry of the defect, i.e., the principal axes will be symmetry 
axes of the defect. If the defect has an orientation (for example, a dumbbell self-interstitial 
or a Jahn-Teller distorted vacancy), the principal axes will be directed accordingly, but the 
set of principal values will be the same for all orientations. A defect with cubic symmetry 
will have three degenerate principal values, o f  course. A defect with an orientation may have 
one eigenvalue unequal to the o ther two.

We will call the creation energy in the absence of external stress (0). In the presence 
of an external stress, the creation energy must include the work required to distort the solid 
in opposition to that stress, so that

(<r) =  £ , ^ ( 0 )  +  T r( f i ; ; '. ,  ■ t r )  (55)
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where the stress is evaluated locally. We have assumed here that all of the defect internal 
states are energetically degenerate in the absence of stress. The stress can break the degen
eracy, depending on the orientation of the principal axes of i l 1' relative to the stress tensor. 
These values of Eciv)( a )  are used in determining the solubility factor 5 (Eqs. [46] and [53]).

Similarly, when the system is at the saddlepoint [AaBb],  the shape is different from the 
reference condition (the perfect, stressed lattice), which is represented by the saddlepoint 
volume tensor and the energy at the saddlepoint becomes, under stress,

El% Bh\<r) =  £'cI(,;;"M(0) +  T r ( n | . ^ SA1 • tr) (56)

where the reference state for the saddlepoint volume is the perfect, stressed crystal, just as it 
was for the valley volume. The values of E c{s)(<r) are used in determining the permeability 
tensor P (Eqs. [41], [45], and [50]).

Often the effects of hydrostatic stress (pressure) are separated from those due to deviatoric 
stress. The deviatoric stress is defined as the traceless part of the stress,

Or =  pi  +  0-UtfV

^  _  7r[cr] (57)

Similarly, for the volume tensor.

a  = a i h/ 3 )1 - m ,
(58)

n /f =  Tr[il]

where i l h would be identified as the total scalar volume change and i l (l is the traceless 
part of i l .  We can see that the work against the external stress has two terms: one couples 
the pressure to the total volume change, and the o ther couples the deviatoric stress to the 
anisotropic part of the saddlepoint volume,

Tr(<r ■ i l )  =  p i l h +  Tr(crdcv ■ i \ )  (59)

From this it is clear that the permeability factor in general will have an overall scalar factor 
which depends on the pressure and the isotropic saddlepoint volume (exp ( - f i p i l (.{s)h)). The 
anisotropic part of the saddlepoint volume, along with the deviatoric part of the stress tensor, 
will determine the anisotropic part o f the permeability tensor (sum over terms involving 
e x p ( - 0  7>[ft(.(.!)fl-<7dcv])).

Specific examples of the permeability tensor, including the effects of stress, are worked 
out and displayed in Section 3.3.

2.1.4. Limitations of the Continuum Approach
Diffusion-reaction schemes fail when the impurity concentration exceeds about 2 x I0:i c m '3. 
For such concentrations, sharp increases of the diffusivities of germanium, tin, arsenic, and 
antimony were reported (see Chapter 4 in Ref. [25]). Following the suggestion of Mathiot 
and Pfister [47], they are usually interpreted within the percolation theory of Stauffer [48] 
to arise from the proximity of the dopant atoms which reduces the formation and migration 
enthalpies of vacancies in their vicinity and which leads to an enhanced diffusion of dopants 
within the percolation cluster.

Most commercial process simulation tools until very recently had only implemented 
the most simple diffusion models using all or most o f the simplifications discussed in 
Section 2 .1.1, which break down under many conditions typical of nanofabrication. There, 
metastable dopant distributions are created by tight thermal budgets with steep temperature 
ramps and short soak times to beat the solubility limits o f  the dopants, thus increasing the 
importance of small intermediate clusters of  dopants and defects, which, under more tradi
tional conditions, would not be seen once the thermal equilibrium had been reached and the 
expected equilibrium precipitates had formed. The density of these "noncquiiibriuirf point 
defect and dopant-defcct clusters is often quite low and their gradients are very steep, such 
that their representation by a continuous average concentration becomes questionable. As it
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is currently understood the number of different configurations of point defects and dopants 
that need to be accounted for is ra ther large. Their binding and activation energies vary 
significantly, in particular for the small clusters with less than a dozen atoms. If the physi
cally essential set of many equations considering all these defect-dopant clusters is treated, 
which is usually necessary to capture the nanometer-scale effects essential to nanoclectronic 
devices, besides the increased numerical effort, a very large number of parameters needs 
to be determined, which only in very few cases and the availability of many experimental 
results can be determined by a traditional straightforward fit [49].

Even if a simplification of the equation system would be desired for such annealing pro
cesses far from equilibrium, the questions about the “physically essential" set of partial 
differential equations (for ad-hoc forming larger clusters) cannot be answered easily. In the 
past few years, vast progresses in the field of atomistic and especially first-principles calcu
lations have been found to help with both the equation selection and the parameter deter
mination (see Sections 2.3 and 3.1), which is one of the seminal areas that has opened the 
door for successful process simulations of nanoscale electronic devices. Nevertheless, such 
an approach is of course not very flexible and requires a long start-up time for new materials. 
Both the fitting or calculation of the large number of parameters required by such systems 
and the solution of these large, highly nonlinear and tightly coupled systems of PDEs, as 
well as ordinary differential equations (O D Es) and algebraic equations require a significant 
am ount of computational resources and to a large degree cut into the major advantages of 
the continuum approach, which are its computational efficiency and numerical stability.

U nder these circumstances, atomistic process modeling starts to become much more 
attractive and has in fact recently been incorporated even into commercial process-simulation 
platforms [50]. While we expect the well-established PD E  models to be much more efficient 
than the Monte Carlo models for one-dimensional ( ID )  and two-dimensional (2D) simula
tions, the sub -100 nm devices have a number of inherently three-dimensional effects, and 
therefore, increasingly require three-dimensional (3D) simulation. The need for 3D sim
ulation and shrinking device sizes drastically reduces the CPU time gap between the two 
approaches. The recently reported C PU  times for the kinetic Monte Carlo diffusion simula
tions [50, 51] look very promising compared to 3D PD E simulations for realistically complex 
sets of equations on sufficiently fine meshes.

2.2. Atomistic Process Simulation
Besides the limitations to the continuum approach outlined in Section 2.1.4, there is one 
more reason that makes atomistic modeling increasingly attractive and considerably drove its 
development. This reason consists in the considerable statistical variations due to the small 
num ber of dopant atoms in deca-nanometer device structures [52]. Figure 11 shows a 50-nm

1.2

D opants  in the depletion  layer

Figure II. (a ) 50-nm M O SFE T  with random ly d istributed  d opan t atom s in the substrate  and in the source and 
drain regions, (b) Sim ulated threshold voltages Vt for statistical distributions of the dopant atom s versus the 
num ber of dopant atom s in the depletion  region. R eprin ted  with perm ission from [52]. A. Asenov. "SISPAD 2001 
Proceedings.” Springer. Berlin. 2001. p. 162. C  2001. Springer.
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M O SFE T  which, at the current rate of miniaturization, could go into production within the 
next decade. For such a device, the depletion region of the channel—which is the area where 
the majority of  the current flows when the device is on— contains approximately between 90 
and 160 dopant atoms, where the variation is o f  statistical nature due to the implantation 
process. As Fig. 11 shows, the num ber of dopant atoms in the depletion region of course has 
a significant influence on the threshold voltage, which is the minimum gate voltage required 
to switch the device (i.e., the current between source and drain) on. However, even when 
the number of dopant atoms were constant, their statistical distribution still causes a large 
variation in the threshold voltage of easily 30% for a given number of dopant atoms. Thus, 
overall the threshold voltage for nominally identical devices on a chip can vary from 0.5 to 
~  1.1 V. Under these conditions, it is hard to reliably turn all transistors of a given structure 
on and off, which, for example, could require architectures that can function despite a certain 
number of statistically distributed malfunctioning transistors. To quantify such effects, an 
atomistic description of the doping process becomes indispensable.

Different techniques are available on the atomic length scale, ranging from the fastest, 
but least reliable kinetic M onte Carlo methods to the slowest, but most accurate molec
ular dynamics (M D) methods. The latter one might be the most tempting to try, since it 
is a well established and (when using reliable models for the interatomic forces) accurate 
methodology to determine the time evolution of an atomic (or nearly atomic) scale sys
tem, including the chemical reactions and/or diffusion hops in that system. As described in 
Section 2.1.1, this is the goal of process simulation for nanoscale devices.

Thus, why does not everybody just use straightforward MD for nanoscale process simula
tion? The answer is that due to the fact that MD simulates all the lattice atoms and, more 
importantly, that it has to use an almost constant time step on the order of femtoseconds 

s) to be able to follow the trajectories of the atoms (which complete a Brownian- 
motion “orbit" around their equilibrium position in 10 n -  1 0 '12 s). it cannot simulate the 
length and more importantly time scales involved in typical technological processing steps 
(tens to hundreds of nanom eters for seconds to hours). The problem is that the transitions 
o f interest are typically many orders of magnitude slower than vibrations of the atoms, so a 
direct simulation of the classical dynamics ends up being of little use.

This “rare event” problem is best illustrated by an example. A typical, low activation energy 
for a chemical reaction or diffusion event is 0.5 eV. Such an event can occur thousands 
of times per second at room temperature and would typically be important in the time 
evolution of the system. But, the atoms vibrate on the order of 10111 times before a sufficiently 
large fluctuation of thermal energy occurs in the right direction for a transition to take 
place. A direct classical dynamics simulation which necessarily has to faithfully track all this 
vibrational motion would take thousands of years of computer calculations on the fastest 
present day computer before a single transition can be expected to occur. Thus, meaningful 
studies of chemical reactions and/or diffusion cannot be carried out by simply simulating the 
classical dynamics of the atoms. It is essential to simulate the system on a much longer time 
scale. This time scale problem is one of the important challenges in atomic-scale process 
simulation for nanoscale systems.

2.2.1. Transition State Theory
The dynamical evolution of an infrequent (or rare) event system consists of vibrational excur
sions within a potential basin, punctuated by occasional transitions between basins; these 
transition events are infrequent in the sense that the average time between events is many 
vibrational periods. If a bottleneck region through which the system must pass in order to 
make the transition can be identified, the so-cailed transition state, then transition state the
ory (TST) [53-59] can be used to separate the time scales between vibrations and transitions 
and statistically calculate the average amount of time the system would spend in a given state.

In the transition state theory approximation, the classical rate constant for escape from state 
A  (where the system has stayed for many periods of thermal motion) to some adjacent state 
B  is taken to be the equilibrium flux through the dividing surface between A  and B (Fig. 12). 
Although on average such crossings are infrequent, successive crossings can sometimes 
occur within just a vibrational period or two; these are termed correlated dynamical events.



Process Simulation for Silicon Nanoelectronic Dcviccs 159

A

Figure 12. A two-state system that illustrates the definition o f the transition state theory rate constant as the 
outgoing flux through the dividing surface bounding sta te  A . R eprin ted  with perm ission from |60], A. F. Voter 
et al., A nnu. Rev. Mater. Res. 32. 321 (2002). © 2002. A nnual Reviews.

An example would be a double jum p of a vacancy in silicon. For the following, it is sufficient 
to know that such correlated events exist, although in more or less all of the methods p re 
sented below, we assume that they do not occur (this is the primary assumption of transition 
stale theory), which is actually a very good approximation for many solid-state diffusive pro
cesses [60]. Apart from assuming no recrossing events and possibly the Born-Oppenheimer 
approximation for eleetronic-structure methods, transition-state theory requires only one 
additional basic assumption, which is that the rate is slow enough so that a Boltzmann 
distribution is established and maintained in the reactant state. If there are no correlated 
dynamical events, the transition state theory rate is the exact rate constant. In this descrip
tion, state A  and B can be the initial and final atomic configuration of a diffusion or reaction 
event, respectively, and would be characterized by all coordinates of all atoms in the system.

To explain the equilibrium flux concept of transition state theory in more detail, imagine 
that for a two-state system we run a long classical trajectory, weakly coupled to a heat bath 
to guarantee on average constant system temperature. We run the trajectory long enough to 
establish equilibrium, visiting both states an extremely large number of times. By examining 
this trajectory, we could accurately determ ine the fraction, ° f  die time it spends in state 
A  and the num ber of crossings, per unit time, of the dividing surface. The transition state 
theory rate constant for escape from A. k  ^ , would then be the num ber of crossings that 
are exiting state A divided by Xa -

The real beauty of transition state theory, though, is that because this flux is an equilibrium 
property of the system, we do not need to propagate a trajectory, but can simply compute 
the transition state theory rate constant from

Here the angular brackets indicate the grand canonical ensemble average, i.e., for some 
property P (r, p).

where r and p include all atoms and have 3 N  components each and ji =  \ / ( k BT).  The 
subscript A  in Eq. (60) indicates that the configuration space integrals are restricted to the 
space belonging to state A  (eliminating the need to divide by ^ . (), and the dividing surface, 
for simplicity here, is at x { =  q , involving only the reaction coordinate a*, ( x { e  r). If the 
effective mass m  of the reaction coordinate is constant over the dividing surface, Eq. (60) 
reduces to a simpler ensemble average over configuration space only [58],

(60)

>p\ ./J /J(r - P) cxp[- /3W (r ,  p)R W >
V / =  J f  cxp[ p)\(l:'r d :'p

(61)

(62)

The essence of this expression, and of transition state theory, is that the Dirac delta function 
picks out the probability of the system being at the dividing surface, relative to everywhere
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it can be in state A. Note that there is no dependence on the nature of the final state 
B. Evaluating Eq. (62) to find the transition state theory rate for a given temperature is 
relatively straightforward [60], but for the purpose of nanoscale process simulation, is hardly 
used without the addition of the harmonic approximation.

H a rm o n ic  tra n sitio n  s ta te  theory . In general, the free energy of the transition state 
needs to be evaluated to estimate the rate. However, for solid systems, where the atoms 
are relatively tightly held in place by their neighbors, it is often possible to assume that the 
transition state can be characterized by a few saddle points on the potential energy rim sur
rounding the initial state basin and that the partition function of the system (denominator of 
r.h.s. o f Eq. (61)) near each saddle point and near the energy minimum can be approximated 
by a product of harmonic partition functions. In this case, transition state theory simplifies 
to the harmonic transition state theory (hTST) and the rate of escape, k ,  through each of 
the saddle point regions can be related to properties of the initial state energy minimum 
and the saddle point [61, 62] as

As in Section 2.1.3, E {s) is the energy of the saddle point, £ (i;) is the energy of the local 
minimum corresponding to the initial state, and the i\ are the corresponding normal mode 
frequencies. All the quantities can be evaluated directly from the potential energy surface 
without dynamical calculations as described in Section 2.3. Entropic and thermal effects are 
included through the harmonic partition functions.

With the use of transition state theory or harmonic transition state theory, a long time 
scale simulation consists of identifying states of the system and finding the mechanism and 
rate of transitions from a current state to a new state. The key thing is to find the relevant 
mechanism and not just assume a mechanism. Often, preconceived notions of the transition 
mechanism have turned out to be incorrect. One example is the mechanism of adatom 
diffusion on AJ(100) where a two atom concerted displacement process turned out to have 
a lower barrier than the simple hop mechanism [63]. When harmonic transition state theory 
is used, the most challenging part of the calculation is the search for the low lying saddle 
points without knowledge of the possible final states. A typical simulation system includes a 
hundred atoms or many more, which means that saddle points need to be found in a space 
with at least several hundred degrees of freedom. The large number of degrees of freedom 
makes this a challenging problem. In Section 2.3. we will review various approaches that 
have been taken to address this issue.

2.2.2. The Kinetic Monte Carlo Approach
Kinetic Monte Carlo (KMC) [64—68] is the most economical atomistic method to extend 
the time scale of simulations far beyond the vibrational time scale. In combination with the 
widely used Monte Carlo implantation models, it has been shown to offer the possibility to 
directly investigate statistical variations for devices with a small number of dopant atoms 
in the active regions such as the one from Fig. 11 and has already been implemented into 
commercially available TCAD  platforms [50].

ln a kinetic Monte Carlo simulation, it is assumed that a list of "all” possible transitions for 
“each possible" initial state is available. Then, a random number can be used to choose one 
of the transition processes and evolve the system to a new state. The probability of choosing 
a certain transition is proportional to its rate, rr  On average, the amount of time that would

(63)

w ith
3.V O')

n;
(64)

and

F  — F -  F— ( V ) ( l>) (65)
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have elapsed in o rder  for this process to occur is usually (although not exclusively) assumed 
to be

A/ =  — ( 66)
2 > /

which is independent of the choscn transition. It may also be important to include the 
appropriate distribution of escape times. For random uncorrelated processes, this is a Poisson 
distribution. If (j is a random number from 0 to 1, the elapsed time for a particular transition 
is given by

A, =  ^  «>7)
x > ,

The system is then advanced to the final state of the chosen transition and the process is 
repeated.

The kinetic Monte Carlo m ethod is thus a purely event-driven technique, that is, it sim
ulates only infrequent events (e.g., diffusion hops) at random, with probabilities according 
to their respective event rates. In this way it self-adjusts the time step as the simulation 
proceeds, just to be able to account for the fastest event present at that time. The advantage 
is that no thermal motion of the atoms is simulated at all, which does not contribute to the 
structural evolution of the system.

The drawback is that in a traditional kinetic M onte Carlo simulation, all transitions that 
can ever occur in the system, along with their rates, must be known before the simulation 
starts. Ideally, the rates are estimated from some description of the atomic interactions [69] 
such as an empirical interaction potential or ab initio calculations, but the problem is to 
know in advance the mechanism of the relevant transitions for each possible configuration 
of the atoms. The requirement of knowing and tabulating the relevant transitions ahead 
of time limits the m ethod to simple systems, or  to more complicated systems without a 
complete event catalog (and thus a limited reliability of the simulation results). Systems 
that can undergo complicated transitions involving several atoms, such as the examples in 
Section 3.2.3, or where atoms do not sit at lattice sites are extremely difficult to model with 
traditional KMC. The selection of the event catalog and the corresponding parameters is 
similar to the task of defining a sufficient set of diffusion-reaction equations and determining 
their parameters (as discussed in Section 2.1.1). Like for the continuum technique, this is 
the most severe bottleneck of the kinetic M onte Carlo technique, since an incomplete or 
wrong event catalog is a severe hazard for the validity of the simulation results. Flowever, 
assisted by plentifully available experimental data and the recent increase in ab initio data 
that helped to better  understand the importance of the different reactions and hopping 
mechanisms as well as to define the corresponding kinetic parameters, kinetic Monte Carlo 
descriptions of the thermal evolution of a system upon annealing [70] have been found to 
be quite successful for process simulations in nanoscale CMOS structures.

Figure 13 illustrates the concept of the kinetic-Monte Carlo approach for applications in 
the realm of nanoscale CMOS devices [70]. The figure shows a high resolution TE M  view 
[71] of a silicon sample with a {311} extended defect embedded in the silicon atomic rows. A 
{311} defect is an extended cluster of self-interstitials added into the lattice in a way that all 
atoms have fourfold coordination, which gives these defects a low-formation energy [72]. In 
this situation, the kinetic Monte Carlo technique simulates only the atoms belonging to point 
or extended defects (represented as circles on the TE M  view) and ignores all “perfect'’ lattice 
atoms and their migration and reactions with each other. In this example, the infrequent 
events (on a time scale of maybe nanoseconds) consist of isolated point defects jumping to a 
neighboring position where then a reaction might happen. At even longer time intervals (e.g., 
every millisecond) a point defect would be em itted from the extended defect. To simulate 
this, the kinetic-Monte Carlo simulation starts with timesteps of 10~l) s to follow the isolated 
defect atoms. The fast-moving point defects disappear very quickly (being caught by the 
extended defects), leaving only the extended defects, which would allow to raise the timestep 
automatically to 10 3 s, thus allowing for a very fast simulation of the system evolution.
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Figure 13. TEM  view o f an extended {311} defect in silicon (711. C ircles represent the (defect) atoms sim ulated 
by the KMC' m ethod. As an exam ple, the figure illustrates the emission o f an interstitial ( / )  from the {311} defect 
and its eventual recom bination with one of the vacancies ( I )  present in the sample. A fter Fig. 3, Reprinted with 
perm ission from [73]. M. E. Law et al.. Mala: Res. Soc. Hull. 25. 45 (2000). c ; 2000. M aterials Research Society.

A key component in a KMC simulator is the event manager or “scheduler," which is 
the procedure responsible for selecting the random events according to their event rates. 
Figure 13 illustrates the selection procedure for a configuration consisting of three vacancies 
(K), 2 interstitials ( / )  and one {311} defect. If. for example, we assume that the vacancy and 
interstitial jum p rates are 1000 s~! and 100 s j. respectively, and the {311} emission rate 
is 10 s we would expect on average during each second 3 x 1000 =  3000 vacancy hops, 
2 x 100 interstitial hopes, and 10 {311} emission events, or a total o f 3210 events. In addition, 
we have to pick a V with a probability proportional to 3000/3210. an /  with a probability 
proportional to 200/3210, and the {311} with a probability proportional to 10/3210.

A KMC simulator consists of a 3D simulation box, of dimensions ranging from tens of 
nanometers to a few microns, where point defects can be created and allowed to jump and 
interact. Each defect or dopant atom is represented by a point, with coordinates (*, >\ 2 ) 
and an interaction radius ac (equivalent to the capture radius in continuum simulations, see 
Eq. (23) in Section 2.1.2) in a 3D simulation box. Besides the straightforward simulation of 
diffusion hops, reactions are simulated by either the transformation of existing point defects 
to a different species or by agglomerating jumping point defects to form a larger reaction 
product like the {311} shown in Fig. 13 [73]. Extended defects can be modeled replicating 
the actual geometry of the defect when known: vacancies can form spherical clusters (voids), 
interstitials can grow elongated stripes ({ 3 l l} ’s), or planar dislocation loops and stacking 
faults. Modeling the actual geometry improves the accuracy of the emission and capture 
rates, and can become essential in the proximity of the surface. A free surface is treated as 
a particular type of extended defect, and is included in the scheduler with I and V  emission 
rates derived from the surface area and the formation energy of the corresponding point 
defect. For extended defects, the interaction or capture region can be assumed to be the 
superposition of the capture spheres of the constituent particles [70]. Finally, each type of 
capture process can have an associated capture energy barrier. The calculation of realistic 
capture radii, which have been found to be considerably longer than traditionally assumed, 
is discussed in Section 3.1.2.

For the event rates, one usually uses ihe expression of harmonic transition state theory 
from Eq. (63). As an example, the interstitial jum p rate within harmonic transition state 
theory would be given by

where is the diffusivity prefactor, A is the hopping length, and is the interstitial 
migration energy.
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in addition to point defects, a full KMC' simulator needs to implement models for a variety 
of extended defect types like the above mentioned surfaces, clusters and complexes (e.g., for 
the formation of voids or interstitial clusters, see Section 3.4.1) and thus runs into similar 
problems as we had discussed for continuum models, which are to identify the important com 
plexes, their possible and probable reactions with other defects, and the necessary parameters 
to describe them. As an example for the difficulty to reliably determine such complex param
eters, Fig. 14(a) is a plot of the activation energy for the emission of an interstitial from 
interstitial clusters of  different sizes, as fitted to experimental measurements [74]. However, 
atomic-level ab-initio calculations (Fig. 14(b)) did not find the sharp minima for four and 
eight-atom clusters, but more a smooth dependence of the formation energy on the clus
ter size [75, 76]. This disagreement leaves a large uncertainty concerning the values of the 
clustering energies, since both approaches extract the parameters in phase spaces with large 
numbers of degrees of freedom. On the contrast, fitting a large set of experimental annealing 
data [77] to determine the formation energies of boron-interstitial complexes (B IC s)  BmI„ 
led to results that agreed very well with ah initio calculations ([12], see Section 3.2.2.2).

2.2.3. Accelerated Dynamics Methods
The just discussed uncertainties in event tables and kinetic rates and thus the often decreased 
credibility of kinetic Monte Carlo simulations are in many cases very unsatisfactory and make 
the use of methods desirable that can follow the long-time trajectory of a system more reli
ably. The motivation that led to the development of accelerated molecular dynamics methods 
becomes particularly clear when we try to understand the dynamical evolution of what we 
term complex infrequent event systems, where we simply cannot guess where the state-to-state 
evolution might lead. The underlying mechanisms may be too numerous, too complicated, 
and/or have an interplay whose consequences are unpredictable. While in very simple sys
tems we can raise the temperature to make diffusive transitions occur on an MD-accessiblc 
time scale, in more complex systems this strategy will cause the system to travel down a dif
ferent path in state space. Ultimately, this will lead to a completely different kind of system, 
making it impossible to address the questions that the simulation was attempting to answer.

Often, even systems that seem very simple can turn out to be in this complex class. For 
example, until 1990, we did not know, nor did we expect, that an adatom on the fcc(100) 
surface diffused in any way o ther than by a simple hop mechanism. Thus, in a Monte-Carlo 
simulator to model physical vapor deposition of Al interconnects, the hop mechanism would 
be the only diffusion mechanism in the event table of an isolated surface adatom. The 
exchange mechanism [63, 78, 79]. involving the adatom and a substrate atom (see Fig. 15) 
is now known to be the preferred mechanism for diffusion on fcc(100) surfaces for many 
metals (e.g., AL Pd, Pt, and Au), and the surface science community has since discovered a

>0)

n number of interstitials

C lus te r  s ize

Figure 14. (a) Emission energies o f interstitial clusters as a function of the size, as derived from  experim ental 
m easurem ents at three different tem peratu res. R eprin ted  with permission from [74]. N. E. B. Cowern et al.. Phvs. 
Rev. Leri. 82. 4460 ( I W ) .  €> I W .  APS. (h) D ependence o f the interstitial-cluster form ation energy (per interstitial) 
on the num ber o f interstitials, n. T he form ation energy o f an isolated interstitial. // =  1, is 3.35 eV. The compact 
cluster (diam onds) is only initially m ore stable than  the elongated (triangles) cluster. The trend equation displayed 
in the figure shows the growing stability o f the e longated  cluster for increasing num ber of interstitials. In particular, 
for ■‘infinite" interstitial defects, the form ation  energ ies for the chain defects is only 1.02 eV. R eprinted with 
perm ission from [75J. J. Kim el al.. Phys. Rev Leu. 84. 503 (2000). © 2000. A m erican Physical Society.
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Figure 15. A datom  exchange mechanism on an fcc(lOO) surface. This, as opposed to  a jum p, is the preferred 
adatom  diffusion m echanism  on a num ber of fee metals, dem onstrating the complexity of even simple atomistic 
systems. R eprin ted  with perm ission from [60], A. F. Voter et al., Anm t. Rev. Mater. Res. 32, 321 (2002). © 2002, 
Annual Reviews.

large variety of multiple-atom concerted diffusion mechanisms [80-87]. Many, if not most, 
materials problems fall into this complex infrequent-event system category.

In the past few years, several so-called accelerated-dynamics methods have been developed 
that have helped significantly to decrease the time scale problem. For systems in which 
the long-time dynamical evolution is characterized by a sequence of activated events like 
diffusive events or reactions), these methods can extend the accessible time scale by orders 
of magnitude relative to direct MD, while retaining full atomistic detail.

The class of these “accelerated dynamics methods” includes a variety of approaches, such 
as parallel replica dynamics, hyperdynamics, and tem perature accelerated dynamics 60], 
which we will discuss in the following. The conceptual link between these methods is that 
the system trajectory, caught in its current state, is stimulated to find an appropriate path 
for escape more quickly than it would with direct MD. As in MD, no a priori information 
about what this escape path might look like is imposed on the procedure; the trajectory 
simply finds its own way out of the state. As our focus is on methods that can extend the 
MD simulation lime in an accurate way for nanoelectronics processing problems, we make 
no attempt to discuss the large body of related work involving enhanced sampling met.iods 
and approximate dynamical approaches (e.g., for rnacromolccule systems). Excellent reviews 
on accelerated-dynamics methods can be found in [88] and [60].

Parallel rep lica  d y n a m ic s .  The parallel replica method [89] is the simplest and most accu
rate of the accelerated dynamics techniques, with the only assumption being that o f  infre
quent events obeying first-order kinetics (exponential decay); that is, for any time greater 
than r corr after entering a state, the probability distribution function for the time of the next 
escape is given by

p( t )  =  k c x p ( - k t )  (69)

where k  is the rate constant for escape. Starting with an N - atom system in a particular state 
(basin), the entire system is replicated on each of M  available parallel or distributed pro
cessors. After a short dephasing stage (Afdcph), during which the velocities of the atoms are 
periodically randomized to eliminate correlations between replicas, each processor carries 
out an independent constant-temperature M D trajectory for the entire 7V-atom system, chus 
exploring the phase space within the particular basin M  times faster than a single trajectory 
would. Whenever a transition is detected on any processor, all processors are alertei to 
stop. The simulation clock is advanced by the accumulated trajectory time summed over all 
replicas, that is, the total time spent exploring phase space within the basin until an escape 
pathway is found. It is readily shown [89] that this procedure gives an escape time that is cor
rectly drawn from the distribution in Eq. (69), even if the processor speeds are inequiva.ent, 
allowing the use of heterogeneous clusters or widely distributed machines running panilel 
replica dynamics as low-level background processes [90].

The parallel replica m ethod also correctly accounts for correlated dynamical events (that 
is, there is no requirement that the system obeys transition state theory), unlike the othei two 
methods presented here. This is accomplished by allowing the trajectory that made the transi
tion to continue on its processor for a further amount of time A/corr, during which re crossings 
or follow-on events may occur. The simulation clock is then advanced bv A/corr, the final <tate
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is replicated on all processors, and the whole process is restarted. This overall procedure 
then gives exact state-to-state dynamical evolution because the escape times obey the correct 
probability distribution; nothing about the procedure corrupts the relative probabilities of 
the possible escape paths, and the correlated dynamical events are properly accounted for.

The efficiency of the method is limited by both the dephasing stage, which does not 
advance the system clock, and the correlated event stage, during which only one processor 
accumulates time. Thus, the overall efficiency will be high when

An example for the use of the parallel replica method for the study of self-interstitial 
clustering in silicon is discussed in Section 3.4.2.

Hyper-M D . Historically, the first approach to accelerate MD simulations was to decrease 
the probability that the system is found in an initial state by adding a repulsive potential 
energy, a bias potential, to the actual interaction potential in such a way as to increase the 
probability of finding the system at a transition state [91]. The derivation of the method 
requires that the system obeys transition state theory; that is, it assumes there are no corre
lated events. The bias potential must be zero at all the dividing surfaces, and the system must 
still obey transition state theory for dynamics on the biased potential. A trajectory on this 
modified potential, while relatively meaningless on vibrational time scales, evolves correctly 
from state to state at an accelerated pace. Moreover, the accelerated time is easily estimated 
as the simulation proceeds. For a regular M D trajectory, the time advances at each integra
tion step by A/md, the MD time step (e.g., ~1 fs). In hyperdynamics, the time advance at 
each step is A/MD multiplied by an instantaneous boost factor, the inverse Boltzmann factor 
for the bias potential at that point, so that the total time after n  integration steps is

T he  ideal bias potential should give a large boost factor, should have low computational 
overhead (although more overhead is acceptable if the boost factor is very high), and should 
to a good approximation meet the requirements given above. This is challenging because 
we want, as much as possible, to avoid utilizing any prior knowledge of the dividing sur
faces or the available escape paths. The bias potentials in the first hyperdynamics paper [92] 
were based on the lowest eigenvalue (6,) o f  the Hessian matrix, { f i V / B x  f i x  i ) l,. The bias 
potential was made positive for regions where 6, > 0, and zero elsewhere, exploiting the fact 
that €, is positive near the bottom of a basin and negative at saddle points. For a periodic 
two-dimensional example system, this gave substantial boosts (in the thousands when k BT  
was 1 /20  of the barrier height) and excellent accuracy, even when some recrossings were 
present. Since this bias potential required a diagonalization of the full 3/V-dimensional Hes
sian at every time step, it became prohibitively expensive when the number of atoms was 
increased beyond a few tens of atoms [60]. An improved bias potential with a better saddle
point detection algorithm applicable to lowcr-temperature simulations was later developed 
[93], which produced a boost factor of 8310 (with a computational overhead of ^  30) in a 
221.2 (is simulation of room-temperature diffusion of a ten-atom cluster of silver on Ag( 111), 
a system with 70 moving atoms.

The bias-potential idea can be easiest demonstrated with the very intuitive simple flat 
boost potentials (Fig. 16), as suggested in Refs. [94, 95]. They require much less effort for the 
potential construction but run quickly out of steam for systems with more than a few degrees 
of freedom (=  3 x  number of moving atoms). As an example, the boost factor is already 
below two for a system with only 20 degrees of freedom [88]. This is because for systems with 
a larger number of degrees of freedom, the probability of finding the potential energy of the 
system below a saddle point energy becomes vanishingly small, since each additional degree 
of freedom brings in \ k BT  of kinetic energy distorting the potential energy. Despite the large 
total kinetic energy of larger systems, it is still o f course a rare event to find enough energy 
focused in the right degree of freedom to bring the system through the saddle point region.

(70)

(71)
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Figure 16. A simple bias potential has been constructed to  accelerate the dynamics of a system. The true potential 
is replaced by a constant equal to  the ‘boost energy" w henever the true po tential drops below the boost energy. 
T he boost energy has to be set less than the saddle point energy so as not to  a lter the transition state. A stylized 
trajectory is shown for illustration. With the bias potential, the potential energy of the system never drops below 
the boost energy. R eprinted with permission from [SKj. G. Henkelm an and II. Jonsson . J. Chem. Phys. 115. 9657 
(2001). <D 2001. A m erican Institute o f Physics.

T em p era tu re  a c c e le r a te d  d y n a m ic s  (TAD). Another, perhaps simpler approach for 
identifying transitions is to increase the rate of rare events hy simply heating the system. If 
the atoms have more energy, they will more likely undergo transitions. O ne should, however, 
not expect the favored transition mechanism to be the same at the higher temperature. This 
situation is illustrated in Fig. 17. The temperature dependence of the rate of two possible 
processes the system can undergo from a given initial state is shown. One of the processes 
has a low activation energy and small prefactor while the o ther has a high activation energy 
and large prefactor. At low temperature, the low barrier process will have a higher rate 
and dominate the dynamics. At high temperature, entropy becomes more important and the 
process with higher prefactor dominates even though the energy barrier is higher.

An even more serious problem arises when the thermodynamic state of the system changes 
as it is heated up high enough to make transitions observable in a short, classical dynamics 
simulation. An example of this is diffusion of admolecules on an ice surface. If an ice slab is 
heated up to a temperature at which the diffusion events occur frequently enough, the sur
face melts and the diffusion mechanism becomes quite different from the low temperature, 
long time scale diffusion mechanism.

High temperature dynamics can, however, in many non-pathological cases be used to 
search for the relevant mechanism if many searches are carried out. In the method proposed 
in Ref. [96], the system is evolved at a high temperature 7]lieh in each basin (while the 
temperature of interest is some lower temperature 7jmv). Whenever a transition out of the 
basin is detected, the saddle point for the transition is found, e.g., using the nudged elastic 
band method (see Section 2.3.2). The trajectory is then reflected back into the basin and 
continued. This basin-constrained molecular dynamics procedure generates a list of escape 
paths and attempted escape times for the high-temperature system. Assuming that transition 
state theory holds and that the system obeys first-order kinetics, the probability distribution 
for the first-escape time for each mechanism is again an exponential, Eq. (69). Because 
harmonic transition state theory gives an Arrhenius dependence of the rate on temperature 
(Eq. [63]), depending only on the static barrier height, we can then extrapolate each escape 
time observed at TUiilU to obtain a corresponding escape time at 7jim that is drawn correctly 
from the exponential distribution at 7Um. This extrapolation, which requires knowledge of 
the saddle point energy, but not the pre-exponential factor, can be illustrated graphically 
in an Arrhenius-style plot ( ln( 1 / / )  versus 1/7’), as shown in Fig. 17. The event with the 
shortest time at low tem perature is the correct transition for escape from this basin. Because 
the extrapolation can in general cause a reordering of the escape times, a new shorter-time 
event may be discovered as the basin-constrained M D is continued at 7^ij!h. If we make the 
additional approximation that there is a minimum preexponential factor. /;nijn, which bounds 
from below all the pre-exponential factors in the system, we can define a time at which
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Figure 17. Schem atic illustration o f the tem perature-accelerated  dynamics m ethod. Progress o f the h igh-tem perature 
trajectory can he thought of as moving down the vertical lim e line at l /7 |ll}!h. For each transition detected during the 
run, the trajectory is reflected hack into the basin, the saddle point is found, and the time o f the transition (solid dot 
on left time line) is transform ed (arrow ) into a lim e on the low -tem pera lure lime line. Plotted in this A rrhenius-like 
form , this transform ation  is a simple extrapolation along a line whose slope is the negative o f the barrie r height for 
the event. The dashed term ination line connects the shortesl-tim c transition recorded so far on the low tem peratu re  
tim e line (solid do t) with the eon fide nee-modi tied m inim um  pre-exponential (i^ ljn =  r llmi/ In (  US)) on the y-axis. T he 
intersection o f this line with the h igh-/' time line gives the time (/stlip. open circle) at which the trajectory can be 
term inated . W ith confidence I -  8, we can say that any transition observed after /stop could only extrapolate to a 
sh o rle r time on the low-7' lime line if it had a pre-exponential lower than r mm. R eprinted with permission from 
[60|. A. F. Voter el al.. Anna. Rev. Mater.: Res. 32. 3 2 1 (2002). © 2002. A nnual Reviews.

the basin-constrained M D trajectory can be stopped, knowing that the probability that any 
transition observed after that time would replace the first transition at 7km is less than 8. 
This stop time is given by

,72 ,

n I/S)

where t^™T{ is the shortest transition time at 7jow. Once this stop time is reached, the system 
clock is advanced by , the transition corresponding to / j ^ 11 is accepted, and the TAD 
procedure is started again in the new basin. The average boost in TAD can be dramatic 
when 7]llllh/7]l)W is large. Any anharmonicity error at r hillh transfers to 7|mv; a rate that is twice 
the Vineyard harmonic rate owing to anharmonicity at 7hitth will cause the transition times at 
7hkh for that pathway to be 50 %  shorter, which in turn extrapolate to transition times that 
are 50% shorter at 7jow. If the Vineyard approximation is perfect at 7̂ ovv, these events will 
occur at twice the rate they should. This anharmonicity error can be controlled by choosing 
a 7̂ liuh that is not too high. An excellent in-depth discussion of TAD can be found in [60].

2.2.4. Kinetic Monte Carlo Simulations without Lattice 
Approximation and Predefined Event Table

Although both the kinetic-Monte Carlo approach and accelcrated-dynamics methods 
show great promise for the area of nanoscale process simulation, both have— mostly 
complimentary— advantages and disadvantages. As we said, the necessity of a predefined 
event table for the computationally very efficient Monte Carlo approach creates the danger
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of an unphysical system evolution. The accelerated-dynamics methods, on the other hand, 
guarantee a physically correct trajectory and thus system evolution, but on the other hand 
are computationally less efficient and still have a hard time to reach the process relevant 
times fis  (except for special systems with extremely high barriers). A very interesting 
approach to combine the two approaches to benefit from their advantages while minimizing 
their disadvantages has been proposed by Henkelman and Jonsson [97].

In their method, classical dynamics are not used in any form but instead the system is 
pushed up the potential energy surface using the so-called dimer method (see Section 2.3.3) 
to find saddle points. The rate of transitions through the vicinity of each saddle point is 
then estimated within harmonic transition state theory, creating an on-the-fly (more or less 
complete) event catalog, and a kinetic Monte Carlo method is used to simulate the evolution 
of the system over long time scales [98]. This method is easy to implement and, compared 
to existing methods, may require less computational time for small systems. While the use 
of harmonic transition state theory means that it can only be applied to solids, this method 
is still applicable to glasses and o ther am orphous solids, where traditional (lattice) Monte 
Carlo methods have difficulties.

H enkclman’s and Jonsson's method is illustrated for a two-dimensional model potential in 
Fig. 18. The system is started at a potential minimum, A. When a new state is visited, a swarm 
of dimer searches (around 10-50 or so) is sent out from the vicinity of the potential energy 
minimum. In this example, ten random displacements from the position of the minimum 
were chosen as starting points of dimer searches. Figure 18(a) shows the path of the ten 
dimer searches. In this calculation, four distinct saddle points (*) were found. The system 
is then quenched on either side of each saddle point in order to verify that it lies on a

Figure 18. Application of the long tim e scale sim ulation m ethod  lo a model two-dimensional potential surJice. The 
system is initially in sta te  A. (a) Ten d im er searches are s ta rted  from random  positions around the niinim un. They 
converge on to u r distinct saddle po in ts (two of the searches practically overlap), (b) The system is then m ade to 
slide down the minimum energy pa th  on e ither side o f the saddle points which are indicated with *. Here all four 
saddle points have a minimum energy path starling at the initial state m inim um  A , but this does not hive to  be 
the ease. The ra te  of each process is then calculated using harm onic transition stale theory. A process i> chosen 
at random  using the kinetic M onte C arlo algorithm . In this case, process ! gets chosen. The system is noved  to 
the final stale o f this process, to m inim um  B. (c) D im er searches are run from the new minimum, a p in  four 
distinct saddle points are found, (d) M inimum energy paths are traced out. and the process repeated. Reprinted 
with perm ission from [97], G. H enkelm an. Ph.D. thesis. University of W ashington. 2001. €> 2001.
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minimum energy path (shown in gray) from the given initial state minimum. All the saddle 
points found in this case did connect back to the initial minimum. If not, the saddle point is 
discarded from the list o f  possible transitions. In the same way as described in Section 2.2.2, 
a transition is chosen from the list, the system is advanced lo the final state of that transition, 
and the time interval associated with the transition is added to the accumulated time. In 
this example, transition 1, which corresponds to the lowest barrier was chosen, and the 
system was advanced to state B. From the new minimum the process is repeated. New dimer 
searches are sent out (Fig. 18[c]), the saddle points verified (Fig. 18[d]) and then one is 
chosen for the next transition.

Because the novelty of this method, no applications within the field of nanoelectronic 
process modeling exist yet, with the exception maybe of the simulation of the evolution of 
radiation damage in silicon carbide [99].

2.3. Kinetic Parameters from Atomistic Simulations
After having discussed the different techniques for the evolution of a nanoelectronic system 
with time, the most important thing missing is the calculation of the transition rates for 
chemical reactions and diffusion. These calculations are usually performed within the limits 
of transition-state theory, as described in Section 2.2.1. Since atoms in crystals are usually 
tightly packed and the relevant tem peratures are low compared with the melting tem pera
ture, the harmonic approximation to transition state theory can typically be used in studies 
of diffusion and reactions in crystals [59], and the problem reduces to determining the acti
vation energy (Eq. [65]) and prefactor (Eq. [64]) of an Arrhenius-type expression (Eq. [63]). 
An excellent review of the techniques to determine these quantities can be found in [97], 
whose approach we are following in this section.

The most challenging part in this calculation is the search for the relevant saddle points. 
After a saddle point has been found, one can follow the gradient of the energy downhill, both 
forward and backward, and map out the Minimum Energy Path (M EP), thereby establishing 
what initial and final state the saddle point corresponds to. The identification of saddle 
points ends up being one of the most challenging tasks in theoretical studies of transitions 
in process modeling.

The minimum energy path is frequently used to define a “ reaction coordinate” [100] for 
transitions. The minimum energy path may have one or more minima in between the end
points corresponding to stable intermediate configurations. The minimum energy path will 
then have two or more maxima, each one corresponding to a saddle point. Assuming a 
Boltzmann population is reached for the intermediate (meta)stable configurations, the overall 
rate is determined by the highest energy saddle point. It is, therefore, not sufficient to find a 
saddle point, but ra ther one needs to find the highest saddle point along the minimum energy 
path, in order to get an accurate estimate of the rate from harmonic transition state theory.

Many different methods have been presented for finding minimum energy paths and sad
dle points [101, 102]. Since a first o rder saddle point is a maximum in one direction and a 
minimum in all o ther directions, methods for finding saddle points invariably involve some 
kind of maximization of one degree of freedom and minimization in o ther degrees of free
dom. The critical issue is to find a good and inexpensive estimate of which degree of freedom 
should be maximized. Below, we give an overview of several commonly used methods in 
studies of transitions in solids.

2.3A. The Drag Method
The simplest and perhaps the most intuitive method of all is what we will refer to as the 
drag method. It actually has many names because it keeps being reinvented. One degree of 
freedom, the drag coordinate, is chosen and is held fixed while all o ther (D  — 1) degrees of 
freedom are relaxed; that is, the energy of the system is minimized in a (D  — 1) dimensional 
hyperplane. In small, stepwise increments, the drag coordinate is increased and the system 
is dragged from reactants to products. The maximum energy obtained on the way is taken 
to be the saddle point energy. Sometimes, a guess for a good reaction coordinate is used 
as the choice for the drag coordinate. This could be, for example, the distance between two 
atoms that initially form a bond which ends up being broken. In the absence of such an
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intuitive choice, the drag coordinate can be simply chosen to be the straight line interpolation 
between the initial and final state. This is a less biased way and all coordinates of the system 
then contribute in principle to the drag coordinate.

This second approach is illustrated in Fig. 19. For its implementation, Henkelman et al. 
[97] have suggested to invert the force acting on the system along the drag coordinate and to 
use the velocity Verlet algorithm [103] with a projected velocity to simulate the dynamics of 
the system. The velocity projection is carried out at each time step and ensures that only the 
component of the velocity parallel to the force is included in the dynamics. When the force 
and projected velocity point in the opposite direction (indicating that the system has gone 
o \er  the energy ridge), the velocity is zeroed. Such a projected velocity Verlet algorithm is 
also an efficient and simple minimization algorithm for many of the methods discussed here.

The problem with the drag method is that both the intuitive, assumed reaction coordinate 
and the unbiased straight line interpolation can turn out to be bad reaction coordinates. They 
may be effective in distinguishing between reactants and products, but a reaction coordinate 
must do more than that. A good reaction coordinate should give the direction of the unstable 
normal mode at the saddle point. Only then does a minimization in all o ther degrees of 
freedom bring the system to the saddle point.

Figure 19 shows a simple case where the drag method fails. As ihe drag coordinate is 
incremented, starting from the initial state, R , the system climbs up close to the slowest

2

1

0

-1

-2

0  1 2  3  4

Figure 19. The drag m ethod. A drag coordinate is defined hv interpolating  from  R  to I3 with a straight line (dashed 
lin;). S tarting from R. the drag coordinate is increased stepwise and held fixed while relaxing all other degrees 
of freedom  in the system. In a two-dimensional system, that m eans relaxation along a line perpendicular to the 
R-R  vector. T he solid lines show the first and last relaxation line in the d rag  calculation. The final location of 
the system after relaxation is shown with filled circles. As the drag coord ina te  is increased, the system climbs up 
tlu potential surface close to the slowest ascent path, reaching a potential larger than the saddle point, and then, 
eventually, slipping over to the product well. In this simple test case, the d rag  m ethod cannot locate the saddle 
p e n t. R eprinted with perm ission from [y7]. (j. H enkelm an. Ph.D. thesis. University o f W ashington. 2001. © 2001.
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ascent path. After climbing high above the saddle point energy, the energy contours even
tually stop confining the system in this energy valley and the system abruptly snaps into an 
adjacent valley (the product valley in the case of Fig. 19). The system is never confined to the 
vicinity of  the saddle point because the direction of the drag coordinate is at a large angle 
to the direction of the unstable normal mode at the saddle point. While there certainly are 
cases where the drag method works, there are also many examples where it does not work.

As an example, the originally suggested interstitial-assisted diffusion mechanism for boron 
in silicon had been identified by the drag method with an intuitively chosen reaction coor
dinate [104, 105]. This lead to the prediction of an initial kick-out event with subsequent 
long-range diffusion of the boron atom as an interstitial. Using the nudged-elastic band 
method (Section 2.3.2) instead, Windl et al. [106] could show that the long-range interstitial 
diffusion is highly improbable and that instead an immediate kick-in event should be the 
most probable event after the boron has been kicked out (see Section 3.2.1).

2.3.2. The Nudged Elastic Band Method
In the Nudged Elastic Band (NEB) method [102, 107, 108] a string of replicas (or “ images") 
of the system are created and connected with springs in such a way as to form a discrete 
representation of a path from the reactant configuration, /?, to the product configuration, P.  
Initially, the images may be generated along the straight line interpolation between R and P.  
An optimization algorithm is then applied to relax the images down towards the minimum 
energy path. The NEB method is unique among the methods discussed here in the sense 
that it does not just give an estimate of the saddle point, but also a more global view of 
the energy landscape, for example, by showing whether more than one saddle point is found 
along the minimum energy path.

The string of images can be denoted by [R{), R , , R: , . . . ,  R v ], where the endpoints are 
fixed and given by the initial and final states, R{1 =  R and R v =  P. Again, these are vectors 
of length 3/i for a system with n atoms, containing the three spatial coordinates of all atoms. 
The ( N  — 1) intermediate images are adjusted by the optimization algorithm. The most 
straightforward approach would be to construct an object function

■s(R,.........R V) =  £  £ ( R ,) +  E * ( R ;  (73)
/=■] f=l ~

and minimize with respect to the intermediate images, R,, . . . , R V. This mimics an elastic 
band made up of ( N  — 1) beads and N  springs with spring constant k.  The band is strung 
between the two fixed endpoints. The problem with this formulation is that the elastic band 
tends to cut corners and gets pulled off the minimum energy path by the spring forces in 
regions where the minimum energy path is curved. Also, the images tend to slide down 
towards the endpoints, giving lowest resolution in the region of the saddle point, where it is 
most needed [102].

Both the corner-cutting and the sliding-down problems can be solved easily with a force 
projection. This is what is referred to as knudging\ The reason for corner-cutting is the 
component of the spring force perpendicular to the path, while the reason for the down- 
sliding is the parallel component of the true force coming from the interaction between 
atoms in the system. Given an estimate of the unit tangent to the path at each image 
(which will be discussed later), f t h e  force on each image should only contain the parallel 
component of the spring force, and perpendicular component of the true force,

F/ =  — V £ (R;) | L +  F- ■ r j i i  (74)

where VE (R,) is the gradient o f the energy with respect to the atomic coordinates in the 
system at image /, and F- is the spring force acting on image i. The perpendicular component 
of the gradient is obtained by subtracting out the parallel component

V£(R,-)L -  V £ (R ; ) -  V £(R ,) • „ (75)

In order to ensure equal spacing of the images (when the same spring constant, A\ is used 
for all the springs), even in regions of high curvature where the angle between R, — R, _| and
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R,+l -  R, deviates significantly from 180°, the spring force should be evaluated as

F,'| =  A'(|R/+1 — R,| — |R, — R,-_, | (76)

We now discuss the estimate of the tangent to the path. In the original formulation of
the NEB method, the tangent at an image i was estimated from the two adjacent images
along the path, R/+, and R,_|. The simplest estimate is to use the normalized line segment
between the two,

,£■ ^7+i I /nn\
7 ' |R„,  - R , . , |  <7?)

but a slightly better way is to bisect the two unit vectors,

;  K R . "  (78)
|R, -  R,--il | R „ , - R „

and then normalize r  =  f /  f  |. This latter way of defining the tangent ensures the images 
are equispaced even in regions of large curvature. A possible kinkiness in the path can be 
eliminated by defining the tangent of the path at an image i by the vector between the image 
and the neighboring image with higher energy [109].

To start the NEB calculation, an initial guess is required. Usually a simple linear interpo
lation between the initial and final point is adequate. When multiple minimum energy paths 
are present, the optimization leads to convergence to the minimum energy path closest to 
the initial guess. In order to find the optimal minimum energy path in such a situation, 
some sampling of the various minimum energy paths needs to be carried out. for example a 
simulated annealing procedure, or an algorithm which drives the system from one minimum 
energy path to another, analogous to the search for a global minimum on a potential energy 
surface with many local minima [110].

In order to obtain an estimate of the saddle point and to sketch the minimum energy path, 
it is important to interpolate between the images of the converged elastic band. In addition 
to the energy of the images, the force along the band provides important information and 
should be incorporated into the interpolation. By including the force, the presence o f  inter
mediate local minima can often be extracted from bands with as few as three images. The 
interpolation can be done with a cubic polynomial fit to each segment [R?,R /+1] in which 
the four parameters of the cubic function can be chosen to enforce continuity in energy and 
force at both ends [88].

The NEB method has been applied successfully to a wide range of atomic-scale process 
simulation problems, usually implemented in a plane-wave density functional theory code 
such as VASP f i l l ] ,  for example bulk diffusion of impurity atoms in silicon such as boron 
[106] (see Section 3.2.1), nitrogen [112] (see Section 3.1.1), carbon [113], or phosphorous 
[114], and diffusion processes at and near semiconductor surfaces [115].

2.3.3. Henkelman Dimer Method
When the final state of a transition is not known, the search for the saddle point is more 
challenging. A climb up from the initial state to the saddle point is more difficult than 
might at first appear. It is not sufficient to just follow the direction of slowest ascent. The 
two-dimensional test problem illustrated in Fig. 19 is an example of that. However, adding 
information from second derivatives (also known as force constants, which determine the 
vibrational normal modes of the system) can significantly help to guide the climb toward 
saddle points. These so-called mode-following methods have become widely used in studies 
of small molecules and clusters. Their disadvantage is that they require the second derivatives 
of the energy with respect to all the atomic coordinates, i.e., the full Hessian matrix, and 
that the matrix needs to be diagonalized to find the normal modes, an operation that scales 
as /V \  The evaluation of second derivatives is often very costly, for example in plane wave 
based density-functional theory calculations. Even when simple empirical potentials are used, 
a practical limit can be reached for as little as a couple of hundred atoms [116].
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The recently introduced “Dimer M ethod” by Henkelman and Jonsson [117] has the essen
tial qualities of the mode following methods, but only requires first derivatives of the energy 
and no diagonalization. It can therefore be applied to plane wave DFT calculations and to 
large systems with several hundred atoms, as shown in Ref. [118]. The method involves two 
replicas of the system, a ‘dimer’, as illustrated in Fig. 20. The dimer is used to transform the 
force in such a way that optimization leads to convergence to a saddle point rather than a 
minimum. The dimer consists of two images (replicas) separated from their common mid
point R, which denotes initially a (local) energy minimum of the system, by a distance A/?. 
The vector N which defines the dimer orientation is a unit vector pointing from one image 
at R2 to the other image at R,. When a transition state search is launched from an initial 
configuration, with no prior knowledge of what N might be, a random unit vector is assigned 
to N and the corresponding dimer images are formed,

Rj =  R +  A/?N and R2 =  R -  A R N  (79)

Initially, and whenever the dimer is moved to a new location, the forces acting on the 
dimer and the energy of the dimer are evaluated. These quantities are calculated from the 
energy and the force (£',, F ,,  £ \ ,  and F : ) acting on the two images. The energy of the dimer 
E  = E , -f E 2 is the sum of the energy of the images. The energy and the force acting on 
the midpoint of the dimer are labeled as E () and FR and are calculated by interpolating 
between the images. The force F /? is simply the average force (F, + F : )/2. The energy of 
the midpoint is estimated by using both the force and the energy of the two images. E() can 
be related to the forces and energies of the two replicas using the finite difference formula 
for the curvature C of the potential along the dimer,

=  (F2 - F , ) . N  
2 \ R

Figure  20. T he calculation o f the effective force in the D im er m ethod. A pa ir o f images, spaced apart by a small 
distance, on the o rder of 0.1 A, is ro ta ted  to m inimize the energy. This gives the d irection of the lowest frequency 
norm al m ode. The com ponent o f the force in the direction o f the d im er is then inverted and the m inim ization of 
this effective force leads to  convergence to a saddle point. No reference is m ade to the final state. R eprinted with 
perm ission from [88]. G. H enkelm an and H. Jonsson, J. Client. Phys. 115, % 57 (2001). © 2001. A m erican Institute 
o f Physics.
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and the Taylor expansion of E,

E — 2£„ +  C ( \ R )2 (81)

All the properties of the dimer are derived from the forces and energy of the two images.
There is no need to evaluate energy and force at the midpoint between the two images.
This is important for minimizing the total num ber of force evaluations required to find
saddle points.

There arc two parts to each dimer move. The first part is dimer rotation to minimize E. 
Since for that E{] and AR  are constant, Eq. (81) shows that the dimer energy, £ ,  is minimal 
along the minimum of the curvature C. If the dimer is free to rotate, the forces acting on 
the two images will pull the dimer to the lowest curvature mode. This is done by defining a 
rotational force which is the difference in the force on the two images. Minimizing the energy 
of the dimer with respect to this rotational force aligns the dimer with the lowest curvature 
mode (this feature was used by Voter in his construction of bias potentials in hyperdynamics 
[119]). A modified Newton's method can be used to make this rotation efficient [88]. An

Figure 21. A pplication o f the d im er m ethod lo a two-dim ensional lest problem . T hree different starting points are 
generated  in the reaetant region by taking extrem a along a high tem pera tu re  dynamical trajectory. From each one 
of these, the dim er is first transla ted  only in the d irection of the lowest m ode, but once the dimer ou t o f the 
convex region a full optim ization of the effective force is carried  out at each step (thus the kink in two ( f the paths), 
r.ach one of the three starting points leads to a different saddle poinl in (his case. R eprinted with permission from 
|KS], (i. Henkelm an and I I. Jo n sso n ../. C han. Phys. 115. 965"/ (2001). 200!. Am erican Institute of Physics.
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important aspect of the dimer method is that it only requires the first derivative of the 
energy, not the second derivatives.

The second part of the algorithm is translation of the dimer. A first order saddle point 
on a potential surface is at a maximum along the lowest curvature direction and a minimum 
in all o ther directions. In o rder to converge to a saddle point, the dimer is moved up the 
potential along the lowest curvature mode, and down the potential in all o ther directions. 
This is done by defining an effective force on the dimer, in which the true force due to the 
potential acting at the center of the dimer has the component along the dimer inverted. 
Minimizing with respect to this effective force moves the dimer to a saddle point. Usually, 
minimization using the conjugate gradient method works well.

Figure 21 shows a dimer calculation for the two-dimensional test problem. The initial con
figurations for the dimer searches were taken from the extrema of a short high temperature 
molecular dynamics trajectory (shown as a dashed line). The three initial points are different 
enough that the dimer searches converge to separate saddle points. In general the strategy 
for the dimer method is to try many different initial configurations around a minimum, in 
order to find the saddle points that lead out of that minimum basin.

3. APPLICATION EXAMPLES
In the following, we want to illustrate the different methods for nanoscale process modeling 
that were discussed in Section 2 with applications to front-end processing problems within 
the field of silicon nanoelectronie devices. The discussed examples include

• the calculation of kinetic parameters from atomistic simulations (Section 3.1), espe
cially the
-  diffusion of nitrogen (Section 3.1.1), which illustrates the use of the nudged-elastic 

band method (Section 2.3.2), the linking of atomistic hopping to macroscopic diffu
sion constants (Section 2.1.3) and especially the calculation of diffusion prefactors 
(Eq. [64]);

-  calculation of capture radii (Section 3,1.2), where we describe in detail the basics of 
a kinetic Monte Carlo program, which is used (Section 2.2.2) to extract the cap
ture radii needed for reaction rate constants (Section 2.1.2) from ah initio ene r
getics and hopping parameters determined using the nudged-elastic band method 
(Section 2.3.2):

• the multiscale modeling of diffusion and deactivation of boron in silicon (Section 3.2), 
linking atomistic ah initio calculations for diffusion and reaction coefficients to contin
uum modeling; in detail,
-  in Section 3.2.1, the nudged-elastic band constant (Section 2.3.2) is used to determine 

the diffusivity of boron;
-  in Section 3.2.2, the binding energies for the reaction rate constants (Section 2.1.2) 

are calculated from first principles;
-  in Section 3.2.3, the resulting reaction kinetics are examined with the dimer method 

(Section 2.3.3), and
-  in Section 3.2.4, all calculated parameters are implemented into a diffusion reaction 

equation system (Section 2.1.1).
• the multiscale modeling of stress-mediated diffusion (Section 3.3), especially important 

for strained-channel devices;
• atomistic modeling of the formation of extended defects in ion-implanted silicon 

(Section 3.4); specifically, a
-  kinetic Monte Carlo study of the formation of vacancy clusters (or voids) 

(Section 3.4.1) and
-  accelerated dynamics simulations of interstitial-cluster growth (Section 3.4.2).

3.1. Kinetic Parameters from Atomistic Simulations
The advent of efficient and reliable ah initio codes in conjunction with the transition-theory 
based methods described in Section 2.3 have made it possible to include the nanoscale 
physics into the previously existing continuum and kinetic-Monte Carlo methods and to
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produce predictive, physical nanoscale simulation tools. In the following, we want to demon
strate this with the help of a few examples from recent work.

3.1.1. Ab Initio Identification of the Nitrogen Diffusion 
Mechanism in Silicon

Nitrogen doping of silicon has become a process of increasing importance because of its 
various effects on the formation of extended defects in silicon like the complete suppression 
of void formation in float-zone processed crystals [120]. Additionally, nitrogen is known to 
increase the mechanical strength of silicon by locking dislocations [121 ] and, when implanted 
with a sufficient dose, to reduce the oxidation rate [122]. In partial explanation of the above 
effects, it has been shown that the N 2 pair readily forms complexes with vacancies, both in 
a metastable and immobile N: K configuration, and in the very stable N2K: configuration 
which can either form from the reaction N 2V +  V  —► N 2V2 or N : 4 -  V2 —> N2K2 [123, 124]. 
The N2K2 complex has further been shown to attract oxygen into a stable configuration, 
indicating the possibility of further oxygen precipitate nucleation based on the N2 p ar .

As early as the investigations of Stein [125] in 1985 it was concluded from isotope shifts 
that the nitrogen dimer configuration is prevalent at room temperature. Jones et al. [126] 
confirmed this conclusion using a combination of spectroscopic and ab initio investigations. 
Except for the work of Gali et al. [127], who calculated a binding energy of 1.73 eV, all 
theoretical investigations agree on a ra ther high binding energy between 3.67 and 4.3 eV 
[124, 128, 129]. In contrast, the primary mechanism of diffusion of nitrogen in general and 
of the nitrogen pair in particular, have been controversially discussed in the literature.

In a variety of experimental investigations based on the out-diffusion of nitrogen from 
doped substrates [130] or on the in-diffusion of nitrogen from the ambient [131-134] the 
profiles obtained were interpreted in terms of diffusion of N2 as an entity. The diffusion 
data obtained are shown in Fig. 22 and can be described best by a diffusion constan: of

with the 90% confidence interval for the activation energy ranging from 2.01 to 2.77 eV. 
Profiles after ion implantation [135, 136] are considerably more complex and the possibility

the analysis of Adam et al. [138], nitrogen dimers were not taken into consideration nor 
apparently needed to obtain an excellent description of the experimental profiles. A later 
analysis of Voronkov and Falster [139] was again based on nitrogen dimers as the prevalent 
defect, but it was concluded that they would diffuse via dissociation and diffusion of the 
monomers rather than as an entity. Uncertainties remained about this mechanism because 
the binding energy of N2 obtained from their analysis, estimated to be between 2.24 eV 
and 2.9 eV, is considerably smaller than the bulk of the estimates from theoretical work. 
Concerning nitrogen interstitial diffusion, Schultz and Nelson calculated the migration b ar
rier for nitrogen interstitials to be 0.4 eV for a split-interstitial configuration, resulting in 
very fast diffusion [140]. Furthermore, a D FT  calculation of the nitrogen pair diffusion using 
the nudged-elastic band method (Section 2.3.2) had resulted in a predicted barrier between 
2.9 and 3.3 eV, outside of the confidence range given above [141].

A recent theoretical re-examination of the N 2 diffusion problem finally seems to ic  able 
to allow a reconciliation of the different experimental findings for N2 diffusion. Using again 
D FT calculations and the nudged-elastic band method, Stoddard et al. [112] found a new 
diffusion path by examining more minimum energy paths, resulting in a barrier of — 2.36 eV, 
well within the defined confidence range (Fig. 22). The different stages along this new diffu
sion path are illustrated in Fig. 23. The two nitrogen atoms move disjointedly, with the upper 
atom moving through Fig. 23[a]-[c] before the lower atom follows (Fig. 23[d]-[f]), while the 
highest energy configurations are those where the nitrogen atoms are the farthest separated. 
Due to the use of the climbing-image NEB [ 142|, which pushes the highest energy point to 
the saddle point. Fig. 23(c) should represent the saddle point of the migration event aith an 
activation energy of 2.36 eV (see Fig. 24), in excellent agreement with the experimental fit.

(82)

of a catalytic effect of oxygen on nitrogen diffusion has been reported recently [137]. In
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Figure 22. Experim ental da ta  for the N : diffusion constant in silicon with bcst-fiI line and theoretical diffusivity. 
R eprinted with perm ission from [112], N. G. Stoddard et a I.. Phys. Rev. Lett. 95, 025901 (2005). © 2005, A m erican 
Physical Society.

The diffusion coefficient prefactor, is determ ined by calculating vibrational frequen
cies for the saddle point and the ground state, as well as the entropies of formation and 
configuration,

(83)

where d  is the jum p distance, p  is the multiplicity of  jum p paths, S  is the combined entropy 
and vn is the jum p frequency. Within harmonic transition-state theory, the jump frequency 
is calculated as the ratio of the product of the T-point frequencies of the ground state 
supercell over the product of all real T-point frequencies of the saddle point cell as defined 
in Eq. (64). The entropy of configuration is just the natural log of the number of possible 
defect configurations. Within the quasiharmonic approximation, the vibrational entropy S  o f

Figure 23. Low activation barrie r diffusion series for a nitrogen pa ir (in purple) moving through the silicon lattice 
(gray) in (100) projection. The first and last configurations are equivalent, and the corresponding energetics are 
provided in Fig. 24. The atom s each move, but m ake their jumps at d ifferent times. The highest energy configuration 
(c) is also the point o f maximum separation  for the nitrogen pair. R eprin ted  with perm ission from [112], N. G. 
S toddard et al.. Phys. Rev. Lett. 95. 025901 (2005). €) 2005. A m erican Physical Society.
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Figure 24. Energy profile for the N: diffusion path with a m igration barrier of 2.3b eV. The points correspond to 
the atom ic configurations shown in Fig. 23. The atom s each move, bin make their jum ps at different times. The 
highest-energy configuration (c) is also the point of maximum separation for the nitrogen pair. R eprinteJ vs ith 
perm ission from [1 12|. N. Ci. Stoddard el al.. Phys. Rev. Lett. 95. 025901 (2005). €> 2005. A m erican Physical Society.

an atomic configuration can be calculated by [ 143, 144]

hw,j 
2k„T

coth hM<!
1L- T  ~ H

In 2 sinh
hco,

2 k  J
(84)

where the summation goes over the degrees of freedom, / ,  for each atom, /, and ojit is the 
characteristic frequency. The entropy of formation can be calculated from the entropy of 
the N2 defect, N interstitial defect and perfect silicon by

S f =  25. Sper tee i (85)

T he temperature dependence of the entropy (Eq. [84]) does not completely cancel out 
and has a weak effect on the effective migration barrier. For the diffusion path of Fig. 23, the 
full diffusion constant was calculated, including the entropy temperature dependence, in the 
temperature range of 800-!400°C. Using an Arrhenius fit where the prefactor is temperature 
independent, the data is best described in this temperature range by

Dm  =  67 exp
2.38 eV cm

s
(86)

see Fig. 22. For low temperatures (300°-700°C), values of D {) =  117 e n r /s  and E a — 2.42 eV 
better fit the temperature dependence of the theoretical diffusion constant. This Arrhenius 
fitting approach will be used throughout. Since the corrections from [145] that were applied 
to correct for the errors caused by the DFT band gap problem only amounted to ~ 0 .(2  eV 
difference in the migration barrier, the values in the calculated diffusion constant might be 
a very good estimate for the physical reality.

Stoddard et al. [112] also found a 0.44 eV migration barrier for single-interstitial dif
fusion of N in Si in good agreement with previous work [140], but a calculation of the 
temperature-dependent prefactor determined that the theoretical data is best fit by an 
Arrhenius expression of

/ 0.56 eV \  enr
1.7 e x p ------ — —  ) -----  (87)A

k n T

in the temperature range from 800 to 1600 K. At low temperatures, the migration barrier is 
better fitted with a value of 0.50 eV. With these values, the interstitial nitrogen will diffuse 
at least five orders of magnitude faster than nitrogen pairs. Given the strong binding energy 
of nitrogen pairs and the fast diffusion of nitrogen interstitials, we expect that all t f  the 
nitrogen concentration will be paired or complexed within a very short time. Subsequent 
diffusion will be limited by nitrogen pair diffusion.
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3.1.2. Combined Kinetic Monte Carlo/Ab Initio 
Determination of Reaction Capture Radii

We have discussed in Sections 2 .1.2 and 2.2.2 that continuum models as well as Monte 
Carlo simulations of diffusion both employ a so-called capture radius, which in principle 
defines the distance where two species of atoms or reactant complexes start to feel their 
mutual presence and begin to react which each other. While used for a long time, this 
interaction or capture radius was not well characterized and usually was assumed to be ono ,
the order of the nearest-neighbor distance (for Si, 2.35 A) or average spacing in the lattice 
((5 x 10:: cm' ■') 1 3 =  2.71 A) [146]. However, the simulations of [147], which we want to 
summarize in the following, showed that defect interactions are more long ranged, extending 
up to at least eighth-nearest neighbor distance.

For a quantitative evaluation of the capture radii, Beardmore et al. calculated within 
density-functional theory the interaction potentials for several defect pairs and determined 
the most reasonable approximation for diffusion barriers between valleys of different energy, 
using the Vienna A b initio Simulation Package (VASP) [111] and large simulation cells. 
Those results were used as input for KLMC simulations to determine the capture radii for 
the defect pairs.

Before the work of Beardm ore et al. [147], all ab-initio work for vacancy-assisted diffusion 
in Si had been performed within 64-atom supercells, although those have been shown several 
years ago to be of insufficient size for defects involving vacancies [148]. Therefore, Beardmore 
et al. calculated the interaction potentials between defects by structural relaxation in a 216 
atom (3 x 3 x 3 unit cells) volume. For each set of calculations, the two defects were placed in 
the cell, sampling all possible separation distances and orientations. Each initial configuration 
was relaxed and the energy and final configuration saved. For saddle point calculations, the 
nudged-elastie band m ethod (Section 2.3.2) implemented in VASP was used.

The results of the ab initio calculations are plotted, relative to the energy at infinite sep
aration, in Fig. 25 and show the existence of long range interactions between defects in 
silicon, which extend up to at least eighth-nearest neighbors. The interactions are depen
dent on separation distance, but also on the direction of displacement with respect to crystal 
orientation and the orientation of the split interstitial defects. To obtain a pair potential, 
the lowest energy at each distance was used. In the case of / - B and l -V  interactions, the 
tetrahedral instead of the (110) split interstitial gave the lowest energy at a given separation, 
which results from charge transfer to the B atom or K, respectively, who both prefer the 
negative over the neutral charge state (see, e.g.. Ref. [106]).

It is interesting to note that for distances larger than M O A, the electronic minimization 
often, depending on the initial guess of the charge density, resulted in two different energy 
states for the same structure. For the lower one, charge depletion around the As atom and 
accumulation around the V  was found, which was not true for the higher-energy result. This 
result can be interpreted in the sense that for distances up to M O  A, the excess electron 
from As is always within the electron capture radius of the V, whereas for larger distances.

Figure 25. C alculated in teraction energy as a function o f separation  for I - l \  B- / .  A s-1’, and P -I '. The corre
sponding interaction shells are also shown. R eprinted with perm ission from [ 147]. K. M. Beardm ore et al., in 
“C om putational Nanoscience and N anotechnology." A pplied C om putational Research Society. Cam bridge, 2002. 
p. 251. € ' 2002. Nanoscience and Technology Institute.
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this is not necessarily true. Thus, these calculations give a minimum estimate of the electron 
capture radius for charge transfer from As to V  of M O  A. Knowledge of the electronic 
capture radius is necessary, for example, to estimate the characteristic time constant for 
charge transfer processes, see Eq. (29) in Section 2.1.2.

As described in Section 2.2.2, KM C param eters  such as interaction energies are obtained 
from experiment and increasingly from ab initio calculations. Beardmore et al. [147] used 
KMC simulations with ab initio interaction and kinetic parameters for the determination of 
the capture radii [149]. The initial conditions for such capture radii calculations involve two 
defects, each either a vacancy, interstitial, or dopant randomly located on a 3D lattice in a 
given volume.

Depending on the interaction potential between a defect and another defect or dopant 
atom, the initial and final state of a mobile defect can have different energy levels, with no 
easy estimate for the saddle point energy in-between. Two approximations for such saddle 
points have been suggested in the past, which we will discuss for the case of an isolated 
vacancy in otherwise perfect silicon.

The first approximates the saddle-point energy by the sum of the free-vacancy migration 
barrier, E y , and the energy of the higher-laying valley energy, Em — max ( E h E f ) -f Ey  [150]. 
The other suggests to add the free-vacancy migration energy to the average of the two valley 
energies, E m =  (E,  +  E,  ) /2  H- Ey  [151]. While the second approximation might sound more 
reasonable at first glance, it has the inherent danger to end up with a negative migration 
barrier in cases where Ey < (Ej — E f )/2.

Beardmore et al. found with a nudged-elastic band ab-initio calculation for vacancy dif
fusion from the second- to the third-neighbor site that the saddle point is close to the 
energetically higher third neighbor site, and that its energy can be approximate well by the 
first approximation from above [150]. For vacancy diffusion from nearest to second-neighbor 
distance, however, they found a nearly vanishing diffusion barrier only slightly higher than 
the second-neighbor energy, which is considerably smaller than second-neighbor energy plus 
free-vacancy migration energy. Thus, the second approximation, which predicts no barrier 
in this case, seems to be the better approximation. Thus, neither approximation seems to be 
really universally valid, and a detailed understanding of the barriers seems to be necessary 
if one wants to use the most realistic kinetic parameters in a KMC simulation.

Since the diffusion step from nearest to second neighbor is the most crucial one for 
vacancy-assisted dopant diffusion, Beardmore et al. chose the second approximation in their 
work. Lumping the migration energy into the lattice migration rate vm, the hopping fre
quency is given by v =  vm exp[(Ef — E j ) / ( 2 k fiT)],  where Ej -  E f is the change in the system 
energy due to a transition.

All interactions used in determining system energies are assumed to be pairwise additive. 
The total binding energies are described by E x (i) =  E x) ( j ) x N Y(j),  where E x (i) is 
the sum of all dcfcct-defect binding energies for a point defect X  at site i with other point 
defects Y  within the range of interaction. N y (j )  is the number of Y  type defects at j -th 
nearest neighbor distance from site / and E x y (j )  is the binding energy between X  and Y  
type defects at separation j  from Fig. 25.

Within the von Smoluchowski approach outlined in Section 2.1.2 (Eq. [23]), the interaction 
between defects A and B is described by the reaction rate constant

k f = 4 i r a r (D' t  + D H) (88)

where a( is the capture radius. Since KLM C simulations explicitly include the silicon lattice
structure, the capture rate k- can be calculated directly, based on the interaction potential
obtained from ab initio calculations. Using initial random defect displacements within a 
simulation box of volume 1 1 , the capture rate is simply given hy

()
A' =  7 ^  (89)

\ t )

where ( r )  is the average capture time. Equation (8 8 ) is then inverted to give the capture 
radius.
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Using the ah initio  energies from Fig. 25, the capture radius calculated in Ref. [147] was 
approximately 7 A for l - V  recombination when interactions up to sixth nearest neighbors 
(as had been done in previous work [149]) are taken into account. This was the same as 
previously calculated using interaction potentials obtained by empirical MD simulation [149], 
although the interaction potentials themselves differ significantly. Hence, it appears that the 
interaction range, not the shape of the potential is what determines the capture radius. 
However, the ah initio results indicate an attractive potential up to the 11th neighbor shell. 
Using the eleventh neighbor shell as a cutoff, Beardmore et al. found a capture radius of 
8.3 A for l -V  and 4.6 A for B-/ .  Ail these simulations were performed at 900°C.

For both A s-V  and P-K, Beardmore et al. examined the temperature dependence of 
capture radii up to 1700 K.

On the basis of the 18 shell range potentials, the capture radii are fit very well in the 
temperature range of 300 K < T  < 1700 K by a( =  a{] 4- a { exp(—y/ T / T i), where a{) =  2.369 A 
is the silicon bond length. The fit resulted in a { — 28.93 A and Tx =  339 K for As-K and 
</, =  23.15 A and 7”, =  499 K for P-V with 900°C values of 6.9 A and 7.4 A, respectively.

Thus, it was found that the capture radius increases slightly as the temperature is reduced, 
as might be expected since at low T  the capture probability increases for the weaker binding 
energies seen at larger distances. Overall, the im portant result of Ref. [147] was that the cal
culated capture radii seem far larger than those currently used in most continuum diffusion 
models due to the relatively long range of the interaction potential.

An interesting question in this context concerns the type of interaction between dopants 
and defects, such as between an As atom and a vacancy. Assuming ionization of As to A s f 
while the vacancy accepts the extra electron, the interaction should be— apart from some 
close-range deviations— purely Coulombic. If this were the case, the effective value of the 
dielectric constant at the capture radius can be determined, which is important to determine 
reaction rate constants for two charged reactants as stated in Eq, (25). For this purpose, 
Windl [152] fitted the Madelung-corrected Coulomb energy to the interaction energies cal
culated in Ref. [147] within the local density approximation (LDA),

Z „  ■£(■.„„ =  - - + A E  (90 )t:r

where Z u denotes the Madelung constant for an A s-* -V  pair at distance r [153], e is the 
electron charge, and s  (dielectric constant) and AE  (possible energy offset to determine the 
absolute value of the relative interaction energies) are fitting parameters. The Madelung 
constant corrects for an artifact o f the supercell approximation, which determines in an 
electronic-structure calculation the interaction energy of a periodic array of As+ atoms and
V , not the interaction energy for an isolated pair [153].

The resulting fit is shown in Fig. 26. The black dots are the original calculation results, 
arbitrarily shifted to result in an 18th neighbor interaction energy of zero. The black dashed 
line is a straightforward fit with fixed AE  ~  0. The red dashed line is the result of a fit with 
variable AE, resulting in a downward shift of 0.09 eV and a dielectric constant of 12. L which 
is in excellent agreement with experimental (12.1) and theoretical (12.8) values of bulk Si 
[154]. The fitted curve (red dashed line in Fig. 26) starts to match the calculated interaction 
energies (red dots in Fig. 26, shifted to their correct absolute values, and red solid line as a 
guideline to the dots) at ~ 5  A, which is smaller than the calculated capture radius at typical 
annealing tem peratures (for example, —7 A at 9()0°C). Thus, this calculations find that the 
appropriate dielectric constant for Eq. (25) is the bulk Si value of 12.1.

3.2. Ab Initio to Continuum Modeling of Diffusion 
and Deactivation of Boron

In this section, we want to demonstrate how a physical multiscale process model can be 
constructed for the evolution of nanoscale clusters of— in our example— boron in silicon 
under heat treatment. The modeling examines the atomic-scale detail of the process from 
first principles calculations and eventually predicts the evolution of macroscopic amounts of 
material using a reaction-diffusion type continuum model, thus covering the two different
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As-V distance (A)

Figure 26. C alculated As 4  ' interaction energies from Ref. 1147] on an arbitrary absolute scale (black dots) and 
shifted (red  dots) to  the correct absolute values for pure Coulom b in teraction between A s4 and V  following a 
Coulomb fit. The black dashed line is a Coulom b fit o f the black dots, the red dashed line one to the shifted red  
dots and thus the " tru e" Coulom bic interaction. T he red solid line is a spline fit to the red dots lo determ ine w here 
red dashed and red solid lines start to match. R eprin ted  with perm ission from [ 1521, W. Windl (unpublished).

length scales most important for nanoscale CMOS devices: the arrangement of the atoms, 
which controls the electrical properties of the device, and the influence of processing condi
tions on the final material. The following summarizes the results of [155].

We chose boron for this example since it is currently the most widely used acceptor dopant 
in silicon devices and displays very interesting nanoscale structure formation during fabri
cation. The energetic ions of the ion implantation process damage the host material and 
build a supersaturation of defects in Si, which impair the device performance. Post-implant 
annealing is used to heal the implant damage, while activating the dopant atoms electrically. 
The supersaturation of defects after the implant leads to excessive transient enhanced diffu
sion (TED ) of the implanted B, assisted by mobile interstitials, during the annealing cycle. 
Excessive diffusion shifts the junction between n and p- type material to undcsired locations. 
On the o ther hand, the interactions between mobile dopant-defect pairs, mobile defects, 
and dopants cause the formation of boron clusters, which are immobile, and deactivate the 
B atoms well below the solid solubility limit [156]. Here, deactivation means that boron 
does not contribute to the electrical conductivity because, for example, it forms a number 
of bonds commensurate with the num ber of its valence electrons.

3.2.1. Boron Diffusion in Silicon
Boron diffuses nearly exclusively with the help of Si self-interstitials [ l 57]; that is, the mobile 
entity is thought to be a B atom paired with an I . As concerning the diffusion mechanism, ab  
initio modeling had suggested a few years ago that a kick-out mechanism with long-range low- 
barrier interstitial migration would be the dominant mechanism [105], in contrast to previous 
perception. In that work, diffusion saddle point configurations had been guessed or estimated 
by the drag m ethod without systematic advancement of the atoms (see Section 2.3.1) [105]. 
As we have seen in Section 2.3.1, such methods arc often not reliable, especially in cases 
where the diffusion involves the concerted motion of more than one atom [102]. Therefore, 
Windl et al. [106] re-examined the minimum-energy barrier diffusion path for / - assisted, 
charge-state dependent B diffusion using the nudged elastic band method (Section 2.3.2) 
implemented into VASP [111].

Following Windl et al. [106]. the pair with the lowest formation energy in the neutral 
case, B7° (Fig. 27[c]; T  denotes a tetrahedral self-interstitial), has a formation energy of
2.8 (2.5) eV +  E l. with respect to the lowest-energy B charge state. B~, with a binding 
energy of 0A1 (0.6) eV relative to the most stable dissociation products /* and B ” (here 
and in the following, numbers without brackets denote generalized-gradient approximation
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Figure 27. B (black ball)-/ pairs in Si (gray balls and sticks). R eprin ted  with perm ission from [155]. W. Windl. 
IE IC E  Trans. Electron. EM C , 2M  (2003). O 2003. Oxford University Press.

[CiGA] results, whereas brackets denote LDA values). This binding energy is very similar 
to the sheer Coulomb attraction of a positive and a negative point charge (0.6 eV). For 
the +1 charged system, the same configuration, B T \  has the lowest formation energy with 
a binding energy of 1.0 (0.8) eV with respect to the dissociation products B and f 1+. 
For the - 1  charged system, two dumbbell-like interstitials with [110] and [100] orientation 
have the lowest formation energies, BA'* (Fig. 27[c]) and BS  (Fig. 27[f]), respectively. 
B X  has the lowest total energy with a binding energy of 0.5 (0.3) eV with respect to B— 
and X {].

In the neutral case, Windl et al. found the B7" pair to migrate via the BS [) (Fig. 27[f]) to 
an BH"  (Fig. 27[b]) interstitial by a buckling of the Si-B-7 triple dumbbell with a migration 
barrier of 0.2 (0.4) eV, which is a kick-out event. A cartoon of this diffusion mechanism 
is shown in Fig. 28[a]. The diffusion path between two neighboring H  sites also contains 
the .S’ interstitial, from where another B7”  configuration can be accessed without barrier, or 
another H  site can be reached over a barrier of 0.1 (0.1) cV. This suggests an immediately 
following B //°  —► B 7 () step to be the most probable event after the B7M1 —► B/7U portion of 
the diffusion step, which predicts an immediate kick-in event without long-range interstitial 
diffusion.

For systems with positive charge, a one-step process B T + —► BT ' with no intermediate 
metastable interstitial position was identified, a bond-centered interstitial B # ! (Fig. 27[ej) 
as saddle point, and a migration barrier of 0.8 (1.2) eV (see Fig. 28[b]). However, there

\  \
-Xt

\  X  N; " ♦. . /
\  \

Figure 28. C artoon of diffusion paths for (a) neutral and positive, (b) alternative positive, and (c) negative charge 
sta tes of B/ pairs in (110) projection. The small balls are boron atom s, the larger balls and bond vertices are silicon 
atom s. Reprinted with perm ission from | 15 5 1. W. Windl. U .IC E Trans. Electron. EK6C\ 269 (2003). © 2003. Oxford 
University Press.
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is a second, competing process, especially for the LDA calculations, which is similar to the 
neutral diffusion mechanism (Fig. 28[a]), but has BH + as the saddle point, with a migration 
barrier of 1.0 (1.3) eV, slightly higher in energy, but with a larger average hopping length and 
more possible paths [106]. For negatively charged systems, there is a B X ~  -* BS-  -> B X  
path with an intermediate metastable BS~  configuration and a migration barrier of 0.6 
(0.5) eV (shown in Fig. 28[c]). Overall, diffusion and deactivation models derived from these 
calculations have given excellent results in comparison to experiment [12, 106].

3.2.2. Boron Deactivation in Silicon
The implant-anneal cycle can cause the formation of boron precipitates which immobilize 
and deactivate the boron atoms well below the solid solubility limit. From the observation 
of the trapping of interstitials by these precipitates, it has been concluded that they consist 
of boron-interstitial clusters (BICs). In the following, we discuss a systematic study of BIC 
energetics including the influence of charges and a careful structure minimization within the 
BIC phase space [12].

3.2.2.1. S u b s t i tu tio n a l B o ro n  C lu s te rs .  Substitutional boron clusters consist of B atoms 
substituting Si lattice atoms and has been studied in detail by Windl [ l 55]. Although calcu
lations for substitutional clusters might seem to be a straightforward task, care needs to be 
taken to recover the correct configuration. Traditionally, substitutional clusters were defined 
to consist of a nearest-neighbor assembly of B atoms, varying the possible configurations 
under this constraint. In the case of substitutional diatomic carbon clusters, however, the 
lowest-energy structure has not been found for a nearest-neighbor arrangement, but for the 
third-neighbor distance between the carbon atoms, where they occupy opposing corners of 
an hexagonal ring in the [110] plane, which allows for maximum stress relief [158]. There
fore, Windl generalized the concept of substitutional clusters in the sense to search for the 
minimum-energy configuration without constraining the distance between the B atoms in 
the Si cell in any way except for the finite size of the supercell (64 atoms).

In the case of the B 2 cluster, Fig. 29 shows relaxed energies of two substitutional B atoms 
at different distances. The previously exclusively studied nearest-neighbor B2 cluster is clearly 
the energetically most unfavorable cluster, 0.8 eV higher than two B atoms far away from 
each other. A shallow minimum is found for the third-neighbor configuration, which seems to 
be analogous to the above described case o f  C in Si [158]. However, subsequent calculations

D is tan ce  (A)

Figure 29. Energy of iwo substitutional B atom s in a 64-alom Si super cell for relaxed geom etries as a function of 
the distance betw een the B atom s, relative to the lowest calculated energy at the 12th-neighbor Jistance. The line is 
a spline interpolation to  guide the eye. T he inset shows the position of first, second, and third neighbors relative to 
atom  0. R eprinted with perm ission from 11551. W. Windl. //./( /. Inins, ijccm tn . E86C. 269 (2U(>3). €> 2003, Oxford 
I nixersitv Press.
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with larger cells (216 atoms) indicate that the third-neighbor minimum might be an artifact 
of the 64-atom supcrcell. Therefore, substitutional diboron clusters seem to be unstable with 
respect to the energy of dilute boron atoms.

In order to study if substitutional clusters with more than two boron atoms are possible. 
Wind! [155] looked into the situation of four boron atoms in more detail. Since here, no 
single param eter such as the distance in the B: case can describe the arrangement easily, a 
first-principles Monte Carlo search was performed.

The initial configuration was a 64-atom 2 x 2 x 2  supercell of the conventional unit cell 
which contains 60 Si atoms and 4 B atoms in random locations. After relaxing the structure 
and recording the energy, a Si and a B atom are randomly selected and swapped. If 
the new relaxed energy, £ \ ,  is less than the move is accepted, otherwise, the Metropolis 
criterion is employed to accept or reject the move by comparing a random number between 
0 and 1 with exp[(£’1 -  E 1) / k IiT].  Five hundred M onte Carlo steps have been run each for 
the neutral and double negative charge state, which had been identified previously to have 
the lowest energy in a nearest-neighbor configuration [12].

The resulting energy distribution, which is very similar for both charge states except for a 
constant energy shift, is shown in Fig. 30. All B4 clusters with nearest-neighbor B arrange
ments have an energy o f  1.3 eV or more higher than the lowest configuration. Again, they 
form the upper end of the energy distribution, as was the case for the nearest-neighbor B: 
pair. The configuration with maximum distance between all B atoms has an intermediate 
energy, 0.7 eV higher than the lowest-energy configurations. The latter consist o f atomic 
arrangements where two pairs o f B atoms sit in third-neighbor positions each. Thus, we con
clude that in the case of extremely high B concentration without precipitation of new phases, 
substitutional nearest-neighbor B clusters would be highly unlikely, but an ordering-effect in 
third-neighbor positions, similar to the case of C in Si [158, 159], might be possible.

Overall, substitutional B clusters should not play a significant role in the deactivation of B, 
which suggests that the substitutional side of a reaction-diffusion model can be well covered 
by single substitutional B atoms.

3.2.2.2. B o ro n -In te rs titia l C lu ste rs .  Liu et al. 112] examined a num ber of BICs B„ with 
//,//? < 4, as well as B l2/ 7 (which had been studied theoretically before without presenting 
formation energy values [160]) and single B atoms in {311} defects. For their calculations, 
they used the DFT code VASP [111] within both LDA and G G A  and 64-atom supercells.

Figure 30. Energy d istribution of all 500 steps during  M onte Carlo sim ulation at 1200 K for a SirillB_, cell, where 
Si and B positions are sw apped. The energies of the different nearest-neighbor B4 clusters have been added  by 
hand, since they did not ap p ear during the sim ulation and their nucleation due to  the strong repulsion between 
two B atom s is highly unlikely. R eprinted with perm ission from (155]. W. W indl. I LUCE Tuns. Electron. ESftC, 26(J 
(2003). ' 2003. Oxford University Press.
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To decrease the threat of finding a high-energy local instead of the global minimum, they 
started for each cluster from many different initial configurations that were structurally 
relaxed.

Figure 31 summarizes the results from Liu et al. [12]. The figure shows the structure, LDA 
and G G A energies as well as fitted energies from Ref. [49]. The reference states for the 
cluster energy E d are B“ and I(1, that is, for B Ed — E n , -  n ( E B — £ Sihu]. ) — m ( E in —
£ si..k(N  +  1 ) / N ) ,  where N + m  is the total number of atoms in the supercell. Displayed are
the most stable structures and energies found for the lowest-energy charge states at midgap. 
Except for the substitutional clusters, all clusters have negative formation energy.

3.2.3. Dimer Study of Boron Clustering in Silicon
The vastly used von Smoluchowski model for reaction constants (Section 2.1.2) assumes that 
reactions are diffusion limited. For the case of cluster formation, this means that the barrier 
for formation of a cluster from smaller components is just the migration barrier of the mobile 
species. Equivalently, this assumption says that the barrier for cluster dissociation is the sum 
of the cluster binding energy with respect to the smaller components and the migration barrier 
of the mobile fragment that diffuses away. Uberuaga et al. [161] have tested this assumption 
by looking at the atomic mechanisms responsible for cluster formation using the dimer 
method (described in Section 2.3.3). Their  work focused on two clusters, B ;/  and B3/ 2.

On the basis of the results of continuum modeling discussed in Section 3.2.4, one of the 
most dominant B clusters seems to be B3/  . Therefore, Uberuaga et al. ran 10 dimers from 
this cluster to study its formation and decay mechanism. O f the interesting results, two led 
to simple exchange processes of one B atom with another. One of the dimer runs led to the 
beginning of the dissociation of the cluster. When a second dimer is started from the basin 
found from the first run, a full dissociation of B3/~ to BT +  B / + is found (the charge states 
are assumed due to the results of Section 3.2.2).

Since formation of BT is unlikely due to the strong repulsive interaction between neigh
boring boron atoms (Fig. 29), this is an improbable route for the formation of B3/~ clusters. 
Therefore, Uberuaga et al. looked at a larger cluster, B3/ 2, as an intermediate structure that 
potentially could decay into Bv/  .

Of the dimers run from B3/2, four locked on to zero-curvature modes, two were reorien
tations of the original cluster (identical in structure, but rotated with respect to the original

Figure 31. S tructure and energetics of small lilC's. Small white halls are B. large gray halls Si aioms involved in the 
clusters. The energy values (e V ) are, top  to down. CiCiA. LDA, and fitted values. R eprinted with permission from 
[ 1551. W. VViiull. I E I C I .  Trans, l.ict/ron. FMC'. 26W (2003). v' 2003. Am erican Institute of Physscs.
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geometry), one resulted in a distorted structure, and one lead to the beginning of the disso
ciation of the cluster.

The original cluster, which involves three B atoms in a trigonal structure bonded to a Si 
atom, can rotate so that the boron atoms are bonded to a different Si atom in the same 
tetrahedron. This does not lead to net diffusion of the cluster, but rather just a reorientation. 
This process has a barrier o f  0.8 eV.

The o ther interesting process found led to the dissociation of the cluster. This reaction 
involved an intermediate state in which the three B atoms formed a linear chain in the Si 
crystal which is degenerate in energy with the original cluster. The minimum energy path for 
this reaction is shown in Fig. 32. The barrier to go from one structure to the o ther is 1.48 eV. 
Overcoming a second barrier of 1.58 eV leads to the products B-,/ and B/ with an energy 
of 1.42 eV above the original cluster. This already agrees well with the infinite separation 
energy of these individual products of 1.5 eV (Section 3.2.2). The reverse barrier, of joining 
B: /  and B /  to form B3/ : , is only 0.16 eV, which is smaller than the diffusion barrier of 
B/ in bulk Si [106]. Thus, the formation of the B3/ 2 cluster from B: /  and B I is shown 
to be diffusion limited, in excellent agreement with the postulate of the von Smoluchowski 
approximation for reaction rate constants (Section 2.1.2).

3.2.4. Link to Continuum Modeling
As shown in Section 2.1.2, within the von Smoluchowski approximation, reaction barriers can 
be calculated from the difference of the total formation energy of the reactants and the total 
formation energy of the products, which is the binding energy, plus the migration energy of 
the mobile reactant. In the previous section, we have shown that this model seems to be an 
excellent approximation at least for the case of boron-interstitial clusters (see Section 3.2.3). 
In the following, we will describe the formulation of a diffusion-reaction model for the case 
of BIC formation and decay.

As an example, let us consider the reaction

B: / n +  /° — B,/?  (91)

Following Section 2.1.1. the two partial differential equations (PDEs) describing this reaction 
can be formulated as

^ = - K »'hC »:'C ' +  K k h C *:h (92)

Figure 32. M inimum energy path  tor the breakup o f B ,/ .  in to  B: /  and B /. T he reverse barrie r For the form ation 
of B ,/ .  is only 0.2 eV. R eprin ted  with perm ission from |I M |.  B. P. llh c ru ag a  el al.. Phys. Status Solidi 233. 244 
(2002). • 2002. Wiley-VCH.
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and

= K L , X B:/C,  -  K ^ , :CB:/2 (93)

Interaction terms for reactions with o ther clusters can be added to these equations in an 
analogous way, and the whole PD E  system can finally be solved with a PDE so.ver like 
A L A M O D E  [162]. For the equations of the mobile species, a Fick term is added to Jescribe 
their diffusion to end up with a continuity equation as shown in Eq. (6). The forward and 
reverse reaction coefficients are described in the standard way (Section 2.1.2) by

K i h = 4tTacD lH (94)

K k i : =  «r/C'si D r < c x p ( - ^ 7 ‘) (9 5 )

where a( is the capture radius of the reaction which can be calculated as described in 
Section 3.1.2, D r ■ is the diffusivity of the mobile species / (l in the reaction (calculation of 
diffusivities has been demonstrated for the case of nitrogen in Section 3.1.1 and fcr boron 
in Section 3.2.1), CS| is the atom density in Si, and E h is the binding energy of the reactants 
in the cluster from Section 3.2.2.

In the current formulation, the reaction barrier is split into the binding energy part and 
the migration energy of the mobile species, which is hidden in the Arrhenius expression of 
the interstitial diffusivity. Despite of many theoretical investigations, there is consderable 
uncertainty in the migration barrier of the Si self-interstitial. The suggested values vary 
between 0.1 eV [163] and 1.4 eV [164] or  even bigger and corresponding prefact)rs vary 
over many orders of magnitude.

To quantify the reaction coefficients, we start from the energy states of the species Jivolved 
in the reaction of Eq. (91), which are according to Tables 1 and 2 [165] w ithh GGA 
t ' ( B 2/ n) =  -2 .0 2 ,  £ ’( / ”) =  0, and £ ( B : /V) =  -3 .3 0  eV, respectively. Considering the f o r w a r d  
reaction in Eq. (91), we see that the sum of the formation energies on the l.h.s. is consid
erably higher than that on the r.h.s. and thus would take place whenever a self-in.erstitial 
becomes available. This explains a posteriori why the forward reaction (Eq. [95]) has no 
reaction barrier beyond the migration energy of the self-interstitial. The reverse reaction, in 
contrast, has to overcome a higher barrier with a binding energy of E h =  -2 .0 2  eV +3.30 
eV == 1.28 eV and a reaction barrier of E r =  E h +  E m( / n). In an analogous way, PDEs and 
coefficients can be calculated for the whole system.

Liu et al. formulated in this way a continuum model system from the results in Fig 31 and 
combined it with a well-tested four-stream model for intrinsic B diffusion. For /  clistering, 
they mainly used the model from Ref. [166].

Table 1. Energy state  values (eV ) o f boron  clusters with interstitials. 
The m idgap values are taken.

Lowest 
energy sla te GG A I. DA

The tilled values 
from Ref. [49]

B,/" —2.02 - 1.25 -0 .6
B \ / -3 .0 0 - 2.27 -3 .6
b 4/ - -2 .1 0 -1.33 -4 .6

B/V -2 .4 9 •2.2S -2 .0
b  r ' -3 .3 0 -2.56 - 3 .0
r ”/ v - 4 . IS -3.21 —5.S
b —5.52 - 4.31 -  6.S
B / : - 4 .  S3 -4.10
B: /V -6 .05 -  5.20 -3 .0

(S.60 ..5.67 - 7  S
B4/: •7.06 -5.90 -9 .0
B ./ . 9.25 -  7.X9 -  10.9
B; /- -2 5 . OS

Siuuri'-. R eprin ted  wilh perm ission from 11f»>|. X. Y. Liu ;m».l W. Wituil. 
./. ( E h r .  (in press). \ Springer
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Table 2. Eneirgy state  values (eV) of Si ini crstitials and horon-
interstitial pa irs. The midgap values are tniken.

T he litted values
Energy state G G A LDA from Ref. |4 l)|

X " [ l ) 0 0 0
T-  ( / ) 0.25 0.38
B / -0 .5 7 -  0.38 -0 .f i
B / -0 .4 4 -0 .3 0

Sonrcc: Reprinted with permission from |lfi>], X. Y. Liu and 
W. Wind),./. Coni/>. E lcc. (in print).

The results for B activation are shown in Fig. 33 [167]. Both LDA and G GA  models 
correctly predict inverse annealing at low temperatures due to the beginning formation of 
B:J 2 and B4/ 2. Because of the low energy for B2/ 3, however, the model predicts in contrast 
to previous work that also the decay o f  this high-/ content cluster contributes significantly to 
the activation process at higher temperatures. Thus, it might be desirable to include clusters 
with higher /  content into future work.

LDA predicts too much activation too soon, whereas G G A  results in too strong clustering 
as compared to experiment. In order to improve agreement with experiment, Liu et al. used 
a genetic algorithm to refit the param eters  to a large num ber of SIMS data for different 
annealing conditions. The fit result was mostly independent of the starting parameters and 
resulted in param eter values which lay with a few exceptions between the LDA and G G A 
values, which therefore might be considered as upper and lower boundaries for the clustering 
energies. No activation data were used for the fit. Nevertheless, the experimental data in 
Fig. 33 are well predicted, suggesting that the key physics might be described reasonably 
well within this model.

3.3. Multiscale Modeling of Stress-Mediated Diffusion
Since further miniaturization of current M OSFET nanoscale devices becomes increasingly 
difficult due to the physical limitations and problems outlined in Section 1.1, o ther solutions 
to enhance the switching speed have been developed. One very successful approach in this 
area is the use of a strained channel material. The strain is usually created by growing a 
thin layer of Si on a relaxed SiGe film (Fig. 34[a]) [168]. Ge has a lattice constant that

Temperature ( C)

Figure 33. Sim ulated and experim ental | lfi7] B activation a fter a 40 keV. 2 x  l()|J cm : B im plant for 30 min anneals 
at varying tem peratures. Dashed line: I.DA clustering energies; dot-dashed line: G G A  energies: solid line: re-fitted 
lo SIMS. R eprinted with perm ission from 1155), W. Windl. f E K  E  Trans. Electron. EM C . 2fi4 (2003). <D 2003. Oxford 
UniverMlv Press.



190 Process Simulation for Silicon Nanoclectrunic Devices

Ge molefraction

(hl N itride spacer P +*pol>

Figure 34. (a) M O SF E T  structure  with a strained Si channel caused by an underlying layer o f SiGe. (b) Theoretical 
p rediction of the mobility enhancem ent of electrons and holes from strained Si channels, (c) Strained buried SiGe 
quantum  well PM O S struc tu re . All figures. R eprin ted  with perm ission from |16N], N. C’ollaert and P. Verheyen, 
Strained Si and S id e  device!s. IM EC-ASD. http:- \vww.imec.be/wwwinter/processing/asd/aclivilies/slrained.sblm l. 
O IMHC.

is 4%  larger than that of Si and is completely soluble in Si. Thus, the strained Si layer is 
under tensile and usually biaxial strain. Strained Si channels have been predicted to allow 
for enhanced mobilities for both electrons and holes (Fig. 34[b]). Strained Si devices work 
well for NMOS devices, where source and drain are //-type and mostly electrons carry the 
charge through the channel.

For PMOS devices (/Mype source and drain with mostly hole transport through the chan
nel). buried Si/SiGe devices have been found to perform better [ 169]. By introducing a SiGe 
quantum well beneath the Si/SiO: interface where the charge carriers can assume lower 
energy and thus would preferably travel, they can flow from source to drain with minimal 
interference o f  surface roughness and interface scattering. The intrinsic higher mobility of 
strained SiGe for holes introduces an extra advantage. The structure as such consists of a 
strained SiGe layer epitaxially grown on a Si substrate, followed by a Si cap layer which is 
needed to allow for the buried channel operation, but also for the growth of the gate oxide 
since the direct oxidation of SiGe is problematic (Fig. 34[c]) [168].

From the processing point o f  view, it has been assumed traditionally that the major effect 
of substrate stresses were dislocation formation and response [170, 171], whereas stress 
effects on diffusion were thought to be negligible [172). With the reduction of gate lengths 
and the use of more exotic gate materials for modern n:moe!ectronic M O SFET structures, 
stress-mediated diffusion became a more prevalent component in determining the final 
dopant profile and subsequent device performance. On the experimental side, contradictory 
results for the qualitative influence of stress on diffusion especially in the case of boron 
further motivated a fundamental investigation of stress-mediated diffusion. While the m ea
surements of Aziz et al. suggested for example enhanced boron diffusivity under compressive 
pressure (173-175], o ther work found retarded diffusion in that ease 1172, 176-178].

Most older theoretical work on stress-mediated diffusion assumed hydrostatic stress in the 
substrate. However, stresses caused by dislocations, thermal processes and geometric effects
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all add to a complex stress state under a multi-layered gate stack— where the gate itself acts 
as a stress concentrator— with magnitudes approaching the material strength even at low 
tem peratures [ 1, 172. 179, 180].

In this section, we apply the theory described in Section 2.1.3 to two examples of dopant 
diffusion in Si which are important for microelectronics. The first one, the neutral vacancy, 
is complicated by the existence of the Jahn-Teller distortion and the dependence of that 
distortion on stress and charge state [181]. The second example is the diffusion of a 
B'self-interstitial (B - / )  pair, and the third one is the “ ring-mechanism" for vacancy-assisted 
diffusion, which is believed to exist for Sb and (at least partially) As.

In all o f the examples treated here, symmetry will dictate that two of the eigenvalues of 
all o f the volume tensors will be degenerate. In the case of such degeneracy, we find it 
convenient to represent the volume tensor of a defect with orientation along direction d by

i i v = n d d<g>d +  n (./ ( i - t i ® d )

with “longitudinal’* (£lf7) and "'transverse'’ (the doubly degenerate i l t7) values. We can then 
describe the volume tensor by two parameters, either the combination 12r/ and i l rr or

n ,„  =  n r/ +  2,n „

=  ii ,/  -  a .

The latter pair measure the overall (scalar) volume and the anisotropic part.
We also note the jum p direction is not generally the same as the symmetry axis of the 

saddlepoint, although for simple defects, such as the vacancy treated here, the two arc the 
same (the nearest-neighbor hop also defines the symmetry axis of the saddlepoint). However, 
this is not true for the second example, the B / pair.

3.3,1. Stress Effects on Vacancy Diffusion in Silicon
As noted above, the vacancy in Si may o r  may not undergo a Jahn-Teller distortion, depend
ing on the charge state and  the stress [44, 181, 182]. In the presence of a Jahn-Teller distor
tion. the vacancy in the valley has three possible orientations. Each orientation is symmetric 
around a (100) axis, so that the two transverse volumes are equal. The three orientations 
combined with two lattice sites in the primitive cell makes /Vstalcs =  6.

The solubility factor for the case with Jahn-Teller distortion is

x |y- _j_ e -Z*1*. I

where p  =  7>[rr]/3. The case of no Jahn-Teller distortion is obtained by taking ► 0,
in which limit the solubility factor becomes S  — e ^ lAl" r)il.

The vacancy hops by a jump to a nearest-neighbor site; the saddle point configuration has 
a symmetry axis along a {111} direction [44], and once again the two transverse volumes are 
equal (see Fig. 35). Defining

a  S  2p<rilM J 3

g ~  ~l,u )

~ tr»- ^ , t ; ‘ ..<l" '  -4-

we find the components of  the permeability tensor to be

P  =  2^"^/>11" ,,;,[cosh (2 a  ) +  cosh (2 a  )]/5
(96)

Pxv = -2 e -to 'ix"'*  sinh (2a XY) /S

The o ther components can be obtained by cyclic permutation of the Cartesian components 
.V, y, z. The Jahn-Teller distortion of the vacancy in its equilibrium position has no effect on 
the permeability tensor.
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(c)

Figure 35. Projection o f a Si crystal containing a m igrating Jahn-Tellcr distorted  vacancy on the (121) plane. The 
migrating Si atom  (which moves in the opposite  direction as the vacancy) is shown as a large dark ball, the vacancy 
in (a) and (e) hy a small white ball. The small dark balls show the o th er Si atom s surrounding the two involved 
vacancy sites, (a ) is the initial configuration, (b) the saddle point with a threefold symmetry around the  migration 
direction (111) which lies in the paper plane, and (c) (he final configuration. R eprinted with permission from [44], 
M. S. Daw et al.. Phys. Rev. B 64. 045205 (2001). ® 2001, A m erican Physical Society.

3.3.2. Effect of Stress on Boron Diffusion in Silicon
We have discussed boron diffusion, which is assisted by Si self-interstitials, in Section 3.2.1. 
Fig. 28fa] shows the diffusion mechanism for the B / pair in p-type silicon (groundstate in 
Figs. 27[c] and initial and final structures in 28[a]), where the intermediate hexagonal intersti
tial (Fig. 27[b] and center of Fig. 28[a]) is a saddle point for the positive, and a local minimum 
close to the saddle point for the neutral charge state, and is in the following assumed to be 
the dominant saddle point for the purpose of examining stress effects in p-type Si.

3.3.2.1. Stress-Dependent Diffusion Coefficient for Interstitial-Assisted Boron 
Diffusion. The B/ pair results in more complex forms for the solubility and permeability 
factors than a simple point defect such as the vacancy discussed in the previous section. 
The defect in the valley has a (111) symmetry axis, with the B/  bond aligned so that the 
(substitutional) B lies along the line between the I and a Si lattice atom (Figs. 27(c); 28[a], 
initial and final structures) [183]. The three-fold symmetry around the (111) axis fixes the 
two transverse volumes as equal.

There are four orientations for the B /  pair on each site, and two lattice sites per primitive 
cell, so that jVstates =  8. The solubility factor for the boron-self-interstitial pair is:

5  ( , - P p l l . v  Ui ( ( >  t0v : ~ u ) :\ _j_ (J , 0 \: +  w : i + w .rv

e +to v. -  to., -f w , , _!_£+«>!..+■ w, -  w,iV ^ 4

where c j  =  2 ( 3 i } ( iv )a < r /3 .

The migration in /;-type Si occurs when the I pushes into the lattice site occupied by the 
B. w'hich is displaced to a nearby hexagonal or quasi-hexagonal site (Fig. 27[b]); because 
the hexagonal interstitial is a saddle point for the positive, and a local minimum close to 
the saddle point for the neutral charge state [183], we assumed it to be the dominant saddle 
point in /;-type Si. The quasi-hexagonal site has a (111) symmetry axis. The B in the quasi- 
hexagonal site is surrounded by 6 Si atoms, anyone of which may now be displaced by the
B. leading again to a B -/  pair. The resulting hops can be INN, 2NN, or even 3NN. There 
are a total of 768 paths that contribute to the reduced rate matrix (Eq. [50]). The resulting 
permeability tensor is

P — C\P -b c:y  (97)

(*] =  £ /(4 A x A v A..) 

pxx ~ (1 -j- A".At -f A:A;. 4- A'jA") 

pxx =  -5< 1 - A;A: - A:A; +  A“A;)/11 

c2 =  C/( 132At A t A.( 1 -f A;.A: -I- A:A; +  A;A;))
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X.w =  “ ( I +  A;A: -  A:A" -  A;A;)-

Xxv =  -1  +  2A;A; +  Â .Â  + A ^  -  A? A?. -  2A;A~A^

£ — exp ( /3/?l 14(v)/l)

A. =  exp (2f3{las)ll(Txv/3)

~  ^ t  (V)/ — {\)l

3.3.2.2. Diffusion Model and Atomistic Calcuiation of the Parameters. In the seminal 
work by Laudon et al. [184], the first multiscale modeling approach was presented to model 
effects of anisotropic stress on diffusion in nanoscale M O SFE T structures. A standard four- 
stream diffusion-reaction model for B was used as a starting point, consisting of the con
centration fields for /  (self-interstitials, mobile). V  (vacancies, mobile), B (substitutional B, 
immobile), and B/ (B- interstitial pair, mobile). Conjecturing that the point-defects ( /  and 
V)  are in equilibrium with a free surface and that the /  concentration is independent of the 
B concentration, the four-stream model was simplified to an effective one-stream model,

^  =  V . fP ^ V (C [tAS-f)l (99)

where Cn is the B concentration, P^,f is the effective solid permeability tensor, and S ^1 is 
the solid solubility factor [44]. We have demonstrated such a simplification process and the 
arguments that are used for its justification for the derivation of Eq. (21) in Sec. 2.1.1. In 
the hydrostatic case where the stress tensor a  is given by <r =  /?Id, the permeability (which 
is a scalar now) as a function of the pressure p  is given by

P f  = Pai = e x p ( -  )  ( 1 (,°)

where Dj’ is the diffusivity prefactor for intrinsic B diffusion, which was calculated from first 
principles within the harmonic Vineyard method [185], e™ is the creation energy for the B / 
pair at the saddle point as introduced in Eq. (35), and is the corresponding creation
volume from Eq. (54). The corresponding solubility is

S£f 1 =  exp ej? +  fiai +  +  ^ai)
k RT

(101)

where ej? is the creation volume for substitutional B in its ground state or “valley,” is the 
total energy per atom of the perfect Si cell, 12J? is the corresponding creation volume for 
substitutional B, and i l at the volume per atom of perfect Si. For the anisotropic case with 
general stress tensor, the expressions are more complicated.

The general stress dependence is given by the respective creation volume tensors which are 
calculated by the length changes A L n between the defective cell and the perfect Si cell with 
lattice parameters L a, f t  =  ( i l ) ap =  Sû e ny. A L aL yL a in a principal-axes system. Because 
the single elements of  the volume tensors are hard to separate experimentally and had not 
been known previously, they were calculated from first principles in Ref. [184], although 
several ab initio investigations had examined the (scalar) hydrostatic pressure dependence of 
diffusion before [182, 186, 187].

The values proposed in Ref. [184] were s +  e at =  —7.14 eV and s =  —3.39 eV, which 
resulted in a net activation energy of E a — - (e f ,  4- e llt) +  e f 1 — 3.75 eV in good agree
ment with experiment [ 188]. Furthermore, the creation volumes were found to be =
Sap[9.5Sav — 3.8(5frv 4- 8a:)] A 3 in <i principal-axis system with the j-axis parallel to the (111) 
direction and -f ft„  = 2 .4 Id A3, respectively, with scalar values for the hydrostatic case 
of T r ( f t sB/) = 1.9 A3 and Tr(ft,B -f 12lt) = 7.2 A3. The corresponding net scalar activation 
volume was Vtl =  —Tr(ft,B 4- f tat) -f T r ( f t sB/) =  —5.3 A 3, in good agreement with previous 
experiments 1174] of  —3.4 A3 and isotropic ab initio calculations [187] of —3.1 A 3. Although
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the hydrostatic value is small, there is considerable anisotropy in the permeability volume 
tensor which can have a significant effect on diffusion under anisotropic strain. These results 
suggest that in the considered equilibrium case B diffusion is enhanced by compressive pres
sure. This is mostly a solubility effect and, in consequence, due to the fact that the point 
defects were assumed to be in equilibrium with a free surface.

3.3.2.3. R e s u l ts  fo r m e ta l g a te  MOSFET s tru c tu re .  In Ref. [184], a titanium nitride 
(TiN) metal gate integration on a sub-quarter micron p -M O S F E T  was used as a demonstra
tion example of the stress-diffusion phenomena where anomalous stress-dependent boron 
diffusion had been recently discovered at Motorola [1]. Electrically measured lateral dif
fusion results indicated an enhancement in boron diffusion with increasing gate stress. 
Figure 36 shows an example scanning electron microscope image of the gate along with a 
feature scale stress model.

A finite-element method was used to predict high-temperaturc feature scale stresses in the 
Si substrate under the TiN metal gate. Since the tem perature dependence of elastic proper
ties for most materials in a gate stack, except for Si. is unknown, empirical data are used to 
calibrate the high-tcmpcrature stress simulations. A full 3D finite-element model had to be 
used, since plane-strain and plane-stress 2D reductions are insufficient in the area of interest 
near the Si surface. A 100 A SiO: film was modeled over the gate in order to reduced the 
potential singularity found in finite-element peeling stress results near free traction bound
aries [180]. The TiN gate has a high tensile stress al anneal temperatures (1()25°C). resulting 
in compressive horizontal stresses directly under the gate and large compressive and tensile 
stress concentrations just under and outside the gate edge, respectively.

Resulting 3D stress tensors from the finite-element model were passed through nodal 
data to a stress diffusion solver based on the partial differential equation solver described in 
[189]. This solver employed the gradient-weighted moving finite element method which uses 
a continuously moving mesh that adapts to the evolving solution. The diffusion equation 
implemented was

_s,f —  =  v  ■ p;f Vu> + v ?/> • p;f vw> (102)
(U

where the transformed variable w  — log(CH/ S ^ 1) was introduced to achieve a relative accu
racy in the concentration tail comparable to that in the high-eoncentration regions. Galerkin 
equations were obtained by minimizing the residual o f this equation with respect to a 1/Sjjjff 
weighted L 1 norm. The stress tensor, upon which 5^* and Pg11 depend, was simply obtained 
by interpolating the finite-element computed stress field onto  the moving mesh. Using the 
described procedure, post anneal diffusion profiles for the TiN metal gate as weil as for a 
reference stress-free gate were calculated.

The resulting profiles for a 5 keV implanted B profile diffused at 1025°C for 10 s can be 
seen in Fig. 37. Because of stress effects, an 8% change in Lcff for a 250-nm L djwn device 
was predicted. Equivalently, a 30r f change in Lcf, was predicted for a 65-nm Ldrawn device. 
These numbers were quantitatively in good agreement with the experimental findings.

Poly

Figure 36. Scanning e lection  m icroscope image | ! | and finite-elem ent m odel of the TiN gate slack o f |J |.  R eprin ted  
with perm ission from |!N4). M. Laudon cl al.. Appl. Phys. Lett. IX. 21H (2001). '« 2001. American Institu te of 
Phvsics.
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Figure 37. Boron concen tra tion  con tours for a 10 s. 1025°C. boron diffusion (source/drain 4- extension). C om par
ison of the TiN metal gale stressed ease (heavy line) to a unstressed (light line) solution show a 8r ? difference in 
lateral diffusion for a 250-nm L { gate. R eprinted with perm ission from [184], M. Laudon et al.. Appl. Phys. Lett. 
7<S. 201 (2001). 2001. A m erican Institute o f Physics.

3.3.3. Ring Mechanism for Vacancy-Assisted Diffusion in Silicon
As the mosl complicated case discussed to dale. Daw and Windl have shown how the macro
scopic diffusivity depends on the microscopic hopping for dopants migrating via the com
monly assumed ring mechanism for vacancy diffusion [ 190]. The diffusion of Sb and (at least 
partially) As in silicon has been suggested to occur via the ring mechanism [153]. In the 
following, we assume As as the dopant, but of course any o ther vacancy-assisted diffuser can 
be substituted for it. The vacancy mechanism involves a number of vacancy hops beyond 
the simple exchange between impurity and vacancy to result in net mass transport. In par
ticular, it is clear that the V must— for the minimum-distance path— move around one of 
the (110) quasi-hexagonal rings in order to allow the As to accomplish a macroscopic hop. 
Indeed, from the energetics in [153], we see that the V  hopping around the ring limits the 
rate of macroscopic As diffusion. We can use the theoretical procedure of Daw et al. 144] to 
calculate the solubility and permeability factors (and hence the diffusivity) for this complex 
diffusion mechanism.

First, we enumerate the states of the A s V  (recall that the theoretical treatment from 
Section 2.1.3 requires that the AsK moves as a unit, if even a loosely bound one). Each state 
must be identified as belonging to a particular unit cell; then wc must distinguish between 
various states within each unit cell. In the present case we find it convenient to describe the 
general state of the A sk’ defect by a pair of positions. (I)  the absolute position of the As 
atom, and (2) the position of the V  relative to the As. For each As position, there are four 
positions for V  as INN, 12 as 2NN, and 12 as 3NN. There are two As positions within the 
diamond unit cell. The total num ber of states of the A sV  defect per unit cell of Si is then 56.

The solubility factor for the ring mechanism is easy to anticipate. The AsK pair at INN 
has energy at 2NN it has e : , and at 3NN it has e 3. There are three times as many 2NN 
sites as INN, and the same for 3NN to INN. Thus,

S =  (5, +  3*2 +  3s.O/7 (103)

with Sj =  exp(—(3Sj). According to Ref. [153], the INN position is easily the most stable in 
the case of As, so that at temperatures below (e : -  e, ) / k H ~  8000 K, the solubility factor is 
dominated by the AsV energy at INN.

The permeability is constructed from the hops as described in Section 2.1.3. The rate 
matrix is built from the terms describing the hops which occur among the various A s V  
states. Using translation symmetry, we can block-diagonalize the rate matrix to pieces on 
the order of the size of the num ber of states p er  unit cell. Thus, the reduced rate matrix for 
this problem will be of size 56 x 56. There are two types of hops to consider, (1) V  hops
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around the ring, leaving As fixed, and (2) V  interchanges with As (INN  relationship before 
and after).

The As site and its INN, 2NN, and 3NN sites are arranged in six-fold quasihexagonal 
rings. For the V  to traverse a ring (while the As remains fixed) requires it to move from a 
INN site to 2NN, 2NN to 3NN, 3NN to a different 2NN and on to a new INN site. From 
each INN site, the V  has several possible rings that it could use to return to another INN 
site. The V  hops are then of two basic types, from INN to 2NN (or vice versa), which we 
designate “H12” and from 2NN to 3NN (or vice versa), called “H23.”

In addition to the hops where the As remains fixed, we need to include the jump where 
the As interchanges with a INN K, which we designate as “HOI.*1 In all, there are 152 hops 
to be included in the rate matrix: 8 are HOI, 48 are H I 2, and %  are H23. The resulting 
permeability tensor is isotropic, with the (scalar) permeability constant

r = l± ___________ p "- p *_____________  (104)
2 An P i: + 4 p r_ f e  + 3 An Pn

with Ph =  exp(—/3s,-,). s tj is the energy of the saddlepoint between valley / and valley j , 
referenced to the same energy as the valley states.

The structure of P is not surprising. It reveals that the A s V  diffusion is governed by all 
three hop types (HOI, H I 2, and H23) in series. The effective inverse rate (inverse of P) is 
proportional to the sum of the inverse rates; that is

1 4  3 2
—  ---------- f- —  -|-------- -
p  An P 12 Ply

In the case that one of the three saddle points is much higher than the others, it will 
dominate. According to Ref. [153], H23 is higher in energy than the o ther two, so that at 
temperatures below ( e1} -  — 12,000 K the permeability is dominated by the hops
between 2NN and 3NN sites.

The diffusion constant is P/ S .  Using the numbers from Ref. (153] for all the equilibrium 
states and saddle points, the permeability is dominated in the relevant temperature range 
by /?:3 and the solubility factor by .v,, so the diffusivity has a simple Arrhenius form with the 
energy Ed ~  -  e , ,  which is about 0.9 eV, consistent with the results noted in Ref. [153].

Ef f ec t  o f  s t r e s s  o n  A s V  d if fu s io n  b y  th e  ring  m e c h a n is m .  Stress effects are accounted 
for by knowing the volume tensors at each of the valleys and saddlepoints. There are three 
different types of valleys, and fundamentally we would need three volume tensors to describe 
the effects of stress on the solubility. Likewise, there are three different types of saddlepoints, 
and three volume tensors to describe the effects of stress on the permeability. However, 
this leads to such complicated intermediate expressions that simplifying assumptions become 
necessary to make the computation tractable. Fortunately, for the temperature range of 
interest, we are able to make such simplifying assumptions:

1. The solubility factor is dominated by the A sV  energy at INN, so we will include only 
the volume tensor at INN. This defect has a (111) symmetry axis, which means only two 
param eters are required for its description (e.g., one longitudinal and one transverse).

2. The permeability factor is dominated by the H23 saddlepoint, so we will include only 
the volume tensor at this position. The H23 saddlepoint is formed by placing the V  
between 2NN and 3NN from the As atom. The separation between the As and V is 
sufficiently large at this point that we will approximate the volume tensor by the sum of 
the two volume tensors for infinite separation (that is, the As valley volume tensor and 
the volume tensor for V  at its saddlepoint). The saddlepoint for V  migration has a (111) 
symmetry axis, and the As valley volume is isotropic (no Jahn-Teller distortion), so the 
resulting volume tensor has two parameters required for its description.

Because of these simplifying assumptions, the permeability and solubility factors are both 
determ ined by volumes with (111) symmetry.

This implies that uniaxial stress along a (100) axis does not break the isotropic symmetry of 
the permeability tensor, whereas for uniaxial stress along ( i 10) and (111), the permeability
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tensor is anisotropic. Furthermore, this means that we need to consider only deviatoric 
(shear) stresses of the general type (using the diamond cube axes as reference)

The permeability factor depends only on the off-diagonal components of  the stress tensor 
(in the coordinate frame where the cube axes are the coordinate axes). The components of 
the permeability factor are

This expression for P has factored out of it the value at zero stress (Eq. [104]) and also the 
hydrostatic component (which is exp ( — f i iV'p) ,  where p  is the pressure).

3.4. Atomistic Modeling of Extended Defect 
Formation in Ion-Implanted Silicon

The complexity of the atomic level interaction mechanisms involved in today’s semiconduc
tor device processing is a subject of concern for the microelectronics industry, as had been 
already pointed out in the 1997 SIA Roadm ap [191]:

C ontinuum  physics m odels are no longer sufficient below 100 nm. Tools are needed  for the physical and
chem ical processes al an atom ic level.

Furthermore, the discreteness of the channel dopants has been shown to give rise to 
both a shift o f the threshold voltage (as com pared with the prediction from the continuum 
approach) and to an asymmetry in drain current upon interchanging the source and drain 
[192] in addition to the statistical effects [52] discussed in Section 2.1.4.

When studying discreteness and statistical effects for small nanodevices, only an atomistic 
description of the system can provide the necessary results. Jaraiz et al. have shown that such 
a task is well within the reach of present-day atomistic simulation tools, especially within 
the kinetic Monte Carlo approach [70]. They demonstrated the atomic-level simulation of a 
50 nm /7-MOSFET structure, which included the 40-nm S/D extension and half the channel 
region (see Fig. 38). The simulated process flow consisted of a 5 keV, 1014 As cm -2 S/D 
extension implant, a subsequent 70 keV, 1013 BF: cm ' 2 SPI implant and a 10s, 950°C anneal.

(105)

The solubility factor is then

S =  (.?, +  3.v2 -I- 3.v,)/7 

with s2 and the same as without stress (see Eq. [103]) and

(106)

i, =  exp[-j8 /?n ;;]-(exp[2)3( — axy +  cry: +  cr; ,) i^ /3 J

+  exp [2/3(o-,y +  ft, : -  o \ j n ; ; / 3 [

+  e x p [2/3(<7,,, -  cr,: +  o \ v)n;;/3]

+ exp [2/3 -  a  -  0\t)n;;/3i) (107)

P*y =  (f.; +  f ;  -  -  £ £ £ ) / (  1 2 f vf v f ; )

1\ =  ( - £  +  e  +  f :  -  £ £ & ) / (

(108)

where
=  e x p ( - 2 j 3 i I X . . / 3 )  

{j, s  cxp(-2/3il[ '(T .,/3) 

t  =  cx p (--2 /3 n “rrAV/3)
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Figure 38. F ifty-nanom eter N-M OSFHT lubricated as described in the text. The sim ulated region is indicated in the 
figure. R eprin ted  with perm ission from |7(i|. M. Jaraiz. in “T he Encyclopedia on M aterials Science and Technology” 
(K. II. J. Buschow. R. W. Calm. M. C. Flemings. B. Ilschner. F.. J. Kram er, and S. M ahajan. Eds.), p. 7861. 
Pergam on. Boston, 2001. €  2001. Elsevier.

Figure 39 shows a snapshot of the simulation after 25 ms annealing time at which the 
average size of {311} interstitial clusters reaches its maximum. Figure 39(a) and 39(b) are 
plan views of the {311} defects and As implanted atoms, respectively. Figure 39(c) and 39(d) 
are cross-sectional views. Assuming non-amorphizing conditions, microvoids form near the 
surface, whereas interstitials are pushed beyond the As implant range due to the heavy As 
ion mass. The Si interstitials generated by the arsenic implant induce T E D  for the boron 
atoms already present in the channel and deplete the channel to the S/D transition region. 
This effect is known as the reverse short channel effect with detrimental consequences in 
deep submicron devices.

Since we already have discussed atomic-level simulation work on defect-assisted diffusion, 
including transient enhanced diffusion, for boron (Section 3.2) and arsenic (Section 3.1.2), 
and have also discussed in the latter section the basic technicalities of the kinetic Monte Carlo 
approach, we want to concentrate in this section on the evolution of extended defect clusters 
during annealing, which consist o f vacancy clusters or voids and interstitial clusters, which, 
before forming dislocation loops, assume the shape of rodlike {311} defect clusters. We dis
cuss both the use of the kinetic Monte Carlo technique (for void formation, see Section 3.4.1) 
and accelerated dynamics (for {311} formation, see Section 3.4.2). Atomistic methods are 
preferable in this case, since especially for interstitial clusters, not only their concentration 
(which we could model as well within the continuum approach), but also their shape is impor
tant because of the strongly anisotropic growth mechanism, as discussed in Section 3.4.2.

3A. 1. Void Formation in Ion-Implanted Silicon
The increasingly stringent requirements on the quality of crystalline semiconductor substrates 
has continued to fuel fundamental research aimed at optimal control of defect diffusion, 
nucleation, and growth. Commercial silicon wafers currently are grown under vacancy-rich 
conditions to avoid the aggregation of self-interstitials into dislocation loops and other 
microdefects such as the oxidation-induced stacking-fault ring [193], all of which are devas
tating to microelectronic device yield and performance. However, excess vacancies also can 
aggregate during crystal growth to form (111 )-oriented octahedral vacancy clusters (voids) 
[194] of up to several hundred nanometers in diameter [195].

Equivalently, high-dose implantation of heavy ions at elevated temperatures (to prevent 
amorphizatior.) can b a d  to the agglomeration of vacancies in the form of voids, since the 
large momentum of these heavy ions drives the silicon atoms deeper into the substrate, 
leaving behind a vacancy rich region near the surface, where Ihe voids are formed

Voids can act as gettering centers because their interna! surface behaves like a clean 
silicon surface [11]. Voids have also been linked to the degradation of microelectronic device 
performance, particularly gate oxide integrity. Thus, understanding the vacancy :lustering 
process is important to improve the control of void formations, especially in view of the 
potentially increasing use of heavier ions for ihe improved formation of ultrasha.low junc
tions in present-day semiconductor devices [2|.
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Figure 39. Sim ulated atom istic configurations o f the 5U-nm N -M O SFET  device o f  Fig. 38, after a short annealing 
o f 25 ms. (a) and (b) are plan views of the {311} defects and As im planted atom s, respectively, while (c) and (d) 
are their respective cross sectional views. R eprin ted  with permission from [70], M. Jaraiz . in “T he Encyclopedia on 
M aterials Science and Technology" (K. H. J. Buschow, R. W. C ahn. M. C. Flemings, B. Ilsehner, E. J. Kram er, and
S. M ahajan. Eds.), p. 7861. Pergam on. Boston, 2001. © 2001, Elsevier.

For a successful modeling of void growth, an energy model is needed to identity the 
binding energy of vacancies in voids of varying sizes N.  Since voids can grow to diameters 
of many nanometers [195], an analytical model for the binding energy as a function of void 
size is desirable. Such models have been proposed, for example, by Prasad and Sinno [196], 
on the basis of molecular dynamics simulations, and by Jaraiz et al. [197], based on scaling 
arguments. The binding energy for a vacancy cluster (void) of size N  is usually defined as
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the energy difference between two configurations for N  vacancies, a single vacancy plus a 
size-(/V — 1) void, and a size - N  void.

In Prasad and Sinno's work, a poweriaw fit demonstrates N 2/3 (exponent =  0.64) scal
ing behavior across the entire size range considered. These results indicate that a pheno
menological representation o f  cluster energies; that is, E JN =  a ( T ) N :>:' is appropriate even 
for very small clusters, where cr(T)  is an effective surface energy. For the effective surface 
energy of larger clusters, they found a ( T )  =  (1.05 -  1.69 x 10_47’) J /n r .

Jaraiz et al. [197] have assumed the same /V2/3 scaling for the void energy with the argu
ment that the energy should be proportional to the number of vacancies at its surface. Taking 
3.65 eV as the vacancy formation energy at the free surface ( N  -> o o ) ,  and a prefactor to 
fit the experimental activation energy for the divacancy of 1.2 eV, they approximated the 
vacancy binding energy by [197]

£ , L  =  3.65 +  4 . 9 \ (N -  1 , : : V ' |  (110)

However, this expression carries no tem perature dependence, which Prasad and Sinno have 
shown to be crucial for a good description of, for example, the experimental void aggregation 
onset temperature [196], where the reduction of the effective surface free energy at high 
temperatures due to the significant entropic contribution was an important ingredient for 
the correct simulation of void growth.

The assumption of a tem perature-independent cluster binding energy might by the reason 
why in Ref. [197], the simulation of post-implant void growth after a 100 keV, 10lh cm-2 As+ 
implant [198] predicts a depth distribution of voids in good agreement with experiment, but 
an average void size smaller than in the experiment. However, this is difficult to say since 
there is considerable uncertainty about the tem perature in the experimental work. Another 
possible explanation suggested in Ref. [199] is that smaller clusters should have a larger 
surface energy due to their curvature and, therefore, are less stable, which is consistent 
with the findings of Prasad and Sinno [196], where the surface energy a ( T )  is found to 
be constant for cluster sizes N  > 100, but increases (smoothly) from the N  =  100 value of 
1.1 J/m 2 to around 1.3 J /n r  for very small clusters.

Figure 40(a) shows a cross-sectional view of the 100 keV, 1016 cm 2 As+ implant [1.98]. 
Beam heating with a high flux ion beam was used to prevent arnorphization. A 45 nm region 
can be identified, extending from the surface, which contains a high density of voids followed 
by a band o f  dislocations extending to about 200 nm. The KMC simulation, shown at the 
same scale in the bottom figure, predicts the formation of voids and interstitial clusters within 
the same depth ranges under those implant conditions, but with a different size distribution 
as discussed above, using the expression for vacancy clustering (or void formation) binding 
energy from Eq. (110).

3.4.2. Accelerated Dynamics Simulations of Interstitial-Cluster Growth
Besides void formation through vacancy clustering, self-interstitials can in a similar fashion 
agglomerate subsequent to ion implantation and form {311} rod-like interstitial clusters and 
dislocation loops. Once they have formed, they control the dopant diffusion in ion-implanted 
silicon by providing traps for and sources of mobile interstitials [71, 74, 156]. Understanding 
the energetic and dynamical properties of interstitial defects is thus an essential step in accu
rately modeling the time evolution of dopant profiles [74, 200]. Recent theoretical studies 
of interstitial defects [75, 201-204] elucidate their growth path: interstitial clusters become 
more stable by adding more interstitials. This is consistent with the thermal behavior of 
boron transient enhanced diffusion with or without large-scale interstitial defects [71, 156]. 
However, the microscopic understanding of the critical steps leading to the cluster growth is 
limited. Cost for atomistic simulations grows prohibitively for the increasing complexity of 
the system. Furthermore, the long time scale involved with the diffusion and nucleation is 
not easily achieved by conventional molecular dynamics simulations involving many degrees 
of freedom.

Although the use of kinetic M onte Carlo simulations for the study of {311} formation is 
well capable of demonstrating the discrete nature, geometry and orientational disorder of



Process Simulation for Silicon Nanoclectronic Dcviccs 201
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Figure 40. Cross-sectional T EM  o f a beam -heated , 100 keV. I(),f’ cm - A s ' im plant [198], com pared with the 
corresponding KMC sim ulation, drawn to the sam e scale (units in nm). R eprin ted  with perm ission from |199], 
M. Jaraiz et al.. Muter. Sci. Scmicond. h o c .  3, 59 (2000). © 2000, Elsevier.

the defects in space [70] (see Fig. 41), a more detailed description is necessary to understand 
the growth mechanism of the defects, which is responsible for their shape and size, and thus 
produce a sensible event catalog for the KMC simulations.

In order to model the necessary longer time scale with atomic resolution, Birner et al. 
[205] have applied the parallel-replica method (Section 2.2.3) to study the growth of silicon 
interstitial clusters. The silicon-silicon interaction is described using a classical potential [206]
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Figure 41. (a) Plan view TEM  m icrograph [ 156] and (b) KM C sim ulation o f a 40 keV 5 x 1013 cm : silicon implant 
after a 30 s annealing at NOO'C. exhibiting {311} defects. R eprinted with perm ission from  [70]. M. Jaraiz. in “The 
Encyclopedia on M aterials Science and Technology'" (K. H. J. Buschow, R. W. Calm . M. C. Flemings, B. Ilschner,
E. J. Kramer, and S. M ahajan. Eds.), p. 7861. Pergam on, Boston. 2001. © 2001, Elsevier.
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of the modified embedded atom method (M EAM ) form. The cluster growth was modeled 
by (1) coalescence of randomly distributed interstitials for small clusters and (2) mobile- 
interstitial capture by an /^interstitial cluster. Local minimum configurations and transition 
states extracted from collected trajectories of many parallel replica runs provide microscopic 
models for the interstitial-diffusion and interstitial-trapping processes. Using between 4 and 
32 processors (dephasing time 1-2 ps), simulations times as long as 0.1 /is  were achieved, 
allowing accurate estimates of dynamical quantities such as diffusion constants of mobile 
interstitial defects.

Small interstitial clusters: n = 2 — 4. Randomly distributed isolated interstitials coalesce 
into small clusters. For example, di-interstitial I2 clusters are invariably formed when two 
interstitials are located within the third-nearest neighbor sites of a silicon lattice. At 500 
and 800 K, four interstitials in a 512-atom unit cell form compact clusters, after making 
several interstitial jumps. With the used potential, the simulations predict a single-interstitial 
diffusion constant of D,  = 4 .5  x I 0 ' f) c n r s " 1 exp(0.2 eV / ( k BT)) .

I : clusters are found to be as mobile as / , 's  with a migration energy of 0.1 eV. This is 
consistent with the ah initio and tight-binding predictions that / : 's are important mobile com 
ponents in interstitial-supersaturated silicon [202]. The formation of a tri-interstitial cluster 

occurs in two steps: (1) formation of / : and (2) its subsequent capture of an interstitial. 
Among the local minimum structures identified is the compact / 3 with Td symmetry ["5, 204].

Metastable precursors dominate the formation of an /4 cluster. Figure 42 shows the local 
minima found during a parallel replica run at 800 K of the / 4 formation. Within (1.2 ns, a 
metastable / 4 cluster is formed, releasing 5.6 eV. Once a metastable /4 cluster is formed, 
transitions between related structures and diffusion of the cluster occur for 2 ns. After about 
300 transitions, the cluster falls into the groundstate configuration (D 2(/ symmetry) whose 
core structure is shown in Fig. 42.

About 1 eV is released when the ground-state / 4 is formed by bonding rearrangements 
from metastabie precursors. Both I2 and / .  clusters are precursors of an 1X cluster, consistent 
with interstitial cluster growth models of small clusters [74, 200].

The classically simulated /4 ground state is in good agreement structurally and energeti
cally with ah initio calculations [75, 203]: a low 1.4 eV formation energy versus the 1.5 eV 
ah initio result. Both experiment [74] and calculations [75, 201, 203) predicted the U~D2(I 
to be extremely stable. Indeed tens of nanosceconds additional simulation at both 500 and 
800 K find no lower-energy state.
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Figure 42. Form ation energy o f a four-interstitial defect during a parallel-replic run at S00 K and the core structure 
o f the ground h -D lt, du ste r. The starling configuration consists of four random ly d istributed  7~-interstitials in a 
512-alom  cell. A fter 21) interstitial jumps, a rnetastahle / ,  precursor is form ed, leleasing  5.4 eV (off the scale) 
O nce the transition to  /_,-/X , occurs, no more transitions are observed within 10 ns. R eprinted with permission 
from [20S] S. B irner et al.. Solid State Co/nnum. 120. 27^ (2001). © 2001, Elsevier.
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Figure 43. (.'ore structures of / s local minim a identified by parallel-replica runs. T he cap tu rcd  interstitial is shown 
as solid circles. Note that (a )-(c ) contain an intestitialcy o r split interstitial. Using a M E AM potential, (a) is the 
ground structure. M etastablc structures (h )-(d ) are typically found al the m om ent o f interstitial capture. Gray 
atom s denote  the structure that rem ains intact a fte r form ation o f U by an in terstitial capture. R eprinted
with permission from [205], S. B irncr et al.. Solid State C om nw n. 120, 279 (2001). O  2001. Elsevier.

Intermediate interstitial clusters: n =  5 - 2 0 .  For the simulation of interslitial-eluster 
growth larger than n = 4 ,  a different approach was used. Starting configurations combined 
(1) an interstitial cluster /„ with (2) an /, o r / : placed at a distance far from the existing 
cluster. The final cluster , or Iin 2 is then used as the initial cluster for subsequent simula
tions. These initial configurations are chosen to simulate the assumption that every reaction 
can be separated into subsequent binary reactions as outlined in Section 2.1.1, an approxi
mation also used in kinetic Monte Carlo methods (Section 2.2.2).

The simulations of [205] find in general that the cluster growth occurs by (1) interstitial 
capture al the cluster boundaries and (2) subsequent local rearrangements of the core atoms 
to lower-energy structures.

As an example, the starting configuration of a compact / 4 cluster captures after several 
interstitial hops an additional interstitial present in the initial structure. Figure 43 shows 
four low-lying core structure of / 5 identified during the parallel-replica simulations. With 
the classical M EAM  potential, Fig. 43(a) is the ground state which is found most frequently 
independent of the initial configurations. The metastable structures Fig. 43(b)—43(d) are 
characteristic transient structures found at the early stage of the interstitial trapping process. 
Interestingly, the / 4 core structure remains intact in / 5. Further interstitial injection into the 
cell containing a compact /5 results in the formation of compact clusters as large as n = 20.

Figure 44. Schematics for interstitial trap[ping by an elongated cluster: (a) an interstitial (solid circle) is placed at 
the nearest hexagonal site; and (b) an extra chain is form ed by concerted  m otions by an interstitial and the atom s 
at the end. The gray atom s denote ; 110) interstitiaIcies constituting a chain. T he transition from (a) to (b) releases 
2 eV. Reprinted with perm ission from |205], S. B irner et al.. Solid State Coninutn. 120. 279 (2001). <£!) 2001. Elsevier.
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Figure 45. (a) Schematics for interstitial trapping by an e longated  cluster. An interstitial is first trapped  in the 
m iddle o f the chain. The solid line is a trajectory o f the interstitial m aking jum ps in the [110] chain directon. 
Eventually, the interstitial is incorporated into the chain end indicated by the arrow  on the right, (b) Local m ininum  
configuration, when the interstitial is located in the dolled  region o f (a). R eprinted with perm ission from  [2)5], 
S. B irner et al.. Solid State Comnutn. !20, 279 (2001). €> 2001. Elsevier.

Using ab initio calculations, the found state configuration changes with size: compact :or 
small cluster and, for larger clusters, interstitial chains forming extended {311} defects ['5]. 
Chainlike, elongated clusters are local minimum structures of any interstitial cluster larger 
than n — 3. The stability of interstitial chains is achieved by maximizing the ratio of fourf)ld 
coordinated atoms to the number of interstitials incorporated into a cluster. The elongaed 
clusters are basic building blocks of extended {311} defects [75, 207, 208]. Therefore, he 
growth mechanism o f  elongated clusters is an important step in understanding the formaton 
of extended {311} defects.

The role of the shape of interstitial traps is investigated by performing parallel replica 
simulations using chain-like clusters as nuclei for cluster growth. Figure 44 shows the chiin 
structure before and after interstitial capture. By concerted motions, an interstitial can be 
easily trapped at the chain end. In Figure 44, the interstitial chain extends from n =  5 to 6. This 
extension releases about 2 eV. Many trapping paths for various trajectories of an incomng 
interstitial were found. Once a metastable elongated cluster is formed, the transition fnm  
an elongated shape to a compact one would require bond rearrangements involving rmny 
atoms, thus becoming kinetically inaccessible within typical simulation times of 1-10 ns.

Although the most energetically favorable trapping occurs at the chain ends, the active 
capture sites extend along the entire interstitial chain. Figure 45 illustrates a growth mech
anism for an elongated cluster by an interstitial capture in the middle of a chain, folloved 
by interstitial diffusion steps to the chain end. Seven-member rings surrounding a chain ire 
efficient interstitial trap sites with an interstitial-binding energy of I eV. The interstitial cip- 
tured in the seven-member rings diffuses by making random jumps in the chain directnn. 
Eventually, the interstitial settles at the chain end, releasing an extra 1 eV.

The interstitial capture mechanisms of Figs. 44 and 45 lead to the elongation of intersti ial 
chains. Furthermore, they present possible paths for the growth of planar {311} defects. 
When two interstitials captured at seven-member ring sites interact during the random junps 
in the chain direction, they form a stable, immobile structure attached to an existing chiin. 
This provides new trap  nuclei for an additional interstitial chain parallel to the existng 
interstitial chain.

4. SUMMARY
In this article, we have discussed how the established process simulation toolset of 
“Technology Com puter Aided Design" (TCAD), which was developed for the sim ulatiorof 
microelectronic systems, needs to evolve in order to be capable of simulating nanoelectroiic 
devices. Due to the nanom eter dimensions of current and especially future devices, rew 
effects based on the atomic-level structure need to be included into the modeling, whch 
until recently consisted nearly exclusively of classical continuum models.

We have started by summarizing the traditional continuum diffusion reaction mocels 
(Sec. 2.1) and have described novel work relating the atomic hopping mechanisms to he 
macroscopic kinetic param eters (with and without applied stress field, Section 2.1.3) md 
calculation of those param eters  with atomic simulations, especially ab initio techniqies 
(Section 2.3). We have argued that this atomic-level detail, when included into the continuim 
modeling, can lead to efficient models that are valid well into the nanoregime. W here thise
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models finally fail, atomic-level process simulation becomes necessary (Section 2.2). As an 
introduction into this field, we have first reviewed transition state theory, which is the basis 
of most approaches to describe the kinetics of a system and becomes essential on the 
atomic level (Section 2.2.1). We then have discussed the currently predominant atomistic 
process simulation methods, which are the kinetic Monte Carlo (Section 2.2.2) and acceler
ated dynamics methods (Section 2.2.3) and have suggested the use of a novel technique by 
Henketman and Jonsson [97], which is an event-catalog-free kinetic Monte Carlo approach 
(Section 2.2.4), as a possible technique to combine the best of both worlds for nanoscale 
process simulation.

For the calculation of kinetic parameters necessary for continuum and KMC methods, we 
have described the evolution from the (by now mostly outdated) drag method (Section 2.3.1) 
to the novel, much more accurate transition-state theory based methods, especially the 
nudged-elastic band m ethod (Section 2.3.2) and the dimer method (Section 2.3.3).

Finally, we have demonstrated the application of these methods to the field of nano- 
scale process simulation and the impact that they can have. This started from calcula
tion of kinetic parameters for continuum modeling (Section 3.1)—we discussed nitrogen 
(Section 3.1.1) and boron diffusion (Section 3.2.1) and capture radii in silicon (Section 3.1.2) 
as examples—and continued with the definition o f  a continuum model for boron nanoclus
tering (Section 3.2) and examples for the effect o f stress on different diffusion mechanisms 
(Section 3.3). Finally, atomic-level process simulation has been dem onstrated for the growth 
of nanoscale defect clusters after ion implantation, using the kinetic Monte Carlo approach 
to study nanovoid formation (Section 3.4.1) and accelerated dynamics for self-interstitial 
cluster growth (Section 3.4.2).

Although these examples are front-end processes from the fabrication of silicon nano- 
electronic devices, the discussed concepts are quite general and are applicable to a wide 
variety of processes with focus on the ones involving temperature-activated diffusion and 
reaction events. In summary, it looks as if the path of process simulation towards a fully 
atomistic description thus has been paved, although the definition of a trustworthy standard 
methodology seems still to be a task of the future.
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1. INTRODUCTION
Recently, nanotechnology (clusters, molecules, and supramolecules on a scale of 1—100 nm)) 
has attracted considerable attention from scientists, as it certainly will play an important role: 
in a broad range of technological fields such as semiconductor manufacturing, materials sci
ence, chemistry, biology, genetics, and medicine [1]. Two basic approaches for creating nano
structures are the top-down approach and the bottom-up approach. The top-down approach 
involves molding or etching materials into smaller components. This approach has tradi
tionally been used in making parts for computers and electronics. The bottom-up approach 
involves assembling structures atom-by-atom or molecule-by-molecule.

In parallel with the progress of more effective fabrication technologies, theoretical study o f  
promising molecular and cluster structures based on quantum mechanical calculations is also* 
a key factor in the design of new nanomaterials with desirable physical and chemical charac
teristics. When scientists perform research, they should carefully consider what benefits can  
be achieved from their investigations. To apply the nano to different technologies, experi
mentalists should make much effort to bring new ideas and produce nanocomposr.es with 
desired properties. Theoreticians can aid in this search by narrowing the field through accu
rate prediction of the chemical and physical properties of different nanomaterials. Tius, the 
nano is a field where theory can play a significant role hand-in-hand with experiment C om 
putational materials science is rapidly becoming an essential tool for investigation of i  variety 
of physical and chemical properties of nanomaterials. The value of simulation can be evalu
ated based on its ability to rapidly and accurately predict the properties of novel functional 
nanomaterials in a more cost-effective way than is experimentally possible. Instead of synthe
sizing and testing a large number of potential candidates, it is possible to use the combinato
rial computational chemistry approach to screen a large number of candidates, including very 
expensive elements. Experiments only need to be performed on a small number of tne most 
promising candidates [2j. Using powerful computers and highly accurate methods, we can 
accelerate the realization of novel nanomaterials and propose these materials for different 
applications.

The basic principle of first-principles simulations is accurately determining the tota. energy 
of an investigated system. There is a cost scale to computational materials science because so 
many physical properties are related with the total energies. While just one piece of :he the
oretical tool is necessary to calculate all the physical properties that are related to t ie  total 
energies, completely different pieces of experimental tools are required to measure each class 
of physical properties of a material [3]. This represents an enormous advantage of computa
tional methods over experimental measurements. Simulations are easy to perform, even for 
very complex systems; often their complexity is no worse than the complexity of the physi
cal description. As the capabilities of computers expand, simulations of many-body systems 
will be able to treat more complex physical systems at higher levels of accuracy. Thus, the 
ultimate result of an extremely wide range of scientific and engineering applications will 
undoubtedly be profound.

Despite a remarkable miniaturization trend in the semiconductor industry, in t ie  next 
10-15 years, conventional Si-based microelectronics likely faces fundamental limitations 
when feature lengths shrink below 10 nm. Thus, molecular electronics has attracted consider
able attention from scientists and the semiconductor industry as a “postsilicon technology” 
for future applications and trends in advanced com puter electronics [4]. The main challenge 
in molecular electronics is to establish that single molecules or a finite number of self- 
assembled molecules can perform all the basic functions of conventional electronics compo
nents such as wires, diodes, and transistors [5]. There have been significant advances in the 
fabrication and demonstration of molecular electronic wires [6. 7], molecular diodes, and 
two-terminal electrical switches made from single molecules [8, 9]. In parallel vith the 
progress of more effective fabrication technologies, theoretical studies are also an important 
part of the molecular electronics because they can directly propose and design novel nano- 
devices as well as enrich the experimental intuition. For example, the molecular electronics 
dates to the original theoretical work in which Aviram and Ratner have revealed the possi
bility of an organic molecule functioning as a molecular rectifier [10].
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O ur group developed the TA R A B O R D  code enables to simulate the transport properties 
based on first-principles calculations [11]. Despite the fact that the first-principles meth
ods are either computationally expensive, they are important because they can be used to 
propose novel nanodevices as well as enrich experimental intuition. In this program, the 
nonequilibrium Green 's  function (N E G F) approach for first-principles modeling of current- 
voltage characteristics of molecular electronics devices has been used. The molecular device 
is modeled on atomic level and the electronic structures of the studied systems will be 
described using the density functional theory (DFT). This approach includes the following 
steps:

1. Dividing the systems into electrode and scattering region.
2. Determining the one electron D F T  Hamiltonian and overlap matrices.
3. Setting up the NEGF, determing the charge density.
4. Calculating the effective potential.

Hamiltonian and the overlap matrices corresponding to the gold contacts, the surface 
Green 's functions describing the semi-infinite electrodes attached to the molecules from the 
left and right sides are derived. These surface G reen’s functions together with the Hamiltoni
ans and overlap matrices of the molecule, and the molecule-eleetrode part, are then used to 
determine the conductance of the system using the Landauer approach [12]. The location 
of the Fermi level related to the molecular level is directly calculated, taking into considera
tion the charge transport between molecule and metal contacts, to obtain an accurate value 
of the conductance.

2. THEORETICAL INVESTIGATION OF TRANSPORT IN 
NANOMETER-SCALE SYSTEMS

In this section, we discuss a theoretical model based on the nonequilibrium G reen ’s function 
approach in order to calculate transport properties of nanometer-scale systems. The method 
is presented for the particular case of contact-molecule-contact (i.e., double-terminal sys
tems). However, our approach is general and can be applied equally well to three- and mul
titerminal cases. Using this approach, one is able to characterize and predict the transport 
properties of basic nano- and molecular electronic components.

The main functional parts in nano- and molecular electronics applications are a few nano
meters across. Two examples are depicted in Fig. 1. Figure 1(a) shows a polythiophene 
molecule and parts of the gold nanocontacts to which the molecule is attached. The nanocon
tacts are semi-infinite in extent, that is, arc bounded only by the molecule sandwiched 
between them. In Fig. 1(b), part of an infinitely long carbon nanotube is shown. The nano
tube is deposited on a double-crystal substrate, hence its “left” and “ right" parts are subject 
to different doping effects. Applying bias will cause current to flow through these systems.

Making use of Landaucr's formalism [ 13], it is rather straightforward to calculate the quan
tum conductance of an open contact-molecule-contact system, in which the contacts are 
semi-infinite. If we consider semi-infinite quasi-one-dimensional ( 0 1 D) nanocontacts, then

(a)

Figure 1. Two typical exam ples of nano- and m olecular electronic com ponents, (a) A polythiophene molecule 
a ttached  In two gold nanocontacls via sulfur atom s, (h) A carbon nanolube deposited  on ;i double-crystal substrate.
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the band structures of the nanocontacts will also play an important role in calculating conduc
tion. This issue has practical importance as with the advancement of nanolithographic tech
niques, contacts whose cross sections lie in the nanometer-scale are experimentally realized 
nowadays. When two such nanocontacts sandwich a molecule as in Fig. 1(a), the conduction 
of the whole system can be calculated by deriving the probability for an excitation well inside 
the “ left" nanocontact to travel first to the left contact's “surface,'’ then across the middle 
junction onto the “surface" of the "right" contact, and finally well within the right contact. 
The problem of calculating the transition probability is conveniently solved by calculating the 
“surface G reen 's  functions" of the left and right contacts, and by “attaching" them to the 
G reen ’s function of the middle junction [14].

For the system of Fig. 1(b), for example, the left and right contacts are the left and right 
parts of  the nanotube located “far enough" from the interface of the substrate crystals, and 
the middle junction part is the middle part of the nanotube that joins the left side to the right 
side. By mentioning “far enough" we mean that the effects of the disturbance caused by the 
interface of the substrate crystals are negligible for the left and right parts of the nanotube. 
These effects, however, are not negligible for the middle junction part. In o ther words, the 
middle part is long enough to effectively screen the disturbance [15].

In the sections to follow, we first briefly explain our general approach as implemented in 
the computer program TA RA BO RD  [11] and then present typical applications of the 
method. The method presented here is independent of the particular approach used for cal
culating the electronic structure of the system. Although the electronic structure data are the 
necessary prerequisite input of our method, the method is capable of using any level of accu
racy. That is, for example, ab initio and tight-binding descriptions can both be used. This will 
be clarified in the following sections.

2.1. Calculating Transport Using Nonequilibrium 
Green’s Function Approach

The nonequilibrium surface Green's function matching (NSGFM ) employed here for trans
port calculations is a generalization of the surface G re en ’s function matching approach 
[14, 16] that was previously applied to some nanotube junctions under equilibrium condi
tions, that is, without external bias [17]. Both the equilibrium and nonequilibrium surface 
G reen ’s function matching formalisms arc independent of the particular description of the 
electronic structure of the system. In particular, they can be applied to ab initio o r semiem- 
pirical model Hamiltonians. Using tight-binding description, we have previously applied this 
method to various carbon nanotube systems [ 15, 18-21 ]. Generalization to ab initio descrip
tion with nonorthogonal basis makes it possible to calculate transport characteristics of 
any desired contact-molecule-contact system with high accuracy [11]. For example, we use 
ab initio and tight-binding modelings to calculate transport characteristics of a polythio- 
phene-based molecular device, as well as some nanotube-based devices.

The NSGFM method is schematically shown in Fig. 2. It is seen that an excitation far inside 
the left contact travels to its surface after passing through successive layers. After tunneling 
across the middle junction, the excitation travels from the surface of the right contact to 
layers far inside. We make use of the NSGFM m ethod in order to calculate the conductance 
and I-V characteristics of an open system that consists of a general finite system (e.g., the 
functional molecule) attached on its left and right hand to two semi-infinite contacts or 
electrodes. The m ethod applies to the genera! case of nonorthogonal basis. In Fig. 2, the left 
and right contacts are divided into successive layers. Each layer interacts only with its nearest- 
neighboring layers and includes the minimum possible number o f  unit cells of the electrode. 
Moreover, the middle molecular junction is assumed to have direct interactions only with the 
surface layers of the left and right contacts.

As is clear from Fig. 2. the general system that we would like to consider for transport cal
culations is open. This means that the contacts, that are responsible for applying bias to the 
functional middle part and to let the current pass through the system, are semi-infinite. 
The mathematically open system corresponds to the physical case of macroscopic contacts 
attached to a nanometer-scale functional part.



Electron Transport in Nanostruclurctl Systems—Ah Initio Study 2 1 5

Source
C ontact

VG Drain
C ontact

Figure  2. Schem atic prcscntalion o f the nonequilibrium  surface G reen 's function m atching approach.

The transport calculation starts with obtaining the Hamiltonian and overlap matrices of 
the system in any localized basis set. As mentioned before, the exact method and level of 
accuracy of electronic structure calculation used to provide the Hamiltonian and overlap 
matrices is independent of the transport calculation. Using these matrices, we first calculate 
the transfer matrices corresponding to the left and right electrodes [22, 23]. Next, the surface 
G re en ’s functions of the left and right electrodes are calculated [11, 14, 16] that effectively 
close the open contact-molecule-contact system, as depicted in Fig. 3.

The surface Green's functions, together with the Hamiltonian and overlap matrices cou
pling the middle molecular junction to the left and right electrodes, are then used to cal
culate the self-energies 'Hl and of the left and right contacts. The conductance of the
system. 1\ is then obtained through [11, 241

r (£ ,  V)  =  Tr[\'KC,rLG ' l

where i) r< =  X, f< -  ^  R and G  is the total G reen ’s function of the system projected to the 
molecular junction space [11, 14, 16]. The conductance ! ' (£,  V)  indeed depends on both
the (carrier) energy E and the bias voltage V,  as all the matrices used in the definition of
conductance depend on E and V .

The current 1(V)  is then obtained by integrating F ( £ ,  V)  taking into account the Fermi- 
Dirac distributions of the left and right contacts [25].

In the following sections, we will apply the implementation of the method in the computer 
program TA RA BO RD  [11] to some particular nanosystems, namely, doped nanotube junc
tions as well as nanoelectromechanical switches and sensors based on bent nanotubes. These 
applications are based on semicmpirical tight-binding modeling of the systems. We will also 
show typical applications using ah initio descriptions of the system.

Source surface 
Green's function

¥ DS

Molecular
Junction

Drain surface 
Green's function

Figure 3. The closed system corresponding to  the open  system of Fig. 2. obtained via calculating the surface G reen 's 
functions of the electrodes.
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2.2. Negative Differential Resistance and Rectifying Behavior 
of Doped Nanotube Junctions

Carbon nanotubes are probably the most-studied materials for various nanotechnolog' appli
cations, including nanoelectronics. The possibility of doping carbon nanotubes with akali o r  
halogen atoms has been the subject o f  experiments [26, 27] and theoretical works [28, 29]. 
Doping carbon nanotubes with donor and acceptor atoms, as depicted in Fig. 4, is cne way 
to produce a “nanotube junction,” that is, a nanotube in which the valence bands o f  he left 
and right sides are shifted with respect to each other [18, 30].

In Fig. 4, charge transfer to/from the nanotube is responsible for this shift. Another pos
sibility is the one shown in Fig. 1(b), where the two substrates on which the nanctube is 
deposited are assumed to have different work functions. This will cause the charge transfer 
to/from the left and right sides of the nanotube to be different and a shift of the -alence 
bands to be present.

We use a simple one orbital per atom tight-binding Hamiltonian to model the nano- 
tube [18]. The on-site energies are determined by the external bias and the initial shift; of the 
valence bands, and the hopping terms are a nonzero constant (taken as unit of energy) only 
for nearest-neighboring sites. As an example to illustrate the effect of doping, in the present 
work, initial shifts 0.2 and 0.1 and 0.3 and 0.0 are assumed in the calculations for the eft and 
right parts of the metallic and semiconducting tubes, respectively. These values determine 
the initial position of chemical potentials with respect to the density of states when here is 
no external bias. The external bias will then determine the relative shifts of the new chemical 
potentials determined by the dopings [18].

The I ( V )  characteristics at tem perature T  =  0 of (4,4) and (3,3) armchair tubes, as well 
as those of (7,0), (5,0), and (3,0) zigzag tubes are depicted in Figs. 5(a) and 5(b) These 
curves are obtained by assuming an external step potential at the junction, without aiy self- 
consistent calculation of the potential drop. For the (3,0) tube, however, the curve obtained 
from a self-consistent treatment is also given for comparison. One can notice that the current 
from the self-consistent calculation is larger than the current o f the step potential calcilation. 
The smoothening effect of the self-consistent treatment of the (3,0) tube is of the sama order 
as that of a larger tube (7,0). Therefore, we expect that the self-consistent calculation; o f the 
current for larger tubes also differ slightly from the step potential ones.

It is seen from Fig. 5(a) that for the armchair case, there are regions of negative deferen
tial resistance (NDR). They arise as a result of the reduction of conduction under cert-iin bias 
voltages that cause the channels with different rotational symmetries to coincide [It], Tun
neling between such conduction channels are prohibited. After the bias voltage readies the 
width of the (pseudo) gap of these metallic tubes, o ther channels start to conduct, and hence 
the current increases. We can notice an enhancement of the NDR as the tube radus gets 
smaller. The NDR feature has a wide range of applications, including amplification, logic, 
and memory', as well as fast switching [31]. The unique character of the N D R of metallic 
nanotubes is that its mechanism, that is, the selection rule involved, is a direct consequence 
of the rotational symmetry of carbon nanotubes and is different from the mechanism *espon- 
sible for NDR in Esaki diodes and resonant tunneling structures. As the main cause (f N D R  
is the rotational symmetry selection rule between the eigenstates of bulk systems on eft and 
right, we do not expect the assumption of sharp potential drop to modify qualitathely the 
results of our calculations.

Next, we consider the case of zigzag tubes in Fig. 5(b). Although there exist regions 
of N D R  for the (3,0) metallic zigzag tube, the I ( V )  characteristics of (7,0) and (5.0)

Figure 4. A  doped nanotuhc junction generated  by inserting donor and acceptor atom s, lor example, a and / ,  
inside nano lube.
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Figure 5. / ( I ’) characteristics o f som e doped nanotube junctions o f metallic (a) and sem iconducting (b) nanotubes. 
I is in units o f \{2e/h) hopping] and V  is in units o f [hopping] [18].

semiconducting zigzag tubes do not contain regions of NDR. However, there exists a region 
of zero current for nonzero potential differences in the I ( V )  characteristic of these semicon
ducting tubes, which is asymmetric with respect to the sign of the bias. This arises from the 
asymmetric modification of the gap of these tubes due to the initial dopings. Because of the 
asymmetry of its f ( V )  characteristic, the junction of doped semiconducting tubes can func
tion as a rectifier in much the same way that an ordinary p-n  junction is used for rectification, 
provided that the difference between the left and right initial dopings is large enough.

2.3. Nanoelectromechanical Sensors and Switches Based 
on Bent Nanotubes

The interrelationship of the electronic and mechanical properties of carbon nanotubes 
[32-38] gives rise to natural speculations for possible applications. It has been shown both 
experimentally [39] and theoretically [40, 41J that the reversible bending of nanotubes can 
be used to alter their conduction, which, in turn, may be used in nanoelectromechanical 
switch/sensor applications. For calculating I (V) ,  we again use a tight-binding formulation but 
employ of a four orbital per atom parameterization introduced by Xu et al. for carbon [42]. 
O u r  aim is to investigate the interrelationship of mechanical response and transport proper
ties of typical metallic and semiconducting carbon nanotubes [19]. We use the general for
malism introduced earlier, in order to derive the I ( V )  characteristics of the bent nanotubes.

To obtain the relaxed structures under bending and to calculate transport properties, we 
consider parts of a (6,6) armchair and a (10,0) zigzag nanotubes that contain 972 and 940 
carbon atoms, respectively. The diameters of the (6,6) armchair and (10,0) zigzag nanotubes 
are 8.1 and 7.8 A, respectively. The lengths of these nanotube portions are 98 A. Consid
ering the large num ber of atoms in the systems that makes ab initio geometry optimiza
tion formidable, and taking into account the disadvantage of using classical potentials due 
to ignoring hybridizations, we choose the four orbital per atom tight-binding approach of 
Xu et al. for carbon [42], both to obtain the optimized geometries and to calculate the 
electronic/transport properties. Geometry optimizations are performed via the O(N) density- 
matrix electronic structure calculation method of Li et al. [43], combined with the Broyden

Figure 6. O ptim ized geom etries o f (fi.ft) (;i) and ( 10,0) (b) nanotubes under different bending angles [!*•)].
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Figure 7. / ( I ') characteristics of the bent nanotube structures of Fig. ft [ 19].

minimization scheme [44], within the previously mentioned tight-binding approach. The opti
mization of the bent structures proceeds as follows. For successive bending angles, while 
fixing eight carbon rings (96 atoms for the armchair case, and 80 atoms for the zigzag case) 
at each end of the nanotube, the structure is optimized such that the maximum force acting 
on the unconstrained atoms becomes less than 0.05 eV/A. The results of geometry optimiza
tions are depicted in Fig. 6.

For calculating conductance, two semi-infinite perfect nanotubes (i.e., “leads’"), are 
assumed to be attached to the two ends of the bent region. When a bias voltage V  is applied 
to the bent region, the chemical potentials of the two leads are assumed to be pinned it V 12 
and — V / 2 .  This determines the shifts o f the band structures and density of states of the leads. 
This is achieved by shifting the on-site elements of the tight-binding Hamiltonians of the two 
leads by V / 2  and — V / 2 .  Within the bent region, however, the on-site shifts are determined 
by the potential drop pattern. As for the functional form of the potential drop, which is 
necessary in calculating / ( V )  characteristics, we assume a linear drop across the bent region. 
Although self-consistent calculation of the accurate pattern of the potential drop is possible 
in principle [15, 18], applying this approach to the bent nanotubes of this study is currently 
formidable because of the large number of carbon atoms involved. O ur assumption of linear 
drop is justified by the observation that, as we shall see shortly, the deformations within the 
bent nanotubes are distributed more or less uniformly.

The I (  V )  curves are depicted in Fig. 7. From this figure, it is evidently seen that as the 
bending angle increases, the current passing through the bent armchair (6,6) tube decreases, 
while that of the zigzag (10,0) tube increases. This difference is caused by the fact that the 
localized states produced as a result o f bending can increase the tunneling probability for the 
zigzag tube but not for the armchair tube, whose transmission is restricted by the limited 
number of channels of  the leads within their pseudogap [19].

The results of Fig. 7 can be used for designing nanoelectromechanical sensors and 
switches, as there is evidently a correspondence between the bending angle and the current 
that passes through the nanotubes at constant bias. In particular, the current through the 
semiconducting nanotube can be switched on or off depending on the bending angle.

3. STRUCTURAL, ELECTRONIC, AND TRANSPORT PROPERTIES 
OF “ENAMEL” MOLECULAR WIRE

3.1. Basic Concepts of “Enamel” Molecular Wire
The wire is a very important component in molecular electronics because it can be used as a 
connection between a metal electrode and o ther functional molecules, such as a molecular 
diode or transistor, to create complex molecular circuits. It is also important that the molec
ular wire should have metallic characteristics. Among the different candidates for molecular 
wire, the conducting polymers are very attractive materials for several reasons: they can be
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synthesized with highly controlled length: their electrical conductivity can he control over the 
full range from insulator to metal hy chemical or electrochemical doping [45): and they can 
he chemically bonded, without changing of their electronic properties, with other functional 
molecules to create circuits with more complex functionality. To prevent the possible inter
action between different molecular wires it would be better if a single polymer chain were 
to be encapsulated into a bulky insulated structure and hence forming a molecular enamel 
wire. The “molecular enamel wire" concept, in which insulators are placed around a con
ducting center, was first proposed by Wada et al. [46]. The authors also suggested that the 
“molecular enamel wire" would be one of the key concepts for realizing a high-performance 
molecular supercomputer [46].

One of the possible approaches for using isolated molecular wires for the realization of this 
concept is the formation of a self-assembled supramolecular complex between the conduct
ing polymer and cyclic cyclodextrin (CD) molecules as shown in Fig. 1. CDs offer not only 
the roles of filters and sieves but also offer the subnanoscale of  special chemical reaction 
fields to make a supramolecular complex not formed by natural interactions, such as Van der 
Waals attractive force and ionic force. The cavity size of CD can be regulated by the number 
of D-glucose units in each CD molecule (6, 7, and 8 for cv-, /3-, and y-CD, respectively) and 
a molecular tube can be created by cross-linking adjacent a-CD  units using a hydroxypropy- 
lene bridge [47]. The inner diameters (/) ,  see Fig. 8[b ]) are 4.5. 7.0, and 8.5 A for a-, /3-, 
and y-CDs, respectively. The depths (d )  are nearly the same length of 7.0 A [48]. Recently, 
the formation of such inclusion complexes between a conducting polymer, polyaniline with 
emeraldine base, and CDs was realized [49, 50]. Atomic force microscopy (AFM) and scan
ning tunneling microscopy (STM) observations indicated the formation of an inclusion com 
plex in which the polymer is fully covered by ft-C D  molecules [49] and also a molecular 
nanotubc of cross-linking a-C D  molecules [50]. The experimental results indicated that, in 
such molecular nanotube, the conformation of the polyaniline chain remains rodlike (all 
t ra ns conformat ion).

In this section, we have discussed the structural, electronic, and transport properties of 
various poIymer-CDs inclusion complexes. Moreover, the effect of metal contacts on the 
structural and electronic properties of polymer chains in CD complexes has been analyzed. 
The structure of the doped polymer wires in C D complexes as well as the conductance of the 
doped conducting polymer has been also investigated in order to understand the possibility

(a ) D-glucopymnose (h) Cvclodextrir

CH-iOH

polxme

Figure S. (a) Chem ical form o f D-gliieopyranose. (b) Shape o f a cyclodextrin which is synthesized from 
D-glucopyranosev D iam eter /.) is the inside d iam eter al the m iddle of cyclodextrin and d  is the depth  o f it. 
(c) Schematic diagram  o f inclusion complex form ation  o f C D s and conducting polymer.
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of using this inclusion complex for active molecular wire interconnections. The aim of this 
study is to demonstrate the possibility of the realization of isolated "enam el” molecular wires 
using quantum mechanical simulations.

3.2. Configuration of Polymers into Cyclodextrin Molecular Nanotubes
The control o f  the structural o rder of conjugated polymers is important for realization of 
molecular wires with good electrical conductivity because the carrier mobility and hence the 
electrical conductivity is limited by their structural disorder. It is important to know what con
figuration of polyaniline (PANI) fragment is formed in CDs because the source of conduc
tivity for a conjugated conducting polymer is a set of 7r-type molecular orbitals that lie above 
and below the plane of the molecule when it is in a planar or near-planar conformation. 
To obtain the optimized polymer structure inside CD molecules, the two-layered “own 
N-layered integrated molecular orbital and molecular mechanics” (O N IO M ) method [51] 
has been applied. In this hybrid method, the structure of seven thiophene monomers is 
treated quantum mechanically (Hartree-Fock [HF] and various density functional methods), 
while the remainder of  the system (two /3-CDs) is treated by a semiempirical method.

The polymer fragment has been optimized in free space using both full optimization to 
find the lowest energy structure and partial optimization while maintaining the planar con
figuration of the PANI fragment as shown in Fig. 9(a) and 9(b), respectively [52]. In the case 
of full optimization, the imaginary frequencies are absent, which means that it is a local min
imum. In this configuration, the adjacent benzene rings have a dihedral angle of 90°. This 
would reduce the extent of rr-orbital overlap between adjacent rings break up the electron 
channels and decrease the conductivity of the molecular wire. The planar structure is higher 
in energy by 38.65 kcal/mol at HF/6-31G* level com pared with the most stable structure. 
Figure 9(c) shows the transmission spectrum of PANI in both planar and most stable config
urations under zero bias. The transport calculations show that in the case of bent geometry 
the conductivity decrease due to a reduction the extent of 7r-orbital overlap between adjacent 
benzene rings. Thus, in the case of most stable PANI configuration, the G (E f ) is found to be
0.0009G,, (where G 0 — 2e2/h is a unit of quantum conductance). The conductivity increases 
for planar conformation and PANI has a G ( E r ) of approximately 0.006G(), which is six times 
larger than that of nonpianar one. The small conductance values of both PANI fragments

(ix) L = 39.2 A (b) L -  46.9 A

E(eV

Figure 9. Structural analysis ol' PANI fragments: (a) the most stable conliguralion and (b) the planar configuraticn 
in free space, (e) C onductance of the  bend (dashed line) and planar (solid iine) PANI structures. The Ferm i levsl 
(vertical do tted  line! has been chosen as zero energy.
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near Fermi level indicate that they are in semiconductor state in agreement with the large 
value of calculated energy gap between the highest-occupied (H O M O ) and the lowest- 
unoccupied (LU M O ) orbitals o f these oligomers. The imaginary frequencies arc found for 
the planar configuration and correspond to the combination of out-of-plane (bent) vibrations 
of benzene rings. Therefore, it is necessary to apply external forces for stabilization of the 
planar configuration.

The geometry of the PAN! has been also optimized in (3-CDs and the cross-linking a-CDs. 
Figure 10(a) and 10(b) show the respective optimized structures [52]. The structure of the 
PAN! in /3-CDs lies higher in energy by 7.10 kcal/mol as compared with the most stable con
figuration of the same PANI fragment in free space. In the case of the cross-linking a -C D  
molecular nanotube, this energy difference is found to be a 20.91 kcal/mol. Moreover, the 
length of polymer chain in this case (45.5 A) is very close to the length of planar conforma
tion of polymer chain (46.9 A). These results indicate that the configurations of PANI in the 
cross-linking a-C D  molecular nanotube are closer to the planar structure of PANI in free 
space than the configuration of PANI in /3-CDs. It has also been found in the both cases that 
there is no charge transfer between polymer fragment and CDs and hence the interaction 
between these molecules has a noncovalent character.

Because of the stcric hindrance, the backbone of PANI is not planar and the lack of strict 
planarity has led to local distortions, the so-called ring-twist distortions. However, in the case 
of a heterocyclic polymer, such polythiophene (PT), these distortions are much smaller, and 
hence a near-planar structure with high degree of polymerization that is well-ordered and 
stable in the air at room temperature can be synthesized [53J. Therefore, the structural prop
erties of polythiophene inside C D tubes have been also investigated [54]. The optimized 
structures of PT fragments in molecular nanotubes of cross-linking a-C'Ds and in /?-CDs are 
shown in Figs. 11(a) and 11(b), respectively. The results of calculations indicate that the con
figurations of trapped PT are close to the planar structure in the cases of /3-CDs and molecu
lar nanotubes of cross-linking a-CDs. The structures of PT fragment in /3-CDs and molecular 
nanotubes o f  cross-linking a-C D s lie at energies higher by 0.296 and 0.723 kcal/mol, respec
tively, than the configuration of five m onomer units in free space. It is interesting to note that 
the different results have been obtained in the case of the a-CD-polythiophenc inclusion 
complex. The configuration of the PT fragment lies at energy higher by 2.525 kcal/mol than 
the most stable configuration of five-monomer units. Moreover, the a -C D  molecules are 
distorted and lose structural order along the polymer chain.

The results of the structural optimizations show that the near-planar configurations of the 
various polymer chains are formed in a molecular nanotube of cross-linking a-C D s due to 
weak interactions such as Coulomb and van der Waals interactions between the host fram e
work of the CDs and polymer chains.

3.3. Electronic Properties of “Enamel” Molecular Wires
To understand the electron transport through polymer chain in CDs, we have analyzed the 
spatial extent of the frontier orbital, which provides a strategy by which the transport proper
ties of these systems can be understood [52, 54, 55]. Analysis o f the molecular orbital energy 
diagrams for the configurations of PANI in the cross-linking a -C D  nanotube and /3-CDs host 
frameworks (Fig. 12[a] and 12[b], respectively) shows that the lowest unoccupied (LU M O 
and LUMO +  1) orbitals (as well as L U M O  +  2) are located on the polymer fragment and

(ai L = 43.9 A

rMft yvr-. ^

Figure 10. Structural analysis of PANI fragm ents: (a) in /3-CDs and (h) in m olecular nanotuhe o f cross-linking 
a-CDs.
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Figure 11. Structural analysis o f  PANI fragments: (a) in m olecular nanoluhe o f cross-linking «-C’Ds and (b) in 
/j-CDs.

their contours are similar to those in the case of the planar configuration of PANI in free 
space. The same results have been observed in the case PT fragment [54]. Figures 12(c) and 
12(d) indicate that the electronic structure of PT is almost the same as that of the most stable 
conformation of the PT fragment in free space. Moreover, in all cases, there is no overlap of 
electron density between CDs and the polymer fragments and the charge transfer between 
the polymer fragment and host framework of CDs has not been found. This reveals that :he 
inclusion complex based on the cross-linking a-C D  nanolube and (i-CD host frameworks

Eli MO L l'M O +l

Figure 12. C ontour of ihc low est-unoccupied orbiials LUM O and EUM O 4- 1 of (a) PAN 1-cross-linking a -C D s (b) 
PANI-jS-CDs. (c) PT-cioss-!inking a -C D s. and (c) PT-/J-CI>.
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can be used as molecular enamel wire. These results are important from a practical point 
of view because the electron will transport only through the polymer chain and there is no 
current leakage across the CD molecules.

To estimate the conductance through molecules attached to the gold electrode, it is impor-

molecule because the wires connect to the metal contact through the alligator clips in the 
experiment. It is known for S-terminated organic molecules that the most probable adsorp
tion side on the gold surface is an equilateral triangle (threefold adsorption side) in which a 
chemically bonded sulfur atom overlaps equally with three gold atoms [56]. Therefore, we 
optimized the PT fragment connected to Au contacts, which was approximated by three and 
six gold atoms in order to estimate the structural properties of PT-gold contacts [57, 58]. This 
metal cluster configurations are the minimal models for a one- and two-layer configuration 
of the threefold side of the Au(l 11) surface, respectively. For a conjugated molecular wire, 
it can be assumed that the lowest-unoccupied orbitals that span the length of the molecule 
are responsible for the electron transport and these orbitals can be termed as the conduc
tion MOs. Figure 13 shows the FIOMO and LUM O  +  K (K values are taken up to the first 
conduction MO) energy values with and without metal atoms attached. In the case of the 
free molecular wire, the H O M O  and LUM O orbitals are delocalized over the polythiophene 
fragment. In the case of attachment of six gold atoms [57], the LUM O orbital o f the free 
molecule resembles the L U M O +  5 of the metal-polythiophene complex due to the localiza
tion of LUMO, LUM O +  1, LUM O +  2, LUM O +  3 and LUM O +  4 on the metal clusters. 
The energy difference between the H O M O  and conduction MO in the case of the metal- 
wire complex (2.86 eV) is slightly larger than that in the case of the free molecular wire 
(2.38 eV), as shown in Fig. 13. It was also found that the structure of the PT fragment is not 
changed significantly even for the thiophene ring nearest to the surface. These results indi
cate that the metal-molccule interaction is localized to the interfacial region and hence the 
metal contacts do not interfere with the molecular orbitals of the long molecular wires.

3.4. Transport Properties of “Enamel” Molecular Wires
To accurately estimate the conductance through various molecular devices, it is desirable to 
include metal atoms as part of a device because the surface effect will be automatically 
accounted for self-consistent calculations of conductance. O ur previous results also showed 
that the conductance characteristics depend on the model used for the electrodes [59]. M ore
over, the size of these clusters should be sufficient to eliminate the interaction between the 
end of the metal cluster and thiophene oligomer. Therefore, the PT fragments with and 
without /3-CDs connected to two Aiu: gold clusters have been considered as shown in 
Fig. 14. The Au:: clusters arranged in the F C C ( l l l )  geometry for right and left contacts 
have been selected. These clusters have 6 layers (with 3, 3, 5, 3, 3 and 5 atoms in each layer,

tant to understand the molecular-metal contact influence on the electronic structure of the

E(eV )
(a) (b)

l.l'M O +s
2.86 cV

1.1 MO
U  l.UMO+4

1.0

o.o -  h o m o

HOMO

Figure 13. Schematic M O diagram s of the most stable configurations of the PT fragm ents: (a) without gold and
(b) connected with two gold (Au„) clusters.
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(a)

Figure 14. M odels used for transport calculations: (a) PT fragm ent encapsulated in /3-CDs with two gold contacts 
and (b) PT fragm ent connected to gold contacts.

respectively), which are just extended configuration of Auf> contacts used in the previous 
calculations [58]. Figure 15(a) shows the electron density of states (DOS) of these devices at 
zero bias voltage. The first large peak was observed in the energy region between - 1 2  and 
—6 eV. The molecular orbital analysis in this energy region for both devices shows that the 
orbitals are located mainly at the gold clusters (see Fig. 15[c]) and hence are apparently 
irrelevant for electron transport. This is in agreement with results of the conductance cal
culations as shown in Fig. 15(b). There are no conductance peaks in this energy region for 
both PT and PT-CD complexes. It has also been found that the conducting channels near 
the Fermi energy in the case of the polymer chain trapped in CDs are practically the same 
as those in the case of the single polymer fragment. Analysis of the molecular orbital for 
the PT-CD complex connected to the gold contacts in that energy region (between - 5  and 
5 eV) shows that these orbitals span the length of the whole polymer chain is the same 
as the orbitals of the isolated PT fragment (sec Fig. 15[d ]). Therefore, these conductance 
channels correspond to electron transport through the polymer chain even in the case of 
CDs-polymer inclusion complex because there are not localized on CD molecules. The small 
differences can be explained by weak noncovalent interactions between polymer and CD 
molecules which slightly affected on geometry of PT fragment inside CDs molecular nano
tube [58J. The conductance channel in the high energy region (20-33 eV) is related to the 
conductance of CDs and it can be activated only under very high applied bias. The small

(a) DOS( 1/eV) (c:

(b) Conductance (2 c /h ) Id)

E ieV )

Figure 15. (a) Density o f stales ( DOS) and (b) conductance as zero  bias voltage for the isolated PT fragm ent (solid 
line) and encapsulated in jS-C'Ds (dashed line). C on tour of selected M Os (c and d) for PT fragment and for PT 
fragm ent in /3-CDs.
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value of conductance near Fermi level indicates that the polythiophene fragment is in semi
conductor state in agreement with electronic calculations of that oligomer which shows a 
large H O M O -LU M O  energy gap (2.38 eV). Therefore, to use these inclusion complexes as 
molecular wires, the metallic state of  polymer inside CDs should be realized.

3.5. Doping of Polymer inside Molecular Nanotube
To realize the concept of  molecular enamel wire, it is also necessary to understand the stabil
ity and the electronic properties of the conducting polymers in the metallic state when they 
are encapsulated within molecular nanotubes. Charge injection onto conjugated polymers 
can be achieved by chargc-transfer redox chemistry, such as oxidation (/>type doping) or 
reduction (n -type doping) [45]. Schematically it can be described by the following equations:

1. p-typc  doping

(77 -  polymer),, +  3/2/?v(I2) [(77 -  polymer)*’ ( I : ),]„ (1)

2. n -type doping

(77 -  polymer),, +  /?v[Na+(C I()H s)~] [(N a+),(7r -  polymer)"-v]„ +  /i.v(ClnH s )u (2)

It is well known through experiment that protonation by the acid-base chemistry leads to an 
internal redox reaction and the conversion from semiconductor (the emeraldine base; EB) to 
metal (the emeraldine salt; ES) [45]. The five monomers in free space have been optimized 
using both full optimization to find the lowest energy structure, and partial optimization 
while maintaining the planar configuration of PANI with ES [54]. It is found that the lowest- 
cnergy structure of ES with five m onom er units has a total spin of S =  J, which indicates 
the existence of two unpaired spins. The H O M O -L U M O  energy difference is significantly 
reduced as compared with the same energy difference for EB which has the same number of 
benzene rings. This indicates the transition of PANI from semiconducting to metallic state. 
It is also found that by using the cross-linking CD molecular nanotubes one can stabilize the 
near-planar configuration of the metallic form of PANI. Analysis of molecular orbital energy 
diagrams for the configuration of EB in molecular nanotube shows that the single-occupied- 
molecular orbitals (SOMO, SO M O  +  1) as well the lowest-unoccupied (LU M O  +  2 and 
LUM O +  3) orbitals (Fig. 16) are located on the polymer fragment and their contours are 
similar to those in the case of the planar configuration of ES. These orbitals are located on 
polymer chain and hcnce the CDs can be used as insulator between different single molecular 
wires [54]. Therefore, the present theoretical results provide support for the “molecular

Figure 16. C ontour of the selected m olecular orb itals o f ES o f PANI fragm ent in a m olecular nanotube o f cross- 
linking a-C D s: (a) SOM O: (h) SO M O  +  I: (c) L U M O  +  2; and (c) LUM O +  3.
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(a)

(b) Conductance {2e:/ h )

0.2

Li(eV)

Figure 17. (a) M odel used for transport calculations for Na doped PT fragm ent and (b) the eonductarce for the 
Na doped (solid line) and undoped PT fragm ent (dashed  line). The Fermi level (vertical do tted  line has been 
chosen as zero energy.

enamel wire" concept [46] and hence indicate a high possibility of realizing this concept in 
molecular electronics.

It is difficult to realize the />type doping of iodine ( 1 J  molecules into PT inside the CDs 
molecular nanotube because of their large size. Therefore, we consider the H-tvpe doping 
of PT using Na atoms. First, the geometry optimization of a Na-doped PT fragment was 
performed [60]. The charge transfer is observed from Na to the polymer chain (0.81 e per 
Na atom) where the charge goes to the inner thiophene rings. This results in a significant 
geometry modification of the inner rings that are located closer to the Na atoms. Th as, there 
is an interchange of the single C —C and double C —C bonds as compared with the undoped 
case. This leads to a local transformation to a quinoidlikc structure of PT which has metallic 
characteristics. The value of the H O M O -L U M O  energy difference is found to be 1.35 eV, 
which is significantly reduced as compared with that o f the undoped case (2.38 eV). The 
changes in the geometry and electronic structure affect the conductance properties of the 
PT fragment [60]. Figure 17 shows the transmission spectrum before and after Na doping 
under zero bias. It has been found that the conducting channel near the Fermi energy in 
the case of the Na-doped polymer chain is nearly twice as large (G ( E r ) =  0.225G,,) as that 
in the case of the undoped polymer fragment ( G ( E r ) =  0 .116G„). Moreover, in the energy

Figure 18. O ptim ized geom etries of Na-doped PT fragm ent: (a. h) in (S-CDs and (e) in molecular luno tube  of 
cross-linking n-C D v

(a)
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i a) O u im m l-lik e

Figure 19. (a) Structural analysis, (b) con tour o f the HOMO, and (c) LUMO +  2 of N a-dopcd PT fragm ent in 
m olecular nanolube o f cross-linking a-C D s.

region near the Fermi level, there are more peaks in the case of the Na-doped PT fragment, 
and these conductance channels correspond to the electron transport through the polymer 
chain. The results indicate the increase in the conductivity of the doped polymer chains, 
which is in agreement with many experimental results related to metallic behavior of  doped 
conjugated polymers [45].

The possibility of doping a polymer chain inside the C D  molecular nanotube has been also 
investigated. Therefore, the structures of /Hype doped PT fragments in various inclusion 
complexes based on CD molecules were also studied [61]. For the fi-C D s, two initial struc
tures have been selected in which the Na atoms are located inside and outside the CD 
molecules (Fig. 18a and 18b, respectively). In the first case, after optimization strong defor
mation of the PT fragment is observed. Moreover, one of the Na atoms is moved outside the 
CD molecules. In the second case, the doping atoms remain closer to their initial positions 
but the distance between the CD molecules increases. This indicates that doping of PT in the 
case of the [i-CD s is difficult because one must control the separation distance between the 
j3-CD molecules to prevent a large deformation of the PT chain. However, in the case of a 
molecular nanotube of cross-linking a-C D s (Fig. 18[c|), such control can be easily realized 
because the CD molecules are connected by chemical bonds. As in the case of doped PT 
in free space, the geometry modifications in the inner rings of PT provoke, along the car
bon path, the interchange of the single- and double-like bonds. The bonds between rings 
decrease from 1.436 to 1.380 A, as shown in Fig. 19(a), which means a local transformation 
of PT from aromatic to quinoid form as in the case of doping PT without covering by 
CD molecules. Analysis o f  the molecular orbital energy diagrams (Fig. 19[b] and 19[c]) for 
the configurations of doped PT in the CDs host framework shows that the H O M O  and 
LU M O  +  2 orbitals (as well as LU M O  and LUM O +  1) are located on the polymer fragment 
and their contours are similar to those in the case of the planar configuration of doped PT 
in free space.

Thus, for the formation of an isolated metallic single-polymer chain, it is necessary' to con
trol the separation distance between C D  molecules. This can be easily achieved in the case 
of cross-linking a-C D s because the a -C D  molecules are connected by a hydroxypropylene 
bridge with highly controlled length. The present theoretical results in combination with the 
experimental data provide support for the “molecular enamel wire" concept and hence 
can suggest this supramolccular system as a good candidate for realizing this concept in 
molecular electronics.

4. PORPHYRIN- AND PHTHALOCYANINE-BASED DEVICES
The porphyrin molecule is also a promising material for future nanoelectronics applications 
since it can be used as a building block in various molecular devices. Moreover, the 
porphyrin-based complexes would be potential candidates for o ther applications, such as
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materials for novel nonlinear optic devices, infrared detectors, spintronic devices, and pho
tochemical energy conversion [62]. Thus, it is very important to investigate the structures 
and electronic properties of different metal-containing porphyrin molecules by using first- 
principies ca 1 cu 1 ations.

In this section the structural, electronic, and transport properties of various porphyrins- 
based complexes have been presented. The effect of metal doping on the structural and elec
tronic properties of porphyrin molecule has been analyzed. The structures of the porphyrin 
wires and their electronic properties have been also investigated in order to understand 
the possibility of using this complex as molecular rectifier. Moreover, the stability of  
phthalocyanine-fullerene supramolecular structure has been also studied.

4.1. Electronic and Transport Properties of Metal Porphyrins
The idea to use porphyrin as a building block in molecular wires has been supported by the 
recent discovery of different porphyrin arrays having rigid geometric structures and stability 
in air [63]. Using such arrays, it is possible to control the n  orbital delocalization, which is 
desirable for molecular wire applications. Moreover, such porphyrin polymers can be doped 
by different metals that will also affect on electron transport through the porphyrin chain. 
Several theoretical studies related to the transport properties of porphyrin molecular wires 
have been performed [64-66]. In those studies, the different types of conjugated porphyrin 
molecular wires both physically deposited on Al contacts [64, 65] and chemically bonded to 
Au contacts [66] were investigated. It was shown that the conductivity depends on the type 
of conjugated connection between the porphyrin monomers as well as on the type of metal- 
molecule contact. Recently, we have studied the effect of metal doping on the electronic 
and conductance properties of porphyrin using different types of metal atoms [60, 67].

We consider a porphyrin molecule with two thiophenyl substituents at its right and left 
side, respectively, because thiol-type sulfur atom has widely been used as the alligator clip for 
the connection to Au electrodes. The structure and electronic properties both undoped, so- 
called free-based (FB) and metal-doped porphyrins have been examined (see Fig. 20). Seven 
first-row transition-metal complexes (from C r to Zn) of 5,l5-di-(4-thiophenyl)-porphyrin 
(abbreviated as MDTP), have been selected for the investigation. The geometry optimization 
of MDTPs has been performed by using of density functional theory (DFT) couplet with 
B3PYL exchange-correlation functional and 6-3MG basis set. Moreover, the most stable spin 
configurations of M DTPs (M =  Cr, Mn, Fe, Co, and Ni) have been examined and the only 
most stable spin configurations have been selected for the consideration. It is well-known fact 
that the density functional approximation (for example, BLYP) cannot reproduce the energy 
of excited state and always gives the underestimated value as compared with experimental 
one. The introduction of hybrid functional in the DFT formalism gives a larger value as 
compared with pure D FT  one. Moreover, the B3LYP functional within the time-dependent 
density functional theory have been shown to produce low-lying excitation energies that are 
in excellent agreement with experiment for porphyrins [68]. It has been also found that the 
optimization geometry of zinc tetraphenylporphyrine (ZnTPP) is better reproduce the exper
imental structure by B3LYP functional than by BLYP functional. The 6-311G ana 6-31G(d)

‘S , s
J - y S
i  # - 0  q  J

Figure 20. Structure of metal 5, i5-di-i 4-lhi<>pheny|)-porphvrin (M D TP) (A/ =  Cr, Mn. Fe. Co, Ni, Cl,  and Zn).
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basis sets have been used. The 6-31IG basis set is commonly used for the prediction of the 
electronic structure of the first transition-row complexes, especially Fe [69], and therefore, it 
is mostly used in this study. For comparison, the 6-31G(d) basis set has been also applied in 
order to verify the obtained calculated results. All calculations have been performed by using 
Gaussian 98 set of programs [70].

It has been found that the dihedral angle between porphyrin ring and thiophenyl group is 
nearly perpendicular. Although it is well known that the phenyl ring at the mesoposition 
prefers perpendicular conformation, the results for thiophenyl group may be interesting from 
the experimental point of view, especially the energy difference between planar and per
pendicular conformations. For instance, to accurately measure the transport through these 
molecular structures, they should be properly adsorbed on metal contacts. Figure 21 shows 
the energy difference of Z nD TP as related to the most stable structure as a function of the 
rotation angle of the thiophenyl substituents. As it would be expected, from this figure it is 
clear that the near perpendicular conformation of mesosubstituents is the most stable, while 
the planar conformation has the highest energy with the energy difference about 10.3 eV. 
The energetically favorable perpendicular conformation leads to the destruction of the 7T-7T 
interaction between the porphyrin core and mesosubstituents and thus to the reduction of 
the electron transport properties in this system. It is also interesting to note that there is no 
significant change in energy, when the torsion angle between mesophenyl group and por
phyrin core varied from 70° to 90°. On the o ther words, the perpendicular conformation is 
flexible and can be easily changed under external perturbation, such as temperature.

The calculated M-N distances in CoD TP and NiDTP are close to 1.98 A that shorter than 
those in ZnDTP, MnDTP, and CrDTP, which are around 2.07 A. The bonds between carbon 
and nitrogen atoms in pyrrole rings are practically the same for different MDTPs. The 
agreement between the calculated and available experimental data is quite good [71-74] 
with the largest deviation of 0.04A. Accordingly, it is confirmed that the selected calculation 
method is accurately predicts the structural properties of studied molecules. The most sta
ble spin configuration for each of MDTPs has been determined by the comparison of the 
total energy of optimized M DTP structures with the different spin configurations. First, we 
have calculated the most stable spin configuration of FeTPP using B3LYP/6-311G level and 
compared with available theoretical and experimental data to make sure that the selected 
method can accurately predict the magnetic stale of metal in metalporphyrin complexes. 
The most stable spin configuration of Iron tetraphenylporphyrine (FeTPP) has total spin 
S =  1 (Symbol 5 indicates the total spin of the system, which is the difference between the 
number of spin-up and spin-down electrons). The state with S =  2 lies 0.51 eV above most 
stable spin configuration and in comparison with a magnetic susceptibility measurement that 
yielded a value of 0.62 eV [75]. The lowest closed-shell state (5 =  0) lies 0.98 eV above the 
ground state. The recently theoretical results are showed the same magnetic configuration 
of FeTPP. The most stable spin configuration (.S’ =  i)  and the energy difference between this

H(eV)

Angle

Figure 21. Relative energy of Z nD PT  as a function o f d ihedral angle betw een porphyrin plane and thiophenyl 
groups.
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spin state and other configurations (5 =  2 and S  =  0) are found to be 0.75 eV and 1.15 eV, 
respectively [76]. Predicted the most stable spin configurations for Fe, Co, and Ni complexes 
are in an agreement both with the theoretical [76] and experimental results [71, 77, 78] 
obtained for the metal-containing mesotetraphenyl porphyrins (MTPP). Table 1 shows the 
difference in total energy for each of the spin configurations of MDTP as related to the total 
energy of the most stable configuration defined as 0. CuD TP and Z nD TP have the only one 
spin configuration, S = 1/2 and S  =  0, respectively. In the cases of Cr, Mn, Fe, Co, and 
NiDTPs, the most stable spin configurations are S =  2, 5/2, 1, 1/2, and 0, respectively. The 
smaller energy difference between the lowest electronic configurations for the triplet and 
quintet states in FeDTP (0.21 eV) as compared with that in FeTPP (0.75 eV) [76], can be 
explained by the reduction of the molecular symmetry from D4// in FeTPP to C2/l in FeDTP. 
The calculated large-cnergy difference between the different spin configurations in the Mn, 
Fe. and Cr complexes suggest that these compounds can be used as a building blocks in the 
spintronic devices.

The conductance properties of metal 5,15-di-(4-thiophenyl)-porphyrin (MDTP, where M =  
Zn or Ni) have been investigated and the model of calculations has been shown in Fig. 22[a]). 
The transport calculations show that the conductivities are very low for all cases (Fig. 22[b]). 
The other interesting observations in this figure are the increasing conductivities of the 
MDFTs [60]. Thus in the case of DTP, the G ( E { ) is found to be ().0()03G0, which is an 
almost negligible value in agreement with previous theoretical results [66]. The conductivity 
increases for MDTP. Z nD T P has a G ( E } ) of approximately 0.0012G„, which is only four 
times larger than that of DTP, yet still very small. A larger value has been calculated for 
NiDTP (0.0177GJ.

To understand the effect of metal-ligand interactions on the conductance properties of 
MDTP, the 3ci orbital splitting of different central metal atoms (Zn and Ni) by a porphyrin 
ligand field (DTP) has been analyzed. There are two possible schemes of 3d  orbital splitting 
by the square-planar ligand field. The first is an in-plane splitting scheme, which reflects a 
dominant in-plane interaction between the metal 3cl (dx2 v2 and in part d z2) orbitals and the 
porphyrin cr-donor orbitals. The second is an out-of-plane splitting scheme, which reflects 
a dominant out-of-plane interaction between the metal 3d  (dxz, d vz, and dxv) orbitals and 
7r-donor or acceptor orbitals of the porphyrin ligand. It has been found, by analysis of the 
electronic structures, that the 3d  orbital splitting has a predominantly in-plane character in 
the case of Z nD T P (Fig. 23[a]), while it has a predominantly out-of-plane character in the 
case of NiDTP (Fig. 23[b ]). Thus Zn has strong <x-type interactions with the porphyrin core, 
while Ni has strong 7r-typc interactions with the porphyrin core. Moreover, in the case of 
ZnDTP, the orbitals with the metal contribution lie lower than those in the case of NiDTP 
and are all occupied. In the case of NiDTP, d x2. v2 is an unoccupied orbital (LUMO +  2) 
while d Tf and d 2  are close to H O M O . The absence of electrons in the d x2_v2 orbital results 
in a shorter distance between Ni and N, and therefore, the desirable overlap between the 
orbitals of porphyrin ring is larger in this case as compared with that in the case of the 
ZnDTP, where all the 3d  orbitals of the metal are filled. All of these results account for the 
higher conductivity of NiDTP as compared with that of ZnDTP.

The results imply that incorporation of the Ni into the porphyrin enhance the trans
port properties larger than incorporation of the Zn. Moreover, the thiophenyl groups

Table 1. Relative energy icV ) o f M DTPs as calculated for the various spin stales. Zer> 
value indicates the energetically most stable spin configuration.

Structure .S' =  0 S  =  1 .S' =  2

C'rDTP 2.S4 l . l>7 0
FeDTP 1.5? 1) 0.21
NiDTP 0 0.51 —

V =  1 / 2 S = 3 /2 .S' =  5/2

M11 DTP \)V7 O.lb 0
C o DTP i) 0.20 —
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I b) Conductance (2c:/h ) 

0.16
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- 0.2 o 0.2 E(eV)

Figure 22. (a) M odels used for transport calculations m etal-porphyrins and (b) conductance for D T P(dotted  line 
with circles). ZnD TP (dashed line with black squares), and N iD TP (solid line). The Fermi level (vertical dotted  
line) has been chosen as zero energy.

conformation leads to the elimination of the tt conjugation in whole M DTP structures and 
other connections of porphyrin to electrodes should he proposed in order to realize the 
molecular wire for the interconnections between electronic devices.

4.2. Electronic Properties of Porphyrin Wires
The realization of molecular-scale rectifying function is one of the most important and funda
mental requirements in molecular electronics [10]. Aromatic molecules have 7r-conjugation 
structure and hence electrons can flow easily through the 7r-orbital overlapping between 
adjacent blocks. However, it is possible to increase or decrease the 77-e le c tro n  density by 
substituting for the different functional groups in an aromatic system and thereby creating 
acceptor (/;-type) and donor (/?-type) molecular subunits. Moreover, a rectifier could be 
designed using the combination of these two molecular subunits between two electrodes, in 
which electrons can flow from cathode to the acceptor and from donor to the anode [79, 80]. 
To realize a rectifying function by using this scheme, the H O M O  and LU M O  orbitals have to 
localize on the donor and acceptor parts, respectively.

Porphyrin possesses good electron-donating properties because of its large easily ionized 
77-electron system and various metal porphyrins are available. Moreover, a long molecular

(a) Z11DTP (b) NiDTP

Figure 23. Schematic diagram  o f 3</ metal orbital splitting in the  square-p lanar ligand field: (a) Z nD T P and 
(b) NiDTP.
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wire of fully conjugated porphyrin polymer has been reported by experimental group [63], 
and the theoretical study on the electronic properties of this polymer has been p er
formed by tight-binding method [81]. According to these reports, H O M O -LU M O  gap of fully 
conjugated porphyrin polymer is much smaller than that in usual conjugate polymer. This 
is a good feature for molecular electronics applications, especially, for a molecular wire, 
which need good conductance properties. Moreover, we have proposed that a rectifier 
diode can be created by combining two metal porphyrin molecules with different transition 
metal atoms. In o rder to investigate the electron transport properties through this poly
mer, we have performed the molecular orbital analysis o f  various porphyrin oligomers and 
suggested a strategy by which the rectifying properties of the porphyrin polymer can be 
understood [82].

Many configurations of porphyrin polymers have been already synthesized [63]. 
Figure 24(a), 24(b), and 24(c) indicate the different structures investigated in this study, fully, 
partially, and nonconjugated free-base porphyrin polymers, respectively. To evaluate the 
effect of the molecular structure on a localization of their frontier orbitals, we have inves
tigated the porphyrin polymer fragment based on four monomers. The mctal-metal junc
tion has been formed in this porphyrin fragment by inserting of two transition metals 
(see Fig. 25).

The results of the orbital spatial distribution in a porphyrin polymer obtained by HF/6- 
3 1 1G are shown in Figs. 26 and 27 and Table 2. In Table 2, “No” means that these molecules 
did not show a rectifying function. It is assumed that the unoccupied orbitals provide chan
nels for electron conduction through the molecules. The energy difference of the lowest- 
unoccupied levels between a donor and an acceptor has been used to estimate a criterion 
(potential drop) of  a rectifying function. The potential drop in a vacuum can be explained as 
the difference in the LU M O  energies between the donor and acceptor molecules when they 
are widely separated (AE, lIM() =  E, UMO(donor) — E, UMO(acceptor)) [80]. It is clearly seen 
from Fig. 25 that a full planar structure (fully conjugated) does not exhibit the rectifi
cation properties (except for the case of Cr-Cu in which the empty porphyrin responses 
for the donor function). Moreover, similar results are obtained for the partially conju
gated fragments. H O M O  and LU M O  for partially conjugated fragments are delocalized on 
the entire whole system. A rectifier is reported in the case of a D(donor)-7T-A(acceptor) 
structure [83], even though, this porphyrin polymer does not exhibit the localized frontier 
orbital. However, a nonconjugated chain displays rectifying features (Cr-Cu and Zn-Fe). 
H O M O  and LU M O  +  5 for Cr-Cu in the nonconjugated polymer form the localized donor 
side (Cu porphyrin) and LUM O forms the localized acceptor side (Cr porphyrin). Con
sequently, these results together with previous report [80] indicate that the geometry of 
spacer plays an important role in localizing the frontier orbitals. The localization of fron
tier orbitals can predict a rectifying function for a device, but the value of rectification 
should be estimated by a combination the G reen ’s function approach and first-principles 
calculations.

Figure 24. Structures of (a) fully conjugated, (b ) partially conjugated, and (c) nonconjugated tree base porphyrin 
chains.

(a)
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Figure 25. Four porphyrin m onom ers, arranged as a m etal-m etal junction  in porphyrin chain.

(a)

( b )

(c)

Figure 26. C ontour o f the selected m olecular orb itals for the Zn-Fe pa ir in fully conjugated porphyrin fragm ent, 
(a) H O M O , (b) LUM O. and (c) LUM O -f 1.

(a)

;b)

Figure 27. C ontour o f the selected m olecular orbitals for the Cr-Cu pair in nonconjugated porphyrin fragm ent, 
(a) SO M O . (b) LUM O. and  (c) LUM O + 5 .
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Table 2. The energy difference AEn MO and AEMmi(, 1(iN1(> o f various porphyrin chains.

S tructure (eV) ^ E ( ,o m o  i .u m o  (eV)

Fu 1 ly conjugated( C r-C u ) 1.59 5.37
Fully conjugated( Zn-Zn) No 4.30
Fully conjugated!Z n-Fe) No 4.32
Fully con jugated!Z n-N i) No 4.35
Partial ly con j uga t ed (Zn - Z n ) No 5.13
Pa rt ia 1 ly conj uga ted (Zn - N i ) No 5.13
N o n co n j u ga t e d (C r -C u ) 0.54 7.36
N oncon j u gated (Z n -Z n ) No 6.18
Noncon j uga t ed (Z n - F e ) 0.11 6.16
N onconj uga t e d {Z n - N i) 0.02 6.18

4.3. Photovoltaic Materials Based on Organic Molecule—
Fullerene Mixture

Conjugated polymers emerged in the mid-eighties to early nineties, and were dc\eloped for 
a wide range of optoelectronic applications, such as organic transistors, light-emitting diodes, 
and solar cells. The current general trend in research and development of photovoltaic ele
ments is aimed at producing lower-cost devices. Solar cells based on conjugated polymers 
alone have been disappointing because of their low-quantum efficiencies. However, an 
encouraging breakthrough in the development of highly efficient materials has been achieved 
by mixing electron-donor-type polymers with suitable electron acceptors [84, 85]. This dual 
molecule approach, for example, using a conjugated polymer/fullerene mixture, has been 
successful and is well documented [86-89]. Many fullerenc-based organic mixture have been 
proposed as potential materials for organic photovoltaic devices, with their electrochemical 
and photoelectrochemical properties measured under light illumination. Organic molecule 
based photovoltaic elements have attracted much attention as a replacement for inorganic 
semiconductor” and offer the possibility of cheap, easy-to-produce photovoltaic energy from 
light. Consequently, an organic molecule/fullerene mixture is therefore a potential material 
candidate for a photovoltaic cell due to its large and flexible absorption combined with elec
trical properties similar to the early photo effects of natural photosynthesis [86]. especially 
solar cells harvesting the infrared part of the solar spectrum.

Figure 28. Chemical siructure o f phlhaloevanine (M  211. free base phlhaloevanine, M2-Pc: M  =  Z n .z inc  phthalo- 
cyuninc. Zn Pc).
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Figure 29. O ptim ized structure o f zinc phthalocyanine-fullerene supram oleeule (Z n -  Pc +  C„M).

The chemical structure of phthalocyanine is shown in Fig. 28. Phthalocyanine possesses 
good electron-donating properties due to their large easily ionized 77-electron system, 

whereas fullerene is good 77-electron acceptor that can be connected with other organic 
molecules. In o ther word, phthalocyanine has good electron-donating properties and 
fu l leren e  is a good 77-electron a ccep tor .  R ecen tly ,  the synthesis o f  these s u p ra m o lecu les  has 
been reported [89]. Contrary to other orga n ic  molecule-fullercne based supramolecules 
that were synthesized for photovoltaic applications and have a sigma bond between the 
polymer and the fullerene [86], the above supramoleeule have van der Waals bond instead of 
a sigma bond. Here, we discuss the electronic structure of the phthalocyanine-fullerene 
supramoleeule after geometry optimization.

The optimized geometries and energetics of all the structural variables have been obtained 
using first-principles calculations. These calculations have been performed using the Gaus- 
sian98 program [70] with Hartree-Fock (H P) theory and suitable basis set. Since the treated 
fullerene/phthalocyanine supramolecular complex consist of a large number of atoms, the 
small basis set (3-21 G) has been selected to save computation time. The molecular structure 
has been energetically optimized to reach the stable structure. After optimization, the elec
tron spatial distributions of different molecular orbitals have been analyzed. The analysis of

Zn-Pc

Zn-Pc + Cw,

Figure 30. C om parison of the five highest-occupied and five lowest-unoccupied orbital levels. Pc. ZnPc-C , 
supram oleeule. C,,„.
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the molecular orbital provided a strategy for understanding the photovoltaic and electro
chemical properties (such as charge separation) of various molecular compositions.

Figure 29 shows the optimized structures of phthalocyanine-fullerene supramolecules 
using the HF/3-21G  level. The planar structure of the free base phthalocyanine is retained in 
this complex (see Fig. 29[a]), whereas a slight bending is observed in the case of zinc phthalo
cyanine. Zinc atom is protruding from plane of the phthalocyanine molecule in a fullerene 
direction. The distance between the zinc atom and the nearest carbon atom in fullerene is 
2.54 A. Zinc atom is the bridge site between the six-member ring of the absorbed fullerene. 
The charge transfer (0.20e) from zinc phthalocyanine to the fullerene while there is no 
charge transfer to free base phthalocyanine. Figure 30(a) and 30(b) illustrate a comparison of 
the five highest occupied and five lowest unoccupied orbital levels for the optimized structure 
of the zinc phthalocyanine, fullerene. and the zinc-phthalocyanine-fullerene supramolecule. 
It is interesting to note that while the LU M O  energy levels of the supramolecule com
pare well with the LU M O  energy level of fullerene, the H O M O  energy levels of the 
supramolecule are close to the H O M O  energy levels of  the phthalocyanine. The same ten
dency of molecular orbital localizations for o ther organic molecules-fullerene supramolecular 
system has been also observed [90].

5. CONCLUSIONS
In this chapter, we introduce recent development in theoretical development on the first 
principles treatment of transport properties in nanostructured materials. The subject attracts 
much attention not only theoretically but also experimentally and in industries, because of 
the expected ending of the present day silicon technology and emerging new era of nano
technology based on these new quantum mechanical world of transport of electron as the 
minimum unit of information carrier.
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1. INTRODUCTION
This chapter describes various functional devices and circuits based on single-electron oper
ation, as well as their possible applications. Single-electron circuits composed of nanostruc
tures are promising in the construction of ultimately high-density VLSI (very lar>e scale 
integration) systems after the era of CMOS (Complementary Metal-Oxide-Semiconductor) 
technology. The principles described in this chapter are so general that they can be applied 
in various materials. The nanoelectronic devices can be made of semiconductors, metals, 
organic molecules, and so on. In particular, silicon devices are most important for t ie  prac
tical point of view.

Regarding the theory of single-electron operation and its application to devices and cir
cuits, excellent reviews and books have been published [ I, 2]. The fabrication technologies of 
single-electron devices will not be described in this chapter. Those using silicon technology 
are described in some reviews [3|.

It is noted that the operation principles described in this chapter are completely different 
from so-called quantum  computing. Quantum  computing is a sort of super-parallel comput
ing based on the superposition of quantum states, which is never understood by the concepts 
of classical mechanics and is never realized in the classical electronic devices such as CMOS 
(see Section 5.7.1).

In contrast, the principles described here are based on the quantum mechanical theory, 
but one can have some intuitive classical pictures in which an electron can be trea:ed as a 
classical particle. As long as the movement of an electron can be considered as that of a pure 
particle, the single-electron device can be considered classical. In the quantum mechanical 
system, the condition that an electron existing over a tunnel junction can be considered as a 
particle is that tunnel resistance R r  is much larger than the quantum resistance R q = h /e l — 
25.8kll,  where h is the Plank constant and e (=  1.6 x 10~l<> C) is the elementary charge. If 
R l < R(j. the existence probability of an electron spreads beyond the tunnel junction, and 
an electron cannot be considered as a particle anymore.

The single-electron operation can be considered as an extreme case of the operation in 
the MOS devices. As the device becomes smaller, the number of electrons employed for 
electronic operation becomes smaller. In a MOS transistor with a design rule of ).l /im, 
the number of electrons is on the order of 1()4. In contrast, in nanoelectronic devices, fewer 
than several tens of electrons arc used for operation. The macroscopic operation pr nciples, 
for example, controlling a current by applying a voltage, cannot be applied to controlling a 
group of few electrons becausc of their large fluctuation.

1'his chapter is organized as follows. In Section 2, principles of single-electron operation 
are described and the basic single-electron circuits are reviewed. In Section 3. some open 
issues for practical application of the single-electron devices are discussed. In Section 4, 
an overview of possible information-processing architectures for single-electron systems 
is addressed. In Section 5 various functional circuits using single-electron operation are 
described. Finally. Section 6 concludes this chapter.
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2. PRINCIPLES FOR SINGLE-ELECTRON  
OPERATION AND BASIC CIRCUITS

2.1. Coulomb Blockade
The Coulomb blockade based on the Coulomb repulsion effect between electrons is the 
most basic principle that controls a single electron. Let us assume a conduction island that 
is isolated electrically from other parts, and its capacitance is C. When a charge Q  is stored 
in this island, the charging energy E is given by QZ/2C.  For the macroscopic capacitance 
such as 10 fF ( =  10“ 14 F). which is a typical value of the gate capacitance of a submicron 
MOS transistor, E is on the order of 10 24 J when Q is only one electron charge (—e). This 
energy corresponds to a temperature of 0.1 K because the thermal energy at temperature 
T  K is expressed as k BT,  where k B is the Boltzmann constant. Thus, the effect o f  charging 
is negligible compared with thermal energy at room temperature. However, if the island is 
very small, for example, C =  10 aF  is assumed, E for one electron can be comparable to the 
thermal energy at 100 K, and thus the movement of an electron is limited. This is called the 
Coulomb blockade phenomenon.

The movement of an electron is determ ined by the total energy of the whole electron 
system. To use this limited movement of electrons effectively, basic single-electron devices 
have two electric components: tunnel junctions and normal capacitors. Both components 
have very small capacitance, less than 10 aF, to cause Coulomb blockade phenomena at room 
tem perature o r  moderate low temperature. The difference between the two components is 
that electrons can tunnel the tunnel junction without applying a voltage, but they cannot 
tunnel the normal capacitor with the normal operation voltage.

To meet the above condition in the tunnel junction, when the junction is made of a 
dielectric insulator such as silicon oxide, the thickness cl of the junction must be less than 
2-3 nm. The capacitance C  of normal dielectric material is determined by C = sS /c l , where e 
is the dielectric constant of this material and S  is the area of the junction, provided the fringe 
effect is negligible. Even if the insulator is made of vacuum, that is, e =  £„ =  8.85 [pF/m], 
to obtain C < 10 aF, 5 should be less than 3400 nm- for cl =  3 nm. This is the reason why 
nanostructures are required for single-electron operation.

On the basis of the Coulomb blockade described above and the Coulomb repulsion effect, 
various single-electron devices and circuits have been proposed. In the following text, some 
important and useful circuits are reviewed.

2.2. Single-Electron Box
The simplest single-electron device is the so-called single-electron box consisting of a tunnel 
junction and a normal capacitor, as shown in Fig. la.

The tunnel junction capacitance Cj and the normal capacitance C() are assumed to have 
charges Q t and Q ir respectively. The number of electrons that tunnel through the junction 
along the direction depicted in the figure is represented by n. The free energy of this system 
is expressed by

where the first two terms of the right hand represent static electric energy of the junction and 
the capacitor and the third term represents the work by the voltage supply with a voltage V.

( 1)

r
( b )

n

o

.c

Figure 1. Single-electron box (a) and its characteristics (b).
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he following conditions must he satisfied:

2 l  +  2 z  =  v

C,

-  Q i  +  Q„ =  cn

q = cn +  Q,

(2)

(3)

(4)

where the initial charge at the conduction island is assumed to be zero. From Eq. (1) and 
Eq. (4), one obtains

C„f: (n)  = — ‘(en)- -  Yen 
- t  \ (. \ (5)

where C\ = C f +  Cn is the total capacitance at the conduction island, and the term unrelated 
to n is omitted.

When V  increases, if F (n  +  1) < F(n) .  then an electron tunnels the junction. Using 
Eq. (5). this condition is given bv

nc (6)

The number of electrons stored in the island as a function of V is shown in Fig. lb. 
See Ref. [4] for a more detailed explanation, including temperature dependence.

2.3. Single-Electron Transistor
A well-known and useful single-electron device is a single-electron transistor (SET) [5J. One 
can construct a conduction island by one normal capacitor and two tunnel junctions, as 
shown in Fig. 2a and b. The normal capacitance C which is called a gate capacitance, 
and two tunnel junction capacitances C, and C\  arc assumed to have charges Qv  Q ,, and 
(7: , respectively. The num ber of electrons that tunnel through junctions 1 and 2 along the 
directions depicted in the figure are represented by n { and //2. The total free energy of this 
system is expressed by

( ) -  O ;  Q ]
F ( n [. n : ) =  ^  ̂  -  qVh -  QKVg (7)

where the first three terms of the right hand represent static electric energy of the junctions 
and the gate and the fourth and fifth terms represent the work by the bias and gate voltage 
supplies. The following conditions must be satisfied:

m - . - .C c \

< c \

(8)

(9)

c c:.

r C Z J O t

T

n=~l

'  Ae/.

IQ

n = 0 \ / j i = L \ /  (7 v

tt\ A
3c/2

hi (e)

Figure 2. Single-electron transistor: la )  cc|iii\aleni circuit (M schem atic isiand structure, and (c) characteristics 
I Coulomb diam onds).



SimHe-Elcetron Functional Dcviccs and C ircuits 2 4 3

( J i  +  Q :  ~  ( J ,  =  t ' ( » i  -  n : ) 

1.1 = i -1- Ui

( 10)

(H)
where the initial charge at the conduction island is assumed to be zero. From Eq. (7) and 
Eq. ( I I ) .  one obtains

=  ^ 7 7 - [Cx Vv +  <-(», - / ; : ))3 -  t '/i, ~ +  1 -  en2~  I ( 1 2 )

where C\ == C, +  C: +  C, is the total capacitance at the conduction island and the terms 
unrelated to //, and n2 are omitted.

The conditions under which the Coulomb blockade is effective at both junctions are as 
follows:

thus.

c \  +  c lf

F ( n | ±  1, n 2) > F ( / / | , /?: ) 

F ( / / | , n 2 ±  1) > F ( / / | , /j: )

a.

(?" +  2 )

Gl +  -

-  I < K,

(13)

(14)

(15)

(16)

where (>,, =  C\, +  c ( n x -  n2). These conditions deline diamond regions at the V ^-V b
plane, as shown in Fig. 2c. When one changes J/, with a constant Vh along the dashed 
line shown in Fig. 2c, the operational point enters and exits the Coulomb blockade regions 
repeatedly, and thus the current from the voltage supply Vh changes periodically. This means 
that gate voltage V  can modify the current, and the SET can operate as a ficld-effect 
transistor (FET), such as MOS-FETs. The periodicity o f  current modulation by V,, is a 
unique property of SETs, unlike MOS-FETs. By changing the bias point, a SET can have a 
different characteristics (i.e., complementary operation as in CMOS circuits can be achieved 
by using single structure SETs [5, 6]). Therefore, various CMOS-like logic circuits composed 
of SETs have been proposed. Such CMOS-like circuits will be described in Section 5.1.

It is noted that switching can achieved by a very small charge S Q  (shown in Fig. 2c), 
which can be much less than the elementary charge c. This means that a SET can be used 
as a charge sensor with a very high sensitivity [2, 7].

2.4. Single-Electron Turnstile and Single-Electron Pump
Unlike the SET described above, a single-electron turnstile [8] and single-electron pump [9] 
are electron-transfer devices that can transfer electrons one by one in a desired direction. 
The operation of these circuits can also be understood by a similar analysis, such as described 
above.

The single-electron turnstile consists of four tunnel junctions and a gate terminal, as 
shown in Fig. 3a. The operation principle is described using a diagram that defines Coulomb 
blockade regions, as shown in Fig. 3b, By setting voltages UK and V . the operation point 
of the circuit can set at point A  in Fig. 3b. If the operation point is moved to point B , the

O  o O  O '
C-

a)

c/3
\  X \ / \ /V n =  2 \ /n =  ! \ / 1 1=:()Vii= 1 ) < n=2\(

X  c/3yX^c/.yX «■

(hi

Figure 3. Singlc-electmn turnstile (a) and its characteristics (h).
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Figure 4. Single-electron pum p (a) and its characteristics (b).

number of cxccss electrons at the center node n increases by one. Then, if the operation 
point is returned to point A , n decreases by one. This process means that electrons move 
from C, to Cj one by one.

A single-electron pump is another type of electron-transfcr device. The equivalent circuit 
and the diagram that explains the operation are shown in Fig. 4. Using two-phase voltage sig
nals, the phase transition shown in Fig. 4b is realized. The numbers of electrons at nodes n ] 
and /z: are indicated in Fig. 4b by (//,, n 2). According to the phase combination of two-phase 
voltages, the clockwise or counterclockwise transition is achieved: ((),())—> (0,1)-*(1,0)—>(0,0) 
or (0,0)—*(1,0)—*(0,1)—► (0,0). As can be seen in the latter transition, the unique feature of 
this circuit is that it can pump up electrons from the node with lower potential to that w7ith 
higher potential. The name of “pum p” is derived from this feature.

2.5. Coulomb Repulsion Effect in Quantum Dot Circuits
Coulomb repulsion effects between charges confined in coupled quantum dots can be used 
for information processing. Using the quantum -dot circuit, a cellular-automaton model can 
be implemented, called a quantum-dot cellular automaton (QCA).

A cellular automaton (CA) is an information-processing model known as a universal com 
puter. In the usual CA model, the processing units (PUs) having internal binary states (0/1) 
are arranged in a two-dimensional array, and only neighboring PUs interact. The dynam
ics are defined in discrete time, and the internal state of each PU at the next time step is 
determined only by the internal states of the neighboring PUs.

The detail of the Q CA  model and logic circuits using it will be described in Section 5.2. 
O ther circuits using the Coulomb repulsion effects will be described in Sections 5.8.5, 5.8.6, 
and 5.9.

3. OPEN ISSUES FOR PRACTICAL APPLICATION  
OF SINGLE-ELECTRON DEVICES

3.1. Operation Temperature
One of the drawbacks of single-electron devices and circuits is that they can operate only 
at very low temperatures (e.g.. 30 K for a total capacitance of 0.1 aF). This is because the 
charging energy in these circuits is directly related to the tunnel junction capacitance.

As described in Section 2 .1, to observe the Coulomb blockade phenomenon at room tem 
perature. the capacitance C  related to the conduction island must be on the order of 1 aF. 
However, to guarantee a high-enough reliability in large-scale integrated systems consisting 
of large number of SETs operated at room temperature, C should be much smaller than 
this value. The reliability of  SET circuits was analyzed on the basis of error rate characteris
tics [JO]. For room-temperature operation. C. must be less than 0.01 aF  which corresponds 
to a capacitance between dots with a d iam eter less than the atomic scale.

To overcome this problem, another approach to operating a single-electron device at 
room temperature is described in Section 5.8.6, which actively uses thermal noise for proper 
operation.
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3.2. Random Background Charges
Effects of charges randomly induced on isolated islands surrounded by tunnel junctions, as 
shown in Fig. 5, which are referred to as random background-charge effects, are considered 
to be a serious problem for circuit design [1, 2|. Random background charges are mainly 
induced by defects or impurities located within the oxide barriers [6], and these defects 
cannot be entirely removed.

In single-electron transistors, even if the amounts of charges induced on an island are 
large, an excess over ± e /2  is compensated for by electrons tunneling to or from other islands 
or electrodes. Therefore, background charges distribute over a range of [—e /2 , e/2] with a 
uniform probability. However, it has been estimated that the background charge margins in 
CMOS-like logic circuits are much smaller than |e /2 |,  typically 0.03e [11, 12].

Even if almost no islands have any background charge, even a few background charges 
may cause fatal errors in the operation of a whole circuit in multistage logic circuits. In 
small-scale circuits, this problem can be solved by individual biasing for each island, but this 
solution cannot be used for large-scale integrated circuits.

Fortunately, it has been reported that background charges in silicon single-electron devices 
seem to be smaller than those in metallic single-electron devices [13, 14]. Furthermore, 
architecture-level solutions to reduce the background-charge problem will be proposed in 
the following sections.

3.3. Higher-Order Tunneling (Cotunneling)
Higher-order tunneling, which is often called cotunneling [15] or macroscopic quantum 
tunneling [16-18], is a phenomenon in which plural electrons arc involved, as shown in 
Fig. 6. The probability that the /7th order tunneling occurs is proportional to ( R q / R j■)". As 
described in Section 1, single-electron devices and circuits should be designed to guarantee 
that R,  R l>. Therefore, higher-order tunneling seldom occurs, but second-order tunneling 
becomes the major leakage factor in Coulomb blockade regions where ordinary first-order 
tunneling is prohibited. Thus, higher-order tunneling arises as a problem in devices that 
use charge confinement by Coulomb blockade phenom ena such as single-electron memories. 
An effective method for reducing the effect of higher-order tunneling is using multitunnel 
junctions.

3.4. Injection of a Single Electron to Nanodot Arrays
In quantum-dot (or nanodot) circuits described in Section 2.5 and some circuits and appli
cations that will be described in Section 5, introduction of a single electron to a nanodot 
array is an essential assumption.

One might consider using Fowlcr-Nordhcim (F-N) tunneling when a high-voltage pulse is 
applied to the injection node. Because of statistical tunneling processes, a short high-voltage 
pulse will not ensure a single electron injection. When a short high-voltage pulse is applied to 
many nanodot arrays, a single electron can be injected into some arrays but not into others. 
Only the arrays with an electron will operate properly. The success rate of single-electron 
injection may be a crucial issue.

To ensure single-electron injection, the Coulomb blockade effect could be used. However, 
the blockade would hold only while the electron stayed at the injected dot. When it moves 
to one of the adjacent dots, another electron can tunnel in it. This tunneling will depend on 
the tunnel resistance to the adjacent dots. This is another time constant issue that must be

iso la ted
island

background
charac

Figure 5. Random background charge issue.
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(a) Ist-order tunneling (Coulomb blockade) (b) 2nd-order tunneling (cotunneling)

F igure 6. Expam le o f cotunneling process.

taken into account in the circuit design. To prevent the injected electron from moving to the 
o ther dot immediately, an additional electrode to hold the potential may be necessary near 
the injection dot. Some experimental results have been reported about restricted electron 
injection in nanocrystalline floating-dot M O SFE T  devices [19].

4. OVERVIEW— INFORMATION PROCESSING
ARCHITECTURES FOR SINGLE-ELECTRON SYSTEMS

4.1. Information-Processing Models for Single-Electron Systems
One of the goals in single-electron circuit technology is the development of computing sys
tems that can perform information processing by using single-electron phenomena. There 
are two basic ways that we can use single-electron phenomena for information processing. 
One is to construct transistor-like devices based on single-electron phenomena and imitate 
existing silicon LSI systems, using the devices as analogs of MOS-FETs. The problem with 
this approach is that integrated circuits composed of new transistor-like devices would have 
a hard time competing with the original silicon LSI, which is a product of well-established, 
mature technologies. The more promising approach is to reconsider the procedure for imple
menting information processing and take up a way different from that of existing LSIs. From 
this approach, one will be able to construct novel computing devices that make good use of 
the properties of single-electron phenomena.

Various processing methods for information processing (or procedures for solving a given 
problem) known for now are shown in Fig. 7. The procedure used in existing LSI systems is 
as follows (shown by boldface in the figure).

1. Devise an algorithm for processing given information
2. Execute each step of the algorithm under von Neumann-type computer architecture
3. In the execution, express the algorithm in the form of a sequence of Boolean operations 

on digital functions
4. Describe each operation in terms of Boolean expression (a combination of logic oper

ators AND, O R , and NOT)
5. Implement the Boolean expression with binary logic gates made from MOS FETs.

This conventional procedure, Neumann-Boolean computing, has become the mainstream 
in information processing. However, there are many potential ways of processing that are 
different from Neumann-Boolean computing, as shown in Fig. 7. Let us call these pro
cessing ways unconventional computing. The process of unconventional computing is much 
more sophisticated than that o f  Neumann-Boolean computing: consequently, can provide the 
possibility of solving problems that are intractable for Neumann-Boolean computing. Unfor
tunately, unconventional computing is not easy to implement on LSIs because the CMOS

Algorithmic Neumann Boolean
Information processing architecture operation
processing ^ ------ 1------------------------------ j-----------------------------j--i—  Boolean expression —  Existing LSIs

Non-aluorithmic Non-Neumann Non-Boolean Binary decision diagram

Multi valued IonicNeural network — Celullar
Holonic svstem automaton Threshold logic

Analog computation Multi-agent L_sW em  -----  Majority logic

Figure 7. Various methods of  inlorm; tion processing.
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transistor gate— a Boolean logic device by nature— is the only device we can use at this 
time for constructing practical LSIs. However, we will be able to create novel, functional 
information-processing LSIs based on unconventional computing if w'e can develop single
electron devices suitable for implementing non-Neumann, non-Boolean operations.

The theme of this chapter is to consider developing such single-electron processing systems 
based on unconventional computing. Challenges to this interesting subject have already been 
reported with leading examples. Section 5 will review these vanguard attempts at developing 
new-paradigm systems for information processing.

4.2. Design Strategy for Single-Electron Functional Circuits
A strategy for overcoming the difficulties described in Section 3 and for achieving large-scale 
integration of single-electron devices is summarized in Fig. 8 [20].

Single-electron devices should be used for massively parallel processing with a huge num 
ber of devices because of their large packing density and ultralow power dissipation. The 
operation speed is improved by parallel processing. Adopting a few logic stages, a small 
fanout, and regularity or repeatability in the circuit architecture overcomes the interconnec
tion difficulty and lowers the background-charge effects.

Parallel operation and such circuit architecture may make deep logic processing more 
difficult. Therefore, the use of ultrasmall CMOS devices is essential. Single-electron devices 
should be used for simple functional circuits with few logic stages, and ultrasmall CMOS 
devices are used for multistage logic circuits.

To overcome the design difficulty, it is a good idea to use large output capacitance as a 
buffer for each circuit component. Here, “ large” means a capacitance value that can store a 
few tens of electrons. Because of this output buffer, the operation of the circuit component is 
not affected by the following stage circuit, and thus modularized circuit design is applicable. 
The output capacitance is also used for an interface between SET and CM OS circuits. The 
information generated by massively parallel processing in SET circuits is collected and inte
grated into the output buffer and is transferred to the CM OS circuits. The gate capacitance 
of an ultrasmall MOS device can be used as the buffer capacitance.

To reduce the sensitivity to capacitance and background charges, new information- 
processing concepts and models are required in addition to solutions regarding the averaging 
of information or redundancy configurations.

The functionalities created by the single-electron operations are as follows:

• Multiinputs circuits using multigate configuration in single-electron devices
• Nonmonotone input-output functions resulting from multipeak (oscillatory) character

istics of single-electron operation
• Stochastic operation resulting from stochastic tunneling phenomena
• Energy minimization.

Various circuits and architectures using these functionalities are reviewed in the next section.

Figure 8. Single-electron circuit system design strategy. R eprinted with perm ission from [20]. T. M orie et a 
./. W mosci. Xunotcchnol. 2. 343 (2002). <0 2002, A m erican Scientific Publishers.
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5. SINGLE-ELECTRON FUNCTIONAL DEVICES AND CIRCUITS
5.1. CMOS-Like SET Logic Circuits
5.1.1. CMOS-Like SET Logic
Using SETs described in Section 2.3, CM OS (complementary metal-oxide-semiconductor)- 
like circuits can be constructed [6]. Because of periodical characteristics between the gate 
voltage and the tunneling current in a SET, p-type and n-type MOS transistor operations can 
be realized by setting different bias voltages at the additional gate (back-gate) electrode, as 
shown in Fig. 9. Such a circuit can use the same circuit configuration as the present CMOS 
logic circuits, and thus various studies about this approach have been reported [6, 11, 12, 
21]. For example, a CMOS-like SET inverter and an exclusive-OR (XOR) logic gate are 
shown in Figs. 10 and 11, respectively.

In this case, the value of load capacitance is important. To construct multistage logic cir
cuits, a large load capacitance is required. If small capacitance is used, the whole multistage 
circuits must be considered as one quantum system, and therefore the circuit design will be 
much different from the conventional CMOS circuit design. In the following text, how to 
design such circuits, including plural SETs, is described.

5.1.2. CMOS-Like SET Circuit Design
A SET circuit has a number of island nodes that are interconnected by means of tunnel 
junctions. Its internal state is determ ined by the configuration of electrons (i.e., the pattern 
in which the excess electrons are distributed among the nodes) and is expressed by a set of 
the numbers of excess electrons on the nodes. The circuit changes its state through tunneling 
in response to the input and thereby changes its output voltage as a function of the input.

A SET circuit changes its state to decrease its free energy; hence, the circuit operates as 
an organic whole. Therefore, any SET circuit has to be designed taking into consideration 
the global stability of the whole circuit. Because a SET circuit has complex internal states, 
a "guide m ap” is needed to grasp the overall situation of the circuit. The guide map for this 
purpose is known as the stability diagram.

T he stability diagram is the diagram that depicts the internal states of a SET circuit in 
a multidimensional space of circuit variables. Its concept is as follows. The bias voltage 
setting criteria necessary to maintain a circuit in a stable state are given as a combination 
of inequalities [e.g., Eqs. (15) and (16)], each of which indicates a condition for maintaining 
the circuit energy minimum. The inequalities involve all the circuit parameters as variables, 
so the stable bias region for a given state forms a hypersolid surrounded by a number of 
hvpersurfaces on a variable space.

For instance, a Tucker's inverter in Fig. 10 has 11 variables— two voltage variables Vin 
and VlUi and nine capacitance variables. Accordingly, the stable bias region is drawn in an 
11-dimensional space. Each hypersurface corresponds to a threshold condition for tunneling 
through a junction in one direction: therefore, if the number of tunnel junctions is N , 
then 2/V hypersurfaces exist. For a different state of the circuit, there is a different set of 
hvpersurfaces that determines a hypersolid of a stable region.

The stability diagram is a map that illustrates all the hypersolids that represent all possible 
states of the circuit. Looking at a stability diagram, we can see the changes of the internal

t = j

Ed

h i- u r i*  9. C om plem entary operation  ol S I T : (a) device structure , (h) p-type MOS-iike operation, (c) n-type MOS- 
like operation .
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Figure 10. CM OS-like inverter using SETs, whieh is oflen called Tucker's inverter.

states, the stability, and the output values, as functions of the circuit variables. To illustrate 
a stability diagram on a sheet of paper, we have to reduce the diagram to a two-dimensional 
representation. For this purpose, we select two of the variables and assume the others to 
be constant. In general, it is convenient in designing a circuit to choose the input voltages 
for the circuit as the variables. If the circuit has one and only one input, it is advisable 
to use as the o ther variable the voltage of another voltage source in the circuit. In such 
a two-dimensional stability diagram with two voltage variables, the hypersurfaces and the 
hypersolids are reduced to lines and polygons. For examples of a stability diagram with two 
voltage variables, see Figs. 2c, 3b, 4b, 9b, and 9c.

5.1.2.1. D raw ing S ta b iiity  D iagram s  A stability diagram can be calculated analytically 
for a simple SET circuit composed of a few junctions. However, a circuit of greater com
plexity is difficult to calculate on paper; therefore, simulation by computer is needed. The 
way of drawing the stability diagram for a given circuit is as follows. First, a current state of

Figure l l .  CMOS-like XOR gale using SETs.
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the circuit (i.e., a current set o f  the numbers of excess electrons on nodes) is assumed, and 
then a set of values of the circuit variables is also assumed. After that, the energy change of 
the circuit is calculated for each possible tunneling. If all the energy change is incremental, 
no tunneling occurs, and it can be considered that the current state is stable under the set 
of circuit variables. If the energy change is reduced for one or more tunnelings, then it can 
be judged that the current state is unstable under the set of circuit variables. The above 
procedure is nam ed a trial. After the judgment for a trial, each variable is changed slightly, 
and then another trial calculation is repeated for the new set of circuit variables. B> scanning 
the whole variable space, the stability diagram can be drawn for the assumed stcte of the 
circuit. The same sequence is repeated for the o ther states. As the result o f these iterations, 
the whole stability diagram can be obtained.

As a sample circuit, let us take up the Tucker’s inverter in Fig. 10 and assume for simplicity 
that C n =  1 aF, C r  =  2 aF. C, =  8 aF, C2 = 1 aF, and Com =  24 aF. Then the stability 
diagram can be drawn on a two-dimensional J^rK/i/ plane (V,,,: input voltage, Vui\ power 
voltage), as shown in Fig. 12. The circuit has three island nodes (L, M, and N>, and its 
internal state is expressed by a set of the numbers (/, /;/, n) o f  excess electrons stored on the 
three nodes. The stable regions take on various configurations. Most regions overlap with 
one another. In a set of electron numbers (/. /?/, //), n is a main factor of determining the 
output voltage, and / and m  change the output voltage slightly.

In the range of the voltage variables of Fig. 12, the numbers of m  =  — 1, 0, and . produce 
output voltages of about 6 V. 0 V, and —6 mV, whereas / and n modify the ou tpit voltage 
by 0.7 mV or less in the same way. In Fig. 12, the approximate output voltage for each state 
is shown by putting the letters H, L, or LL before the electron-number set; for example, 
H(0, —1,0) indicates a state of high-output voltage (about 6 mV), L((), 0, 1) of lov-output- 
voltage (about 0 mV), and LL((), 1. 0) of much lower output voltage (about - 6  mV).

The stability diagram offers an insight into the functions that can be obtained from the 
circuit. If we set ViU, to 7 mV and operate the circuit on segment A-B, we can use tie circuit 
as an inverter with the transfer curve shown in Fig. 13a. The inverter has an unstaHe region 
on its transfer curve for intermediate values of the input, but this is not a problem for use 
of binary-logic applications. In contrast, if we set VlU( to 5.8 mV to operate the circuit on 
segment C-D, we can use the same circuit as a Schmidt trigger. In the bistable region denoted 
by 11(0, - 1 .  0) and L(0, 0, 0), the circuit maintains the same state as just before entering this 
region. Therefore, the threshold voltage of the circuit is higher for an increasing nput and

<■ 5 H)
V ia  («n V >

Figure 12. Stability diagram  lor the circuit shown in Fig. in. For the capacitance param eters, see tie text. The 
shaded region is an unstable region «vhcre tunneling occurs repeatedly and the circuit sta te  a lternates I.:tween two 
o r m ore different states.
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Figure 13. Transfer curves o f the circuit shown in I ig. 10. The output voltage is p lo tted  as a function of the input 
voltage for two different values of I ' w: (a) l 'lU =  7 mV (the circuit operates as an inverter) and (h ) I =  5.9 mV 
(the circuit operates as an inverting Schmidt trigger circuit).

lower for a decreasing input; this condition results in a hysteresis characteristic, as shown in 
Fig. 13b. The width of the hysteresis region can be set up as desired by adjusting V(lll.

5.1.2.2. D e s ig n in g  NAND  L o g ic  G a te s  A NAND logic gate can be constructed as 
follows: Let us assume a circuit configuration for a two-input NAN D gate by analogy with 
a CMOS gate, based on the model of the SET inverter circuit proposed by Tucker [6j. The 
configuration, illustrated in Fig. 14, consists of a pull-up tree (a parallel connection pair of 
SET transistors) and a pull-down tree (a merged series pair of SET transistors), with an 
output capacitance C(l. The circuit has seven tunnel junctions (the junction capacitances are 
Cj j through Cj~j), four input capacitors (C, through C4), and four bias capacitors (C5 through 
CN), with a power voltage VlU. The circuit accepts two input voltages ( V }, V2) and produces 
the corresponding output voltage V(tur 

The next work is to determine an optimum set of capacitance parameters so that the circuit 
will produce a NAND logic operation. The optimum param eter set can he determined in 
theory by calculating and scrutinizing the stability diagram of the circuit, but this is impossible 
in practice because this circuit has too many circuit variables. The circuit has 19 circuit 
variables (16 capacitance parameters plus 2 input voltages and 1 power voltage), so the 
stability diagram will be drawn in a 19-dimensional space of circuit variables. Empirically,

Figure 14. CMOS-like SL:T-NANP gale



2 5 2 Single-E lec tron  Functional Devices an d  Circuits

if a diagram has eight or more dimensions, it takes an enormous amount of time to search 
the whole diagram (even by computer), and it is virtually impossible to detect an optimum 
point in the diagram. Therefore, the num ber of circuit variables has to be reduced.

One way to reduce the number of circuit variables is to divide a circuit into smaller sub
circuit, as Tucker did in designing a SET inverter [6]. Here, let us divide the circuit into two 
subcircuits, the pull-up tree and the pull-down one, and analyze each tree circuit separately. 
For a N A N D  logic operation, the tree circuits are required to have the following character
istics: First, when both input voltages are Vl/(i (i.e., V { = V2 = Vdd), the pull-up tree is always 
stable (switch “off’'), and the pull-down tree is unstable (switch “on”) if Voul >  0 and stable 
if Vtm =  0. (If this specification is satisfied, the output node will be discharged through the 
pull-down tree to reach a zero voltage, so the output will settle down at Voul =  0.) Second, 
when either or both inputs arc 0, the pull-down circuit is always stable, and the pull-up circuit 
is unstable for Vmit < Vdd and stable for Vol(l = Vdd. (If this is satisfied, the output node will 
be charged up to reach a voltage of Vdih so the output will become stable at Vout =  Vdd.)

For further reduction of the number of variables, let us make three assumptions: the pull- 
up tree consists of two identical SET transistors (i.e., Cy, =  Cy3, C]2 = Cy4, C, =  C2, and 
C\ = CJ ;  in the pull-down tree, two input capacitances are equal to each other (C3 = C 4) 
and two bias capacitances are also equal (C7 =  Cs ); and two junction capacitances Cy5 and 
C jh are equal to each other (C/5 =  Cjb). The last assumption for C /5 and Cy6 is groundless, 
but we still assume it for reducing the variables. Through these assumptions, the number of 
capacitance param eters  has been reduced to four for each tree circuit.

O ur work is to determine an optimum set of capacitance parameters for each tree ciicuit 
that produces the required pull-up and pull-down characteristics. This can be performed by 
scrutinizing the stability diagram of each tree circuit. To simplify the task, we here adopt an 
approximation: In calculating the stability diagrams, we consider the output voltage Volt as 
a variable. Strictly speaking, this is inaccurate, because Vnm is dependent on other variables. 
However, if the output capacitance is large, V()IU can be considered a variable in calculating 
the stability diagrams. This is because, for large-output capacitance, a value of Voul is kept 
almost constant during the change of the circuit state induced by one-electron tunneing. 
For simplicity, we set the power supply voltage K m at 6.67 m V (no special reason for this 
value; any o ther positive voltage can be assumed). We draw the stability diagram of each 
tree circuit in the seven-dimensional space of circuit variables (four capacitance parameters 
plus three voltages, V h K2, and Voul) and then search the diagrams for an optimum point 
that produces the required characteristics of the tree circuits. For this power supply voltage, 
several optimum sets of capacitance parameters can be found. A  sample set is C., =  C 3 =  
1 aF, Cj2 =  C /4 =  2 aF, CjS = C jh =  2 aF, Cp  =  1 aF, C, =  C2 =  5 aF, C3 =  C4 =  3 aF, 
C5 =  Cft =  7.4 aF, and C7 =  Cs =  7.7 aF, (V oul — 6.67 mV, as mentioned above).

For reference, a part of the calculated stability diagram is illustrated in Fig. 15a—f. on 
a plane of the two voltage variables ( Vou( and V} or V2). The output capacitance C() can 
be set at any value on the condition that it is sufficiently larger than the other capacitaice 
parameters and that the value of C{)Vdd is a multiple of the elementary charge. An example 
value of C„ is 240 aF.

5.1.2.3. Constructing Adders A full adder can be constructed with the NAN D gctes, 
as shown in Fig. 16. The output capacitance is set to 240 aF. In each NAND gate, the 
input capacitance is sufficiently smaller than the output capacitance, so several gates can be 
connectcd to a preceding gate without affecting the operation of the preceding gate. The 
add operation of the full adder, for a tunnel resistance of 200 k ll ,  is shown in Fig. 17. The 
figure depicts the waveforms for adder inputs A and /?, a carry input Ci/r an adder ou put 
Sunu  and a carry output Cour The average add time is 10 ns.

5.2. QCA-Based Logic Circuits
As described in Sec. 2.5, using the Coulomb repulsion effect in coupled quantum cots, 
quantum-dot cd lu la r  autom ata (OCA) can be constructed [22].

Let us consider quantum-dot arrays as shown in Fig. 18 [23]. Here, four or more quan um 
dots are coupled and form a unit cell, in which two electrons are confined. The two elections
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Figure 15. O peration  diagram  ot CM OS-like SET-NAN D gate.

can exist at the four vertexes (and the center position in cells A and B) of the square shape 
cell, but al the steady state only the two diagonal arrangements of the electron positions 
(polarization) are possible because of the Coulomb repulsion effect. Therefore, they can be 
assigned logical “ 1” and “(P, respectively. There are various quantum -dot configurations for 
constructing a cell, as shown in Fig. 18. The polarization response by cell-cell interaction 
depends on the number of tunneling paths and the distance between dots. By the quantum- 
mechanical analysis, cells A and B exhibit better polarization response than cells C and D [23).

As the first step for constructing logic circuits, binary-information transmission lines can 
be realized by capacitively-couplcd one-dimension cells. Q C A  lines (or wires) with various 
configurations are shown in Fig. 19 [24-26].

Using QCA, basic logic gates can be constructed [25]. A digital inverter using Q C A  is 
shown in Fig. 20. A QCA majority logic gate with three inputs is shown in Fig. 21a. Using this 
gate, A ND  and O R  gates can be constructed, as shown in Fig. 21c. There are many reports 
about circuit architecture, design, and fabrication technology for Q CA circuits [22, 27-31].

5.3. Single-Electron Logic Circuits Based 
on the Binary Decision Diagram

5.3.1. Representing Digital Functions by Binary Decision Diagrams
The binary decision diagram (BDD) is a way of representing digital functions by using a 
directed graph instead of a Boolean expression [32, 33]. It can represent any digital function

NAND sate

Figure 16. Full-aJUer circuit.
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Figure 18. Q uantum -dot arrays for quantum  cellular autom ata (OC A). Circles indicate quantum  dots, and th ig ray  
dots indicate those occupied by an electron. The solid line connecting two dots indicates a tunneling path if  the 
electrons. All cells A to D can express logical 0 and 1 by different electron position states. A dapted  with permssion 
from [23). P. D. Tougaw et al., J. Appl. Phys. 74. 3558 (1993). 1993. A m erican Institute o f  Physics.
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Figure 19. Interconnection lines using QCA (a) bent line with a right angle, (b) branch lines, (c) crossing ines. 
A dapted with perm ission from [25]. P. I), lougaw and S. Lem ../. Appl. Phv\. 75. ISIS (1994). 1994, Amcican
Institute of Physio.
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Figure 20. Q CA invertor. A dapted  with perm ission from  [25). P. D. Tougaw and C. S. Lent. /  Appl. Phys. 75. 1818 
(1994). €  1994. Am erican Institute o f Physics.

and provides a concise representation for most digital functions encountered in logic-design 
applications.

As an example, consider the four-variable digital function represented by the Boolean 
equation given in Fig. 22a, This function can also be represented by the BDD shown in 
Fig. 22b. A BDD is a graph consisting of many nodes and two terminals, with each node 
labeled by a variable; in this example, each node is represented by a circle labeled by a 
variable X, ( i  = 1,2, 3, 4), and a terminal is represented by a square labeled 0 or 1. Each 
node in a BDD has two branches labeled 1 and 0 and is connected to its adjacent nodes 
with the branches.

In determining the value of the function for a given set of variable values, we enter at the 
root and proceed down to a terminal. At each node, we follow the branch corresponding 
to the value of the variable; that is, we follow the 1 branch if X , — 1 and the 0 branch if 
X,  = 0. For a given set o f  variable values, there is one and only one path from the root to 
either terminal. The value of the function is equal to the value of the terminal we reach; 
the function is 1 if we reach the 1-terminal and 0 for the ()-terminal. Some other examples 
of the BDD are shown in Fig. 23, together with the corresponding Boolean equations.

5.3.2. Implementing a BDD with Single-Electron Devices
As described in the previous section, when an input (a set of variable values) is presented 
to a BDD, a path through the BDD can be traced from the root to either terminal. In 
this condition, a signal that is injected in the root can travel along the path to reach a 1- 
or 0-terminal. Therefore, we can determ ine the value of the function by observing which 
terminal the signal reaches. This signal is called a messenger.

A BDD is composed of many identical interconnected nodes, so the node is the unit 
element of a BDD. The function of the element is simple two-way switching controlled by an 
input variable. To implement this function, we can use many physical effects that change the 
course of a traveling messenger (electron, photon, single flux quantum, etc.) in response to 
an input. The advantage of BDD logic systems is that they can make use of even a physical 
effect that is useless for constructing transistor-like devices.

Asahi and others proposed implementing the BDD node function by means of single
electron circuits [34-36]. Their unit e lement, a BDD device, illustrated in Fig. 24, consists

(a) Input A 
Cm 6\
LO •)
[•~°1

'"i""" Q O 0 O  "'"i11"aa
Input ( '

< b )

Figure 21. Q C A  m ajority logic gate, (a) C onfiguration, (b) logic gate notation, (c) AN D and OR logic realization 
by the QCA m ajority logic gate. A dapted  with perm ission from [25]. P. D. Tougaw and C. S. L e n t../. Appl. Phys. 
75, ISIS (19941. 1994. Am erican Institute of Phvsics.
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(a) Boolean equation

I = iA'l .Y2 +  X  : X2 ) ,Y3 A'4 

+ (XI X2 + .VI X2 ) A3 A'4

+ A'3 /Y4

(b) Binary decision diagram 
Root

Figure 22. R epresentation  of digital functions.

of four tunnel junctions . . . ,  74) and three capacitors (C , , . . . ,  C3) and is driven by a 
voltage clock (//>). It lias entry branch ( A)  and two exit branches (D , E).  Voltage input X  
(and its complement X ), specifying the value of a variable, is applied to island B (and C) 
through capacitor C2 (and C\); X  is an appropriate positive voltage (and A" is a negative 
one) if the variable value is 1, and X  is negative ( X  is positive) if the variable value is 0.

The node device receives a messenger electron from a preceding device through the entry 
branch and sends the electron to a following device through either exit branch that corre
sponds to the binary value of the input. The path of the electron transport is A —> B D 
(the 1 branch) if input X  is positive and A  -> C £  (the 0 branch) if input X  is negative.

5.3.3. Constructing BDD Logic Circuits
A logic circuit can be constructed by connecting many B D D  devices in a cascade manner 
to build the tree of a BDD graph, as illustrated in Fig. 25. Each BDD device corresponds 
to a node of the graph and operates as a two-way switch for the transport of a messenger 
electron. The entire system is composed of the BDD graph circuit, an electron injector, and 
an output circuit, as illustrated in Fig. 26. At the start of operation, a messenger electron is 
injected from the electron injector into the root node and then transferred by four clocks 
( $ „ , . . . ,  (f>}) through the BDD graph circuit to a terminal. The messenger electron travels

(a) f = X  1+X2+X3+X4 (b) f= (X \+ X 2)(X 3+ X 4) <c) odd parity

Figure 23. Examples of  BDD representation.
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F igure 24. U nit elem ent lor single-electron B D D  logic circuits. Its function is to provide two-way switching for 
electron  transport. Reprinted with perm ission from  [35], N. Asahi et al.. IE E E  Trans. Electron Devices 44. 1109 
(1997). €) 1997. IEEE.

along the BDD path specified by a given set of voltage inputs (A^, X 2, . . . ) .  The value of 
the logic is determined by observing which terminal the messenger electron reaches. The 
output circuit detects the arrival of a messenger electron at the 1-0 terminals and produces 
the corresponding binary voltage output. The messenger electron ejected from the terminal 
is re turned  to the root node through the feedback loop to be used for successive logic 
operations. Two or more messenger electrons can be used in a BDD circuit; we can put a 
messenger electron on every transfer stage (a subcircuit unit that is driven by a set of four 
clock pulses) to produce pipelined operation for increasing throughput of processing.

5.3.4. Logic Operation of BDD Circuits
This section illustrates the logic operation of BDD circuits, with an example of computer- 
simulated results for a 4-bit adder reported in Ref. [36]. The adder accepts two 4-bit adder 
inputs (an addend and an augend) and produces the corresponding 4-bit sum output and

Figure 25. Unit devices cascaded to  build the tree o f a B DD graph. D ashed lines represent a path  o f a messenger- 
electron  transfer. R eprinted with perm ission from [35], N. Asahi et al., IE E E  Trans. Electron Devices 44. 1109 
(1997). € ' 1997. IF.EE.
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BDD circuit

Output

Figure 26. Schematic view of a BDD-circuit block, consisting of a B DD circuit (a tree circuit and term inals), an 
ou tput circuit, and an electron injector. R eprinted with perm ission from 135). N. Asahi et al., IE EE  Dans. Electron 
Devices 44, 1109 (1997). © 1997. IE EE .

1-hit carry output. The two adder inputs are hereafter represented by binary numbers 
uya2a ^  and bylhb^b^ the adder output by .vvv2.s'|.v(l, and the carry output by c3, where the 
value of each element cr̂  through c:% is either 1 o r  0.

The operation of the adder can be represented by using the set of BDD graphs illustrated 
in Fig. 27. Each bit o f  the outputs (.y„ through .v3 and e3) is produced by the corresponding 
BDD graph, which contains the value of the input bits (tf() through and /?„ through fr3)
as node variables. In each node, the exit branch on the right side shows a 1 branch and the 
exit branch on the left shows a 0 branch.

To illustrate the single-electron circuits that implement the BDD graphs, Fig. 28 defines 
symbols for two devices— the BDD device and a buffer. The buffer is a subcircuit consisting 
of a tunnel junction and a capacitor. Its function is to set up a dummy node and holds a 
messenger electron for one clock period—an indispensable timing element for constructing 
the single-electron BDD circuits.

Figure 27. A sol of BDD graphs representing 4-hii addition.
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<S\ mbol i (S\ mbol)

(a) BDD device (hi BuITer

Figure 28. Symbols o f ihe B DD device and a buffer.

The circuits designed for the adder arc illustrated in Fig. 29. In each circuit, a root node is 
indicated by the boxed word “R o o t / ’ and terminal nodes are indicated by the boxed numerals 
1 and 0. The configuration of each circuit was obtained by simply replacing the nodes in the 
BDD graphs of Fig. 27 with BDD devices. Factors to keep in mind in designing the circuit 
include the following:

1. To transfer and circulate the messenger electron in the circuit, the four-phase clock
(c/>()........ </>3) is applied to node devices and buffers. The phase shift of the clock is

=  (), (j)] — - tt/ 2 , (f)2 =  — 7r, <f>-> =  —37t/2. The bit signals of the adder inputs are 
applied in sequence to the BDD devices such that the bit signal for a BDD device 
is applied synchronously with the clock pulse for the consecutive BDD device (or the 
consecutive buffer).

2. In actual systems, an input-bit signal will be applied to all the BDD circuits simultane
ously with the clock. For successful operation in such a situation, the buffers (dummy 
nodes) have to be set up on appropriate points on the path to ensure that a messenger
electron will arrive at each BDD device at the correct time.

3. Two or more messenger electrons can be used in a BDD circuit. Putting a messenger 
electron on every transfer stage (a subcircuit that is driven by a set of four clock 
pulses) produces a pipelined operation that improves the processing throughput. In this 
instance, three messenger electrons can be put in each BD D  circuit.

Figure 30 shows the simulated operation of the designed BDD adder for several sets 
of input data. The parameters used in this example are junction capacitance =  10 aF and 
tunnel resistance =  100 k i l  for each tunnel junction, capacitance =  10 aF for each capacitor,
and temperature — 0 K. Three messenger electrons were put in each BDD circuit. The
figure plots the waveforms for clock pulse </>„ (the o ther clocks are omitted), input-bit pulses

Figure 29. Circuit configuration o f the 4-bil adder. R eprin ted  with perm ission from [3f>J, N. Asahi et al., lEIC'E  
Trans. Electron. F-NI-C, 49 ( 1998). © 1998, IE  ICE.
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through 60), and output charges (.sn through the charges on the 1-terminal lodes of 
the four BDD circuits, normalized to the electron charge). The adder produces at output 
data flow in response to the input data flow, as a linear systolic array; in the figue, a set 
of input and output data is marked by a dashed line. One logic operation (from axepting 
ay to producing the corresponding output) requires 8 ns, but the pipelined processing can 
produce an output data eve 17 period of 4 ns.

5.3.5. Logic Circuits Based on the Shared BDD
As described in Fig. 22, a BDD has a path from the root to either terminal for a given 
set of variable values. Therefore, we can also determine the value of the digital furution by 
tracing the path upward from the 1-terminal to the root to check whether the 1-terminal is
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connected to the root. If the connection is established, the function is logical 1. and if not, 
the function is logical 0. This upward tracing leads us to another form of single-electron 
BDD circuits, as shown in Sections. 53.6-5.3.8.

In the upward tracing, each node in BDD acts as a switching element with two entry 
branches (1-branch and 0-branch) and an exit, as shown in Fig. 31a. In each node in BDD 
graphs (e.g., in Fig. 31b and c), one entry branch corresponding to the value of the variable 
(A, ) is connected to the exit, and the o ther branch is disconnected (e.g., if variable x, is logical 
1, the 1-branch is connected to the exit and the 0-branch is not connected). To determine the 
value of the logic function, we check whether the 1 -terminal is connected to the root; if the 
connection is established, the function is logical 1, and if not, the function is logical 0. Most 
digital systems contain multiple output functions that are closely related to one another, and 
these functions can be represented by a single graph with multiple roots (one root for each 
function), as shown in Fig. 31 d (a combination of two BDD graphs in Fig. 31b and c). This 
kind of BDD is called a shared BDD. Figure 32 shows another example of a shared BDD, 
a representation of 2-bit addition, which has three roots for three output bits (a 2-bit sum 
output and a 1-bit carry output).

5.3.6. Constructing Shared-BDD Circuits 
Combined with the Upward Tracing

Yamada and others proposed implementing the node function for the upward tracing by 
means of tunneling gates [37]. The tunneling gate is a tunnel junction with a gate electrode 
that controls electron transport through the tunnel junction (Fig. 33a). It accepts a binary 
gate voltage as input and transmits electrons through the junction if the gate voltage is 
logical 1 (the junction is on) or transmits no electrons if the gate voltage is logical 0 (the 
junction is off). The tunneling gates can be made with quantum-dot devices, as shown later 
in Section 5.3.8.

Figure 33b shows the BDD device consisting of two tunneling gates and a ground capacitor 
joined together at the exit node. A binary gate voltage (and its complement), specifying 
the value of an input variable x h is applied to tunneling gate labeled x t (and gate labeled 
Tj) to control the tunneling transport of the junction. If variable x, =  l(x~ =  0), the BDD 
device transports electrons from the I-branch to the exit, and if x i =  0(iy =  1), it transports 
electrons from the 0-branch to the exit.

Any combinational logic can be implemented by combining the BDD devices to build a 
BDD graph circuit. In operating the circuit, we apply input gate voltages to the tunneling 
gates and inject electrons into the circuit from the I-terminal and then observe at each root 
whether the electrons flow out or not. As an example, Fig. 34 shows a sample configuration 
that implements the shared BDD given in Fig. 31c. The circuit is designed on the basis of 
the following principles:

1. In composing the circuit, the 0-terminal and related branch connections in BDDs arc 
unnecessary and removed.

2. A gradient potential from the 1-terminal to the roots must be appropriately established 
so that, in every BDD device, electrons can flow from the entry branches to the exit.

Figure  31. Examples of  the binary decision diagram (BDD).
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Figure 32. Shared-B D D  represen tation  for 2-hit addition.

uate volum e
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tunneling junciu n

(symbol)
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■branch node

O - b r a n c h 0

exil

Figure 33. BDD device consisting o f tunneling gales. R eprin ted  with permission from [37|. T. Y am adaet n\..Jpn. 
./. Appl. Phys. 40, 4485 (2001). <0 2 0 0 -J, Institute o f Pure and A pplied Physics.

root rool

Figure 34. BDD circuit im plem enting the shared  BDD graph in Fig. 31(c). The ground capacitance forcach  lode 
is om itted. R eprinted with perm ission  from (37). T. Yam ada et al.. Jpn. J Appl. Phvs. 40. 4485 (200b. <D 2)01. 
Institute of Pure and A pplied Physics.
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This can ho achieved by inserting dumm\ tunnel junctions in electron paths so that 
every path from the I-terminal to a root will have the same number of tunnel junctions.

The circuit accepts two voltage inputs (specifying variables A | and .v->) and produces two 
corresponding outputs ( / ,  and f : ). The input voltages are applied to the tunneling gates 
labeled with variables x {. .v,, x 2. and .v: to control (turn on and off) electron transport 
through the tunneling gates. The nonlabeled junctions are dummy tunnel junctions that 
establish a potential gradient through electron paths. Each node has a ground capacitance, 
but for simplicity the capacitance is omitted in the figure.

To operate  the circuit, all the roots are grounded and a negative power voltage is applied to 
the 1-terminal. Electrons are injected from the power voltage into the circuit and transported 
toward each root along the paths specified by the variables. The logical value of an output is 
1 if electrons can reach the corresponding root; and 0 if they cannot. The circuit is analogous 
in operation to pass-transistor circuits composed of MOSFETs, and it can be considered to 
be an ultra-low-power version of a pass-transistor circuit. In the circuit, the electron flow 
(and therefore power consumption) is regulated by the Coulomb blockade and can be set 
to a far smaller quantity than can be in ordinary pass-transistor circuits. The num ber of 
electrons that flow through the circuit during one logic operation can be reduced to tens or 
so by adjusting the tunnel junction and the ground capacitances (see Figs. 35 and 36).

The logic operation of the sample circuit is shown in Fig. 35. This is a result simulated 
with a set o f  device parameters: tunneling gate junction capacitance =  10 aF, dummy tunnel 
junction capacitance — 10 aF, ground capacitance of a node =  20 aF, and tunneling gate 
resistance =  1 M il  in the “on ” state and 10 G i l  in the “off” state. The voltage of the 
1-terminal was set to 3.5 mV, and the tem perature was assumed to be absolute zero. In 
the figure, four input combinations (a',a'2 =  00, 10,01, 11) are applied in sequence to the 
gates of the circuit at 10-ns intervals. Each impulse in the figure signifies the arrival of an 
electron at a root. Thus, a total of 15 electrons flowed out of  root j \  during the period 
from 10 to  20 ns. The circuit produces the expected correct outputs. The num ber of output 
electrons, and therefore the power consumption of the circuit, can be controlled by adjusting 
the 1-terminal voltage.

5.3.7. Logic O peration o f a 2 -B it A d d er
C onsisting  o f a S hared-B D D  C ircuit

As an example of a larger system, this section shows a circuit that implements the shared 
BDD for 2-bit addition given in Fig. 32. The designed circuit is shown in Fig. 37. The 
circuit accepts two 2-bit binary inputs [augend (</|</„) and addend ( b {b{])] and produces the 
corresponding 2-bit sum output (.$vv0) and a 1-bit carry output (c,).

C om puter simulation shows that the designed circuit perform adds correctly for all possi
ble input combinations. Some of the simulation results are shown in Figs. 36 and 38. (The

inputs U | .ii)
00 10 01 II

< - 0 ► < | \ > < 0 >
(ex peeled out pul)

< - I > < 1 >< 0 - i ->
(expected output)

0 10 20 30 40
t i m e  ( n s )

Figure 35. O peration  of the HDD circuit in Fig. 34 (sim ulation). Each impulse signifies the arrival of an electron 
at a root. T he expected logical values for each ou tpu t bit are w ritten in the figure. T em peratures is assum ed to be 
0 K. R eprin ted  with perm ission from [37], T. Yamada et al.,Jpn. J. Appl. Phys. 40. 4485 (2001). © 2001, Institute of 
Pure and A pplied Physics.
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Figure 36. O peration  o f the adder circuit at 0 K (sim ulation). R eprin ted  with perm ission from [37], T. Yamada 
et A., Jpn. ./. Appl. Phys. 40, 4485 (2001). (0 2001, Institute o f Pure and Applied Physics.

same device parameters as for the preceding circuit were used. The power voltage of the 1- 
terminal was set to 10 mV for the results shown in Fig. 36 and 20 mV for Fig. 36). Figure 36 
shows the results for zero temperature (0 K). Each impulse in the figure signifies the arrival 
of an electron at a root. The circuit produces the expected correct outputs.

Figure 38a shows the results at a tem perature of 20 K. The circuit produces noisy outputs 
as a result of thermal agitation (i.e., a countercurrent or countcrtransport of electrons from 
a root into the circuit is frequently observed, shown by negative impulses in the figure). 
Nevertheless, the correct outputs can be retrieved by counting the net number of output 
electrons. The results are shown in Fig. 38b. In this example, the counting was repeated

Figure 37. Shared BDD circuit for a 2-bit adder. The ground capacitance for each node is om itted. R epnnted with 
permission from [37], T. Yam ada el al., Jpn ./. Appl. Phys. 40. 4485 (200] ). <g 2001, Institute of P ire  and Applied 
Ph\sics.
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Figure 38. O peration  of the adder circuit at 20 K (sim ulation). R eprin ted  with perm ission from [37], T. Yamada 
ct a l.,.//»!. ./. A p p i Phys. 40. 4485 (2001). 2001, Institu te o f Pure and Applied Physics.

every 2 ns (e.g., a total o f  nine electrons flowed out of root s0 during the period from 12 to 
14 ns). Using a longer period for the counting enables the operation of the circuit at higher 
temperatures.

5.3.8. Shared-BDD Integrated Circuits Fabricated by 
a Semiconductor Process Technology

Kasai and others developed single-electron subsystems based on the shared BDD, with the 
aim of composing a microprocessor [38, 39]. These subsystems arc fabricated with a sophis
ticated process technology. Hexagon NanoProcess. In the first step of this technology, a 
hexagonal network of GaAlAs-GaAs heterostructure nanowires is formed on an insulating 
GaAs layer (the left figure in Fig. 39a). A quantum wire that consists of two-dimensional 
electron gas (2D E G ) goes through the nanowire (the left figure in Fig. 39a). In the second 
step, a Schottky gate consisting of metal is formed on the wire to construct a tunneling gate 
(the right figure in Fig. 39a). The Schottky gate is wrapped around the wire, and a depletion 
layer or a potential barrier extends from the gate into the quantum wire. This potential 
barrier divides the quantum wire into two separate 2D E G  regions, and a tunnel junction is 
formed between the two 2D EG  regions.

A notable characteristic of this tunnel junction is that electron transport between the 
two 2D E G  regions can be modulated by controlling the voltage of the gate to regulate the 
width of the potential barrier between the 2DEG regions. Electrons will be transferred by 
tunneling from one 2D EG  region to the o ther if the gate is set to a low negative voltage, 
whereas no electrons will be transferred if the gate is set to a highly negative voltage. In this 
way, the tunnel junction can operate as the tunneling gate that turns electron transport on 
and off. With these tunneling gates, BDD devices can be constructed as shown in Fig. 39b. 
The device in the left figure consists of two tunneling gates, and the device in the left figure 
uses two single-electron transistor switches consisting of four tunneling gates. The on-off  
conductance and the two-way switching of the BDD devices are shown in Fig. 40.

QWR-type SE-iypeGaAs-bused hexagonal nanowire network
Schottky wrap gate (WPG)

Figure 39. (a) Hexagonal network o f quantum  wires and a tunneling gate with a Schottky gate (W PG ), and (b) two 
structures o f BDD devices, i.e., a quantum -w ire (Q W R ) device consisting o f two tunneling gates and a single- 
e lcetron-transis to r (SE ) device consisting o f four tunneling  gates. R eprin ted  with perm ission from [39], S. Kasai 
et al.. in ‘ Proceedings of the 2003 Asia-Pacific W orkshop on Fundam entals and Application o f Advanced Sem icon
ducto r Devices.'* 2003. p. 177. 0 2003, IE1CE.
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Figure 40. O n -o ff conductance in (a) tunneling gate and (b) single-electron-transislor switch m easured at various 
tem peratures, and (c) two-way switching o f the BDD device m easured at 1.7 K and 297 K. Reprinted with perm ission 
from [39|, S. Kasai et al.. in “Proceedings of the 2003 Asia-Pacific W orkshop on Fundam entals and Application o f 
Advanced Sem iconductor Devices," 2003, p. 177. <fi> 2003, lEIC'E.

With the tunneling-gate BDD devices, several subsystems were constructed based on the 
shared BDD graphs shown in Fig. 41. To implement with Hexagon NanoProcess, these BDD 
graphs are drawn on a hexagonal-network chart and designed so that they have no intersection 
of branches. In Hexagon NanoProcess, the subsystem circuits were fabricated on a GaAlAs- 
GaAs hexagonal nanowire network that was formed by chemically etching a AlGaAs/GaAs 
heterostructure layer on an insulating GaAs substrate. To make Q W R  BDD devices, Schot- 
tkv gate electrodes were attached on the nanowires by using EB lithography, metal deposi
tion, and lift-off process. The width of the nanowire was 300-500 nm, and the gate length was 
300 nm. As an example of fabricated subsystems, a 2-bit adder is shown in Fig. 42; the panel 
a shows a SEM image, and panel b shows input-output waveforms of 2-bit add operation 
for all possible input combinations. Using Hexagon NanoProcess will enable us to construct 
single-electron LSIs with large-scale integration of 25-45 million BDD devices/cm2.

5.4. Single-Electron Majority Logic Circuits
5.4.1. A Short Sketch of Majority Logic
The majority logic is a way of implementing digital operations in a manner different from 
that of Boolean logic [40, 41]. It represents and manipulates digital functions on the basis of 
the principle of majority decision instead of using Boolean logic operators AND, OR, and 
their complements. The logic process of majority logic is much more sophisticated than that 
of Boolean logic, so the majority logic is more powerful for implementing a given digital 
function with a smaller number of logic gales.

The prospects for the practical applications of majority logic wholly depend on the feasi
bility of a logic device suitable for majority logic. In the late 1950s, several computer systems 
based on the majority logic architecture were developed and constructed for practical use by 
using a nonlinear-reactance device called the parametron, a majority logic device that uses 
the phenomenon of parametric phase-locked oscillation. After these developments, however,
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Figure 41. Shared B DD graphs designed to construct several subsystems for a single-electron 2-bit processor. 
R eprin ted  with perm ission from  [39], S. Kasai et al., in “ Proceedings of the 2003 Asia-Pacific W orkshop on Funda
m entals and A pplication of Advanced Sem iconductor D e v ic e s ,2003. p. 177. © 2003, 1EICH.

majority logic had to leave the stage because the transistor gate circuit—a Boolean logic 
device by nature—came to be the dominant device in digital electronics. However, majority 
logic can be expected to make a comeback with the development of single-electron tech
nology. This is so because, as shown in the following sections, the single-electron circuit 
will provide functional properties that can be well used for implementing majority logic 
operations.

5.4.2. Unit Function of Majority Logic
The unit function of majority logic is to determine the output state by means of the majority 
vote of  input states. The logic element, a majority logic gate, or simply a majority gate has 
an odd number of binary inputs and a binary output. It produces an output of 1 if the 
majority of the inputs is 1, and produces an output of 0 if the majority is 0. The function of 
a three-input gate is shown in Fig. 43a, together with the logic symbol of the gate. When, 
for instance, the three inputs are 0, 1, and 1, the output is 1 (fourth row in the table); when 
the inputs are 1, 0. and 0, the output is 0 (fifth row in the table). (For further details on
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Figure 42. Single-electron 2-bit adder fabricated with Hexagon N anoProccss technology, (a) An SEM and (b) input- 
ou tput waveforms com pared with theoretical ones, m easured  at room  tem perature. Reprinted with permission 
from 139), S. Kasai et al.. in “ Proceedings o f the 2003 Asia-Pacific W orkshop on Fundam entals and Application of 
Advanced Sem iconductor D evices/' 2003, p. 177. C> 2003. IEIC E.

majority logic, sec Refs. [40) and [41].) Any digital function can be implemented using a 
combination of majority gates and inverters. A majority gate can have five or more inputs, 
but three-input gates suffice for the construction of any logic system.

Figure 43b gives the complement of the three-input majority function. The gate devices 
described in the following sections produce this complementary function. Anv digital func
tion can be implemented using only the gates of the complementary majority function; using 
inverters jointly makes the logic system design more concise. The logic symbol given in 
Fig. 43b is used for a complementary majority gate.

Majority logic provides a concise implementation for most functions encountered in logic 
design applications. As an example. Fig. 44a shows the implementation of a full adder, and 
Fig. 44b shows a 4-bit adder consisting of four full adders connected into a cascade manner. 
In the figures, an inverter is represented by a segment on a connection branch, according 
to the conventional flow-diagram description of majority logic. A full adder is composed of 
only three gates with two inverters. In contrast, a Boolean-based implementation requires a 
larger circuit with seven or eight gate elements (about 25-30 MOSFETs).

The essential function for the majority gate operation is to ascertain whether the majority 
of inputs is 1 or 0. This can be performed by calculating the mean of the inputs (each input 
is 1 or 0) and comparing the mean value with 0.5; if the mean value is larger than 0.5,
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Figure 43. Three-input majority gates: (a) majority-logic gate and (b) complementary majority  logic gate.
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Adder inputs

aj Full adder (h) 4-bil adder
Sum ouput

Figure 44. Full adder and a 4-bit adder consisting of majority gates and inverters. Each symbol denotes a com ple
m entary function gate. An inverter is rep resen ted  by a segm ent on a connection branch.

the majority can be considered to be 1, and if it is smaller than 0.5, then the majority can 
be considered to be 0. A promising way of implementing this function with single-electron 
circuits is to use the technique of charge-balancing capacitor summation, with a threshold 
device for producing the corresponding 1/0 output. The following sections give an outline of 
two majority gates: One uses a Tucker’s inverter, and the o ther uses a single-electron box as 
a threshold device.

5.4.3. Constructing a Majority Gate with a Tucker's Inverter
5.4.3.1. G ate C ircuit Iwamura and others proposed a majority gate that used a Tuckers 
inverter as a threshold device [42]. Figure 45(a) illustrates the gate with an example of a 
three-input configuration. The gate consists of an input capacitor array (six capacitors C) 
for input summation and an inverter subcircuit (four tunnel junctions Cy,-C/4 and three 
capacitors C , - Q )  for threshold operation. The gate accepts three input voltages K,, K2, and 
Vy and produces the corresponding output voltage Vour The configuration of this circuit is 
modeled on the single-electron inverter proposed by Tucker [6], illustrated in Fig. 45b; that 
is, starting with the inverter configuration of Fig. 45b, each of the two input capacitances ( Q  
in Fig. 45b) are divided into three equal capacitances, then the divided capacitances (C  in 
Fig. 45a) are connected to three input terminals to create the majority gate. The gate input 
capacitance C  is set at one-third of the inverter input capacitance C(); that is, C  =  Q / 3  (the 
o ther parameters are set to be the same as those of the original inverter).

This gate produces the complementary majority function as follows: The input nodes P 
and Q of the inverter subcircuit are coupled to each input V {, V2, or V\ through each input 
capacitance C, so the potential of each input node is changed in proportion to the mean 
value of the inputs. Therefore, if two or three inputs are l, the gate circuit is in the same state 
as that of an inverter that is applied an input of larger than 0.5, and so the corresponding 
output will be 0. If two or three inputs are 0, the gate state is the same as the inverter state 
for an input of smaller than 0.5, therefore the output will be l .

(b) Inverter

F igure 45. Single-electron majority logic gate circuit: (a) circuit configuration and (b) Tucker's inverter circuit. 
R eprin ted  with perm ission from [42]. H. Iw am ura cl al., JE1CE Trans. Electron. E 8I-C , 42 ( l 998). © 1998, IEICE'.
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To achieve the correct gate operation, the inverter subcircuit must be designed so that 
it will be stable throughout its transfer curve except a high-low transition point \o exhibit 
the characteristic of a step inverter (Fig. 46). This is important for majority gate application 
because, in the majority gate, the inverter subcircuit will frequently receive an intermediate 
input value between I and 0. Selecting appropriate param eter values can give ar inverter 
the step characteristic. A sample set of parameters for a three-input gate is C =  1 aF, 
C n = Cj4 =  1 aF, Cj2 = C j =  2 aF, C, =  9 aF, C\ =  9 aF, C, =  24 aF, and VM =  65 mV.

This param eter set gives the transfer curve shown in Fig. 47, simulated under the ;ondition 
of all the three input terminals being applied the same input voltage. A slight hysteresis is 
observed at the high-low transition but is not a problem in the gate circuit. It s worthy 
of note that, unlike CMOS inverters, single-electron step inverters do not produce short- 
circuit current even for intermediate values of input. This is quite convenient for low-power 
operation.

5.4.3.2. Subsystem Design: Adders One of the simple subsystems is a fall adder 
(Fig. 44a) consisting of three majority gates and two inverters. This circuit operates as sum
marized in Fig. 48, simulated with parameters same as those given above and a tunnel 
junction resistance of 100 kM. Temperature was assumed to be 0 K. In the figure, :he three 
inputs (adder input /I, adder input B , carry input Cin) are applied in sequence as <000, 001, 
010, 011, 100, 101, 110, 111), and the corresponding two outputs (sum output S i m,  carry 
output Cimt) is observed as (00, 10, 10, 01, 10, 01, 01, 1 1).

Some explication is needed for the operation speed of the circuit. Electron tunneling is in 
general a probabilistic phenomenon, so the operation delay time in a single-electron circuit 
is not a fixed value but differs in each operation event. (In simulation, the prcbabilistic 
characteristic is taken into account by use of random numbers, and Fig. 48 shows he result 
for a given set o f random numbers.) It is therefore the usual practice for singk-electron 
circuits to represent the operation speed by the mean of operation delay time. Following 
this practice shows that the mean add time of the full adder is 0.3 ns.

Figure 49 shows the operation of the circuit for a 4-bit adder (Fig. 44b). T ie  output 
waveforms for the add operation of 1111 +  0001 are plotted. In this figure, both ol the 4-bit 
inputs (an addend and an augend) are initially set at 0000; then, at time =  0, one input is 
turned to 1111 and the o ther to 0001. The operation speed is limited by the carry celay, and 
the mean add time for the operation of 1111 +  0001 is 1.2 ns.

5.4.4. Constructing a Majority Gate with a Single-Electron Box
5.4.4.1. Single-Electron Box as a Threshold Device Oya and others proposed a major
ity gate that used a single-electron box instead of a Tucker’s inverter [43, 44]. Their gate uses 
a balanced pair o f single-electron boxes or an irreversible single-electron box as a :hreshold 
device that compares the output of  a capacitor summation array with 0.5 to produce the 1/0 
output.

Figure 50a shows the majority gate with an irreversible single-electron box [44]. It consists 
o f  two identical tunnel junctions C, connected in series, a bias capacitor C , , and a bias
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Figure 46. Transfer curve of a step inverter required for the inverter subeireuit.
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Figure 47. Transfer curve o f the majority gate circuit. Sim ulated under the condition o f all the three input term inals 
being applied the same input voltage. For the circuit param eters, see the text. R eprin ted  with perm ission from [42]. 
H. Iwam ura et al., IE IC E  Trims. Electron. ES1-C. 42 (1998). £) 1998. IEIC E.

lime ms)

Figure 48. Add operation  o f the single-bit full ad d er (sim ulation): the waveform s o f a sum ou tpu t S u m  and a carry 
ou tput C oin  for the eight input com binations. R eprin ted  with perm ission from |4 2 |, H. Iwamura et al.. IE IC E  
Trans. Electron. E8I-C . 42 (1998). @ 1998. IE*ICE.

t i m e  ( u s )

Figure 49. O peration  o f the 4-bit adder (sim ulation): the output waveform s (a sum output S u m  and a carry output 
C o u t)  for the add operation  o f 0001 +  1111. R eprin ted  with perm ission from [42], H. Iwam ura et al.. IE1CE Trims. 
Electron. ENI-C. 42 (1998). ■£ 1998. IEIC'E.
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Figure 50. Irreversible single-electron box: (a) circuit configuration with a double tunnel junctions, (b) stitic num ber 
n o f excess e lectrons on node I as a function of bias voltage Vih (e) voltage at node 1 as a function o f /d.

voltage V(i. It has an island node 1, at which excess electrons are stored. At the ow tem 
peratures at which the Coulomb-blockade effect occurs, the number n of excess electrons 
takes a value such that the electrostatic energy in the circuit (including the bias voltage 
source) is locally minimized. The value of n  is 0 at V(l =  0, and it changes with V0 because 
of electron tunneling between node 1 and the ground through junctions C} via inte'mediate 
node 2. In this circuit, n  is a hysteretie staircase function of Vlh as shown in Fi*. 50b; n  
changes from 0 to 1 when V(i is increased above threshold V2 [= e( 1 +  C L/C y)/(2C ,); e is 
the elementary charge] and returns from 1 to 0 when V\, is decreased below threshold Vx 
\— e( \ — C, / C j ) / ( 2 C l )]. Because of this discrete changes in /i, the voltage at noie 1 is a 
hysterctic sawtooth function of V(h as shown in Fig. 50c. For this operation, the irreversible 
single-electron box is called a single-electron trap.

A similar hysteretic function can be obtained using a multijunction box— a single-electron 
box that has three or more tunnel junctions connected in series. A multijunction box can 
therefore also be used to construct the majority gate. In an N  junction trap, the thresholds 
are given by V2 ~  e[ \ +  ( N  -  1)C, / C /j / ( 2 C / ) and V, =  c'[ 1 — ( N  -- 1 )C/ ■JCj ]/ (2C , ).

5.4.4.2. G a te  C ircuit C o n fig u ra tio n  A majority gate can be constructed with an irre
versible single-electron box, as illustrated in Fig. 51a with a three-input configuration. The 
majority gate consists of a double-junction box (C , and two junctions C ;), three inpit capac
itors C, and an output capacitor C  (the input and output capacitors are set at equil capac
itance). Three input voltages, K,, V2, and Vy, are applied to node 1 through tie input 
capacitors. The input capacitors form a voltage-summing network and produce the mean of 
their inputs on node 1. The double-junction box then produces the complementary najority- 
logic output on the same node, as illustrated later, and the output is sent to a succeeding 
gate through the output terminal. Binary logic values 1 and 0 are represented by i positive 
voltage and a negative voltage of equal amplitude.

The operation of the majority gate is as follows. We first ground the output terrrinal and 
apply the input voltages and then increase bias voltage Vd to an appropriate excitatnn value, 
Vrx. The voltage at node 1 reaches a positive value determined by Vcx and input voltages 
V\, V2, and Vy  If the node voltage exceeds a threshold, an electron will tunnel rom the 
ground to node 1 via intermediate node 2: consequently, the node voltage will turn negative.

inputs H .1.1) 11.1.0) (1.0.0) (0.0.0

(a) t b)

Figure 51. Majority-gaU* device: (a) sim ulated circuit configuration and t'o) voltage at node I as a hyste re ie function 
ol F, with four sets o f inputs its param eters. T he dashed lines show the node voltage at inputs I =  Vz = Vy — 0 V. 
Reprinted with perm ission from 144]. !'. O ut et al.. / / . / . / :  Trans. Sanourhnology  2. 15 {2003). ?.> 2003. IEEE.
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In contrast, if the node voltage does not reach the threshold, it will remain positive. We 
then retrieve the node voltage as an output. For successful majority-logic operation, we set 
excitation voltage l'cx to e[\ +  (C , +  4 C ) /C ,] / (2 C / ) so that electron tunneling will take 
place only if two or three inputs are a logical 1 (or only if the mean of three input voltages is 
positive). After exciting the gate, we decrease bias Vd to a holding voltage e / ( 2CL), ground 
the input terminals (or set V2, and Vy to 0 V), and then observe the voltage at node 
1, the output voltage. The output voltage (therefore input voltage for a succeeding gate) 
is —c/ ( 2 C l +  8C -f C ?), or logical 0, if two or three inputs are 1 (electron tunneling takes 
place), and it is e / ( 2 Cf -f 8C +  C,), o r  logical 1, if two or three inputs are 0 (no electron 
tunneling takes place).

5 .4 A .3 . M ajority L o g ic  O p era tio n  Figure 51b shows the gate operation, with simulated 
results for a sample set o f parameters, C, = 2 aF, C, =  20 aF, C =  2 aF, and zero tem per
ature. In this example, a logical 1 is represented by a voltage of 4 mV and a logical 0 by 
- 4  mV. The figure shows the voltage at node 1 as a function of Vd with a set of three inputs 
as a parameter set (the output terminal is grounded). In the figure, for example, "inputs (1,
1, 0)” means that two inputs are set to 4 mV (logical 1) and that one input is set to - 4  mV 
(logical 0). With increasing V(h the node potential increases to a maximum, then drops to 
a negative because of electron tunneling. The threshold value of Vd, at which the electron 
tunneling takes place, depends on the sum of the inputs; in this example, the threshold is 
56 mV for inputs (1, 1,0) and 64 mV for inputs (1 ,0 , 0). To operate the device as a majority 
gate, Vd is increased to an excitation value of 60 mV (indicated by V(,x in the figure). The 
logic output, or the voltage at node 1, was retrieved through the output terminal. To do this 
retrieving, we decreased bias Vd to a holding value of 40 mV (indicated by Kvv), grounded 
the three input terminals, and checked the voltage of node 1. The node voltage was 4 mV 
(quiescent point A on the dashed line) when the output was 1 and —4 mV (quiescent point 
B ) when the output was 0.

Figure 52 illustrates the logic operation for all input combinations, with simulated results 
for Cj = 2 aF, Cj =  20 aF, and C  = 2 aF; tunnel junction conductance =  5 /iS; and zero 
temperature. The bias voltage Vd is the two-step clock pulse shown in the upper plot in the 
figure; first, Vd is set to an excitation voltage Vt,x o f 60 mV, and then it is set to a holding 
voltage V\s of 40 mV. Three inputs (K,, K: , and Vy) are applied synchronously with the bias 
clock. They are the rectangular pulses (4 mV for logical 1 and —4 mV for logical 0) in the 
middle plot in Fig. 52. In the figure, the four sets o f inputs (1, 1, 1), (I ,  1, 0), (1, 0, 0), and
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(0. 0, 0) were applied in sequence. Depending on the majority of the inputs, the voltage at 
node 1 changes from 0 to positive (1-valued) or negative (0-valued) (bottom plot in Fig. 52). 
For a 0 output, the output voltage initially goes high for an instant with the rise in Vd and 
then turns negative as electron tunneling takes place. The output established in each clock 
cycle is maintained after the input pulses are turned off until V(l returns to zero (duration 
T  in the bottom plot).

5.4.4.4. Subsystem Design: Full Adder Any logic function can be implemented by com 
bining identical gates into a cascade configuration, with the output capacitor of one gate 
acting as the input capacitor of the following gate. An example is illustrated in Fig. 53(a). 
This majority gate is bilateral, so a three-phase clock is used to control the signal-flow direc
tion. To do this, the gate circuits are divided into three groups, and each group is excited in 
turn by one phase of the three clock signals. (b[ to </>3, as shown in Fig. 53b. For instance, in 
Fig. 53a, the leftmost gate (and every fourth gate thereafter) belongs to the first group and is 
excited by the </>,-phase clock; the middle gate (and every fourth gate thereafter) belongs to 
the second group and is exited by the <̂ 2-phase clock; the rightmost gate (and every fourth 
gate thereafter) belongs to the third group and is excited by the </>3-phase clock. The phases 
of the three clock signals overlap so that the output of a stage will be established while the 
preceding stage is maintaining its output during its holding period; signals are thus transmit
ted from one gate to the next. For successful interstage coupling, the duration of the overlap 
has to be longer than the excitation period, as shown in Fig. 53b. The signal-flow direction 
is determined by the relative timing of the three phases; in Fig. 53a, it is rightward.

Figure 54a illustrates an implementation of the full adder shown in Fig. 44. The adder 
accepts three inputs, augend /I, addend B< and carry input Cin (and their complements A , 
/?, and C,„); it then produces the corresponding carry output C0 and sum output Sn. The 
core of the adder consists of majority gates 2, 3, and 7. The o ther gates (1, 4, and 5) act 
as a delay buffer to transfer the signal from the preceding stage to the following stage with 
the correct clock timing. Gate 6 is a fan-out buffer that transmits signals from the following 
stage to the succeeding two stages. The inputs are taken in while clock is in the excitation 
period. Carry output C0 is produced when (/>2 goes high and is retrieved by gate 7 while </>2 
is in the holding period. Sum output S,t is produced when c/>3 goes high again. The delays 
between the inputs and the carry output are two-thirds of a clock period, and that between 
the inputs and the sum output is one clock period.

A simulated result is shown in Fig. 54b. Three clock cycles of the output waveforms of 
cariy C0 and sum S„ are shown: the device parameters are as given in the previous section. 
Two sets of inputs (A , B , Cin) — (1, 1,0) and (0, 0, 1) were sequentially entered, and the 
correct outputs (C„, S()) =  (1 .0 )  and (0, 1) were produced in response. Multibit adders can 
be constructed by combining the full adders into a cascade configuration.

Figure 55a shows the configuration of a 4-bit adder consisting of four full adders connected 
into a cascade configuration. In this adder, signals flow leftward with clocks <£, through <f>y  
The circuit accepts two 4-bit inputs, augend X }X 2X }X {) and addend V2Y } yo (and the 
complement of each input bit): it then produces the corresponding carry output C3 and 
4-bit sum output S?tS2S ]Su. Each bit signal of the inputs is applied synchronously with the 
corresponding clock timing, as indicated by codes c/>, to d>} in the figure; for example, input

d), 0, <1>;
excitation period

holding period

V

v n

V ;

1

(a)

Figure 53. G ating wiih a three-phase cl* ck: (a) configuration of interstage coupling (XI lo X I  denote inputs from 
o ther gates) anil (h) the th ree-phase  tuo-slep  clock puises used to  excite gates. R eprinted with permission from 
|44 |. T. Ova et al.. l i  l .I . Trans. Nanoi i n  n a l o "2. 15 (2003). C 2003. IHFfci.
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Figure 54. Full adder: (a) circuit configuration and (b) sim ulated ou tput waveform s o f carry C , and sum So, 
w aveform s of tbx-clock and the inputs. Clocks </>, and (b2 are not shown. R eprin ted  with permission from [44], 
T. Ova et al.. IE E E  Trans. Nanotechnology 2, 15 (2003). ©  2003. IEEE*.

bits X {) and Y{) (and bias inputs 1 and 0) arc applied when goes high, and X } and are 
applied when cl>2 goes high. Output bits .Sn, 5 ,,  S: , C,, and S} are produced in this order with 
clocks </>3, </>2, (/>,, and <f>y. The delay between the first inputs ( X {) and Y{)) and the last 
output is a three-clock period. (Using shift resistors as well will provide modified adders 
that can accept all input bits simultaneously and produce all output bits simultaneously.)

Figure 55b illustrates the operation of the adder, with four clock cycles of output wave
forms for C} and (the waveforms of S{] through S2 are omitted because of limited space). 
The device parameters were as given in Section 5.4.2. In the figure, for instance, the output 
in the period from 155 to 195 ns ( =  1 and =  0) is the response to inputs augend 1111 
and addend 0001, which were applied sequentially from 35 to 150 ns.

5.5. Boltzmann-Machine Neural Networks Using the Stochastic 
Nature of Single-Electron Tunneling

5.5.7. Outline of Boltzmann Machines
The Boltzmann machine is a kind o f  recurrent neural network that can solve various prob
lems in areas such as combinatorial optimization, classification, and learning. It consists of a 
large network of processing units called neurons that are interconnected bidircctionally with
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Figure 55. 4-bit ripple carry adder: (a) circuit configuration and (b) sim ulated ou tput waveforms o f carry bit C\ 
and most significant sum bit .S'; . waveforms o f </>,-clock and the inputs. Clocks (A, and d>: are not shown.
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signal connections having various connection weights. Each neuron receives inpit signals 
from every o ther neuron and sends output signals to every o ther neuron. The neuion has a 
binary output state and changes its state in response to the inputs, according to a stochastic 
transition rule. All neurons operate in parallel, and each one adjusts its own sta.e to the 
states of all the others; consequently, the whole network converges into an optimal configu
ration. The structure of mathematical problems such as combinatorial optimization can be 
mapped onto the structure of a Boltzmann machine by determining the connectioi weights 
between the neurons. In this way, finding the solution to a problem can be reduced tn finding 
the optimal configuration of the Boltzmann machine. The unique and important feature of 
Boltzmann machines is their stochastic neuron operation combined with simulatec anneal
ing algorithms. This allows Boltzmann machines to reach a globally optimal confguration 
(and thereby an optimal solution) without falling into local minimum configurations. For a 
detailed explanation, see Refs. [45] and [46].

A Boltzmann machine LSI circuit for practical use must integrate thousands of nearons on 
a chip. The crucial problem in developing such LSIs is how to implement the generation of 
randomness for the stochastic neuron operation. Every neuron has to have its own random
ness because stochastic independence between the neurons is required. Electronic circuits 
that are currently available for generating randomness— such as the thermal noise ampli
fier and the random bit generator [47]— consist of many device elements and, consequently, 
require a large area. They, therefore, cannot be used for large-scale Boltzmann machine 
LSIs. and so there is a need for a novel device lor constructing Boltzmann machine LSIs.

The following sections describe an attem pt to implement Boltzmann machines on elec
tronic circuits, using the single-electron circuit technology. The single-electron circiit shows 
stochastic behavior in its operation because of the probabilistic nature of electror tunnel
ing, so it can therefore be successfully used for implementing Boltzmann machines with 
simple construction. The following sections explain the neuron function requirec for the 
Boltzmann machine, implementation of Boltzmann machines with single-electron circuits, 
and the problem-solving operation of a single-electron Boltzmann machine network.

5.5.2. Function of Neurons Required for Boltzmann Machine Operation
A Boltzmann machine consists o f  a network of many identical neurons interconnected with 
each other. The configuration of the network is illustrated in Fig. 56. The output of each 
neuron is fed back into the inputs of o ther neurons, and each neuron exchanges signals with 
others to update its own output. Notation WtJ is the connection weight to ncuroi i from 
neuron j,  T{ is the threshold connection weight to neuron i from a bias that is fixed at the 
value of 1, and x, is the output of neuron /. Connection weights Wv and T, can be given at
any desired value under the restrictions that W- Wjj and W 0. The output x, of each

thereshold connection weight

A IV-

connection weight
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uv

bias input

output
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Figure 56. C oncept o f the B oltzm ann m achine. It is a recurrent netw ork consisting of many identical neirons with 
signal connections. Each neuron produces a hinur\ stochastic output.
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neuron is binary (i.e., .v, — 1 or - 1 ) ,  and a set of neuron states (.v,, a: . .v3, etc.) is called Ihe 
state of the network.

In this network, each neuron i takes a weighted sum of inputs according to the following 
equation:

s, =  £  + 7;. (17)
./

The neuron produces an output of a 1 / -1  bit stream in response to the weighted sum Sh 
following the logistic-sigmoid probability function given by

f ( S , ) =  1/[1 H-exp (Si/C )]  (18)

where /(S,-) is the probability for generation of an output 1 (a*, =  1) in the bit stream. 
A control parameter C regulates the dependence of the probability on Sr  It is decreased 
slowly from a large value to a very small value during the simulated-annealing process, 
as shown later. Through this process, a Boltzmann machine network changes its state to 
minimize the “energy” function E  defined by

i;. ! v £ i r r M . - ~ £ y ; , - ,  ( i9 )
i j

By our setting appropriate connection weights Wlf and 7), the energy function of the network 
can be related to the objective function (cost function) of a given optimization problem. This 
way, the solution to the problem can be found simply by observing the final state that the 
network reaches.

5.5.3. Creating Neuron Device with a Single-electron Circuit
The function of the Boltzmann machine neuron can be implemented with a single-electron 
digital oscillator that generates an output of 1/—1 bit stream. In a single-electron digital 
oscillator, the duration of an output 1 (or  an output —1) will fluctuate randomly because of 
the probabilistic nature of electron tunneling. This oscillator will enable us to produce an 
output of random 1 /-1  bit stream required for the Boltzmann-machine neuron operation. 
For the complete function of the neuron, the digital oscillator must be designed so that the 
probability of an output 1 can be modulated by a signal input [S,- in Eq. (17)). according to 
the logistic-sigmoid probability function regulated by a control input [C in Eq. (18)].

Amemiya and others proposed constructing such oscillators by using a Tucker's inverter 
and modifying its circuit configuration [48, 49]. Figure 57 shows their oscillator or a neuron 
device [49]. The oscillator consists of four tunnel junctions (C.-j through C;4) and seven

Figure 57. Configuration of the unil-ncuron circuit for single-clcctron B oltzm ann machines. R eprinted with p e r
mission from 149], T. Yamada et al., Nunoicchnolou^' 12. (i0 (2001). £  2001. IO P Publishing.
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capacitors (C, through C7), with two bias voltages (i.e., a positive voltage Vdd and a nega
tive voltage — Vss). Offset voltage Vh is for adjusting the operating point of the circuit. The 
circuit, with the appropriate set o f  parameters given later, operates as an astable multivi
brator or a square-wave oscillator. That is, the circuit repeats a cycle of  transferring one 
electron from — Vss to K m by making an electron tunneling from one node to another in 
the following sequence: node L  -*  Vdd (tunneling 1), node M -> node L  (tunneling 2),
— Vss -> node N  (tunneling 3), and node N  -» node M  (tunneling 4). Output voltage x { 
o f  the circuit is nearly equal to Vdd (an output 1) during a period between tunneling 2 and 
tunneling 4 because, in this period, an electron is extracted from node A/ (output node) 
and, consequently, node M  is charged positive. In the remaining period, the output is nearly 
equal to — Vss (an output —1). The time that the node M  is charged positive depends on the 
waiting time for tunnelings, so the output randomly alternates between 1 and —1 accord
ing to the probabilistic fluctuation in the waiting time for tunneling. The probability for an 
output 1 can be controlled by external voltage Sr  Thus, the circuit accepts voltage input S, 
(the weighted sum of inputs) and produces the corresponding voltage output .v, in a form of 
random 1/—1 bit stream; this circuit is hereafter called an unit neuron circuit. [This neuron 
circuit does not include a subcircuit for calculating the weighted sum of inputs St. For calcu
lating Sj according to Eq. (17), an additional capacitor subcircuit will be used, as described 
in Section 5.5.4.)

To create the stochastic neuron operation, the circuit parameters have to be set so that 
the circuit can operate under oscillating conditions. To determine the optimum parameters, 
the stability diagram of the circuit is used as a guide map. (A stability diagram illustrates the 
internal states of a single-electron circuit in a multidimensional space of circuit variables— 
namely, the voltages of powers and inputs, and the capacitances of tunnel junctions and 
capacitors.) An example set o f the capacitance parameters for the unit-neuron circuit is

C i\ =  C lA — 1 aF 

C), = C,, -  2 aF 

C; =  C\ =  12 aF
(20)

c\ = c4 = 4 a F  
Q  =  Q  =  10 aF 

C7 =  24 aF

5.5.4. Operation of Unit-Neuron Circuit
The internal state of the unit-neuron circuit is expressed by the numbers of excess electrons 
(1, nu n) on the three nodes (L . M .  and N )  in the circuit. The stability diagram of the 
unit-neuron circuit is drawn in a four-dimensional space of four voltage variables (S,-, Vh, 
Vd(h and — KVA). In Fig. 58a-d, a part of the diagram is illustrated on a plane of two voltage 
variables, input S, and offset Vh, assuming the capacitance parameters given by Eq. (20). 
The two white regions are stable regions, in which the circuit stabilizes at internal states 
(0, - 1 ,  0) and (0, 0, 0); state (0, -  1. 0) produces a positive output voltage (an output 1), 
whereas state (0, 0, 0) produces negative output voltage (an output —1). The output state 
for each internal state is illustrated by putting a letter (H  for an output 1, or L for an output
— 1) before the electron num ber set. The dark regions are unstable regions in which electron 
tunneling frequently occurs and. consequently, the circuit alternates between two or more 
internal states to output a random 1 / — 1 bit stream. The width of the unstable region can 
be controlled by regulating bias voltages Vdd and as shown in the Figs. 58a-d.

The line PQ  in each figure shows the operating line on which the unit-neuron circuit has 
to be operated. Increasing input S, moves the operating point from H ( 0 , - 1 , 0 )  region to 
L(0, 00) region on line PQ. and this changes the probability for generation of an output
1. The control param eter for the probability function can be changed b\ regulating bias 
voltages Vdd and — Vss to change the width of the unstable region. In regulating Vdd and
— the value of offset \yh has to be adjusted simultaneously so that the operating point for
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Figure 58. Stability diagram s o f the unit-neuron circuit given in Fig. 57, plotted on a plane o f input voltage S, and 
offset voltage V,,. For capacitance param eters, see the text. The shaded regions are unstable regions. Figure 58 (a) 
through (d) correspond to a gradual increase in l \ltl and I The value of ( —\ is: (a) (2.72 mV, —3.29 mV), 
(b) (2.74 mV. -3 .3 0  m V). (c) (2.80 mV, -3 .3 6  m V ), (d) (2.87 mV. —3.43 niV). R eprin ted  with permission from 
[49J, T. Yamada et al., /Va noted'uiohtgy 12. 60 (2001). €> 2001, IO P  Publishing.

zero inputs (S, =  0) will be situated on the center line of the unstable region and, thereby, 
the probability for an output 1 will exactly be 0.5 at zero inputs. A set of (V(/lh ~ V ss, and 
Vh) is hereafter called the control-parameter set.

Figure 59a-b show the operation of the unit-neuron circuit, simulated with the capacitance 
parameters given by Eq. (20), tunnel resistances of 100 k l l  for junctions C j{ and C /4 and 
5 M il  for Cj2 and C/3, and zero temperature. The results are for the control-parameter set of 
(2.80 mV, -3 .3 6  mV, -0 .8 7  mV) that corresponds to the operating line P Q  in Fig. 58c. The 
output voltage waveform (a random 1 / - 1  bit stream) for two instance values of the input 
voltage is plotted: (a) input S;- =  1 mV (point Y  in Fig. 58c) and (b) S, =  - 1  mV (point X  in 
Fig. 58c). The probability of an output 1 can be changed by input S l. The state of a negative

sUUC (0. -I. 0)

( b )

t i m e  { n s )

20 4 0  60  SO
time <n s)

F igure  59. O utput voltage waveform s for the unit-neuron circuit with the con tro l-param eter set of (2.80 mV. 
—3.36 mV. -0 .8 7  mV). Sim ulated for two input voltages: (a) S, =  1 niV and (b) .V, — -  I mV. Ft>r circuit param eters, 
see the text. T em perature is 0 K. R eprin ted  with perm ission from |49], T. Yamada et al.. Nanotechnology 12. 60 
(2001). <(;■ 2001. IOP Publishing.
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output (output - 1 )  is dominant for a negative value of S, [Fig. 59a], whereas the state of 
a positive output (output 1) is dominant for a positive value of 5, (Fig. 59b). Intermediate 
states are also generated (i.e., states (0, - 1 ,  1) and ( - 1 ,  0, 0) in Fig. 59a), but this is not 
a problem because their duration is always short regardless of the input voltage value. In 
this example, the circuit changes its internal state in a cycle of: L ( 0, 0, 0) -»  L( —1 ,0 ,0 )  —► 
//((), - 1 , 0 )  H ( 0, —1, 1) —► L(0, 0, 0).

The probability of an output 1 is illustrated in Fig. 60a as a function of input Sh for various 
control-parameter sets ( VlUI. — Vss, Vh). The probability function required for the stochas
tic neuron can be obtained. The probability can be controlled by regulating the control- 
param eter set; the number (1 through 4) for each curve indicates a specific control-parameter 
set that is required for producing the characteristic of the curve. Figure 60b illustrates a dia
gram for setting the control-parameter set ( - V ss, Vh), where the numbers 1 through 4 
indicate the sets for producing curve 1 through 4 in Fig. 60a (e.g., the set for curve 3 can be 
obtained for V(J(i =  2.80 mV, — VKS =  —3.36 mV, and Vh =  —0.87 mV). In curve 1, the circuit 
acts as a simple threshold element without stochastic operation, which corresponds to the 
condition of C =  0 in Eq. (18). [Strictly speaking, the obtained characteristic is somewhat 
different from that o f Eq. (18)— the characteristic is a line sigmoid function rather than a 
logistic sigmoid.]

5.5.5. Designing Boltzmann Machine Networks
The Boltzmann machine can be constructed by combining the unit-neuron circuits into a net
work. The overall configuration of the network circuit is illustrated in Fig. 61. The network 
consists of a number of the unit-neuron circuits with buffer inverters, negative-weight invert
ers, and connection capacitors. The buffer inverter is added to each unit-neuron circuit for 
intensifying the power of load drivability. Hereafter, the voltage of buffer-inverter outputs 
(1-h 2-h  34-, etc.) is called the output of neurons. The negative-weight inverters produce 
voltage signals ( 1 - ,  2 - ,  3 —, etc.) that are complementary to the neuron outputs (14-, 2-}-, 
3 4 ,  etc.); the complementary signals are used for obtaining negative weight connections. 
The buffer inverters and the negative-weight inverters are shown in Fig. 62. Both the output 
and its complement of each neuron circuit arc fed back into inputs for o ther unit-neuron 
circuits. The connection between two neurons is established by a coupling capacitor C/;. The 
threshold for each neuron is set up by positive bias voltage I7, (or by negative voltage —V2) 
with a coupling capacitor C).

Connection weights between neurons can be set at any desired values by choosing the 
capacitances of the coupling capacitors. Each weight \ Wij and Tt in Eq. (17)] is given by

For a positive weight ( Wtj > 0), the coupling capacitor is connected with the input node of 
neuron / and the output node (1+, 2-h 3+ , etc.) o f  neuron y, and for a negative weight 
( Wjj < 0), with the input node and the complemcntary-output node (1—, 2 - ,  3 - ,  etc.). The 
threshold coupling is made between the input node and positive-bias node if T] > 0 and

Figure 60, Probability Junction o f the unit-neuron circuit. For the device param eters, see the text: (a) the probability 
o! generating an output \ for various con tro l-param eter sets, and fb) a diagram for setting the control-param eter 
set. T he curves #1 through # 4  in (a ) are obtained lor the con tro l-param eter sets #3 through # 4  in (b). Reprinted 
with perm ission from j4()]. T. Yamada et al.. S u n u tcrh n o l'W  1 2 .  Ml ( 2 0 0 1). €  2 0 0 1 .  IO P Publishing.

F , :  -  <V(C„. +  e .)  

17] | =  Cj/(Cjj +  Cj)
(21)

(a)

input .V, l i i i V )
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feedback

Figure 61. Overall configuration o f the single-electron Boltzm ann m achine network. The neuron  outputs (1 + . 2 + . 
3-K etc.) and the com plem entary o u tpu ts ( 1 - .  2 - .  3 - ,  etc.) are fed back to becom e the inputs for the unit-neuron 
circuits. T he connection between two neurons is established by coupling capacitor and the threshold input for 
each neuron is set by coupling capacitor C\. R eprinted with perm ission from [49]. T. Yamada et al., Nanoteclwolog\‘ 
12, 60 (2001). © 2001, 10P  Publishing.

between the input node and the negative-bias node — V2 if Tt < 0. The capacitances C,j and 
C, have to be set at such values that the symmetry in connection (i.e., W i} — WJt for all /, /) 
can be established. Under these conditions, the network circuit will operate  as a complete 
Boltzmann machine.

5.5.6. Problem Solving Operation of the Network Circuit
Setting appropriate values for coupling capacitances can implement various optimization 
problems on the network circuit. As an example, this section shows a sample network circuit 
that solves an instance of the max-cut problem.

5.5.6.1. Im p le m e n t in g  th e  M ax-C u t P ro b lem  o n  th e  N e tw o rk  C ircu it  The max-cut 
problem is stated as follows: given a graph G — (P7, E)  with positive weights on the edges,
find a partition of the vertices V  =  { l ,  2 .........//} into two disjoint sets V0 and V{ such that
the sum of the weights of the edges that have one endpoint in Vt) and one endpoint in V, is 
maximal. To formulate the objective function for this problem, we here define a number of 
variables. Let d i; be the weight associated with the edge /, /  (by definition, d tJ =  d Jt) and let

3.2 mV

3 aF

input
O -

3 aF

I aF

2 aF

aF

I aF

9 aF

- |  |----------O  -3 .3  mV

9 aF

output
—o

3.2 mV
24 aF

3.3 mV

Figure 62. Tucker’s inverter used for the buffer inverters and the negative-weight inverters, together with its cir
cuit param eters (tunnel resistance = 100 k i l  for all of the four junctions). R eprinted with perm ission from |49 |. 
T. Yamada et al.. SonotcchnoloQ  12, hO (2001). €  2001, lO P  Publishing.
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x, = 1 (if i < Vi) 

=  - l ( i f  / < Vtl 

then the max-cut problem can he formulated as

xi be a I /  — 1 variable defined as

(22)

maximize

(23)

which can be rewritten, by using x j  = x~ = 1, as

minimize

X;X (24)

The max-cut problem can then be implemented by designing a network circuit such that 
the output of each neuron represents each variable a*,. A s an instance, this section takes up a 
weighted graph given in Fig. 63a and design a network circuit whose structure is isomorphic 
to the graph. To implement this problem instance, the network circuit with five neurons is 
prepared, and with this circuit, vertex i of the problem graph is represented by /th neuron (/ =
1 through 5). The required connection weights Wij between the neurons can be determined 
as in Fig. 63b by comparing the objective function given by Eq. (24) with the energy function 
given by Eq. (19). From weight values W/r a set of the coupling capacitances for the circuit 
construction can be determines by using Eq. (21). The result is given in Fig. 63c. The network 
circuit with this coupling capacitance set will hereafter be called the sample network.

5.5.6.2. E n e rg y  F u n c t io n  a n d  L o ca l  M in im a  in th e  S a m p le  N e tw o rk  The internal state 
of the sample network is expressed by a set o f five neuron outputs (a'1? as, a3, x a, x s ) ,  where 
A', is 1 or — 1. For simplicity, represent the set by a code of signs such as ( +  +  — -?— ), where 
-f denotes v, =  1 and — denotes a*,- =  - 1 .  The sample network has 32 possible internal 
states. The value of the energy function calculated from Eq. (19) is plotted in Fig. 64 for
all the states. States ( — b +  H— ) and (H------------- h) are the global minimum and represent
the correct solution to the problem (i.e., the maximal cut for the problem graph of Fig. 63a 
is given by two disjointed sets of vertices 1, 5 and 2. 3, 4). The network can change its 
internal state through the transition of a Hamming distance of 1. From the second-lowest
states ( — h H------ b) and (H---------- 1— ) to the global minimum states, there is no transition
path of a Hamming distance of 1: therefore, these two states act as a local minimum.

5.5.7’ Problem-Solving Operation of the Sample Network
For problem solving, it is essential that, starting with a given initial state, the network circuit 
should converge to its global minimum energy states. To observe the behavior of the sample 
network, the state transition of the network was simulated by computer.
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Figure 63. Instance of ihe max cut problem  and the corresponding connection weights and coupling capacitances: 
(a) a weighted graph for the problem  instance, (h) connection weights I’/,, between neurons, anJ (c) coupling 
capacitances for the network circuit. R eprin ted  with perm ission from [40]. T. Yamada et al.. S  a no tec hnology 12, 60 
{20(H). €  2001. I O P  Publishing.
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Figure 64. Energy diagram  for the sam ple network circuit corresponding to the problem  instance of Fig. 63(a).
The notation, such as (-}■ 4------ f - ) ,  denotes the sel o f five neuron outputs. States ( - + +  +  - )  and ( + ---------- F)
correspond to the global minimum that represents the correct solution to the problem . T he second lowest states
(H------h + - ) and ( -  -t------- -f) correspond to local minima. R eprinted with perm ission from [49J, T. Yarnada et al.,
N anoicdm oktgy  12. 60 (2001). <£) 2001, lO P Publishing.

The behavior of the sample network (simulated results) is as follows. The first is an oper
ation without an simulated annealing process; that is, all the unit-neuron circuits were set at 
the condition of simple threshold (curve 5 in Fig. 60a). The result is shown in Fig. 65. The 
network was initially set at state ( -|—I—I—|—h). then it was allowed to change its state without 
restraint. After some transition time, the circuit stabilized into a final state. This procedure, 
a trial, was repeated many times using a different series of random numbers; the results of 
three trials are illustrated in the figure. The network was sometimes able to converge into
the global minimum state ( — f -f H— ) or (H------------- b) (as shown by number 1), but it
frequently became stuck in the local minimum state (H------h H— ) or ( -  -I--------- b) and could
not reach the global minimum (as shown by numbers 2 and 3).

time (ns)

Figure 65. Stale transition in the sam ple netw ork w ithout the annealing (com puter sim ulation). The results o f three 
trials are plotted. Reprinted with perm ission from [49], T. Yamada et al.. Nimotcchnoloi{V 12. 60 (2001). £> 2001. 
1QP Publishing.
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The second result is an operation with simulated annealing. In the annealing, the 
control-parameter set for the unit-ncuron circuits was gradually changed with the advance 
in time, according to an appropriate schedule. In this experimentation, we changed the 
control-parameter set gradually, following a cooling schedule given by V(Ui — 2 72 +  0.88 
exp(—//50) [mV] ( — Vss and Vb were also changed in accordance with the curves in Fig. 60b), 
where t is time in a unit of nanoseconds. The simulation result o f the circuit operation is 
illustrated in Fig. 66. The circuit was initially set at state (-1—I—I—h +  ), then was allowed to 
change its state under the annealing operation. The result for a trial is plotted in :he figure. 
The circuit successfully reached the global minimum state. In this way, the correct solution 
to the max-cut problem can be found.

5.6. Analog Computation Based on the Energy-Minimizing 
Behavior of Single-Electron Circuits

5.6.1. What is Analog Computation?
Analog computation is a way of processing that solves a mathematical problem by applying 
an analogy of a physical system to the problem. To solve the problem in this way, ytu prepare 
an appropriate physical system and represent each problem variable by a physical quantity 
in the system. If the mathematical relations between the physical quantities are analogous to 
those of the problem, then you can find the solution to the problem by observing the behavior 
of the system and measuring the corresponding physical quantities. A way of processing 
based on this principle is called analog computation.

The analog computation is quite different from the commonly used Neumann-Boolean 
computation. In Neumann-Boolean computation, we first devise an algorithm (a set of 
instructions for finding the solution to a problem), then execute each step of the algorithm 
in the manner of Boolean operation, under Neumann computing architecture. Ir contrast, 
analog computation is concerned with no symbolic Boolean operation; instead i: uses the 
properties of a physical system to perform the mathematical operations required for the 
solution. An important feature of analog computation is concurrency or parallelism in com
puting, and thereby it can provide the possibility of solving complex problems in a short time.

5.6.2. An Example of Analog Computation: Solving the 
Steiner Tree Problem by Using a Soap-film System

Consider the following problem (Fig. 67). Connect n points on a plane with a graph of 
minimum overall length, using additional junction points if necessary. This is a combinatorial 
problem called the Steiner tree problem. Plainly expressed, the problem is “to connect n 
cities by a road network o f  minimum total length."

0 0 2 0.4 o.fi 0.S 1 12 1.4

lime (,us i

Figure* <>6. Stale transition in the sam ple netw ork under the annealing (com puter sim ulation). T he resiit o f a  trial 
is plotted. T he network can successfully reach the global m inim um  state. Reprinted with permission from [49], 
T. Yamada et al.. \ iin o f i’chnn/,>oy \2. 60 (200i). 2001. IO P Publishing.
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Figure 67. Steiner tree problem . C onnect given points on  a plane with a graph of m inim um  overall length. This is 
difficult to solve using existing com puters because it requires enorm ous com puting time.

This problem is intractable for digital computation. There are many possible graphs with 
junction points, and we must examine all the possible ones to find the minimum solution. 
The number of computational steps required increases exponentially with the number n of 
original points. Indeed, the Steiner tree problem belongs to the class of NP-hard problems 
(nondeterministic polynomial-time hard problems). Except for inefficient exponential-time 
procedures, no algorithm is known for the solution. This problem therefore requires enor
mous computing time to solve and is virtually unsolvable for large values of n.

Nevertheless, there is an ingenious analog-computation method that can quickly solve the 
problem. This method uses soap films to make a physical system analogous to the problem 
(Fig. 68) [50]. Prepare two parallel glass plates and insert n pins between the plates to 
represent the points; then dip the structure into a soap solution and withdraw it. The soap 
film will connect the n pins in the minimum Steiner-tree graph. The computing process is 
parallel and instantaneous, so the solution can be obtained in very short time regardless of 
the number n of the pins.

In this analog computation, the energy-minimizing principle is well utilized for problem 
solving. Any physical system changes its configuration to decrease its total energy. In liquids 
at rest, the relevant energy components arc the gravitational potential energy and the surface 
energy. The latter is dominant in a thin soap film, and so a soap-film system changes its con
figuration to minimize its total area, and therefore its length, and thereby its surface energy.

Strictly speaking, it is not possible to be certain, in this system, that the absolute minimum 
solution can always be obtained. Depending on the angle at which the system is withdrawn 
from the soap solution, the soap-film network sometimes assumes topologies different from 
the optimum one that gives the minimum network length. This arises from the property that 
many local minima exist in the energy-topology relation of a soap film. Even in such cases, 
however, the networks obtained are always nearly equal to the minimum one. Hence it can 
be said that the system works well in general. For o ther examples of analog computation, 
see Refs. [51] and [52].

5.6.3. Single-Electron Circuit for Solving the Colorability Problem
It is interesting to speculate what analog computations are possible using the properties of 
single-electron devices. A way is to make use of the property that the single-electron circuit

Figure 68. Soap film solution to the S te iner tree problem . The problem  can be quickly solved by utilizing the 
equilibrium  uf li soap-film system.
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changes its state to decrease its free energy. By constructing a single-electron circuit such 
that its free energy function is related to the objective function of a given combinatorial 
problem, we will be able to solve the problem simply by observing what state the circuit will 
settle down. As an example, this section introduces an analog computation device proposed 
by Tokuda and others [53]. The device is a single-electron circuit that solves a combinatorial 
problem, the three-colorability problem, in an analog computation manner.

5.6.3.1. Three-C olorab ility  P ro b lem  Consider the following problem: Can the countries 
on a given map be colored with three colors such that no two countries that share a border 
have the same color (Fig. 69)? This is called the three-colorability problem and is cifficult to 
solve for a map with many countries. There are colorable maps and uncolorable ones, but 
we cannot tell the colorability of a given map before examining all the possible :olorings. 
(The problem is quite easy if we can use four colors, because it has been proven that 
four colors suffice for any map.) The three-colorability problem belongs to the class of 
NP-completc problems (nondeterministic polynomial-time complete) and is intractable for 
digital computation because only exponential-time algorithms are known for the solution.

This problem is reduced to graph coloring, as shown in Fig. 70. Any map can be converted 
into a corresponding dual graph by reducing each country to a vertex and drawing an edge 
between two vertices if the corresponding two countries share a border. Coloring the map 
is then equivalent to coloring the graph, under the rule that two vertices connected by an 
edge cannot have the same color. The following text describes a way of solving the three- 
colorability problem by using single-electron circuits. The task for solution is first to construct 
a single-electron circuit analogous to a given map for the problem and then to solve the 
problem by using the circuit.

5.6.3.2. I m p le m e n t in g  a Dual G raph B y  U s in g  a S in g le -E lec tro n  C ircuit  Let us con
sider the map of Fig. 69a as an example and construct the analogous single-electron circuit 
for problem solving. The m ap can be converted into the dual graph of Fig. 70, so our task 
is to construct a single-electron circuit that is analogous to the graph.

To represent a vertex of the dual graph, a triangular subcircuit illustrated in Fig. 71a is 
used. It consists of three identical tunnel junctions (C ; ) connected in series to form a ring 
with three nodes ( A ]% /1: , A^).  O ne excess electron (e ) is put in the subcircuit, and it 
occupies one of the three nodes. A ground capacitance C„ exists between each node and 
ground. Hereafter, this subcircuit with the excess electron is called a triangle, and the excess 
electron is simply called an electron. We define that the three nodes of the triangle represent 
three differing colors (e.g., A x represents red, A 2 blue, and A ? green), and that the vertex is 
colored in the color of the node occupied by the excess electron (e.g., the vertex is colored 
green if the electron is on node A$).

The first task for solution is to implement two vertices A and B connected by an edge. 
This is done by coupling two triangles in the m anner illustrated in Fig. 71b, using a coupling 
capacitor C  to connect each two nodes that represent the same color. (A ground capacitance 
exists for each node, but it is not illustrated for simplicity.) The free energy in this coupling

Figure 69. C oloring of a given map with three colors, (a), (b) C olorable maps. The num bers 0. I, and 2 represent 
three colors, ie) An uncolorable map The trial solution shown tails on reaching region F.
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A B C

Dual graph

Figure 70. Dual graph for the map in Fig. 69(a). Each vertex is colored  in one o f th ree  colors. Two vertices
connected  by an edge cannot have the sam e color.

circuit is equal to the electrostatic energy and takes a large value for a state in which two 
electrons occupy same-color nodes to face each o ther (e.g., occupying nodes and B }): 
therefore, the circuit will tend to avoid such single-color states to decrease its energy. In 
consequence, two electrons in the coupled two triangles will occupy two nodes that represent 
differing colors (e.g., if the electron in triangle A  is on node A {, then the electron in triangle 
B  will be on a node of differing color, either B : or B}). Connecting six triangles in series 
produces a circuit analogous to a subgraph consisting of six points with five lines, as shown 
in Fig. 71c.

A complete circuit analogous to the graph of Fig. 70 can be obtained by connecting six 
triangles, using 24 coupling capacitors C, as illustrated in Fig. 72. (A ground capacitance 
for each node is omitted in the illustration.) Electrons in neighboring two triangles occupy 
differing-color nodes, if possible, to reduce the total energy of the circuit; this satisfies the 
requirement of the three-colorability problem.

It should be stressed that this procedure of constructing analogous circuits can be applied 
to every other map. For any problem map given, the corresponding analogous circuit can be 
constructed by combining identical triangles and coupling capacitors.

S.6.3.3. S o lv in g  th e  P ro b lem  b y  U s in g  th e  C o n s tr u c te d  Circuit  The three-colorability 
problem asks whether a given map is colorable, and the answer is either yes or no. This 
problem is solved with the analogous circuit in the following procedure. Put the circuit in 
an initial state (any state will do), let the circuit settle down to its equilibrium state with the 
minimum electrostatic energy, and then check to see whether two electrons in any coupled 
triangle subcircuits arc on nodes of differing colors. If they are, the answer is yes, and colors
of the occupied nodes indicate the coloring in which the map can be colored. If they are

Figure 71. C onstruction o f a single-electron circuit analogous to the three-colorability problem , (a) A triangular 
subcircuit representing a vertex of the graph, (b) A circuit analogous to  the two connected  vertices A and B (for 
simplicity, the ground capacitances are om itted  in illustration). E. Tokuda et al.. Analog Integrated Circuit and Signal 
Processing 24. 41 (2000). (0 2000. Springer Science and Business Media.

Vertex A
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Figure 72. A nalogous circuit for solxing the three-colorability problem  for the graph in Fig. 70 (or for the map in 
Fig. 69(a)).

not, the answer is no. (As for the circuit o f Fig. 72, the answer will be yes because the circuit 
is for the colorable map of Fig. 69a.) This solution is based on the following two principles. 
First, electrostatic energy in the analogous circuit has a large value when two electrons face 
each o ther at neighboring nodes of the same color. Therefore, the circuit will change its 
state to minimize the number of such electron pairs and, if possible, to reduce such pairs 
to zero. Second, “a map is colorable” is equivalent to "in the analogous circuit, at least one 
arrangement of electrons exists such that no two electrons face each other at sam ecolor  
nodes.” (Let us call a state of such electron arrangem ent the satisfaction state.) In contrast, 
a circuit for an uncolorable map has no such satisfaction state.

In the minimum-energy state, the circuit for a colorable map is in the satisfaction state, 
and it will be found that electron pairs in any coupled triangles are on dots of differing 
colors. In a circuit for an uncolorable map, no satisfaction state can be attained, so it will 
be found that one or more electron pairs occupy the dots of the same color.

A similar solution using single-electron circuits should exist for other NP-complete prob
lems because every NP-complete problem belongs to the same class, and one can be con
verted into another.

5.6A. Simulating Circuit Operation of Problem Solving
For the problem solving, it is essential that, starting with a given initial state, analogous 
circuits should settle down to their minimum-energy state. Unfortunately, analogous circuits 
in general have many states of locally minimum energy, as shown later, and therefore it 
cannot be certain, as things stand, that the circuit can achieve the state of globally minimum 
energy without getting stuck in the local minima. To make the circuit converge exactly to 
the minimum energy state, the annealing method must be used lo operate the analogous 
circuits successfully. With this method, the global-minimum state will be obtained in most 
cases, thereby offering the correct solution to the problem. The details will be described in 
the following sections, with computer simulation.

5.6.4.1. E n e r g y  F u n c tio n  a n d  L oca l M inim a in A n a lo g o u s  Circuits  Electrostatic 
energy of single-electron circuits is a function of the electron arrangement in the :ircuit. The 
analogous circuit given in Fig. 72 has an energy function show'n in Fig. 73. The horizontal 
axis in the figure indicates the number of electron arrangement— one number corresponds to
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Figure 73. Electrostatic energy versus electron arrangem ent lor the circuit o f Fig. 72.

one arrangement of electrons; 729 arrangements are possible because three possible arrange
ments exist for an electron in each of the six triangles. (In calculation, the circuit parameters 
were assumed as the tunnel junction capacitance C} =  100 aF, the coupling capacitance 
C  =  lOOaF, and the ground capacitance C{) of each node =  1 aF.)

The energy of this circuit becomes the minimum for several specific electron arrangements 
(the arrangements of numbers 147, 209, 303, 427, 521, and 583; indicated by solid arrows 
in the figure), which correspond to the satisfaction states representing the correct solution 
to the graph (or map) coloring. However, the energy function also has many local minima 
with energy values close to that of  the minimum-energy states. It is therefore not possible 
to be certain that the circuit can always achieve the correct solution without getting stuck 
in the local minima. (The electron arrangements of numbers 1, 365, and 729, indicated by 
dashed arrows, correspond to states of monochromatic coloring; i.e., coloring of the graph 
[or map] with a single color. These states have the maximum energy value.)

The local minima prevent us from finding the solution to the problem. This is shown in 
Fig. 74, a simulated operation of the analogous circuit given in Fig. 72. The circuit was 
initially set at the state of monochromatic coloring (any state will do) and then was left 
changing its state without restraint. After some transition time, the circuit stabilized in a 
final state; the results of two trials are illustrated in the figure. The circuit may reach the 
global-minimum energy state by chance, but in most cases, it gets stuck in a local minimum 
and cannot reach the global-minimum state.

5.6.4.2. A n n e a l in g  O pera tion  M e th o d  A way of overcoming the local-minimum difficulty 
is to operate the circuit with annealing. The annealing process consists of the following four
steps:

1. Put the analogous circuit into a heat bath and set the circuit at an initial state (any 
state will do)

2. Increase initially the temperature of the heat bath to a maximum value at which the 
circuit changes its state or electron arrangement randomly

3. Carefully decrease the temperature of the heat bath until the circuit arranges its elec
trons in an equilibrium state (or until the circuit reaches convergence)

4. Check the final arrangement of electrons in the circuit to see whether or not the circuit 
is in the satisfaction state.
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Figure 74. Slate transition in the analogous circuit o f Fig. 72 (com puter-sim ulated). The results o f two Iritis are 
plotted; in most cases, the circuit gets stuck in a local minimum. The transition o f electron arrangem ent it both 
trials is illustrated with a set of six triangles that represents the analogous circuit. A dot on each triangle represents 
an electron on each triangle subcircuit.

If the lowering of the tem perature is done slowly enough, the analogous circuit can ieach 
thermal equilibrium at each temperature, and it therefore can approach the global-minmum 
state with a decrease in temperature. Therefore, the solution to the problem can be obtained 
b\ observing the final stale of the circuit.

5.6.4.3. C o n v e r g e n c e  to  th e  M in im u m  E n e r g y  S ta te  th r o u g h  th e  A n n e a l in g  Figure 75 
shows the circuit converging to the global-minimum state with annealing. The cooling sched
ule (a decrement function for lowering the tem perature in annealing) used is a natural cooling 
given by T  =  7J, exp(— pt), where T  is the temperature, T{) is an initial value of the tempera
ture, p is a cooling-spccd coefficient, and t is time. (Parameters 7J, and p govern the conver
gence of a circuit during annealing. The values for successful convergence can be inferred 
b\ experience from the size of a given analogous circuit.) The circuit was initially set at an 
monochromatic-coloring state and then was left changing its state under the natural cooling 
given by T{) =  0.5 mK and p =  0.03 p s ~ !). The result for a trial is plotted in the figure, and 
the global-minimum state is obtained successfully. State 3 in the figure is an entrance to a 
transition path that leads to local minima (see state 3a in Fig. 74), but the circuit was able 
to escape this state because of thermal excitation resulting from annealing. With annealing,
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Figure 75. State transition in the analogous circuit with annealing (com puter sim ulation). T he transition o f electron 
arrangem ent is also illustrated. T he circuit can successfully reach the global-m inim um  state.
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almost every trial results in the global minimum successfully. In this way. we can find the 
global minimum state of analogous circuits, and hence the solution to given problems.

5.7. Quantum Hopfield Networks Using the Cotunneling Effect
5.7.1. Parallel Computation Using Quantum Mechanics
Introducing quantum mechanics into computation may produce the capability for mas
sive parallel processing. The quantum generalization of the Turing machine (or Neumann- 
Boolean computing), known as the quantum Turing machine [54], o r  so-called quantum 
computing, is an example. The quantum Turing machine can perform ultra-high-speed com 
putation because it can accept a coherent superposition of many input data and perform a 
computation on every input datum simultaneously. This concurrency or parallelism can be 
used to quickly solve several important problems, such as factoring and discrete logarithms, 
that are intractable for the classical Turing machine, and therefore for existing computers. 
Several approaches have been proposed to implement the quantum Turing machine.

Is this type of quantum effect exclusive to the Turing machine? Probably not. There are 
various o ther computation models besides the Turing machine (Neumann-Boolean com put
ing), as shown in Fig. 7, and it is likely that the parallelism of each model can be enhanced 
with the application of quantum mechanics. This section takes up the Hopfield network as 
an example and shows that quantum parallelism can be obtained in this computation models 
as well. A quantum version of Hopfield networks, the quantum Hopfield network, may pro
vide novel computation devices that solve combinatorial problems without being troubled by 
the local-minimum difficulty.

5.7.2. The Hopfield Network—A Computation 
Model for Solving Combinatorial Problems

The Hopfield network is a computation model for solving combinatorial optimization prob
lems. It makes use of the operation of a specific recurrent network (hereafter, we call the 
recurrent network itself a Hopfield network). The concept of a Hopfield network is shown 
in Fig. 76. The network consists o f  threshold elements and connections. The connection 
weights Wjj and 0t can be given any desired value, with the restrictions that W{j — Wjt and 
Wu =3 0. The outputs V{ of the threshold elements i wrap around to become the inputs to 
the network. Each threshold elements i produces an output l if the weighted sum of inputs 
( W.fX j  +  ft,) is positive, and an output 0 if the weighted sum o f  inputs is negative. The state 
of the network is defined as a set o f the outputs V, of the threshold elements. The point of 
this network is that, starting at a given initial state, it changes its state to minimize the value 
of the energy function defined by

£  =  - '  (25)
(/' <

Connection weights Threshold element

Figure 76. Configuration of the Hopfield network.
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By adjusting the connection weights, we can relate the energy function of the network to 
the objective function of a given optimization problem. In this way, we can find the solution 
to the problem simply by observing the final state that the network reaches. For details, see 
Refs. [55] and [56]. (The Hopfield network uses the same configuration of network as that of 
Boltzmann machine in Section 5.5. The difference is that the Hopfield network uses neither 
stochastic neuron nor simulated annealing algorithm.)

The computation in the Hopfield network is quite different from the commonly-used com
putation methods. In the common solutions to combinatorial problems, we cannot obtain 
the solution to a problem until examining all the possible combinations of problem vari
ables; therefore, computing time that is required increases exponentially with the size of the 
problem. In contrast, in the Hopfield network, a given problem is mapped onto the network 
itself and is solved quickly through concurrent or parallel operation of all the elements in 
the network. The Hopfield network, therefore, has the possibility of solving combinatorial 
problems in a short time, regardless of the size of the problem. This parallelism may provide 
an efficient way of solving difficult combinatorial problems such as NP-hard problems, which 
are often encountered in engineering fields but take enorm ous computing time to solve with 
digital computers.

Unfortunately, it is not possible to be certain that the correct solution can always be 
obtained. This is because the Hopfield network in general has many states of locally minimum 
energy in addition to the globally minimum state. In most cases the network will get stuck 
in a local minimum, and a solution will not be reached. The computation model of Hopfield 
networks is based on the premise that the final state of the network can be considered as glob
ally minimum in energy, and without this premise we cannot be convinced that an obtained 
result is the correct solution. This local-minimum difficulty is an inevitable drawback in the 
Hopfield network and has limited the application field of the Hopfield network.

The local-minimum difficulty is a natural result of the fact that each event of state transition 
in the threshold elements is independent of others. The threshold elements update their out
put states irrelevantly, with no mutual correlation, and consequently the network can make 
at a time only a limited state transition with a Hamming distance of 1 (i.e., a transition corre
sponding to the output change of one threshold element). U nder these conditions the network 
cannot escape from a local minimum, even if there are o ther possible states with lower energy, 
because an output change of any one threshold element will increase the network energy. 
This is inevitable as far as we are tied to the classical concept of the Hopfield network.

The way of overcoming this difficulty is to create a special network in which two or 
more threshold elements can change their outputs simultaneously in a form of coherent 
combination. In such a network, a transition with a larger Hamming distance (2 or more) can 
occur, and consequently the global minimum state can be achieved without being troubled 
by local minima. Such a network can be constructed with single-electron circuits.

5.7.3, Constructing a Hopfield Network with Single-Electron Circuits
The single-electron circuit changes its state to decrease its free energy. Akazawa and oth
ers proposed making use of this behavior to construct a quantum Hopfield network [57]. 
Components of the network are show n in Fig. 77. A tunnel junction with an excess electron 
is used as a threshold element (Fig. 77a); we define the state of the tunnel junction as I 
if the electron is on the right of the junction, and as ‘O’ if it is on the left. The connec
tion between two tunnel junctions can be established by a pair of coupling capacitors; the 
connection weight can be set positive or negative by choosing the layout of the capacitor 
coupling (Fig. 77b). The overall coniiguration of the network is illustrated in Fig. 78. (An 
excess electron is also set on each bias node.) A ground capacitance exists between each 
node and a ground (not illustrated for simplicity). A sample set o f capacitance parameters is 
given in the figure. Starting from a given initial position, the circuit changes its internal state 
(the arrangement of electrons) to minimize its free energy. In this circuit, the free energy is 
equal to the electrostatic energy and is given in the form of

E  = A -  ' V / <  V.V V  ( V
i i  I

( 2 6 )
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Flection

Tunneling junction

(a)
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(b)

Figure 77. Single-electron Hopfield network: (a) tunnel junction  as a threshold elem ent and (b) positive connections 
and negative ones. Reprinted with perm ission from [57]. M. Akazawa et al.. Analog Integrated Circuit a n d  Signal 
Processing 24, 51 (2000). © 2000. Springer Science and Business Media.

where /V, (either 1 or 0) is the state of each tunnel junction, and A , B l}, and C, are coeffi
cients. The value of each coefficient can be set at any desired value by selecting the connection 
pattern and the capacitance of the tunnel junctions, connection capacitors, and ground capac
itors. This equation is in essence the same as the energy function [Eq. (25)] of the Hopficld 
network. In this wav we can be certain that the circuit will operate as a Hopfield network.

The internal state of the circuit is expressed by a set of the states of the tunnel junc
tions. For the sample network circuit shown in Fig. 78, the internal state is expressed as 
( N j, /V2, N }). Figure 79 illustrates the relative energy values of possible internal states (see 
Fig. 80 for the exact values of each state). The global minimum is state (1, 1, 1). The solid 
arrows in the figure indicate the possible occurrence of a state transition resulting from one 
tunneling event, corresponding to the transition with a Hamming distance of 1, which also 
occurs in classical Hopfield networks (assumed zero tem peratures and no energy excitation). 
For such transitions, states (1, 0, 0) and (0, 1, 0) have several incoming paths but no outgoing 
path; therefore, these two states seem to be local minima.

However, as described in the following section, the single-electron Hopfield network has 
quantum properties unlike its classical relatives. Therefore, the said states (1, 0, 0) and (0,
1, 0) do not act as a local minimum state, and the network never gets stuck in these states.

5.7A. Quantum Operation in Single-Electron Hopfield Networks
The transition from state (1 ,0 , 0) or (0, 1, 0) to state (I .  1, I) is a transition with a Hamming 
distance of 2, which can occur only when two threshold elements (tunnel junctions) change 
their states simultaneously, with mutual correlation. Such a transition is nonexistent in a 
classical sense, but in the single-electron Hopfield network, it can actually occur through a 
quantum effect known as the cotunneling phenom enon (or higher-order tunneling).

Cotunneling is a phenomenon in which two or more tunneling events occur simultane
ously in the form of quantum coherent combination. In single-electron circuits, two or more
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Figure 78. Sam ple configuration o f the single-electron Hopfield netw ork. T he state o f the netw ork is represented  
by (.V,. .V\, .V-). R eprinted with perm ission from 157], M. Akazawa et al.. Analog Integrated Circuit and Signal 
Processing 24. 51 (2000). © 2000. Springer Science and  Business M edia.
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(0. o. I )

Figure 79. H lectrostatic-energy diagram  showing possible transitions for the sample netw ork o f Fig. 78. The sta te  
o f the network is expressed as (A7,. N : . /V,). A solid arrow  shows a transition by one tunneling event (Flamming 
distance is 1). A dashed arrow shows a h igher-order transition (H am m ing distance is 2). which cannot occur in 
classical Hopfield networks. R eprin ted  with perm ission from [57], M. Akazawa et al.. Analog Integrated Circuit and  
.Signal Processing 24. 51 (2000), <0 2000. Springer Science and Business M edia.

tunnelings can occur simultaneously through the cotunneling if such an event decreases the 
energy of the circuit. This enables transitions with a larger Hamming distance (2 or more) in 
single-electron Hoptteld networks. Through this phenomenon, the sample circuit in Fig. 78, 
for example, can change its state from (1, 0, 0) and (0, 1, 0) to the global minimum (1, 1, 
I), as shown by the dashed arrows in Fig. 79: thus, the local-minimum difficulty disappears. 
This kind of Hopfield network is called the quantum Hopfield network. In the quantum 
Hopfield network, it is certain that, starting at a given initial state, the global minimum state 
can always be established.

Figure 80 illustrates the behavior of the single-electron quantum Hopfield network, with 
the results simulated for the sample circuit given in Fig. 78. The cotunneling phenomenon 
was taken into account by the method of Refs. [18, 58); the tunnel resistance of the junctions 
is set at 200 kl), and tem perature is assumed to be 0 K. The circuit is initially set at maximum 
energy state (0, 0, 1) and then is left changing its state without restraint. After some transition 
time, the circuit stabilizes in a final state. This procedure is called a trial, and the results of 
three trials are shown in the figure.

In every trial, transitions with a Hamming distance of 1 are observed at first; they are 
denoted by numbers 1 through 6 in the figure. These transitions correspond to those

Initial stale

0.0! 0.1 1 |0 100
Time (ms)

Figure 80. State transition in 1 he single-electron Hopfield netw ork of Fig. 7S (com puter-sim ulated). The results 
o f :hree trials are plotted. The circuit finally achieves the global-m inim um  slate. R eprinted with perm ission from 
157]. M. Akazawa et al.. Analog Integrated Circuit and Signal Processing 24. 51 (2000). 0  2000. Springer Science and 
Business Media.
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observed in classical Hopfield networks. The network can sometimes converge to minimum 
energy state (1. 1. 1) through transitions with a Hamming distance of 1 (as shown by numbers
2 and 5 in the figure), but it usually got stuck in the intermediate states (1. 0. 0) or (0, I. 0) 
(as represented by numbers 1 and 4 and numbers 3 and 6). The two states would act as local 
minima if this network were a classical Hopfield network. The situation is, however, quite 
different in the single-electron Hopfield network. After some waiting time, we can observe 
the transition from the states (1, 0, 0) o r (0, I, 0) to the global-minimum state (1, I, 1). This 
transition is a transition with a Hamming distance of 2 that is induced by the cotunneling 
phenomenon.

In more complex networks, state transitions with a larger Hamming distance (3 or more) 
will be required for convergence, but it is certain that these transitions surely occur after 
some waiting time. In general, single-electron Hopfield networks can always reach the global- 
minimum energy state, starting at a given initial state. Making use of this property will enable 
us to develop novel computation devices that solve combinatorial problems without being 
troubled by the local-minimum difficulty. (Strictly speaking, there is an open question of 
whether it would be practical to built single-electron network circuits that can generate the 
cotunneling event frequently enough to deal with any given complicated problems.)

5.8. Single-Electron Circuits for Stochastic Associative Processing
5.8.1. Concept of Stochastic Associative Processing
Associative processing or associative memory is a function that extracts a pattern similar to 
the input key pattern from the stored patterns. All the conventional associative memories 
achieve deterministic association; the same input pattern  leads to the same association result. 
In associations performed in the human brain, however, different outputs are often obtained 
from the same input. This may be described as chaotic behavior in highly nonlinear systems. 
As another model of such associative processing, this section describes an unconventional 
associative processing scheme, that utilizes the stochastic property of single-electron devices 
effectively.

There are some associative processing models also in the artificial neural network field. 
One is the association, a historical neural network model of associative processor [59], and 
another famous one is related to Hopfield networks [55, 60]. However, these associative 
processing models are not considered in this section, but the conventional digital associative 
processing architecture is used.

In the conventional associative processing, the input pattern is compared with all of 
the stored patterns, and the stored pattern  most similar to the input is deterministically 
extracted. In contrast, a stochastic associative processor does not always extract the most 
similar pattern. Instead, the more similar pattern  is extracted with a larger association proba
bility that depends on the similarity of the pattern to the input. When this concept is applied 
to digital data processing, its mathematical formalization is as follows: Let an associative 
processing device be defined as one that extracts similar patterns to the key pattern XV from 
stored patterns <I\ (k  =  1, where is given by the external system and <$>k are
stored in the device. All patterns consist o f  N  bit binary data:

V  = {£,■: J =  1.........(27)

‘I>* =  {£*: j = h . . . , N ,  k — I , . . . ,  M }  (28)

e {(), 1}, t jk € {0, 1} (29)

Let vk be defined as the num ber of unmatched bits between yV and (I \ ,  which is referred to 
as a Hamming distance. In addition, let k } be defined as the suffix of the most similar <bk to 
'K, which means that vk < vk, wk ^  A:,, and k 2 as that of the second, and so on: that is,

%  <  vk: < %  < • •' (3°)

The associative processor described in this section stochastically extracts <t>k . It sometimes 
extracts <I\, or and so on. If we define the probabilities of extracting <t>k as Pk, we can
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expect

Pkl > P t l > P h  > • (31)

By repeating numerous extraction trials, we can obtain the order of k  in similarity (i.e., 
*3, . . . ) .

This concept offers an approach to intelligent information processing that differs from the 
conventional deterministic approach. Useful and unique examples of this type of processing 
are sequential stochastic association [61] and clustering for vector quantization [61].

5.8.2. Stochastic Associative Processor 
Architecture Using Nanostructures

On the basis of the processing model described above, a processor architecture is cescribed. 
A pattern datum is often referred to as a word in digital processing. Therefore, tht associa
tive processor has M  word-comparators (WCs) and an extractor, as shown in Fig. 81. Each 
WC has N  bit-comparators (BCs). Bit-level comparisons between 'I7 and <I>A are performed 
at all BCs in each WC in parallel. Each WC unifies the results from the N  BCs and the 
extractor compares all the outputs of WCs and extracts the most similar word. The function 
that extracts the most similar data is achieved by a winner-take-all (WTA) circuit.

The bit-comparator can be realized by using an XOR or exclusive-NOR (XNOR) logic 
operation, where the former outputs logical 1 only if the both inputs have the different log
ical bits, and the latter outputs 1 only if the both inputs have the same logical bit In these 
two cases, the output of the WC represents the Hamming distance vk o r N  -  vn respec
tively. The associative processor extracts the stored pattern having the shortest Hamming 
distance.

To achieve stochastic associative processing, random fluctuation is added somewhere in 
the circuit. If stochastic behavior of the single-electron devices is used for sue! random

Figure* 81. A rchiiccture of associative memory. R eprinted with perm ission from [64]. M. Saen et al., IEICE Trans. 
Electron. E 8I-C , 30 (1998). 0  1998. IE i(T :.
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fluctuation, a BC is a suitable part, because BCs are regularly arranged in the circuit, as 
described in Section 4.2.

Figure 82 shows an architecture of a stochastic associative processor that uses nano
structures [63]. The BCs consist of nanostructures and perform bit-comparison with random 
fluctuation. Thus, the input pattern is stochastically compared with the stored patterns by 
WCs. The comparison result by each WC is expressed as the total number of electrons 
released from the BCs that belong to the WC. The electrons are collected at each capaci
tor (C.,|, C,;2. . . . .  C,lA/). The results of all of the WCs are fed into the WTA circuit, which 
deterministically extracts the stored pattern evaluated as that most similar to the input. The 
WTA circuit can be constructed by CMOS devices.

In the following sections, some single-electron circuits and nanostructures for BCs and 
WCs with random fluctuation are described.

5.8.3. Word-Comparator Using SET Logic Circuits
5.8.3.1. C ircuit C o n figura tion  In the WC circuit described here [64], if two inputs are 
equal: £, =  ( lk. then the binary output of  the yth BC is 0. Otherwise it stochastically oscillates 
between {(), l}. Figure 83 shows an example of the WC including BC circuits composed of 
SET circuits. The BC circuit consists of two-input CMOS-like SET inverter IN V  and two- 
input SET switch S W . Flere, let I k be defined as the output current of the BC associated 
with electrons passing through tunnel junction T J . By adjusting the device parameters, this 
circuit operates as follows.

Input voltages Vu and Vh correspond to data bits £• and £jk, respectively. If Vu =  Vh, then 
the voltage of node P, V r , is always V.r  O utput current Ijk is zero in this case. If V(l ^  Vh, 
then an electron goes in and out of node P  at random; that is, Vr oscillates. Current I jk 
oscillates accompanying electrons passing through TJ  when V,, =  Vir Figure 84 schematically 
shows this situation. The frequency and duty-ratio of the oscillations are related to the 
probability of the electron transition and depend on the device parameters.

Then, all current outputs I jk of BCs are summed up at capacitor C0, and each WC outputs 
the result as a voltage. Because capacitor Ctt is shorted at intervals of sampling time ts by 
switch S W ^  output voltage Vk at the end of each interval is

K  = J r Z  ( ' I i k ( t ) d t  (32)
c„ j =  I A)

input bit pattern

Figure 82. Architecture of the stochastic associative processor.
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Figure 83. Word com parator using single-electron circuit. R eprinted with permission from [64]. M. Saen et al., 
H i  IC E Trims. Electron. E81-C. 30 (1998). © 1998, IE ICE.

where C„ is set proportionally to is to obtain an appropriate voltage of Vk. If XV — that 
is, V/, then obviously Vk =  0. When ^  ^  <1\, VA\ to extract the most similar pattern,
there are the following two matching methods.

5.8.3.2. Voltage-D om ain  M atch in g  If we set is longer than the average period of the 
oscillation in Vj}, Vk is statistically proportional to the number of unmatched bits, vk, in the 
voltage domain. Thus, the order of similarity in <l\, k h  expressed in Eq. (30), can statistically 
be obtained bv comparing Vk with the ramping reference voltage, as in conventional analog 
sorting circuits.

The fluctuation of Vk decreases when making ts long. If fv is long enough, the order 
of similarity can be obtained almost deterministically, which is the same as with ordinary 
associative processor. In contrast, if ts is set in the order of the average period of the 
oscillation, the fluctuation of Vk is very large, and association becomes stochastic.

K. =. v,

tune l i m e

Figure 84. Schem atic figure lor explaining the relation betw een I', and I,., where I ',  =  1 is assumec. Reprinted 
with perm ission from |64j. M. Saen er al., IEIC'1. Trans. Electron ES1-C. 30 (I99X). £■? 199,S. IEJCE.
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5.8.3.3. T im e-D om ain  M a tch in g  If /v is set shorter than the average period of the oscil
lation in (//l, Vk also oscillates, and there exist sampling intervals during which Vk =  0. 
The average span between the sampling events at which Vk =  0 statistically increases with 
increases in i \  because Vk =  0 only if / /A =  0 for all j.  Thus, if the output of the A*,th WC, 
^  . becomes zero earliest in the consecutive sampling intervals, our associative processor 
extracts <l>̂ . The probability that <\>k is most similar to ^  is a maximum in this case.

Let us estimate the time dependence of the probability of detecting Vk — 0 in the sampling 
events with a parameter o f  vk. Consider a BC with different inputs and a typical V}) change 
as shown in Fig. 85, where V(l =  1 is assumed; therefore, I jk ^  0 when Vp — I, and vice 
versa. Here, T  and a are defined as the average period and the ratio of the interval when 
Vp =  0 in oscillation of Vps respectively.

When a sampling event starts within the time span of u T  — fs, Ijk is always zero in this sam
pling interval. Because the relation between Vp oscillation and sampling timing is random, 
the probability that I jk is always zero in a sampling interval is statistically estimated at

pro!)
ciT — /,

=  a —
T  T

In a WC, the probability of detecting Vk = 0 is statistically estimated at

probk =  ( «

The probability that Vk becomes zero at time / for the first time is

probk{t) = -  \ u  -
l , ~ T

Thus, the probability that Vk becomes zero at least once by time t is

//-i
Prubk ( t ) =

;=<)

n = t / t ,  > 1

(33)

(34)

(35)

(36)

(37)

Figure 86 shows the time dependence of P robk(t)  with a param eter of vk, where I  — 36 ns, 
a = 0.5, t\ — 8 ns. Thus, it is confirmed from Fig. 86 that the order of similarity in <I\, k, 
expressed in Eq. (30), is stochastically obtained in the time domain.

5.8.3.4. S im u la tio n  R e s u l t s  Figure 87 shows the SET circuit simulation results about 
the dependence of I jk on Va h in the BC. It can be seen that I jk oscillates randomly when 
V(l ^  Vh. The black areas indicate that Ijk oscillates at a high frequency, which is the effect of 
electrons passing through the switch S W . In this simulation, param eters  were Vih, — 6.5 mV, 
Vhias = 2.3 mV, C(l =  55 aF, Ch = 55 aF, Chius =  10 aF, C, =  6 aF, C\ =  9 aF, Cvl -  10 aF, 
C;2 =  9 aF, Ct[ =  1 aF, Ct2 = 2 aF, C, =  22 aF, R tl =  45 M 12, and R (1 =  I M il,  and the 
ambient temperature was 1 mK.

Figure 88 shows the waveforms of I fk when j  =  1 ,2 ,3 ,  and detection timing
depending on vk. Here, ts — 10 ns is assumed. If only the first bit ( j  =  1) is unmatched, the

a T

a T - r
time

Figure 85. Schematic figure introducing the probability of detecting  I,k =  0. w here V„ — 1 is assumed. Reprinted 
with permission from |f>4). M. Saen el al.. UZICE Trans. Electron. EX1-C. 30 ( IWS). <D 1998, IEICE.
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lime |ns|

Figure 86. Tim e dependence o f Prohk ( t)  wilh a param eter o f i \ . R eprinted with perm ission from [6*], M. >aem 
et jL  IE IC E  Trans. Electron. E8I-C . 30 (1 W<S). © 1998. IE IC E.

800

800

Figure 87. Sim ulation results about the dependence o! I fk on Vtl h in the hit-eom parator. R eprin ted  vith  permission 
from [64], M. Sacn et al.. IE IC E  Trans. Electron. F.SI-C. 30 ( 1998). © 1998. IE IC E.
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Figure 88. W aveforms o f f lk and  detection  tim ing depend ing  on i \ .  R eprin ted  with perm ission from [64], M. Saen 
et al., IE  IC E  Trans. Electron. ES1-C, 30 (1998). €) l fJ98, IEIC'H.

first time when Vk — 0 is 7\. If the first and  second bits ( /  =  1 ,2) arc unmatched, the first 
time when Vk =  0 is 7\. If the first to  third bits ( j  =  1, 2 ,3 )  are unmatched, the first time 
when Vk =  0 is 7V We can apparently see that 7, < Tz < Ty

As described above, a WC including BCs with random fluctuation can be constructed by 
using SET circuits.

5.8.4. Word-Comparator Circuit Using Nanodots on a MOSFET Gate
5.Q.4.1. S im p le  S in g le -E lec tro n  X N O R  G ate  fo r  a B i t -C o m p a ra to r  Another type of 
W C that has a simpler structure than that in the previous section is described here. A nano
structure image is also described [63J.

As shown in Fig. 11 (Section 5.1), an X O R  gate can easily be constructed by using the SET 
inverter. Furthermore, if dynamic operation is assumed, an XOR gate can be constructed 
by using a SET and a capacitor, as shown in Fig. 89a. Here, VCo is assumed to be reset at a 
certain voltage level before operation. Electrons pass through the SET to the capacitor C0 
only when VtJ = Vh = L  or / / ,  although the output voltages in both cases are not exactly 
equal, as shown in Fig. 89b. To equalize bo th  output voltages, a complementary configuration 
of SETs (CS) is introduced, as shown in Fig. 89c. Figures 89d and 89e show the waveforms 
of VCr where C() is 500 aF and 5000 aF, respectively. In both simulations, the operations are 
repeated 50 times when the same inputs are  applied, and all waveforms are represented by 
the gray lines in the figures.

Because of the stochastic event in each  electron tunneling, the rise time of voltage VCo 
fluctuates in every operation, even if the same inputs are applied. The fluctuation shown 
in Fig. 89e is smaller than that shown in Fig. 89d because the stochastic characteristic is 
eventually averaged as the number of electrons accumulating in the capacitor increases. 
Thus, the X N O R  gates with larger C„ opera te  more deterministically, and those with smaller 
C() operate more stochastically. Larger C(j obviously leads to a longer circuit-delay time, and 
a C(l that is too small makes integrated circuit design difficult. The appropriate capacitance 
value depends on the application.

Although operation tem perature of I m K  was assumed in the simulations, it was verified 
that the circuit with the same param eters  as shown in Fig. 89a can operate properly up to 
around 3 K. Moreover, it was also verified that the circuit can operate up to around 100 K 
if the capacitance values except C„ is reduced to one-tenth, where thermal noise is used for 
stochastic operation.
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(a)

0 301) <>00 0 6
time |n>>) time |ps)

ul) (e)

Figure 89. Dynamic exclusive-NOR gale using a SET and a capacitor: (a) basic circuit con figuration and (b) tran
sient behavior of I \ (c) the gate using com plem entary configuration and (d)(c) its stochastic behavior (sim ulation 
results of 50 trials).

To avoid misunderstanding, it should be noted that the circuits shown in Fig. 89 are not 
logic gates in the usual sense of this term. It is difficult to use them in multistage logic 
circuits because they should be externally reset after each clock cycle; they cannot sustain 
arbitrary logic levels for long time because of the cotunneling effect; and their output voltage 
is lower than the input voltage.

5.8.4.2. S to c h a s t i c  A s s o c ia t i v e  P r o c e s s in g  Circuit U sing  S E T s  A BC with random 
fluctuation can be constructed by using the CS shown in Fig. 89c. The WC is constructed by 
connecting nodes N c of the plural CS' with the common output capacitor C0. The number 
of CS' that pass electrons to the capacitor C0 increases as the Hamming distance decreases, 
resulting in a shorter rise time for the voltage V(o . However, even when the Hamming 
distance is at its shortest, the output voltage does not always increase rapidly because of the 
stochastic characteristics in CS’ as shown in Fig. 89d or e.

In this architecture, the extractor (WTA) circuit selects the word comparator output that 
reaches the threshold voltage most rapidly, as shown in Fig. 90, which means that it selects 
the stored pattern having the shortest Hamming distance. Because the output capacitance

Winner

time [ns| 
(b)

Figure 90. Dynamic winner-lake-all operation.
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C„ is large enough (e.g., 500 aF). the input stage of the WTA circuit can he constructed by 
sub-100-nm MOS devices, whose gate capacitance is less than 1 IF.

A device structure image of the W C is shown in Fig. 91. Isolated islands of SETs are 
regularly arranged on a capacitor plate, which corresponds to an electrode of CfJ, and also 
a gate electrode of an ultra-small MOS device, where the gate capacitance acts as C0.

5.8.4.3. Simulation Results The basic association operation was confirmed by simula
tion of a digit pattern association. Each stored pattern  consisted of seven segments and 
represented a digit number of {0, I , . . . ,  9}. Because the O N /O FF state of each segment 
corresponded to bit data, the stored data  consisted of 10 vectors, each of which had seven 
binary elements. The simulation of the system was performed as follows: input bit data V(l
and stored data V, (i = 1 ,2 .........9) were supplied to BCs as voltage signals; operation of the
WC that consisted of single-electron devices was simulated by the M onte Carlo simulator; 
and operation of the WTA circuit was simulated as an ideal black box that simply selected 
a winner from outputs of the word comparators.

Two examples of output-voltagc changes in the word comparators when the input pattern 
w'as 5 are shown in Fig. 92a. Because of the stochastic property, different patterns become 
winners; one is the pattern most similar to the input pattern 5, and the o ther is a second 
similar pattern 6. Figure 92b shows the association probabilities of all stored patterns where 
the input pattern is 5, and Fig. 92c is another simulation result, where the input pattern is not 
included in the stored patterns. Both simulation results show that the association probability 
of the stored pattern increases as the Hamming distance from the input pattern decreases.

5.8.5. Bit-comparator Using Coulomb Repulsion in Nanodots
Two types of nanodot circuits measuring a Hamming distance using the Coulomb repulsion 
effect are described. They have structures where a nanodot array is arranged on a gate 
electrode of an ultrasmall MOSFET. The device parameters for successful operation are 
clarified from Monte-Carlo simulation.

5.8.5.1. Bit-Comparison Principle Using Coulomb Repulsion in Nanodots Let us
assume a string of nanodots, as shown in Fig. 93a, put an electron eM at one of the three dots 
I ) j, and represent a bit (0 or l) o f the input and stored data by whether an electron is put 
at each end dot f)2 or not. When the corresponding bits of both data are matched, because 
Coulomb repulsion is symmetric, electron eXj is stabilized at the center; otherwise, it is off- 
center. To detect the position of electron there arc two possible detection circuits: circuit 
A that detects the center position, and circuit B that detects the off-center position, as shown 
in Fig. 93b and 93c, respectively. By the Coulomb repulsion effect, the bit-matching result 
reflects whether electron c l{ tunnels to node N (). Consequently, electrons whose num ber is 
equal to that of the matched bits (circuit A) or that of the unmatched bits (circuit B) are 
accumulated in C„. To ensure the stabilizing processes, control voltage VK is used.

A three-dimensional arrangement of nanodots realizing these circuits is shown in Fig. 94, 
where common terminals to the ground and control voltages are omitted. The capacitance 
Cn corresponds to the gate capacitance of an ultrasmall CMOS transistor.

5.8.5.2. Simulation Results Single-electron circuit simulation was performed, where par
asitic capacitance between ground and nanodots CK, and that between the second-neighbor

Figure 91. Device structure image of the word comparator.
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Figure 92. Sim ulation results: (a) output voltage changes in word com parators, (h).(e) association probablilies for 
stored patterns, w here the association is repeated  100 times.
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Figure l>3. Principle ol hii-com parison using Coulom b repulsion (u). and two w ord-com paraloi circuits (l'j(c).
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Input Jala bit

Figure 94. 3-D structure images o f a word-com pa rat or.

nanodots C(j are considered. Because it was found that circuits A and B have almost the 
same characteristics, only the simulation results for circuit A are described here.

The operation temperature ranges for feasible capacitance values are shown in Fig. 95a. 
The upper limit of operation tem perature gradually lowers with increasing CM and Cd. To 
operate the circuit at higher temperature, one has to scale down all the values of capacitance 
and, at the same time, scale up the applied voltages. For room-temperature operation, tunnel 
junction capacitance of 0.01 aF is required, as shown in Fig. 95b, although this value is very 
difficult to realize.

Setting the margin of Ct, is shown in Fig. 95c as a function of the word length (the number 
of the connected BCs). There exist minimum values of C„ for the correct operation, and 
the values increase as the word length increases. This is because some electrons eR cannot 
tunnel to node N it because of the Coulomb blockade effect by other eRs. If the parasitic 
capacitance is negligible, there do not exist the upper limits of C„. However, C0 should be as 
small as possible because the sensitivity to one electron in the output voltage e /C 0 decreases 
with increasing C„.

2 4  X ! 6
Word length (bits)

Figure ‘>5. Sim ulation results for circuit-A: (a) operation  tem perature  range with one B ( \  (b) ou tpu t voltage 
changcs al room  tem perature, and (e) selling m argin for
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5.8.6. Multinanodot WC Circuit and Structure Using 
Thermal-Noise Assisted Tunneling

The nanodot WC circuits described in the previous section operate  only at very low tempera
ture for practical junction capacitance. The multinanodot W C circuit and structure described 
in this section can operate even at room tem perature with a junction capacitance around
0.1 aF by using tunneling processes assisted by thermal noise [20]. In the stochas.ic asso
ciative processing operation, the association probability distribution can be con tn lled  by 
changing the detection timing of the electron position.

5.8.6.1. Circuit and Structure Let us assume nanodot structures constructed on a MOS 
transistor gate electrode, as shown in Fig. % . Each nanodot structure consists o f c pair of
one-dimensional dot arrays: A r (D H, D,,: , Dv}) and A h (D ,,  . . . ,  D n, £>{., D n, -----D {), where
n is the number of dots at a side of A /r and it should be more than four for the proper 
operation described below. The array A,, has dot Dc outside of each end. The capicitance 
C„ corresponds to the gate capacitance of an ultrasmall M OS transistor. A bit (1 or 0) of 
the input and stored data is represented by whether or not an electron is placed at each end 
dot D . (Alternatively, an appropriate voltage corresponding to a bit may be applied directly 
at D ). Bias voltages are applied to the plate P( over Dc ( VfH), to the nodes outsice of D c 
(I ’.), and to the back gate of the MOS transistor (V h.,).

An electron csi is introduced at the center dot Dc of the one-dimensional airay A h. 
Electron est can move along array A h through tunnel junctions C  , but it cannot nove to 
either of D t,s or to D vy through normal capacitors C, or C: . Each nanodot structure works 
as an XNO R logic gate (BC) with random fluctuation, as explained below.

5.8.6.2. Stabilization Process By applying appropriate bias voltages Vpc, Kt,, and Vhq, the 
profile of the total energy as a function of the position of ex, along the one-dimensioral array 
Ai, has a minimal value al D , as shown in Fig. 97. For 1-1 stale, where electrons are placed at

D

nt.

Kiuure % . M ultinanodot circuit an d  a structure  image. R eprin ted  with perm ission from |20j. T. Mcrie ct al. 
J. \uno\<‘i. \unoit:ch. 2. M l  (2002) < 2002. Am erican Scientiric Publishers.
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Data  m a tc h ed  (1-1 state)

I)

Data matched (0-0 state)

Data unmatched ( 1-0 state)

Figure 97. Schematics of total energy profile of l-D  dot-arrav  structure. R eprinted with permission from 120], 
T. M orie et al.. J. Nanosci. Nanotech. 2, 343 (2002). (0 2002. A m erican Scientific Publishers.

both D(.s. the energy at D, rises, and thus is most strongly stabilized at the center position. 
Therefore, the difference between 0-0 state and 1-0 (or 0-1) state is important for correct BC 
operation. In the two states, the energy profile has another minimal value at D,. The energy 
barrier height for c vl located at D( is approximately determined by the total capacitance for 
cSJ and bias voltages. The greater number of serial capacitance connections causes higher 
energy barriers, and the energy differences can be much larger than the thermal energy at 
room temperature, even if the tunnel junction capacitance C f is around 0.1 aF.

The energy barrier at the 0 side in the 1-0 (0-1) state becomes lower than that in 0-0 
state because of the Coulomb repulsion force of the electron placed at the opposite l)c, as 
shown in Fig. 97. Thus, cSJ in the 1-0 (0-1) state can more easily overcome the barrier when 
assisted by thermal noise at nonzero temperature, and it then moves to D, at the 0 side. As 
a result, there exists a certain time span t {) within which ehJ in 1-0 (0-1) state moves to £>,, 
whereas eM in 0-0 state stays at Dt .

5.8.6.3. D e tec t io n  P r o c e s s  After spending the vertical dot array A v detects whether 
or not e xl stays at D( , by changing the bias voltages if necessary. Only if evu stays at D. is 
array A r polarized and an electron induced at the gate electrode of C„. (To achieve stable 
polarization, at least three dots are required in A v). The total num ber of electrons induced 
at the gate electrode is proportional to the num ber of matched bits; this reflects the gate 
voltage Vti% and it can be measured by the source-drain current of the MOS transistor. Thus, 
the Hamming distance can be measured by this MOS transistor with nanostructure arrays.

If this detection process starts just after f,,, the most accurate bit comparison operation is 
achieved, although some statistical fluctuation remains. However, if the detection timing (/(/) 
is shifted from /(), an arbitrary amount of fluctuation can be introduced in the bit comparison 
result. Thus, controlled stochastic association can be achieved, which is necessary to apply the 
stochastic association model to various types of intelligent information processing effectively.
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The bit-comparator circuit composed of nanodot arrays works only at nonzero tem pera
tures because at 0 K, eM can never escape from D( , the valley of the energy profile. Further
more, the time span depends on the operating temperature. Conversely, for a given f0, an 
appropriate amount of thermal noise is required; if the thermal noise is too small, electron 
ey  in 1-0 (0-1) state cannot escape from Dn  and thus no bit comparison is achieved. In 
contrast, if thermal noise is too large, c v/ in both the 0-0 state and the 1-0 (0-1) state escapes 
from Dt., and thus the two states cannot be distinguished. In this sense, it can be considered 
that this circuit utilizes a stochastic resonance effect [65] by thermal noise.

5.8.6.4. S im u la t io n  R e s u l t s  We analyzed the proposed circuit shown in Fig. 96 by using
a Monte Carlo single-electron simulator, where the tunnel junction capacitance C; is 0.1 aF 
and tunnel resistance R , is 5 M (2, and other parameters are shown in Fig. 96. In this case, 
the dot diameter is assumed to be around I nm. The bias voltages applied were Vpc =  0 V, 
Vt =  J.15 V, VhK =  0 V for the eSi stabilization process, and Vpc = 0 V, K, =  1.8 V, Vbg =  3 V 
for the exl position detection process.

Figure 98 shows the total energy profiles at the 0 state side of A h as a function of the 
position of eM, where the energy when eS! is located at D ( is defined as zero. It is confirmed 
that the barrier height for ex, at D ( is larger than the thermal energy at room temperature 
(i.e., 26 meV), and the barrier height in 1-0 (0-1) state is lower than that in 0-0 state.

Figure 99 shows the relationship between operating tem perature and time ( / u ) required 
until e st moves to D,. The closed and open circles indicate t s, in many trials at the 1-0 state 
and 0-0 state, respectively. Because the moving process assisted by thermal noise is purely 
stochastic, tM scatters over a wide range. However, time span r„, defined in the previous 
section, can be determ ined from these simulation results.

To determine /() precisely, we measured tXJ for 100 simulations for 1-0 and 0-0 states with 
different seeds for random num ber generation. The 100 data obtained for tM were sorted in 
increasing order and num bered from 1 to 100. The assigned number indicates the number of 
electrons that move to D, within the corresponding tM. Therefore, the relationship between 
tSj and the assigned num ber can approximately be considered as the probability that eM 
moves to D, as a function o f  time. The results obtained at room temperature (300 K) are 
shown in Fig. 100. The optimum /„ is obtained as the time having the smallest overlap 
between the two states; it is about 1 /^s. It should be noted here that /„ depends on tunnel 
resistance R r  If lower tunnel resistance is available, t{) becomes shorter.

From Fig. 100, we can obtain the probability of wrong detection; that is, the conditional 
probability that a given 1-0 state is detected as a 0-0 state or vice versa. For example, when 
the detection timing is 10“7 s, the probability that eM moves to D, at 1-0 state is only 20%. 
This means that wrong detection occurs with a probability of 80%.

By using this effect, we can add fluctuation to the bit comparison operation. However, 
in the above case, it must be  noted that fluctuation can be added only in the 1-0 state. 
Bit-matched (1-1 and 0-0) states always answer correctly. Therefore, a comparison between 
patterns with a shorter H am m ing distance is performed more deterministically. This means 
that a stochastic association operation cannot be achieved. An easy way to overcome this 
difficulty' is to reverse the input bit pattern. Although this leads to a deterministic comparison 
between patterns with a longer Hamming distance, such patterns are seldom associated, and 
thus it hardly affects the stochastic association operation.
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Figure 98. Energy profiles for e lecm  m c ■, at the 'if  state  side in j-D  do t array structures. R eprinted with permission 
frm i |2(»|. T. Morie et a !.../. N,tnosn. SunoH'di. 2. 343 (2(Mi2). vV- 2002. A m erican Scientific Publishers.
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Temperature (K)

Figure 99. Relation betw een operating  tem pera tu re  and time w hen e u moves to /) ,. R eprin ted  with perm ission 
from [20), T. M orie et al.. J. Nanosei. Nanotech. 2, 343 (2002). © 2002. Am erican Scientific Publishers.

Figure lOla-c show association probability distributions as a function of the Hamming 
distance for some td. In these simulations, the input pattern was (1,1,1,1), and the stored 
reference patterns were (1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0), and (0,0,0,0). These refer
ence patterns were reversed when they were applied to the multi nanodot circuit, for the 
reason described above. With the num ber of electrons indicating the results of Flamming 
distance evaluation with fluctuation, the reference pattern having the smallest evaluation 
result became the winner. If two or more reference patterns had the same number of elec
trons, we determined the winner stochastically. The simulations were repeated 100 times 
with different seeds for random number generation. The number of trials when a given ref
erence pattern becomes a winner is approximately proportional to the probability that it is 
associated. The simulation results shown in Fig. 101 confirm that as td becomes further apart 
from /„ (=  1 fis  in this case), the association probability distribution becomes flatter. Thus, 
the association probability distribution is controlled by changing td.

Detection liming (see)

F igure 100. Probability lhal c'w moves to D, as a function o f detection timing. R eprinted with perm ission from 
|20 |. T. M orie et al.../. Sanosci. Sanotccli. 2. 343 (2002). 2002. A m erican Scientific Publishers.
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td = 200 ns (hi id = 400 ns »,•) id = 600 ns

Hamming distance (hit) Hamming distance (hit) Hamming distance (bit)

Figure 101. Association probability distribution as a function o f H am m ing distance for various detection  liming 
td. R eprinted with perm ission from [20], T. M orie et al.. J. Nanosci. Nanotech. 2, 343 (2002). ©  2002, Am erican 
Scientific Publishers.

Figure 102 shows the time dependence of voltage Vn as a param eter of the Hamming 
distance for a 4-hit word comparator at room temperature, where the voltage for a distance 
of 0 bits is defined as 0 V. The voltage changes are proportional to the Hamming distance, 
and the voltage difference per bit is larger than 1 mV, which is large enough to detect with 
a CMOS circuit.

5.5.7. Some Remarks about Nanostructures for 
Stochastic Associative Processors

In these architectures described above, if it is difficult to represent 1 bit by 1 nanodot, a 
redundant architecture can be applied easily, in which plural BCs represent 1 data bit. Such 
an architecture based on a majority decision principle has advantages of robustness against 
effects of random background charge.

For realizing these nanostructures described above, the basic technology of nanocrystalline 
floating-dot M O SFET devices, which are closely related to these nanostructures, has been 
reported [19, 66, 67]. Fabrication technology using self-organization may also be applied [68]. 
Furthermore, well-controlled self-assembly processes using molecular manipulation technol
ogy, especially that using DNA [69], would be utilized to fabricate the nanostructures.

Although the use of digital data is assumed in the above sections, analog data can be 
treated in the same circuit by using pulse-width modulation (PWM) signals, which have a dig
ital amplitude and an analog pulse width [70]. Instead of a Hamming distance, a Manhattan 
distance, the summation of the absolute value of difference, is evaluated by using these
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nanostructures. The clustering algorithm using stochastic association for vector quantiza
tion [62] can use this distance evaluation approach.

5.9 . A M u ltin a n o d o t F lo a tin g -G a te  M O S F E T  
C ircu it fo r S p ik in g  N euron  M o d e ls

5.9.1. Neural Network Models
To realize brain-like information processing functions, such as association, perception, and 
recognition, one very important and challenging approach is to mimic brain functions and 
structures. In the brain, a neuron receives many electric impulses via a few thousand 
synapses, and it outputs spike pulses. A typical neuron has three parts: dendrites, a soma, 
and an axon. Pulse signals called spikes are fed into the dendrites via synapses, the effects of 
the inputs are gathered up at the soma, and a spike pulse is output from the axon [71]. To 
analyze and apply neuronal information processing, it is essential to model real neurons. In 
creating neuron models, however, there are different tradeoffs between faithful simulation 
of biological reality and minimization of computational expense.

Until the mid-1990s, pulse-rate coding models, which use analog values as averages of 
pulse events, were studied intensively in both artificial neural networks [72] and their VLSI 
implementation. The approaches to analog VLSI implementation treat such analog values 
directly in the voltage or current domain [73-75], whereas the approaches to digital VLSI 
implementation represent such analog values only by a set of digital bits [76-78]. Another 
approach, called pulse-stream neural networks o r  pulse-density modulation (PDM), also 
focuses on the rate of pulse events [79, 80].

In contrast, since the mid-1990s, computational neuroscientists have focused on more- 
realistic spiking neuron models, which treat spike pulses directly [71, 81]. In principle, the 
computational power of spiking neuron models is superior to that of the conventional rate 
coding models [71, 82].

In this section, a single-electron circuit based on a multinanodot floating-gate MOS device 
for spiking neurons is described [83].

5.9.2. Spiking Neuron Models
In spiking neuron models, information is represented by spatiotemporal patterns in spike 
pulse trains. A simple spiking neuron model, called the Spike Response Model (SRM) [71], is 
shown in Fig. 103. A spike pulse inputted to a neuron via a synapse generates a postsynaptic 
potential (PSP). There  are two types of synapses: excitatory and inhibitory. Respectively,

/’* ^  O  : Positive synaptic connection k 

•  . Negative synaptic connection 

/„ : neuron output 

Pj : post-synaptic potential 

/„ : internal potential

th

th : threshold lor tire

F igure 103. Schematic o f a simple spiking neuron m odel, the Spike Response M odel (SRM ). Reprinted with per
mission from |N3|. T. M orie et al.. IE E E  Trans. N anotct7/nolog\' 2. 158 (2003). €? 2003. IEEE.
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these have positive and negative synaptic weights and generate an excitatory PSP (EPSP) 
and an inhibitory PSP (1PSP). The PSP temporarily increases or decreases according to 
whether the synaptic connection is excitatory or inhibitory, respectively. The t\pical time 
course of a PSP is approximated by a so-called a-function oc a exp(— x) ,  where a* = ( t  -  t{) — 
A"a' ) / t s, / — > Atf*\ /„ is a tiring time, At/V is the axonal transmission delay, a id  rs is a
time constant [71]. In this function, the rise time and the fall time are related to each other; 
however, for various applications it is desirable for them to be independently changeable.

The neuron's internal potential / ( / )  is equal to the spatiotemporal summation of all PSPs 
generated by the input spike pulses. If I ( t )  exceeds a certain threshold (th), t ie  neuron 
emits a spike pulse and / ( / )  is reset to the resting level. There exists a refractory period 
after firing, in which the neuron cannot fire, even if many spikes are inputted.

The property of the spiking neural network consisting of SRM neurons depends on the 
relation between the average of interspike intervals t fS/ and the PSP decay time constant 
t psp. As shown in Fig. 104, if t psp tISh then PSPs are integrated during rPSf, in which 
case the neuron acts as an integrator. In contrast, if rrsr  <$c t /Sh only those PSPs generated 
by spike pulses inputted within the time interval t p s p  are integrated. In that case, ihe neuron 
acts as a coincidence detector of spike timing. That is, the neuron detects whether or not 
plural input spikes arise within a certain time span comparable to t psp.

The latter type of neuron enables higher-ordcr and faster intelligent information process
ing functions such as the brain might perform. It is indicated that the computational power 
of networks composed of spiking neurons is superior to that of conventional analog neural 
networks based on the rate coding models [71 ]. For example, spiking neurons can cetect tem
poral patterns irrespective of a common additive constant, and they can compute weighted 
summations. Furthermore, they can approximate any continuous functions more efficiently.

The spiking neural networks can process various types of information by using various PSP 
decay constants. This means that rate-coding-type integrators (conventional analog neural 
networks) and coincidence detectors can coexist in the same network. The two features 
can be combined for various applications. Therefore, r PSP must be controlled in the VLSI 
implementation of SRM neurons.

5.9.3. Multinanodot Floating-Gate MOS Device for Spiking Neurons
Because one real biological neuron has a few thousand synapses, the key for very large scale 
integration of neural networks is the design of a small synapse circuit. Thus, the realization

time time
(ai (b)

Figure 104. Schem atic explaining that the spiking neural netw ork properly depends on the relation between the 
average of interspike intervals/, s/ and the PSP deca> lime constant r r s , . .  (a) r r s r  »  / ,v/. (b) 7 , . s r  < K  Reprinted 
with permission from |N3|. T. M orie et al.. l/.H f . Trans. \ !nn<Jitrlniot(W 2. J5N ( 2 0 0 3 ) .  20U3. I EL: 11
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of the synapse functions should he more focused. The synapse circuit of SRM neurons has 
to implement a generation of controllable PSPs, as well as a synaptic weighting.

A nanodot circuit and structure for realizing the synapse of the SRM model is shown in 
Fig. 105, which is very similar to the multi nanodot structure shown in Fig. 96 in Section 5.8.6. 
The circuit parameters used in the following simulations are indicated in this figure. These 
parameters are assumed as an example in the case of the minimum size for nanometer- 
scale structures. Multinanodot structures are constructed on a M O SFE T gate electrode. Each
nanodot structure consists of a one-dimensional dot array: A h ( D , .........Dn, D( , D „ ., . . . ,  D, ),
where //( =  n') is the num ber of dots at a side of A h. In the following simulations, n ~  5 is 
assumed. The center dot D c is capacitively coupled with the MOS gate via one nanodot D v. 
The capacitance C„ corresponds to the gate capacitance of the M O S FE T  It is assumed that 
only one electron eS! exists in the array A fr Electron eX! can move along array A h only through 
tunnel junctions, and it cannot move outside of A u through normal capacitors C, or  C: .

Spike pulses are inputted at nodes IN  that are capacitively coupled to one end of A,r  To 
achieve a high probability that e u exists at center dot D(. when no spike pulse is inputted, 
appropriate bias voltages are applied to the top plate Pc ( Vp). to the end electrode Pc (Vc), 
and to the back gate of the MOS transistor ( Vhfi). For example, assume that Vp — Vhi, =  0 V 
and Vc < 0 V. The baseline voltage of the input signal Vu is also set at 0 V or slightly less 
than 0 V. Thus, the profile of the total energy as a function of the position of eX} along one
dimensional array A h has two peaks, as shown in Fig. 106, because of the charging energy 
of eM itself. The minimal values of the energy are located at Dc, and D v.

\— | : tunneling junction C  

O  : dot position 
Cj : 0 .1 aF 
C( : 0.06 aF 
C2 :0 .0 3 a F  
C ,’ : 0.02 aF

Figure 105. Singlc-electron circuit and nanostructure  for the SRM  neuron. T he circuit param eters used in the 
sim ulations are also indicated. R eprin ted  with perm ission from | S3]. T. M orie et ill.. IE EE  Trans. Nanotechnology 
2. 15N (2003). < 2003. IFL:F.
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Stationary stale (no pulse) 

V

Position of

p ulse  input  (n e g a O \e  a m p l i tu d e )

401)

400

Figure 106. Schem atics of the total energy profile in l-D  nanodot array and sim ulation results, where I „ =  V,, =  
J ’/... =  Vft =  0 V, and \ 't -- 2.7 V. R eprinted with perm ission from [83]. T. M orie et al., IE E E  Trans. Nanavchnalogy 
2. L\S (2003). €> 2003. 1EHH.

Figure 106 also shows simulation results. The energy barrier height for esl staying at D( is 
approximately determined by the total capacitance for c xl and the bias voltages. The energy 
differences can be larger than the thermal energy at room temperature if the tunnel unction 
capacitance is around 0.1 aF.

Thus, in the stationary state without input pulses, electron eM almost always stays at the 
center dot D t , although thermal noise sometimes causes e X! to move to edge position D, and 
back to Dl . When a spike pulse is inputted, if it has appropriate pulse width and amplitude 
voltage, cs1 moves quickly to  D,. Then, after the puise signal ceases, c w moves slovly back 
to the center dot D( because of thermal-noise-assisted tunneling through the energr barrier 
between nanodots. This behavior of csl creates a PSP. The energy barrier can be larger than 
the thermal energy at room temperature, and thus the one-dimensional nanodot array can 
operate at room temperature.

The position of affects the gate voltage Vtt through dot D, (i.e., when t*w stays a  center 
dot D , Vfl is reduced because of capacitive coupling between /) and the gate cle:trode). 
Because the above process t>ccurs stochastically, I fluctuates because of the position of e M. 
However, if one adopts a configuration in which the same input pulse is applied to a number 
of arrays, or if one uses a low-pass filter in the detection part, an analog PSP is cbtained
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/.v

Figure 107. N euron circuit consisting of a d iffcrential-pair including n-M O SFETs with nanodot synapses. Inputs lor 
positive synaptic weights are fed into I N ' . and those for negative weights are fed into IN  . The typical num ber of 
these inputs is on the o rd er of 100. and the size o f each n -M O S F E T s gate e lectrode is around 20 nm by 5000 nm. 
R eprinted with perm ission from [83], T. M orie et al.. IE E E  Trans. Nanotechnology 2. 158 (2003). V  2003. IEEE.

I'ime (see)

Time (sec) 

(a)

VH

VL
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VL

Inpul pulse
0 V

-2 .7  V

Time (msec) 

Input pulse
-0.1 V

2.7 V

Time (msec) 

(b»

Figure 108. E lectron  transition probability as a function of lim e with baseline voltages i — 0 and -0 .1  V: (a) tran 
sition probability o f e u betw een I), and l)\ as a function o f time, and (h) time dependence of the probability 
that c u stays at /), when a pulse is applied. R eprin ted  with perm ission from [S31. T  M orie et al.. IE EE  Trans. 
Nanotcchnolo^x  2. 15>S (2003). C- 2003. IE EE .
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from the MOSFET. In the former case, this means that the interconnection wires for nput 
can be much wider than the interval between nanodot array sets. This condition is prefeable 
for VLSI fabrication technology. Furthermore, by changing the circuit parameters su:h as 
Vc and V  locally, the profile of PSP generated by each input pulse can be controlled.

PSPs generated in plural nanodot arrays are summed on the gate capacitance o' the 
M O S F E T  If one adopts models that ignore the difference in the transmission delay cmsed 
by the spatial distribution of synapses on dendritic trees, excitatory and inhibitory PSFs are 
separately integrated, each by a different M OSFET having a nanostructure on the gate and 
then the inhibitory contribution is subtracted from the excitatory one. A  differentia-pair 
circuit can be used effectively for this subtraction and for the thresholding operation, as 
shown in Fig. 107.

The averaging process can also reduce various nonidealities in nanostructures, such as 
additional charge effects resulting from background offset, parasitic or surplus charges and 
the effect of device param eter fluctuation. In single-PSP operation, the addition of chirges 
comparable to the elementary charge causes a fatal error. However, even if some dot arays 
do not work correctly by additional charges, the averaging process by many dot array; can 
decrease the effect. Thus, the proposed device and circuit will operate successfully e\en if 
the fabrication technology is not yet fully mature.

5.9.4. Simulation Results
The proposed circuit shown in Fig. 105 was analyzed by using a Monte Carlo single-ele:tron 
simulator. In the simulations, the tunnel junction capacitance C, was assumed to be 01 aF, 
which means that the dot diameter is around 1 nm. The tunnel resistance R, was assimed 
to be 5 M il.  The operation tem perature was set at 300 K.

Figure 108a shows the transition probability of eM between Dt. and D { as a function of 
time according to an input voltage change. Those data were obtained in the same wiy as 
lor obtaining Fig. 100 in Section 5.8.6. By replotting Fig. 108a, one can obtain the time

Input pulse
I) V

Inpul pulse

- - -0.4

-O.iv

Input pulse
-).2 V

2.7 V

T im e»msec)

Ul!

0.4 j

-O .X !

! i) ■ 

1.2 -

>

1.00
Time i msec > 

(hi
Time {msec) 

<c>

F igure 109. Time dependence o f M O S gate voliaue (! ): (a) one-input case, (h) two-input case. (A): electnn eSf 
com es back to ecruer-do- {!) ). ( \ ) :  iiisi electron  conies back to D ,. (Y): second electron comes back o Dc; 
( o  four-input case, a titled a -funeiion  curve is indicated by I he solid line. R eprin ted  with perm ission fron [83], 
I'. M orie et al.. II I.}. Tnms. Ntinou chnolog\' 2. i5N (-003). 2 0 0 3 .  IHIn.Li.
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dependence of the probability that e u stays at />, when a pulse is applied, as shown in 
Fig. 108b. The time course of PSP (Vn) is approximately proportional to this probability. 
The time constant of PSP can be controlled by the baseline voltage of the input (Vn) .  as 
shown in Fig. 108.

Figure 109a-c shows the time dependence of V,, when a pulse is applied in the case of 
one, two and four nanodot arrays, respectively. Voltage V() fluctuates because of the position 
of the electron, but the average voltage roughly represents a PSP (i.e.. the exponential decay 
characteristic of a PSP is realized in V0). In Fig. 109c, a fitted a-function curve is indicated 
by a solid line. Although an ^-function expresses only a typical PSP time course, the fit is 
reasonably good. It is verified from Fig. 109b and ll)9c that the summation of plural inputs 
can also be realized.

Thus, the function of the synapse part, which is the generation of arbitrary PSPs, can be 
realized by using a M O SFET with nanostructures. The decay constant of PSPs is controlled 
by the input baseline voltage VH and the bias voltage Vt., which affect the potential barrier 
height. The functions of the soma part in the neuron, such as thresholding and refractoriness, 
are realized by MOS circuits, including the base M O SFE T  of nanostructures.

6. CONCLUSION
This chapter reviewed single-electron devices and circuits, described various new operation 
principles and algorithms utilizing single-electron operation, and illustrated various func
tional circuits implementing such algorithms. Most of these circuits are not based on con
ventional CMOS Boolean computing, but they can coexist with conventional digital systems. 
Only sophisticated nanotechnology may construct these functional circuits, and at the same 
time, they should be promising applications of post-CM OS nanoelectronics.
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1. INTRODUCTION
M odern microelectronics strongly tends toward scaling down of electronic device size 
for the development of ultra-large-scale integrated circuits (ULSls) [ I —4J. Meal-oxide- 
semiconductor field-effect transistors (MOSFETs) have been the most prevalent electron 
devices for ULSI applications. Because of higher integration of MOSFETs, the/ lead to 
an increase in performance speed due to smaller delay times in information exciange. In 
the early years of the 21st century, the scaling of complementary-MOSFETs (C'MDSFETs) 
entered the deep sub-50-nm regime [5|, in which fundamental limits of CMOSFETs and 
technological challenges with regard to the scaling of CMOSFETs are encountered 4, 6]. On 
the o ther hand, it has opened up new possibilities based on quantum-mechanical effects [7]. 
Therefore, it is essential to introduce a new device having an operation principle tha  is effec
tive in small dimensions, such as down-scaling existing devices, molecular devices, mesoscopic

outpisi V  = V.

~\

j
Figure 1. Flow chart for the SPICE
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Figure 2. Single-electron circuits consisting of tunnel junctions, capacitors, and voltage sources.

devices with quantum effects, superconducting devices with tunneling effects, single-electron 
devices (SEDs) with single-electron effects, and so on, and thus provide a new functional
ity beyond that attainable with CM OSFETs [8-14]. Among the new devices, single-electron 
devices [8, 15-17] are an attractive candidate for their potential room temperature applica
tion to very high density memory and logic circuits with conventional silicon very-large-scale 
integrated circuit (VLSI) processing [ 18—28] techniques because they can retain their scal
ability even on an atom scale and, moreover, they can control the motion of even a single 
electron. Therforc, the ULSI consisting of SEDs will have the attributes of extremely high 
integration and extremely low power consumption.

However, a number of issues have to be overcome that at present pose crucial obsta
cles for implementing single-electron transistor (SET) logic gates. The maximum voltage 
gain o f  an SET, which is defined as the ratio of the gate to the drain capacitance, is very 
small, usually less than one or slightly more than one [29, 30]. The SETs have low current 
driving capability, which degrades device performance, as it takes a long time to charge up 
the large interconnection capacitance connected to the output node of a device. One of 
the approaches to overcome these inherent disadvantages of SETs is to construct a hybrid 
circuit consisting of MOSFETs, which have a high gain, high output resistance, and high 
applicable voltages and can thus supplement the SET. Such a hybrid circuit has already been 
demonstrated experimentally [31-35], and in order to evaluate the merits of this approach 
thoroughly, powerful simulation tools are necessary.

Most of the single-electron circuit simulators [36-39] have procedures that calculate the 
charge states of all the Coulomb islands altogether to take into account the interaction 
between neighboring Coulomb islands. The pioneering SET circuit simulator, the MOSES 
[36], the SIMON [37], and the KOSEC [38], use the Monte Carlo method to obtain the 
average number of electrons in Coulomb islands. O ther important simulators, the SENECA 
[39], directly solves the master equation for the population probability of Coulomb islands. 
Although both methods provide accurate simulation results, they have to deal with a huge 
am ount of matrix calculation and require a huge amount of computation time because the 
evolution of all the Coulomb islands in the entire circuit has to be monitored [40, 41].

To the best of our knowledge, it is very difficult to include the simulation of complementary 
metal-oxide-semiconductor (CM OS) devices and to predict the performance of SET-CMOS 
hybrid circuits with the above-mentioned pioneering simulators. Therefore, various types of 
SET-CMOS hybrid circuit simulators for efficient circuit simulation have been developed 
[41-51],

In this chapter, the modeling of single-electron circuits and SETs for efficient circuit simu
lation and proposed circuits for logic applications are explained. In Section 2, the simulation 
method of the conventional simulation program such as SPICE and the basic assumptions 
used with SPICE are illustrated. In Section 3, we explain the simulation method of single
electron circuits consisting of SEDs with the procedure that calculates the charge states of 
all the Coulomb islands together to take into account the interaction between neighboring
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Figure 3. Simplified How ehart o f the M onte C arlo m ethod for the sim ulation o f single-electron circuits. / is simu
lation time. /s/,„ is I he sim ulation end tim e, and / l( , is the sim ulation time step.

Coulomb islands. In Section 4, when an SET circuit is applied to SPICE, the features of
SET circuits are illustrated. In Section 5, the minimum size (capacitance) condition of the 
interconnection, where each SET can be handled independently in the circuit simulation at
the DC and the transient, is investigated using the single-electron inverter (SEI) circuit as
an example. For those regimes where each SET can be handled independently, the various 
types of compaot-modelings of the SET to efficiently simulate SET circuits arc introduced 
in Section 6. In Section 7, comparisons between each SET modeling are performed. In 
Section 8, various types of SET circuits and SET-M OSFET hybrid circuits are introduced.

2. SIMULATION METHOD OF CONVENTIONAL CIRCUITS
In this section, simulation methods of the conventional circuit simulation program such as 
SPICE are illustrated, and the basic assumptions used with SPICE are introduced.
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Figure 4. Partition o f slate  space into a frequent state dom ain and a rare state dom ain, and contribution o f rare 
s ta tes and events by stepping through the event tree. Black solid arrow s mark transitions due to frequent events, 
black dashed arrows m ark transitions due to rare events, and blue dashed arrows mark transitions due to rare or 
frequent events. R eprinted with perm ission from |37], C. W asshuber et al., IE EE  Trans. Comp. Aided Design 16, 
937 ( I W ) .  4 IW7. IEEE.

2.1. Basic Equations for Conventional Circuit Simulation
A conventional circuit simulator such as SPICE is based on the Kirchhoffs current law 
(KCL) equation at each node. Figure l summarizes the flow chart for the SPICE simulation. 
When there are N  nodes in the circuit, the N  x  I nodal voltage vector V (collection of 
the voltages of all the nodes in the circuit) can be obtained by solving the following matrix 
equation.

YV =  J (I)

Figure 5. Circuit diagram for a single-electron inverter consisting of two SET's  in series.
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V,„ |e /C |

Figure 6. The voltage transfer characteristics and the curren t of the lower SET of the inverter when 1 , =  0.03 V, 
C j — C\ =  1.6 aE  C.\ =  3.2 aE  C, — 1.6 aE  R t! — R , =  100 M il. and T  = 30 K. Reprinted with permission 
from [42|, Y. S. Yu et al.. IEEE Trans. Electron. Devices 46. 1667 (1999). £) 1999. IEEE.

where Y is the N  x  N  nodal admittance matrix and J  is the N  x  1 nodal current vector. 
As shown in the flow chart, V is calculated by the initial guess and successive iteration and 
Newton-Raphson convergence [52, 53]. During the successive iteration, the elemeits of Y„, 
V„, and J„ (the subscript n means nth iteration) are related by the following forrmla:

[VJ,, =
<'U!‘

till nodes

J J , - =  E  
k

(Un
7/[v j ; iv ,,Ia

(2)

(3)

where //' is the sum of all the currents flowing out of the /th node (the superscript/? means 
«th iteration). The SPICE itself automatically provides equivalent circuits so that /' can be 
calculated at each node.

2.2. Basic Assumptions
In the case of the conventional circuit, the compact simulators such as SPICE [54] are used 
to simulate the characteristics of the given circuit topology. In these simulators, twe assump
tions are implicitly used to build the model. The first assumption is that once the pirametcr

o.o o i  o.: o.3
v m |e /C |

Figure 7. T he voltage transfer characteristics and the current o f the lower SET o f the inverter when V. 0.03 V,
( ! =  ( =  1.6 aE  C , — 3.2 aE  C, — 500 aE  R , -  R , -  100 M il. and T ~  30 K. Reprinted with permission 
from |42 |. Y. S. Yu et al.. IE E E  Trans. Electron. Devices 46. 1667 (1999). ■£> 1999. IEEE.
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Figure 8. (a) The oulpul voltage swing, and (b) the average ou tpu t level, V*'* as a function o f C, ( l ’H = 
0.03 V, C.\i — C\ — 1.6 aF. C. =  3.2 aF, R tj =  R^ — 100 M il, and T  — 30 K). R eprinted with perm ission from [42] 
Y. S. Yu et al.. IEEE Trans." Electron. Devices 4b. 1667 (1999). C  1999. I F E E .

of the isolated transistor is determined from the device simulator or o ther  modeling tools, 
they can be used in the whole circuit. The eurrent-voltage characteristic of the device is 
approximated by a linear function of the device scale. The second assumption is that the 
I - V  characteristics of the device are affected by neighboring transistors only through the 
charges of the terminal voltages of those transistors. The interaction between each adjacent 
device is usually overlooked.

3. SIMULATION METHODS OF SINGLE-ELECTRON CIRCUITS
To simulate a single-electron circuit (with n a nodes) consisting of voltage sources and capac
itors including tunnel junctions as shown in Fig. 2, the node voltages and the charges stored 
in the capacitors are calculated and are related by

CV =  Q (4)

where C is the na x ntl capacitance matrix of the circuit network, V is the na x I vector of 
node voltages, and Q is the n a x 1 vector of node charges. Here, n a =  //, +  n h, where n, and 
n h are the number of islands in the circuit and nodes connected to the voltage sources or the

C, IaF]

F igure 9. Average difference betw een the ou tpu t voltages ( V\,ul) ob tained  from two types of calculations when the 
input voltage (! of the inverter is swept from 0 to  0.03 V in th ree  d ifferent t rs (C j  =  C\ =  1.6 aF, — 3.2 aF. 
R (j =  R — 100 MU, \ 'H — 0.03 V, and T  =  30 K). T he result V N1I. is the ou tpu t voltage calculated by solving 
the tim e-dependent m aster equation  considering the overall probability d istribution of th ree  Coulom b islands. The 
result VM , is the output voltages calculated by solving two tim e-dependen t m aster equations o f the lower and the 
upper SFTs independently and applying the  K irchholf s law al the interconnection.
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Figure 10. (a) The equivalent circuit and (b) the SPIC E  m acro model code o f the SE T  for the rnaciomodeling. 
Reprinted with perm ission from [42], Y. S. Yu et al.. IE E E  Tnms. Electron. Devices 46. 1667 (1999). © ])99, IEEE.
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Figure 11. T he eurren t-vo itage characteristics ol an SL T  m Tig. 7 at various gate biases when C , — ( — 1«6 aF, 
C . =  3.2 aF. R , =  K. - 100 M il. and  7 — 30 K. R eprin ted  with permission from |42|. Y S. Yu et al.. { '.EE Trans. 
Elect r<>n. Devices 46. !667 (1990). i  1999. IEEE.
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Figure 12. The cunon l-vo ltage  characteristics o f  ihc SE T  in Fig. 7 at various tem pera tu res when Ct, =  C\ =  1.6 aF. 
C., =  3.2 aF. R , — R y = 100 M il. and T  =  30 K. The open  symbols are M onte C arlo results, and the filled symbols 
are ob tained  from the proposed m acrom odel. R eprinted with perm ission from [42). Y. S. Yu et al., IE E E  Trans. 
Electron. Devices 46, 1667 (1999). © 1999, I F . F F .

ground, respectively. Ordering all the biased nodes before the island nodes, the following 
equation in terms of submatrices and vectors is rewritten [431.

C„ CIK

^B1 ^BB
(5)

where Q! is the //, x  1 vector of island charges, Q B is the nh x  1 vector of biased node 
charges, V, is the /<, x  1 vector of island voltages, VB is the n h x  1 vector of biased node 
voltages, C„ is the //, x  n t matrix of island-island capacitances, C iB is the n ,  x  nh matrix of 
island-biased capacitances, and so on (note that C B,=  C,7B). Then, because VB and Q, are 
known, Q B and V, have to be calculated by [43].

BI
r  1 v t!

c„* • c IB

c IB
(6)

To simulate the tunneling of electrons from island to island, the rates of all possible tunnel 
events have to be determined. The normal tunnel rate of a tunnel junction is given by 115-17]

r  =
A F

e2R-r A L

k n r

(7)

where A F is the change in free energy after and before a tunneling event, e is the electron 
charge. R ,  is the tunnel resistance, and k nT  is the thermal energy. The free energy is defined

Table I. The m acrom odel param eters at various tem peratures. The 
param eters C FI (=  40) and C PI ( =  0) are tem perature  independent.

Temp. Para. 10 K 30 k 77 K 100 K 300 K

CI2 0.2 n 0.2 n 0.25 n 0.27 n 0.35 n
C R l 1.35 Ci 300 M I6N M 147.5 M 1IX M
CR2 1.15 G 100 M 14 M 4.5 M 0

K cprinted with perm ission from  |4 2 |. Y. S. Yu c t al.. IE E E  Tran\. Electron. 
/  Vr/iv.v 4h. \h(>7 ( l 'W | .  -.C ! W .  IE F F .
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Figure 13. The circuit diagram  and the linearized equivalent circuit o f a four-term inal SET for the scninum erieal 
modeling. The symbols. C\h, C„v, Cĥ  ( \ h, and Chif are the drain-source, the gate-source, the backiate-source, 
the gate-drain, the gate-backgate, and the backgatc-drain capacitance, respectively. Reprinted with perm ission 
from [49], Y. S. Yu el al.. Electron. Leu. 38. 850 (2002). <0 2002. 1EE.

by the difference in electrostatic energy stored in the circuit (U ) and the work do ie  by the 
voltage sources ( W )  and is given by [37]

F  =  U -  W ( Q l  v*
Qi

with

-  W (8)

where Vm(t) and /,„(/) are the voltage of the mth voltage sources and the curren: through 
mt h  voltage source, respectively.

Single-electron tunneling is a stochastic phenomenon, and its theory can only predict prob
ability rates of the possible tunneling events [15-17]. Therefore, two simulation approaches 
are used for single-electron devices and circuits. O ne is based on a Monte Carlo method 
[55], and the o ther is based on a master equation [15]. Monte Carlo method simuates pos
sible scenarios of  electron tunneling between the islands. This is a very convenient method 
for studying the typical behavior of the electrons in a device. However, this method is done 
many times to simulate the transport o f  electrons through the network and especially, in 
case when very rare tunneling events such as co-tunneling take place against the background 
of much more frequent events (single-electron tunneling), it is difficult to resolve the rare 
tunneling events by the M onte Carlo method. Master equation is a description for under
lying Markov process [5ft] of electrons tunneling between ihe islands, and thus tie circuit 
occupies different states. The set of all possible states of the circuit is needed. A state is 
defined by the set of voltages of voltage sources and charge distribution in the circuit. This 
method can include the tunneling phenomena through a single tunnel junction as well as 
the tunneling phenom ena through multiple tunnel junctions (co-tunneling). Therefore, the 
probabilities of all possible states of the circuit (each characterized by a particular charge 
configuration) are calculated by the master equation method. This method has the necessity 
to store information about all states of the circuit. To rectify the requirement to a large 
extent bv taking into account the hierarchy of the tunneling rates, only rates higher than
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V ,S |V |

Figure 14. (a) T he drain ( / (/) and the source curren t ( / v), and (h ) the gate {/„) and the backgalc curren t (/,,) o f the 
SET in Fig. 10 when J v a r i e s  linearly from 0 to 0.1 V in /, =  50 ps. and (c) the d rain  curren t when 1’0 varies as 
shown in the inset ( \ \h =  0.1 V, Vh% = 0.075 V, C\, =  0.2 aF, C\ =  0 .1 aF. C , =  0.8 aF. Ch =  0.7 aF, l<t, =  / (  -  1 M il, 
and / ’ ~  30 K). The results from our DC' model and the M onte C arlo results are also shown. The symbols denote 
the results of o u r SPICF. model and the lines denote  the results o f the m aster equation  or the M onte Carlo.

a certain threshold value are considered at a time. Two simulation approaches will he the 
subject of detailed discussion in the next sections.

3.1. Monte Carlo Method
To use the Monte Carlo method for the simulation of single-electron circuits was first pro
posed and implemented by N. Bakhvalov et al. [57J. O ther groups adopted this method later 
[58, 59], Figure 3 shows the simplified flow chart o f  the Monte Carlo method for the sim
ulation of single-electron circuits. Summarizing the Monte Carlo method, it starts with all 
possible tunnel events, calculates their probabilities, and chooses one of the possible events 
randomly, weighted according to their probabilities.

Simulation procedure is as follows. Given a tunneling rate F for a tunneling event, the 
probability that a tunnel event out of state 0 happens at / and not earlier is given by

P0(t) = e - n (10)

Here, the tunneling events are considered as independent and exponentially distributed 
processes. Therefore, time duration to the tunneling events time is determined as [60, 61]

At =  In ( r )  (11)

where r is an evenly distributed random number from the interval 0 <  r <  1. A /is  calculated 
for each tunneling event starting from the present state. The tunneling event with the shortest 
A/ of all (shorter than the simulation time step tsU.v ) is chosen as the one that actually occurs.



3 3 0 Modeling of Single-Electron Transistors for Efficient Circuit Simulation aid Design

V,
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Figure 15. Equivalent circuit of the SET in Fig. 13 for two-state approxim ation of the full-analytical modeling [50]. 
R eprin ted  with perm ission from 150), H. Inokawa et al.. l l . l . l .  Trans. Electron U nices  50. 455 (2003). <D 2003, IEEE.

Then, the state of the circuit (node voltages and node charges) is updated. Consequently, 
the free energy changes too, and one has to calculate all possible tunneling rates a>ain. This 
procedure is followed repeatedly, which is performed many times to simulate the transport 
of electrons through the network.

SIJBCKT ASI-; I 12 3 4
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+Cd=2E-IX : Capacitance of junction 2 (dm in)
+Rs=2H6 . Resistance of junction I (source)
+Rd=2E6 : Resistance of junction 2 (drain)
+Cg=8H-IX : Capacitance of gate
+Ch=() : Capacitance of hack-gate
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+TSF.T=4.2 . Temperature
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ENDS ASET

Figure 16. Source cotie of SPICE-, subcireuits im plem ented io Sm artSpiee for two-state approxim atior o f the full- 
analytical m odeling [50. 731. R eprin ted  with perm ission from [50|. II Inokawa et al.. I EEL. Trans, Lie cron Devices
50. 455 (2003). <D 2003. IEEE.
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V g s M

Figure 17. characteristics o f asym m etric SETs calculated  by tw o-state approxim ation of the full-analviical
m odeling (line) and the reference sim ulator (symbols) for R j /R ,  o f 1 M il/1 9  MU (open diam onds) and 
MH, 1 M il (open circles). O th er param eters are I \ix =  2b.7 niV, C\, — C\ = C\ — 1 aK =  0. and T  = IN.6 K. 
R eprinted with perm ission from |50 |. H. Inokawa el al.. IE E E  Trans. Electron Devices 50. 455 (2003). 4'.' 2003. IIZf£H.

3.2. Master Equation Method
Monte Carlo method becomes impractical for the study of rare tunnel events (co-tunneling) 
taking place against the background of much more frequent tunnel events operation (single
electron tunneling) of the system, because their events typically differ by several orders of 
magnitude, making the sampling time extremely long in the Monte Carlo method. In order 
to analyze rare events, the master equation m ethod for the simulation of single-electron 
circuits was proposed and implemented by Pothier et al. [62], Jensen and Martinis [63], 
Fonseca [39, 64], and others [40, 43].

The single-electron tunneling based on the “orthodox” theory was derived from first-order 
perturbation theory [15-17]. However, in the Coulomb blockade regime, where the first- 
order tunnel rate is very low, or at zero tem perature even zero, higher order processes may 
become important. The co-tunneling is the quantum  tunneling phenom ena through multiple 
tunnel junctions at a time. The co-tunneling effect is a quantum mechanical effect that 
allows electrons to tunnel via an intermediate virtual state, where normal tunneling would 
be impossible or  very unlikely due to missing thermal energy. For finite temperature, the

vlh (mv)
-S O  -40  I) 40  SO

N orm alized  Vds

Figure 18. C oulom b staircase ( / , - !  characteristics) o f an asym m etric SET calculated by two-state approxim ation 
o f the full-analytical m odeling (lines) and the reference sim ulator (symbols) for \ =  0 (open diam onds) and 

=  c/1C\ (=  St). 1 mV) (open circles). O th e r param eters are  R tl =  1 M U. R s =  19 M il. C\, — 0.1 aH ( \  — 1.9 aF. 
C,. =  I aF. ( — 0. and 7 — IS.h k . R eprin ted  with perm ission from [50). H. Inokawa et al.. IJJ.F. Trans. Electron
Devices 50. -155 (2003). O  2003. IEEE.
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Figure 19. Equivalent circuit o f the SET to the left of Fig. 13, based on the m ultistatc (11 states) approximation 
of the full-analytical SET model [5 l|. R eprinted with perm ission from (51). G. Licntschnig et a l..Jp/i. j Appl. Phys. 
42. 6467 (2003). 0  2003. Institute of Pure and Applied Physics.

rate of an N th-order “ inelastic” co-tunneling process is given by the following oppression 
[65, 66]

r<A "  7T ( n  j  I  'S”( ■ ■ • ■ ) S  ^A/; v f  £  0J j  f l  11 -  / K ) . ) d o i (12)

where A f  v =  E N — E{) is the change in the electrostatic energy during co-tunnding from 
the initial state 0 to the final state N , /  is Fermi function, 8 is the Dirac delta fun:tion, and 
the factor of tunneling matrix element .S’ is given by

•s' k ........." 2. v ) =  e  n  7  ( i3 )
perm {A,  k v } A - l

where each permutation of the tunneling configuration perm gives rise to a
tunneling sequence with the intermediate energies s k given by [65]

e, =  A £* +  £> ,■  (14)
/•- I

where AE k = Ek — E{) is the change in the electrostatic energy during co-tunnding from 
initial state 0 to intermediate slate A\ and (olk_ x +  co2k is the energy of one of the /celectron- 
hole exitations created between states 0 and k. A different mechanism, so callec “elastic” 
co-tunneling [67], is also possible, but its rate is negligibly low in metallic structure [65].

Denoting a state with a particular charge configuration as P, the correspondiig master 
equation is given bv the following either scalar o r matrix form [15].

d P  _  dV
7/7 -  v r  /> V |  /> or Z -  =  rp (15)

where P, is the occupation probability of state /. ( F)<; =  F„ is the sum of transition rate 
from j  state to / state, and (F ).; — --1^,1', ,. The stationary case of Eq. (15). TF =  0, is a 
system of linear equations that may be solved by a multitude of numerical a lgorithm [68]. In 
the transient case, which is a system of ordinary linear first-order homogeneous dfferential 
equations, if the simulation time step \ t  is small enough on the scale on which th; external
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voltages vary, the rate matrix to he constant in each of these intervals may he assumed so 
that the solution of the master equation can he immediately given hy [65]

P(/ +  A/) =  ex p (T A /)P (0  (16)

where the exponential of the rate matrix is defined hy the corresponding series expansion 
for a scalar argument. The Fade approximation [68] is used to calculate the matrix exp(l'A/) 
[37, 39, 63, 64]. This approximation gives an absolute error for exp(A) less than 10 10 for
||A|| < I. For A/, a value less than the inverse of the maximum rate occurring in the rate
matrix is used.

In principle, the num ber of charge states in a single-electron circuit is infinite because it 
takes into account all possible charge states resulting from both classical and co-tunneling 
transitions in some range of the involved parameters. Handling of all possible states and 
transitions between them is impossible, and a large number of charge states have very low 
possibilities P  (below a certain threshold plh). To solve this problem, charge states having 
probabilities below are ignored [39].

The current through an external electrode n consists of the sum of two parts where the 
first term is the current due to tunneling through the junctions connected directly to the

.Sl'BCKT SF I 12 3 4 PA RAMS: : source drain gate back-gate
+ C s=lE- l8 : Capacitance of junction 1
+C’d= 1 IMS : Capacitance of junction 2
+Rs=IP5 : Resistance ol junction 1
+Rd=IK5 ; Resistance of junction 2
+Cg=1F IS ; Capacitance of gate 1
+Cb=0 : Capacitance of gate 2
+C()=0 : Self Capacitance of the island
+Q()=() : Offset charge in units of e
+TF.MP=4.2 : Temperature

.PARAM PI=3. 1415926535X97932 : Pi constant

.PAR AM E= 1.602 17733 K - 1 : HI eel run ic charge

.PARAM KB= 1.380658K-23 : Boli/mann's constant

.PARAM CSUM=| Cs+Cd+Cg+Cb+CO} ; The total capacitance of the SET

.PARAM T= {T F M P*C S U M *5.37 85467 F14 1 : Normalized temperature 5.37854671-14 = kB/eA2

.PARAM RN I = | Rs/(Rs+Rd)| ; Normalized resistance of junction I

.PARAM RN2=| Rd/(Rs+Rd)J : Normali/ed resistance of junction 2

FUNC Q (v|.\2.v3.v4t ( (Cg*v3+Cb! v4+Cs*v I+Cd*v2)/E+Q0} : Definition of a charge lenn in units ofe 
.Fl'NC VNlvi | CSUM*v/K ) : The normalized voltage
.FUNC GAMMA(u) j lF(T==0.IF(u<0.-u.0UF(u==-0.T.u/(F.XP(u/T)-l)))} ; The rate function 
.FUNC ROl. ND(.\) ( x-IF(eos(PI*\)>0.arcsin(sin(PI*\))/PI.-arcsin(sin(PI!i'N))/F, l) | : The round!) function
.FUNC N  0PTtvl.v2.v3.v4) { ROlJND(-Q(vT.v2.v3.v4)+(CSUM/E)*(\ I•RN2+v2:S-RNI)) } : The most probable charge on the island in 
units ofe

the pates |or lhe j-our umne| evcnts 
.FUNC RILin.v I.v2.v3.v4) |GAMMA(0.5 - n Q(v I.v2.v3.v4) + VNtvl )>/RN I }
.FUNC RI Rm.v I.v2.v3.v4) | GAMMA(0.5 + n + Q( v I .v2.v3.v4) - VNtvl ))/RNI |
FUNC R2Lm.v I,v2.v3.\4) JGAMMAtO.5 + n + Q(v I.v2.v3.v4> - VNiv2))/RN2|
FUNC R2Rm.\ I.v2.v3.v4) |GAMMA{0.5 - n Q(vI.\2.v3.v4) + VN(\2))/RN2|
determine the relative probabilities, charge state N_OPT is initially assumed to have a relative probability equal to one 

.FUNC PN„ 1 (n.v I,\2.v3,v4) {(RILln.vI.\2.v3.v4)+R2R(n.v 1 .\2.v3.v4))/<R1 Rtn-1.vl.v2.\3.v4)+R2L(n-l.vI.\2.v3.v4))j 

.Fl'NC PN_2in.v|.\2.v3.v4j j PN'_l(n.vl.v2.v3.v4)*
-HR1 L(n-l.v l.v2.v3.\4'n-R2R(n-l.\T.v2.v3.v4))/(RlR(n-2.vl.v2.v3.v4)+R2l.(n-2.vI.\2.v3.v4))}

.FUNC PN_3(n.v I ,v2.v3.v4) { PN_2(n.\T.v2.v3.v4)#
-H RI Un-2.v I .v2.v3.v4)+R2R(n-2.v I ,\'2.v3.v4))/(R I R(n-3.v I .v2.v3.v4)+R2Un-3,v I .v2.v3.v4) >}

.FUNC PN_4tn.vl.v2.v3.v4) { PN_3tn.vl.v2.v3.v4)*
-h R 1 Lt n-3,v 1 .v2.v3.v4)+R2R(n-3.v 1 .v2.v3.v4))/(RI R( n-4.v 1 .v2.v 3.v4 )+R2L( n-4.v 1 .v2.v3.v4))|

.FUNC PN 5(n.\ I .v2,v3,v4) | PN_4(n.vLv2,v3.v4j*
-HRI l.(n-4.\ I .v2.v3.v4)+R2R(n-4.v I,v2.v3.v4))/(R I R(n~5.vT.v2.v3.v4)+R2L(n-5.vl,v2.v3.v4))}

.FUNC PN I (n.v 1 ,v2,v3.v4) {(R2Un.v I .\2.v3.v4)+R 1 R(n.v I .\ 2.v3.v4))/<R2Rtn+1 .v I .v2.v3.v4)+R I L(n+1 .v 1 .v2.v3.v4n}

.Fl'NC PN2tn.v!.v2.v3.v4) { PNKn.v i.v2.v3,v4)*
-HR2L(n+l.vT.v2.v3.v4)+RIR{n+l.v l.\2.v3.v4))/tR2Rtn+2.vl.v2,v3.v4»+RILin+2.vl.v2.v3.v4i)|

.FUNC PN3tn.vl.v2.v3.v4) { PN2(n.v|.v2,v3.v4)*
-HR2L<n+2.v I .v2.\3.v4)+R I R(n+2.v I .v2.v3.v4))/< R2R|n+3.\ I.v2.v3.v4>+RI L(n+3.v 1 .v2.v3.\4))}

.FUNC PN4(n.v|.v2.v3.v4) | PN3tn.\ I.v2.v3.v4)*
M R2L(n+3.v! ,v2.v3.v4)+RI R(n+3.v!.v2.v3.v4))/tR2R(n+4.v I .\2.v3.v4)+R IUn+4.vI .v2.v3.v4)))

.FUNC PN5tn,\ I.\2.v3.v4) { PN4(n.v I.v2.v3,v4)t
-hR2Lln+4.\ I .\ 2.v3.v4i+R I R(n+4.v 1 .v2.v3.s4))/i R2Rtn+5.v I ,\ 2.\ 3.v4)+R 1 Lfn+5.v I .v2.v3.\4 )>}

Figure 20. Source code of SP1CF. suhcircuits im plem ented to Sm artSpice for m ultistale (11 states) approxim ation 
o f the full-analytical m odeling |51 |. R eprin ted  with perm ission from [51|, G. Lientschnig et al.. Jpn. J. Appl. Phys.
42. 64o7 (2003). <€> 2003. Institute t)f Pure and A pplied Physics.
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.FUNC' PSI NU1 1 .v I .\ 2.v3.v4) { P\_5( n.\ I .v2.\3.v4 )+PN_4t n.v I .\ 2.v3.v4 >+PN_3(n.v I .v2.v3.\4)+PN_2(n.v 1 ,v2.0.v4) 
++PNJtn.v I.v2. 3.v4)+ l + PN lin.\ I.v2.\ 3.v4)+P\2(n.v I.v2,v3.v4)+PN3(n.vI.v2.v3.v4)
++PN4(n.\ i.\ 2.\ \ \ 4 h-PN5iii.v |.\2.v3.v4i }

S A * * * * :!=  *  LI I il 1C U lC  .U IT C M  IV oH ) M UIIVC lO  d l ' i l i l l  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

.FI'NT Cl Rm.v I .\2 .\3 .\4 ) | PN Jmii.v I .v2.v3.v4);i:tR I R(n-5.v!.v2.v3.v4l-RIL(no.vl.v2.v3.v4))
4+PN_4(n.v 1 .\ 2.n vv4 i :(R 1 Rtn-4.v I .v2.\3.v4i-R ll.(n-4.v 1 .v2.v3.v4))
4+PN_3(ii.\ 1 .v2.\3.v4) -(R 1 R(n-3.\ I .v 2.v 3.v4 j-R 1 Lin-3.v I .v2.v3.v4))
+fPN_.2in.\ I .v2.\ Vv 4 ):i:( R ) Rf n-2.\ I .v2.\ 3.v4)-R I 1.1n-2.v I .v2.v3.v4))
4+PN_ I (n.v I .v2.v3.v4)*( RI R(n-I .\ 1 .v2.v3.v4)-R 11 .In-1 .v I .v2.v3.v4))
+H R 1 R| n.v I ,\ 2.v 3.v4)-R I L( n.v I .\ 2.\ 3.v4))
++PNI (n.v I .v2.\.'\v4i*{R I Rtn+1 ,\ I .v 2.v3.v4)-R I l.(n+1 .v I .v2.v3.\4))
4+PN2(n.v I .v2.v.\\4)*(Rl R(n+2.\ I .v2.v3.v4»-R I l.(n+2.v I.\ 2.v3.v4))
-H-PN3(n.v I.\2.\."-.v4)*(RIR(n+3.v I.v2.v3.\4i-RIl.(n+3.vI.v2.v3.\4))
-H-PN4In.v I 2.v .-.v4)*<R 1 Rin+4.\ I .v 2.v 3.v4i-R 11.(n+4.v I .v2.v3.v4))
++PN5ln.\ I ,v2.\.: .v4)*(R I Rin+5.\ l.v2.v3.v4i-RII.(n+5.vl.v2.v3.v4>) |

I'l'NC CLRRFN I in.v I.v2.v3.\4 { I ■ *C I ’Ri n. v I. v 2. v3. v 4 1/< C'S I. ’ M :pPSU M( n.v I. v2.v 3.\ 4) :iit RI + R 2) > }
*  ;! :*  *  i: ri: *  :|: *  *  *  *  *  *  *  *  *  *  h c ; , | c-U la tC  U lC  K  L l l l d  Y <>1 l i l i l C  *  *  *  *  *  *  *  * *  * *  '!i *  *  *  *  *  *  *  *  *  *  *  '

,F l:NC VOLTm.vI.v2.v3.v4) | PS 5(n.vl.v2.v3.v4ri!(n-.4>+Q(v I.v2.v3.v4>)
-h-PN_4(ii.v I.v2..3.v4»-:(n-4+Q<v I.v2.v3.\4n 
-H-PN_3(n.v 1 .v 2. 3.v4i m-3+(,)(v I.v2.\3.v4n 
■++PN ,2(ii.v !.v2.'.3.v4iS:in-2+Q(v I.v2.v3.v4n 
-t+PN_ I in.v i.\ 2/-3.v4 i:':i n-l +Q< v I .v 2.v3.v 4))
-h-ii+Q( v 1 .v2.v3.'.4)
-h-PN I (n.v i .v 2.v3.v4)*(n+1 +Qi \ I .v2.v3.v4)»
++PN2(n.v I.v2.\.;.v4 ):;iii+2+Q(\ l.v 2.v3.v4n 
*+PN3(n.v l.v2.v.; .v4)*in+3+Q(v I.v2.v3.v4>>
+»-PN4(n.\ I .v 2.v.;.v4)*(n+4+Q(v 1 .v 2.\ 3 .\4n  
++PN5in.v l.v2.v3.\4)*(n+5+Q(v I.v2.v3.v4u }

.1 IN C  VOl .TAG lit n.v Lv2.v3.v4. { (K/CSl'M r  VOI T< n.v l.v2.v 3.v4 i/PSI 'Mdi.v l.v2.v 3,v4) |
1.1 5 0 V A ll!K=(VOi;rAf i|-:(N . ()P1(Vd i.Vi 2).V(3 k\ '( 4 i).V( I ).V( 2 >.V(3 ).V (4n} : Voltage of the island
(.11 I 2 VAI..UK= {C t’RRENTlN. OPT( Vi I ).V(2 ).V(3 ).Vi4)).V( I ).V(2).V{3).V(4)i} : Current from source tcdran
CTI I 5 (Cs)
CT2 2 5 | ( \i |
CC.A I I I 3 5 {Cl-|
C C l A l l : 2 4 5 {Ch}
IlNDS SI I

Figure 20. C ontinued.

electrode, while the second term is the polarization-induced current (displacement current) 
due to tunneling through other junctions and the direct influence of voltage chaiges. The 
first term is defined simply by [39. 69]

r  AA.

ii
i. i. I k

where V^k is the rate of transition rate from i state to /, which leads to a transfer of charge 
e \ k n into external electrode n.

The induced part of the current (displacement current) through the external ebctrode n 
can be calculated as [39, 43. 70]

/ ; ; „ '( , )  __ dQ^ ( t )  ( 1 8 )

where the induced charge Ql' f  is given bv [39]

c r ' ( / )  =  E ^ ( o r ...v m„u)  (19)
/. m

Here the summation is over all states, all capacitances C,nn connected to external electrode 
//. and Vmn are the voltages across the capacitances

3.3. Comparison Between Monte Carlo Method and 
Master Equation Method

Excellent dynamic and transient characteristics of single-electron circuits are cha ined  by 
using the Monte Carlo method and the master equation method because in the M(nte Carlo
method, electron tunnelinu between islands is simulated in a verv direct manner, aid in the
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Figure 21. C om parison of the single-electron transistor sim ulations perform ed with m ultislate ( I I  states) approx
imation o f the full-analytical m odeling (black lines) with the ones perform ed with a conventional M onte Carlo 
sim ulation program  (gray lines). In all three sim ulations, the param eters used were: — 0 V, C , =  C \ =  O, =  I aF,
Ch — 0, R t = /\\ =  100 k lh  and T  =  4.2 K. (a) The current through the SET transistor is plotted as a function of 
the bias voltage for six gale voltages, R tl =  /?s =  100 k il  and 7 =  4.2 K. (b) T he current through the SET transistor 
is plotted against the gate voltage for bias voltages I ',, =  5 mV to 150 rnV in steps of 5 mV, R it — R s — 100 k ll, 
and 7 -  4.2 K. (c) C urrent-voliagc characteristics arc plo tted  for th ree  different tem peratures. I 0 =  0 V. R s — 
100 k il. and R it = I M il. R eprinted with perm ission from |5 I |.  G . l.ientschnig et al.. Jpn. ./. Appl. Rhys. 42, 6467 
(2003). <0 2003. Institute of Pure and A pplied Physics.

master equation method, the time-dependent master equation is directly solved. There is one 
major disadvantage of the Monte Carlo method, in cases when very rare tunneling events 
of some type take place against the background of much more frequent events of another 
kind, the Monte Carlo method becomes impractical because of the demand for very long 
simulation time, but the master equation m ethod can include the code to calculate rare errors 
due to co-tunneling. There is one major disadvantage of the master equation method. In the 
master equation method, the number of states that have to be considered becomes often very 
large. Consequently, the matrix operations involved in calculating the exponential operator 
are time consuming and the approximations do not converge quickly. Numerical instabilities 
can easily appear. The master equation m ethod needs to include more than relevant states 
to correctly simulate the circuits, but the M onte Carlo method is not required to find the 
relevant states before starting the simulation. To overcome those problems of the Monte 
Carlo m ethod and the master equation, a new7 algorithm that combines the Monte Carlo 
method and the master equation is developed, which is explained in the next subsection.

3.4. Method Combined with Monte Carlo and Master Equation
Although the master equation method gives theoretically accurate results, it has many other 
impracticalities that limit its accuracy and usability. The starting point of the master equation 
is the set of all relevant states that a circuit will occupy during operation. In order to complete 
correctly the simulation, many states that would be relevant have to be included, which 
results in extremely long simulation times and sometimes bad numerical stability.
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Figure 22. Simplified flow chart to calculate the SET drain  currents for quasi-analytical m odeling. Reprinted with 
permission from (47], S. M ahapatra et al., I El: I. Electron. Device Lett. 23. 366 (2002). (0 2002. IF.EE.

To overcome this problem, SIMON [37] combines the advantages of the Monte Carlo 
method and the master equation. All possible states are divided into two subspaces, the fre
quent state space and the rare state space as shown in Fig. 4 [37|. The Monte Caito method 
is used to simulate only the frequent state space, which gives the occupation probibilities P, 
of frequent states. The occupation probability P, is calculated as the ratio of tine T{ spent 
in state / to the total simulation time A and is given by [37]

Figure 23. Drain u in e m -g a te  voltage /.. - I c h a r a c te r i s t i c s  and the tran sco n d u aan ee  ffi\ ', , - 1 ciaractcristics 
ol the single and double-gate SET calculated by quasi--analytical m odeling and the reference simulator at various 
I ',  . R eprinted with perm ission from |47j. S. M ahapatra cl al.. I E I . E  E l cciron. Device Leu. 23. 366 (2:02). © 2002. 
IEEE.
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IV)

Figure 24. Ills- V th characteristics of SE Ts calculated  by the M onte C arlo  sim ulator SIM ON (solid lines), the m acro
m odeling (open  squares), the scm inum crical m odeling (tilled circles), and the full-analytical m odeling (open trian
gles) at the DC analysis ( f  0  =  0 V, C\, =  C\ -  C \ ~  1 aF. C,. =  0. Rtl = R, =  10 M 12. and T = 30 K).

w ith

(21 )

Ins tead  o f  w a it in g  fo r  the  M o n te  C a r lo  s im u la to r  to  step in to  the  ra re  state space, w h ich  
w o u ld  re su lt in  im p ra c tic a lly  long  s im u la t io n  tim es, we d ire c tly  ca lcu la te  the  c o n tr ib u t io n  o f 
events le a d in g  to  ra re  states by s te p p in g  th ro u g h  the event tree  s ta r tin g  at fre q u e n t states 
as show n in  F ig. 4. T h e  essentia l a ssu m p tio n  is th a t the tim e  spen t in the ra re  state /, 
Tj.nur ^  ^  because the ra re  states cause o n ly  a sm a ll p e r tu rb a tio n  to  the fre q u e n t state 
p ro b a b ilitie s . H e re , ralv is g iven by by [37 ]

T  =i .  rare (22)

w here  T,[il is the  n u m b e r o f  tim es th a t the  ra re  state j  w o u ld  be on  average v is ite d  fro m  
state is the ex it ra te  o f  s ta te  j ,  and thus 1 /'ZkrijYkl is the  average tim e  spent in state
j  fo r  one v is it. T im e  averages are used fo r  the d ire c t c a lc u la tio n . A c tu a lly , the d u ra tio n s

V r c l  VI

Figure 25. / — I c h a r a c te r i s t i c s  of S I-Is  calculated by the M onte C arlo sim ulator SIM ON (solid lines), the macro- 
m odeling (open  squares), the scm inum crical m odeling  (tilled circles), and the full-analytical m odeling (open trian
gles) at the IX analysis w hen / =  30 k  and T — 100 K. ( I — 20.7 m V  C., = ( \ = C =  1 aF. R t, =  R s = 10 M il. 
and ( =  0).
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are d is tr ib u te d  w ith  a Poisson d is tr ib u tio n . H ow ever, the  d ire c tly  ca lcu la ted  rare state space 
is o n ly  a sm all p e r tu rb a tio n  to  the fre q u e n t state space, w h ich  is ca lcu la ted  w ith  a M o n te  
C a rlo  m e thod  w he re  the  Poisson d is tr ib u tio n  o f  the tu n n e l d u ra tio n s  is fu lly  in co rp o ra te d . 
T h e rfo re , the o ccu p a tio n  p ro b a b ility  fo r  a ra re  state is g iven by [37].

T  Y  ( T V  )p _  l.  run- __  Z — / V * / 1 / / /

I . rn re  ^  ^  p  /
1 1 1 \ 2^k 1 jk

T h e  a lg o r ith m  fo llo w s  all possib le events s ta rtin g  at fre q u e n t states. I f  a fre q u e n t state is 
e n co u n te re d , the  a lg o r ith m  te rm in a te s  tha t b ranch , because the  state p ro b a b ility  is a lready 
know n . O nce the  p ro b a b ility  o f  a state is lo w e r than a p re d e fin e d  l im it  no fu r th e r  descent 
in to  fo llo w in g  branches fro m  th is  state is m ade as show n in F ig . 4.

4 . F E A T U R E S  O F  S E T  C IR C U IT S  F O R  T H E  S P IC E  A P P L IC A T IO N

In  the case o f  the c irc u its  w ith  SETs, it is kn o w n  tha t the second assum ption  in S P IC E  m ay 
n o t be va lid . T he  te rm in a l cu rre n ts  o f  the S E T  are d e te rm in e d  fro m  the average charge sta te  
o f  the C o u lo m b  is land o f  the S E T  W h e n  several SETs are connec ted , the charge state o f  the  
C o u lo m b  is land o f  one S E T  is s tro n g ly  a ffe c te d  by the  charge states o f  n e ig hb o rin g  islands o f  
o th e r  SETs. T h e re fo re , the  te rm in a l cu rre n ts  o f  the S E T  in the  c irc u it may be d iffe re n t fro m  
those o f  the iso la ted  S E T  even at the same bias c o n d itio n . T h e  fo llo w in g  num erica l exam ple 
shows such in te ra c tio n  am ong n e ig h b o rin g  C o u lo m b  islands m ore  in tu itiv e ly . F ig u re  5 shows 
a s in g le -e le c tro n  in v e rte r (SE1), cons is ting  o f  a series co m b in a tio n  o f  tw o  SETs. T h e re  are 
th re e  C o u lo m b  is lands ( tw o  fro m  the SETs and one fro m  the  in te rc o n n e c tio n ) in the c irc u it, 
and the  charge states o f  these th ree  C o u lo m b  islands are co rre la te d . T he  fille d  squares and 
open squares in F ig . 6 show the ca lcu la ted  vo ltage  tra n s fe r ch a rac te ris tics  and c u rre n t o f  the 
lo w e r S E T  o f  the in v e rte r , respective ly . T h e  open  c irc les  are the cu rre n ts  o f  an iso la ted  S E T  
w hen the te rm in a ls  are biased at the same vo ltages as the lo w e r S E T  in the in ve rte r. Even 
at the  same bias c o n d it io n , the te rm in a l c u rre n t o f  the iso la ted  S E T  is expected to  be to ta lly  
d if fe re n t fro m  th a t o f  the S E T  in the c irc u it.

O n  the o th e r hand, w hen  the size o f  the in te rc o n n e c tio n  is la rge enough, the  in te rco n n e c 
tio n  w o u ld  serve as a re se rvo ir fo r  n e ig h b o rin g  SETs ra th e r than  a C o u lo m b  island. In  tha t 
case, the  C o u lo m b  is lands o f  S E 'Is  becam e iso la ted  by the in te rc o n n e c tio n , and the in te ra c 
tio n  am ong  n e ig h b o rin g  SETs and in te rco n n e c tio n s  m ay no t be s ig n ifica n t such tha t a pp ly ing  
the co n ve n tio n a l c irc u it s im u la tio n  techn iques to  the s im u la tio n  o f  S E T  c ircu its  is possible. 
A c c o rd in g ly , s im u la tio n  o f  h yb rid  c irc u its  cons is ting  o f  S E T  c irc u its  and con ve n tio n a l c ircu its  
is possib le .

5 . R E G IM E  O F  T H E  C O M P A C T  M O D E L IN G

In  th is  section , it is illu s tra te d  th a t the I - V  ch a rac te ris tics  o f  SETs can be ca lcu la ted  
in d e p e n d e n tly  w ith  one a n o th e r w hen  the sizes o f  the  in te rco n n e c tio n s  are large enough. 
F u rth e rm o re , us ing  the case o f  the s ing le  e le c tro n  in v e rte r, the range o f  th is  conven tiona l 
c irc u it s im u la tio n  reg im e is sys tem atica lly  id e n tif ie d .

5 .1 . D C  R eg im e

F irst o f  a ll, the same c a lc u la tio n  as th a t o f  F ig. 6 has been repea ted  w ith  a large in te rconnec t 
capac itance , and the resu lts  are show n in F ig. 7. It  can be c le a rly  seen th a t the  te rm in a l 
c u rre n t o f  the lo w e r tra n s is to r (open  sym bols) docs n o t change w h e th e r the S E T  is in  the 
c irc u it o r  is iso la ted, o n ly  i f  the te rm in a l b ias c o n d itio n s  are the  same. In  th is  case, the trans
fe r ch a ra c te ris tic  o f  the  in v e r te r  can be ca lcu la ted  by the I - V  curves ob ta ined  fro m  the 
iso la ted  SETs and by a p p ly in g  the usual K ir c h h o f f  c irc u it laws. T h e  t ille d  c irc les  in  F ig. 4 
are the  tra n s fe r ch a ra c te ris tic  o b ta in e d  fro m  such m ethods. T h e y  are in good agreem ent 
w ith  the  resu lts re so rtin g  to  the o rth o d o x  th e o ry  ( f il le d  squares) [3 6 -3 8 ], co n s id e rin g  the 
in te rco n n e c tio n  as a C o u lo m b  island.

T h e  reg im e o f  the co m p a c t m o d e lin g  can be id e n tif ie d  by s tudy ing  the discrepancies 
be tw een the results o f  the  above tw o  m e thods as a fu n c tio n  o f  the  in te rco n n e c t capacitance,
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( ' / .  T he  s im u la tio n  pa ram ete rs  are the bias vo ltage  \ 'n — 0.03 V, the tu n n e lin g  resistance 
R i — l( ) ( )A / ih  the ju n c tio n  tu n n e l ca p a c ito r C\ — C: — C , — C 4 =  1.6 aF. and the gate n o r
m al ca p a c ito r C , =  3.2 aF7. F igu res  8a and 8b su m m a rize  the d iffe re n c e  in the o u tp u t vo ltage  

sw ing, I . and the average o u tp u t level. K/m . ° f  tra n s fe r ch a rac te ris tics  as a fu n c tio n  
o f  C , , respective ly . I t  is c le a rly  seen tha t the co n ve n tio n a l c irc u it law  type m e thod  w ith  the 
l -V  s o f  iso la ted  SETs w o rks  w e ll w hen CL > 6 .25C ;, w here  C , is the va lue  o f a typ ica l 
j  u nc tion  ca paci t a n ce .

The  above c r ite r io n  w ill be sa tis fied  in m ost cases m a in ly  because the in te rco n n e c t is 
connected  to  several gate capacitances o f  the nex t stage. F u rth e rm o re , the charge states o f  
C o u lo m b  islands are in te ra c tin g  m a in ly  w ith  the  nearest ne ighbors , and the reg im e o f  C, 
o b ta in e d  fro m  the in v e rte r can be gene ra lly  used in o th e r types o f  c ircu its .

5.2 . T ran s ien t R eg im e

Tw o types o f tra n s ie n t s im u la tio n s  are p e rfo rm e d  fo r  the  S E I. T h e  firs t type o f  ca lcu la tio n  
is p e rfo rm e d  by so lv in g  the tim e -d e p e n d e n t m as te r e q u a tio n  (T M E )  co n s id e rin g  the  o ve ra ll 
p ro b a b ility  d is tr ib u tio n  o f  th re e  C o u lo m b  is lands (tw o  islands o f  the lo w e r and the up p e r 
S E T  and the in te rc o n n e c tio n  is la n d ) in the c irc u it ,  w h ich  is used to  S E N E C A  [39]. S o lv ing  
tw o  tim e -d e p en d e n t m aster e q u a tio n s  o f  the lo w e r and the u p p e r SETs in d e pe n d e n tly  and 
a p p ly in g  K irc h h o ffs  law  a l the in te rc o n n e c tio n  p e rfo rm s  ihe  second type o f  ca lcu la tio n , w h ich  
is used to  S P IC E . F igu re  9 show s the m a x im u m  d iffe re n c e  be tw een the o u tp u t vo ltages 
Vom o b ta in e d  fro m  tw o  types o f  ca lcu la tio n s  w hen  the in p u t vo ltage  VUI o f  the in v e rte r is 
swept fro m  0 to  0.03 V  in th re e  d iffe re n t t ,s. T h e  d iffe re n c e  be tw een the tw o resu lts  is 
n e g lig ib le  w hen the  in te rc o n n e c tio n  capacitance C, is la rg e r than  64 aF  and the d e v ia tio n  
increases ra p id ly  w ith  the decrease o f  C t . T h is  resu lt suggests th a t, as in the  steady-sta te  case, 
each S E T  can be tre a te d  in d e p e n d e n tly  even in  the  tra n s ie n t case w hen the in te rco n n e c tio n  
capacitance is la rge enough. H o w e ve r, the va lu e  o f  C L fo r  the  in d e pe n d e n t tre a tm e n t o f  
SETs is a p p ro x im a te ly  10 tim es la rg e r than  th a t o f  the steady-sta te  case [42 ]. T h is  w ill be 
m ore  c le a rly  seen in  the fo llo w in g  sections w h e re  the com pact m ode ls  are a p p lie d  fo r  m ore  
co m p 1 i e a t e d c i re u i t s.

6 . C O M P A C T  M O D E L IN G  O F  T H E  
S IN G L E -E L E C T R O N  T R A N S IS T O R S

F o r the a p p lica tio n  o f  fu l l  co n ve n tio n a l s im u la t io n  techn iques to  s in g le -e lec tron  c ircu its , a 
com pac t m o d e lin g  is essentia l fo r  the l - V  ch a ra c te ris tics  o f  iso la ted  SETs ra th e r than the 
l - V  cha rac te ris tics  o b ta in e d  fro m  the  M o n te  C a r lo  m e th o d . In  th is  section , the com pact 
m o d e lin g  fo r  SETs, w h ich  is fu lly  c o m p a tib le  to  S P IC E , is in tro d u c e d .

6 .1 . M a c ro m o d e lin g

F igu re  10 shows the  S ET  e q u iv a le n t c irc u it and its m a c ro m o d e l code o f  an S E T  fo r  the 
M S P IC E  [71] s im u la tio n . S ym m e tric  fea tu res  o f  the d ra in -so u rce  c u rre n t-v o lta g e  ( / , /v- Vds) 
cha rac te ris tics  are in c o rp o ra te d  w ith  tw o  b ranches cons is ting  o f  co m b in a tio n s  o f  resistors, 
d iodes, and vo ltage  sources. T h e y  are d e n o te d  by R 2 /D 2 /V 2  and R 3 /D 3 /V 3 ,  respective ly . 
T h e  d ire c tio n s  o f  D2 and V 2  a re oppos ite  to  those o f  D 3  and  V3  to  have adequate  c u r
re n t flow  in b o th  p o s itive  and negative d ra in -so u rce  bias. T h e  ch a rg in g  energy, p e rio d ic a lly
chang ing  as a fu n c tio n  o f the gate bias, is in c lu d e d  in R 1, R 2, and  R 3 w here  the cosine o f
the gate bias is used. They are expressed as fo llo w s  [42]:

/? ,(J /( ; ) =  C R  1 +  CR2  c o s (C F l • t t  • Va +  C P I )  (24 -1 )

c n ^ M m K . )  i2A'2)

T he  param ete rs , CF1, CVp , C /2 , C PL C R L  and CR2  are used to  fit the c u rre n t-v o lta g e  
cha rac te ris tics  at va rious  gate biases. T he  ga te -sou rce  capac itance  Cys, the g a te -d ra in  capac
itance  Q j .  and the d ra in -sou rce  capac itance  C’ds in the  p roposed  S E T  e q u iva le n t c irc u it
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Table 2. Summary o f the differences betw een sim ulation results o f four types o f the com 
pact SET modeling and the M onte Carlo sim ulation results in the DC analysis [50].

Type

Low T
(< 0 .1  c 2ik nC \)

High T
(>  0.1 e2/ k lfCs )

Low Vf/, 
(<  e /C \,)

High V /v 
(>  e /C .,)

Low Vi/a High V Js 
(<  e./Cv.) (>  e/Cv,)

M aerom ode ling Large Large Small Small
Se m i n u m e r ical m ode ling No No No No
Full-analytical m odeling No Large Small Large

L a rg e , sm all, an d  n o  in T able 2 m o re  th an  10'V d e v ia tio n , from  I r r to  UK# d ev ia tio n , an d  below  
V i  d e v ia tio n , respectively .

arc  expressed as C \ C J C \ ,  CKCtl/ C \ ,  and C(/C s/C v ,  respective ly , based on the  p rin c ip le  o f  
charge conse rva tion . F igu re  11 shows the s im u la te d  / - V  cha racte ris tics  o f  an S E T  i t  va rious  
gate biases. T h e  so lid  lines are the  M o n te  C a r lo  ca lcu la tio n  resu lts and the o p e i sym bols 
are the  m a cro m o d e l ca lcu la tio n  resu lts. W ith  a p ro p e r cho ice o f  the param eters, C F 1 = 4 0 ,  
C V p  =  0 .02 , C l 2 -  0.2  x 10 \  C P I =  0, C R 1 =  300 x 106, and CR2  =  100 x 1 0 \  the 
m a c ro m o d e l ca lcu la tions  rep roduce  the M o n te  C a rlo  ca lcu la tions  reasonably well. Because 
the Itis- V tis cha rac te ris tics  o f  SETs s tro n g ly  depend  on 7 , the m acrom ode l param eters are 
the fu n c tio n s  o f  T.  F igu re  12 shows the cha rac te ris tics  o f  the S E T  in  Fig. 11 at
va rio u s  T s. A g a in , w ith  the  p ro p e r cho ice  o f  pa ram ete rs , the m acrom ode l ca lcu la tions can 
re p ro d uce  the  M o n te  C a rlo  resu lts  reasonab ly  w e ll. T h e  pa ra m e te r values fo r the  resu lts  o f  
F ig. 12 a rc  sum m arized  in  Table 1.

6 .2 . S e m in u m e ric a l M o d e lin g

T h e  e q u iv a le n t c irc u it o f  the  S E T  u n d e r the iso la ted  S E T  a p p ro x im a tio n  is constructed  using 
the sam e idea as the C M O S  e q u iva le n t c irc u it .  F ig u re  13 shows the schem atic d iagram  ( le ft 
f ig u re ) and the lin e a rize d  eq u iva le n t c irc u it m ode l ( r ig h t fig u re ) o f  the SET. T he  e lem ents 
in the  e q u iva le n t c irc u it are  g iven by [49].

" V

j k, =

J i »_

8 ,1s $><lini’ Suhnh

Sgniti Kgs &i>mb 

mSbind Sbm# Sb.s

K/v" ~ h

K s - K

K , h

gits Sdmfi StI mb

Sgs Sgmb 

Hbmrf Kbing Kbs

r
dV,s dVt,

r>K, dVh

dl,

L <>Ki, d V,.

(25)

l | j-ts I

Figure 26. The drain ( / . )  and the source current { / ) of an SET calculated h\ the M onte Carlo simuUtor SIM ON 
(solid lines), the m acrum odeling (squares), the .seminumericai m odeling (circles), and the full-analytical modeling 
l triangles) when I ' . . .  varies !ineari> Irom o  to 0.1 V in / ,  1 jxs (I . . .  -  2 f t . 7  m V .  ( \ ,  — ( \  -  ( " „  =  1 aF. C h =  0,
R .  =  V  =  10 MO and / =  30 K).
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Figure 27. The drain ( / , )  and the source curren t ( -  / J  o f an SE T  calculated by the  M onte C arlo  sim ulator SIM ON 
(solid lines), the m acrom odcling (squares), the sem inum crical m odeling (circles), and the full-analytical modeling 
(triangles) when 1'^ varies linearly from 0 to 0.1 V in /, =  1 ns ( l ’/s =  26.7 mV, ( \ t =  C\ = C\, =  I aF, Ch — 0.

=  7 \\ =  10 M U. and T  ^  30 K).

T h e  te rm in a l c u rre n t o f  the S E T  is consists o f  the  tu n n e lin g  c u rre n t across the tunne l 
ju n c tio n  and the d isp lacem en t c u rre n t. F o r exam ple , the d ra in  c u rre n t Iif is expressed as

w here  is the tu n n e lin g  c u rre n t across the d ra in  tu n n e l ju n c tio n , P j( tq) is the  in te rn a l
d isp lacem en t c u rre n t, and  / / d( / t/) is the  ex te rn a l d isp lacem en t c u rre n t. T h e  firs t te rm  is 
g iven by

H e re , c is the p o s itive  e le m e n ta ry  charge , n is an in te g e r th a t specifies the  n u m b e r o f 
e le m e n ta ry  charges added in  the C o u lo m b  is land, R d is the tu n n e lin g  resistance o f  the d ra in  
tu n n e l ju n c tio n , C\ — C (/ +  C , 4- C\ +  Ch is the to ta l capac itance  o f  the  C o u lo m b  island 
o f  the trans is to r, Vk(tq) is the A -te rm in a l vo ltage , is the vo ltage d ro p  betw een the
d ra in  and the C o u lo m b  is land, and AZT"(/?. t(j) is the e le c tro s ta tic  energy d iffe re n ce  when 
the  charge in  the  C o u lo m b  is land is changed  fro m  nc  to  (// -h l)c ' (a =  in c ) o r  to  (n — 1 )c 
(a  =  dee) due to  the tu n n e lin g  be tw een the  d ra in  and the C o u lo m b  is land. F in a lly , / (/) 
is the co rre sp o nd in g  tu n n e lin g  ra te .

T h e  te rm  ) is the p ro b a b ility  th a t the charge  in the C o u lo m b  is land in an S E T  
equa ls nc at tim e  / E ve ry  successive ite ra t io n  step requ ires  a new Pn(t )* as Pn(tlf) is a 
fu n c tio n  o f  the te rm in a l vo ltages. T h e  sa m p lin g  tim e  in te rva l t s( — / , — t ) is d isc re tized

(26)

(27)
n — x

w here
A Zi-;;(//. t„ ) (28)

a — me

A t ; ;  ( » . / „ ) (24)
a = dec

[ E ( - c kvk(>„)) + (Cv - W A t , ) ]
V N I U

(30)
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v . j v i

Figure 28. The voltage transfer characteristics o f an S1-.I calculated by the Monte C arlo  sim ulator SIM ON (solid 
lines), the m acrom odeling (open squares), the sem inum crical m odeling (filled circles), and the full-analytical m od
eling (open triangles) at the D C  analysis ( l \ ,  =  26.7 mV. C , =  ( \  I aK =  0, R if =  R  =  10 M IL and
'/ =  30 K).

w ith  the  in te rva l o f  /, and the  e v o lu tio n  o f  Pn(t(f) is ob ta ined  fro m  the tim e -dependen t 
m aste r equ a tio n  [15, 39, 43].

PJl„  +  ( V  +  I )A t) =  1 +  vA t)  + r „ . „ .  ,(?„ +  v A t ) A +  vAt)  

+  11 -  l '„ -  4  v \ t ) \ t  -  +  +  r A / ) ,  (31 )

L / ,« ( '. ,  +  i ,A / ) =  i
n

w here

+  i»A /) -  1 7  ( / / .  /„  +  i ’A / ) +  I t "  ( /1, /„ +  v M ) ,

r , +  i ’A / )  =  r f v ( / /. i,, + vA t)  + r ; /,r( / / ,  /,, -t- i> a /) . (32)

u =  0. I, 2 ................M ,  and M  =  ini (  Z l l )

V m  |V]

Figure 29. The voltage transfer characteristics of an SIT calculated by the M onte C arlo simulator SIM ON (solid 
lines), the m acrom odeling (open squares), the serninum enenl m odeling (lilted circlcM. and the full-analytical mod
eling (open triangles) ) al the D C  analysis (I ., 26.7 mV. C . _  ( --- C. -  I aF. C, — 0. R , — /< -  10 M O, and
T  =  100 K).
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t nsj

Figure 30. The transient response o f an SEI calculated  by the M onte C arlo sim ulator SIM O N  (solid lines), the 
m acrom odeling (open squares), the sem inum erical m odeling (tilled circles), and the full-analytical modeling (open 
triangles) when varies linearly from  0 to 0.04 V in /, =  0.1 ns ( F /s =  2b.7 mV, C\, =  C\ = C K = I a F  Ch =  0.
R , = R M IL and T  =  100 K).

In  the s im u la tio n , a th re sh o ld  p ro b a b ility  Plh is set so tha t o n ly  a f in ite  n u m b e r o f  p ro b a b il
ities are in c lu d e d  [39, 43]. T h e  second te rm  o f  Eq. (2 6 ) is the in te rn a l d isp lacem en t c u rre n t 
induced  fro m  the  p o te n tia l change o f  the  C o u lo m b  is land  by the  tu n n e lin g  across the d ra in  
and the source tu n n e l ju n c tio n  [70 ], and i t  is g iven by

= - ^ [ 1 7 ( 0  +  1 7 0 . , )  J (33)

T he  th ird  te rm  is the  ex te rn a l d isp lacem en t c u rre n t in d u ced  fro m  th e  change o f  the te rm in a l 
voltages. I t  is g iven  by

d K  ; ( '„ )/n o  = c,
O th e r te rm in a l c u rre n ts  are o b ta in e d  s im ila r ly .

cit

0.022

0.02

>

>

o.o iy -

o.ms

'*a

C, = lOaF C, = lOOaF

□  ■  : M acro-m odel i n s :

O  •  : SN -m w leling

A  A : F A -m odel ine

T= 100 K

100 120
t I ns |

(34)

Figure 31. The transient response o f an SEI calculated  by the M onte C arlo sim ulator SIM ON (solid lines), the 
m acrom odeling (open squares), the sem i-num erical m odeling (filled circles), and the full-analytical m odeling (open 
triangles) when F.., varies linearly from 0 to 0.04 V' in tr =  100 ns ( I \h — 26.7 mV, C\, =  ( \  =  C , =  1 a F  Ch =  0. 
R t =  R =  in M U . and 7 =  100 K).
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the type of circuits

Figure 32. The sim ulation times of several types of SE T  circuits in the transient sim ulation. T he .v-axis cenote.fi the 
complexity o f the circuit: I (single electron inverter). 2 (an SE-N O R  gate), 3 (two SE-N O R  gates), 4 (an S E -O R  
gate; three SE-N O R  gates).

F in a lly , the conduc tancc  te rm s are eva lua ted  fro m  the de riva tives  o f  the  te rm in a l c u rre n t. 
F o r exam ple ,

=  =  ci i r u , , )  _  q  dJ ± ± 9  ( 3 5 ^

u ' * v d s( /  „ ) &K h ( t„ ) c \  \  o y ,h ( /  „ )  a v lh U " ) )  <ivlh ( /  „y  ' j

Figure 33. Exam ples o f two-input SET logic gales wilh ihree term inal SETs. Schematics of (a i tw o-nput NO R 
|.*>N]. (h) two-input XOR |fiS|. and (c) two-input O R  gates 1741. R eprin ted  with perm ission from (5S|. C hen et 
al.. Appl. Pins. Lett. h<S. 1954 (19% ). € : iW ), Am erican Institute o f Physics. R eprinted with permission from  [74], 
I. Karaiyllidis cl a I.. Electron. Lett. 30. 407 (2000). 2U00. I EE.
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The firs t te rm  dl ',l,n is g iven by

w here

/>„(/ „) + [rr(/M„) - r , f  («,/„)]■!

^ r,1?(//, g  =  i 

^ ( g

, , g ,

1 +  T ^ “ , e x p

a£>. g
k uT

1 -  exp
a£;;k g

k u T

(36)

(37)
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^ ( g

^ ; ( g

^ ( g ’

' ^ ( g ’
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(38 )

^ , ( 0
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^ 7 ( g

I ,  l . v ( 0

Cv

+n.r
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i ( O

(39)

i a r« . , - ■ ( '« )

Lr,-..,(g ^</,(g r,.s-i(̂ ,) ^;,,(g.

,- l l   ̂ i.A + l (^j;) S=(I 

- I)

= />,(g

1 f ' r v+, t ( 0 i ( g

i a t i . i ( ?</) f iK i A t , , )  I ' . .  ( ' j  .

\ r  (
i -’ i V i . j g 1 ' ' I ; . ,  : ( ' J  \

I S ,  v i r , , - . ( g  w , i M „ )  )

i d P „ ( r (,)
/i <  o

= p  (t

P ^ d V ^ t , )

( _____i_____^ ________1 ____

i ^ , V i ; + i v( . ' ) w lh { t  ) r , . s+1( f ) f>vd, ( i  )

i < ' ^ , ( g

P u (t„ )  W M
ii >  o

(40)

!)['
+  -

d K i s O < , )  ’ < ^ , , ( 0c l s \ L q . W M
+ (41)

T h e  te rm  d I“m(t(i) /d V ds(t(l) o f  E q. (35 ) is o b ta in e d  s im ila r ly . A lso , the th ird  te rm  I e/ ( t tl) 
and dl^id{tq) ld V (ls(t ) o f  the  c a p a c ito r n e tw o rk  o f the  lin e a riz e d  e q u iva le n t c irc u it in  F ig. 13 
a rc  ca lcu la ted  by the  ite ra t iv e  co m p a n io n  m ode l o f  a c a p a c ito r w ith  the backw ard  E u le r 
a p p ro x im a tio n  [52 ]. T h e  c a p a c ito r n e tw o rk  o f  the  S E T  show n at the  schem atic  d iag ram  in 
F ig. 13 has changed fro m  th a t o f  the lin e a rize d  e q u iva le n t c irc u it  in  F ig. 13, based on  the 
p r in c ip le  o f  co n se rva tio n  o f  charge . The  capac itance  Cah o f  the lin e a rize d  eq u iva le n t c irc u it 
in  F ig. 13 is equa l to  CitCh/ C ^  w he re  Ctl is th e  capac itance  be tw een the  C o u lo m b  is land and 
the  te rm in a l a , and Ch is the  capacitance be tw een the  C o u lo m b  is land and the te rm in a l b o f  
the schem atic  d ia g ra m  in  F ig . 13. T h e  D C  e q u iv a le n t c irc u it  o f  an S E T  can a u to m a tica lly  be 
o b ta in e d  by e rasing  a ll the e lem en ts  except fo r  ./(/v, g (is, g (hllK, gdmh o f  the  lin e a rize d  e q u iva le n t
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c irc u it in F ig . 13. In  the  ca lcu la tio n  o f  the te rm in a l cu rre n t, the  in te rn a l and the  ex te rn a l 
d isp lacem ent c u rre n t d o  no t exist. T h e re fo re , /,, =  lh — 0 and ld =  =  — I[un =  —/ v.
T he  p ro b a b ility  Pn is o b ta in e d  fro m  the  steady-state m aste r e q u a tio n  (S M E ) [16, 40]. T h e  
sem inum erica l S E T  m ode l is im p le m e n te d  to  S m artSp ice  [72 ] as a use r-de fined  e lem ent.

F igu re  14a and 14b show the te rm in a l cu rre n ts  ld( t ), — / v( / ) .  /^ (z ) , and Ib(t)  o f  the  S E T  
in  F ig. 10 w hen ga te-source  vo ltage  VKS varies lin e a rly  fro m  0 to  0.1 V  in  50 ps, d ra in -sou rce  
vo ltage  Vds =  0.1 V, and backgate-source  vo ltage  Vhs — 0.075 V. T h e  p a ra m e te r t =  0.1 ps 
is used. A l l  te rm in a l cu rre n ts  ca lcu la ted  fro m  o u r tra n s ie n t m ode l (so lid  sym bols) a lm ost 
exactly  m atch  w ith  the  resu lts o b ta in e d  fro m  the d ire c t n u m e rica l so lu tio n  o f  the  m aste r 
e qu a tio n  (so lid  lin e ). I t  suggests th a t the in te g ra tio n  o f  the tra n s ie n t m ode l in to  the  S m a rt
Spice is p ro p e r ly  ach ieved. The  tra n s ie n t cu rre n ts  also show app re c ia b le  d iffe re n ce  fro m  D C  
c u rre n t (o p e n  sym bo ls), w h ich  suggests tha t the  tim e -d e p e n d e n t cha rg ing  o f  the  C o u lo m b  
is land and the  c o n tr ib u t io n  o f  the  d isp lacem en t c u rre n t are c o rre c tly  inc luded  in  the  tra n 
s ien t m ode l. Such c u rre n t com ponents  canno t be accoun ted  fo r  in the D C  m ode l. F in a lly , 
the  D C  cu rre n ts  ca lcu la ted  fro m  the D C  m ode l m atch  w ith  the D C  cu rre n ts  ca lcu la ted  fro m  
the M o n te  C a rlo  m e th o d . I t  is co n cu rre n t w ith  o u r m ode l, as the D C  m ode l is the  lim ite d  
case o f  the  tra n s ie n t m ode l. F igu re  14c shows f (, ( t)  w hen varies as shown in the inset. 
T he  tra n s ie n t m ode l p re d ic ts  th a t the hys te re tic  b e h a v io r is o r ig in a te d  fro m  the  sign change 
o f  the  d isp lacem en t c u rre n t acco rd ing  to  the sweep d ire c tio n  o f  the bias.
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Figure 34. Exam ples of two-input SET logic gates with four term inal SETs. Schem atics c f (a) an SE T  inverter, 
(b) two-input XOR. (c) two-input NA ND. am! (c!) two input N O R  gates. R eprinted with permission from [75], 
M. V  Jeng et al.. Jpn. J. Appl. Phys. 3b. 670b ( ! l)W7). i 1997. Institute of Pure and A pplied Physics.
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6 .3 . F u ll-A n a ly tic a l M o d e lin g

6.3.1. Two-State A pproxim ation
F ig u re  15 shows the  e qu iva len t c irc u it o f  the  S E T  to  the le ft o f  F ig. 13. based on the 
tw o-s ta te  a p p ro x im a tio n  o f the fu ll-a n a ly t ic a l S E T  m ode l. F ig u re  16 shows the source code 
o f  S P IC E  sub c ircu its  im p le m e n te d  to  S m artS p icc . T h e  assum ptions fo r  d e riv in g  the  fu l l-  
an a ly tica l d ra in  c u rre n t / (/v in  the  S E T  e q u iva le n t c irc u it  are th a t at each given gate vo ltage , 
o n ly  the tw o  m o s t-p robab le  ch a rg in g  states o f  the C o u lo m b  is land  are taken in to  accoun t, 
a t w h ich  the m ode l is s u ff ic ie n tly  accura te  o ve r a w id e  d ra in -sou rce  vo ltage range o f  I K / , 1  <  

c /C \  and even at a re la tive ly  h igh  te m p e ra tu re  o f  OAe2/ 2 C \ k fi. T h e  m ode l is based on the 
“ o r th o d o x "  th e o ry  and the steady-sta te  m a s te r e q u a tio n  [16, 40]. U n d e r  such an assum ption , 
the  s teady-sta te  m as te r equa tions  hav ing  tw o  states, n and n -h i ,  becom es

[ r f ‘ (/i + i ) + 1';'■■'(/! + i )] p„+, -  [ry (/,) + r™(«)] p„ = o (42)

w here  Pn and Pn+] are the p ro b a b ilit ie s  th a t the  charge in the C o u lo m b  is land in an S E T  
equa ls ne and (n  +  1 )c\ respective ly , P(jtr(n  +  1) and r f c(n -1- 1) are the tu n n e lin g  rates at the 
d ra in  ju n c tio n  and the  source ju n c tio n  w hen  the  charge in the C o u lo m b  is land is changed 
fro m  (// +  l )e  to  ne, respective ly , and V'"1 (n)  and V”u (n)  are the tu n n e lin g  rates at the  d ra in  
ju n c tio n  and the source ju n c tio n  w hen the  charge in  the C o u lo m b  is land is changed fro m  
ne to  (// +  1)<?, respective ly . By co n s id e r in g  th a t P„ 4- PIH ] =  1, and by using the asym m etry  
fa c to r  r = (R j  — R s) / ( R tJ +  /?s) and the h y p e rb o lic  sine fu n c tio n , d ra in  c u rre n t / „  can be 
nea tly  rea rranged  and then can be expressed as [45, 48, 50].

(1 -  r )  ( V I  -  K ? v ) s i n h ( i f )

A  =

e ' / 2 C ,

H e re , R,  is the h a rm o n ic  m ean o f  the tu n n e lin g  resistances, 2 R dR J ( R t, +  R s). I t  shou ld  be 
n o te d  tha t the  dependence o f  \ n o f  V^s takes be ll-shape  cha rac te ris tics  w ith  quas i-exponen tia l 
decays on b o th  sides and can be rep resen ted  by o n ly  one peak. Because there  is one  d o m i
n a n t ch a rg in g  state and tw o  a lm o s t-e q u a lly  m in o r  states th a t d e te rm in e  the leakage c u rre n t, 
i t  is also inaccu ra te  in  the C o u lo m b  b lo cka de  (C B ) reg ions on b o th  sides. T h e  su m m a tio n  
o f  7„s fo r  d if fe re n t /?s in  the re le va n t g a te -vo ltage  range gives the  C o u lo m b  o sc illa tio n s  o f  
the  d ra in  c u rre n t [45 ] and s im u lta n e o u s ly  com pensates the inaccu racy  caused by the  in su f
fic ie n t n u m b e r o f  cha rg ing  states co n s id e re d  in the m ode l. T h e  S E T  m ode l is im p le m e n te d  
to  S m artS p ice  as a su b c ircu it c o m p ris in g  ana logue  b e h a v io r devices [73].

F ig u re  17 shows the  I((- V KS ch a ra c te ris tics  o f  asym m etry  SETs ca lcu la ted  by the  m ode l 
and the re fe rence  s im u la to r. T h e  lines are ca lcu la ted  acco rd ing  to  the  m ode l and the  sym 
bo ls  are ca lcu la ted  by the M o n te  C a rlo  s im u la to r  S IM O N  [37]. T h e re  is v ir tu a lly  no  d i f fe r 
ence be tw een the  resu lts  o f  the m o d e l and  the  re fe rence  s im u la to r. F igure  18 rep roduces 
the  C o u lo m b  sta ircase, w h ich  is p e c u lia r to  asym m etric  SETs, fo r  d iffe re n t gate biases. 
T h e  resu lts  ca lcu la ted  acco rd ing  to  the  m o d e l co in c id e  w e ll w ith  the s im u la ted  ones, at least 
in the  C B  and S E T  reg ions, as can be expected  u n d e r the tw o -cha rg ing -s ta te  assum ption .
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6 .3 .2 . M ultistate  A pproxim ation
F ig u re  19 shows the  e q u iva le n t c irc u it o f  the S E T  to  the le ft o f  F ig . 13, based o n  the  m u l
tis ta te  (11 states) a p p ro x im a tio n  o f  the fu ll-a n a ly tic a l S E T  m ode l. H e re , a stray capac itance  
Cu to  g ro u n d  and a b a ckg round  charge Q{) are in c lu d e d  in  the m ode l. T h e  w h ite  vo ltage  
sources re p re se n tin g  the bias (th e  source and the  d ra in )  and gate vo ltages  (th e  ga te  and the  
back ga te ) are ex te rn a l to  the S E T  S P IC E  m ode l, and the gray sources are in te rn a l to  the  
m o d e l. E l  is a vo ltage  source th a t de fines the is land vo ltage  in the S E T  (n o d e  5), and G 1 is 
a c u rre n t source th a t specifies the  sou rce -d ra in  c u rre n t fro m  node 1 to  node 2. T h is  m ode l 
is a lm os t s im ila r to  the  D C  m o d e l o f  the  se m in u m e rica l m o d e lin g  o f  a S E T  i f  th e  n u m b e r 
o f  states is fixed  to  a constan t va lue  such as 11 states in th is  m ode l. F ig u re  20 shows the  
source code o f  S P IC E  subc ircu its  im p le m e n te d  to  S m artSpice.

In  th is  m ode l, f irs t the m ost p robab le  charge state, w h ich  has the h ighest p ro b a b ility  o f  
the  charge state n th a t the  charge in the C o u lo m b  is land o f  an S E T  equa ls ne, shou ld  be 
d e te rm in e d . T h e  m ost p ro bab le  charge state is expressed as [51]

w here  the  to ta l capac itance  o f  the  C o u lo m b  is land in  the  S E T  C\ = C.d +  +  C v 4- Ch +  C 0,
in c lu d in g  C „ in  th is  m ode l. A n d  then the s teady-sta te  m aster e q u a tio n  fo r  the 11 charge 
states a ro u n d  th is  m ost p robab le  charge state is so lved to  ca lcu la te  the  values fo r  E l  and 
G l .  T o  d e te rm in e  a ll p ro b a b ilit ie s  Pns th a t the  charge in  the C o u lo m b  island in  an S E T  
equa ls ne , the  fo llo w in g  recu rs ion  re la tio n  [16, 51) is used.

To o b ta in  the c u rre n t source G l ,  the average c u rre n t flo w in g  th ro u g h  the  S E T  in  the  d ire c -

T o  o b ta in  the  vo ltage  source E l ,  the average vo ltage  in the C o u lo m b  is land shou ld  be 
ca lcu la ted , w h ich  is expressed as

w h e re  Vn is the  is land  vo ltage  in the  case w hen the charge in  the C o u lo m b  is land o f  an S E T  
equa ls ne.

F ig u re  21 com pares  the s im u la tio n s  o f  a s in g le -e le c tro n  tra n s is to r using  th is  m ode l (b la ck  
lin e s ) w ith  the  ones us ing  the M o n te  C a rlo  s im u la to r S IM O N  (g ray  lines) to  d e m ons tra te  
the accuracy o f  m u ltis ta te  (11 states) a p p ro x im a tio n  o f  the fu ll-a n a ly t ic a l S E T  m ode l. As 
it c le a rly  can be seen, the s im u la tio n s  give id e n tica l resu lts  except fo r  som e w iggles in  the 
M o n te  C a rlo  s im u la tio n  lines, w h ich  are due to  the s tochastic  ch a ra c te r o f  the  M o n te  C a rlo  
a lg o r ith m . In  F ig. 21a. the  c u rre n t-v o lta g e  Id - V ih cha rac te ris tics  at va rio u s  gate vo ltages Vgs 
are p lo tte d . F ig u re  2 lb  shows the  c u rre n t-v o lta g e  l (/s- V  ch a rac te ris tics  a t va rious d ra in - 
source b ias vo ltages Vth. I f  the th e rm a l flu c tu a tio n s  (k b T ) are la rg e r than  the energy i t  takes 
to  add an e le c tro n  io  the  is land, the C B  is washed o u t. T h is  is d e m o ns tra ted  in  F ig . 21c 
w here  the  c u rre n t-v o lta g e  cha rac te ris tics  a t th re e  d iffe re n t te m pe ra tu res  are p lo tte d .

6 .4 . Q u a s i-A n a ly tic a l M o d e lin g

Q u a s i-a n a ly tica l m o d e lin g  has the  s im ila r assum ption  to  tw o -s ta te  a p p ro x im a tio n  o f  the  fu l l-  
a n a ly tica l m o d e lin g  o f  S E T  in tro d u ce d  in the p rev ious  section : ( i )  | l  ’ /v| <  c /C \ .  and ( i i )  the 
in te rco n n e c t capacitances associated w ith  gate, source , and d ra in  te rm in a ls  arc m uch la rge r 
than  the  device capac itance .

n

(49)

t io n  fro m  the source tu n n e l ju n c tio n  to  the d ra in  tu n n e l ju n c tio n  shou ld  be ca lcu la ted , w h ich  
is expressed as

n n

(51)
ll
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F ig u re  22 shows the s im p lifie d  How ch a rt to  ca lcu la te  the S E T  d ra in  cu rre n ts . T h e  d ra in  
c u rre n t f (ls in  the S E T  is m ode led  v ia  tw o  com ponen ts : ( i)  the  tu n n e lin g  c u rre n t InsL•, w h ich  
is in d e p e n d e n t o f  te m p e ra tu re , T.  and  ( i i )  the  th e rm a l c u rre n t, 7/>sy//* w h ich  fu lly  inc ludes  
the e ffe c t o f  te m p e ra tu re  as

h i s  ~  I D S  l +  I D S T H  — -J — j  1" I  D S T N  ( ^ 2 )
11) +  *s

w here  fnsL is subsequen tly  m ode led  based on  the  in d iv id u a l ca lcu la tio n s  o f  d ra in  In and 
source Is tu n n e lin g  com ponen ts , w h ich  is cons ide red  to  be p ro p o r tio n a l to  the tu n n e lin g  
rates [46 ]. A s  IDSU is in d e pe n d e n t o f  te m p e ra tu re , tu n n e lin g  ra tes are ca lcu la ted  a t zero  
te m p e ra tu re . T h e  a n a ly tica l lin e a r expressions o f  ID and Is is o b ta in e d  fro m  the  is land 
vo ltage Vlsill/Ui as show n in  F ig . 22. B e fo re  any e le c tro n  tu n n e lin g  has occu rred , Vishnul can be 
expressed as

V isu,,, =  C * V ‘"  +  C * y v  +  C >’V ' » - n e  ( 5 3 )

A c c o rd in g  to  the  “ o rth o d o x  th e o ry ,"  w hen  the vo ltage  d ro p  VtU be tw een the  d ra in  and 
the C o u lo m b  is land o r  the vo ltage  d ro p  Vis be tw een the C o u lo m b  is land  and the source 
becom es la rg e r than  e /2 C v ) , one e le c tro n  tu n n e ls -in  o r tu n n e ls -o u t fro m  the source 
o r  the  d ra in  to  the is land and as a re su lt Vishnd decreases ( fo r  tu n n e l- in )  o r increases ( fo r  
tu n n e l-o u t)  by an a m o u n t o f  2 K .  H o w e ve r, i f  V(ji o r  Vis becom es less th a n  K y, no e le c tro n  
tu n n e lin g  happens and the device e n te rs  in to  the  C B  reg ion . T h e  tw o  “ while"  s ta tem ents 
in the  q u a s i-a n a ly tica l a lg o r ith m  as show n in  F ig. 22 are used to  m o d ify  Vjslaiu{ in  o rd e r 
to  ca p tu re  the  p e r io d ic  C o u lo m b  o s c illa t io n  cha rac te ris tics  o f  S E T  Based on th is  m o d ifie d  
value o f  Viskmih the  tu n n e lin g  c u rre n t ( I 0Su) >s m ode led  as shown in F ig . 22. T he  ove ra ll 
c a lcu la tio n  o f  the  d ra in  c u rre n t is p e rfo rm e d  by using the fo l lo w in g  equa tions , l (h =  / ( K ^ ,  
Vbs, Vtls), w here  f  is a co m p u tin g  su b ro u tin e .

A s  e xp la ined  in  F ig. 22, the c u rre n t due to  th e rm a l e ffec ts  is cons idered  as a te m 
p e ra tu re  d e p e n d e n t leakage c u rre n t Ip s n i '  w h ich  can be ca lcu la ted  using  the fo llo w in g  
q u as i -e m p i r  ica 1 e q u a t i o n :

h)sr
( W  _  W ) t 6  w hen  W  # ()

(54)

W  =  x f e r ln  [ '  +  c x ' 1( 1 _  ^ r > ]  ’ w h c n  w  =  0

w here  V7 is th e rm a l vo ltage  ( — k BT/e ), m  is f i t t in g  co e ffic ie n t, and lpcak =  Vlis/2 ( R (/ 4  R s) 
[37]. T he  o ff-s ta te  c u rre n t I()Fr, w h ich  is a fu n c tio n  o f  te m p e ra tu re  and the  device-size, has 
been checked to  agree w ith  the resu lts  ca lcu la ted  by the M o n te  C a rlo  s im u la to r S IM O N  
ove r tw o  decades o f  te m p e ra tu re  (0.1 K  to  10 K )  fo r  fixed va lue  o f  m  =  10 [47].

F igu re  23 shows the d ra in  c u rre n t-g a te  vo ltage  l (i-V„s ch a ra c te ris tics  and the tra n sco n 
ductance ch a rac te ris tics  o f  the  s ingle and d o ub le -ga te  S E T  at va rio u s  V(ls to
d e m ons tra te  the accuracy o f  the  q u a s i-a n a ly tica l m o d e lin g . T h e  f i l le d  c irc les  and the open  c ir 
cles rep resen t the  resu lts  o f  the  s ing le  and  d o u b le -g a te  S E T  s im u la te d  by the  quas i-ana ly tica l 
m o d e lin g , respective ly . T h e  so lid  lines  and  the  d o tte d  lines re p re se n t the resu lts  o f  the  single 
and d o ub le -ga te  S E T  s im u la ted  by the  S IM O N , respective ly . T h e  q u a s i-ana ly tica l m o d e lin g  
is fu r th e r  v a lid a te d  in  te rm s o f  S E T  tra n sconduc tance  gm: the  q u a s i- lin e a r p lo t in F ig . 23b 
shows the a b ility  o f  the  q u a s i-ana ly tic  m o d e lin g  to  accu ra te ly  describe  the  firs t de riva tive  o f 
the d ra in  c u rre n t.

7 . C O M P A R IS O N  B E T W E E N  E A C H  C O M P A C T -M O D E L IN G

F igu re  24 shows the /</v- K a ch a ra c te ris tics  o f  SETs ca lcu la ted  by the m a cro m o d e lin g , the 
se m in u m e rica l m o d e lin g , and the fu ll-a n a ly t ic a l m o d e lin g  in the D C  analysis. Because the 
resu lts s im u la te d  w ith  the fu l l  a n a ly tica l m o d e lin g  are co n s id e ra b ly  the  same to  those 
w ith  the q u a s i-ana ly tica l m o d e lin g  [47 ], the qu a s i-a n a ly tica l m o d e lin g  w il l  be no t com pared
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Figure 35. Principle o f program m able SM I logic. (:i) Schem atic o f the program m able SETs with a nonvolatile 
memory (N V M ) node that is a key elem ent of the program m able SET logic. T he SET with NVM consists of a 
quantum  dot (Q D ). tunnel junctions, and a memory node. H ere. C(/v. CIH1, CJrr and VK are capacitance between 
the Q D  and the gate electrode, the capacitance betw een the m em ory node and the gate electrode, the capacitance 
between the Q D  and the memory node, the drain current, and the gale voltage, respectively, (b) Characteristics of 
SET' with NVM . Initially, the SF.T with NVM  shows ihe sam e /„ -K . characteristics as those of the conventional 
SET (u pper figure). T he com plem entary SET (low er figure) is realized after writing operation  generating the half- 
period (77) phase shift o f  C oulom b oscillations. For simplicity, Ctim is not shown in the schem atics o f the SETs with 
NVM. (c) Logical m eaning of com plem entary SE T  T he operation  o f the com plem entary SET is equivalent to that 
o: conventional SET to which logically inverted signal is fed. R eprin ted  with perm ission from [19], K. Ucfcida et al., 
IEEE Duns. Electron. Devices 50, 1623 (2003). £' 2003. IEEE.

vsith o th e r  s im u la t io n  results. T h e  so lid  lines, Ihe open  squares, the  f il le d  c irc les , .tnd the 
open tr ia n g le s  are ca lcu la ted  by the M o n te  C a rlo  s im u la to r  S JM O N , the m a c ro iro d e lin g , 
the se m in u m e rica l m o d e lin g , and the fu ll-a n a ly t ic a l m o d e lin g , respective ly . T h e  s in u la t io n  
resu lts o f  the  m a c ro m o d e lin g  and the se m in u m e rica l m o d e lin g  m a tch  w ith  the M on .e  C a rlo  
s im u la tio n  resu lts. T h e  s im u la tio n  resu lts o f  the  fu ll-a n a ly tic a l m o d e lin g  m a tch  w ith  the 
M o n te  C a r lo  s im u la t io n  resu lts at the d ra in -so u rce  vo ltages range o f  \V(i,\ <  e /C v , but 
they have co n s id e ra b le  d iffe rences w ith  the M o n te  C a rlo  s im u la tio n  resu lts  at | Vlh\ >_ c /C v .
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Figure 36. Exam ple o f program m able SET logic. Schcmatics of (a) an SF.T inverters, (b) and (c) two-inpul SET 
N O R, and (d) two-input SET A N D gates. R eprinted with perm ission from [19], K. U chida et al., IE E E  Trans. 
Electron. Devices 50. 1623 (2003). €> 2003. IEEE.

F igu re  25 shows the l ^ - V ^  cha rac te ris tics  o f  an S E T  ca lcu la ted  by the  m a crom ode ling , 
the sem inum erica l m o d e lin g , and the  fu ll-a n a ly tic a l m o d e lin g  in the D C  analysis. T h e  so lid  
lines, the open  squares, the f il le d  c irc les, and the open  tr ia n g le s  are ca lcu la ted  by the M o n te  
C a rlo  s im u la to r S IM O N , the m a c ro m o d e lin g , the se m in u m e rica l m o d e lin g , and the fu ll-  
ana ly tica l m o d e lin g , respective ly . W hen  the te m p e ra tu re  T  =  30 K , the s im u la tio n  resu lts  
o f  the sem inum erica l m o d e lin g  and the  fu ll-a n a ly t ic a l m o d e lin g  m atches w ith  the M o n te  
C a rlo  s im u la tio n  resu lts, but the  s im u la tio n  resu lts  o f  the  m a c ro m o d e lin g  show cons iderab le  
d iffe rences w ith  the M o n te  C a rlo  s im u la t io n  resu lts. W hen  the  te m p e ra tu re  T =  100 K, 
the s im u la tio n  resu lts  o f  the m a c ro m o d e lin g  and the  fu ll-a n a ly t ic a l m o d e lin g  m atches w ith  
the M o n te  C a rlo  s im u la tio n  results, bu t the  s im u la t io n  resu lts  o f  the  fu ll-a n a ly t ic a l m o d e lin g  
show sm all d iffe re n ce s  w ith  the M o n te  C a r lo  s im u la tio n  resu lts . T h e  va lues o f  the pa ram e
ters in the m a c ro m o d e lin g  are tha t C F 1 =  12.5, CVp — 0.04, C l 2 =  1.9 x  10 l\  C P I =  0.51, 
CR  I =  190 x  10", and CR2 =  150 x  10h w hen T  =  30 K  and CF  1 =  12.5, CVp =  0.04, C /2  =  
1.9 x l ( ) - \  C P I =  0 .51, CR  1 =  51 x  10(\  and CR2  =  12 x  106 w hen  T  =  100 K . In  Table 2, 
the d iffe rences betw een s im u la tio n  resu lts  o f  fo u r  types o f  the  co m p a c t S E T  m o d e lin g  and 
the M o n te  C a rlo  s im u la tio n  resu lts  are sum m arized  in the dc analysis. T h e  sem inum erica l 
m o d e lin g  is the m ost exce llen t above o th e r  m o d e lin g  to  m a tch  w ith  the  M o n te  C a rlo  s im 
u la to r ove r the e n tire  range o f  the gate vo ltages, the  d ra in  vo ltages, and  the te m p e ra tu re  
because the sem inum erica l m o d e lin g  solves th o ro u g h ly  the m as te r e q u a tio n .

F igu re  26 shows the  d ra in  cu rre n ts  and source cu rre n ts  o f  SETs w hen gate-source  vo ltage 
VKS varies lin e a rly  fro m  0 to  0.1 V  in  I p  and d ra in -so u rce  vo ltage  V([s =  26.7  mV. T h e  so lid  
lines, the squares, the  c irc les, and the  tr ia n g le s  are ca lcu la ted  by the  M o n te  C a rlo  s im u la to r 
S IM O N , the m a cro m o d e lin g , the se m in u m e rica l m o d e lin g , and the  fu ll-a n a ly t ic a l m ode ling , 
respective ly . T he  f il le d  sym bols and the open  sym bols are the d ra in  c u rre n ts  ld and the source 
cu rre n ts  —Is, respective ly . In  th is  slow tra n s ie n t s im u la tio n , the  d ra in  c u rre n ts  / t/ are equal 
to  the source cu rre n ts  —Is as the D C  s im u la tio n  resu lts  in F ig . 25. T h e  s im u la tio n  resu lts 
o f  the m a c ro m o d e lin g , the se m in u m e rica l m o d e lin g , and the fu ll-a n a ly t ic a l m o d e lin g  are as 
same as the D C  s im u la tio n  resu lts  in  F ig. 25. F ig u re  27 shows the  d ra in  cu rre n ts  and source 
cu rre n ts  o f  SETs ca lcu la ted  by the  m a c ro m o d e lin g , the se m in u m e rica l m o d e lin g , and the 
fu ll-a n a ly tic a l m o d e lin g  w hen gate-source  vo ltage  l \ s va ries  lin e a r ly  fro m  0 to  0.1 V  in 1 ns 
and d ra in -sou rce  vo ltage  V(ls =  26.7 mV. In  th is  fast tra n s ie n t s im u la t io n , the d ra in  cu rren ts  
/,, a rc d iffe re n t w ith  the  source cu rre n ts  — /  . T h e  s im u la tio n  resu lts  o f  the  m a c ro m o d c lin e
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^cvios 'si; i ' C M O S

Figure 37. Exam ples o f m ulti-input SE T  logic gates. Schematics of (a) the m ulti-input N A N D  gate |75] and (b) the 
four-input X O R  gate [44], (a) R eprin ted  with perm ission from [75|, M. Y. Jeng  et al.. Jpn. J. Appl Phys. 36, 6706 
(1 W ). €> 1997, JAACC. (b) R eprin ted  with perm ission from |44], K. Uchida et al., Jpn. J. Appl. Plus. 38, 4027 
( h)99). <D 1999, Institute o f Pure and A pplied Physics.

and the fu ll-a n a ly tic a l m o d e lin g  are d if fe re n t than  those o f the sem inum erica l m o d e lin g  
so lv ing  accu ra te ly  the tim e -d e p e n d e n t m as te r equa tion .

F igures 28 and 29 show the  vo ltage  tra n s fe r cha rac te ris tics  (V T C )  o f  the SEI in  F ig . 5 
when T  = 30 K  and T  100 K , respective ly . T he  so lid  lines, the  squares, the circles, and 
the tr ia n g le s  are ca lcu la ted  by the  M o n te  C a r lo  s im u la to r S IM O N , the  m acrom ode ling , the 
se m in u m e rica l m ode ling , and the fu ll-a n a ly t ic a l m o d e lin g , respective ly . F igures 28 and 29 
show the  same resu lts as show n in Table  2. F igures 30 and 31 show the trans ien t response 
o f  the  S E I w hen the in p u t vo ltage  Vln va ries  lin e a rly  fro m  0 to  0.04 V  in  0.1 ns and in  the 
100 ns, respective ly . The  f i l le d  sym bols and  open sym bols are ca lcu la ted  w hen C t =  10 aF
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Figure 38. The sim ulated timing chart o f the circuit in Fig. 37b. I 0 /m =  0.8 V. Vs,., — 50 mV, C\t =  Cs — 0.06 aF, 
C\ =  0.1 aF, C/ = 10 fF, C, =  1 fF, C f =  50 aF, R t, =  R s =  500 k ii, and T  =  293 K. R eprinted with permission 
from [44], K. Uchida et al ..Jpn. ./. Appl. Phys. 38, 4027 (1999). © 1999, Institute o f Pure and Applied Physics.

and CL — 100 aF, respective ly . T h e  squares, the c irc les, and the  tr ia n g le s  are ca lcu la ted  by 
the  m a cro m o d e lin g , the se m in u m e rica l m o d e lin g , and the fu ll-a n a ly tic a l m ode ling , respec
tive ly . In  the s low  tra n s ie n t s im u la tio n  in  F ig. 31, the tra n s ie n t s im u la tio n  resu lts  o f  the 
m a c ro m o d e lin g , the se m in u m e rica l m ode ling , and the  fu ll-a n a ly t ic a l m o d e lin g  are a lm ost 
the  same, b u t in  the  fast tra n s ie n t s im u la tio n  in F ig . 30, the  tra n s ie n t s im u la tio n  resu lts  o f  
the m a c ro m o d e lin g , the se m in u m e rica l m o d e lin g , and the fu ll-a n a ly tic a l m o d e lin g  show  a 
s lig h t d iffe re n ce . F igu re  32 shows the s im u la tio n  tim e  o f  several types o f  S E T  c ircu its  in the 
tra n s ie n t s im u la tio n . T h e  open squares, the  f il le d  c irc les , and the open tr iang les  are ca lcu 
la te d  by the m a cro m o d e lin g , the sem inum erica l m o d e lin g , and the fu ll-a n a ly tic a l m o d e lin g , 
respective ly . T he  v-axis deno tes the co m p le x ity  o f  the  c ircu its : 1 (s ing le -e lec tron  in v e rte r), 
2 (a s in g le -e le c tro n  N O R  gate), 3 (tw o  s in g le -e le c tro n  N O R  gates), 4 (th re e  s ing le -e lec tron  
N O R  gates). The  s im u la tio n  tim e  o f  the fu ll-a n a ly t ic a l m o d e lin g  is s im ila r to  th a t o f  the 
m a c ro m o d e lin g , b u t the s im u la tio n  tim e  o f  the se m in u m e rica l m o d e lin g  is longe r than  th a t 
o f  the  m a c ro m o d e lin g  and the  fu ll-a n a ly t ic a l m o d e lin g .

Figure 39. Examples o f SE-FK T hybrid circuit consisting of a C M O SF E T  am plifier and an  SE-FET con
verter/inverter consisting o f one SET (in Fig. 35) and one F E T  in series. Reprinted with perm ission from [19|, 
K Uchida et nl., IE EE  Trans. Electron. Devices, 50, 1623 (2003). © 2003, IE EE .
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8 . S E T  C IR C U IT S  A N D  S E -F E T  H Y B R ID  C IR C U IT S  F O R  
L O G IC  A P P L IC A T IO N S

In  th is  sec tion , va rio u s  types o f S E T  c irc u its  and S E -F E T  h yb rid  c irc u its  consis ting  o f  S E T  
c irc u its  and fie ld  e ffe c t tra n s is to r (F E T )  c irc u its  fo r  log ic  a p p lica tio n s  are in tro d u ce d . A s  
the firs t exam p le  o f  p roposed  S E T  c ircu its , an S E T  in v e rte r (F ig . 5), tw o -in p u t N O R , tw o - 
in p u t X O R , and tw o - in p u t O R  gates as show n in F ig . 33 are p roposed  by Chen e t al. [58 ] 
and K a ra fy ll id is  [74 ], w h ich  consist o f  th re e  te rm in a l SETs as show n in F ig. 10a. H ow eve r, 
the tw o -in p u t O R  gate in  F ig . 33c canno t be s im u la te d  by the  com pact m odels o f  an S E T  
( im p le m e n te d  to  S P IC E ) described in S ection  6 because the c irc u it inc ludes th ree  te rm in a l 
SETs as w e ll as a tu n n e l ju n c tio n . As the  second exam ple  o f  p roposed  S E T  c ircu its , an S E T  
in v e rte r , tw o -in p u t X O R , tw o -in p u t N A N D , and tw o  in p u t N O R  gates as shown in F ig . 34 
are p roposed  by Jeng et al. [75], w h ich  consist o f  fo u r  te rm in a l SETs proposed by T u cke r 
[76 ] as show n in  F ig . 13. A s  the th ird  exam p le  o f  p roposed  S E T  c ircu its , an S E T  in ve rte r, 
tw o - in p u t S E T  N O R , and tw o -in p u t S E T  A N D  gates as show n in  F ig. 16 are proposed  by 
U c h id a  et al. [23 ], in  w h ich  p rog ra m m a b le  SETs w ith  a n o n vo la tile  m em ory  ( N V M )  node 
(F ig . 35 and F ig. 36) are used and are s im ila r  to  the  co m p le m e n ta ry  SETs p roposed  by 
T u cke r [76]. A s  the fo u r th  exam ple o f  p roposed  S E T  c ircu its , m u lt i- in p u t gates are proposed  
by Jeng et al. [75 ], Takahash i et al. [77 ]. and  U ch id a  e t al. [44]. F igures 37a and 37b show the 
m u lt i- in p u t N A N D  gate and  the fo u r - in p u t X O R  gate, respective ly . T he  fu n c tio n a lity  o f  the 
m u lt i- in p u t gate S E T  enab les us to  m ake m u lt ib it  adders w ith  a sm all num be r o f  trans is to rs  
w ith o u t any w ire  crossing  [78 , 79]. In  F ig. 37b, T he  fo u r - in p u t X O R  gate is s im ila r to  dynam ic

(a) Gate Voltage of SET (V) T = 300 K

(c) Output of CMOS Inverter (V)

Tim e (s)

Figure 40. Experim ental room -tem pera tu re  dem onstration  o f program m able SET logic operation of the SET- 
p M O SF E T  circuit, (a) W aveform o f the  SE T  gate voltage, (h) O utpu t waveform o f the SET-pM OSFET circuit. 
T he initial characteristics are  indicated by the solid line. T he characteristics after applying 8 V writing pulse are 
indicated by the dashed line. The initial waveform is synchroni/ed  with that o f the SET  gate voltage. On the other 
hand, the waveform  after writing operation  is logically inverted to that of the SE T  gate voltage, dem onstrating 
that function o f the SET-pM O SFET circuit can be program m ed from a converter to ar. inverter by using the 
NVM  function, (c j O utpu t waveform  of the CM O S inverter. T he waveform is logically im erted  to  that o f  the 
SET-pM O SFET circuit. It should 1 v  noted  that the sm all o u tpu t voltage of the SET-pM OSFET circuit is amplified 
with the CM O S inverter. R eprin ted  with perm ission from 11g ], K. Uchida et al., IE E E  'Irons. Electron. Devices, 50, 
1623 (2003V €■ 2003. IE EE .
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Figure 41. Exam ples o f m ultivalued logics and m em ories with SE -FE T  hybrid circuits consisting o f one current 
source, one MOSFET. and one SE T  Schem atics o f (a) the universal literal gate (U L G ), (b) the quantizer, (c) 3-bit 
analog-digital converter (ADC'), and (d) the static random -access memory (SR A M ) with the SE -FE T  hybrid circuits. 
R eprin ted  with perm ission from [80). H. Inokawa e t al., IE E E  Trans. Electron. Dcviccs 50, 462 (2003). © 2003, IEEE.

Figure 42. (a) M easured voltage transfer ( K>, characteristics of the U LG  in Fig. 41a. T he l\ ,y is set at 1.08 V 
to attain  a SET drain voltage o f about 10 mV. T he C C  load is realized by a curren t-m ode  ou tpu t o f 4.5 nA from a 
sem iconductor param eter analyzer with com pliance (voltage limit) o f 5 V. (b) M easured quantizer operation  o f the 
quantizer in Fig. 41b with l ri =  1.08 V and In =  4.5 nA. The frequency o f short pulses o f CLK< faK  =  2.5 Hz. 
R eprinted with perm ission from [SO), H. Inokaw a e t al.. IE E E  Trans. Electron. Devices 50. 462 (2003). €) 2003. 
IEEE.
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Figure 43. Example of a multivalued logic with SE-FET hybrid circuits consisting o f an SET-resistor inverter and 
a C M O S inverter [83|.

log ic  fa m ily  w ith  tw o  cascaded sw itches. T he  fo u r - in p u t X O R  gate is a m p lif ie d  tc the same 
vo ltage  as the  gate vo ltage  sw ing  o f  SETs w ith  C M O S  in v e rte r  in  o rd e r to  d riv e  the next gate 
[31 ]. T h is  figu re  shows also an exam ple  o f  a h yb rid  c irc u it  cons is ting  o f  S E T  c ircu its  and F E T  
c ircu its . F igu re  38 shows the s im u la te d  tim in g  ch a rt o f  the fo u r - in p u t X O R  gate.

T h e  key advantages o f  S E T  are u ltra sm a ll size, u ltra lo w  pow er co n su m p tio n , and new 
fu n c tio n a lit ie s  such as the C o u lo m b  o s c illa tio n  and the  C o u lo m b  b lockade  [14 -17 ]. H o w 
ever, th e re  are p a r t ic u la r  obstacles fo r  im p le m e n tin g  S E T  lo g ic  gates. T h e  m ax im um  voltage 
ga in  o f  SET, w h ich  is de fined  as the ra t io  o f  the gate to  the d ra in  capac itance , is 'e ry  sm all, 
usua lly  less than  one o r  s lig h tly  m ore  than one [29, 30]. T h e  SETs have lo w  cu rre n t d r iv 
ing  c a p a b ility , w h ich  degrades device p e rfo rm a n ce , as i t  takes a long  tim e  to  charge up  the 
large in te rc o n n e c tio n  capac itance  connec ted  to  the o u tp u t node o f  a device. C ne o f  the 
approaches to  ove rcom e these in h e re n t d isadvantages o f  SETs is to  co n s tru c t a hybrid  c ir 
c u it cons is ting  o f  m c ta l-o x id e -s e m ic o n d u c to r fie ld -e ffe c t trans is to rs  (M O S F E T s ), which have 
a h igh  ga in , h igh o u tp u t resistance, and h igh  a p p lica b le  vo ltages, and can thus  supplem ent

Figure 44. Exam ple o f a m ultivalued logic with SE -FE T  hybrid circuits using a com plem entary self-biasing 
scheme |X4].
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Figure 45. Exam ple o f the quantizer with two SETs and one load capacitance. R eprin ted  with perm ission from [85]. 
S. M ahapatra et al.. Electron. Lett. 38. 443 (2002). CO 2002, IEE.

the SET. A s  the f irs t exam p le  o f  p ro p o se d  S E -F E T  h yb rid  c irc u its , the hyb rid  c irc u it  (as 
show n in F ig. 39) co ns is ting  o f  a C M O S F E T  a m p lif ie r  and an S E -F E T  c o n v e rte r/in v e rte r 
cons is ting  o f  one S E T  ( in  F ig . 35 ) and  one  P E T  in series is p ro p o se d  by U ch id a  e t al. [23]. 
T he  p ro g ra m m a b le  o p e ra tio n  o f  the  S E -F E T  c o n v e rte r/in v e rte r and  its a m p lic a tio n  (due  to  
the C M O S F E T  in v e rte r)  are  e x p e rim e n ta lly  d e m o n s tra te d  (as show n in  F ig . 40). A s  the sec
ond  exam p le  o f  p ro posed  S E -F E T  h y b r id  c ircu its , a m u ltiv a lu e d  log ics  and m em ories  w ith  
S E -F E T  h y b r id  c ircu its  co n s is tin g  o f  one c u rre n t source, one M O S F E T , and one S E T  (as 
show n in F ig. 41) a rc  p roposed  by T akahash i e t al. [80 ]. SETs are very su itab le  fo r  m u l
tiva lu e d  lo g ic  because the  d iscre teness o f  the  e le c tro n  charge in  the  C o u lo m b  is land can 
be d ire c tly  re la ted  to  m u ltiv a lu e d  o p e ra tio n . F igures 41a to  4 Id  show  the  schem atic  o f  the 
un ive rsa l l ite ra l gate (U L G ) ,  the  q u a n tiz e r, 3 -b it a n a lo g -d ig ita l c o n v e rte r (A D C ) ,  and the 
s ta tic  random -access m e m o ry  (S R A M )  w ith  S E -F E T  h yb rid  c irc u its  cons is ting  o f  c u rre n t 
sources, M O S F E T s , and SETs, respective ly . T h e  o p e ra tio n s  o f  the  m u ltiv a lu e d  logics w ith  
the  S E -F E T  h yb rid  c irc u its  are e x p e r im e n ta lly  d e m o n s tra te d  by us ing  the S E T  fab rica ted  
w ith  the  P A D O X  process [81, 82] (as show n in  F ig . 42) [80 ]. F ig u re  42a shows the m easured 
in p u t-o u tp u t cha rac te ris tics  o f  the  U L G  w ith  the S E -F E T  h y b r id  c ircu its . F igu re  42a shows 
a p e r io d ic  b in a ry  o u tp u t, w h ich  is a u n iq u e  ch a ra c te ris tics  o f  the U L G . T h e  o u tp u t vo ltage 
increases and  decreases p e r io d ic a lly  w ith  the  in p u t vo ltage , re f le c t in g  the C o u lo m b  o sc illa 
tio n  ch a rac te ris tics  o f  the SET. F ig u re  42b shows the m easured q u a n tiz e r o p e ra tio n  o f  the

(a) (b) VM

Kt.i

Figure 46. Exam ples of (a) a charged lock loop with the S E -FE T  hybrid circuits and (b) an SET amplifier with 
a curren t bias by a FET. R eprinted with perm ission from [51], G. Lientschnig et a I.. Jpn. J. A p p i Phys. 42, 6467 
(2003). CO- 2003. Institute o f Pure and A pplied Physics.
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Figure 47. (a) Schem atic o f a single-electron C C D  on a silieon-on-insulator wafer. The Si wire-M OSFETs are 
defined by the fine poly-Si gates that cover a pari o f the T-shaped Si wire. In addition to the tine gates, the upper 
poly-Si gate is form ed (after the form ation of S i(): interlaver) lo cover a large area (not shown here). The Si wire 
is su rrounded  by gate oxide (not shown). A single hole can be stored  and transferred, (b) D em onstration of the 
m anipulation of an elem entary charge. Procedure for dem onstrating  C C D  operation . (I)  O ne hole is stored in 
M O SFET  2 and is sensed. (2) T he hole is transferred  to M O SFE T  I. (3) T he hole is sensed again. (4 The hole is 
transferred  backwards, (e) Results for the m anipulation of a single hole belw een ihe two M O SFETs. T ie  two drain 
currents a re  p lo tted  for the repeated  procedures of the sensing and the single-hole transfer. Owing to the sensing, 
the num bers of sto red  holes |/ / /(( l ) .  n,,(2)] are alternately detected  as (0.1) and (1.0). R eprinted with perm ission 
from [88|, V. O no  et al., nature 410, 560 (2003). © 2003. N ature Publishing Group.

q u a n tiz e r in F ig . 42b. A  tr ia n g lu la r  wave was fed  to  Vjn and the gate o f  the  trans fe r gate 
M O S F E T  was d rive n  by sh o rt pulses o f  CLK. D if fe re n t ia l vo ltage  levels in Vin were sam pled 
by the  tra n s fe r gate M O S F E T  tra n s fe rre d  to  the  s to rage node Vonr and quan tized . Vouf was 
q u a n tize d  to  leve ls a ~  f. A n o th e r  exam ple o f  the  U L G  as show n in  F ig . 43 is proposed by 
C hun  e t a l. [83 ], w h ich  consists o f  a S E T -res is to r in v e rte r  and a C M O S  in ve rte r. As the  th ird  
exam p le  o f  p ro posed  S E -F E T  hyb rid  c ircu its , the m u ltiv a lu e d  log ic  w ith  S E -F E T  hybrid  c ir 
cu its  us ing  a co m p le m e n ta ry  se lf-b ias ing  scheme (as show n in  Fig. 44) are proposed by Song 
et al. [84 ], in w h ich  SETs have the fo u r  te rm in a ls  p roposed  by T u cke r [76 ]. T he  com p lem en
ta ry  se lf-b ias ing  m e th o d  enables the m u ltiv a lu e d  lo g ic  to  o p e ra te  w e ll a t h ig h e r tem pera tu re

CMOS
high-speed

logic

Figure 48. Schematic diagram of  a tin lire possible S F -FF T  hybrid IJLSI architecture [^0]
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Table 3. Features of various types of S E T -F IT  hybrid circuit sim ulators.

R eporter Year M ethod
Accuracy of 

DC sim ulation

Transient simulation

Aceuraey Simulation speed

Yu [171 1999 M acrom odeling G ood except G ood except for Fast
for low T fast transient analysis

Amakawa [22] 1998 SM E Semi numerical Excellent Excellent except for fast Fast
modeling transient analysis

Kirihara [20] 1999 TM E Sem inum erical Excellent Excellent Slow
Yu 119) 2002 m odeling
Uchida [24) 2000 Full-analytical Excellent Excellent Fast
Wang [27] 2000 m odeling except for except for
M ahapatra [28] 2002 high T  and last transient
Inokawa [25] 2003 high Vth analysis

and h ig h e r Vin c o n d it io n  than  the U L G  in  F ig . 41a [84 ]. A s  the  fo u r th  exam ple o f  p roposed  
S E -F E T  h y b r id  c irc u its , the q u a n tiz e r as show n in F ig . 45 is p roposed  by M a h a p a tra  e t al. 
[85 ], w h ich  consists o f  tw o  SETs and one  load  capacitance. T h e  q u a n tize r does no t re q u ire  
any e x te rn a l sa m p lin g  signal fo r  sa m p lin g  baseband signal, and  the sa m p ling  ra te  can be 
c o n tro lle d  by va ry in g  the device ca p a c ito r. A s  the f i f th  exam p le  o f  p roposed  S E -F E T  h yb rid  
c ircu its , a charged  lock  lo o p  to  solve the  b a ckg ro u n d  charge p ro b le m  [16, 86, 87] and an 
S E T  a m p lif ie r  w ith  a c u rre n t bias by a F E T  as show n in F ig . 46 are p roposed  by L ie n tsch n ig  
et a l. [51 ]. T h e  cha rge -c locked  lo o p  in  F ig . 46a uses feedback to  keep the charge in  the  
C o u lo m b  is land  o f  an S E T  constan t. In  F ig . 46b, the  SETs p ro v id e  the charge se n s itiv ity  
w h ile  the  F E T s p ro v id e  the  ga in  and the  lo w  o u tp u t im pedence . A lso , an F E T  o f  the second 
stage is used to  b u ffe r  the o u tp u t o f  the  SET, w h ich  increases the  speed o f  the c irc u it . A s  
the  f i f th  exam p le  o f  p roposed  S E -F E T  h y b rid  c ircu its , a s in g le -e le c tro n  C C D  as show n in  
F ig. 47 is p roposed  by F u jiw a ra  et al. [88 ], w h ich  consists o f  tw o  lo w e r gates (w h ich  p a rt ia lly  
cove r the T -shaped w ire  b ra n ch ) c o n s titu t in g  tw o  sm a ll M O S F E T s  connected  in series and 
one u p p e r gate (w h ich  covers the e n tire  re g io n  o f  the  w ire )  on  the Si na n o w ire  fa b r ic a te d  
by the  e le c tro n -be a m  lith o g ra p h y . F ig u re  47b illu s tra te s  the p ro ce d u re  fo r  d e m o n s tra tin g  
the s ing le -ho le  tra n s fe r be tw een the tw o  w ire -M O S F E T s . In  the in it ia l state ( I ) ,  one  ho le  
is s to red  o n ly  in  M O S F E T  2. To  read o u t the  n u m b e r o f  holes in  bo th  the M O S F E T s , we 
m easure tw o  sensing cu rre n ts  by s e tt in g  the  sense-gate vo ltage  as h igh  as 0.88 V. A s  o n ly  
M O S F E T  2 stores a ho le , c u rre n t 1 sh o u ld  be lo w  and c u rre n t 2 shou ld  be h igh  (as show n 
in F ig . 47c). A f te r  the  sensing, the sense-gate vo ltage  is decreased to  - 1  V. T h is  dep le tes  
e le c tro n s  n o t o n ly  fro m  the channe l b e lo w  the  f r o n t  gate  bu t a lso fro m  n e ig h b o rin g  chan 
nels. N ext, the  fro n t-g a te  vo ltages are c o n tro lle d  such th a t the ho le  p o te n tia l is as illu s tra te d  
in (2 ). T h e n  the  h o le  can be tra n s fe rre d  fro m  M O S F E T  2 to  M O S F E T  1. A fte r  th a t, the 
tra n s fe rre d  ho le  is sensed again (3 ) and tra n s fe rre d  backw ards  (4 ), and so on . T he  resu lts  fo r  
the s in g le -h o le  m a n ip u la tio n  are show n in  F ig . 47c. A n  S E -F E T  h y b r id  p u m p  w ith  a s im ila r  
s tru c tu re  to  the s in g le -e le c tro n  C C D  in F ig . 47 is a lso p ro p o se d  by O n o  e t al. [89 ], w h ich  
consists o f  tw o  gates on  the Si n a n o w ire  fa b r ic a te d  by the P A D O X  m e thod . F igu re  48 shows 
the e q u iv a le n t c irc u its  o f  the S E -F E T  h y b rid  pum p . T h e  p u m p  consists o f  one S E T  and tw o  
u ltra -s m a ll M O S F E T s . T h is  place t in y  M O S F E T s  close to  a S E T  and opens th e ir  channe ls  
o n ly  w hen  we w a n t e lec trons  to  pass to  ( f ro m )  the SET. T h is  m akes it possib le  to  co n s titu te  
a S i-based pum p .

U c h id a  e t al. re ce n tly  re p o rte d  a fu tu re  possib le  S E -F E T  h y b rid  U L S I a rch ite c tu re  as 
show n in F ig . 48 [90 ]. In  F ig . 48, S E T  c irc u its  and S E -F E T  h y b rid  c irc u its  are used in  
p ro g ra m m a b le  and lo w -p o w e r c irc u it  b lo c k , and C M O S F E T  c irc u its  are used in h igh-speed 
and I/O  c irc u it  b locks.

9 . C O N C L U S IO N S  A N D  F U T U R E  W O R K S

T h e  S E T  w ith  very lo w  p o w e r c o n s u m p tio n , u ltra sm a ll size, and  h igh  fu n c tio n a l ch a ra c te r
istics is p ro m is in g  fo r  fu tu re  large-sca le  in te g ra te d  c irc u its  (L S Is )  as in fo rm a tio n  process 
increases and the  size o f  ch ips is reduced . H o w e ve r, it has c ru c ia l obstacles fo r  im p le m e n tin g
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S E T  log ic  gates because o f  its  lo w  c u rre n t d r iv a b il ity , low  vo ltage  ga in , and lo v  te m p e r
a tu re  o p e ra tio n . T o  ove rcom e these p rob lem s, the  h yb rid  c irc u its  co ns is ting  o f  S E T  and 
M O S F E T  have been ex tens ive ly  investigated  because M O S F E T  has a h igh  ga in , h igh  o u t
p u t resistance, and h igh a p p lica b le  voltages, thus  it can su p p lem e n t the  SET. S u c i a h y b r id  
c irc u it has a lready  been d e m o n s tra te d  e x p e rim e n ta lly , and in  o rd e r to  eva lua te  :he m e rits  
o f  th is  app roach  th o ro u g h ly , p o w e rfu l s im u la tio n  to o ls  have been d eve loped . T h e  s im u la tio n  
to o ls  are deve loped  on the  co n ve n tio n a l c irc u it s im u la to r S P IC E . T h e re fo re , the  s im u la tio n  
o f  the  S E T  c irc u its  m ust sa tis fy  the  basic assum ptions o f  the S P IC E ; the  I - V  characte ris 
tics o f  the device are a ffec ted  b y  n e ig hb o rin g  trans is to rs  o n ly  th ro u g h  th e  charges o f  the  
te rm in a l vo ltages o f  those trans is to rs . In  th is  ch a p te r, firs t, co n s id e ra b ly  accuraie s im u la 
tio n  m e thods  (th e  M o n te  C a r lo  and the m aste r e q u a tio n  m e th o d ) fo r  S E T  c ircu its  w ere  
in tro d u ce d . T h e  s im u la tio n  m e thods give cons ide rab ly  exact resu lts, b u t th e y  consam e m uch  
s im u la tio n  tim e  and  ca n n o t s im u la te  S E -F E T  h y b rid  c ircu its . Second, th e  p o ss ib ility  o f  co m 
pact m o d e lin g  in  the s in g le -e le c tro n  c irc u it s im u la tio n  was in tro d u c e d  to  sim ulate  S E -F E T  
h y b rid  c irc u its  and reduce the s im u la tio n  tim e . In  the  possib le  co n d itio n s , v a r io ts  types o f  
S E T -C M O S  h y b rid  c irc u it  s im u la to rs  fo r  e ff ic ie n t c irc u it  s im u la tio n  have been developed, 
and th e ir  fea tu res  are su m m a rize d  in Tab le  3. Each s im u la to r is based on  fou r types o f  
s im u la tio n  m e thods; the  m a c ro m o d e lin g , the se m in u m e rica l m o d e lin g , the  fu ll-a n a ly tica l 
m o d e lin g , and q u a s i-a n a ly tica l m ode ling . In D C  analysis, the m a c ro m o d e lin g  is accura te  
except fo r  the  reg im e  o f  lo w  te m p e ra tu re  T (<  0.1 c2/ k {iCs), and the fu ll-a n a ly t ic a  m o d e lin g  
and the q u a s i-ana ly tica l m o d e lin g  are accura te  except fo r  the reg im es o f  h igh tem pera tu re  
T (>  O .le 2/ k BC \)  and h igh  d ra in -so u rce  vo ltage  V([s(>  e /C s ,) ;  the se m in u m e rica l m o d e lin g  
is accura te  in  a ll reg im es. In  s low  tra n s ie n t analysis (/,. >  1000/?,C,, w h e re  R, and C, are  the 
tu n n e lin g  resistance and the  tu n n e lin g  capac itance ), the  s im u la tio n  resu lts  o f  the m acrom od
e lin g  and the  fu ll-a n a ly t ic a l m o d e lin g  and the q u a s i-ana ly tica l m o d e lin g  m atch  w ith  those o f  
the se m in u m e rica l m o d e lin g , b u t. in fast tra n s ie n t analysis (/,. <  1000 /? ,C ,) , the  m acrom ode l- 
ing , the fu ll-a n a ly t ic a l m o d e lin g , and the  qu a s i-a n a ly tica l m o d e lin g  are cons iderab ly  d iffe re n t 
than the se m in u m e rica l m o d e lin g . T h e  se m in u m e rica l m o d e lin g , how ever, consumes m ore  
s im u la tio n  tim e  than  the  m a cro m o d e lin g , the  fu ll-a n a ly t ic a l m o d e lin g , o r  the  quasi-ana lytica l 
m o d e lin g  in  fast tra n s ie n t analysis. In  the fu tu re , the  m o d e lin g  th a t can have the m e rits  o f  
the se m in u m e rica l m o d e lin g , accura te  in a ll o p e ra tio n  reg ions in D C  analysis, and can be 
fast enough  to  s im u la te  by us ing  the m a c ro m o d e lin g , the fu ll-a n a ly t ic a l m ode ling , o r  the 
q u a s i-ana ly tica l m o d e lin g  in  tra n s ie n t analysis, w il l  be re q u ire d . F in a lly , va rio u s  types o f  S E T  
c irc u its  and S E -F E T  h y b r id  c irc u its  w ere  exp la ined .

T h e  S E T  is a device capab le  o f m easuring  charge w ith  a charge se n s itiv ity  o f 3 x  10“ 6 
c /y /H z  [91 ], w h ich  m ay be used in  ap p lica tio n s  fro m  ve ry  sensitive  charge m ete rs  and c u rre n t 
s tandards [16, 9 2 -9 5 ]. E sp e c ia lly , the ra d io -fre q u e n c y  S E T  (R F -S E T ) uses a tank  c irc u it  fo r  
im pedance  tra n s fo rm a tio n  and  has been show n to  o p e ra te  a t fre q u e n c ie s  up  to  100 M H z  
w ith  a se n s itiv ity  o f  the  o rd e r  10 "5 e / y H z  [9 6 -9 9 ]. T he  R F -S E T  m ode l in  S P IC E  is re q u ire d  
to  design and s im u la te  the  R F  c irc u its  cons is ting  o f  tack  c ircu its , co n ve n tio n a l devices, and 
an R F -S E T  [100]. H o w e ve r, an A C  S E T  m o d e l, espec ia lly  the R F -S E T  m o d e l, has n o t been 
deve loped  ye t. T h e re fo re , in  the  fu tu re , the  R F -S E T  m ode l w il l  be d eve loped  on S P IC E .
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1. IN T R O D U C T IO N

T h is  c o n tr ib u t io n  is devo ted  to  the  th e o re tica l d e sc rip tio n  o f  the e le c tr ic  p rope rties  o f  n a n o 
s tru c tu re d  m a tte r, in  p a r t ic u la r  to  s truc tu res  nanoscaled in tw o  d im ens ions , n a n e ly  sup
p o rte d  c luste rs  o f  a tom s such as f in ite  cha ins o f  a tom s em bedded in the surface o i a m e ta llic  
substra te  o r  a tom ic-s ized  contacts . Because th is  d e sc rip tio n  is based on a “ rea l soace”  re p 
re se n ta tio n  o f  the  so-ca lled  K u b o -G re e n w o o d  eq u a tio n , it  was fe lt necessary to  'ive  f irs t a 
p ro p e r accoun t o f  the th e o re tica l backg round  o f  lin e a r response th e o ry  in  te rm s  o f  e le c tric  
fie lds. F o r th is  reason S ection  2 deals q u ite  ge n e ra lly  w ith  c u rre n tly  ava ilab le  transpo rt th e o 
ries. In  p u tt in g  the  K u b o -G re e n w o o d  e q u a tio n  in to  a c o m p u ta tio n a lly  accessible s:hem e the  
use o f  dens ity  fu n c tio n a l th e o ry  and m u lt ip le  sca tte ring  approaches is re q u ire d . T h e re fo re  
o n ly  a fte r  hav ing  sum m arized  ve ry  sh o rtly  the m a in  q u a n titie s  in  a K o rr in g a -K o h n -R o s to k e r- 
type re a liz a tio n  o f  m u lt ip le  sca tte rin g  (S ection  3 ), p rac tica l expressions fo r  eva lua ting  e le c tric  
p ro p e rtie s  o f  n a n os truc tu res  are in tro d u ce d  (S ection  4). C le a rly  enough  the  num erica l accu
racy o f  such approaches have to  be do cu m e n te d  be fo re  any k in d  o f  a p p lic a tio n  to  nanosized 
m a tte r can be g iven . U n fo r tu n a te ly  th is  k in d  o f  nu m e rica l " te s t”  leads back to  b u lk  m a te ria ls , 
fo r  w h ich  the e le c tr ic  p ro p e rtie s  are w e ll docum en ted , b o th  e x p e rim e n ta lly  and th e o re ti
ca lly . H o w e ve r, o n ly  the “ tests*’ discussed in  Section  5 p ro v id e  the  necessary ;on fidence  
fo r  the th e o re tic a l resu lts  p resen ted  in S ections 6 and 7 fo r  f in ite  w ires  and atom ic-sized 
contacts .

N o t d e a lt w ith  in th is  c o n tr ib u tio n s  are systems nanosized o n ly  in  one d im ens ion  such as 
sp in  valves o r  o th e r h e te ro ju n c tio n s , as a rev iew  o f  such systems— also based on  a G re e n ’s 
fu n c tio n  re a liz a tio n  o f  the  K u b o -G re e n w o o d  e q u a tio n — o n ly  appeared  ra th e r  recen tly  [ I ]  
tha t discusses in  q u ite  som e le n g th , fo r  exam ple , p ro p e rtie s  o f  the g ia n t m agnetoresistance 
(G M R ) .

2 . T R A N S P O R T  T H E O R IE S

In  th is  section , m e thods desc rib in g  e le c tr ic  tra n s p o rt in so lid  m a tte r are reviewed, w ith  
em phasis, how ever, on  the K u b o -G re e n w o o d  approach . C o n s id e r a system o f  I I  in te ra c t
ing  e le c tro n s  m o v in g  in  the  e le c tro s ta tic  p o te n tia l o f  the nu c le i, the  e ffe c tive  o re -e le c tro n  
(K o h n -S h a m -) H a m ilto n  o p e ra to r  is then  g iven by

+  e n O ; ^  ( i )
2 m  /=-l t s

w here  the firs t te rm  is the  k in e tic  energy o p e ra to r and the second the  e ffe c tive  one-e lectron  
p o te n tia l th a t in  tu rn  depends on the “ s p in '’ o f  the e lec trons  (o ')  as w e ll as on  the m agnetic  
c o n fig u ra t io n  o f  the system (.# ). A s  it is w e ll-k n o w n  the co rre sp o n d in g  one -e lec tron  K ohn- 
Sham  e q u a tio n  can be w r it te n , e.g.. in the  case o f  a th re e -d im e n s io n a l p e r io d ic  system as

Ek.Ak.Ar)' k = O' k ) (2)

w here  v re fe rs  the  so -ca lled  band index, k  to  the m o m e n tu m , and  Ek (r and 4>k (J( r )  denote 
the  o n e -e le c tro n  energ ies and states, respective ly .
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2.1. B o ltzm a n n  F o rm alism

T h is  k in d  o f  th e o re tic a l app roach  assumes the  existence o f  a d is tr ib u tio n  fu n c tio n  j \  <r(r )  
tha t m easures the  p ro b a b ility  o f  charge ca rr ie rs  w ith  spin a  in sta te  k  in  the n e ighbo rhood  
o f  r. T h e  change o f  /*(r),

A ( r ) =  E A . - < r )
(T

in tim e  is then  described  by the fam ous Boltzmann equation.

| | / d/A. ( r ) \  (3)

^  /  V /  diffusion '  ^  '  lie Id '  ^  7 scattering

in w h ich  the  va rio u s  te rm s co rre sp o nd  to  d iffe re n t e ffects, nam e ly  fro m  the  le ft to  r ig h t: an 
e xp lic it t im e  dependence , d iffu s io n , the in fluence  o f  ex te rn a l fie lds  and sca tte ring . S ta tio n 
a r y  im p lie s  now  th a t the  to ta l tim e  dependence o f  f k ( r)  vanishes, see E q. (3 ).

F o r m a tte rs  o f  s im p lic ity  in  the  fo llo w in g  the r-dependence  o f  the d is tr ib u tio n  fu n c tio n  w ill 
be neg lected . T h e  loca l change o f  e lec trons  re su ltin g  fro m  e las tic  sca tte ring  o f  independen t 
p a rtic le s  can be co rre la te d  to  the microscopic scattering probability,

( 4 )

^U ,A 'T  P k l.k '

in the fo llo w in g  m a n n e r

( v )  = E E L / ; . , ( 1  - i \ , r ) P k „ . k , r - (  I ! \ - , r  ......... , I ( 5 )
V '  scattering tr k'<r'

T he  firs t c o n tr ib u t io n  is usua lly  ca lled  scattering-in term and describes the  sca tte ring  o f  e lec
trons fro m  o ccup ied  states ( k \  a ')  in to  an em p ty  state (A ,c r ) ;  the second te rm  re fe rs  to  
the reverse process, nam e ly  the sca tte rin g  o f  an e le c tro n  fro m  an occup ied  state (k ,cr)  
in to  e m p ty  states ( A \  a 1) and is ca lle d  scattering-out term. I t  th e re fo re  seems reasonable to  
separate  the  d is tr ib u tio n  fu n c tio n  in to  tw o  parts ,

fn. tr  =  fk , , r  +  8k. ,r  ( 6 )

w here

f l) - ______ 1______  (7)
J k ' <r e iiU-:kmV- L r )  +  j v '

is the F e rm i-D ira c  d is tr ib u tio n  fu n c tio n  w ith  Ek (T d e n o tin g  the o n e -e le c tro n  energies, see 
E q . (2 ), E f the  F e rm i energy, and /3 =  \ / k BT  w ith  k B be ing  the  B o ltzm a n n  constan t and 
T  the te m p e ra tu re . In  E q. (6  ) gk (r deno tes the  d e v ia tio n  fro m  the  e q u ilib r iu m  d is tr ib u tio n  
fu n c tio n . M a k in g  use o f  the  principle o f  microscopic reversibility,

P  =  Pktr. k ‘<t‘ 1 k'(T‘, ktr

fo r  the m ic ro sco p ic  sca tte rin g  p ro b a b ilit ie s  and the  sepa ra tion  o f  f k <T in  E q . (6 ), the scat
te r in g  te rm  in Eq. (5 ) can be re w r itte n  as

)  =  E  E  Pk n . k , A S k ' . , f  -  8 k . a )  ( 8 )
'  /  scattering, tr k ' t r '

N e g le c tin g  now  in  E q. (3 ) te rm s  w ith  an e x p lic it t im e  dependence o f  the d is tr ib u t io n  fu n c 
tio n  and changes caused by d iffu s io n , th a t is, keep ing  o n ly  changes o f  f k a ris ing  fro m  a 
hom ogeneous e x te rn a l e le c tric  fie ld  E, the fo llo w in g  expression is ob ta in e d ,
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w here  \ k ir is the ve lo c ity  o f  the e lec trons  w ith  sp in  rr, w h ich  in tu rn  can be re la ted  sem i- 
c lass ica lly  to  the o n e -e le c tro n  energ ies as fo llow s

h Wk

A ssu m in g  th a t gkir depends lin e a rly  on  the e x te rn a l e le c tr ic  fie ld , the fo llo w in g  ansatz can 
be m ade.

• ( ^ )  A , „ E  ( I I )8k. a  =  “ t

w here  Ak tr is the  so-ca lled  mean free path vector o f  e lec trons  o f  sp in  a .  The  m agn itude  o f  
A k ir m easures the pa th  o f  an e le c tro n  w ith  sp in  (t be tw een tw o  sca tte rin g  events.

By in tro d u c in g  a so -ca lled  relaxation time  r A (r, w h ich  specifies the tim e  tha t an e le c tro n
stays in  state ( k , <r) u n til the  next sca tte ring  event (scattering life time) occurs as

=  ( 12)
k1 (T'

Eq. (9 ) can be solved w ith  the  ansatz in  Eq. (11 ) to  give

\ . , t — TA .„Y VA.,r +  Pktr.k <r . V  ]  0 ^ )
'  k'tr '

T h is  now  is a system o f  coup led  in te g ra l equa tions . T he  d iffe re n t sp in -com ponen ts  can be 
d ecoup led  by ig n o rin g  spin-flip scattering processes, nam e ly  assum ing in  Eq. (4 ) tha t

= 0 ,  Pki'k'i  = 0

such th a t a re la tive ly  s im p le  in te g ra l e q u a tio n  is o b ta in e d ,

\ . , r  = h . ir( v  u  +  ^ / ’i a r V . J  (14)

fro m  w h ich  in p rin c ip le  A k (T can be eva luated.
D ue  to  the neg lect o f  spin-flip scattering processes, the to ta l cu rre n t density  can be w r it 

ten  as

j  =  E i r  =  T ^ U f k . ' S k . n  (15)
<r V  k . i r

w here  V  is the vo lu m e  o f  the  system. T h e  conductivity tensor a  at T  =  0 is then o b ta in e d  by 
using Ohm's law, j fr — tr E, and Eqs. (6 ), (11 ). (15 ),

g  =  T , g , r =  Ly  E H E k.„ -  E r ) \ k ir O , \ k „ (16)
•r k. <r

w here  o deno tes a dyad ic  p ro d u c t (re s u lt in g  in a 3 x  3 tenso r). The c o n tr ib u tio n s  to  the  to ta l
c o n d u c tiv ity  re fe r th e re fo re  to  in d e p e n d e n t majority ( j ) and minority ( j )  spin channels (two
current model [2 ]).

N e g le c tin g  the sca tte rin g -in  te rm  in Eq. (13 ). the  co n d u c tiv ity  is f in a lly  given by

•I. =  E l l  =  77 E  -  E l- ° V*.„ (17)  " ---- (T , a 
<T k  . <r

w here

y ] S ( E k, i r -  E ,  ) = , i ( E l.) (18)
k. ,r
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is n o th in g  b u t the dens ity  o f  states a t the  F e rm i energy. O b v io u s ly  the co n d u c tiv ity  tenso r 
is d e te rm in e d  by th re e  fac to rs : the  d e n s ity  o f  states, the ve lo c itie s , and the re laxa tion  tim es 
o f  the  e le c tro n s  at the  F e rm i surface. W h ile  the  firs t tw o  fac to rs  arise fro m  the e le c tro n ic  
s tru c tu re  o f  the  system, the  last one re fe rs  to  de fects o r  im p u rit ie s  present in the so lid . 
M o re o v e r, d if fe re n t a p p ro x im a tio n s  can be m ade fo r  the  re la xa tio n  tim e  in Eq. (17), fo r  
exam p le , an is o tro p ic  r ,  o r  sp in -d e p e n d e n t r ,r , thus re su ltin g  in a s im p le  expression fo r  the 
conductance .

I t  has to  be m e n tio n e d  th a t the  B o ltz m a n n  eq u a tio n  can easily be im p le m e n te d  w ith in  
tra d it io n a l b u lk  b a n d s tru c tu re  m e thods, since in the sem i-c lassica l in te rp re ta tio n  the ve lo c ity  
is g iven  by the ene rgy  d ispe rs ion , see E q . (10 ). A p a r t fro m  be ing  a sem i-classical theo ry , 
the m a in  d isadvantages is th a t in  the  fo rm  o f  Eq. (17 ) o n ly  o rd e re d  b u lk  systems (th re e - 
d im e n s io n a l cyc lic  b o u n d a ry  c o n d itio n s ) can be described, as a w e lld e fin e d  F erm i surface is 
needed and the re la xa tio n  tim es are system -dependen t param ete rs .

2 .2 . L a n d a u e r F o rm a lis m

T h e  Landauer-Biittiker approach [3, 4 ] is an e ffe c tive  to o l to  describe  tra n s p o rt in m esoscopic 
systems. Suppose a m u lt ip ro b e  s tru c tu re  consists o f  a f in ite  reg ion  connected  to  N,  leads, 
each lead  b e in g  a ttached  to  an idea l “ re s e rv o ir."  T h e  e le c tro n s  are then  scatte red  in a 
f in ite  re g io n  (scattering or interaction region) caused e ith e r by d is o rd e r o r  due to  a p a rt ic u la r  
g e o m e try . T h e  tra n s p o rt th ro u g h  the sca tte rin g  reg ion  is th o u g h t to  be co m p le te ly  cohe ren t, 
no  phase b re a k in g  is taken  in to  accoun t, and because o f  assum ed low  te m pe ra tu res  ine las tic  
sca tte r in g  processes are supposed to  be n e g lig ib le . T h e  leads are used to  in je c t and d ra in  
c u rre n t o r  m easure vo ltage , w hereas th e  rese rvo irs  are assum ed to  fu lf i l  ce rta in  co n d itio n s : 
the  re s e rv o ir  fo r  the n th  lead has to  be in  e q u ilib r iu m  at a g iven chem ica l p o te n tia l /x „,

Hn = E h. + e V n ( I 9 )

w here  V„ is the a p p lie d  p o te n tia l and E f, the  F e rm i energy. F u rth e rm o re , a steady-state c u r
re n t flo w in g  fro m /in to  the  re se rvo ir is supposed not to  change fxn im p ly in g  o f  course large 
enough  reservo irs . M o re o v e r, it is assum ed th a t no a d d itio n a l resistance is p roduced  by the
in te rfa ce  be tw een a re s e rv o ir and the sca tte r in g  reg ion . T h is  in tu rn  im p lies  th a t an e le c tro n
th a t en te rs  a re se rvo ir m ust be sca tte red  in e la s tica lly  b e fo re  re tu rn in g  to  the co h e re n t scat
te r in g  re g io n , p ro v id in g  thus a p h a se -ran d o m iza tio n . T he  c u rre n t passsing th rough  the /?th 
lead can be w r it te n  as

l„ = E 8...Kn (20)
in-J=n

w h e re  the  sum  extends o ve r all leads except the // th  one, and the gnm are the so-ca lled 
co n d u c ta n ce  co e ffic ie n ts  o f  the system .

In tro d u c in g  in c o m in g  and o u tg o in g  sca tte r in g  channe ls w h ich  p lay the same ro le  as in co m 
ing  and  o u tg o in g  B loch  states in s c a tte r in g  th e o ry , the conductance  can be expressed in 
te rm s  o f  a transm iss ion  p ro b a b ility  ( 7 ^  ■) o r  5 -m a tr ix  (Sni ■) as

Smn =  J -  E Tni. m, =  E Sni, mj 12 (2 1 )
ij i.l

In  th is  e q u a tio n  Tni nv is the  tra n sm iss io n  p ro b a b ility  fo r  an e le c tro n  fro m  an in co m in g  
ch a n n e l j  in  lead m  to  an o u tg o in g  ch a n n e l i in  lead //, the  fa c to r 2 accounts fo r  the tw o  
sp in  d ire c tio n s , and the  sum  has to  be c a rr ie d  o u t o ve r a ll in co m in g  and o u tg o in g  channe ls 
in the  c o rre sp o n d in g  ieads.

T h e  advantage o f  using  the  L a n d a u e r fo rm a lis m  is firs t and fo re m o s t seen fo r  tw o -p ro b e  
s tru c tu re s , fo r  w h ich  on ly  one co n d u c ta n ce  c o e ff ic ie n t g  has to  be cons idered  such as, fo r  
exam p le , in  the case o f  p e rp e n d ic u la r tra n s p o rt (c u rre n t p e rp e n d ic u la r to  p lane-C P P ) in  
laye red  s tru c tu re s  o r  fo r  q u a n tu m  p o in t-c o n ta c ts . T h e  m a in  pa ram ete rs  o f  a con tac t re fe r 
to  the  ch a ra c te ris tic  leng ths o f  the system , n am e ly  the contact diameter (d)  and the mean 
free path fo r  elastic ( A (.) and inelastic ( A . )  sca tte ring , th a t is, the leng th  o f  an e le c tro n ’s
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path be tw een tw o  e lastic  ( in e la s tic )  sca tte ring  events. I f  d  A r , A, one  speaks o f  a ballistic 
p o in t-co n ta c t, as an e le c tro n  trave ls  th ro u g h  the  co n ta c t w ith o u t any sca tte ring . I f  d  A e a 
p o in t-co n ta c t is said to  b e lo ng  to  the diffusive reg im e  m ea n in g  tha t an e le c tro n  experiences 
a lo t o f  e las tic  sca tte rin g  w hen tra ve lin g  th ro u g h  the  con tac t. In  b o th  cases the  c o n ta c t 
d ia m e te r m ust be m uch  la rg e r than  the  e le c tro n 's  w ave leng th .

In  the  case o f  two-probe structures the  conductance  can be w r it te n  acco rd in g  to  Eq. (2 1 ) as

8  =  T ^  ( 2 2 )

w here Ttj is a h e rm it ia n  m a tr ix . D ia g o n a lize d  the  conductance  can be fo rm u la te d  in  th e  
e igenchanne l basis as

V  v
?  =  ( 23)

n  /= i

w here  N  is the n u m b e r o f  co n d u c tin g  channe ls and the  T, are  the  rea l e igenvalues o f  Ti} ,
0 < Tj <  1. F o r an ideal ballistic point-contact as w e ll as fo r  the th e o re tic a lly  in te re s tin g  case 
o f  an in f in ite  p e r io d ic  w ire , Ttj = Sil w h ich  im p lie s  th a t the conductance  is quan tized  in  u n its  
o f  the so-ca lled  conductance  q u a n tu m  G {) =  2 e2/ lu

g = N eha „  (24 )

Such quan tized  conductances have been observed by m any e x p e rim e n ta l groups. W ith in  the  
La ndaue r app roach , the  conductance  obv ious ly  depends on the number o f  open eigenchannels 
N (.,r w h ich  in tu rn  depends on  the  sam ple geom e try . T h is  im p lie s  th a t N lh is d e te rm in ed  fo r  
the e n tire  system by the  narrowest cross section o f  a p o in t-c o n ta c t o r  a w ire .

2.3 . K ubo F o rm a lis m

In  the 1950s, K ubo  deve loped  a m e th o d  o f  e va lu a tin g  the  response o f  a quan tum  m echan ica l 
system to  an ex te rna l p o te n tia l, in  p a rt ic u la r, the c u rre n t in response to  an e le c tric  f ie ld  [5 ]. 
To  firs t o rd e r, know n  as lin e a r response, the tw o  q u a n tit ie s  are re la te d  by a c o n d u c tiv ity
(O h m 's  law ), w h ich  is g iven  in  te rm s  o f  the e q u ilib r iu m  p ro p e rtie s  o f  the  system, th a t is, in
the l im it  o f  a va n ish in g  fie ld . M o re o ve r, conductance  co e ffic ie n ts  can be derived  fro m  the 
co n d u c tiv ity , w h ich  describes the  to ta l c u rre n t f lo w in g  in  and o u t o f  the  system in  response 
to  the vo ltages a pp lied .

2.3.1. L inear R esponse Theory
2.3.1.1. Linear Response and the Green Function A ssum ing  a tim e -d e p e n d e n t p e r tu r 
ba tion  / / ' ( 0 *  the  H a m ilto n  o p e ra to r  o f  the  p e rtu rb e d  system is o f  the  fo rm ,

H ( t )  =  H u +  H ’(t)  (25)

F o r a g ra n d -can o n ica l ensem ble  the  dens ity  o p e ra to r  o f  the  u n p e rtu rb e d  s\stem  can be 
w rit te n  as

(2 6 )

w ith

/\ ,  =  /?„ -  f i N  (27)

where ji is the chem ica l p o te n tia l, N  the (p a r t ic le )  n u m b e r o p e ra to r, and X  is the  grand
canon ica l p a r t it io n  fu n c tio n ,

I =  Tr(e  (28)

Because the e xpec ta tion  va lue  o f  a physical observab le  / ! ,  associated w ith  a h e rm itia n  o p e r
a to r A co rre sp o nd in g  to  the  u n p e rtu rb e d  system is g iven by

'"111 -  (A)  -  T r ( A e  =  Tr (ouA ) (29)



w ith in  the S c h ro d in g c r p ic tu rc  the  equ a tio n  o f m o tio n  fo r  the density  o p e ra to r can be w r i t 
ten as

= [;?(O,0(O1 (30)fit

w here

f ( t )  = H ( t ) - / i N  =  7({) + H ’(t)  (31 )

C le a rly  enough , in  the  absence o f  a p e rtu rb a tio n , g( t )  =  p „. T h e re fo re , p a r t it io n in g  g( t )  as

0(O = 0o +  0(O (32)

and m a k in g  use o f  the fac t th a t [ 7/ {), g{)] = 0, one gets in  firs t o rd e r in H \

ih-^4p- = e (01 + [^ '( /) ,  e„] (33)at

o r, by sw itch in g  to  the  in te ra c t io n  (D ira c )  p ic tu re ,

<?»(0 =  0 „ +  Qn(  0 ,  & > (0  =  e 'f/» > '« 'e '( r )e - “ --,* 'V  (34 )

in̂ f r  = [ f w '6,1 (35)
T h is  e q u a tio n  has to  be so lved now  fo r  a g iven in it ia l c o n d itio n . T u rn in g  on the ex te rna l
f ie ld  a d ia b a tica lly  a t / =  -o o , im p lie s  th a t the dens ity  o p e ra to r o f  the  system at t =  —oo
represents an ensem ble  o f  system s in th e rm a l e q u ilib r iu m , th a t is,

l im  g( t )  = p „ , l im  g n (t) =  0
/  —• — rx . /  —  — r>j

U sing  th is  b o u n d a ry  c o n d it io n  fo r  g'n (t)  results in to  the  fo llo w in g  in te g ra l equa tion

=  1,1 (36)
tl. -  rv

such th a t in the S c h ro d in g c r p ic tu re  the  dens ity  o p e ra to r can be ap p ro x im a te d  in firs t 
o rd e r  as

0(0 ~  0o -  £ f \  gn]em ^'  (37)

C o n s id e rin g  now  the tim e  e v o lu tio n  o f  the  phys ica l observab le  / ! ( / ) ,

A( l )  =  T r ( g ( t ) A  ) =  A„ -  ~  f  dt' Tr{e A )

= A t l - ~  f  ̂  d f  Tr{\H'n ( t '), 0,,]/? ,.,( /))  (38 )

w here  A {) is d e fin e d  in  Eq. (2 9 ) and the D ira c  re p re se n ta tio n  o f  o p e ra to r A  is g iven by

A /)(t) =  eU/h)^ tA e ' {ilh)^  (39 )

then  by m a k in g  use o f  the id e n tity ,

7 > ( [ X  B]C) = T r ( A B C  -  B A C )  =  T r ( B C A  -  B A C )  = Tr(B[C\ A ]) 

one a rrives  at

8 1(0 =  A ( l )  -  A u = f  d t ’ 7V(y„[ /?„(0,  H n ( t ) ] )  (40)
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A ssum ing  f in a lly  th a t the p e rtu rb a tio n  H' ( t )  is o f  the  fo rm .

H'{[)  =  B F ( t )  (41 )

w here  B  is a Hcrmitian operator and F( t )  is a complex function  (c lassical f ie ld ',  Eq. (40)
tra n s fo rm s  to

8A{ , )  =  B, ,(!')]) (42 )

w h ich  can be w r it te n  in  te rm s o f  a retarded Green function as ,

<’) = - * H t  -  t ' ) Tr ( g{l[ A n [t),  B»0 ' ) ] )  (43 )

o r. bv in tro d u c in g  a so-ca lled  gene ra lized  su sce p tib ility ,

X ahO • >') =  O  (44)

as

8 A ( t )  = ^ j  = j  t l i’F ( t ' ) x , t " )  (45)

Suppose n ow  tha t the  o p e ra to rs  A  and B do  no t depend  e x p lic it ly  on  tim e , then  t')
and x  \ii(t, t') are o n ly  fu n c tio n s  o f  the a rg u m e n t ( /  -  / ') .  C onsequen tly , the F o u rie r c o e ff i
c ien ts o f  8 A ( t )  can be w r it te n  as

8A(io) = -  F{w)G™r(m) = F(io)xAiM>) (46)

w here

X(co) = I " dt  X' ( / ) < > " ,  X ( t )  = zr~ I *  da>X(u))e- iwt (47)
J  ^  2 tt

app lies  fo r  any tim e -d e p e n d e n t q u a n tity  X ( t )•
Because by d e fin it io n  G r̂ ( w )  is a n a ly tica l o n ly  in  the  u p p e r com p lex  sem i-p lane (re ta rd e d  

sheet), fo r  a rea l a rg u m e n t co the l im it  nr co +  /() has to  he cons idered . The complex 
admittance x . in i0)) can th e re fo re  be expressed in  te rm s  o f  the  re ta rded  G reen  fu n c tio n  as

+  /()) =  r  dt ei M ' Tr(g„[A( t ) ,  5 ( 0 ) ] )  (48)
ti n  .'n

T he  occu rance  o f  the s id e - lim it to -H /() in \ AH(co) is usua lly  te rm e d  a d iaba tic  sw itch ing  on o f 
the p e rtu rb a tio n  as it co rresponds to  a tim e -d e p e n d e n t classical f ie ld ,

F ( / ) =  l im  ( F U ) e " )  (49)
A----- S-il

2.3.1.2. The Kubo Formula R e tu rn in g  now  to  Eq. (38 ),

5 ,4 ( 0  =  - l-  f  ̂  dt  T r ( [ U H( t •), ? , , ] / ? „ ( / ) )  (50)

w here  the  o p e ra to rs  are de fin e d  w ith in  the H e ise n b e rg  p ic tu re  w ith  respect to  :he u n p e r
tu rb e d  svstem and using  Kuho s identity,

/ A pi* —
I X n ( 0  * i } \ =  V  /  X u U  ~  i h h ) .

• (Ih

(3 1 »
<> =  77tT- XnO)  = X ,i(t)-os- - [ * „ ( / ) .  H)

I r \e  P" ) tx
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in Eq. (5 0 ) fin a lly  y ie lds the  fam ous Kubo formula:

ftA(t) — — I ill' I tl \Tr(g{lH'n {l’ -  i\h)A„(l))
J x

= - (  dt' f  d \ T r ( g {lH' „ ( t ' ) A i i ( t  -  t' +  i \ h ) )  (52 )
• ' -k •Ml

2 .3 .2 . The C urren t-C urren t C orre lation  Function
In  the case o f  e le c tr ic  tra n sp o rt, a tim e -d e p en d e n t ex te rna l e le c tr ic  fie ld  is a p p lie d . O b v i
ously, th is  induces cu rre n ts , w h ich  in  tu rn  creates in te rn a l e le c tr ic  fie lds . Suppose th a t the 
to ta l e le c tr ic  fie ld , E ( r ,  / )  is re la te d  to  the p e rtu rb a tio n , H' ( t )  in te rm s  o f  a scalar p o te n tia l 
</>(r, / ) as

H '( /)  =  I  </Yp(r)(/>(r,  / ) ,  E(r ,  t) =  - V < £ ( r ,  / )  (53)

w here  /5 ( r)  =  ^ i / / ( r ) f ^ ( r )  is the charge dens ity  o p e ra to r, t / /( r )  a fie ld  o p e ra to r and e the 
charge o f  an e le c tro n . T hen  the tim e -d e riv a tiv e  o f  H'l{(t)  can be ca lcu la ted  as fo llo w s ,

H' ( t )  = I  d }r —IK ’ p ( r ) ]  </>(r, 0  =  -  j  (Pr V J ( r )  (M r, t)
'i’llIr./» |

=  j  d yr J ( r )  V </)(r, t) =  -  j  d :"r J ( r )  E ( r ,  / )  (54)

w here  the  e u rre n t-d e n s ity  o p e ra to r  is g iven by

eh

J ( r )  =
i/y (r )+ ( V  — V ) i / / ( r ) ,  in n o n -re la tiv is tic  case,

2m i  (55 )

eci/j(r ) 1 di / j ( r ) ,  in re la tiv is t ic  case

and the  a  deno te  D ira c  m atrices. N o te  th a t in  Eq. (5 4 ) the c o n tin u ity  equa tion  was used 
and p e r io d ic  b o u n d a ry  c o n d itio n s  w ere assumed such tha t w hen  using  G auss’ in te g ra tio n  
th e o re m  the  co rre sp o n d in g  surface te rm  vanishes. M a k in g  use o f  Eqs. (52 ) and (5 4 ), the 
/ ith  c o m p o n e n t o f  the  c u rre n t d ens ity  can be w r it te n  as

J,Ar , I) = Y ,  f  ( l ' r ' f  d t 'a ^ X r ,  r \ 1 , l ' ) E , , ( r ' , / ' )  (56)

w here  the  o c c u rr in g  space-tim e c o rre la t io n  fu n c tio n  is g iven by

•P
(T ( r , r ; / , / ' )  =  (“) ( / - / ' )  /  d \  7>(<3I) J,,(r, 0)J (r' .  t -  t' +  i \ h ) )  (57)

by w h ich  the lin e a r response o f  th e  c u rre n t d ens ity  at ( r ,  / )  in  d ire c tio n  jx is co rre la te d  to  
the  loca l e le c tr ic  fie ld  at ( r \  / ' )  a p p lie d  in  d ire c tio n  v. N o te  th a t in  the above e q u a tio n  the 
e u rre n t-d e n s ity  o p e ra to rs  are assum ed to  be H e isenbe rg  o p e ra to rs .

C o n s id e r now  the F o u rie r co m p o n e n ts  o f  the e le c tr ic  fie ld ,

E (q , co) =  f d * r  dr E ( r .  (58)
j  j - x

E ( r ,  0  =  - L  f  d :'q du> E (q , (59)
2 7 T V  J

w here  vj =  (o +  /() and V  is the  vo lum e  o f  the system. A lth o u g h  ^  , ( r ,  r ;  r, / ' )  tr iv ia lly  
depends o n ly  on  (t — a'), in  gene ra l, it  is a fu n c tio n  o f  the in d e pe n d e n t space va riab les  r  
and r ' .  In  cases, how ever, the c u rre n t dens ity  is an average o f  the  loca l c u rre n t dens ity  in 
Eq. (5 6 ) o ve r a la rge  enough  re g io n , ^ . ( r ,  r  ; / ,  t') can be assum ed to  be hom ogeneous in 
space, th a t is, ^ ;, ( r ,  r ' ;  / — / ' )  =  crf i r ( r  — r ' ;  t — t ). T h is  usua lly  is the case i f  |q | is sm all.
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im p ly in g  th a t long-wavelength excitations are s tud ied . T he  (q, cj) co m p o n e n t o f  the c ir re n t 
dens ity  pe r u n it vo lum e ,

J, (q  oj) =  ~  f  cl''r d t  / M(r, t ) e  (60)

can then  be d e te rm in e d  fro m  Eqs. (5 6 ) and (57),

yM(q, w) =  £  w)  £„(q, «) (61)

w here  crMt,(q, co) is the  wave-xector and frequency-dependent conductivity tensor,

(T (q, a>) =  f  d t c ‘m‘ I d \  T r (g „ J ,X -q, 0)^,(q, I +  i \ h ) )  (62)
V  J I)

y„(q ,0  =  I  d ' r J ^ r , t ) e - ‘* T (63)

In  using c o n to u r in te g ra tio n  techn iques one a rrives  at

q, w) =  ~  jf d t  e"*1 ^ dt' Y>(on[.?M(q, /'), £ ( - q ,  0)]) (64)

such th a t by in tro d u c in g  the be low  current-current correlation function,

2 M,(q. nr) = ^  dt c'wl 7>(t)„[.yq, r), y . ( -q ,  0)]) (65)

the c o n d u c tiv ity  tenso r can fin a lly  be expressed as

i  .(q, cj) - S  (q,0) 
a- (q, c j )  =   ---------------  (66)

F or a hom ogeneous system w ith  c a rr ie r  d ens ity  n and mass o f  ca rr ie rs  m ,

—M, (q. (>) . ne----------- -------------g (67)
TTT /JfET ' v

one ob ta ins  the  phenom eno log ica l D ru d e  te rm  fo r  non  in te ra c tin g  pa rtic les . F u rtie rn o re , 
the static limit, th a t is, w hen o) 0 and |q| —> 0, is de fined  as

2 ^  =  0, i s ) - 2 ^  =  0,0)a  ,(q  =  (), oj = ()) — lim
+ 0 IS

d  2 UJ.(q =  0, nr)
d m

(68)
i ror=0

2.3.3. Kubo Form ula for In dependent Partic les
A n  im p o rta n t specia l case arises w h e n  co n s id e r in g  in d e p e n d e n t pa rtic les . Represented in 
the basis o f  the  e ig e n fu c tio n s  o f  // ,, (sp e c tra l re p re s e n ta tio n ),

/? „  | ; i )  =  f j / i ) .  ( m \ n )  =  8 nnr  ] T  \n ) ( n \ =  T  (6 9 )
n

the e q u ilib r iu m  dens ity  o p e ra to r and its m a tr ix  e lem en ts  are g iven by

(»\Qu\p) =  (70)
/)

and the th e rm a l average o f  the c u rre n t-c u r re n t c o m m u ta to r  can be w r it te n  as

rr(0[l[J.,{ q, f). X . ( - q . O ) ] )  =  E { / ( S„ ) - / ( £J k l,' ," (F"
mu

x ( q ( - q )  (71)
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w ith

y;"'( q ) =  < / i | ^ ( q ) | / , i )  and / / / " ( - q )  =  (m\J,.(-q)\n 

S u b s titu tin g  Eq. (71 ) in to  Eq. (65) then  y ie lds

(72)

V(q. " )  =  Jy E{/(e«) -  /(em)}^,,,,(‘*)yr(-q ) £  dt eu (73)

T h e  in tc g ia l w ith  respect to  /, how ever, is jus t the  L a p la ce  tra n s fo rm  o f  the id e n tity ,

/ _______________________________
At (.»•><» ( i / h ) ( e n -  em +  hoj) -  s

th e re fo re , Eq. (73) can be tra n s fo rm e d  to

V(q- = 17 E ^ - Zx^ ./r(q )C ,,(-q)

(74)

(75)

w ith  / ( e )  be ing  the  F c rm i-D ira c  fu n c tio n . T o g e th e r w ith  Eq. (64), th is  now  p rov ides  a 
n u m e ric a lly  tra c ta b le  to o l to  ca lcu la te  the  c o n d u c tiv ity  tensor. Because

h u r

£„ ~  em + h m  e n — £,„ (e „  -  « ,„)(£ ,, -  +  f tc r )

^ r (q , to) can also be w r it te n  in the fo l lo w in g  com pac t fo rm .

( jA*1 (76)

C T  =  (1) +  / 5

2.3.4. C ontour In tegrations
^ t;, ( q ,  h j )  can be eva lua ted  by using c o n to u r  in te g ra t io n  techn iques. C o n s id e rin g  a p a ir o f  
e igenva lues, En and e m, fo r  a su itab le  c o n to u r  C in the com p lex  energy p lane (see Fig. 1) 
the res idue th e o re m  im p lie s  tha t

i ,h
/ (

( "  -  £ „ ) ( Z  -  F.,„ +  tlCO +  i d )
~  —2777

f  (e

e n ~  e m +  h (0 +  ^

+  2 id,  £
*=■

(77 )

/m  :

Figure 1. Integrations along the contours C  (left en try) and C  (right entry). R eprinted with permission from 
J. Zahlm idil et al.. “ E lectron Scattering in Solid M atter."  Springer. New York, 2004. <V: 2004. Springer.



3 7 4 Electric Properties o f  Nanostructurcs

w here  the z k = E,  - f  i(2k -  \ ) 8r are the ( fe rm io n ic )  M a tsuba ra -po les  w ith  E,. be ing  the 
F e rm i energy, 8r = 7r k BT  and T  the te m p e ra tu re . In  E q . (7 7 ) it was supposed th a t /V, and 
N 2 M a tsuba ra -po les  in  the u p p e r and lo w e r sem i-p lane  lie  w ith in  the  c o n to u r C , respective ly . 
E q u a tio n  (77 ) can be rea rranged  as fo llo w s

/— i , i ,  m
£ „  -  s , „  +  h io  +  i 8  2 t t  ■'(■ (z -  e„)(z -  e,„ +  h(x) +  i d )

+ i~  £  7---------- w------ * V T  ^  ™
77 * y . . i  ( z k -  E , M z k -  e ,„  +  h io  +  1 8 )

S im ila r ly , by choos ing  c o n to u r C'  the fo llo w in g  expression,

/(£,„) I /  f ( z )
£ „ -  Em +  h u  +  i d  27t J r  ( z  -  s  ) ( z  -  e . .  -  hto -  i 8 )

+  Y .  --- r -  (7 9 )
77 k - \ ,  + i ( z k ~  « ,„ ) (* *  ~  e „  -  h (o  -  18)

can be de rived . D e fo rm in g  the  co n to u rs  such th a t the  real axis is crossed at oc and — oo, 
i M,.(q , n r) can be expressed as

(C|. W ) =  -

/  , „  ^  ■/;""(q)r"(-q)
- f  ( z ) L ; --------------------------------- ,--------- r z r

(2  -  « „ . ) ( *  -  e „  -  /IW -  /S )

+  ' - 7 7  L  L t7
7 7 1 7  U  V, .1 ( ; A -  K » ) ( Z A -  +  hM +  i s )

+  e  2: 7 7 -  .:/ ^ q ) - ( " (!.) . - - i r l  <«>>
A' = -  .Vi -+-1 inn ( - a  -  O U *  -  e „  -  h o  ~  i8 )

C o n s id e r now  the reso lvent o f  the u n p e rtu rb e d  H a m ilto n  o p e ra to r, i.e., o f  the  K ohn-S ham  
H a m ilto n ia n .

G(z) = (z?-H) 1 (81)

and its a d jo in t,

G ( z f  =  ( - ' * / -  H)  1 =  G(z*)  (82)

(V (.-) =  X ; i - ~  (8 3 ,
— z — £/i c i:

it  is s tra ig h tfo rw a rd  to  re w rite  Eq. (8 0 ) as

^ , ( q ,  n r) --= -  |  j- dz  f ( z )  T r ( J j q ) ( , ( z  + hw + i8 )J , . {~q) d( z ) )

-  £  (I: f ( z )  Tr(Jll( q ) G ( z ) J l.( —q )G (z  -  tiu) -  f<5)) j



In tro d u c in g  fo r  m a tte rs  o f  convenience the  q u a n tity ,

V ( q : * „ z 2) -  - ^ 7 > ( 7 A1( q ) G ( z l ) j ; , ( - q ) G ( r : )) (85 )

_  _  _  (oO)

SM,.(q; = -rM(q: Z\, Zi Y = V ( - q ; z 2 ' z i ?

because o f  the re fle c tio n  sym m etry  fo r  the co n to u rs  C and C ,  Eq. (8 4 ) can be w r it te n  as

- ^ . ( q .  ttr) = ^  d z f ( z )  ^ , , ( q ;  z +  hio + iS , z)  -  ^  c/z / ( z )  ^ . ( - q ;  z -  hio +  18, z)  j
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■v'
2i Sr E  ( - fLM;=k + hw + i8 , z k ) + :Lllv( - q ; z k -hu> + i8 , z ky )  (87 )

k= .V, I

2.3.5. In tegration  A long the Real A x is : The L im it o f  
Zero  L ifetim e B roadening

D e fo rm in g  the c o n to u r C to  the rea l axis such th a t the c o n tr ib u tio n s  fro m  the M a tsubara  
po les van ish and using  the re la tio n s  in Eq. (86 ), Eq. (87) tr iv ia lly  reduces to

^ ,.(q ,  nr)= f  d£ f(e ){ lfJLr(q:£ + h<o + iSy£ + iQ)~-ltlr(-q;s+ri(o + i8,£-i())}
j

-  I d e f ( s )  —/S ) —S /ur( “ q ;e  +  / 0 , e - f i w - / S ) }  (88 )
»' -  X

o r, by in se rtin g  the  d e fin it io n  o f  S ^ ,,(q ; z {, z 2),

-/„.(q- = ~J~j7 f  de f ( e ) \T> {J,(q)C;{F. + hio + i8)Jr{-q)G+(e))

-  T r ( . ( - q ) G’ (e  +  hw + i8)Jr (q)G (e))

-  Tr(J/, (q)G~(e)7, , (—q)G( E -  hw -  i8 ))

+  7 V (./u( - q ) G f (e )J ,,(q )G (£  -  hw  -  / 6 ) ) j  (89 )

w here  G 4‘ (e ) and G  (e ) are the so-ca lled  u p - and dow n-s ide  lim its  o f  the reso lvent

d ±(e) =  l im  C (e  dh /0 ),  G ^ e ) 1 =  G T (e ) (90 )
«—+<»

By ta k in g  the l im it  5 —» 0, Eq. (89) reduces to

X „ , , ( q ,w )  =  ~ 2 ~ y  j  d e f ( E ) { T r ( J ll( q ) G ' ( e  + h w) J l, ( - q ) G +(£))

-  r r ( 7 M( - q ) G +(e  +  M £ ( q ) G - ( e ) )

- 7 ’r(7M(q)G-(e)7;.( -q)G-(e-fi«) )

+  7 > ( ^ ( - q ) G + ( f i ) ^ , ( q ) G  (£■■ -  hw)) \  (91 )

w h ich  fo r  q =  0 y ie lds

± „.(<;) =  - - L  f  ( / e / ( e ) { 7 > ( 7 MG " ( £  +  f tw )y ;. |G + ( £ ) -  G  (e )J ) (92 )
— n V  J -  -v

+  7 -/(7 J G  ( e ) - G  ( e ) R C - ( e - f t w ) ) }  (93 )
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2 .3 .6 . The S tatic  L im it
In  o rd e r to  o b ta in  the co rre c t ze ro -fre q u e n cy  c o n d u c tiv ity  tenso r, E q . (8 9 ) has to  be used 
in  E q. (6 8 ). M a k in g  use o f the  a n a ly tic ity  o f  the G reen  fu n c tio n s  in the  u p p e r and lo w e r 
co m p le x  sem ip lanes th is  then  leads to  the  fam ous Kubo-Luttinger formula  [5, 6 ],

h
<V 2 t tV  J

f  d s f ( s )
J —oo

X T r ^ j J C~ ^ l [ G +(F.) -  G-(b)]  -  7 , [ G + (e )  -  G ~ (94) 

In te g ra t in g  by pa rts  y ie lds

= - f  c l e ^ S ^ e )  (95)

w ith

h r‘
' =  “  2 ^ v  L cl s '

X T r ^ ^ ^ l i c r  (s’) -  C-(e')] -  . / J C ’fe) -  G~ j  (96)

w h ich  has the m ean ing  o f  a z e ro -te m p e ra tu re , energy dependen t c o n d u c tiv ity . For 7" =  0, 
(jfxr is o b v io us ly  g iven by

' V  =  s ^ - ( E f )  ( 9 7 )

A  n u m e r ic a lly  tra c ta b le  expression can be o b ta in e d  o n ly  fo r  the diagonal elemerts o f  the 
conductivity tensor, the so-ca lled  Kubo-Greenwood formula  [7 , 8] fo r  the dc-conduc tiv ity  at 
f in ite  te m p e ra tu re s ,

CTnn = ~ 4^i7  I  ^ de(~ ) 7>( ^ I ^ f(e) ~ G'(e)]7M[G+(fl) -  G~(e)] (98)

w h ich  a t T  =  0 te m p e ra tu re  obv ious ly  can be w r it te n  as

h

h

=  - 4 ^ y T r { J J G ~ ( E h ' ) ~  G " ( £ f ) ] ^ [ ^ ' ( £ I-) -  G  ( / • ' / ) ] )

n V  Tr(Jltlm  G  ( E f  )./MIm  G + ( E , ))  (99)

R e ca llin g  f in a lly  the spec tra l re so lu tio n  o f  the reso lven t,

lm  G + (« )  =  - 7 7 ^  \ n)(n\ 8 (e -  e„) (100)
n

it is easy to  see tha t Eq. (9 9 ) is id e n tica l w ith  the o r ig in a l Greenwood equation [7],

' V  =  y -  £  - C "  5 ( £ '/ -  £ ») « ( £ V  -  e » .)  (1 0 1 )
nm

E q u a tio n  (94), how ever, can also be re fo rm u la te d  as fo llo w s ,

' V  =  2 ^ r  /  .  f / e / ( £ )  (£ )  + - )

ft / -  , / ^ cIG" { f. ) ~ ~  ~ d C r ( e ) \
2 —  I  ^ < / , . / ( « >  f r ( j , i y , . G  ( s )  +  ^ G -  ( , ) . / ,  - - - )

( * ) )

h 
2 t t I  '

f  </£./'(«) 7v (y ; -LĜ J rG' (>■:) + JltG ( £ ) y ; . - ^ ~  ) (102)
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nam ely in te rm s o f  an expression w h ich  is s im ila r lo  tha t o f  B a range r and S tone [9 ], but 
c le a rly  can be cast in to  a re la tiv is t ic  fo rm . T h is  expression is o f  p ra c tica l re levance reasonable 
i f  conductances have to  be ca lcu la ted .

3 . G R E E N ’S  F U N C T IO N S  A N D  S C A T T E R IN G  P A T H  O P E R A T O R S

In  the  fo llo w in g , o n ly  a ve ry  b r ie f  sum m ary  o f  m u ltip le  sca tte ring  is g iven. F o r a d e ta ile d  
trea tise  on th is  to p ic , the re a d e r is re fe re d  to  a ve ry  recent b o o k  [ 10] by some o f  the au tho rs  
o f  the  c u rre n t a rt ic le  th a t co n ta in s  a lso so-ca lled  fu ll-p o te n tia l approaches no t cons idered  
here.

Suppose the  p o te n tia l in Eq. (1 ) can be p a rt it io n e d  in to  n o n -o ve rla p p in g , sphe rica lly  sym 
m e tric  p o te n tia ls  Vr  cen te red  at la ttic e  p o s itio ns  R ; , / =  I . . .  N ,

.v
K(r) =  £ K ,( r , ) ( r ,  =  r - R , )  (103)

1=1

( V  (rt) i f  | r  | <  S,
Vi(ri) = {  . (104)

(co n s ta n t o therw ise

w here  N  denotes the  n u m b e r o f  sca tte re rs  in the  system. F o r n o n -o ve rla p p in g  spheres th is  
re fe rs  to  the so-ca lled  nutffin-tin a p p roach  and S, is ca lled  the nuiffin-tin radius o f  the /th  
sphere. In  the so -ca lled  a to m ic  sphere  a p p ro x im a tio n  (A S A ), the spheres are chosen to  
have the same vo lu m e  as the W ig n e r-S e itz  ce ll, thus they ove rla p  s lig h tly , the e ffe c t o f  
o ve rla p p in g , how ever, is neg lected . In  the  reg ion  betw een the spheres the p o te n tia l is a 
cons tan t, co m m o n ly  set to  zero .

3 .1 . S in g le -S ite  S c a tte rin g

In  the absence o f  e ffec tive  fie lds, the  Kohn-Sliam-Dirac equation is o f  the fo rm  [ l l ,  12],

/  ............  / d  1 I —  W

h  m  =

( V ( r )  + m c 2) h  c<T (  7— b   f3K ]\  dr r r J
, (  d 1 I - - \« r , ( -  + -------p K)  (V( r) -mc- ) I2

V \ d r  r r  )  /

w here  c  is the speed o f  lig h t, &, =  r  &  w ith  r =  r / | r | ,  W  is the to ta l energy o f  the p a rtic le ,

I I 7 ■* 1 "> -IW~ — p~c~ -f- n r c

w ith  p  be ing  its m o m e n tu m  and

-  .  ~  ~  - (I  0  \
K  =  it L 4- h i 2, and =  I (106)

V» -V
T he  w a ve fu n c tio n  |i//) can be d e co u p le d  in to  tw o  b i-sp ino rs : |i(f) = \</>, x)-  T h e  to ta l a n g u la r 
m om en tum  o p e ra to r  is d e fin e d  as J =  L +  S, w here  L is the a n g u la r m o m e n tu m  o p e ra to r 
and S =  }-k& is the sp in  m o m e n tu m  o p e ra to r. T h e  e ig e n fu n c tio n s  o f  J 2 and

P\<}>) =  h 2j ( j  +  1)1 <f>), T -\x )  =  h 2j ( j  +  1 )1^) ,  j  =  I ±  ^  . . . ,

!((/;) =  7 . j * )  =  h i i \ x ) ,  m =  — j ..........j .  (107)

=  -h K \( l> ) .  k \ x ) = h K \ x ) .  «  =

are the so-ca lled spin spherica l h a rm on ics ,

|K-M) =  I 0 =  y  c l l . j .  -*•)<!»,. I - K . f i )  =  \Q) (108)
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w h e re  the C ( / , y \  1 /2 \/i — .v, .v) deno te  Clebsch-Gordan coefficients [13 ], |L fx  — s) complex  
spherical liar mot i ics,

(I,  i± -  ,v|f) =  Y7 -'(/••) and < r|/, j i  — s) — 

and the  4>v are the  fo llo w in g  spinor basis functions  [11 ],

(109 )

I t  shou ld  be no ted  th a t in  the so-ca lled  w e a k -re la tiv is tic  lim it,  the fo llo w in g  a p p ro ich  is used,

P-£ = W  — m e 2 = y p 2c2 +  m 2cA — m e 2 ~  i —  <<C m e
m

(110)

3.1.1. Free-Space G reen's Functions
T h e  n o n re la tiv is t ic  G re e n 's  fu n c tio n  o f  a free e le c tro n  in  an g u la r m o m e n tu m  rep*esenta tion  
can be w r it te n  as

( I ' ” ' 1 (e.  r , r') =  ^ i p  J 2  .// (  )  h'i ( t r )  >7(>' ) ( 111)

w here  L  =  ( / ,  m ) , r  =  m in ( r ,  /•'), r =  m a x ( r , /*'), and h f  == j f ±  in t is a sp h e rca l H a n ke l 
fu n c tio n  w ith  j, and n { be ing  sphe rica l Bessel and N eum ann  fu n c tio n s , respective ly [14 ]. In  
the re la tiv is t ic  case the  G re e n ’s fu n c tio n  o f  a free e le c tro n  in  an g u la r m o m e n tu n  represen
ta tio n  is o f  the fo rm

e  +  2 m  c
r, r') =  - i p — — :i—  r ) / / o ( £ ,  r' ) '0(r '  -  r) +  H* ( e ,  r ) j £ ( e ,  r ' ) ^ ( r  -  r ' ) ]

w ith

F0 ( e . r) =
) ( Q \ r )

> S«PC , - ( P r
£  +  2 m e - '  \  hT.//I V )«?!?>

( 112)

(113)

and

Fq ( e , r) .//(  h  ) • . 2 m c -  "  \  h, S k P C - M  ~  ) < r |Q ) (114)

w ith  f  d e n o tin g  spherica l Bessel-, N e u m a n n -, o r H a n ke l fu n c tio n s . A  gene ra l so lu tion  o f 
Eq. (105 ) can be w r it te n  as

R(e .  r) =  y j  R L>(r., r) =  £
Q O

a s o lu tio n  ou ts ide  the b o u n d in g  sphere as

R (J( s ,  r) =  r) -

i f j e ,  r)< £ > jr) 

, }  (£ -  r ) f fJ l ; ( £ )
y

w here  t (r^ { F )  is usua lly  ca lled  singlc-sitc I-matrix,

l<n>(p) = i d ' r  I d ' r  J,', (S* r")t{e. r ,  t ) J 0 { e .  r )

(115)

(116)

( U 7 )
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w h ich , fo r exam p le , fo r  nonm agne tic  systems and t: > 0  can easily  he ob ta in e d  fro m  the 
be low  m a tch in g  c o n d itio n

gK( e , r )  =  c o s 8K( E ) j , ^ ~ ^  -  sin 5K( e ) / / , ^ y  ^ (118)

>') =  I>SK

at the m u ff in - t in  ra d iu s  5 ,

cos 8K( e ) j ] ( ^ Y  j  -  sin 8K(e)n j y  — (119)

tan 8 (e) = L ^ S ) M p S / h )  -  PS J j{PSJh)  (120)
L k(s . r ) n , ( p S / h ) -  p S Kn , ( p S / h )

L , ( e ,  5 ) =  (121)
£ k ( £ - 5 )

3.7 .2 . Scattering Solutions
T h e  so-ca lled  ( re g u la r)  sca tte ring  so lu tions  are d e fin e d  as fo llo w s

Z ( c ,  r )  =  r )  =  £  r)t^}Q(e)  (122)
Q Q'Q

z q ( £ i r ) =  r ' ) ^ ( « )  +  / ^ ( c ,  r ) ( 1 2 3 )
C>'

w here  ^ ( z )  usua lly  is te rm e d  reactance

K [,',, (£) = ![,[,■ (e )  -  (124)

K ( e ) =  /C ’ ( e ) (125)

3 .2 . M u ltip le  S ca tte rin g

3.2.1. Scattering Path Operators
T h e  an g u la r m o m e n tu m  re p resen ta tion  o f  the  so -ca lled  sca tte rin g  pa th  o p e ra to r is given 
by [15]

4 o ( e)  =  ‘Q Q -W ij  +  E  £  / U < e ) ^ ( « > TG ^ ( e ) (126)
k l i Qi Q:

w here  the  re la tiv is t ic  s tru c tu re  constants

C« M  = £c(/. /. »)cK(«)c(f. /. i M -v . .v  (127)

r ; ; ; ' ( £ . r, +  r ;,  r ; +  r , )  =  £  jl {B, r , ) G ^ . ( e ) j ; . ( e ,  r ;.) ( 128)

are o b ta in e d  fro m  the  n o n re la tiv is tic  ones

A(£< r , ) C " "

In  here, the n o ta t io n  G ^ /^ e )  =  Gl)u / (e,  R; -  R,) is a p p lie d , R, and R, d e n o tin g  the  p o s itio n
vec to rs  o f  sites / and /, and / ^ ( e )  re fe rs  to  the  r -m a tr ix  a t s ite  R,, and

G ^ . ( e ,  r )  =  -4Tri'M ' p j : C Iu , i - l"hL..(s,  r )  (129)
/ / '

(I.) = f  d r Y L( r ) Y ; . ( r ) Y L..(r) (130)

. / / . ( «• r ) ) y, / . ( ' : ) '  i / . ( £ ’ r ) =  7 / ( ^ - ) y /* ( ' ')  ( 1 3 1 )

w here  the C/-7 are the so-ca lled  G a u n t co e ffic ie n ts .
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3.2.2. G reen's Functions
T he G re e n ’s fu n c tio n  in  the case o f  an ensem ble  o f  sca tte re rs  can be d e fin e d  n te rm s  o f  
the sca tte rin g  p a th  o p e ra to r and  sca tte ring  so lu tio n s  as

G ( e ,  r , ,  r ' )  =  £  [ Z ‘Q ( e .  r i ) t ^ (J, ( e ) Z jq , ( £ ,  r ) f  -  8 ij8 Q Lr( 6 ( r i -  r ' ) Z ' 0 ( E ,  r ; ) / [ r  e , r , . ) +
Q. Q'

+  6 > ( r ; - r J / ' , ( e , r ; ) Z '?. ( e , r |.) t ) ]  (132)

w here  Z ^ ( e ,  r) and /[> (e , r )  deno te  the  re g u la r and irre g u la r  sca tte r in g  so lu tons  o f  the  
D ira c  e q u a tio n  in  ce ll / and— as shou ld  be re ca lle d — at the  m u ff in - t in  rad ius  o f  he / th  ce ll 
(S,) the  fo llo w in g  re la tio n s  have to  be sa tis fied ,

Z q (£< Sj) =  ^  s i) ~  *Ph q ^  S>) (133)
Q'

liJ ( e , S i) = J(J( e . S i ) (134)

3.3 . K K R  M eth o d  fo r Layered  S y s te m s

Layered  systems are systems w ith  (a t least) tw o -d im e n s io n a l tra n s la tio n a l symm etry. In  the 
case o f  a surface o r  an in te rfa ce , the tra n s la t io n a l sym m etry  is “ b ro k e n ”  a lo n g  the d ire c tio n  
“ p e rp e n d ic u la r"  to  the p lane. Suppose such a layered system co rresponds  to  a p a n n t in f in ite  
(th re e -d im e n s io n a l p e r io d ic ) system co n s is tin g  o f  a s im p le  la ttice  w ith  o n ly  on t a to m  pe r 
u n it ce ll, then  any la ttice  site R /;, can be w r it te n  as

=  C /; +  T ,; T , e L 2 (135)

w here  Cp is the  “ spann ing  v e c to r"  o f  a p a r t ic u la r  layer p  and the  tw o -d im e n sn n a l (re a l)
la ttice  is deno ted  by L ,  = { T , } w ith  in -p la n e  la ttice  vecto rs  T ( and w he re  the co re s p o n d in g
set o f  ind ices is I t  shou ld  be n o te d  th a t C /; no t necessarily  has to  be p e p e n d ic u la r
to  the p lanes o f  a tom s, e.g., in a body ce n te red  cub ic  (B C C ) la ttice  fo r  (O O l)-panes Cp =  
p a -  ( \ ^ ) ,  w he re  a is the th re e -d im e n s io n a l la ttice  cons tan t.

T he  rea l-space s tru c tu re  constants are now  de fined  by

GZ(e) =  £.,(*♦ -  R J = £*,(*. Cr + T, -  Cq -  T ;) =  T, -  T )

=  7 7 'k " •  "  (136)
i I n /  J BZ

w here  i \ liZ deno tes the vo lu m e  (a re a ) o f  the  tw o -d im e n s io n a l B r i l lo u in  zone, and he sym bol 
“ h a t”  deno tes a laye r-in d e xe d  q u a n tity ; the  tw o -d im e n s io n a l la ttice  F o u r ie r  transfo rm  o f  the 
“ re c ip ro c a l”  s tru c tu re  constan ts  is s im p ly  g iven  by

G ; ; % A ;) =  E £ ? V . T > ' k r- ( 137)
r

In tro d u c in g  the  b e low  m a tr ix  n o ta tio n .

Z(e) =  { f /;(e )5 /7i;} .  G ((£, k |;) =  k | )}, | ( « ,  k ( ) =  { i /)(/(fi , k,;) }  (138)

the so -ca lled  K K R  (K o rr in g a -K o h n -R o s to k e r )  e q u a tio n  can be w r it te n  as

| ( e .  k  ) =  ( L ' \ e )  -  G ^ e ,  k , ) )  ' (139)

3.4. T h e  S cre e n e d  K K R  M ethod  (S K K R )

For systems c o n ta in in g  several a tom s p e r u n it ce ll as w e ll as fo r  layered  s tru c tire s  severe 
co m p u ta tio n a l d iff ic u lt ie s  arise fro m  the lo n g  range b e h a v io r o f  the s tru c tu re  co is tan ts . For 
such systems, t ig h t-b in d in g  (T B )  m ethods seem to  be b e tte r  su ited . H o w e ve r, it ca i be shown
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tha t by app ly ing  a so -ca lled  screen ing  tra n s fo rm a tio n , the K K R -m c th o d  can he tra n s fo rm e d  
in to  a T B  fo rm  [1 6 -1 8 ]. In  R ef. [17], fo r  exam ple, a re ference system is suggested w ith  a 
constan t repu ls ive p o te n tia l V ,  de fined  w ith in  n o n -o ve rla p p in g  m u ff in - t in  spheres and zero 
o the rw ise . In  the fo llo w in g , r- in d e xe d  q u a n tit ie s  re fe r to  the re fe rence  system and q u a n titie s  
w ith o u t such an index to  those o f  the physica l system, the co rre sp o n d in g  Green's function 
matrices be ing  de fined  by the  be low  D yson  equa tions

g ( e )  =  £ , ( £ ) ( /  -  L ( e ) g , ( £ ) ) ■ ,  g r(e) = g }(e) (L ~  Lr( e ) g ,(<?))-' (140)

F u rth e rm o re , in d e fin in g  the  d iffe re n ce  o f  the inverse o f  the ^ m a tr ic e s  as

i ^ ( e )  = L ( e ) - L r(s)  (141)

and the  screened sca tte rin g  pa th  o p e ra to r as

i A( f ')  =  U A' ( fi) - £ ' ' ( « ) ) " ’ <1 4 2 )

the unscreened (phys ica l) sca tte rin g  pa th  o p e ra to r can be ca lcu la ted  fro m  the  screened one 
by using  the  fo llo w in g  inva riance  p ro p e rty  [17]

g ( e ) = L  ' ( e ) z ( e ) r ' ( £ ) - L  ' ( e )  = i A , ( e ) i i ( e ) r , (e )  -  r ' ( e )  (143)

1 (e ) =  [ L ~ t ; ( e ) L - \ e ) ] z ^ e ) [ L - r \ e ) t J ( e ) ]  + [ a B ) - L r(e)L-x{B)Lr(e)] (144)

In  the tw o -d im e n s io n a l la ttice  F o u rie r tra n s fo rm  o f the  screened sca tte rin g  pa th  o p e ra to r,

h . Ml e ' kn ) = [ ( ( i j  ' ( f i ) - £ ( e * ki|))’ l}p, (14-s )

how ever— because o f  the screen ing— G r is o f  b lo c k -tr id ia g o n a l fo rm , the  b locks be ing  re la ted  
to  so -ca lled  p r in c ip a l layers th a t co n ta in  n a to m ic  layers (n > 3). I f  these layers fo rm  the  to p  
o f  a s e m i- in fin ite  b u lk  (su b s tra te ) o r are  s itu a te d  betw een tw o  s e m i- in fin ite  b u lk  systems, a 
so -ca lled  surface G reen  fu n c tio n  m e thod  [16] has to  be a p p lie d  to  ensure  p ro p e r bou n d a ry  
c o n d itio n s . T h e  real-space physica l r -m a tr ix  is then  o b ta in e d  firs t by p e rfo rm in g  the fo llo w in g  
B r i l io u in  zone in te g ra l,

I a ( £ - ~  R „ /)  =  j  d 2k ^ pll( e ,  k  )<’ k ,1‘ r ' ) ( 1 4 6 )

and subsequent use o f  the  tra n s fo rm a tio n  de fin e d  in E q. (144). I t  shou ld  be no ted  tha t 
in  p r in c ip le  fo r  a tw o -d im e n s io n a l tra n s la tio n a l in v a ria n t m e d iu m  the  physica l rea l space 
r -m a tr ix  is in p r in c ip le  d e fin e d  by

=  _ L  f  (f k d ' u' (e,  k l|) « r 'k i'(T," T j’ (147)

3 .5 . T h e  E m b ed d in g  T e c h n iq u e

A  fin ite  cluster is de fined  as a g e o m e trica l a rra n g em e n t o f  a set o f  sca tte rers. L e t denote  
the  set o f  the p o s itio n  vec to rs  o f  sites in  the c lus te r,

> = { R , } ,  / =  1 , . . . , / V  (148)

w here  N  is the n u m b e r o f  a tom s in the c lu s te r, and C v a co rre sp o nd in g  set o f  s ite -ind ices

Cs  =  { / |R , € ( .  i = l .........N }  (149)

Because fo r  the host system (substrate) the  p o te n tia l is g iven by

I/hos,( r )  =  X : K hos,( r , )  (150)
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and fo r  an embedded cluster by

[ K h"sl( r , )  i f / g C v  
| / dus(r) =  1̂ , (r ,), K,L us(r,) =  I ' (151)

\ V i ( r , )  i f  i e  C,v

the  single site ^-m atrices o f  the p e rtu rb e d  system are o f  the  fo rm ,

, U L , ( £ )
4 i J e > =  . . . .  . ( 152)

' 'm p ( e )  i f / e C

I t  is im p o rta n t to  em phasize th a t by p e rfo rm in g  rea l space em bedd ing , a c luster usua lly  
con ta ins  the  inves tiga ted  im p u r ity  atom s, som e sites fro m  the host m a te ria l (and em p ty  
spheres (va cu u m ) in the  case o f  a surface o r  a n a n o co n ta c t). In  p r in c ip le  accord ing  to  the  
above c lass ifica tion  all l / ,mp, / jmp are d iffe re n t.

T h e  K K R -e q u a tio n  fo r  the  u n p e rtu rb e d  and p e rtu rb e d  systems are then  g iven by,

I ~ l ( e )  = r \ ( e ) - O l E ) ,  r  1 (e )  =  r ] (e ) -  G (e)  (153)
—host —lit »si — 0 —elus —cl us — • *

respective ly , w ith

1 (e )  =  { x " ( « ) }, T " (e )  =  { r ' i y , ( e ) } ,  t=(e)  =  { / '( e ) 6 „ ■}, / ' ( e )  =  \t'QU.(e)} (154)

D e fin in g  the  fo llo w in g  q u a n titie s

' ( f i ) =  V

A r '( e )  1 =

fro m  Eq. (153), one then  o b ta ins

0, i f  / i  CN (155)

/-h„s,(£ ) 1 - C p ( £ ) - 1 ' i f '  G  C v

k k> >

=  I ' 56 )

w h ich  in ve rte d  f in a lly  leads to  the  b e low  embedding equation ,

k J £) = H  ' ( * K J e )T '  =  O 57 )

I t  shou ld  be m e n tio n e d  th a t fo r  a single impurity at site /„  the above e m b e d d irg  equa tion  
reduces to

i ' " " ( £ ) - -  a ‘2 t > ) ] -  1 =  i ; : ; > ) # ,,( * )

= [L -  •] • D '- ( e ) T ^ " ( e ) (158)

3 .6 . T h e  C o h e re n t P o ten tia l A p p ro x im a tio n

3.6.1. C onfigu rational Averages
Suppose a b ina ry  b u lk  a llo y  is o f  co m p o s itio n  A , B, . w ith  cA =  c be ing  the concen tra tion  o f 
species A  and cB — ( I — c) the c o n ce n tra tio n  o f  species B. F u rth e rm o re , suppose the to ta l
nu m b e r o f  a tom s is ,Y and the num ber o f  A  a tom s and B atom s N A and re jpec tive ly ,

N  =  N  , +  N„. /V , =  r./V , N h =  ( l -  O N  (159)
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A  su b s titu tio n a l b in a ry  a llo y  re fe rs  to  a system w ith  no p o s itio n a l d iso rd e r, a ll a tom s arc 
p laced ( fo r  m a tte rs  o f  s im p lic ity )  in the  pos itions  o f  an u n d e rly in g  idea l s im p le  la ttice  J 
w h ich  is cha rac te rized  by the set o f  ind ices, I( J ). A ssu m in g  th is  k in d  o f  d iso rd e r, the p o te n 
tia l can be w r it te n  as

V(r )  = £  K ( r , - R , )  (160)
/€=/( J )

K(r,  -  R, )  =  ,(r,. -  R,)  +  (1 -  £ ) M r f -  R,) (161)

w here  £,• is an o ccu p a tio n a l v a ria b le  such th a t £,■ =  1 i f  s ite  R, is occup ied  by species A  and
— 0 i f  th is  site is occup ied  by species B. F o r a co m p le te ly  ra n d o m  a llo y  the p ro b a b ility  fo r  

£, =  1 is c .t and c o rre sp o n d in g ly  fo r  £,• =  0 the p ro b a b ility  is cB. In  E q. (161), — R ,) and
M r #- R / )  are the in d iv id u a l (e ffe c t iv e )  p o te n tia ls  o f  species A  and B a t site R ,, respective ly . 
T h e n  {£ , | / e / ( i ) }  is one p a r t ic u la r  a rra n g em e n t o f  a tom s A  and  B on the  pos itions  o f  J . 
Such an a rrangem en t is ca lled  a configuration. Q u ite  c le a rly  fo r  one  p a rt ic u la r  co n fig u ra tio n  
the K o h n -S h a m  e q u a tio n ,

{ £ } )  =  « ,, { U < M  M f , - } )  ( 1 6 2 )

w here  H  is the H a m ilto n ia n  o f  the  system and n labe ls the  e igensta tes, can be solved using 
s tanda rd  techn iques. O bservab les, how ever, in genera l do n o t m ap a p a rt ic u la r  c o n fig u ra tio n  
bu t an average o ve r a ll co n fig u ra tio n s . L e t { A nn-) be the c o n fig u ra t io n a lly  averaged m a tr ix  
e le m e n t o f  a H e rm it ia n  o p e ra to r  A.  T hen

< A ,„>  =  I l P U m t n m M A t i } )  (163)

w here  / * ( { £ , } )  is the  m ic ro ca n o n ica l p ro b a b ility  fo r  a p a r t ic u la r  c o n fig u ra tio n  {£ ,} .  In  the 
above equa tions  it was assumed th a t the o ccu p a tio n a l p ro b a b ilit ie s  fo r  d iffe re n t sites are 
inde pe n d e n t fro m  each o th e r, th a t is, th a t

=  e  / j,■(£■) = 1
(164 )

( Z , ) ^ P i( \ )  = c,  (1 0 ) =  1 — c

O b v io u s ly  the ca lcu la tio n  o f  averages such in  specified  Eq. (163 ) is g re a tly  s im p lifie d  by 
d ire c tly  c a lcu la tin g  the  c o n fig u ra tio n a lly  averaged G re e n  fu n c tio n  ( G + (e , r ,  r ' ) )  fro m  w h ich  
typ ica l o n e -p a rtic le  physica l p ro p e r tie s  can im m e d ia te ly  be o b ta in e d .

Restricted ensemble averages, d e n o te d  by ( . . .  ) (,=M), have the  fo l lo w in g  m ean ing : in ce ll i the 
o c c u p a tio n  is fixed  to  a tom  a ( a  e  {A , B})  and the  ave rag ing  is re s tr ic te d  to  a ll co n fig u ra tio n s  
fo r  the  re m a in in g  N  -  1 sites. By using  re s tr ic te d  ensem ble averages the  c o n fig u ra tio n a l 
average is p a rt it io n e d  in to  tw o  subsets, fo r  w h ich  the  fo llo w in g  c o n d itio n  has to  be sa tisfied,

<G+(£, r,, r,)> =  X] (V,<G+(£- r , ’ r,)>(;W) (165)
(■re{/I. H)

3.6.2. The CPA Single-Site Approximation
In  the  so-ca lled  s ing le -s ite  a p p ro x im a tio n  to  the c o h e re n t p o te n tia l a p p ro x im a tio n  (C P A ), 
short-range-order effects are e x p lic it ly  exc luded . M u lt ip le  sca tte rin g  e ffects, how ever, are 
im p lic it ly  inc luded  since the s ing le -s ite  a p p ro x im a tio n  is based on  the idea o f  a s ing le  scat- 
te re r im m ersed  in an average m e d iu m , th a t is, on the ve ry  concep t o f  a “ m ean fie ld  th e 
o ry ."  F ro m  the  d e fin it io n  o f  the  sca tte rin g  pa th  o p e ra to rs  fo llo w s  th a t fo r  a b ina ry  (b u lk )  
system A ^B ,..,. (s im p le  la ttice , one  a tom  p e r u n it c e ll)  the  re s tr ic te d  averages ( r ,,( e ) ) (/s=:(Y), 
a  e {A .  B).  have to  m ee t the  c o n d it io n .

c ( l " ( e ) ) Ur__A) +  (1 -  c ) ( T n ( e ) ) {iTsli) =  ( t " ( s )) (166)
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Because (166) is va lid  fo r  a ll s ite  ind ices / e I ( J ) ,  it  is s u ff ic ie n t to  re s tric t th is  equa tion  
to  / =  0 (0  =  o r ig in  o f  the u n d e rly in g  la ttic e ) fo r  a b u lk , o r— m o re  genera l— to  i = pO ( pO, 
o r ig in  o f  the  pth  layer, V p)  fo r  layered systems.

F o r a g iven set o f  n a to m ic  layers, c o n ta in in g  also d iso rde red  layers, the so-ca lled cohe r
en t sca tte ring  pa th  o p e ra to r r . ( s )  is g iven by the  fo llo w in g  tw o -d im e n s io n a l B r i llo u in  zone 
in te g ra l,

.pi.iD
(e) n

f  c - ik ■cr,-Ti )i P , ( e > k  ) d i k
JftX

(167)
HZ H /

w here  pi  and qj  deno te  site i in layer p  and site  j  in laye r q , respective ly. M o re o ve r, 
f ' ;</(£ , k j|) is the  ( p q )- th  b lo ck  o f  the su p e rm a trix ,

t  (e , k,,) =  [ Z ( e ) 1 - £ ( e , k n ) ] (168)

E q u a tio n  (167) im p lie s  tw o -d im e n s io n a l tra n s la tio n a l inva riance  o f  the cohe ren t m ed ium  
fo r  a ll layers u n d e r in ve s tig a tio n , tha t is, tha t in each layer p  fo r  the coheren t s ing le-site  
/-m a tr ic e s  the fo llo w in g  tra n s la tio n a l in va riance  applies,

I T ( « )  = ' f V )  =  £ T ( e ) ;  v '  e  / ( / - : )

U sing  again supe rm a trices  fo r  a b e tte r v isu a liza tio n ,

(169)

I  ( e )  =

0

t i e )

0  L ( b )

(170)

and

L (e)  =

:PI
’( £ ) TP" ( S

7 ; " ( e )  r f ' ( e )

p.  q =  1--------n (171)

q u ite  c lea rly , a p a r t ic u la r  e le m e n t o f  t (e ) .

(172)

re fe rs  th e n  to  the u n it ce lls  a t the  o r ig in  o f  L 2 in  iayers p  and </. Suppose now, in  general, 
the  c o n c e n tra tio n  fo r  c o n s titu e n ts  A  and B in layer p  is deno ted  by ca(p — 1, . a e 
{ A , B } ) .  By d e fin in g  so -ca lled  im p u r ity  m atrices, see a lso Eq. (159), tha t specify a single 
im p u r ity  o f  type a  in  the  tra n s la tio n a l in v a r ia n t cohe ren t host fo rm e d  by laye r /?, as

=  [ /  -  t '. ’" l’,)( e ) n ^ ( e ) }

D J e )  =  T f ' ( E )  =  [ /  -

(173)

(174)
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m ^ ( e )  = m%{e) =  /» ' ’(£ )  =  / ' ( £ )  1 - / ' , ’ (£ ) ' (175)

w here  [P(s)  is the s ing le -s ite  /-m a tr ix  fo r  co n s titu e n t a  in layer /;, the  cohe ren t sca tte ring  
pa th  o p e ra to r fo r  the  in te rfa ce  reg ion , f  ( s)  is o b ta in e d  fro m  the fo llo w in g  inhom ogeneous 
C PA  c o n d itio n ,

Z !\ e ) =  E  c ; d pr(e))p.a (176)

( ? P{e) )n.u = Z P(*) =  2 £ ( * ) l T ( * )  =  l T ( ® ) 2 I ( e )  (177)

th a t is, fro m  a c o n d it io n  th a t im p lie s  so lv ing  simultaneously a laye r-d iagona l CPA c o n d itio n
fo r  layers p  =  1......... //. O nce th is  c o n d itio n  is m et then  tra n s la tio n a l inva riance  in each layer
u n d e r c o n s id e ra tio n  is achieved,

( l Pl\ e ) ) IKa a  =  < r / - / - ( ^ ) > (/>iWl),
( 17o)

V / e I ( L 2)> p  — I , . . . , / ?

A s  be fo re , re s tric te d  ensem ble averages can be v iew ed  as e m b e d d in g  an a tom  o f  type a  in to  
the  tw o -d im e n s io n a l tra n s la tio n a lly  in v a ria n t co h e re n t m ed ium ,

(Tr"'p" (e ) ){pl]=lx) =  S T { s ) ^ ( b ) = (179)

S im ila r ly , by sp ec ify ing  the o ccu p a tio n  on tw o  d iffe re n t sites the  fo llo w in g  res tric ted  averages 
a re  ob ta in e d ,

p  ±  q: { T ^ ( e ) ) lpi=a^ P) = (180)

P = <h i *  j: =  (181)

w here  (r|[■/, '/y( e ) ) ( /, ^ tt. f/y=^) has the m ean ing  th a t s ite  (su b ce ll) pi  is occup ied  by species a  
and site  (su b ce ll) cjj by  species (3.

4 . A  P R A C T IC A L  G R E E N ’S  F U N C T IO N  F O R M U L A T IO N  
O F  E L E C T R IC  T R A N S P O R T

4.1. Nonlocal Conductivity
A  p rac tica l expression  fo r  the d iagona l e lem ents  o f  the n o n -lo ca l c o n d u c tiv ity  tenso r can be 
o b ta in e d  by re w r it in g  Eq. (9 9 ) in  te rm s  o f  G re e n ’s fu n c tio n s ,

^  =  - 4 ^ T  L  d ' r'n L  d ir<jT r ( W G+( E r ’ r , " ’ r ' J  ~  G {E >- rp>’ W

x  J/1[G+(Ei,\ rqj, rpi) -  G (E,.; rqj, r , ,, ) ])  (182)

w he re  p  e  { x ,  y\  z } ,  N (] is the  to ta l n u m b e r o f  sites o f  a system o f  to ta l vo lu m e  V = N$Vat 
(assum ing  no la ttice  re la xa tio n , thus Vat is the  same fo r  a ll s ites) w ith  G ±( E F■; r;)/, r 'lf]) re fe r- 
in g  to  the up- and dow n-s ide  lim its  o f  the G re e n ’s fu n c tio n . T h e  in te g ra t io n  is ca rr ie d  o u t 
o ve r the  i th  u n it ce ll in  laye r p , f t  •, and the  j -th  u n it  ce ll in  laye r q , f t^ -  and Tr  denotes the 
trace  o ve r fo u r-c o m p o n e n t sp ino rs  ( re la t iv is t ic  fo rm u la t io n ) . E q. ( 182), can be p a rt it io n e d  
in to  fo u r  parts ,
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each te rm  th e re o f is easily expressed in te rm s o f  sca tte rin g  path o p e ra to rs , nam dy

=  - - T r £ t ) r ^ " ( e ,  ) / * ' ( £ „  (e : ) ]  (184 )

w here  the u n d e rlin e d  q u a n titie s  re fe r to  angu la r m o m e n tu m  rep resen ta tions  and

e, 2 =  £ i: =  £/•• ± / 5  (1 8 5 )

In  a re la tiv is tic  fo rm u la t io n  the c u rre n t m a trices  are g iven by

•/£ '(£ , , e 2) = J [ ‘()Q, = ec (  Z [ ’' ( r , k , ) + Z y . ( r /)(, £-,)d 3r /;/, Q = ( k ,  (i) (186)

w ith  a  d e n o tin g  D ira c  m a trices , w h ile  in the n o n -re la tiv is t ic  case,

/ ; ( £ „  «2) =  / ; ' \ v =  - ?  f  Z ( r  „ .  £ , ) 1 ———  Z ' “ ( r  . £ ;.)d ' r  ■, A =  ( / , « )  (187)

In  the above equa tions , the  Z ' ^ r  ;/J e) are p ro p e r ly  n o rm a lize d  re g u la r scattering so lu tions  
o f  the ra d ia l S ch ro d in g e r o r  D ira c  eq u a tio n . I t  shou ld  be noted  tha t in a ll examples show n 
fu r th e r  on exc lus ive ly  re la tiv is tic  c u rre n t m atrices have been used.

4 .2 . N o n lo ca l C o n d u c tiv ity  in D iso rd ered  S y s te m s

In  o rd e r to  describe s u b s titu tio n a l b in a ry  a lloys, c o n fig u ra tio n a l averages have to be p e r
fo rm e d  in Eq. (184 ) [8, 19]. O m it t in g  ve rtex  c o rre c tio n s  and using the single see app rox 
im a tio n  to  the C o h e re n t P o te n tia l A p p ro x im a tio n  (C P A ) the s ite -d iagona l te rn s  are then  
de fin e d  as

= Z ^ r [ D ^ ( e 2)J:;(e2, e l ) D '" ( e 1) i l̂ /,,( e . ) y ; ( e l . £2) r ' " ^ ( e , j  (188)
tt

o r. by in tro d u c in g  the  fo llo w in g  q u a n tity

/ ; ■ “ ( £ , , £ : )  =  d : ( £ ,  ) . / ; ; (£ , .  £ 0 D : ( £ 2) (189)

as

s 2)) =  £ i ) i r  , £ ; ) t ' ” ' ' " ( £ , ) ]  (190)
rr

w here  denotes the  (h om ogeneous) c o n c e n tra tio n  o f  the  a - th  co m p o n e n t, a  e  [A,  / i } ,  o f  
a b in a ry  bulk  a llo y  and the  c u rre n t m a tr ix  re fe rs  to  species a.

F o r the o ff-s ite  d ia g on a l case, (pi )  ^  (qj),  th is  k in d  o f  app roach  y ie lds

o . #

x /X'(sI )L*l£i' e : (£:) i : " - <e 2)] (!91)

o r. in using Eq. (189 ),
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4.3 . T h e  “ L arg e  C lu s te r” L im it

I f  o n ly  u n p e rtu rb e d  host a tom s fo rm  the c lu s te r then  by increas ing  the size o f  the c lu s te r 
the physica l p ro p e rtie s  ch a ra c te ris tic  fo r  the co rre sp o n d in g  b u lk  o r  substra te  have to  be 
expected. A  r ig o ro u s  test fo r  a "real space formulation" o f  the K u b o  e q u a tio n  consists th e re 
fo re  in c o n s id e r in g  the fo llo w in g  convergence p ro ce d u re  fo r  the d ia g on a l e lem ents  o f  the 
re s is tiv ity  p

PMm =  S )’ =  lim  ( 193)0 —II I —*/o

8 ) =  [ < , ( / • ;  8 )]~',  o - ^ ( r : S )  =  (194)
j

w here  r deno tes the  rad ius  o f  a sphere w ith  the o r ig in  in  site i =  0 and /*„ is an a rb itra r ily
large rad ius. T h e  su m m a tio n  in  E q . (194) extends o ve r a ll sites c ircu m sc rib e d  by /*; <5 re fe rs
to  the  im a g in a ry  p a rt o f  the F e rm i energy. In p e rfo rm in g  the  8 ->  0 l im it  a t the stage o f
Eq. (193 ) a c tu a lly  m eans tha t the side l im its  in  Eq. (183) are taken  at the  last possib le step.

S h r in k in g  the  sphere to  a c irc le  w ith in  the  p lane o f  a spec ific  la ye r p  (e.g., surface la ye r), 
then in the —► oo l im it  the fo llo w in g  c o n d it io n  m ust be sa tis fied

lim  p ^ r ,  8 ) =  p>*(8 ), P % (8 ) =  [ < ( « ) ] “  ‘ 0 ^ )

w he re  is the  laye r-d iagona l c o n d u c tiv ity  o f  laye r p ,

= ^ [ O e+’ f i ) + ^ 1 ( £ • e") -  5=” (fif , e") -  a ” (<T. e+ (1%)

fo r  w h ich  each te rm  on  the rhs o f  the last e q u a tio n  can also be ca lcu la ted  d ire c tly  using  a 
tw o -d im e n s io n a l la ttic e  F o u rie r tra n s fo rm a tio n ,

iO Ki’ e2) = ~ - 17- 7 r “ I (197)
77 V  ill i L l iZ  ' f iZ

U s in g  a sphere  o f  rad ius r the  su m m a tio n  m ust p ro v id e  in  the r —> oo l im it  the to ta l 
c o n d u c tiv ity  o f  the b u lk  system,

C "  =  lim  C " ( 5 ) =  O -  « ) ]  ( 198)

In v e r tin g  the  re s is tiv ity  o f  a b u lk  system is o b ta in e d , w h ich  is ze ro  fo r  p u re  m eta ls and 
f in ite  fo r  (d is o rd e re d ) a lloy  b u lk  systems (th e  so-ca lled  re s id u a l re s is tiv ity ).

Q u ite  c le a rly  th e re  are m ore  e ff ic ie n t m e thods to  eva luate  re s is tiv it ie s  fo r  b u lk  o r  layered 
system s by m a k in g  use o f  th re e - o r  tw o -d im e n s io n a l la ttice  F o u rie r tra n s fo rm a tio n s , respec
tive ly . H o w e ve r, once it com es to  d e te rm in e , e.g., the  e le c tr ic  p ro p e rtie s  o f  m agne tic  is lands 
on  surfaces, these m e thods are no  lo n g e r app licab le , and one  has to  re ly  on rea l space 
app roaches as p resen ted  in here. I t  shou ld  be no ted  th a t the resu lts  in  the  " la rg e  c lu s te r”  
l im it  p resen ted  la te r  on are o n ly  illu s tra t io n s  o f  the re l ia b il i ty  and a p p lic a b ility  o f  the rea l 
space app roach  to  the  K ubo  e q u a tio n .

4 .4 . “ R e s id u a l R e s is tiv ity ” fo r  N a n o s tru c tu re s

I f  no  tra n s la tio n a l sym m etry  is p resen t, then  in p r in c ip le  one has to  sum  ove r a ll sites 
in c lu d in g  the leads, contacts , and so fo r th ; th a t is,

o ‘w ( C | .e , )  =  (199)
/V<) I /—I
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w ith  N{) ^  1023. H e re , i and j  deno te  sites w ith o u t la b e llin g  layers e x p lic it ly . As such a 
p ro ce d u re  is n u m e ric a lly  no t accessible', the fo llo w in g  q u a n tity  can be de fined ,

w ith  n be ing  the  n u m b e r o f  sites in a chosen re g io n  ( “ c lu s te r"). T h is  im plies, how ever, 
th a t the convergence p ro p e rtie s  o f  <?MM(£ |,  n)  w ith  respect to n have to  be investigated. 
Because c le a rly  enough a s u m m a tio n  o ve r a ll sites in c lu d in g  the s e m i- in fin ite  substrate w o u ld  
y ie ld  o n ly  the re s is tiv ity  o f  the substra te , nam ely ze ro  in the  case o f  a pu re  meta., a k in d  o f  
‘"res idua l re s is tiv ity ”  fo r  f in ite  c lus te rs  has to  be d e fin e d ,

w here , fo r  exam ple , in the case o f  a fin ite  cha in  em bedded in the  surface o f  a su itab le  
substra te  n denotes the  n u m b e r o f  a tom s in the  cha in  o f  type a  and N ( r )  is the num ber o f 
a tom s in vo lved  in the  c lu s te r (ch a in  +  substra te  n e ig h b o u rh o o d  up  to  a chosen value r fo r  
the  c ircu m sc rib in g  sphere).

4 .5 . C o n d u c ta n c e s

L in e a r response th e o ry  app lies  to  an a rb itra ry  cho ice  fo r  the p e rtu rb a tin g  e lectric  fie ld  
because the response fu n c tio n  is o b ta in e d  in the  l im it  o f  a van ish ing  p e rtu rb a tio n . Considen 
th a t a constan t e lectn ic fie ld , E 1!,  p o in t in g  a long  the z axis, tha t is, n o rm a l to  the planes, is 
a p p lie d  in  a ll ce lls  o f  laye r q. D e n o tin g  the z c o m p o n e n t o f  the c u rre n t density averaged 
o ve r ce ll / in  laye r p  by jl",  the m ic ro sco p ic  O h m 's  law  reads as

w here  V(l, is the vo lu m e  o f  the  u n it ce ll in  layer p. N o te , th a t in neg lec ting  la ttic e  re laxations, 
Val is u n ifo rm  fo r  the w h o le  system . A cco rd in g  to  the  K u b o -G re e n w o o d  equa tion  a t zero

w here  the sum m a tio n  has to  be c a rr ie d  o u t fo r  a ll s ites in  layer p  and the appLed vo ltage 
U is g iven by

w ith  A , and d  d e n o tin g  the  area o f  the  tw o -d im e n s io n a l u n it ce ll and the in te rla ye r spacing, 
respective ly  (Vllt =  A ^ d  ). C o m b in in g  Eqs. (202 ), (2 0 4 ) and (205) resu lts  in an expression 
fo r  the conductance ,

(200)

- j  Mr )  - i - I

- E E <
/Vchain /= !

(201)

(202)

te m p e ra tu re , see Eq. (9 9 ), the  zz  co m p o n e n t o f  the  n o n -lo ca l c o n d u c tiv ity  tenso i can 
be w r it te n  as

(204)

u  -  / : v  L (205)

(206)

w here  the sum m ations  sh o u ld , in p r in c ip le , be c a rr ie d  o u t ove r a ll ce lls  in layers y  and q.
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A n  a lte rn a tiv e  cho ice  fo r  the n o n loca l c o n d u c tiv ity  tenso r was g iven in Eq. (102), w h ich  
is m ore  p ra c tica l in c a lc u la tin g  the  CPP conductance  o f  a layered  system than the n on loca l 
c o n d u c tiv ity  in the K u b o -G rc e n w o o d  app roach  because, as show n by B a ranger and S tone 
[9] fo r  free  e le c tro n  leads, the second te rm  a p p ea ring  in  Eq. (102) becom es id e n tic a lly  
zero  w hen  in te g ra te d  ove r layers, p  =£ q. T h is  means a lso th a t the te rm s ( T ^ ,,J( s +y e" ) 
and ( f ^ (,J(e , s ~ )  sh o u ld  van ish a lte r  in te g ra tio n . I t  sh o u ld  be no ted  th a t very recen tly  
M a v ro p o u lo s  e t al. [20 ] re de rived  th is  resu lt by assum ing B loch  bou n d a ry  co n d itio n s  fo r  
the leads. A c c o rd in g  to  these th e o re tic a l resu lts, at ze ro  te m p e ra tu re  the d iagona l e lem ents  
o f  the n on loca l c o n d u c tiv ity  tenso r betw een site / in la ye r p  and site  j  in  layer q can be 
w rit te n  as

~  J  d'r,,,- J  d 3r'lljTr[J:G +{ E F; r „ „  r 'vj)J: G ~ { E F- rPl

=  e - ) T * : f ( s - ) ]  (207 )

such tha t the expression  fo r  the conductance  reduces to

H = A E E  I  (  d}r'iijTr[J: G i ( £ , ;  r „ ,  r ^ . I X r  ( E r : r'qj, r „ ) ]  (208)
a-7Tu j_ t j  • J ipi * i i (/;

o r, in te rm s  o f  s ca tte rin g  pa th  o p e ra to rs  to

g =  ^ 7 r \ i m ' £ Z  t r i p l e  , e+) (e+) r »  * )l$L  / > “ ) ]  ( 209)
Z7TCl~ 11 j  j

I t  has to  be em phasized  th a t because o f  the  use o f  lin e a r response th e o ry  and c u rre n t 
conse rva tion , the cho ice  o f  layers p  and q is a rb itra ry  in  Eqs. (208 ) and (209). I f  the layers p  
and q are a sym p to tica lly  fa r away fro m  each o th e r, the  above expressions n a tu ra lly  recover 
[2 0 1 the L a n d a u e r -B iit t ik e r  app roach  [3, 4 ], see section  2.2.

5 . T H E  “ L A R G E  C L U S T E R ” L IM IT

A  real space ve rs ion  o f  Eq. (9 9 ) a llow s to  study the in te re s tin g  tra n s it io n  o f  e le c tr ic  tra n sp o rt 
p ro p e rtie s  fro m  nanoscaled to  m acroscop ic  (m esoscop ic ) systems, s im p ly  by increas ing  the 
n u m be r o f  a to m ic  sites in c lu d e d  in the  su m m a tio n  o ve r sites. H o w e ve r, by d o in g  so, such a 
p ro cedu re  can a lso be used to  d o cu m e n t the  n u m e ric a l accuracy th a t can be ach ieved w ith  a 
rea l space app roach , since in  the  l im it  o f  tw o - o r  th re e -d im e n s io n a l tra n s la tio n a l inva riance  
c o rre sp o nd in g  th e o re tic a l resu lts  are ava ilab le , o b ta in e d  using  a p p ro p r ia te  la ttice  F o u rie r 
tra n s fo rm a tio n s . T h e  fo llo w in g  few  sections serve exac tly  th is  pu rpose , nam e ly  to  illu s tra te  
the convergence to  s e m i- in fin ite  and in fin ite  systems.

5 .1 . S u rfa c e  L ayer of A g (0 0 1 )

T h e  system s tu d ie d  is ske tched  in  F ig . 2. T h e  u n d e rly in g  p a re n t la ttice  is an fee s tru c tu re  
co rre sp o nd in g  to  the  e xp e rim e n ta l la ttice  spacing  o f  fcc -A g : ayD — 7 .789 a.u. and a1D = 
5.508 a.u.

semi-infinite vacuum

interface region
5 layers vacuum 
:— surface

7 layers Ag

A

semi-infinite Ag

Figure 2. Geometrical setup of a semi-infinite Ag(00l) system.
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aS [(m ftcm ) 1] 
1.21 r

a £ [(m flc m ) 1]
0.77

Figure 3. Nonlocal conductivity . v ) (left) and <r"!{xr  v() (right) corresponding to the surface layer o f Ag.
8 — 1 mRv.

T he  n o n loca l c o n d u c tiv it ie s  in the surface laye r w e re  ca lcu la ted  accord ing  to  Eqs. (183) 
and (184) w ith  the  rea l space sca tte rin g  pa th  o p e ra to rs  b e in g  o b ta in e d  by using 1830 k§ 
po in ts  in the  tw o -d im e n s io n a l ir re d u c ib le  w edge o f  the  surface B r i l lo u in  zone. In  Fig. 3, the  
xx  and zz co m p o n e n ts  o f  the  non loca l c o n d u c tiv ity  te n so r a^Jr(Xj,  ) ’,)  are shown, Adhere site 
0 is fixed  to  the  o r ig in  (0 ,0 ) o f  the  surface laye r, w h ile  the p o s itio n  o f  sites j  i< va rie d  in 
the (O O l)-o r ie n te d  surface p lane. A s  can be seen, fo r  the o u t o f  p lane  conduc.iv ity  (z z ) , 
on ly  sca tte re rs  are im p o rta n t w h ich  are n o t to o  fa r  away fro m  the o rig in , w h ile  in  the  in 
p lane case ( x x )  a lso scatterers a t fa r th e r  d is tances do  add n o n -n e g lig ib le  co n tr ib u tio n s  to  
the c o rre s p o n d in g  c o m p o n e n t o f  the  c o n d u c tiv ity . M o re o v e r, i t  shou ld  be no ted  t ia t  the  yy  
co m p o n e n t is no t show n because it is o f  s im ila r  fo rm  as the  x x  com ponen t: the  c iagram  o f  
(Ty{(Xj,Vj) s im p ly  has to  be ro ta te d  by 90°.

T h e  shape o f  the  n o n -lo ca l c o n d u c tiv it ie s  suggests th a t by p e r fo rm in g  the su rrm a tio n  in  
Eq. (194 ) o n ly  fo r  sites w ith in  the  chosen p lane  o f  a tom s, it shou ld  converge ac :o rd in g  to  
Eq. (195). In  o rd e r to  show  th a t, tw o  d if fe re n t square -shaped  p la n a r clusters were in ve s ti
gated, see F ig . 4, b o th  hav ing  C4t. sym m etry  w h ich  im p lie s  th a t p MM(/*; 8 ) has tw o  independent 
com ponen ts , nam e ly

Pv> =  P n  alKl P: :  (210)

The c h a ra c te ris tic  size ( /  ) o f  the inves tiga ted  c lus te rs  is g iven  by the d istance between the 
o r ig in  (0 ) and  the fa r th e rm o s t a tom  fro m  the  o r ig in , th a t is, can be v iew ed w ith  respect to  
increas ing  sizes and fixed  shape, nam e ly  in te rm s  o f  rn = n ■ a2D fo r  type 1 and rn -  n \ f l - a 2D 
fo r  type 2, see F ig . 4. T h e  n u m b e r o f  a tom s w ith in  a p a r t ic u la r  c lu s te r is g iven ty  N ( n )  = 
(2 n 2 - f  2/7 4 -1 )  fo r  type  1 and N ( n ) =  (Arr + An - f  1) fo r  type 2. O b v io u s ly , the clusters shown

4

3

I

f i  o 

- 1

-4
—I -3  -2  -I 0 1 2  3 4 -4  -3  -2  I 0 1 2  3 4

x I a 21)1 v la2[)l

Figure 4. Square- and diam ond-like shapes of a c luste r in the surface plane o f  an fce(OOl ) sjbstra te .
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Figure 5. Convergence study in the surface layer o f an Ag(001) sc m i-infinite system. The in-p!ane ( xx)  and p e rp en 
dicular to the plane ( ” ) resistivity com ponents for two different d u s te r  shapes are  shown versus the characteristic 
size o f  the cluster (/■). T he horizontal line refers to the layer-diagonal resistivity calculated by Eqs. (195)-(J97). 
D iam onds correspond to type 1 in Fig. 4. squares to type 2, 8 ~  1 mRy. R eprin ted  with permission from [33], 
K. Palotas et al.. Phys. Rev. 8  67, 174404 (2003). (0 2003, A m erican Physical Society.

in  F ig . 4 re fe r to  n =  3. I t  has to  be em phasized th a t th is  p ro ce d u re  is to  show the v a lid ity  
o f  E q . (195): as can be seen fro m  F ig . 5, fo r  b o th  types o f  c lus te rs  a re lia b le  convergence o f 
the re s is tiv ity  is ach ieved fo r  r > 15 aln .

5.2. B u lk  R es is tiv ities

T he  s tud ied  systems are su m m a rize d  in F ig. 6. T h e  n o n loca l c o n d u c tiv it ie s  w ere  ca lcu la ted  
acco rd in g  to  Eq. (183 ) and the side lim its  in E q. (184 ) fo r  A g  and in Eqs. (190), (192) fo r  
C uP t a lloys w ith  the  rea l space sca tte rin g  pa th  o p e ra to rs  b e in g  o b ta in e d  by using 630 
po in ts  in the tw o -d im e n s io n a l ir re d u c ib le  w edge o f  the surface B r i l lo u in  zone. In  the fo l 
lo w in g , th re e -d im e n s io n a l c lus te rs  are assum ed; the rea l space s u m m a tio n  o f  the non -loca l 
c o n d u c tiv ity  tenso r was p e rfo rm e d  acco rd ing  to  Eq. (194). In  a d d it io n  by increas ing  the 
size o f  the c lusters the  convergence o f  Eq. (1 9 8 ) was s tu d ie d  and the  o b ta in e d  resu lts w ere 
com pa red  to  know n b u lk  re s is tiv itie s , see Refs. [21, 22]. C le a r ly  fo r  la rge c lus te rs  the resis
t iv ity  has to  approach  to  the  co rre sp o n d in g  b u lk  va lue , nam e ly  to  ze ro  fo r  p u re  m eta ls  and 
to  the  res idua l re s is tiv ity  fo r  (d is o rd e re d ) a lloys. T h e  c lus te rs  w ere  chosen to  be con ta ined  
by a sphere o f  increas ing  rad ius ; the  o r ig in  o f  the spheres re fe rs  to  the s ite  deno ted  by 0 in 
Eq. (194 ). Table  1 shows the  n u m b e r o f  a tom s (TV) in vo lve d  w ith in  a sphere  w ith  respect to  
//; the  co rre sp o nd in g  sphere rad ius  r„ is d e fin e d  by

n
rn = ' «,/>

A ssu m in g  the fo llo w in g  b e h a v io r o f  the e lem en ts  o f  the  re s is tiv ity  tenso r w ith  respect to  the 
size o f  the  c lu s te r (/*),

P ^ i r :  8 )  =  p , ( 8 )  +  ^  ( 2 1 1 )

I
semi-infinite Ag or CuPt alloy

interface region:

33 layers Ag or CuPt alloy

-V
semi-infinite Ag or CuPt alloy

Figure 6. Geometrical setup of the Ag and CuPt hulk systems.
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Table 1. The num ber of sites (/V) in clusters of spherical shape.

C luster

n 0 1 •> 3 4 5 ft 7 8 9 10 11
N ( n )  1 13 55 177 381 767 1289 2093 31)55 4321 5979 7935

p () and p , be ing  constants, it  is obv ious  tha t

5 ) =  rptl( 8 ) + p , ( 5 ) (212)

w h ich  means tha t the  res idua l res is tiv ity , p{]( 8 ) can be o b ta in e d  by a lin e a r f i t  o f  8 )
w ith  respect to  r. In  the case o f  s u b s titu tio n a l a lloys, the s lope (p ,)(<$), 8 —» 0 ) conesponds 
th e n  to  the  res idua l re s is tiv ity , w h ile  fo r  a p u re  b u lk  it sh o u ld  be zero. I t  sh o u ld  te  no ted  
th a t E q. (211) is m ore  o r  less an e m p ir ic a l f in d in g  w h ich  was used also q u ite  a b i also in  
the  e xp e rim e n ta l re c o rd in g  o f  res is tiv ities .

0.22 

' 0.20 

0.1 s

A-

oo
0.16

0.14

•  6 = 1  mRy 
□  6 = 2 mRy 
A 5 = 3 mRv

3 4 5 6 7 8

I TT"' 

*

$

±_J__I__!— L I 1—1

Figure  7. Convergence study in bulk systems T he characteristic  size o f the cluster (/-) lim es the resistiviy is shown 
versus the size of the cluster for th ree  different imaginary parts (<S) of the F:erm i energy in o rd e r to  evaluate the 
slope (residual resistivity), see Eq. (212). The r j  eom ponenl of the resistivity is shown for fee bulk A g(top ), and 
a -V and r z  com ponents for fee bulk C’uPt alloys (bottom ). R eprin ted  with permission from [33], K. Pabtas ct al., 
Phys. Rev. B 67. 174404 (2003). 0  2003, A m erican Physical Society.
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5.2.1. A g  B ulk
The fee b u lk  A g  s tru c tu re  has the same la ttice  constan ts  as m e n tio n e d  in Section 5.1. In 
p r in c ip le  it is su ffic ie n t to  eva lua te  o n ly  one c o m p o n e n t o f  the  re s is tiv ity  because the system 
and a lso the c lus te rs  have cub ic  sym m etry , w h ich  means th a t by choos ing  the co o rd in a te  
system p ro p e r ly , the res is tiv ity  tenso r has o n ly  one in d e p e n d e n t e le m e n t, th a t is, the d iagona l 
com ponen ts  m ust be id e n tica l (pxx =  p vv =  p ::). D e v ia tio n s  fro m  th is  be h a v io r can be used 
to  estim ate  n u m e rica l e rro rs  in h e re n t to  the ca lcu la tio n a l scheme and the  f i t t in g  p rocedure . 
The  actua l f i t t in g , see Eq. (212), was p e rfo rm e d  fo r  each ca lcu la ted  va lue  o f  <5 (8 — 1, 2 .3  
m R y) co n s id e rin g  the last th re e  p o in ts  o f  r p . r (r;<5 ), see to p  p a rt o f  F ig . 7. These p o in ts  
have been chosen because they  re fe r to  the biggest c lus te rs  cons idered , see Table 1. In  
o rd e r to  o b ta in  the  rea l physica l res idua l res is tiv ity  an e x tra p o la tio n  to  8 =  0 is needed, see 
Eq. (193). T h is  e x tra p o la tio n  fo r  A g  b u lk  s tru c tu re  is illu s tra te d  in  the  to p  pa rt o f  F ig. 8 and 
dem onstra tes th a t an abso lu te  e r ro r  o f  ro u g h ly  0.05 /x l lc m  was m ade in the a pp lied  f i t t in g  
p rocedure .

5.2.2. CucPt,_c Bulk
M o re  in te re s tin g  than  pure  b u lk  m e ta ls  are d iso rd e re d  b u lk  a llo ys  because the  accuracy 
o f  the c u rre n t approach  can be d ire c tly  com pared  w ith  e xp e rim e n ta l da ta  and resu lts  o f  
p rev ious  ca lcu la tio n s  using th re e -d im e n s io n a l p e r io d ic  b o u n d a ry  co n d itio n s . F o r th is reason, 
fee C u0 50Pt05() and  C u()75Pt025 have been chosen w ith  la ttice  cons tan ts  =  7 .140 a.u.
and =  6.995 a.u. in o rd e r  to  te s t the re lia b ility  o f  th e  p resen t app roach . A g a in  the
f it t in g  to  a lin e a r fo rm  to  the last th ree  p o in ts  o f  r p ^ f  r )  has been a p p lie d , see E q . (212 ), as 
a fu n c tio n  o f  8 , see the b o tto m  p a rt o f  F ig . 7. A s  can be seen, the  e x tra p o la tio n  can easily 
be p e rfo rm e d  because in the reg ion  0 <  8 <  3 m R y the re s is tiv ity  depends lin e a r ly  on  8 . 
In  c o m p a rin g  the  present resu lts  w ith  p rev ious  ca lcu la tions  and  ava ilab le  e xp e rim e n ta l data , 
see in p a r t ic u la r  R ef. [21 ], good  q u a n tita tiv e  ag reem en t fo r  b o th  co n ce n tra tio n s  o f  C u P t is 
fo u n d : the resu lts  o f  D u lca  e t a l. [22 ], fo r  exam ple , are  80.2 and 31.5 f i i lcm  fo r  C u()5() Pt(>.50 
and C u () 75P t0 >5, respective ly.

As a lre a d y  sta ted  the n u m e rica l e rro rs  o f the p resen t app ro a ch  can be ju d g e d  best by 
d e te rm in e d  by e va lua ting  the d iffe re n c e  betw een the in -p la n e  and the p e rp e n d icu la r to  the

6 [m R y] 8 [m Ry]

5  I m Ry ]

Figure 8. E xtrapolation to 6 — 0 for the investigated bulk systems. O pen  circles are obtained from the fitting 
procedure in Eq. (212), while full circles refer to  the ex trapo lated  values. Squares denote  experim ental results 
m easured at room tem perature [21]. R eprin ted  with perm ission from [331, K. Palotas cl al.. Phys. Rev. B  67, 174404 
(2003). €•’ 2003, A m erican Physical Society.
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Figure 9. D ifference betw een the residual resistivity for the in-plane (.v.v) and the perpendicu lar to the plane 
( r r )  com ponent versus the imaginary part (fi) o f the Fermi energy for C un<nPtUSll and Cu,,75Pt„25. Reprinted with 
perm ission from [33], K. Palotas et al.. Rhys. Rev B  67. 174404 (2003). (u 2003. Am erican Physical Stciety.

plane e lem en ts  o f  the res idua l re s is tiv ity , since the res idua l res is tiv itie s , p vv and p m u s t  be 
id e n tica l in  cub ic  b u lk  systems. I t  can be seen fro m  F ig . 9 th a t th is  d iffe re n c e  is n o  re  o r  less 
in d e pe n d e n t o f  3 and is o f  o rd e r  o f  a fe w  te n th  o f  a /xH cm .

6 . M A G N E T IC  F IN IT E  C H A IN S  IN  T H E  S U R F A C E  O F  A g (0 0 1 )

In  th is  section , s ing le  im p u r it ie s  and f in ite  cha ins ( le n g th  o f  2 -1 0  a tom s) o f  Fe and C o 
em bedded  a long  the  (110 ) d ire c tio n  (.v) in the surface laye r o f  A g (0 0 1 ) a rc  investigated, see 
also F ig . 2. In  here , fo r  m a tte rs  o f  s im p lic ity , a s im p le  n o ta t io n  fo r  the  em bedded chains is 
used, nam e ly  fo r  exam ple  C o 4 fo r  a C o  cha in  o f  fo u r  a tom s. F o r such a cha in  o f  b u r  atom s 
the v =  0 p la n e -scc tio n  o f  the system is shown in  F ig . 10.

6.1 . N o n lo c a l C o n d u c tiv it ie s

T h e  in flu e n ce  o f  the cha ins to  the in -p la n e  tra n s p o rt in the  surface laye r was investigated 
by assum ing a C IP  ge o m e try . T h e  n o n loca l c o n d u c tiv it ie s  w ere ca lcu la ted  according to  
Eq. (1 8 3 ), the  sca tte rin g  pa th  o p e ra to rs  o f  a spec ific  c lu s te r have been o b ta in e d  n te rm s o f  
the e m b e d d in g  e q u a tio n , see E q. (157). T h e  rea l space host sca tte rin g  pa th  ope ta to rs  were 
ca lcu la ted  by us ing  210 p o in ts  in the  tw o -d im e n s io n a l ir re d u c ib le  w edge o f  :he surface
B r i l lo u in  zone. |

L e t 0 deno te  the  o r ig in  in  the  surface p lane  (x — 0 , v — 0 ), to  w h ich  in  the  im p u rity  case 
a s ing le  im p u r ity  is fixed . T he  x x -c o m p o n e n t o f  the  n o n loca l c o n d u c tiv ity  tensor between 
th is  s ite  (0 ) and a ll the  o th e r a tom s in the  surface p lane  is show n in  F ig. i t .  A s  can be seen 
fro m  th is  fig u re , the s ite -d ia g o n a l c o n d u c tiv ity  co m p o n e n t o f  th is  s ite  is la rg e r fo r C o than 
fo r  Fe, causing in  tu rn  o f  a h ig h e r re s is tiv ity  o f  Fe cha ins a fte r p e r fo rm in g  the sum m ation 
in  Eq. (213). ~ "  j

F o r cha ins the a tom  a t the  edge o f  a cha in  serves as o r ig in , th a t is, it is lo ca ted  ir the  o rig in  
o f  the  surface. T h e  x x -c o m p o n e n t o f  the n o n loca l c o n d u c tiv ity  tenso r be tw een th s  fixed  site

Figure 10, Chain o f  four atoms in the surface layer of Ag(001). v -- 0 plane-seetion.
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Figure 11. Nonlocal conductivities , v ) in the surface layer o f Ag in presence o f Co o r Fc impurity at site 0 
o r w ithout any im purities (pure Ag surface). == 1 mRy, IVI =  f.

and a ll o th e r  a tom s in  the surface p la n e  is show n in F ig. 12 fo r  C o  and in  F ig . 13 fo r  Fe. I t  
can be seen th a t in the im p u r ity  case, the  shape o f  the  c o n d u c tiv ity  is sym m e tric  to  the x  = 0 
p lane, w hereas in  the  case o f  f in ite  cha ins the  te nso r-e lem en ts  a long  the  +.v d ire c tio n  (w here  
the cha in  lies ) are m uch la rg e r than  in  o th e r  d ire c tio n s , caus ing  thus an asym m etry. T h is  
shape also im p lie s  tha t by sum m ing  up the  n o n loca l c o n d u c tiv ity  a"i o ve r sites j  in a th ree- 
d im e n s io n a l c lu s te r a round  the cha in , a s ig n if ic a n t c o n tr ib u t io n  arises fro m  the m agnetic  
atom s. F o r a C o  cha in  w ith  leng th  o f  six a tom s, fo r  exam ple , the  c o n tr ib u t io n  fro m  the 
m agne tic  a tom s am oun ts  to  abou t 63% . F u rth e rm o re , i t  can a lso be seen th a t the  m agn itude  
o f  the  s ite -d ia g o n a l co n d u c tiv it ie s  decrease fo r  a tom s fo rm in g  a cha in  as com pared  to  the 
co rre sp o n d in g  s ing le  im p u rity .

6.2 . “ R es id u a l R e s is tiv itie s ”

In  S ection  4.4, a “ res idua l re s is tiv ity ”  fo r  f in ite  c lus te rs  was d e fin e d  as

M r )

•chain j-
(213)

w he re  n deno tes the  nu m b e r o f  a tom s in  the  cha in  o f  type a  (Fe  o r C o ), and  N ( r )  is the 
n u m b e r o f  a tom s invo lved  in the  c lu s te r (c h a in  +  e n v iro n m e n ta l a tom s up to  the  fu rth e rm o s t 
d is tance o f  /') . I t  shou ld  be no ted  th a t fo r  e va lu a tin g  Eq. (213 ) th re e -d im e n s io n a l c lusters 
have to  be used. O bv ious ly , the conve rgence  p ro p e rtie s  o f  p “ M( r )  w ith  respect to  r can be 
inves tiga ted  by increas ing  size o f  the  c lu s te r. T h is  is show n in  F ig . 14. A s  can be seen in  
th is  fig u re  p “ v( r )  decreases fo r  a ll ch a in  leng ths  (n)  m o n o to n o u s ly  and can in p rin c ip le  be 
e x tra p o la te d  to  la rge  values o f  N( r ) ,  see E q . (212), w h ile  the d iffe re n ce , p^.(r )  -  p (v"(r)  
rem a ins f in ite  and varies o n ly  s low ly  w ith  respect to  the c lu s te r size. F u rth e rm o re , chains 
w ith  le n g th  o f  th re e  o r  five a tom s d i f fe r  d is tin c tly  fro m  the rest, nam e ly  th e re  is a lm ost no 
d iffe re n c e  w h e th e r Fe o r  C o a tom s fo rm  the  cha in , i.e., the d iffe re n c e , p ^ ( r )  — p cx“(r)  nearly  
vanishes fo r  a ll c lu s te r size cons idered .

T h e  " re s id u a l re s is tiv ity "  o f  f in ite  c lus te rs  d e fin e d  in  Eq. (213 ) is a p ra c tica l to o l to  study 
the  in flu e n ce  o f  in -p lane  tra n s p o rt p ro p e r tie s  w ith  respect to  the  o r ie n ta t io n  o f  m agne tiza tion
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o°'[(m Ucm )-

Figure 12. Nonlocal conductivities tr'1,'(_v.. \ \)  in the surface layer of Ag with Co atom s in a Co„ ehaji in positions 
( 0 .0 ; .........(n  -  1 .0). $ =  ! mRv. M == i.

(M ) .  T h e  ca lcu la ted  resu lts  o f  the .vx -co m p o n e n t o f  the  re s is tiv ity  are lis ted  :n Tab le  2. 
A s  can be seen. M  =  x , i.e ., M  p a ra lle l to  the  o r ie n ta t io n  o f  the  chains prov ides the 
sm a lles t re s is tiv ity  fo r  a ll Fe chains and fo r  the m ost C o  cha ins. T h e re  are tw o  exceptions 
w here  th is  does no t app ly, nam e ly  C o , and C o v  F o r these chains the sm allest res is tiv ity
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Figure 13. Nonlocal conductivities </"((.v,, y ,) in the surfacc layer of Ag with Fe atom s in a Fe„ chain in positions 
(0, O').........(// -  1 ,0 ). 6 =  1 mRv. M = z .

is o b ta in e d  fo r  M  =  v. T h is  b e h a v io r is q u ite  su rp r is in g  in  v iew  o f  the  re s is tiv it ie s  fo r  the 
o th e r cha ins. In  m ost cases the  d ire c tio n  o f  m a g n e tiza tio n  M  =  y  seems to  y ie ld  the  h igh 
est re s is tiv ity , how ever, the  o r ie n ta t io n  o f  m a g n e tiza tio n  p e rp e n d ic u la r to  the cha in  (y  and 
f )  resu lts  in m in o r  d iffe rences  in  th e  res is tiv ity . M o re o v e r, in  the  im p u r ity  case, p '^ (y )  is
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Figure 14. "R esidual resistivities” of Fe (circles) and Co (triangles) chains. O pen squares refer to //','(> ) -  p\ ° ( r ) .  
The length of the chains (/?) is explicit!} shown, ft -- i> niRv (extrapolated). M =
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Table 2. "Residual resi:•Uivities" \t:rsus orientation  oif m agnetization (M ),
/',>('• - </v ,)[/iU em | in Co and Fe chains. 8 = 0 mRy {extrapolated).

C o Fe

Length .V y f .V V -

1 120.1 126.9 123.5 198.3 225.3 219.6
i 162.6 162.2 165.4 200.5 213.1 213.2
3 151.4 140.1 143.9

r 
i 153.8 152.0

4 109.0 113.7 113.2 166.7 176.4 176.2
5 122.6 126.6 128.8 122.2 130.1 129.7
ft 94.9 100.1 97.0 132.3 138.6 137.6
7 85.6 89.7 88.3 119.5 125.9 127.3
<S 86.1 89.4 87.8 108.0 11 1.9 1 11.7
9 74.0 78.6 77.6 110.2 1 14.7 117.1
10 73.4 77.2 74.9 91.3 93.4 94.9

by 1 3 .6 %  larger  th an  p [ l’(a ) ,  w h e r e a s  p (-[!(y)  is on ly  by 5 . 7 %  larger than p cv''(.v), which 

m ean s a higher sensitivity with r esp e ct  to th e  or ien tat ion  o f  the m a g n e tiza t io n  for  the Fe 

impurity.

7 . N A N O C O N T A C T S

N a n o c o n ta c ts  m a d e  o f  go ld  are p r e su m a b ly  the m ost s tudied  a tom ic-s ized  co n d u cto rs  in 

the literature . A  d o m in a n t  p e a k  v e ry  c lo se  to  the co n d u c ta n c e  q uan tum , 1 G {) =  2 e2/ h ,  has 

b een  re p o rte d  for  g o ld  in the c o n d u c ta n c e  h isto gram  [23, 24] and attr ibuted  to the highly 

transm itting s p  c h an n e l  across a l in e ar  m o n o a to m ic  chain  c o n n e c tin g  the tw o  electrodes .  In 

this section, go ld  con tacts  are investigated  in d ifferen t g e o m e t r ie s  as well as the influence 

o f  transition m etal  im purities  on the c o n d u c ta n c e  is s tudied  within the rea l-sp ace  approach  

d escr ib ed  in Sect io n s  4.1 and 4.5.

T h e  host system  fo r  the e m b e d d in g  is sh o w n  in Fig. 15. It sh o u ld  be n o ted  that all o f  the 

co n s id e re d  sites ( A u ,  v acu u m  and im p u rities)  refer  to  the positions o f  an underly ing ideal 

fee s tructure o f  g o ld  with a lattice c o n stan t  o f  a w  — 7.681 a.u.

A  s c h em a tic  v ie w  o f  a typical c o n ta c t  is d isplayed in Fig. 16 with N r =  5 v a c u u m  layers 

co n s id e re d  in the host system, see F ig. 15. A s  fo llow s from  the above, a to m ic  sites refer  

to layers fo r  w hich  the fo llow in g  n otation  is used: C  d e n o te s  the cent ral  l ayer , C  — 1 and 

C  +  1 the  layers b e lo w  and above, a n d  so forth . T h e  co n ta ct  consists o f  a cen tra l  layer that 

con ta in s  1 A u  a to m  (the rest is built up fro m  em p ty  sp heres);  layers C  — I a n d  C  +  1, see 

Fig. 17a, contain  4 A u  atom s, layers C  — 2 an d  C  +  2 9 A u  atom s, and, th o u g h  not shown, 

all o th e r  layers, n am ely  C  — n  and C  +  n ( n  >  3), are  c o m p le te ly  filled with A u  atom s, that 

is, d e n o te  fu ll  layers. T h e  n o n lo ca l  con d u c tiv it ies  w e r e  ca lcu late d  a cc o rd in g  to Eq. (207), 

the scatter in g path o p e ra to rs  o f  a sp ec if ic  c lu s te r  w e r e  o b ta in e d  by the e m b e d d in g  equation, 

E q. (15 7 ) .  T h e  real sp ace host scatter in g  p a th  o p e r ato rs  w e r e  ca lcu late d  by taking 210 

points in the tw o-dim en sion al irreducible  w e d g e  o f  the su rface  B rillouin  zo n e .

interface region

sem i-inhnue An
~A

NAu layers Au 

Ny layers vacuum 

NAl! layers Au 

semi—infinite Au

Figure 15. G eom etrical setup of Au(OOI) host system. A  nanojunction betw een the two sem i-infinite systems is 
m odeled by em bedding Au atom s into the vacuum  region, see, for exam ple. Figs. 16 and 17. T he host characterized 
by N  ,(( and /V, sites that can be different for d ifferent contacts.
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T :

Figure 16. Schematic side view of a point contact betw een two sem i-infinite leads em bedded into the \acuum region 
(num ber of vacuum layers /V, =  5). The layers are labeled by C. C  ±  1. and so forth. R eprin ted  wth perm ission 
from [34], K. Palotas et al., Phys. Rev. I$ in press (2004). €> 2004, A m erican Physical Society.

7 .1 . N u m e ric a l T ests  fo r D iffe ren t G o ld  C o n ta c ts

A s  m e n tio n ed  in S ect io n  4.1, a finite Ferm i level b ro a d en in g ,  <5, has to b e  u>ed for  th e  

n o n lo ca l  conductiv ity, thus, a lso  for  c o n d u c ta n c e  ca lcu latio n s.  A s  an exam p le,  fcr the  p o in t  

c o n tac t  d ep icte d  in Fig. 17a, the d e p e n d e n c e  o f  the c o n d u c ta n c e  on  8  is invest gated . T h e  
su m m a tio n  in E q. (209) was carried  out up to  c o n v e r g e n c e  fo r  the first two (sy m n e tr ic )  full 
layers ( p  =  C  -  3, q  =  C  +  3). A s  can be seen from  Fig. 18, the ca lc u late d  conductances  

d e p e n d  strongly  but n early  linear on 8.  A  straight line fitted fo r  8 >  1.5  mRy intersects  

the vert ica l  axis at 2.38 G (). A ss u rin g ly  e n o u g h ,  a ca lcu la t io n  with 8 =  1 f i R y  resulted in 
g  =  2 .4 0 G n. A lth o u g h  the nearly  linear d e p e n d e n c e  o f  the c o n d u c ta n c e  w ith  respect to 8  
e n a b le s  an easy  extra pola tion  to 8  =  0, in the  fo l lo w in g  all rep o rte d  conductances  refer to  
8  =  1 jtxRy.

For the sam e type o f  co n ta ct  (Fig. 17a), th e  c o n v e r g e n c e  o f  the su m m a tion  in E q .  (209) 

o v e r  layers p  and q  w as investigated, c h o o s in g  d i f fe re n t  sym m etric  pairs o f  full layers.

(a) (b) (c)

Figure 17. Perspective view of some of the studied contacts betw een two fee(OOi) semi-infinite leads. Only the 
partially filled layers arc shown, (a) point contact (num ber o f An iavcrs taken into account: /V ljf =5, num ber of 
vacuum layers between the leads: /V, =  5. (b) Slanted linear finite chain ( , Y =  7. N {■ — 7). (c) 2 > 2 finite chain 
( .V U( -- 6. /V, 5= 9). R eprin ted  with perm ission from [34]. K. Palotas et al.. Phys. Rev. 8  in press (1004). © 2004, 
A n 1 e rican Ph vsiea I Soc ie t \ .
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Figure 18. C alculated conductance as a function o f the Ferm i level b roadening S for the Au contact shown in 
Fig. 17a. The dashed straight line is a linear lit to  the values for S = 1.5, 2 .0 ,2 .5 , and 3.0 mRy. R eprinted with 
perm ission from [34], K. Palotas et al., Phys. Rev. B in press (2004). €> 2004, A m erican Physical Society.

T h e  c o n v e r g e n c e  with respect  to the n u m b e r  o f  a to m s in the layers is shown in Fig. 19. 

C o n v e r g e n c e  for  a b o u t  20 a tom s can b e  o b ta in e d  for  the first tw o  full layers ( p  =  C  — 3, 

q  — C  +  3), w h e r e a s  the n u m ber  o f  sites n e e d e d  to get  c o n v e rg e n t  sum s gradually  increases 

if  o n e  includes layers fa rth er  aw ay from  the  co n ta ct  a tom . T h is  k ind o f  c o n v e rg e n ce  prop erty  
is q u alita tive ly  un de rstan d ab le ,  as the cu rre n t  flows fro m  the c o n tac t  within a co n e  o f  som e 

o p e n in g  an g le  that cuts  out sheets  o f  in cr e a s in g  a re a  from  the c o rr e sp o n d in g  layers. A s  all 
the c a lcu lat io n s  w e r e  p e r fo rm e d  with 8  =  1 /xRy, cu rren t  co n serv a tio n  has to be exp ected . 

C o n s e q u e n t ly ,  the ca lcu late d  c o n d u c ta n c e  o u g h t  to b e  in d e p e n d e n t  with respect  to the layers 

ch o se n  for  th e  su m m a tio n  in E q. (209). A s  c an  b e  seen  from  Fig. 19 this is satisfied within 

a relative e r ro r  o f  less than 10 % . It sh o u ld  b e  n oted , h o w e ver ,  that fo r  the pairs o f  layers, 

p  =  C  — //, q  — C  +  n , n >  6 c o n v e r g e n c e  w a s  n ot a ch ie v ed  w ithin  this accuracy: by taking 
m o r e  sites in the s u m m a tio n s  even  a b e t te r  c o in c id e n ce  o f  the c a lc u la te d  c o n d u c ta n ce  values 
for  d ifferen t pairs  o f  layers can  be e x p e c te d .  F ig u re  19 a lso  im p lies  that an application  o f  

the L a n d a u e r -B ii t t ik e r  a p p roach  to c a lc u la te  the c o n d u c ta n c e  o f  n a n o co n ta cts  is num erically  

m o re  te d io u s  than the  present on e, since, in principle, tw o  layers situated infinitely far  from 

ea ch  o th e r  have  to be taken in o r d e r  to  rep rese n t  the leads.
A lth o u g h  o n ly  o n e  A u  a to m  is p la ce d  in the  c e n te r  o f  the p o in t contact  c o n s id e re d  above, 

see  Fig. 17a, the  c a lc u late d  c o n d u c ta n c e  is m o r e  than tw ice as large  as the c o n d u c ta n ce  unit. 

T h is  is easy  to  u n de rstan d  since the p la n e s  C  — 1 and  C  -f- 1, ea ch  co n ta in in g  fo u r  A u  atom s,

2.5

2.0

O
1.5

o

3  1 .0TD a
0

0.5

0.0
0 20 40 60 80 100 120

N um ber o f  a to m s in the c o rre sp o n d in g  layers

Figure 19. C onductance versus the num ber o f sites included in the sum in Eq. (209) for the contact in Fig. 17a. 
The d ifferent curves show conductances as calculated  betw een different pairs o f layers. For a definition of the layer 
num bering see Fig. 16. R eprin ted  with perm ission from  [341. K. Palotas et al.. Phys. Rev B in press (2004). © 2004. 
A m erican Physical Society.
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are relatively close to each other and, therefore, tunneling contributes quite a lot to the 
conductance through the contact. In order to obtain a conductance around 1 G0, detected 
in the experiments, a linear chain has to be considered. The existence of such linear chains 
is obvious from the long plateau of the corresponding conductance trace with respect to 
the piezo voltage in the break-junction experiments. Because at present the computer code 
for the real space Kubo equation is restricted to geometrical structures confined to three- 
dimensional translational invariant simple bulk parent lattices, as the simplest model of such 
a contact a slanted linear chain was considered as shown in Fig. 17b. In there, the middle 
layer (C) and the adjacent layers (C ±  1) contain only one Au atom, layers C ±2  and C ± 3 
four and nine Au atoms, respectively, whereas layers C ± 4  refer to the first two full layers. 
The sum in Eq. (209) was carried out for two pairs of layers, namely for p = C — q = C +  4 
(full layers) and for /; =  C — 2, q = C -f 2 (not full layers). The convergence with respect to 
the number of atoms in the chosen layers can be seen from Fig. 20. The respective converged 
values are 1.10 G() and 1.17 G„. In the case of p = C -  2, q =  C +  2 the contribution from 
the vacuum sites is nearly zero: considering only four Au atoms in the summation already 
gave a value for the conductance very close to the converged one. The small difference 
between the two calculated values, 0.07 G(), most likely has to be attributed to the use of the 
atomic sphere approximation (ASA). Nevertheless, as expected, the calculated conductance 
is very close to the ideal value of 1 G().

Another interesting structure is the 2x2 chain described in Ref. [25], namely the structure 
depicted in Fig. 17c. The conductance for this structure was calculated by including to the 
summation 100 atoms from each of the first two full layers. As result a conductance of 
2.58 G(l was obtained. Papanikolaou et al. [25] got a conductance of 3 G0 for an infinite Cu 
wire to be associated with three conducting channels within the Landauer approach. For an 
infinite wire the transmission probability is unity for all states, therefore, the conductance 
is just the number of bands crossing the Fermi level. For the present case of a finite chain, 
the transmission probability is less than unity for ail the conducting states. This qualitatively 
explains the reduced conductance with respect to an infinite wire.

Finally, the dependence of the conductance on the thickness of the nanocontacts was stud
ied. All the investigated structures have C4v symmetry and the central layer of the systems is 
a plane of reflection symmetry. The set-up of the structures is summarized in Table 3. Con
tact 0 refers to a broken contact which is embedded into a host with NAu = 1 and N v =  7 
layers, see Fig. 15, while the others have different thicknesses from 1 up to 9 Au atoms in 
the central layer, and are embedded into a host characterized by NAtl =  5 and Ny = 5, see 
Fig. 15.

In Fig. 21, the calculated conductances are displayed as performed by including nearly 100 
atoms from each of the first two full layers: p = C — 4, q =  C +  4 for the broken contact and

0 20 40 60 80 100

N u m b er o f  a tom s in the co rre sp o n d in g  layers

Figure 20. Conductance versus the num ber o f sites ineiikied in the sum in Eq. (2(W) for the slanted linear chain 
shown in Fig. 17b. Full eireles are the results o f summing in layers p  — (  -  4 and if -  C  -f 4 (first full layers), and 
squares refer 10 a sum m ation in layers p -  ( -  2 and </ - 0 2  (layers containing four Au atom s). Reprinted with 
perm ission Irom |34j. K. Palolas et al.. Phys. Ite\. H in press (2004). -v 2004. Am erican Physical Society.
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Table 3. Set-up of various na nocontacts.

C ontact

position 0 1 4 S 9

C ±  4 Full Full Full Full Full

/“■N H- 9 Full Full Full Full

C ±  2 4 g 16 21 25
C ±  1 1 4 9 12 16
C 0 1 4 5 9

Shown is the number of Au atoms in the lave:rs as labeled bv
C. C ±  1, etc.. see Fig. 16. Contact 1 refers to Fig. 17a. Reprinted
with perm ission from [34]. K. Palotas et al... Phvs . Rev. B in press
(2004). €> 21)04. American Phvsie,til Society.

/; =  C -  3, q =  C +  3 for all the other cases, see Table 3. It can be seen that the conductance 
is almost proportional to the number of Au atoms in the central layer. This finding can 
qualitatively be compared with the result of model calculations for the conductance of a 
three-dimensional electron gas through a connective neck as a function of its area in the 
limit of #(, =  90° for the opening angle [26], In the case of the broken contact, the nonzero 
conductance can again be attributed to tunneling of electrons.

7.2. Gold Contact with an Impurity
In recent break junction experiments [27], remarkable changes of the conductance his
tograms of nanocontacts formed from AuPd alloys have been observed when varying the 
Pd concentration. Studying the effect of impurities placed into the nanocontact are, in that 
context, at least relevant for dilute alloys. The interesting question is whether the presence 
of impurities can be observed in the measured conductance. For that reason we investigated 
transition metal impurities such as Pd, Fe, and Co placed at various positions of the point 
contact as shown in Fig. 17a. For the notation of the impurity positions, see Fig. 22.

The calculated spin and orbital moments of the magnetic impurities are listed in Table 4. 
They were calculated with assuming the direction of magnetization to be parallel to the 2  axis 
(M  =  i ) ,  that is, normal to the planes. Additional calculations of the magnetic anisotropy 
energy confirmed this choice. As usual for magnetic impurities with reduced coordination 
number [28], both for Fe and Co remarkably high spin moments, and in all positions of a Co 
impurity large orbital moments were obtained. In particular, the magnitude of the orbital 
moments is very sensitive to the position of the impurity. This is most obvious in the case 
of Fe, where at positions B and C the orbital moment is relatively small, but at position A 
a surprisingly high value of 0.47 fiB was obtained.

14
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< 5  1 0
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§  6
■3

U  4

0 2 4 6 8 10
N u m b er o f a to m s in the  cen tral layer

Figure 21. C onductance versus the num ber o f Au atom s in the central layer for the Au contacts described in Table 3. 
R eprin ted  with perm ission from [34], K. Palolas et al.. Phys. Rev. B in press (2004). © 2004. Am erican Physical 
Society.
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Figure 22. Im purity positions (light gray spheres) in a An point contact, see Fig. 17a. R eprinted w th permission 
from [34]. K. Palotas et al.. Phys. Rer. B  in press (2004). £> 2004. Am erican Physical Society.

The summation over 116 atoms from each of the first two full layers (/; =  C -  3. q =  C +  3) 
in Eq. (209) has been carried out in order to evaluate the conductance. The calculated values 
are summarized in Table 5.

A Pd impurity (independent of position) reduces only little the conductance as compared 
to a pure Au point contact. This qualitatively can be understood from the kcal density 
of states (LDOS) of the Pd impurity as calculated for an imaginary part of the energy of 
8 =  1 mRy, the real space scattering path operators by using 1830 points in the 2D IBZ. 
It should be noted that the LDOS at site / (/?,) is defined as follows

/ ( , (£)  =  I cl:' r l m [ G ±(E, r ,  r ) ]  (214)
7T Jii '

where il, denoted the volume of the /th unit cell. In Fig. 23, the correspondin' LDOS at 
positions A and C is plotted. Clearly, the change of the coordination number (8 at position 
A and 12 at position C), that is, different hybridization between the Pd and Au d bands, 
results into different widths for the Pd (/-like LDOS. In both cases, however, the Pd d states 
are completely filled and no remarkable change in the LDOS at Fermi level (conducting 
states) happens.

The case of magnetic impurities seems to be more interesting. As can be inferred from 
Table 5, impurities at position B change only very little the conductance. Bein' placed at 
position A, however, Fe and Co atoms increase the conductance by 11% and 24r/o, whereas 
at position C they decrease the conductance by 19% and 27%, respectively. In Ref. [25] it 
was found that single Fe, Co (and also Ni) defects in a 2 x 2 infinite Cu wire decreased 
the conductance. By analyzing the DOS, it was concluded that the observed reduction of 
the conductance is due to a depletion of the .v-like states in the minority band. The above 
situation is very similar to the case of an Fe or Co impurity in position C of the point contact 
considered, even the calculated drop of the conductance —20% for Fe and ^ —28% for 
Co) agrees quantitatively well with our present result. Our result, namely, that Fe and Co 
impurities at position A increase the conductance, however, cannot be related to the results 
of Ref. [25]. In order to understand this feature, one carefully has to investigate the LDOS 
calculated for the point contact.

In Fig. 24, the minority d -like LDOS of the Fe and Co impurities in positions /. and C are 
plotted as resolved according to the canonical orbitals d x:_v c/u., dxz , dxv and d..2 _r2 . It has

Table 4. Calculated spin and orh ita) mom ents o f  m agnetic im purities
placed a i different positjin:is in a ,\u  point ua iliic t, sec 1Pig. 22. M -

|M/;1 I ,\P ;A

Position Fe Co he Co

A 3.30 2.01 0.47 0.3S
B 3.46 2.17 0.04 0.61
C 3.42 2.14 0.07 0.2:

R eprin ted  wiih p e r f r o m  j34 |. k . Pa!i>ta> et uI.. /7/vv. Rev. H in pres- 
<21M>4) i. 2! 104. A m erican PlnMCai No J e t
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Table 5. C alculated conductances of a Au point contact 
with im purities on different positions, see F ig. 22.

Impurity
position

C onductance [0 'n|

Pd Fe Co

A ■> a 2.67 2.97
B 2.24 2.40 2.26
C 2.36 1.95 1.75
Pure Au 2.40

Reprinted with perm ission from  (34], K. Palotas el al.. Phys. 
Rev. l i  in press (2004). €> 2004, A m erican  Physical Society.

to be pointed out strongly that this kind of partial decomposition, usually referred to as the 
(d\ m , .s ) representation of the LDOS, is not unique within a relativistic formalism, since due 
to the spin-orbit interaction different spin- and orbital components are mixed. However, due 
to the large spin-splitting of Fe and Co the mixing of the majority and minority spin-states 
can be neglected.

As can be seen from Fig. 24, the LDOS of an impurity in position A is much narrower than 
in position C. This is an obvious consequence of the difference in the coordination numbers 
(8 for position A and 12 for positions C). Thus an impurity in position A hybridizes less 
with the neighboring Au atoms and, as implied by the LDOS, the corresponding d states are 
fairly localized. Also to be seen is a spin-orbit induced splitting of about 8 mRy (~().I eV) 
in the very narrow dx:_v:~dxv states of the impurities in position A. The difference of the 
band filling for the two kind of impurities shows up in a clear downward shift of the LDOS 
of Co with respect to that of Fe.

In Fig. 25, a comparison between a nonrclativistic and a relativistic calculation is displayed: 
the splitting in the dx: v: and dxv states vanishes by turning off the spin-orbit coupling.

In order to explain the change in the conductance through the point contact caused by 
impurities in positions A and C, the .v-like DOS at the center site, that is, at the narrowest 
section of the contact, is plotted in the top half of Fig. 26. As a comparison, the corre
sponding very flat v-like DOS is shown for a pure Au contact. For contacts with impurities 
this .v-like DOS shows a very interesting shape, which can indeed be correlated with the 
corresponding dy::_rz-like DOS at the impurity site, see bottom half of Fig. 26. As clearly 
can be seen, the center positions and the widths of the d^ : - l i k e  DOS peaks and those of 
the respective (anti-)resonant .v-like DOS shapes coincide well with each other. This kind of 
behavior in the DOS resembles the case studied by Fano for a continuum band and a discrete 
energy level in the presence of configuration interaction (hybridization) [29]. Apparently, by 
keeping this analogy, in the point contact the .v-like states play the role of a continuum and

E-EF |Ry|

Figure 23. Local density of stales o f a Pd im purity in position A (solid line) and in position C (dashed line) of a 
Au point contact, see Fig. 22. R eprinted with perm ission from  |34 |. K. Palotas et al.. Phys. Rev. B in press (2004). 
«, 2004. A m erican Plnsical Sociclv.
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Co
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-0.04 -0.02 0 0.02 ).04
E-Ep I Ry 1

E-Hf |R y | E -E rlR y

Figure 24. M inority-spin orbital-resolved </-like local density of states of Fc and C o impurities in pos tion A (upper 
panels) and in position C (low er panels) o f a An point contact, see Fig. 22. R eprinted with permission from [34], 
K. Palotas et al., Phys. Rev. B in press (2004). O 2004, Am erican Physical Society.

the c/3,_>_,.:-like stale of the impurity acts as the discrete energy level. Because these this two 
kinds of states share the same cylindrical symmetry, interactions between them can occur 
due to backscattering effects. It should be noted that similar resonant line-shapes in the 
STM I-V characteristics have been observed for Kondo impurities at surfaces [30, 31] and 
explained theoretically in Ref. [32].

Inspecting Fig. 26, the enhanced a-like DOS at the Fermi level at the center of the point 
contact provides a nice interpretation for the enhancement of the conductance when an Fe 
and Co impurity is placed at position A. As the peak position of the rf3.2_r2-like states of Fe 
is shifted upwards by more than 0.01 Ry with respect to that of Co, the corresponding reso
nance of the v-like states is also shifted and the .v-like DOS at the Fermi level is decreased. 
This is also in agreement with the calculated conductances. In the case of impurities at 
position C, that is, in a position by ci?D = 7.681 a.u. awav from the center of the contact,

i:-E|. | Ry I F-Er [Ry]

Figure 25. M inority-spin orbital-resolved </-like local density of sta tes ol a Co impurity in position see Fig. 22. 
O n the left nonrelalivislie, tin the right relaiK istic calculation is displayed.
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F-Hf [Ry| E-E,, [Ry|

Figure 26. Top left: m inority-spin .v-like local density of sta tes at the cen ter site o f a Au point contact with an 
impurity at position A, see Fig. 22 (solid line: Co, dashed line: Fe). Top right: the sam e as before, hut with an
impuriliy at position C. As a com parison, in both  figures the corresponding LD O S for the pure Au contact is
plo tted  by do tted  lines. T he solid vertical lines highlight the position o f the Ferm i energy. Bottom: m inority-spin 
(1^: local density o f stales o f the im purities {solid line: Co, dashed line: Fe) al positions A (left) and C (right).
Vertical dashed lines m ark the cen ter positions o f the ,:-L D O S  peaks.

the resonant line-shape of the .v-likc states is reversed in sign, therefore, one observes a
decreased .v-likc DOS at the Fermi level, explaining in this case the decreased conductance, 
see Table 5. As, however, the .v-like DOS for the case of a Co impurity is larger than for 
an Fe impurity, this simple picture cannot account correctly for the opposite relationship 
obtained for the corresponding conductances.

8 . C O N C L U S IO N S

In the current paper, methods and approaches were introduced and discussed in order to 
describe the electric properties of “real space” nanostructures, that is, of systems with a 
finite number of atoms properly embedded in (metallic) substrates. It is indeed important 
to note that whenever structures nanoscaled in two dimensions (finite supported clusters) 
are considered, the influence of the substrate has to be taken into account. Furthermore, 
because in particular finite magnetic nanostructures (very small islands) are of technological 
interest, a relativistic approach has to be applied in order to describe adequately the ori
entation of the magnetization in these structures on all levels (electronic structure, electric 
transport). The last example shown, namely atom-sized contacts, refers to a topic that will be 
of increasing importance in many applications, in particular, since the conducting properties 
of such contacts can be modulated quite a bit by placing impurities in the very vicinity of 
the actual contact atoms.
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1 . IN T R O D U C T IO N

Quantum transport through finite interacting-electron systems has been studied extensively 
in this decade. For instance, the Coulomb blockade and various effects named after Kondo, 
Aharanov-Bohm, Fano, Josephson, and so forth, in quantum dot systems have been a very 
active field of research. Furthermore, the realization of non-Fermi liquid systems such as 
the Tomonaga-Luttinger liquid in quantum wires and multichannel Kondo behavior in some 
novel systems have also been investigated by a number theorists.

To study transport properties of correlated electron systems, theoretical approaches that 
can treat correctly both the interaction and quantum interference effects are required. The 
Keldysh Green’s function approach is one such method [1-9]. Specifically, the formulation 
for the nonlinear current-voltagc profile by Caroli et al. has been applied widely to the quan
tum transport phenomena. In this report, we describe the outline of the Keldysh formalism 
in Section 2 and then apply it to a single Anderson impurity, which is a standard model of 
quantum dots in the Kondo regime in Section 3.

When a finite sample is connected to reservoirs that can be approximated by free-electron 
systems with continuous energy spectrums, the low-energy eigenstates of whole the sys
tem including the attached reservoirs are determined coherently. Thus, to understand the 
Iow4emperature properties, the information about the low-lying energy states of the whole 
system is required. The local Fermi-liquid theory [10, 11], which was originally introduced 
for the Kondo systems [12], is also applicable to the transport properties in wide classes of 
the interacting-electron systems at low temperatures. In Section 4, we reformulate the trans
port theory for the interacting systems connected to non interacting leads based on the Kubo 
formalism. The dc conductance can be written in a Landauer-type form with a many-body 
transmission coefficient determined by a three-point correlation function. We also provide 
a brief introduction to Tomonaga-Luttinger model in Section 5 to take a quick look at the 
transport properties of a typical interacting-electron system in one dimension.

2 . K E L D Y S H  F O R M A L IS M  F O R  Q U A N T U M  T R A N S P O R T

2 .1 . T h e rm a l E q u ilib r iu m

We start with a system that consists of three regions: a finite central region (C) and two 
reservoirs on the left (L) and the right (R). The central region consists of N resonant levels, 
and the interaction Uj4h-j„j is switched on only for the electrons in this region. We assume 
that each of the reservoirs is infinitely large and has a continuous energy spectrum. The 
central region and reservoirs are connected with the mixing matrix elements vL and vR, as 
illustrated in Figure I. The complete Hamiltonian is given by

Figure 1. Schematic picture o f  the system.



Transpor t  T h eo ry  fo r  In te rac t ing  E lec trons  C o n n ec ted  to Reservoirs 4 1 1

"(■  £  Ci<rC j t r '  E  I Cj.\'TC l\<rC i:<r C ,/,<r ( 3 )

lix — “  Z ] i;/. [C’cirrC' Ur +  H.C.] -  VR [Cy + ,,r<\\V +  H.C.] (4 )

Here, c'(T (cjir) creates (destroys) an electron with spin a  at site j ,  and /i is the chemical 
potential. Also, t\r  /£, and are the intraregion hopping matrix elements in each of the
three regions L, /?, and C, respectively. The labels 1, 2........N are assigned to the sites in
the central region. Specifically, the label 1 (N) is assigned to the site at the interface on the 
left (right), and the label 0 (/V +  1) is assigned to the site at the reservoir-side of the left 
(right) interface. We will be using units h =  1 unless otherwise noted.

The density matrix for the equilibrium state p is given by

p  ̂ — (J-p{ + + ,V/,)} yyr e~(i{ + -*/<)} (5)

N , . =  L  = E  4 ^ .  A/r = E  (6)
ieL.tr î C.tr ieR.tr

Therefore, the Hamiltonian and a single chemical potential ji determine the statistical 
weight in thermal equilibrium.

2.2 . S ta tis tica l W e ig h t fo r N o n e q u ilib riu m  S te a d y  S ta tes

When the voltage V is applied, the contribution of the electrostatic potential has to be 
included into 7/, ,̂ as

* .« . =  C  +  > « i  ( ? )

/ L, t =  <IV A/,. +  <1>KNR + £  <!>,.(/) (8)
ieijr

Here, (l>/ and <t>R are the potentials for the lead at L and /?, respectively, and the applied 
bias voltage corresponds to eV =  <!>, -  <I>W. To determine the potential profile in the central 
region <1\ ■ (/), the energy of the electric field should also be included into the Hamiltonian 
Eq. (2), and it should be determined self-consistently. However for simplicity, we assume 
that <I>( (0  is a given function. In Fig. 2, two typical profiles are illustrated. For an insulating
sample, there must be a finite electric field in the central region and the potential shows
approximately a linear /-dependence as that in the panel (a). In an opposite case, for a 
metallic sample, the electric field vanishes in the central region, and the potential profile 
will become the one as shown in the panel (b). Realistic situations seem to be in between 
these two extreme cases.

In contrast to the thermal equilibrium, one cannot write down the density matrix that 
describes the nonequilibrium statistical weight simply by using a single chemical potential,

p + 'V t - +  .Vw) > y y r  e - p {  t ( ( ) )

because this statistical weight describes the situation after the electrons have already been 
redistributed to gain the electrostatic potential energy. One possible statistical weight that 
describes a nonequilibrium steady state was introduced by Caroli et al. [4].

,Y+ I N+ 1

Figure 2. Examples for the profile o f the electrostatic po tential <l>( (/) for (a) an insulating sam ple and (h) a metal 
sam ple, w here c\ r — <1>, -  <!>,..
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In the formulation of Caroli et al., the coupling to the leads 7(mtx and the interaction 
in the sample region are switched on adiabatically by separating the total Hamiltonian in 
the form

* , o t ( 0  =  # i + # 2( ' )  ( 1 0 )

fi  1 =  '%UL +  tt\:C +  '%UR ( H )

% \:L  —  L +  :r  =  % r  +  & r N r  (1 2 )

*\:t = ' 4 +  E (13)
ieC .a

'M O  =  | / v, ,v  +  * / • >  8|'  ( 1 4 )

Here, 8 = 0^ is an positive infinitesimal. Because 7(\ has a quadratic form, it is possible to
use the Wick theorem in the perturbation expansion with respect to Jt2. At t — -oo the two
reservoirs and the impurity are isolated, so that the different chemical potentials fxL, 
and fjic can be introduced into the three regions in the initial condition. The time evolution 
of the density matrix is determined by the equation

J-P(t) = P(I)] (15)al
The formal solution of this equation can be obtained, by using the interaction representation 
p({) = elH'' p ( t ) e "v  and M2(t) =  e'"]t :/C2 as

P(t) = U(t. t0)p(tn)U(t{), t) (16)

(17)U(l,t f)) = T e x p j" - /^  dl'/f2(t') 

£/(/,„ I) = Texp|"/ j' dt'W2(t') (18)

Here, T  denotes the operator for the chronological time order, and T is the anti-time- 
ordering operator. Note that Eq. (18) is the Hermite conjugate of Eq. (17). Caroli et al. 
have assumed that the initial condition at /„ -> — oo is given by |

g -  (i { H | ; / -H I  N I } (? -  P { K1; c  -  M C ■} g - - P I: H -  f1 R Mr }

P ( ° ° )  — - n ,N ,  . \ e -p {* i:c -P t'N c )e ~ P l* i:R~tlRNRY\

Namely, at t{) —► — oo, each system is in a thermal equilibrium state with the chemical poten
tial • Here, (i, -  (xR = <$>, -  <bR = eV.

2 .3 . P e rtu rb a tio n  E x p a n s io n  a long  the K e ld ysh  C o n to u r

The perturbed part 7(2(t) is switched fully on at t =  0. Therefore, the expectation value of 
physical quantities are defined with respect to the density matrix at / =  0,

<*■> =Tr[p(0)<S]

=  Tr[/5(())^ s] =  Tr[p( —x>)U(— oc, 0)6 s 1/(0, — oc)] (20)

where < s is a Schrodinger operator, and |p(0), # lol(0)| — 0 for the stationary states. Equa
tion (20) can be rewritten by using a property of the time-evolution operator. l (—oo, 0) =
U ( —oc. +oo)U (-foe, 0), as

(f.) =  +oo)tf( +  oc, 0 ) ^ ( 0 ,  -oc)),, (21)

where <:• • •)«, =  Tr{p(—oc) • j. The stream of the time in Eq. (21) can be mapped onto a
loop shown in Fig. 3: starting from t — — oc, observing a quantity < al t — 0, then proceeding 
to t — -i-oc, and then tzoins back to i -  — In the ease of the usual T -  0 GreeVs function
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+ branch
- 4 -----------------------

-branch

Figure 3. The Keldysh contour for the time evolution.

with respeet to the equilibrium ground state, the wavefunction at t =  +oo is essentially the 
same with the one at / =  —oo apart from a phase factor if the initial state has no degeneracy 
[13]. Thus, Eq. (21) can be decoupled at the time / =  +oo. However, this simplification does 
not take place in the nonequilibrium case of the initial condition Eq. (19), Therefore, one 
has to treat the time loop including the way back to t —► — oo.

The time-dependent expectation value is defined by using the Heisenberg operator 
and is written in the form

(f' ( 0 )  S  T r [ p ( ( ) ) f  „ ( / ) ]

=  (U(-oo, -foe)(/(-foe, t)fr(t)U(/, —oo))n 

=  ( U ( - 0 0 , +oo){T U(-hoo, - 0 0 )f i( /)} )()

= (JcuAr))„  (22)
Here, the relation among the Schrodinger (' s, interaction (r ( / ) ,  and Heisenberg &H(t)  rep
resentations are given by

F(t) = * #/(0  =  1/(0, t)$(t)U(t% 0) (23)

In Eq. (22), Tc and Uc express the time order and time evolution along the Keldysh contour,
respectively, and t denotes the time in the —branch in Fig. 3.

The perturbation expansion with respect to //-> can be carried out by substituting Eqs. (17)
and (18), respectively, into £/(-foo, —oc) and U(—oo, -foe) in Eq. (22), as

 ̂ x j" (—i)1" r+̂
=  d t \ - - d t ' n d i r - cit,,,

,, 11 . III. J - X ■ • -xn—-i> in-\)

X ( | f  r : ( / , ) .  • • / M O | | t /72( M .  / M / „ , K ( 0 | ) (. (24)

The Wick's theorem is applicable to the average (• • • )„ because lf\ has a bilinear form. How
ever, because U(-foe, -oo) gives a factor ( - / ) ' ” for the mth order terms while U(—oo, -foo) 
gives a factor (+ /)"  for the nth order terms, four types of the Green's functions are necessary 
to distinguish the contributions from these two branches.

2.4. Nonequilibrium Green’s Function
We now introduce the four types of the Green’s functions, which are required in the 
Feynman-diagrammatic approach to the perturbation expansion along the time loop,

G n i {\- h) =  — i ) cja(t:))

= - i ( T cUL.ci<r(t-)c%(tT)), (25)

£*!j (*b h) — I )cj,r(h))
= - i ( J c U A A t t ) c l T(t t) ) i] (26)

h )  =  - i ( Chr ( t  \ ) Cj a ( h ) )

= ~i(;TcUccij ! ; ) c l r(t;)){] (27)

( t^ t2) =  - i ( c l r( t2)ciir( t \ ))

=  - / < T i:Ul.chr(tl )<i(':~)>o (2 8 >
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Here, cj(T(t,) and Cjtr( t 2 ) are Heisenberg operators. / K denotes the time +  or -)ranch in 
Fig. 3. For these Green’s functions, there is another notation used widely in literatures, and 
the relation between that and the present one by Lifshitz-Pitaevskii [5] is summarized in 
Table 1.

Based on the Feynman-diagrammatic approach, the Dyson equation can be expressed in 
a 2 x 2 matrix form;

G j j ( w )  = g , , ( i o )  +  £ g / / ( w ) 2 /m ( w ) G mj-(t!>)

~ G„ c , r V
" v

~*hn lm

G t ~ a r .
£ + ~  _ //?!

v + +
^ l m  _

(29)

(30)

Here, glf is the Green's function determined by the unperturbed Hamiltonian ft] ard density 
matrix p ( - o o )  for the initial isolated system. The Fourier transform has been carried out for 
stationary states,

cI oj 

2 t t
(31)

For instance, in the noninteracting case !({■ — (J, the self-energy correction is caused only by 
the couplings between the sample and reservoirs #mix,

— V I . ( ^ i .  l f y .0  +  8 , A l 8 j .  i )

1 0  

0  - 1  

1 0

0  - 1

Note that the four types Green's functions are not independent,

G  +  G + 1 ~ G  +  G " +, ^  " +  V  + =  - 1 ~ + -  1

(32)

(33)

Thus, the Dyson equation (29) can be expressed in terms of three independent quantities 
by carrying out a Unitary transformation P {GP:

p =

0 G ",i " o  s f

G o F, i . s r,i V L
£
lm

1 1

- 1  1

g'i
PH

a

L

v /

0

o GU
G

Here, Gr and G ‘ are the retarded and advanced Green’s functions, respectively, 

Gr = G -  G"+, Gu — G ' -  G+~, F = G +  G ’H
S r _  V .... - a .  V  • V "  v  - _|_ Y  + ( )  _  V  V + - ’-

(34)

(35)

(36)

(37)

The function F and 11 link closcly to a nonequilibrium distribution. Alternatively, th; original 
four Green’s functions can be expressed with these three functions as

G -  = IF  +  (Gr + G“)]/2, G "  =  [F -  (Gr + G“)]/2 

G ' =  i F -  (G‘ -  G“)]/2, G- = | F +  (G' -  G") J/2

(38)

(39)

Table 1. C orrespondence betw een two standard  notations.

Lil'shiiz-Pitaevskii G G G G
.Alternative notation  G t G t G G
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Similarly, the four self-energies are written in terms of . 1" and <>,

I  =  [n  +  (T  + - <l)]/2, 2T+ =  [11 -  (! '  -f l “)]/2 (40)

1 • =  - [ t t  -  ( T - S l#)]/2, S" = - [ n  +  (Sr - 2 l,)]/2  (41)

The Dyson equation for the three functions are deduced from Eq. (35)

Gr =  g' +  * r£ fG r, Gu = ga +  ^ 'F G 41 (42)

F =  F n +  F °r 'G "  +  g 'X 'F  +  g 'ilG " (43)

Here, vve have suppressed the subscripts for simplicity, and these equations should be under
stood symbolically. Equation (43) can be solved formally by using Eq. (42) as

F = [ 1 -  £ r2 r] - l F"[l +  + [1 -  g 'T ]  'grHG“

= G'{gr}~iF"{g“}- iG“ + G'ilG" (44)

2 .5 . G re e n ’s F u n c tio n  fo r th e  In itia l S ta te

The unperturbed Green’s function gtj is determined by 7/, and the initial density matrix 
p(—oo). Initially at t —> oo, the three regions are isolated and noninteracting. Therefore,g/y;|1 
for v — L, R, C is given by

,  c k , r , M ) K , . U )  „ ,  „ v ,  4 > , r . r U ) K J j )  /(1C,
4 : ,  " )  =  L  -----------------— T ’ « '/ / : , . ( " )  =  L  ------------------------------------------------------^  ( 4 5 )

' „ w  -  f , , ; ,  +  -  /5

/■", M  =  [ 1 -  2f„Uo)}[g'j:i.(») -  gU-;„(ft»)] (46)

Here, e„.r and </>„;,.(/) are the one-particle eigenvalue and eigenstate of The information 
about the statistical distribution is contained in the function F".r via f,,{(o) = f(a) — fxr), 
where /(e )  =  [e&* -f 1] In the system we are considering, each of the reservoirs (v =  L, R) 
has a continuous energy spectrum, and the isolated sample (v ~  C) has a discrete energy 
spectrum. Thus, the full Green’s function becomes to depend only on (i, and fiR and does 
not depend on /x( [14]. This is because the contribution of F{) to the corresponding full one 
F arises in a sandwiched form {#r}" l fr(){g"} 1 as described in Eq. (44). Thus, the singular 
contributions of 8 functions in F{) a  [gr — g"] of the sample region are canceled out by the 
zero points of the inverse Green’s functions in both sides, to yield {g,’} - l /rl,{g"}“1 =  0 for 
v =  C .

2 .6 . N o n e q u ilib riu m  C u rre n t fo r N o n in te ra c tin g  E lec tro n s

The nonequilibrium average of the charge and current can be deduced from the Green’s 
functions. For instance, by using Eqs. (28) and (31), an equal-time correlation function can 
be written in the form

 ̂ f 00 d to
{c]„cjiT) = • /(';,,’ ((). 0) -  j  ^ — G y  (co) (47)

Therefore, the current flowing from the left lead to the sample is given by

h  = ieVl. E K , £<fcr -  4 r CKr] (48)IJ
C ”jC d  Cl)

(.J,) = levL j —  (w) -  G~; (w)] (49)

The expectation value for the current flowing from the sample to right lead, JR, can also be 
written in a similar form. In the noninteracting case 11 [ — 0, Eq. (49) can be rewritten in



416 Transpor t  T heory  for In te rac t ing  E lectrons C o n n e c te d  t) Reservoirs

terms of retarded and advanced Green's functions which link the two different interfaces of 
the sample [4];

(J) = cl(x)[f, (w) -  f R{w)]J„((o) (50)

=  4TZ ( oj ) C"] N (w ) I (co) G'v j (w) (51)

F/.(w) =  -Im[uj,g,'HJ(w)], r„(oj) = - Im [ u ^ ,+IN+I(w)] (52)

Note that (JL) = (JR) (=  (J)) in steady states. The outline of the derivation aie provided 
in Section 3.3 for a single Anderson impurity. Equation (51) implies that the current is 
determined by the electrons with the energy fiR < co < \xL at low temperatures, where
P-l =  e V .

For interacting electron systems, the nonequilibrium current can not general!) be written 
in the form of Eq. (50). It does only in a particular case where the connexion of the
two leads and the sample has a special symmetry described by a relation VL(e = XVR(e)
in the notation used in Ref. [15]. In the interacting case, the imaginary part >f the self
energy caused by the inelastic scattering becomes finite. It links with the contnbutions of 
the vertex corrections, and the formulation becomes somewhat complicated. Nevertheless, in 
the linear-response regime, the dc conductance for interacting electrons can be expressed in 
a Landauer-type form quite generally [16-18] even in the case without the special symmetry 
mentioned above [19]. Specifically, at zero temperature T = 0, the imaginary ?art of the 
self-energy and vertex corrections for the current become zero at the Fermi energy (o = 0, 
and the transmission probability can be written in the form of Eq. (51) with the interacting 
Green's functions. We discuss the details of these points in Section 4.

3 . O U T -O F -E Q U IL IB R IU M  A N D E R S O N  M O D E L

We now apply the Keldysh formalism to a single Anderson impurity connected to two leads 
as illustrated in Fig. 4. It corresponds to the N — 1 case of the Hamiltonian Eq. tl) and has 
been widely used as a model for quantum dots. For convenience, we change the label for 
the sites: the new one for the impurity site is given by 0 => d , and that for the irterfaces at 
the left and right leads are 0 => L and N  +  1 => R, respectively.

3 .1 . G re e n ’s F u n ctio n  fo r th e  A n d e rs o n  im p u rity

The self-energy in the interacting case can be classified into two parts.

l iJ(<o) = ?;j{<o) + Xu(<o)8u 8j'd (53)

Here, corresponds the one defined in Eq. (32), which represents the effects purely due 
to the mixing with reservoirs and sample. The remaining part contains the contributions 
of the onsite Coulomb interaction U. Substituting the self-energy Eq. (53) into the Dyson 
equation (29), we obtain a set of equations for the impurity Green's function,

G,w(w) = g M (u)) + g M (w)'&u (io)Gli,l {w)

~ Vi.g,hi(«>)T, ,i((0 ) -  vKglU(oj)T.GK,i(oj) (54)

G , J cd) = -v ,g ,  (w )r,G ,w(w) (55)

G/w(«) =  (56)

Figure 4. Anderson impurity connected to two leads.
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where and gR are the Green's function al the interfaces at left and right, respectively. 
The explicit form of the unperturbed Green's function at the impurity site is given by 
{g(/(/(a>)} 1 = (co -  €(I)t } with one of the Pauli matrices r y Substituting Eqs. (55) and (56) 
into Eq. (54). we obtain

G,w(w) = g t/,/(w) +g,,,/(w)[or(w) + 2f(w)]G<w(w)
a ( 0 ) )  =  l  £ t ,  g i ( w ) T 3 +  V 2r T ,  g « ( w ) T ,

Therefore,

=  k w ( w ) } ' 1 -  <*(<»)
- I

(57)

(58)

(59)

(60)

Here, Gd’J(eo) is the Green’s function for the noninteracting case. Furthermore, an alterna
tively form of the Dyson equation G — g +  G'Zg yields

Gj i (io) = - v LGM{oj)T}g,(w) (61)

G,ir((0) = - v RGM((o)T}gR((o) (62)

Thus, the intersite Green’s functions can be deduced from GdJ(io) by using Eqs. (55)—(56) 
and (61)—(62).

The voltage-dependence arises via the unperturbed Green's functions for the leads at 
v — L and R ,

£ , ( « )
0

f " ( o>) =  [ i  - 2 . / ; , ( W) j [ ^ ( W ) - g ; : ( W)i

=  —2 / [ i  -  2 / ; , ( w ) j r >1( f t ) ) / ^

(63)

(64)

where T,.(w) =  -w^lm[g,''(w)]- I he pure mixing part of the self energy (r(<o) can be ealeu 
lated from Eqs. (58) and (63),

f r ( c o )
f i" ’!(w) <rr(a>)'

a " ( i o )  0

=  v ] F ) ](i0) +  v-r F"{(o) 

o-'(w) =  v2Lg'L{w) +  v2KgrR(a))

(65)

(66) 

(67)

and a“(o}) = |rr' (<y)}*. Then the noninteracting Green's function Gd’/(co) can be determined 
via Eq. (60),

G Z '  ' (W ) =  [1 -  f c i M )  C 7 ( U )  +  /e f f ( w )G ^ )fl(ft»)

G,«»++  
(hi (w) = - / efr ( f t O < C »  -  [• “ /e frM l c ;j(ft> )

(())«,

G

G

(id

(())-}--
(id

■+ ( W) =  - / dT( W ) [ c : ; ; ; r ( a ; )  -  c ^ » ]  

(to) =  11 -  fclM > )\[ (C (u )  -  < ^ » ]

where

f L( ^ L +  f R(co)Y

1 7  +  r «  

l

w -  e,/ -  v r(o>)

(68)

(69)

(70)

(71)

(72)

(73)
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and G J^ o j) =  {Gj/j'(w)}". Thus, the effects of the bias voltage arise through the distribu
tion function f cf{(co).

The full Green’s function for the impurity site can be expressed, using Eqs. (42)-(44) and 
(64)-(66), as

G'w(w) =  ----------------— ——  —  (74)
(o -  e(/ -  <t' (w) -  S[;(w)

Fj A « > )  =  c ; /(, ( « ) [ n " ’V )  +  i i , ; ( w ) ] c ; ; , , ( a > )  ( 7 5 )

where G“ul(w) - {G'ikt(u)\*. Note that S2,.-(w) =  - I t“+(w) -  V  (w) and Fm (oj) are pure 
imaginary. The four elements of Gilll(to) can be written, using Eqs. (38)-(39) and (74)- 
(75), as

G  7,7 (w)  = -  /,.-ff(w)JO’j,((w) +  / , fr(w)G"i((w) (76)

(Jm ((0) =  - f cn(to)G'M(to) ~ -  /cit(w)]g;'w(w) (77)

Cj,]Ai0) -  -/d t(w )[G ;u (ftj) -  Gj,,(w)] (78)

Ga/ M  =  [ l -  (a>)][G;w(o>) -  G‘;jto)] (79)

where G jj  (<w) =  - { G j (l (u))}\ and / d,(w) is a correlated distribution defined by

A l,v  r ,  +  r /( -  i m s rt ; ( « )

With this distribution function, the number of the electrons in the impurity site can be 
written in the form

(»,/) = 2  j  cltofc„ ( t o ) ^ - ^ l m  G'm (oj) (81)

In the equilibrium case, (jl = /x, — /iJ{, both / ctf(w) and f ef{(co) coincide with the Fermi 
function /(w ), because of the property Eq. (84).

3.2 . P ro p e rtie s  o f th e  G re e n ’s F u n c tio n s  at e l /  =  0

We summarize here the properties of the Keldysh Green’s function in the limit of the zero- 
bias voltage eV =  0, at which fiL — fxR. In this case, the four self-energies can be written in 
the form

—r v.;(w) =  [1 -  f(to)]TU:CLt(to) + f ( t o ) l ‘i,xq(to) (82)

;,(« ') =  - f ( t o ) i [ :.^(to) -  [i -  / ( « ) ] £ ; , , , (  co) (83)

2Z 4 ,(« ) =  f(to)[±'L ^ ( i o )  -  r L,c,(to)] (84)

V , . , M  = “ (I -  f io» \[X  Jco) -  '->:cii(to)\ (85)

Furthermore, in equilibrium, f\:JxK{(co) and Xk[(co) are determined bv the retarded and 
advanced fu nctions.

FM:eq(to) =  [ 1 -  2f(to)}\G';uî (to) -  G‘;u!̂ (to)] (86)

t l l :c,(to) =  [1 -  2f(to)][lrr ^(to) -  S‘/ ,cq(W)J (87)

Specifically at zero temperature, (co) and !£^“g(w) vanish, respectively, at co > (i and 
co < /x, because of the Fermi function in Eqs. (84) and (85). Similarly, the Green’s functions
G.j^Jco) and G*l(lx (co) also vanish at co > /.<. and o> < /.i. respectively. Therefore, at the
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equilibrium ground state, the usual 7 — 0 formalism, which yields a single-component Dyson 
equation.

= G7,L (®) + GZL  (<0)Xf:CM(w)G,;:(<«>):cq ( H S )

becomes available.

3,3 . C u rre n t T h ro u g h  th e  A n d e rs o n  Im p u rity

The operators for the current flows from the left reservoir to the sample Jr and that from 
the sample to the right reservoir JR are given by

^L  d a C t (r
cr

J R =  c 'n.rd ,r -  d 'lc R .r ]
(T

As mentioned in Section 2.6, the expectation values can be expressed in the form

d w

(89)

(90)

(91)( J i.) =  2ef 2^  "  G ‘ii

{Jli) = 2e/ I  £  -  G«!i(^} (92)

The intersite Green’s functions in the right-hand side of Eq. (92) can be expressed in 
terms of Glltl(io) using Eqs. (55)-(56), and (61)—(62), as

P-'GRdP =

r xg iIRp  =

0 S'( l  -l

=

0

J Z r Q m Z i<F cUi +

0 ( J dK
=

0

J ^ 'd R f \u < _ G m S r ( ’ d d ^ R  +  I \ i<i K r _

(93)

(94)

(95)

Thus, using Eqs. (39), (75), and (93)—(94), we obtain

-  G /m 1 =  y l F,m -  Fr,\
•)

=  y  [ ( 8 h ~  Mr ) f m  -  F r ( g 'm  -  G ‘tu ,)]

=  r « c ;wG"(,[4r , ( A  -  /„ )  -  /n ,  -  2(1 -  2/ R)im s;,]

Similarly, for the right-hand side of Eq. (91), we obtain

v l [^ j u  “  1 “  — ^ / / J
Z ,

=  r/.6';wG“(/[4 r„ ( /,  -  /« ) +  i n ,  +  2 ( 1 -  2 /J lm Z',,] (96)

If the two couplings between the Anderson impurity and leads have a property F, (a/) =  
\Vr(cd) with A being a constant [15], the expression for current can be simplified by taking 
an average, F, x (95) +  Vf< x (96), as

< />  =  -
' M  +  !« (■ // .)

I R +  1 /.

J  dco[fL(co) -  f R( c o ) ] ~ ^ \ - l mC/M(co)} (9 7 )

Note that (./) =  (./,) — for stationary states.
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3 .4 . P e rtu rb a tio n  E x p a n s io n  w ith  R esp ect to  7f^

So far, we have discussed general properties of the nonequilibrium Green's functions. To 
study how the interelectron interactions affect the transport properties, the self-energy 

(o>) must be calculated with reliable methods. Because the noninteracting Green’s func
tion. which includes the couplings between the leads and the Anderson impurity have 
already been obtained in Eqs. (68)—(70), the remaining task is calculating 2(y(ci), for 
instance, by taking GZ  to be the unperturbed Green’s function. Then, the inteiacting 
Green’s function GlUl are deduced via the Dyson equation (59).

The self-energy 2 t;(o>) can be calculated with the perturbation expansion with respect to 
the interelectron interaction . For generating the perturbation series, it is convenent to 
introduce an effective action.

S (rj\  17 ) =  Stl(rj\  r/) + SL (r)'\ 17) +  Sc,(r ]\  17)

S(i(V. v)  =  T i f  d , d t ‘ vJAf ) t ' )v,T{t ' )
IT

S , (i?T. 17 ) =  —U I  elt^T}] ( 1) 7). _ ( l ) r j r ( l ) r j l _( i )

- v ] A i ) v u . ( t ) v ] ^ { t ) V i + C )

(98)

(99)

( 100)

Mere, rf(T(t) =  (rj*_ (/), r)'(F+(t)) is a two-component Grassmann number corresponcing to 
the — and +  branches of the Keldysh contour shown in Fig. 3. The Kernel is detemined 
by the noninteracting Greens function,

* : / »  -  k » i  1

cho 
2rrkjA ^ 1 ) -  J j z K<iA0J)t

(101)

(102)

In Eq. (100), the sign for the interaction along the -branch and that for -fbranch are 
different. This correspond to the sign arises in Eq. (24), and it is determined from which 
of the time-evolution operators, £ / ( + o o , - o o )  or U ( — oo , + o o ) ,  the perturbation ten™ arise. 
For Sex(?7 f , r/) in Eq. (98), we introduce an external source of two anticomutating c-nimbers 

j lU )  — (Jcr ~ ( )̂*• j<r+ (0 )  following along the standard procedure [20],

sc x(V - v) = ~ T . J  (it[m]r(t)j,T(t) +  j l i O v A O ]  (103)
<r

In this formulation, the Green's functions are generated from a functional Z[j], as

Z[j\ =  /  DrfDr) e,S{̂  

8

*?)

7T Z\j]
llm  s j U t )  8j <t, - v '

In the noninteracting case, the functional integration can be calculated analytically

Z ,0|[/j =  j Dr.’Dri c’, |W

(104)

(105)

=  Z m \0] exp

The generating functional Z [ J ]  can be rewritten in the form

Z \ j \  =  e :Si 1 ) > z i0) [ /]

(106)

(107)
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Here, ij  and 7 7 ' in the action S L (r/T, 77)  has been replaced bv the functional derivatives

‘n'"xn  ^  ~ 'jr r r \ -  v<n(l) ^  <1()S)° / ,  r , ( 0

The perturbation series can be obtained by substituting Eq. (106) into (107) and then expand
ing elS< in a power series of SL;.

3 .5 . F e rm i-L iq u id  B e h a v io r a t L ow  B ias  V o ltag es

The out-of-equilibrium Anderson model has been studied by a number of theoretical 
approaches. In this section, we discuss briefly the low-bias behavior of the Green's function 
and differential conductance, which have been deduced from the Ward identities for the 
Keldysh formalism [21]. In equilibrium and linear-responsc regime, the low-energy prop
erties at max(a>, T) TK can be described by the local Fermi liquid theory, where TK is 
the Kondo temperature [12]. T he results deduced from the Ward identities show that the 
nonlinear properties at small bias-voltages eV <£ TK can also be described by the local 
Fermi-liquid theory.

The low-energy behavior of ImSJ;(w) has been calculated exactly up to terms of order or, 
(eV) \  and T \

lmV'[.(W) =  - | { / ) , q(U)}3|rn ; it (0,(): 0, ())|2

(w -  neV)2 + 7 W ~ ^ : ( eV)2 + (7rT)
U L "r 1 « ) ”

(109)

where l ’, „ ir(co, co'; co\ co) is the vertex function for the causal Green's function in the zero- 
temperature formalism, and /4cq(o>) =  —Im Grtl{/. (to)/ir. The parameter a  is defined by 
a = (cx/Xi - a HVR)/(VL -1- Tw), where a L and a R are constants which have been introduced 
to specify how the bias voltage is applied to the equilibrium state. Namely, /jl, =  aLeV and 
/xR =  -cxRe V with a j +  an =  1.

The iviil part of the self-energy is generally complicated. However, it is simplified in the 
electron-hole symmetric case for ed =  —U/2, VL = Fw, and fi, = —jiR =  eV/2. In this case 
the spectral wight at the Fermi energy becomes /4cq(0) =  1/(7tA) with A — Tz 4-1^, and the 
low-energy behavior of the real part of the self-energy is given by

Re l ’L!(u)) = ( 1 - . Z- ])(0 + O((o^) (110)

, j <>»
2 - l  =  1 -------------- 1

dco (1
OJ— i)

Here, the constant Hartree term U/2 is included into the unperturbed part, and it set the 
position of the Kondo peak on the Fermi energy e(/ +  U/2 — 0. Therefore, G’(co) can be 
deduced exactly up to terms of order w:, T 2 and (eV)2 from Eqs. (109) and (110),

G1 (co) 2 1  ------- ^ ^ ------------------------------------(112)
w +  /A +  i(U2/2A(ir±)2)[co1 4- 3/4(eV)2 +  ( 7tT)2]

where the renormalized parameters are defined by

A =  zA, U = z2r tiUT(0,0; 0,0) (113)

The order U2 result [14] can be reproduced from Eq. (112) by replacing U with the bare 
Coulomb interaction U and using the perturbation result for the renormalization factor
z =  I -  (3 — t t 2 / 4 ) u 2 4----- , where u — U/(tt\ ) .

This result shows that in the symmetric case the low-voltage behavior is characterized 
by the two parameters A and U. These two parameters are defined with respect to the 
equilibrium ground state, and the exact Bet he ansatz results exist for these parameters.
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The width of the Kendo resonance A decreases with increasing t/, and becomes close to 
A ~  (4/7r)TK for large U with the Kondo temperature defined by

Tk =  7rAv/ u/ (2tt) exp[—7t~m/8 4- 1/(2//)] (114)

The Wilson ratio is usually defined by R ~ Xs/J' where y and Xs are the enhancement 
factors for the T-linear specific heat and spin susceptibility, respectively [11]. Alternatively, 
it corresponds to the ration of U to A,

R -  I =
U

(77-A)
(1 1 5 )

The Wilson ratio takes a value R = 1 for U =  0, and it reaches R = 2 in the strong-coupling 
limit U —► oc.

The noncquilibrium current (J) is calculated by substituting Eq. (112) into Eq. 97). Then, 
the differential conductance dJ/dV  are determined exactly up to terms of order T2 and 
(eV) \

dJ_
dV

1 -

+  2 (R jt T

A

1 + 5 (R -  1); eV
A

+ (116)

Therefore, the nonlinear (cV)2 term is also scaled by the resonance width A, and the coef
ficient is determined by the parameter R — 1, or U / ( t t K ) .

4 . T R A N S P O R T  T H E O R Y  B A S E D  O N  K U B O  F O R M A L IS M

We have discussed in Section 2.6 that in the noninteracting case the nonequilibrijm current 
can be written in a Landauer-type form, as Eq. (50). The similar expression has been derived 
for interacting electrons in a special case, when the couplings between the leads and sample 
satisfy the condition F 7 (e) — W R(e) in the notation used in Ref. [15]. For this condition 
to be held, the interacting sites must be classified into the following two groups: one group 
consists of the sites that are connected directly to both of the two leads, and other group 
consists of the sites that have no direct links (hopping matrix elements) to the leads. This 
condition restricts the application of Eq. (50). For instance, if there is an interacting site that 
is connected to only one of the two leads, the condition is not satisfied. Therefore, Eq. (50) 
is not applicable to a series of quantum dots as illustrated in Fig. 6. Nevertheless, in the 
linear-response regime, the Landauer-type expression of the dc conductance, Eq (139), can 
be derived quite generally without the condition mentioned above [19].

In Section 4.1, based on the Kubo formalism, we describe the outline of the derivation 
of Eq. (139) for interacting electrons. Our proof uses the analytic properties of the vertex 
corrections following along the Eliashberg theory of a transport equation for correlated 
electrons [22, 23]. The many-body transmission probability 7 (e) is given by Eq. (.40), and it 
is written in terms of a three-point correlation function. At zero temperature, the imaginary 
part of the self-energy due to the interaction and the vertex corrections for the current 
become zero at the Fermi energy e = 0. Due to this property, the transmission probability 
at T = 0 is determined by the single-particle Green’s functions as shown in Ec. (141). In 
Section 4.2, the current conservation law for the correlation functions is described with the 
generalized Ward identity, which expresses the relation between the self-energy ^nd current 
vertex. In Section 4.3, we provide the Lehmann representation of the three-poirt functions 
to carry out the analytic continuation formally. It can be also used for nonperturbative 
calculations of .7(e). We apply this formulation to a finite Hubbard chain in Sect.on 4.4 and 
show an example of the transmission probability 7(e) for interacting electrons.

4 .1 . M an y -B o d y  T ra n s m is s io n  C o e ffic ie n t J  ( t )

We now consider the Hamiltonian // ‘ 'J defined in Eq. ( I )  again, which is also illus
trated in Fig. I. The dc conductance g can be determined in the Kubo forrr.alism, and
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it corresponds to the oj-Iinear imaginary part of a current-current correlation function
K „ A W +  , ( ) ' ):

r™ K >uA^ + ‘{)' )  ~  Knn(i^)  , , 17,g =  c 11 m -----------------;--------------------  (11/)
to - ( i id )

K,nA i v i )  =  f  d r { T J n( r ) J a (()))e” /r (118)
‘Ml

where a = L or R. The retarded correlation can be calculated via the analytic continua
tion K(ux\(x) +  /0+) =  K(m\ iv j )|/f< where =  2irl/fi is the Matsubara frequency. The
current operator JIX is defined by

h. = 'E  ''/ '  4r^l,r) (119)
< r

Jr = i E  -  ^ , r CA’+l„) (120)
f /

Here, JL is the current flowing into the sample from the left lead, and JR is the current 
flowing out to the right lead from the sample. These currents and total charge in the sample 
p( satisfy the equation of continuity

P c =  E  Clr^ja  (121)
j e . ( \ t r

^  -  J ,  =  0 (122)
a l

Owing to this property, the dc conductance g defined in Eq. (117) does not depend on the 
choice of a and a [18]. Note that Kaa(z) — Kaa-(z) owing to the time-reversal symme
try of J( .

To calculate the co-linear imaginary part of Kaa>(o) +  /O1), we introduce the three-point 
correlation functions of the charge and currents,

<h-;„ ' ( t ; t „ t 2) =  ( 7 ; -v« ( - ) < „ ( - » < : , ( - ) )  ( 123)

Ti> t; ) - . (T)eyV(r,)c’J.(7(T2)j (124)

<I>/<;/V( t ; I , ,  t2) =  | ' 7 ; y „ ( r ) c (-,r (T1)cJ,ir(T2)j (125)

where Sp<- == pc -  (pc ). These three functions can be expressed as functions of two Mat
subara frequencies i v  and i s ,

T|,  r2) =  <J>y .j r ( i e ,  i e  +  i v ) e - ,ElT^ T)e ~ ,{g+,,){T~ T:) (126)
P  i e j r

for y — C, L, /?. We mainly consider the electrons in the central region assuming jj' e C. 
In the right-hand side of Eqs. (124) and (125), there still exist the creation and annihilation 
operators with respect to the leads at 0 and N  +  1 in the operators JL and JR. The correlation
functions that include these two sites as one of the external points can be related to those
defined with respect to the adjacent sites 1 and N,  by using the properties of the Green's 
function at the two interfaces:

^ | . , ( 2 ) =  -Xi .  (z ) v i C!\.i( z ) for 1 < j  5  N  +  1
(127)

=  - G ;  , v U K s „ ( c )  f o r  U < j < N

Here, g{ (z) and gR(z) are the local Green’s functions at the interfaces of the isolated leads, 
0 and /V +  1. respectively. Using these properties, the three-point correlation functions for
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jj' e C can be expressed as

CI ie +  iv) =  £  G i ) S i e ) X n 47, ( ' * ♦ ie + iv)Ghr{ie + iv) (128)
Ja J i

where Aruh includes all the vertex corrections. The corresponding bare current vertices are 
given by

<<>)
't'Wj/i (ie, ie -f- iv) — 8Ja-J i

(0)V ;Wl (,£ - '» +  “ ') =  A; (/£, ie + ir)6, . 6J -  i -]\

(0)A# (/e. is +  iv) =  Aw(/k, /£ +  ii')8X: hSs

with

A, (/£, /e + /'/') =  — / [g, (/£ +  />) -  £,.(/£)] 

A:•((£• is +  iv) =  ;i7j ^ /,(;'£ +  iv) -  £,<(/£)]

(129)

(130)

(131)

(132)

(133)

Wc now calculate the w-linear part of Kl:m (:) taking a and a' to be R and L, respectively. 
Using the three-point correlation functions, the current-current correlation function KRL{iv) 
can be expressed as

K Kl. ( i l ’ ) =  • g E E M ' S -  i e  +  /t' ) C|)K; l l ( ' e - ' £  +  ' " )
i I y i r

(134)

Paying attention to the analytic properties of the Green's functions, the summation over the 
Matsubara frequency can be rewritten in a contour-integral form. Then, by carrying out the 
analytic continuation iv —► co +  /UT, we obtain

Kltl (co +  /()' ) =  521 -  I [(e) A’z'1 (e, e +  w ) ^ .1, ,(e, e +  w)

t i e

+

I  j ~ [ f ( € +  M ) - f ( e ) A ' / ^ e ,  e  +  e +- w )

f  / (e  +  w) A[/'(e , e +  w)<t'^i|](e, e +  w)
17TI

(135)

where / (e )  =  ( ^  +  I ) -1. The superscript with the bracket, that is, [k] for k = 1,2,3, is 
introduced specifies the three analytic region of <$>R.n(z ,z  +  u>) and A, (z, z -i w) in the 
complex z-plane. These regions are separated by the two lines, Im (z) =  0 and Im(z +  w) =  0, 
as shown in Fig. 5. In each of the three regions, 4>/<;11(z, z +  w) corresponds to :he analytic

P I

Figure 5. Three analytic regions o f  <1>(V , ~ -  i r ) .
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function uivcn bv

Ĉ A’; ! I ( ^ f  ^ 1 1  ( e ^  1 , 6 - r  Ct) +  H)n )

tlJn.Lfe, e +  w) =  4>K;ll(e - /( )+ , 6 + w +/()'■) ( 1 36)

li: ( 6 , 6 +  0)) =  cl>,,. j j (£  — /'0+-, £ +  co — i 0 + )

These analytic properties can be clarified explicitly in the Lehmann representation, Eq. (158), 
provided in the next subsection. Similarly, the analytic continuation of the bare current vertex 
A„(/£, is -f iv) for a = L, R is given by

137)

Ai'^e.e +  w) =  isuv2a[g+(e +  w) - g j ( e ) l

AL: | ( e , e  +  w)  =  /s„uf1[ ^ { e  +  t u ) - g (7 (e ) ]

A ^ '^ e  +  w) =  i s y a[g;,(e + a))~ g-(e)}

where the factor sa is defined such that sL = -1  and sR = -hi. In this section, we distinguish 
the retarded and advanced Green’s functions by the label -f- and —, respectively, in the
superscript. In the limit of co —► 0, the bare vertices for k = 1 and 3 vanish as A* *(e, e +  co) oc

p i ,
co. In contrast, for k =  2, it tends to a finite constant A!;J(e,e) =  2saVn(e) with Fa(6) =  
- ^ Im [ ^ ( 6 ) ] .  Correspondingly, the asymptotic behavior of <t>« (e,e +  to) for small co has 
been investigated by using the Lehmann representation of a four-point vertex function [22, 
23], and the result is [19],

' ( € ,  6  - f  CO) OC

CO

finite
co

for k — 1
for k — 2
for k =  3

(138)

for a = L, R. Therefore, taking the co —» 0 limit in Eq. (117) by using Eq. (135) for KRi (co +  
/()*'), we obtain

( l 3 ‘”

fT(e) = 2 r ,(e )< ;'n(e,e) (140)

Thus, the dc conductance is determined by the three-point function for the analytic region 
k — 2. The analytic continuation is performed formally by using the Lehmann representation 
in Section 4.3. The result shows that ^ .^ (e ,  e) can be expressed as a Fourier transform, 
Eq. (162), of a real-time retarded product in Eq. (160).

Specifically, at T =  0 the conductance is determined by the value of the transmission 
probability at the Fermi e =  0, and it can be written in the form [24-27],

7 (0 ) =  4 r L(0)C-N(0)TR(Q)G^(0) (141)

This is due to the property that the vertex corrections for the current vanishes at T =  0 
and e =  0, as shown in Eq. (154) in Section 4.2. Furthermore, the reflection probability is 
given by

- m  =  | 1  - 2 / T , ( 0 ) G + ( 0 ) | 2  =  | 1  -  2 , T „ ( 0 ) C + V ( 0 ) | :  ( 1 4 2 )

The current conservation 7 (0 ) +  ./f(0) =  1 follows from the identity in Eq. (156). Similarly, 
at zero temperature, the Friedel sum rule for interacting electrons is given by [28],

A.ALt =  —  loddet S]
77/

(143)
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5 =

where the 5-matrix is defined by

-  2/T, (0 )G n (0) 2,T?(0 )G \;0 )

2,T*(0)G?V1(0) l - 2 / r „ ( 0 ) G + v(0)

In Eq. (143), A/Vtol is the displacement of the total charge defined by 

A .V „: ~ V V  r ; ; r .

(144)

i € ( (T

^  f i a )  (  ̂  i a  ̂  i a  )  / . ]  [  ( ^  i a  ̂  i a  ) (  ̂  i a  ̂  i a  )  R  ] (145)
i±L a i € R a

where and (■■■)/,. denote the ground-state average of isolated leads determined by
7/) and 7fR> respectively.

4 .2 . C u rre n t C o n serva tio n  and W ard  Id en tity

The interelectron interactions generally cause the damping of excitations. Therefore, theoret
ically, the self-energy and vertex corrections must be treated consistently with the approaches 
that conserve the current. In this subsection, we discuss the current conservation using a 
generalized Ward identity.

The generalized Ward identity can be derived from the equation of continuity in the 
Matsubara form ~(d/dT)8pc +  iJH — iJL =  0 [29],

cl
Ti - r ’ ) +  T1' T: )  “  /(|>/.. <r ;  T1’ Ti )  

=  S ( t  -  7z ) G j j . ( T l , T )  -  <5(T| -  r)G'„.(r, t 2) (146)

It can be expressed by using a N x N  matrix representation for / /  e C with the Matsubara 
frequencies,

iv <t>( (is, is +  ip) +  i 4>f<(ie, ie +  iv) — i <PL(ie, ie +  ip) — G(ie) — G(is -b ip) (147)

Here, G(z) = {(/^(z)}  and <t>y(z. z + w) — {4>y;̂ (z , z +  w)}. The matrix version of Eq. (128)
is given by

<J>y(z, z -f w) = G (z)A y(z, z +  w)G(z +  w) (148)

Thus, the identity can also be expressed using Ay(z, z + w) =  {A y;/̂ (z, z +  w)}. as 

i p \ c(is , ie +  iv) +  i \ R(ie, ie +  iv) — i \ L(ie, ie +  iv)

=  {G(ie + ii>)} 1 -  {G (/e )}-' (149)

Furthermore, the Dyson equation for the single-particle Green’s function can be expressed as

{G(z)} 1 = r l V nm(r) -  2U)

nA)S t  ( =

/ n “  M
- r (,,

(150)

(151)

- ' v V “  /I .

0

0

0

(152)
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and X(~) =  {~n (z ) } is the self-energy due to the interelectron interactions. Therefore, 
Eq. (149) represents a relation between the self-energy and vertex functions, and this identity 
must be satisfied in the conserving approaches. Carrying out the analytic continuation of 
Eq. (149) in the region k — 2, is +  ip —* e +  w +  /0+ and is —> e — / 0 \  and then taking the 
limit of to —> 0, we obtain

Aftke, e) -  A}2|(e, e) = -21m V,;ix(e) -  2.7no V  (e) (153)

At T = 0, 6 =  0, the imaginary part of the self-energy vanishes ImX + (0) =  0, and then the 
current vertices become equal to the bare ones,

A l̂ j / i (0, ( ) )  = 2r/((())5,Vjj5,Vy.| (154)

A;-; . ( ( ) . ( ) )  2 | / ( 0 ) ^ ; .;^ : (155)

Correspondingly, <J>̂ n (0, 0) =  Gj“/v(0)2rw(0)G^1 (0) at 7  =  0, and then the transmission 
probability is given by Eq. (141). Alternatively, at T = 0, the analytic continuation of 
Eq. (146) in region k =  2 is written in the form

G + (0) -  C - ( 0 )  =  G l ( 0 ) [ K , x(<>) -  K „ x ( 0 ) ] G ' ( 0 )  (156)

and the (1, I) and (N,N)  matrix elements represent the optical theorem for Eqs. (141) and 
(142).

Particularly, for the single Anderson impurity at N = 1, Eq. (147) becomes a single
component equation with respect to the impurity site. In the region k =  2, it becomes

— <l>l2|(e, e) =  G~(e) -  G+(e) in the limit of co 0. Furthermore, if the mix-
i •> i i ■> I

ing terms have a property rL(e) = XrR(e), an additional relation e) = — (e,e)
follows. Thus, in this case the dc conductance can be written in the form [14, 15],

=  x / ' > * ( - ^ ) j ^ ; |- |m C * W | < w >

4.3 . L eh m an n  R e p re s e n ta tio n  fo r J  (e )

We now show that the transmission probability J(e)  can be expressed in terms of a real
time retarded product in Eq. (160) via the Fourier transform Eq. (162). It shows a direct 
link between the transmission probability and dynamic correlation functions. To prove it, we 
first of all derive the Lehmann representation for <t>R][(is, is +  />), and then carry out the 
analytical continuation.

Inserting a complete set of the eigenstates, K:\n) — En\n), into Eq. (125) and using 
Eq. (126), we obtain

(is + iv +  £,„ -  E,)(iv +  Em -  £„)

e -P e -p£,

(is + E„ -  E,)(is +  iv + £„, -  £ ,) {iv +  £,„ -  £„)(/« +  £„ -  £,)

+  7  Y , ( l \c i « \ n ) ( n \J n \ m ) ( m \ci r \ l )
Imn

e - W n

(is +  E, -  E„)(iv +  £„ -  £,

(is + E, -  E )(ie +  iv +  E, -  £„,) (is +  iv +  E, -  Em)(iv + E„ -  E J
(158)

where Z =  Trc •’ . From Eq. (158), the analytic continuation to obtain <P̂ .n (e,e + w) 
for k — 1 ,2,3 can be carried out by replacing the imaginary frequencies is and iv
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by the real ones e and co, respectively, with the infinitesimal imaginary parts shiwn in 
Eq. (136). Then the same expressions for ^ .^ (e ,  e +  <o) can be derived from the red-time 
functions

=  0 ( t  -  t i ) 6 ( t i -  / , ) (  C 1(r ( / , ) ,  c UT( r 2 ) [ , . / „ ( / )

+ 6 ( i ] - t ) 0 ( t - t 2)[ C \ a  ( A )  ■> c l r ( h ) ’ JRi  0  j )

CU r ( f l ) ' C U r ( t l ) '  Jf i U)

- 6 ( l - t 2 ) 0 ( t 2 - i ^ { C i (7 (  ^ 1 )  '

^ ln ( t ;  t t , t 2 ) =  - 0 ( t  -  t 2) 0 ( t 2 - ’  C \ t r( l 2)  } ’ J r ( 0  j

1 1 I *** C \<r(h ) ’ J r ( 0  J j

(159)

(1 6 0 )

(161)

where J R(/) =  el/n JRe~lt<{, and 6(t) is the step function. The commutators are defiled by 
[A, B] = AB - BA , and {A , 8} =  /IB  +  as usual. The Fourier transform into tie real
frequencies is given by

/: d t d t \ d t 2e ,Me't , ' e  ,e',; ‘I>̂ ;l11(/; /2)

=  2n8(e + co -  e + co)

For example, a time-ordered function

F (/; , /: ) =  — 0 ^ 0 1 ~ 2̂ ( Ô -'hr (̂ 1 Ur ( 2̂))

is transformed into

^ 0 E,„ ( / 1 r  r | w  ) { m  I | / / )  ( /i | c ,, r | / )
F ( e ,  e +  to) =  —  Y ,

!tw (e +  co +  £ — £/ +  /()+)(w  +  £„, — £„ +  /04)

(1 6 2 )

(163)

(1 6 4 )

Among the three real-time functions Eqs. (159)—(161), the function for the regitn k =
2, that is, tu t2) in Eq. (160) determines the transmission probability - (e) =
2F; (e)<I>£*M(6, e). Because the analytic continuation has already been done, the red-time 
correlation links directly to the transport coefficient. This formulation can be used for mmer- 
ical calculations.

4 .4 . A p p lic a tio n  to  a H ubbard  C hain  C o n n e c te d  to  Leads

In this subsection, we apply the linear-response formulation to a finite Hubbari chain 
attached to reservoirs, which can be considered as a model for a series of quantun dots 
or atomic wires of nanometer size. A schematic picture of the model is shown in Fig. 6. 
The Hamiltonian parameters defined in Eq. (1) are taken as follows. We take t\} tobe the 
nearest-neighbor hopping t, and U .■ ■ ■ to be an on-site repulsion U. Specifically, ve con
sider the electron-hole symmetric case, at which fi =  0 and en 4- U/2 =  0 with e„ beng the 
onsite energy. We also assume that the two couplings are symmetric Y) =  VR (=  F), aid the 
local density of states of the leads is a constant.

Figure 6. Schematic picture of a finite Hubbard ch;iin.
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(a ) (b)

Figure 7. T he order U : term s of (a) self-energy and (b) vertex corrections.

To examine the effects of the Coulomb interaction, we calculate the self-energy and vertex 
corrections up to terms of order U2, the Feynman diagrams for which are illustrated in Fig. 7
[19]. These contributions satisfy the generalized Ward identity Eq. (153) that corresponds 
to the current conservation law. In Fig. 8, the results of 7(e) for N =  3, 4 are plotted 
versus e/t  for Y/t =  0.75 for three values of U/(2tti): (— ) 0.0, (-© -) 0.5, and ( - • - )  1.0. The 
temperature Tft  is taken to be (a) 0.0, (b) 0.2 for N = 3 in the upper panels, and (c) 0.0, 
(d) 0.2 for N = 4 in the lower panels.

At low temperatures, there are N resonance peaks that have one-to-one correspondence 
to resonant states of the unperturbed system. In addition to these resonance peaks, two 
broad peaks of atomic character appear at e 2r ± U /2 for large U. The resonance peaks 
become sharper with increasing U at low temperatures as seen in the panels (a) and (c). 
However, the height of the peaks decreases with increasing U . One exception, which happens 
for odd /V, is the Kondo resonance at the Fermi level e — 0. At this peak, the transmission 
probability reaches the unitary-limit value 1.0 for any values of U , when the systems have the 
inversion symmetry VL =  VR together with the electron-hole symmetry [27, 30]. The width 
of the Kondo resonance TK must decrease with increasing N. For even N, the transmission 
probability T(e) shows a minimum at e =  0. The characteristic energy scale in this case is the 
width of the valley, which eventually becomes the Mott-Hubbard gap in the limit of large N. 
The high energy profile of J (e) at |e| > 2 1  in the case of N = 3 is similar to that for N = 4. 
Namely, the high-energy part shows no notable N dependence. For U/(2rrt) =  0.5, the 
upper and lower Hubbard levels at e — ± U /2 exist inside the energy region corresponding 
to the one-dimensional band of the width 2t. The two Hubbard levels got outside of this 
energy region for U /2  > 21. At finite temperatures, the resonance peaks at |e| < 21 become

Transmission probability of N=3. 4 Hubbard model

e /t e /t

F ig u re s . M any-body transm ission coefficient for N  =  3 (upper two panels) and 4 (lower two panels) is plotted 
versus e f t  for Y/ t  — 0.75 for th ree  values of U/{2tti)\ (— ) 0.0, (~o-) 0.5. and ( - • - )  1.0. The tem perature  is taken 
to  be 7 '//  -- 0.0 for (a) and (c). and T f t  =  0.2 for (b) and (d).
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broad, and the peak height decreases with increasing / .  The structures of the resonance 
peaks vanish eventually at higher temperatures, and then the even-odd oscillatory behavior 
disappears [19].

5 . T O M O N A G A -L U T T IN G E R  M O D E L

Transport through interacting systems in one dimension has been studied extensively for 
quantum wires, organic conductors, carbon nanotube, etc. In this section, we provide a brief 
introduction to a Tomonaga-Luttinger model [31], to take a quick look at the transport 
properties of a typical interacting system in one dimension.

5.1. S p in -L e s s  F e rm io n s  in O n e  D im en s io n

We start with the spin-lcss fermions described by the Hamiltonian,

/ / , ,  — < / /„ ) „  =  E  ( e k ~  ( i ) [c j . cj .  — ( c Ac A)„ ]  
k

I
A k ' -((*- k ,(~k

(165)

(166)
i / kk’

In Eq. (165), the ground-state energy for the noninteracting electrons has been subtracted. 
At low energies, the excitations near the Fermi level play a dominant role, so that ek can be 
linearlized at the two Fermi points k — ± k F,

\  ■ E  v i -  k r ) ° k a  k

+  E  v i- ( ~  ^ i  ) b l b k

(<la k )  .I

(167)

Here, ak (bk) is the operator for the right-moving (left-moving) particles. The summation 
over k in Eq. (167) should be restricted in a range \k\ -  kr < K with the cutoff momentum 
kc of the order a band width D ~  v,.kl. as illustrated in Fig. 9. However, we assume that 
kc -> oo, and will introduce the cut-off for the momentum transfer q , when it is required 
[31]. For low-energy properties, the interactions between the electrons near the Fermi level 
is important. Therefore, the interaction Hamiltonian Eq. (166) can be simplified by taking 
only the scattering processes in which all the four momentums are close to one of the two 
Fermi points, that is, k +  q ~  ± k F, k' -  q ~  ± k f , k ' — ± k F, and k — ± k F, into account;

i,-± 2 k : ,k:-k
E  +  E

, k '—k
Ck + q Ck l - q C k ‘Ck (168)

kf. /  Kf

i’/.A'i

Figure I.inc;iri/ed dispersion.
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For the scattering process with small momentum transfer q — 0. there are two types of 
possibilities for the initial momentunis k — k' and k — —k\  In contrast, in the case of the 
back scattering q ±2kr, the incident momentums must have the opposite sign k — -A '. 
These scattering processes can be described by a simplified Hamiltonian,

H, => 1(\ +  7/2 +  7f\ (169)

~  E  «l„al -Hak «A +  1^- E  K +̂  (170)
t/kk'  tfkk'

=  f; E < . A  A "  + | ] - ' E bl +„“ l - . i ak-l>k (>7i)
i fkk’ ^  ( jkk‘

—  y r  E  ^ k + q - 2 k h a k'  q' + 2k h- b k ' a k +  Y ] ~  a k+t i ' - \ -2k , . bkf if' - 2 k  i-a  k'  ^ k  ( 1 7 2 )
q’kk '  q ' kk '

In Eq. (172), q  is a small momentum defined such that q =  q' ± 2 k r . The coupling constants 
should be taken as g2 — gA ~  V(h and g { V2k . However, in the following we treat these 
three constants to be independent parameters. The momentum-transfer cutoff is introduced 
for the summation over q and q'. The Tomonaga-Luttinger model is defined by

■JCTL =W{i + WA + %2 (173)

Note that for the spin-less model there should be no distinction between 7(2 and 7f\ [31].
The interactions #4 and f(2 can be expressed in terms of the density operators p\(p) and 

p2(p) defined by

Pi(/>) = E K  ,,ak -  o] (|74)
k

P2(P) =  E K  ,A -  &pAKbk)^ (175)
k

Here, (a'kak)u =  0(kr — k) and {b\bk){) =  ti(kF 4- k), and these terms are required to define
the deviation from the noninteracting value without an ambiguity caused by the occupation
of the negative energy states. Equations (170) and (.171) can be rewritten in the following 
forms apart from a renormalization of the chemical potential that can be absorbed in to k r ,

/y4 = y  E  P\(~P)Pi (/;) + y  E P : (~ / ;)P:(P) (17ft>
L  pA) /»(>

= j  Y ,P\( -P )P 'SP)  + J j 2 p2(-P)PAP)  (>77)
/»,.() /»()

These two density operators satisfy the commutation relations

[P\{P),P\(~P)\ =  8 pr' [P2( -P) ’ P2(P‘)] =  ^ T 8rn (178)

One notable feature is that these two commutation relations are equivalent to those of the 
hose operators,
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where p > 0. The commutation relation of the density operators and Hamiltonian can be 
calculated by using Eqs. (167) and (174)—(177) as

pAp )* -hn = v,.-p pA p ), pA ~ p ), % - v,,pp2{-p) (182)

p Ap ) - ^4 =  SiVyPpAP), PA p)- % = 8aVfPP2(~P) (183)

P <>)• ><: = g2vFPPi{p)< p2(-p) ,  X2 =  g2viPP\(~P) (184)

where gA =  g4/(2irvr ), and g2 =  g2/{ I t t v , . - ) .

5 .2 . Tw o C o n s e rv a tio n  Law s

The operator for the charge and current are defined by

pA p ) =  P\(p) + Pz(P)- Pj(f ) =  p Ap ) ~ pA p ) (185)

In the real space, the operators for the left and right movers v =  1, 2 are written in the form

p » ( x )  = j  E ( p r ( p V px +  p v ( - p ) e ~ in  
L  P ■*()

(186)

The equation of motion for pt.(.v) and pj(x) are derived from the Heisenberg equation using 
the commutation relations in Eqs. (182)—(184),

0 d
0  +  vj y P A x * ') =  ()> Vj = v,(\  + g4 -  g2)

d d
- P j { X, I) +  Vm ^ P A * "  0  =  ^  %  =  Vh ( 1  +  £ 4  +  g2)

(187)

(188)

Because there are two independent equations for pc(x, /) and pj(x, t ), the explicit form of 
these Heisenberg operators can be calculated analytically;

f i  ,  d 2 \  (  32 ,  d 2 x
I  -  r ; . ) p A x , r ) =  °> ( ~  r ) =  ° ’dr* d j r

(189)

(190)

The relation among the three velocities vh vN, and vp can be summarized as

v  v pv .i =  A  -  . .  • A- =  ! 1 +  &  ~  &
" V ‘+ « 4  + S :

(191)

5 .3 . C h a rg e  and  C u rre n t C o rre la tio n  F u n c tio n s

Owing to the property shown in Eq. (1.89), the correlation functions for the density operators

XfiAP' •) = for n, v — 1,2 (192)

can also be calculated exactly. The equation of motion for these correlations are given by
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where r ' is a Pauli matrix:

T  =
"0  1 ’ "0  - / ' "1 - 0 “ "1 0 “

T "  = . T '1 —- , 1 =
1 0 /  - 0 0  - 1 o L

(194)

The commutation relation [p^ip, t), 7̂ TL] in Eq. (193) can be calculated by using Eqs. (182)- 
(184). Then, by carrying out the Fourier transform with respect to /, we obtain

i P{(ot■' -  i>/;(cosh (pi +  sinh $7 )} \ '  (p, co) =  — —  1,
'  Z7T

cosh (p = =  I f
1 +  | 4) -  -  £5

7 ( l + | 4 ) :  -  §2

(195)

(1%)

(197)

Note that eosh</?l +  s inh^r1 — exp(ipr1). The Bogoliubov transformation given by 
exp {<pr1 /2) has a property,

t  =  exp
(,PT

~ y
r ‘ exp

(/?T

T
(198)

Therefore, Eq. (.195) can be diagonalized as

exp ( ^ j { « T ’ -  v,,P P .
277

(199)

With this transformation by exp(^>r1/2 ), the operators C , and Cl are transformed into

p j

cosh I — 1 sinh I —

sinh

cosh ( —- 1 — — \ —.—  +  t /  A , 
9 ’ 2 \ y/ K p

cosh

sinh

Cf

2 1 /7T  V * .V P

(200)

(201)

where the Bose statistics is preserved for the new operators, \yp,y]}) = 8pp.. The explicit 
form of x'  (p, co) is determined by Eq. (199),

P(p* co) = — -  exp I -
7r

.77

c p r
D[ (/>, w )t 1 -f D'L(p, co

( pr

\D'+(p , w ) t3 +  £^(/?, w)(eosh <pl -  sinh ipr])},

±
2  V w  — v0 p +  iS (o +  v p -I- / f )

(202)

(203)

The charge susceptibility x'(P^ which corresponds to the pc-pc correlation function, is 
given by

K. ( v „ P )

fir 7TV„ ( W  +  i 8 ) 2 ~  ( V I ) ) 1
(204)

Then, the uniform charge susceptibility is given by linn , nx[iP- 0) =  K iJ ( ttvp). It becomes 
twice as large for the spin 1/2 fermions.
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The current operator is determined by Eqs. ( 185)—(187) as

J  =  e v j p j

Therefore, the J-J correlation function is given hy

e2K..v.. {v„p):P P

77 (O) +  f'8)2 -  (u,,/?)’

Then, the conductivity can be calculated with the Kubo formula,

K' (p. w) -  K r(p, 0)

(205)

(206)

(T ( p .  CO) =
10)

C' K ,‘VP ICO

77 (CO + i8)2 -  (V.tp)2
(207)

The conductivity ar(p* w) for a uniform p — 0 and stationary co = 0 field depends on the 
order of taking the limits of p —> 0 and co —> 0. The Drude weight corresponds tc the p  —> 0 
limit.

Re <r((), w) — e~ K ftvft8(co) 

In the real space, the conductivity takes the form

dp

(208)

(T (.V, (O) =  I ( T ( p . c o ) c ^j -y. 2 77

I dpie'-K^

c 2 K

77 Z77 +co — v p 4- if) co +  vpp 4- iS
,ipx

77

The dc conductance corresponds to the co —► 0 limit.

<r(x,  0 ) =  — — K . =  — K„  
’ 2irh " h 1

(209)

(210)

where h has been reinserted.

5.4. B o so n  R e p re s e n ta tio n  o f th e  H a m ilto n ia n

We have seen in the above that the bosonic excitations play an important role on the trans
port properties of the Tomonaga-Luttinger model. Correspondingly, there is tne notable 
feature in the commutation relations for the density operators in Eqs. (182) anc (183): the 
two parts of the Hamiltonian ft(] and "tfA/g4 show the same commutation relations. Therefore, 
one can introduce an effective Hamiltonian 7/(, defined bv

7/0 =
771?
L -■ T . p A-P)P\(P) + - y 2-X > 2  {-p)pz(p) (211)

which reproduces the commutation relation Eq. (182). Thus, the correlations can be calcu
lated exactly by using //,, as a replacement for The effective Hamiltonian is vritten in a 
bilinear form with the boson operators.

=  H i Cr G t>P (cosh if I + sinh <f t !)
;? -(I

=  E  +  y-,.y~,.> + const

' c ,

r

(212)
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In this section, we have discussed only the two-particle correlation functions. The equation 
of motion for the single-particle Green's function can also be written in a closed form [32, 
33], and the precise calculations have been reported in Refs. [34, 35).
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1. IN T R O D U C T IO N

The fundamental building blocks of materials are undergoing a radical change. Tie dimen
sion of these fundamental units is at the nanometer scale. The prefix “nano” represents a 
scalc of one-billionth. That is, we arc talking about devices that are at the billimth of a 
meter in dimension. The technology for such devices is in its infancy, yet an Interiet search 
on the word nanotechnology has almost 4,430,000 hits. A similar search was performed in 
1994, when we first got into this field, and the result was a little less than 1000 hits In other 
words, this field has exploded by more than three orders of magnitude in less than \ decade.

The applications that are being explored for nanodimensional devices are too rruny to list. 
However, some of the more publicized applications are in diverse areas such as bionedicine, 
electronics, high-strength materials, photovoltaic materials, computing, transportation, artifi
cial sensors, to name just a few. The National Science Foundation (NSF) has estinated that 
in the next 10 to 15 years, $1 trillion in business will be generated as a direct resalt of this 
new technology. The 2004 U.S. federal budget provided $847 million for nanotechnology 
research through the National Nanotechnology Initiative (NNI). Agencies represented in 
NNI include NSF, Department of Defense (DOD), Department of Energy (DOE), NASA, 
National Institutes of Health (N IH ), and the Department of Homeland Security.

This chapter will concentrate on the application of computational nanotechnology to 
nanoscale electronics. Similar to the field of nanotechnology itself, the area of lanoscale 
electronics has also exploded.

Any review about developments in computational nanotechnology cannot be complete 
unless it addresses the parallel development of computational methods and compiling plat
forms. The complexity of computational methods demonstrated each decade in the scientific 
literature, starting with the 1960s to present day, was directly related to the computational 
hardware available at that time. In the 1960s, computers were very large, relied on nefficient 
input-output devices, and, memory was measured in kilobytes (K). The most sopiisticated 
computational calculations performed at that time were empirical and based on the laws 
of classical mechanics. The 1970s saw a movement toward quantum mechanic* through 
semiempirical techniques and early forms of ab initio calculations, as computers decreased 
in physical size and gained CRT (cathode ray tube) terminals and modest increase* in mem
ory, which could be measured in a few megabytes (MB). By the 1980s, both semcmpirical 
and ab initio calculations gained sophistication and accuracy through the development of 
advanced semiempirical methods such as the Austin method 1 (A M I) and the implemen
tation of Hartree-Fock methods. This occurred because of increased access to hgh speed 
multiuser supercomputers such as the Cray systems and the development and introcuction of 
RISC (reduced instruction set computer) chip-based workstations, such as the IBM RS6000 
series and the Sun Microsystems Workstations in the late 1980s to early 1990s. The mid 
to late 1990s witnessed the coming of age and evolution of personal computer (IC)-based 
computational power, which resulted in inexpensive, large memory arrays, fast processor 
PC workstations, dual processor PC workstations, multiple node PC cluster computers, and 
large PC-based parallel array computers. Memory sizes and processor speeds increased sig
nificantly throughout the 1990s and has continued to increase throughout the first few years 
of the new millennium. There was also a significant improvement in accuracy and molecular 
size handling capability of the ab initio methods. This included the implementation of den
sity functional theory (DFT) methods and compound models such as the Gaussan-1 and 
Gaussian-2 theories and the complete basis set (CBS) methods, which use combined results 
from lower computational cost techniques to achieve high accuracy results. The PC compu
tational power, however, is reaching a limit under the current 32 bit chipset technology and
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is currently moving toward 64 hit PC technology. This should once again provide large gains 
in computational power.

This chapter will start with a review of computational methods across the past four 
decades, the computing platforms on which they were implemented, and follow with the 
development of molecular electronics.

2 . E M P IR IC A L  M E T H O D S

Empirical methods are perhaps the first methods developed by chemists to study the confor
mation characteristics of molecules [1, 2]. These methods are based on a technique called 
molecular mechanics [3]. This technique is a mathematical formalism that attempts to repro
duce molecular geometries, energies, and other features by adjusting bond lengths, bond 
angles, and torsion angles to values that are dependent on the hybridization of an atom 
and its bonding scheme [4]. Rather than using quantum physics, the method relies on the 
laws of classical Newtonian physics and some experimentally derived parameters to calculate 
geometry as a function of steric energy. The form of the equation, referred to as a force 
field calculation, is

£ p . „  =  E £ h n d  +  E S a n g  +  E ^  E £ . H , p  +  E £ n „  +  E £ c  a )

£ pul is the total steric energy made up of several different terms. These terms are £ bnd, the 
energy resulting from deforming a bond length from its natural value, which is calculated 
using Hooke’s equation for the deformation of a spring. £ ini, is the energy resulting from 
bending a bond angle from its natural value and is also calculated from Hooke’s law. Eun is 
the energy that results from deforming the torsion or dihedral angle. E is the out-of
plane bending component of the steric energy. Enb is the energy arising from nonbonded 
interactions. Ed is the energy arising from Coulombic forces. When the terms shown in the 
general form of the force held are expanded, the equation takes the form

£ pi„ =  £  1/2Kb(b -  bit)2 + 1/2Kfl(d -  0tl)2 + £  l/2Klb(l +  cosN4>):

+  £  1/2 K y( x - X » ) 2 +  E K W 2 -  ( A / r f \  +  ^ ( q q / r )  (2)

The manner in which these terms are used to build a model is referred to as the functional 
form of the force field. The force constants

kh, kh. k lh, k x (3)

and equilibrium values

*», 00> (̂/j- k x (4)

are atomic parameters that are experimentally derived, mostly from, NMR spectroscopy, 
1R spectroscopy, microwave spectroscopy. X-ray diffraction, or Raman spectroscopy. The 
energy of the atoms in a molecule is calculated and minimized using a variety of directional 
derivative or gradient techniques.

In contrast to ab initio methods, molecular mechanics is used to compute molecular prop
erties that do not depend on electronic effects. These include geometry, rotational barriers, 
vibrational spectra, heats of formation, and the relative stability of conformers [5, 6). Because 
the calculations are fast and efficient, these empirical techniques can be used to examine 
systems containing thousands of atoms. Unlike ab initio methods, molecular mechanics relies 
on experimentally derived parameters, so that calculations on new molecular structures may 
be misleading.

The method described above is used to calculate the energy of a compound in a specific 
3D orientation and to optimize the geometry as a function of energy. This is usually accom
plished by adjusting the coordinates of each of the atoms and recomputing the energy of the 
molecule until a minimum energy is obtained. This technique is also used to simulate the 
time-dependent behavior of molecules and is generally referred to as molecular dynamics. 
The first generation of computational empirical method algorithms were developed on large 
card-reading machines such as the IBM 360.
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Figure I. IBM 360 console, printer, and tape drives.

2 .1 . IBM  360

Figure l is an illustration of the large, room-sized IBM 360 that appeared toward ihe end of 
the 1960s. There were many versions of the IBM 360, from the IBM 360/20, /30, and /40, to 
the IBM 360/67 and /75, all the way up to the IBM 360/91, /95, and /195, which eventually 
became the IBM 370 technology. Core memory sizes for these machines ranged from a few 
K for the early version numbers, to several hundred KB for the midrange versions, to 1 to 
4 MB for the later models (/91 and /95). Processor clock cycle times ranged from 3.6 /as per 
byte for the 360/20 all the way up to 0.125 /xs per 8 bytes for the 360/195. These machines 
primarily used punch cards for input/output operations, which eventually were replaced by 
paper terminals.

3 . S E M IE M P IR IC A L  A P P R O X IM A T IO N S

Semiempirical methods are self-consistent field (SCF) methods that approximate molecular 
orbital integrals using parameters derived from experimental data. With the exception of 
methods later developed that include ci orbitals, they all use a restricted basis set of one 
.v orbital and three p  orbitals (px, p v, and p.) per atom. All orbital overlap imegrals are 
ignored in the Roothan-Hall secular equation, which has the form:

rSc-  I) (5)

Pople and Segal introduced the first semiempirical computational method, complete 
neglect of differential overlap (CNDO), in the mid 1960s [7]. This early method did not 
include any contribution to the electronic wavefunction from molecular atomic o/erlap and 
used only spherical symmetrical orbitals. Other semiempirical algorithms that appeared in 
the late 1960s were based on the neglect of diatomic differential orbital overlap (ND DO ) 
method, which includes the directionality of orbitals on the same atom for repulsion inte
grals. These included the M IN DO and MIN DO/2 (modified intermediate neglec: of differ
ential overlap) methods. M IN D O  and M IN  DO/2 were developed bv Dewar and others in 
1969 and 1970 (8. 9j. These techniques use empirical data to parameterize the repulsion 
integrals rather than analytical solutions.

In response to the quantum mechanical issues that arose as semiempirical calculations 
grew in size and complexity, principally that approximations neglected eleetror repulsion 
integrals involving a one-center overlap. Dewar and Thiel developed M NDO (modified 
neszlect of overlap integrals) in 1977 [10]. MNDO theory achiev ed better determ nations of
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multicenter repulsion integrals by treating the total energy of the molecule, E™'K as the sum 
of the electronic energy, Ed, and the repulsion, between the atoms A and B.

The mathematics involved in calculating the E ^ c value are estimated from experimental 
results. This fact allows researchers the freedom to manipulate the parameter set to fit their 
experimental designs. If a trend is suspected in a family of molecules, experimental data can 
be input for the calculations and the math, being based upon experimental results, will show 
conclusive results. Those molecules that fit the proposed pattern give reasonable results, 
while those that might appear in the same category, but are actually in a different class of 
molecules, show dramatically different results. Certain small deviations in bonding energies, 
bond lengths, or heats of formation occur because of the experimental results fusing with 
theoretical expectations.

The elements H, C, N, and O were parameterized by 1985. The A M I and PM3 methods 
were developed by Dewar, Zoebisch, Healy, and Stewart in 1985-1986 to include these 
parameterizations and further improvements of the M NDO technique [11, 12].

4 . H A R T R E E -F O C K  C A L C U L A T IO N S

The Schrodinger equation introduced the idea of describing an electron using a wavefunc
tion, treating the molecule as a collection of particles represented by another wavefunction, 
which is a function of time and the coordinates of the particles. Because the time-dependent 
Schrodinger equation is too complex to solve for a molecule, the wavefunction is separated 
into a time function and a spatial function using separation of variables. Ignoring the time 
function, the time-independent Schrodinger equation is formed.

H'Y(r) = EV(r)  (6)

This is a function of the positions of the nuclei and electrons of the molecule. The Born- 
Oppenheimer approximation allows further simplification by treating the nuclei as fixed
entities that are orbited by the electrons. This approximation is made based on the fact that a
nucleus is thousands of times more massive than the electron [13]. Using this approximation, 
the nuclear kinetic energy term can be removed, and the molecular electronic Hamiltonian 
is obtained:

i electrons electrons nuclei
f / ^  '  E  v = -  £  £

2 . / / '  \ R j  -  n

electrons /  i \ nuclei /  7  7  f? \

/ j < i  '  / '  I J  / K j  '

The preceding equation and the equations that are to follow are all in atomic units in 
order to keep from rewriting the fundamental constants (Planck's constant, mass of electron, 
etc.). There are restrictions that apply to the wavefunction for a particle. A major restriction 
is that if the wavefunction is integrated over all space, the probability that a particle is 
somewhere in that space is 1. This requires a normalization constant

f  =  1 ( 8 )

According to molecular orbital theory, the approximation is made that the wavefunction is 
a combination of a normalized, orthogonal set of molecular orbitals (//,, t//2, i//3. The Hartree 
product is a simple way of combining these orbitals to form a wavefunction:

\p(r) = ip\(r])(p:(r2) •. • (9)

However, this wavefunction does not take into consideration an electron's spin, which can be 
4 - 1/2 or -  1/2. If two of the orbitals are swapped, there is no sign change in the function: that
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is, the product is not antisymmetric. In order to make the product antisymmetric, the orbitals 
are multiplied by one of two spin functions:

« l ^ )  =  J « ( 4 ) = o
7 X 7 (10) 

P [ + ^ )  = 0  p ( ~ )  = l2 ) V 2,

When the orbital is multiplied by a, the electron is spin up and when multiplied by /3, the 
electron is spin down. The molecular orbitals are now called spin orbitals and now represent 
position and spin. Using spin orbitals, a determinant is built. Electrons are assigned to this 
determinant, in orbitals, in pairs of opposite spin. The rows of the determinant represent 
all the assignments of each electron to all possible spin orbital combinations [14]. There 
are two electrons assigned to each molecular orbital (M O ), and the whole determinant is 
made up of n — 2 MOs. The whole determinant is multiplied by 1 =  y/nl, which is the 
normalization constant, and is known as the Slater determinant. In order to best describe 
molecular orbitals mathematically, linear combinations of one electron function, called basis 
functions, are used. A type of function frequently used to form basis functions in most 
modern quantum chemistry computational packages such as Gaussian are Gaussian-type 
atomic functions. These have the form:

g(a, r) = cx"ymzl exp —(a/*2) (11)

where a = constant, which determines the radial size of the function; n , m, / determine the 
type of orbital; and c = constant for normalization. Linear combinations of these functions 
(which are centered on the same atomic nucleus) are formed, and these functions are called 
contracted Gaussian-type functions (CTGF) [15]:

X p = Y , dw8n 0 2 )
l>

where d^ s are fixed constants in the basis set. The contracted Gaussian function represents 
an atomic orbital and is an approximation. The accuracy of the approximation improves 
with the number of primitive Gaussian functions used in the linear combination. The more 
primitive Gaussian functions used, the better the description of the electron density. The 
molecular orbital is described by the following equation

$ /  ^ fiiXfjt. ^ f i i )  ( l ^ )
n n

where c ■ is molecular orbital expansion coefficients.
In order to solve for the expansion coefficients, the variational principle is useJ, which says 

that the energy of the exact wavefunction will always be lower than that of the approximate 
wavefunction. This turns into a minimization problem, where the Hartree-Focc variational 
energy is minimized. Its form is

=  <'»//. +  i / NN<*>> ( M )

where V NN is potential energy of nuclear-nuclear repulsion term. For a closed shell system 
with 1/2// doubly occupied orbitals, the energy is given by

! ■ 2n I ?.n 1 /2n

£ = E 2A/ / + E  (is)
1 t=i /—i

where hit is contribution of one electron term to the energy and is given by

h„  =  [<!>,{ V ^ ) < M l ) < / r ,  (1 6 )
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where Jtj is Coulomb integrals, which are the electrostatic interaction between double occu
pied orbitals (bl and 4>r

J„ = / 0 , ■ ( ! ) < £ , ' ( 2 )  — < M 1 ) < M 2 ) < / t 12 ( 1 7 )
1 12

The integration is over the coordinates of electron 1 and 2. Ktj is the exchange integral and 
is given by

Kjj = (  0,(1 )0 f(2 )^ < M 2 )0 ,( lk /T i: (18)

The Hartree-Fock equations allow minimization of the energy while keeping the orbitals
mutually orthogonal.

F,( 1 )^ (1 ) =  (19)

where e,- is orbital energy for orbital /, and Fl is the Fock operator and is given by

Fi(l) = h(l) + '£i[2Jj( l ) - K j(l)] (20)
i

where h( 1) is one electron operator and is given by

/» ( ! )  = ( 2 1 )  
 ̂ C Y = \  f 1«

and Jj is Coulomb operator and Kx is exchange operator, and their equations are

J i4 > ,=<!>< ( l<t>i(2)}2 — d v 2 ( 2 2 )J r p

A',,6 ( I )  .. <!> j ^ ( 2 )  (23)

The SCF [16] procedure starts with a guess set of orbitals (wavefunction) that construct 
the Fock operator. The Fock operator yields a new set of orbitals after the solution of the 
Hartree-Fock equations. The resulting orbitals are used to build the Fock operator again, 
and another solution to the equations is obtained, once again leading to a new set of orbitals. 
The second term in the Fock operator equation [i.e., £(27,- — Kf)] represents the effect of 
the field of all other electrons in the molecule on one electron, and the iterative procedure is 
finished when the field stays unchanged (beyond a given criterion) [17]. Roothaan and Hall 
developed a system for the Hartree-Fock equations based on matrices [18]. Their equations 
are based on the orbital coefficients previously described and are:

FC =  SCe (24)

where F is Fock matrix, S is overlap matrix (overlap between orbitals), and 6 is diagonal 
matrix of the orbital energies (where the terms 6, =  the energy of orbital %i)- The Fock 
matrix represents the effects of all the electrons on each orbital and is given by

jV :Y

cr— 1 i t .

(/ iv\ka) -  ~(nv\vct) (25)

where H£'Je is matrix of energy of \e~ in a field of bare nuclei; and (fii'\Acr) is 2e~ repulsion 
integral (each electron sees the rest of the electrons as an average field). There is no direct 
instantaneous electron-electron correlation. P is the density matrix, which is given by

occupied

/>„„= 2 £  4 c ,n (26)
I -  I
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This is a closed shell method known as the restricted Hartree-Fock method where the 
coefficients are summed over only the occupied MOs, each which holds two electrons (Pauli 
exclusion principle). Each of the terms in Eq. (24) is based on the MO expansion coefficients. 
The minimization of the equation yields the approximate solution to the exact wavefunction. 
Because the equation is not linear, the process is carried out using the iterative scheme that 
was previously described. When the scheme converges, the solution produces a complete set 
of occupied MOs ($ ,.y ; . . . )  and unoccupied MOs ($„ /> • • • )• The density matrix P represents 
the probability distribution of the electrons in the molecule. The molecule’s electrostatic 
potential can be calculated from the Hartree-Fock method using

where ,, is an element of the density matrix, and and are basis functions. The 
electrostatic potential Eh obtained from the atomic valence population qh is given by

The electrostatic potential is an exact one electron property that can be calculated at any 
point in space based on a molecular wavefunction.

4 .1 . S u p e rc o m p u te rs  and  H ig h -S p eed  W o rks ta tio n s

High-speed multiuser parallel processing supercomputers helped to advance the accuracy of 
a b  in itio  and semiempirical calculations and allow them to model larger and more complex ]
systems. In fact, supercomputers and high-speed workstations were the tools that allowed all I
of computational modeling and simulation science to advance as a whole. The first Cray I |
supercomputer was installed at Los Alamos National Laboratory in 1976. It performed f
160 million floating-point operations per second (160 megaflops) and had an 8 megabyte 
main memory (Fig. 2). J

In 1988, Cray Research introduced the Cray Y-MR It was the world’s first supercomputer |
to sustain over 1 gigaflop on many applications. It used multiple 333 megaflops processors J
to power the system to a record sustained speed of 2.3 gigaflops. The formation of Cray f
supercomputer centers in the 1980s and early 1990s at academic and government scientific |

(27)

(28)

Figure 2. C ray i ‘-upercnmputer. lm;igc courtesy nf Cray. Inc
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institutions provided researchers access to high-speed, powerful computing resources, which 
in turn advanced computational modeling in all fields.

RISC processor-based workstations also became tools of the trade for researchers, which 
led to many advances in computational modeling science. IBM developed a 32 bit RISC 
chip in the 1970s after engineers realized that complex instruction set chips (CISC) were not 
necessary, as 80% of the CPU’s time was spent on basic instructions. This later developed 
into the IBM RS6000 series of computers, which appeared in the late 1980s to early 1990s, in 
a line of workstation computers using a 64 bit RISC architecture. The 64 bit chip could per
form double precision floating-point operations in half the time a 32 bit chip could perform 
them. Digital Equipment Corporation (DEC) also introduced a series of high-speed 64 bit 
RISC processor-based workstations in 1992 called Alpha, as did Sun Microsystems in 1995, 
with the introduction of its 64 bit Ultra-SPARC (scalable performance Architecture)-based 
workstations. These machines became the benchtop standard for scientific computational 
modeling until the PC revolution of the late 1990s.

5 . D E N S IT Y  F U N C T IO N A L  T H E O R Y

5.1 . In tro d u c tio n

Density functional theory has proved a very successful approach for the description of ground 
state properties of metals, semiconductors, and insulators. The success of density functional 
theory (DFT) not only encompasses standard bulk materials but also complex materials such 
as proteins and carbon nanotubes. The whole theory is based on functionals of the electron 
density, which therefore plays the central role. However, the key functional, which describes 
the total energy of the electrons as a functional of their density, is not known exactly: the part 
of it that describes electronic exchange and correlation has to be approximated in practical 
calculations.

The main idea of DFT is to describe an interacting system of charged particles (such 
as electrons) through the system’s electronic density and not its many-body wavefunction. 
For any system containing N  electrons, the basic calculations involve the spatial coordinates 
a, y\ and 2 — rather than the 3 x N degrees of freedom. Although DFT in principle gives 
a good description of ground state properties, practical applications of DFT are based on 
approximations for the so-called exchange-correlation potential. The exchange-correlation 
potential describes the effects of the Pauli principle and the Coulomb potential beyond 
a pure electrostatic interaction of the electrons. Possessing the exact exchange-correlation 
potential means that the many-body problem is solved exactly, and this is clearly not feasible 
in large molecular or solid-state systems.

A common approximation often made is the local density approximation (LDA), which 
locally substitutes the exchange-correlation energy density of an inhomogeneous system by 
that of an electron gas evaluated at the local density. Although many ground state properties 
are well described in the LDA, the dielectric constant may be overestimated by as much as 
10% to 40% compared to experiment. This overestimation stems in part from the neglect 
of a polarization-dependent exchange correlation field in LDA compared to DFT.

In 1986, Schluter et al. [19] calculated an accurate exchange-correlation potential for 
silicon using many-body perturbation theory. They showed that the “band-gap problem" 
(the observation that the electronic band gap of semiconductors in density functional theory 
calculations is only about 50% of the experimental band gap) was present even with a more 
accurate exchange-correlation potential and therefore corresponded to a non-analyticity in 
the functional, rather than an inadequacy of the local-density approximation normally used 
in density functional theory.

Related work includes an investigation of the DFT band-gap problem as a semiconduc
tor is compressed to a metallic state [20], a study of the behavior of the exact exchange- 
correlation potential at semiconductor interfaces [21, 22], an investigation of exact DFT for 
a model semiconducting wire using Monte Carlo methods [23], a study of exact DFT in the 
presence of a macroscopic electric field [24] (which for an infinite solid requires DFT to 
be augmented to become a density-polarization functional theory), and an investigation of
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DFT for a Hubbard model [25]. A similar technique has also been developed in which a 
new type of density functional theory [26], based on a simplified self-energy approach, has 
been demonstrated to outperform conventional Kohn-Sham DFT

5.2. B ackg ro u n d

The following derivation and discussion is based on that given by Ohno et al [27] and is 
by no means a comprehensive treatment. For more details of the derivation and a deeper 
discussion of its significance, please consult that text. Density functional theory is one of 
many ah initio techniques that attempt to solve the many-body Schrodinger equation:

//'PJO, 2, . . .AO =  £ ^ ( 1 ,2 ,  . . . /V)

where H is the Hamiltonian of a quantum mechanical system composed of N  particles, is 
its 7th wavefunction, and E( is the energy eigenvalue of the ith state. The particle coordinates 
are usually associated with a spin and a position coordinate. For electronic systems with 
nonrelativistic velocities, the Hamiltonian for an N-electron system is:

r n  /-_-i

E = j  v{r)p(r)clr + F[p(r)]

The energy of the system can be minimized to find the “true" electronic charge density in 
the external potential. However, this procedure is exact only for a nondegenerate ground 
state. Unfortunately, as yet an exact general form of the functional has not been found, so 
approximations must continue to be used.

5.3. T h e  PC R evo lu tio n

Until about the mid to late 1990s, serious scientific computational work w'as performed on 
64 bit RISC processor-based desktop workstations and multiuser supercomputers. In ihe 
spring of 1993, Intel introduced the first generation of Pentium processors: 60 and 66 MHz 32 
bit chips, composed of 3.1 million transistors, capable of 100 million instructions per second 
(MIPS). Pipelining and larger LI caches were used to significantly increase performance.

where the first term of this equation represents the electron kinetic energy, the second term 
the electron-electron Coulombic interactions, and the third term is the Coulombic potential 
generated by the nuclei. This equation also assumes that the nuclei are effectively stationary 
with respect to electron motion (Born-Oppenheimer approximation). J

Initial approaches to this problem attempted to transform the full N-body equation into 
N -single-body equations by using the Ilartree-Fock (HF) approximation. This approxima
tion basically affects the accuracy with which the “exchange-correlation” cortribution to |
the total energy is calculated. The exchange contribution is a direct consequence of Pauli’s §
exclusion principle, which prohibits two fermions from occupying the same quintum state. |
This reduces the probability of one electron being near another electron of the same spin. |
The correlation contribution is due to the reduction in probability of an electron being |
near another electron due to strong electron-electron Coulomb repulsion. HF only includes f
the correlation contribution for similar spin electrons, but neglects entirely the contribution §
for opposite spin electrons. Traditionally (and confusingly), the part of exchange-correlation |
included in HF is known as ''exchange” and that neglected is known as “correlation.”

In contrast to these methods, which try to determine approximations of the electron den- §
sity or many-electron wavefunction, DFT can “exactly” calculate any ground-state property J
from the electron density. In 1964, Hohenberg and Kohn [28] considered the ground state of J
the electron-gas system in an external potential u(r,), and proved that the following density f
functional theorem holds exactly: There is a universal functional F[p(r)] of the electronic %
charge density p(r) that defines the total energy of the electronic system as:

I
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However, even though these processors represented a significant technological advancement 
for the home PC market, they still could not compete with the 64 bit RISC-based machines 
of the time. At that time, 64 bit RISC processors ranged from 66 to 100 MHz and could 
perform 2 floating-point operations in the same amount of time a 32 bit processor could 
perform one.

In 1995, Intel introduced the Pentium Pro, 32 bit 200 MHz processor composed of 5.5 
million transistors and capable of 440 MIPS. This innovation, coupled with a larger LI 
(onboard) cache, and the development of advanced motherboard technologies including the 
introduction of an L2 cache, larger memory sizes, fast serial buses, and dual processor plat
forms, allowed PCs to enter the arena of scientific and engineering computation. However, 
most computational researchers at the time were still using 64 bit RISC-based systems.

The true computational PC revolution occurred during the next 5 years; the direct result 
of a number of technological advancements based on the 32 bit microchip architecture. 
In 1997, Intel released the second generation of Pentium processors, the Pentium II. These 
came in faster 233, 266, and 300 M Hz versions and included a much larger on-board cache. 
In the spring of 1998, Intel released the 333 MHz Pentium II processor, which used a 
new 0.25 micron manufacturing process to run faster and generate less heat than before. 
Intel's competitor Advanced Micro Devices (A M D ) introduced the A M D  K6-1II 400 MHz 
version in 1999, which contained approximately 23 million transistors and was based on a 
100 MHz super socket 7 motherboard. Both Intel and A M D  released 1 GHz processors in 
2000 containing significantly larger onboard caches and wider and faster serial buses. In 2003, 
an Intel Pentium 4 3.40 GHz processor became available, developed with 0.09-0.13 micron 
printed circuit technology, using hyperthreading technology and an 800 MHz system bus. 
Toward the end of 2003, both A M D  and Intel introduced 64 bit processors, the AM D Athlon 
64 and the Intel Itanium. With these innovations and more to come, PCs have truly become 
state of the art computational science platforms.

6. MOLECULAR ELECTRONICS
6 .1 . In tro d u c tio n

The field of molecular electronics is fast becoming one of the fastest growing areas of nano- 
technogy, and nanotechnology is developing into the fastest growing area of science. It essen
tially uses individual molecules to perform functions in electronic circuitry. There was a time 
when this was considered impossible. Currently, in most solid-state circuits, this is performed 
primarily by semiconductor devices. Molecules are hundreds to thousands of times smaller 
than the smallest semiconductor device. Electronic devices constructed from molecules will 
necessarily be hundreds of times smaller than their semiconductor-based counterparts. The 
classic talk that defined and probably gave birth to nanotechnology was given by Richard 
Feynman on December 29, 1959, at the annual meeting of the American Physical Society 
at the California Institute of Technology (Caltech). It was first published in the February 
1960 issue of Caltech’s Engineering and Science, which owns the copyright. It has been made 
available on the Web at Zyvex Corporation [29]. For an account of the talk and how people 
reacted to it, see Chapter 4 of Nanol by Ed Regis (Little/Brown, 1995).

The field of molecular electronics probably was given its first practical molecule by Mark 
A. Ratner and Arieh Aviram at Northwestern University, when they published their historical 
paper Molecular Rectifiers,” which appeared in the journal Chemical Physics Letters in 
November 1974 [30]. Since then, the research in this area has increased exponentially. But 
it was only recently, in 1997, that two separate groups demonstrated practical molecular 
rectification. One group was led by Metzger [31] at the University of Alabama and the other 
led by Reed [32] at Yale University.

Individual molecules can easily be made exactly the same by the billions and trillions. 
The dramatic reduction in size, and the sheer enormity of numbers in manufacture, are the 
principle benefits offered by the field of molecular electronics.

To illustrate the order of magnitude we are dealing with, let’s look at how the ability 
to store information has changed. Memory is the primary means for storing information.
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For example, a color photo requires about 1(P bytes. A typical modern personal ;omputer 
has between 10s to 10̂  bytes. The human brain is estimated to have about 1013 bytes. To 
store all of the information in the Library of Congress, we would need an estirrated 102() 
bytes. However, if we are able to take advantage of the size of molecules, we would have 
available a potential storage capacity approaching 6.022 x 1023 bytes of informa ion. This 
number is ofcourse what chemists call a "mole.” These numbers are cited in James VI. Tour’s 
book, Molecular Electronics [33]. As Professor Tour points out, the big question i: “how to 
access such a vast memory in any usable timeframe” [33].

There are many areas that are considered part of the molecular electronics doman. As one 
of many possible examples that could be cited, a relatively recent conference, ‘Towards 
Molecular Electronics,” held on 23-28 June 2003 in Srem,” Poland, can illustrate tie breath 
of topics included in molecular electronics [34]. This conference was part of thi Central 
European Conference on Advanced Materials and Nanotechnology. Topics included were 
molecular conducting and superconducting materials, molecular magnets; molecilar opto
electronic materials; molecular display materials and devices; fullcrenes and mnotubes; 
supramolecular systems; self-assembled and Langmuir-Blodgett (LB) films; nano-techniques 
and molecular manipulations; molecular electronic devices; molecular machines; molecular 
sensors; proton-conducting systems; molecular electronics and living organisms; and biocom
puting and molecular neural networks. This conference was actually the fourth ii a series 
of international meetings planned as an interdisciplinary forum for discussion on <\\ aspects 
concerning molecular electronics, specifically materials (molecular conductors, nolecular 
magnets, clectrochromic organic materials), synthesis, structure and properties, applications 
of molecular materials in electronics and optoelectronics, supramolecular systems and LB 
films and self-assembled monomolecular layers. To demonstrate one aspect of this enormous 
potential, let’s look closer at LB films. A Langmuir-Blodgett film is a set of monolayers, or 
layers of organic material one molecule thick, deposited on a solid substrate. An LB film 
can consist of a single layer or many, up to a depth of several visible-light wavelengths. 
The term Langmuir-Blodgett comes from the names of a research scientist and his assistant, 
Irving Langmuir and Katherine Blodgett, who discovered unique properties of thin films in 
the early 1900s. Langmuir’s original work involved the transfer of monolayers from liquid to 
solid substrates. Several years later, Blodgett expanded on Langmuir’s research t> include 
the deposition of multilayer films on solid substrates.

By transferring monolayers of organic material from a liquid to a solid subs:rate, the 
structure of a film can be controlled at the molecular level. Such films exhibit var.ous elec
trochemical and photochemical properties [35]. This has led some researchers to pursue LB 
films as a possible structure for integrated circuits (ICs). Ultimately, it might be possible to 
construct an LB-film memory chip in which each data bit is represented by a single nolecule. 
Complex switching networks might be fabricated onto multilayer LB-film chips [35].

As an additional illustration on how rapidly this field of molecular electronics is growing, 
we will summarize recent developments in just the past couple of years, some of wiich were 
written by Stu Borman [36] in the December 16, 2002, issue of C&E News. For example, 
the field of molecular electronics made some very significant developments in several key 
areas. One was the fabrication of nanoscale wires. These wires contained segments of varying 
chemical or dopant composition. The wires were the first to contain more than one junc
tion within an individual nanowire or nanotube. The work was done by groups at Harvard 
University [37], Lund University, Sweden [38], and U.C. Berkeley [39, 40].

The patterned self-assembly of integrated semiconductor devices such as lighi-emitting 
diodes (LEDs) on surfaces was demonstrated by George M. Whitesides and coworkers 
at Harvard [41]. Patterned solder-coated areas placed on the substrates doubled as self- 
assembly receptors and as electrical connections.

Another recent development deals with a technique for transforming coated dims into 
polymer-covered liquid-crystal layers, which could lead to thinner, cheaper, and more flexible 
liquid-crystal displays. These particular liquid-crystal displays were developed by Dirk J. 
Broer and coworkers [42, 43].

Phaedon Avouris and his group at IBM and colleagues found that carbon nanotube-based 
transistors can outperform silicon transistors—suggesting that ii might be feasible to replace
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silicon with carbon nanotubes in electronic devices when the size of silicon-based circuits 
can no longer be reduced [44]. By experimenting with different device structures, the IBM  
researchers were able to achieve the highest transconductance (the measure of the current 
carrying capability) of any carbon nanotube transistor to date. High transconductance means 
transistors can run faster, leading to more powerful integrated circuits. The researchers also 
discovered that carbon nanotube transistors produced more than twice the transconduc
tance per unit width of top-performing silicon transistor prototypes. “Proving that carbon 
nanotubes outperform silicon transistors opens the door for more research related to the 
commercial viability of nanotubes,” said Phaedon Avouris. manager of nanoscale science, 
IBM Research. “Carbon nanotubes are already the top candidate to replace silicon when 
current chip features just can’t be made any smaller, a physical barrier expected to occur in 
about 10 to 15 years'’ [44, 45].

Paul L. McEucn and Daniel C. Ralph of Cornell and coworkers and (independently) a 
group led by Hongkun Park of Harvard created transistors in which a single molecule of a 
transition-metal organic complex bridges a nanometer-scale gap between electrodes [46]. In 
addition, a team led by Benjamin Mattes of Santa Fe Science & Technology showed that 
dopable polymers can be electrochemically cycled for up to 1 million cycles in ionic liquids 
without failure— suggesting that ionic liquids could be useful for fabricating and operating 
polymer electrochemical devices [47].

Groups led by Chang-Beom Eom of the University of Wisconsin, Madison, and Xiaoxing 
Xi at Pennsylvania State University independently developed oriented thin films of magne
sium diboride that are potentially useful for making superconducting devices [48]. These 
would require less cooling than current niobium-based superconductor circuits.

A team led by Yet-Ming Chiang of M IT  found that doping lithium iron phosphate with 
metal ions boosts its electrical conductivity by an astonishing eight orders of magnitude. 
The title of the article describing this nanomaterial is “Electronically Conductive Phospho- 
Olivines as Lithium Storage Electrodes.'’ Their key limitation has been extremely low elec
tronic conductivity, until now believed to be intrinsic to this family of compounds. It has 
been shown that controlled cation nonstoichiometry combined with solid-solution doping 
by metals supervalent to L i+ increases the electronic conductivity of LiFeP04 by a factor 
of ~  10s [49]. This material is considered a potentially inexpensive electrode material for 
high-power-density lithium batteries [49J.

A simple procedure for converting an insulating calcium-aluminum oxide to a transparent 
electrical conductor by heating the material and then exposing it to U V  light was developed 
by Hideo Hosono and coworkers [50, 51] of Tokyo Institute of Technology. Materials that 
are good electrical conductors arc not in general optically transparent, yet a combination of 
high conductivity and transparency is desirable for many. However, transparent conductors 
have been found to be very useful in optoelectronic devices.

A group led by Carlo D. Montemagno of UCLA devised a switch based on mutant F r  
ATP synthase that can turn a biomolecular nanomotor off and on [52]. The biophysical and 
biochemical properties of motor proteins have been well studied, but these motors also show 
promise as mechanical components in hybrid nano-engineered systems. The cytoplasmic F, 
fragment of the adenosine triphosphate synthase (F r ATPase) has the ability to function as 
an ATP-fueled rotary motor. It also has been integrated into self-assembled nanomechanical 
systems as a mechanical actuator. The results of this molecular system demonstrate the 
ability to engineer chemical regulation into a biomolecular motor and represent a crucial 
step toward controlling integrated nanomechanical devices at the single-molecule level.

Harry L. Anderson of Oxford University, Franco Cacialli of University College London, 
and coworkers prepared polyrotaxanes— polymer wires sheathed by cyclo-dextrin rings. They 
demonstrated that the coated wires act as semiconductors and used them to prepare blue 
and green LEDs [53]. Control of intermolecular interactions was found to be crucial to 
the exploitation of molecular semiconductors for both organic electronics and the viable 
manipulation and incorporation of single molecules into nano-engineered devices. Con
jugated macromolecules, such as poly(para-phcnylene), poly(4,4'-diphenylene vinylene) or 
polyfiuorene, were investigated. The approach employed preserves the fundamental semi
conducting properties of the conjugated wires and is also found to be effective at both
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increasing the photoluminescence efficiency and blue-shifting the emission of the conju
gated cores, in the solid state, while still allowing charge-transport. These polymers were 
used to prepare single-layer light-emitting diodes with Ca and Al cathodes, and blue and 
green emission was observed. ktThe reduced tendency for polymer chains to aggregate allows 
solution-processing of individual polyrotaxane wires onto substrates, as revealed by scanning 
force microscopy'" [53].

John T. Fourkas of Boston College and coworkers used multiphoton absorption to encode 
and read-out 3D data in molecular glasses and highly cross-linked polymers. ‘‘The materials 
are inexpensive, easy to process, and can store and read data robustly with an unamplified 
laser” [54]. Significant interest is expressed in three-dimensional laser-based optical data 
storage techniques, which can potentially provide efficient storage at densities significantly 
higher than those that are currently available from magnetic media. The development of 
inexpensive, efficient, and robust media has been a major obstacle in optical data storage. 
However, Fourkas’s group has discovered a class of materials that become highly fluores
cent on multiphoton absorption of pulses of 800-nm light from a Ti:sapphire oscillator. 
This makes them an excellent potential storage media. These materials are also inexpen
sive, have high optical quality, can be quickly processed, and can take a number of useful 
forms, including molecular glasses and highly cross-linked polymers. In addition, the poten
tial for three-dimensional data storage at high densities makes these materials very valuable 
as storage media.

Another key molecular electronics advance in 2000 was the first demonstration of single
molecule electroluminescence by Robert M. Dickson and coworkers at the Georgia Insti
tute of Technology [55]. Readily formed at nanoscale break junctions, arrays cf individual 
spatially isolated, strongly electroluminescent Ag2~Ag(S nanoclusters perform ccmplex logic 
operations within individual two-terminal nanoscale optoelectronics devices. Simultaneous 
electrical excitation of discrete room-temperature nanocluster energy levels directly yields 
AND, OR, NOT, XOR, and even full addition logic operations with either individual nano
clusters or nanocluster pairs as the active medium between only two electrodes. Imaged in 
parallel, noncontact electroluminescent readout obviates the need for electrically isolating 
individual features. This gated, pulsed, two-terminal device operation will likely drive future 
nano and molecular electronics advances without complicated nanofabrication [55, 56].

6.2. C o n d u c tiv e  P o ly m e rs

Perhaps the first thought-of building circuits using molecules was realized when it was deter
mined that polymers could he made conductive. In the early 1970s, a Japanese graduate 
student was trying to repeat the synthesis of polyacetylene, by linking together the molecules 
of ordinary acetylene gas used in welding. After the chemical reaction was completed, instead 
of the expected black powder, the student found a film coating on the inside of his glass 
reaction vessel. This material looked much like aluminum foil. He later realized that he 
had inadvertently added much more than the recommended amount of catalyst :o cause the 
acetylene molecules to link together. Before this accident occurred, all carbon-based poly
mers were regarded as insulators. News about the foil-like film reached Alan MacDiarmid 
of the University of Pennsylvania. At that time, he was interested in nonmetillic electri
cal conductors. Because poly acetylene in its newly discovered form looked so nuch like a 
metal, MacDiarmid hypothesized that it could have the ability to conduct electricity like a 
metal. MacDiarmid invited the student’s instructor to join his team in the Unitec States, and 
this collaboration soon led to further findings. The University of Pennsylvania investigators 
confirmed that polyacetylene exhibited surprisingly high electrical conductivity.

The idea that plastic materials could conduct electricity was considered absurd. Indeed, 
plastics have extensively been used by the electronics industry because they did not exhibit 
this very property. They are used as inactive packaging and insulating materiel. This very 
narrow perspective is rapidly changing as a new class of polymers known as intrinsically 
conductive polymers or electroactive polymers are being discovered. Although .his class of 
polymers is very young, the potential use of these is quite significant.

Conductive polymers have applications in many different areas; from conductive coatings 
and paints used on airplane fuselages, to fibers used in astronaut suits and clotiing, just to
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name a few. Being able to predict the conductivity of a polymer before it is even synthesized 
would be of great practical and financial importance. Conducting polymers have opened 
up many new possibilities for devices combining unique optical, electrical, and mechanical 
properties. The literature on conducting polymers, as reflected in its top-cited papers, shows 
the diversity of materials that can be used, optical effects achieved, and underlying physical 
processes. A partial list of publications on conductive polymers that may provide an his
torical perspective, can be seen in [57-64] and references therein. The molecules cited in 
these publications include organic polymers, copolymers, and conjugated polymers, such as 
polyacctylene, polyaniline, poly(/?c/ra-phenylene), and poly(p-phenylenevinylene), to name a 
few. Some examples include polyphenylene and polythiophene, which showed electrical con
ductivities of up to 0.1 S cm 1 [63]. These values are some of the highest values measured 
for a conductive polymer, but still less that that of most metals, yet these polymers were 
the first actually capable of conducting electricity. In addition, many of these polymers have 
high flexibility, and the devices made from them include light-emitting diodes (LEDs) and 
lasers, and the color of the light emitted can be chemically tuned. The main physical process 
involved is electroluminescence.

Another significant milestone was made when the polymer polyacetylene was exposed to 
traces of iodine or bromine vapor. This thin polymer film exhibited still higher electrical 
conductivity. The researchers discovered that by adding various selected impurities to poly
acetylene, its electrical conductivity could be made to range widely— behaving as an insulator, 
like glass, to a conductor, like metal. The key breakthrough leading to practical applica
tion as batteries occurred in 1979 when one of Professor MacDiarmid's graduate students 
was investigating alternative ways for doping polyacetylene [62-64]. He placed two strips of 
polyacetylene in a solution containing the doping ions and passed an electric current from 
strip to strip. As expected, the positive ions migrated to one strip and the negative ions to 
the other. But when the current source was removed, the charge remained stored in the 
polyacetylene polymer. This stored charge could then be discharged if an electrical load was 
connected between the two strips, just as in a conventional battery [62].

Conducting polymers can also be induced to transfer electrons to other materials such 
as buckminsterfullerene. It is this last application, along with many others, which makes 
conductive polymers important in the field of nanotechnology and molecular electronics. 
The relative conductivities of some of the polymers synthesized are shown below, along 
with a comparison with copper metal and liquid mercury. Figure 3 below shows the relative 
conductivity of several conductive polymers compared to that of copper metal and liquid 
metallic mercury [57, 65]. Further details can be found on an excellent Web page by Colin 
Pratt [57].

Since then, it has been found that a little more that a dozen different polymers and 
polymer derivatives can undergo a transition to a good conducting material after being doped 
with a weak oxidation agent or reducing agent. These polymers are all various types of 
conjugated polymers. Early work has led to an understanding of the mechanisms of charge 
storage and charge transfer in these system. All have a highly conjugated electronic state. 
This also causes the main problems with the use of these systems, that of processibility and 
stability. Most early conjugated polymers were unstable in air and were not capable of being 
processed. The most recent research in this has been the development of highly conducting 
polymers with good stability and acceptable processing attributes.

6 .3 . C o n d u c tiv ity  and  C h a rg e  S to ra g e

When it was decided that this phenomenon of conductivity in a polymer film was real and 
its significance was understood, an explanation was needed to help explain the mechanism 
of conductivity. One of the earliest explanations of conducting polymers borrowed from the 
theory of solid-state physics and used band theory as a method of explaining conductivity. 
This theory used the fact that a half-filled valence band would be formed from a contin
uous delocalized 7r-system. This would be an ideal condition for conduction of electricity. 
However, it turns out that the polymer can more efficiently lower its energy by bond alter
ation (alternating single and double bonds), which introduces a band width of about 1.5 eV,
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Figure 3. Relative conductivity of several conductive polym ers com pared to that o f copper metal and iquid metallic 
mercury. Image courtesy o f Colin Pratt.

making it a high energy gap semiconductor. The polymer is transformed into £ conductor 
by doping it with cither an electron donator or an electron acceptor. This is reminiscent of 
doping of silicon-based semiconductors, where silicon is doped with either arsen.c or boron. 
However, while the doping of silicon produces a donor energy level close to the conduction 
band or an acceptor level close to the valence band, this is not the case with conducting 
polymers. The evidence for this is that the resulting polymers do not have a high enough 
concentration of free spins, as determined hy electron spin spectroscopy.

Initially, the free spin concentration increases with concentration of dopant. At larger con
centrations, however, the concentration of free spins levels off at a maximum. To understand 
this, it is necessary to examine the way in which charge is stored along the polymer chain 
and its effect.

The polymer has the ability to store charge in at least two ways. In an oxidation pro
cess, it could either lose an electron from one of the bands or it could localize the charge 
over a small section of the chain. Localizing the charge causes a local distortion due to a 
change in geometry, which costs the polymer some energy. However, the generation of this 
local geometry decreases the ionization energy of the polymer chain and increases its elec
tron affinity, making it more able to accommodate the newly formed charges. This method 
increases the energy of the polymer less than it would have if the charge was delocalized 
and, hence, takes place in preference of charge delocalization. This is consistent with an 
increase in disorder detected after doping by Raman spectroscopy. A similar scer.ario occurs 
for a reductive process.

Typical oxidizing dopants used include elements such as iodine, arsenic pentachloride, 
iron(JlI) chloride, and NOPFJ47]. A typical reductive dopant could be sodium raphthalide. 
The main criteria is its ability to oxidize or reduce the polymer without lowering its stability 
or whether or not they are capable of initiating side reactions that inhibit the polymer’s 
ability to conduct electricity. An example of the latter is the doping of a conjugated polymer 
with bromine. Bromine it too powerful an oxidant and adds across the double bonds to form 
v/?3 carbons. The same problem may also occur with NOPF6 if left reacting too ong.

The oxidative doping of polypvrrole proceeds in the following way. An electron is removed 
from the p-system of the backbone, producing a free radical and a spinless posi:ive charge. 
The radical and cation are coupled to each other via local resonance of the charge and the
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radical. In this case, a sequence of quinoid-like rings is used. The distortion produced bv this 
is of higher energy than the remaining portion of the chain. The creation and separation of 
these defects costs a considerable amount of energy. This limits the number of quinoid-like 
rings that can link these two bound species together. In the case of polypyrrole, it is believed 
that the lattice distortion extends over four pyrrole rings. This combination of a charge site 
and a radical is called a polaron. This could be either a radical cation or radical anion. 
This creates new localized electronic states in the gap, with the lower energy states being 
occupied by a single unpaired electrons. The polaron state of polypyrrole is symmetrically 
located about 0.5 eV from the band edges.

Upon further oxidation, the free radical of the polaron is removed, creating a new spinless 
defect called a bipolaron. This is of lower energy than the creation of two distinct polarons. 
At higher doping levels, it becomes possible that two polarons combine to form a bipolaron. 
Thus, at higher doping levels, the polarons are replaced with bipolarons. The bipolarons 
are located symmetrically with a band gap of 0.75 eV for polypyrrole. This eventually, with 
continued doping, forms into continuous bipolaron bands. Their band gap also increases as 
newly formed bipolarons are made at the expense of the band edges. For a very heavily 
doped polymer, it is conceivable that the upper and the lower bipolaron bands will merge 
with the conduction and the valence bands, respectively, to produce partially filled hands 
and metallic-like conductivity. This is shown in Fig. 4. Conjugated polymers with a degen
erate ground state have a slightly different mechanism. As with polypryyole, polarons and
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bipolarons arc produced upon oxidation. However, because the ground state structure of 
such polymers are twofold degenerate, the charged cations are not bound to each other by a 
higher energy bonding configuration and can freely separate along the chain. The effect of 
this is that the charged defects are independent of one another and can form domain walls 
that separate two phases of opposite orientation and identical energy. Figure 4 illustrates 
several mechanisms for the conductivity of conductive polymers and also shows the energy 
levels for the polaron and bipolaron mechanism of conductivity for various conduciive poly
mers [47, 66].

These states are called solitons and can be charged or neutral. Solitons producec in poly
acetylene are believed to be delocalized over about 12 C -H  units with the maximum charge 
density next to the dopant counterion. The bonds closer to the defect show less amount 
of bond alternation than the bonds away from the center. Soliton formation resu ts in the 
creation of new localized electronic states that appear in the middle of the energy gap. At 
high doping levels, the charged solitons interact with each other to form a soliton band that 
can eventually merge with the band edges to create true metallic conductivity. This is shown 
below in Fig. 5 [57, 67].

6.4. C h a rg e  T ran sp o rt P rocess

Although solitons and bipolarons are known to be the main source of charge carriers, the 
precise mechanism is not yet fully understood. The problem lies in attempting to trace the 
path of the charge carriers through the polymer. All of these polymers are highly disordered, 
containing a mixture of crystalline and amorphous regions. It is necessary to consider the 
transport along and between the polymer chains and also the complex boundaries estab
lished by the multiple number of phases. This has been studied by examining the effect of 
doping, of temperature, of magnetism, and the frequency of the current used. These tests 
show that a variety of conduction mechanisms are used. The main mechanism used is by 
movement of charge carriers between localized sites or between soliton, poiaron, or bipo
laron states. Alternatively, where inhomogeneous doping produces metallic island dispersed 
in an insulating matrix, conduction is by movement of charge carriers between highly con
ducting domains. It is also known that charge transfer between these conducting domains 
also occurs by thermally activated hopping or tunneling. This is known to be consistent with 
conductivity being proportional to temperature [57].

6.5 . S ta b ility

There are two distinct types of stability. Extrinsic stability is related to the vulnerability 
to external environmental agents such as oxygen, water, peroxides, and so forth. This is 
determined by the susceptibility of the polymer’s charged sites to attack by nucleophiles,
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electrophiles, and free radicals. If  a conducting polymer is extrinsic unstable, then it must 
be protected by a stable coating.

Many conducting polymers, however, degrade over time even in dry, oxygen-free envi
ronments. This intrinsic instability is thermodynamic in origin. It is most likely caused by 
irreversible chemical reactions between charged sites of polymers and either the dopant 
counterion or the p-system of an adjacent neutral chain, which produces an sp' carbon, 
breaking the conjugation. Intrinsic instability can also come from a thermally driven mecha
nism that causes the polymer to lose its dopant. This happens when the charge sites become 
unstable due to conformational changes in the polymer backbone. This has been observed 
in alkyl- substituted polythiophenes.

6.6 . P o ss ib ilities?

Conjugated polymers may be made by a variety of techniques, including cationic, anionic, 
radical chain growth, coordination polymerization, step growth polymerization, or electro
chemical polymerization. Electrochemical polymerization occurs by suitable monomers that 
are electrochcmically oxidized to create an active monomeric and dimeric species, which 
react to form a conjugated polymer backbone. The main problem with electrically conduc
tive plastic stems from the very property that gives it its conductivity, namely the conjugated 
backbone. This causes many such polymers to be intractable, insoluble films or powders that 
cannot melt. There are two main strategies to overcoming these problems. They are either to 
modify the polymer so that it may be more easily processed or to manufacture the polymer 
in its desired shape and form. There are, at this time, four main methods used to achieve 
these aims.

The first method is to manufacture a malleable polymer that can easily be converted into 
a conjugated polymer. This is done when the initial polymer is in the desired form and then, 
after conversion, is treated so that it becomes a conductor. The treatment used is most often 
thermal treatment. The precursor polymer used is often made to produce a highly aligned 
polymer chain, which is retained upon conversion. This is used for highly orientated thin 
films and fibers. Such films and fibers are highly anisotropic, with maximum conductivity 
along the stretch direction.

The second method is the synthesis of copolymers or derivatives of a parent conjugated 
polymer with more desirable properties. This method is the more traditional one for making 
improvements to a polymer. What is done is to try to modify the structure of the polymer 
to increase its processibility without compromising its conductivity or its optical properties. 
All attempts to do this on polyacetylene have failed, as they always significantly reduced 
its conductivity. However, such attempts on polythiophenes and polypyrroles proved more 
fruitful. The hydrogen on carbon 3 on the thiophene or the pyrrole ring was replaced with 
an alkyl group with at least four carbon atoms in it. The resulting polymer, when doped, has 
a comparable conductivity to its parent polymer while being able to melt, and it is soluble. 
A water-soluble version of these polymers has been produced by placing carboxylic acid 
group or sulfonic acid group on the alkyl chains. If sulfonic acid group, groups are used 
along with built-in ionizable groups. Then, such a system can maintain charge neutrality in 
its oxidized state, and so they effectively dope themselves. Such polymers are referred to as 
ikself-doped" polymers. One of the most highly conductive derivatives of poiythiophene is 
made by replacing the hydrogen on carbon 3 with a -C H ^ O -C H oCH ^-O -CH tC ^ -O -C H ^ . 
This is soluble and reaches a conductivity of about 1000 S cm-'1 upon doping.

The third method is to grow the polymer into its desired shape and form. An insulat
ing polymer impregnated with a catalyst system is fabricated into its desired form. This 
is then exposed to the monomer, usually a gas or a vapor. The monomer then polymer
izes on the surface of the insulating plastic, producing a thin film or a fiber. This is then 
doped in the usual manner. A variation of this technique is electrochemical polymerization 
w'ith the conducting polymer being deposited on an electrode either at the polymeriza
tion stage or before the electrochemical polymerization. This cast may be used for further 
processing of the conducting polymer. For instance, by stretching aligned bends of poly
acetylene/polybutadiene, the conductivity increases 10-fold, due to the higher state of order 
produced by this deformation.
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The final method used was the use of Langmuir-Blodgett trough to manipulate tie surface 
active molecules into highly ordered thin films whose structure and thickness are coitrollable 
at the molecular layer. Amphiphilic molecules with hydrophilic and hydrophobe groups 
produces monolayers at the air-water surface interface of a Langmuir-Blodgett trcugh. This 
is then transferred to a substrate, creating a multilayer structure comprised of nolecular 
stacks, which are typically about 2.5-nm thick. This is a development from the cieation of 
insulating films by the same technique. The main advantage of this technique is ts unique 
ability to allow control over the molecular architecture of the conducting films produced.
It can be used to create complex multilayer structures of functionally different nolecular 
layers as determined by the chemist. By using alternating layers of conductor and insulator, 
it is possible to produce highly anisotropic film that is conducting within the plaie of the 
film, but insulating across it. Table 1 show's various conductive polymers, their coiductivity, 
stability, and processability [57].

6.7. S o m e A p p lic a tio n s  o f C o n d u c tiv e  P o lym ers

The extended 7r-systems of conjugated polymer are highly susceptible to chemical and elec
trochemical oxidation or reduction. These alter the electrical and optical propertie; of these 
polymers by controlling this oxidation and reduction. It is actually possible to precisely con
trol these properties using the possible electrochemical states of the molecule. In addition, 
reactions are often reversible, therefore it is possible to systematically control the electrical 
and optical properties with a great deal of precision. It is even possible to switch from a 
conducting state to an insulating state and back to a conducting state many times.

There are two main groups of applications for these polymers. The first group lses their 
conductivity as its main property. The second group uses their electroactivity. They ire shown 
in Table 2 [47]. ' " f

Conductive polymer demand in the United States is expected to grow about 6.59/ annually 
through 2006 [68]. Advances will result from more intensive use in many products including 
electronics in motor vehicles, appliances, and numerous portable consumer deviccs, such as 
portable radios, video and audio recorders, cell phones, cameras, to name only a ew.

It is estimated that the United States has a $1 billion conductive polymer industry.
For an in-depth analysis, the reader is referred to [68] and references therein, "his book 
presents historical (1992, 1996, and 2001) data and forecasts to 2006 by technology (e.g., f
carbon black powder-filled, metallized, paint-coated, fiber-filled); by resin (e.g., ABS, PVC, 
polyphenylene-based, PE, PP, TPE, nylon, polystyrene, inherently conductive); by function; 
by application (e.g., product components, antistatic packaging, materials handling, worksur- I
face and flooring); and by market. The study also examines the market environmeit, details 
industry structure and market share, and profiles 51 key companies including GE Plastics, 
Noveon, DSM Engineering Plastics, LNP Engineering Plastics, PolyOne, RTP, aid Illinois |
Tool Works. 1

6.8. M o le c u la r W ires

A molecular wire can be defined as consisting of a molecule connected between wo reser
voirs of electrons. The molecular orbitals of the molecules must provide a favorable pathway

Table 1. Stability and processing a ttribu tes of several conducting polymers.

Polymer
Conductivity 
( n ~ ! e n r 1)

Stability 
(doped sta te)

Processing
possibilities

Polvacetvlene I O '— 1 O' Poor Lim ited
Polvphenvl ene 10(H) Poor Lim ited
PPS 100 Poor Excellent
PPV 1000 Poor Lim ited
Poly pyrroles 100 G ood Good
Polythiophenes 100 G ood Excellent
Polyaniline id G ood G ood
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Table 2. Two groups of conductive polymers illustrating conductivity as a main 
property {group 1) and eleciroactivity as the main property (group 2).

G roup  1 G ro u p  2

Fleetrostatic  m ateria 1 s M olecular electronics
C onducting adhesives Electrical displays
E lectrom agnetic shielding Chemical and biochem ical sensors
Printed circuit boards Rechargeable batteries and

solid electrolytes
Artificial nerves D rug-re lease systems
A ntistatic clothing O ptical com puters
T herm al sensors 1 on -exchange m em branes
Piezoceram ics El ect ro m c eha n ical act u a to  rs
Active electronics “Sm art” structures
M olecular switches

for electrons when they connect between the leads. Such a system was first suggested in the 
early 1970s by Aviram and Ratner to have the ability to rectify current [30]. Experimentally, 
research on molecular wires has increased substantially over the past several years, with sig
nificant developments in rectification and other conductive phenomena being made [69-79]. 
There has also been an increase in the theoretical modeling of these systems [80-85]. For 
an overview of the current status of the molecular electronics field, see [86] and references 
therein. Additional references on molecular wires and their synthesis can be found in [87- 
104] and references therein.

Theoretical studies of the electronic conductance of a molecular wires bring together 
many different methods from chemistry and physics. Quantum theory is used to model the 
energetics of molecules. It is also incorporated into the study of the coupling between the 
molecule and the metallic reservoirs. Once these issues have been addressed, it is possible 
to proceed to the electron transport problem. Currently, Landauer theory [57; for a com
prehensive review of Landauer theory, see 105] is used, which relates the conductance to 
the electron transmission probability. One of the molecules of current experimental interest 
as a molecular wire is 1,4-benzene-dithiolate (BDT) [106]. It consists of a benzene with two 
sulfur atoms attached, one on either end of the benzene ring. The sulfurs can bond effec
tively to gold nanocontacts, and the conjugated t t  ring provides the delocalized electrons 
necessary for conduction. Two major unknowns of the experimental system are the geometry 
of the gold contacts and the nature of the bond between the molecule and these contacts.

For mesoscopic systems with discrete energy levels connected to continuum reservoirs, the 
transmission probability displays resonance peaks. Another possible transport phenomenon 
that has been predicted is the appearance of antiresonances [84, 107]. These occur when 
the transmission probability is zero and correspond to the incident electrons being perfectly 
reflected by the molecule. There is a simple mechanism controlling where the antiresonances 
occur in the transmission spectrum. This may be analyzed by applying a simple formula 
to the case of a molecular wire consisting of an “active” molecular segment connected to 
two metal contacts using a pair of finite rr conjugated chains. This calculation can show 
how an antiresonance can be generated near the Fermi energy of the metallic leads. This 
antiresonance is characterized by a noticeable drop in conductance. It is found that for this 
calculation, the analytic theory of antiresonances has predictive power [107].

A very interesting paper [108] involves the carbon-assisted synthesis of silicon nanowires. 
There has been a large research activity in the synthesis of inorganic nanowires and nano
tubes in the past few years [30, 109, 110]. According to this manuscript, the use of carbon- 
assisted synthesis of silicon nanowires has been accomplished with silicon powders as well as 
solid substrates. The technique for synthesis involves heating an intimate mixture of silicon 
powder and activated carbon or a carbon-coated solid substrate in argon at 1200-1350°C 
and yields abundant quantities of crystalline nanowires. Besides being simple, the method 
eliminates the use of metal catalysts.

Silicon nanowires have received considerable attention, and several methods have been 
employed for their synthesis. These include thermal evaporation of Si powder [111], 
vapor-liquid-solid method involving liquid metal solvents with low solubility for Si [112, 113],
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laser ablation [114, 115], and the use of silicon oxide in mixture with Si [116, 117. S i02- 
sheathed crystalline SiNWs have been obtained by heating Si—Si02 mixtures [118]. A> excel
lent paper by Sharma and Sunkara reported that enhanced yields of silicon nanowres are 
obtained by heating a Si substrate coated with carbon nanoparticles at 1050°C under acuum 
[119]. The role of carbon is considered to be as it is in other carbothermal methodsof syn
thesizing nanowires of oxides, nitrides, and other materials, that is involving a vapir-solid 
mechanism, wherein the carbon reacts with the oxide, probably producing a suboxile-type 
species. The formation of silicon nanowires in the presence of carbon may be explaned by 
considering silicon to generally be covered by an oxide layer. This oxide layer is rediced by 
carbon into silicon monoxide by the reaction. The paper by Sharma and Sunkara alsi shows 
that crystalline silicon nucleates and grows perpendicular to the (111) direction to firm the 
nanowires [119]. Similar reactions have been proposed for the oxide-assisted syntiesis of 
silicon nanowires [115], although the monoxide-type species is generated by other rreans.

Researchers from Nanosys, Inc., have found a way to assemble large arrays of naiowires 
constructed from silicon or other semiconductor material into a densely packed thn film, 
then process the assembly to produce relatively efficient transistors on a variety of sirfaees. 
The technology may eventually be used to construct very large flat-panel displays, dis>osable 
computing and storage electronics, and tiny radio-frequency identification devices. Tie work 
appears in the September 18, 2003, issue of Nature [120]. Researchers at Nanosjs, Inc., 
also demonstrated that cadmium sulfide nanoribbons can also be used to produce tiin film 
transistors [121].

Researchers from the Hahn-Meitner Institute in Germany developed a new way D make 
flexible transistors. The method causes forests of vertical semiconductor nanowires o grow 
inside a plastic film. These thin films contain as many as 100 million nanowires persquare 
centimeter. The semiconductor nanowires serve as transistor channels, a metal laye serves 
as the gate electrode, and source and drain electrodes were added to the top and botom of 
the stack to complete the transistors. The gate electrode blocks or allows electricity to flow 
through a transistor channel [122].

An example of the molecular structure of a molecular wire made from a nanotube can be 
seen in Fie. 6.

6 .9 . M o le c u la r S w itch es

At the center of the microelectronics industry is the semiconductor switch. Becaus semi
conductor switches can be manufactured at very small scales, and in combination can be 
made to perform all desired computational functions, the microelectronic switch has tecome

Figure 6. Typical single-walled nanom be  used as a molecular wire.
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the fundamental device in virtually all modern electronics. More than 25 years ago. Intel 
cofounder Gordon Moore observed that the number of transistors on a given piece of silicon 
would double every couple of years—a profound insight that was dubbed “Moore's law,"

to play a role. Processors now come with dimensions measuring about 130 nanometers. Next 
year, it is estimated that chips will have features measuring around 100 nanometers. When 
these features are shrunk to 30 nanometers—a goal that is estimated to be achieved in 7 
to 8 years—designers will begin to hit a design wall. Alternatives to current chips are seen 
in such new technologies as nanotechnology. However, Gordon Moore says, “crafting single 
transistors is one thing, but housing a billion of them on a chip is another” [124].

The switch pictured in Fig. 7 is a single molecule that exhibits classical switching properties 
[125]. It was developed by the California Molecular Electronics Corporation (CALMEC).

According to CALMEC scientists, the Chiropticcne switch is a device that goes beyond 
the semiconductor switch in size reduction and cost. This switch is a single molecule that 
exhibits classical switching properties. Being only a molecule in size, it is hundreds of times 
smaller than even the smallest semiconductor switch. Chiropticene molecules are switch- 
able between two distinct states that are spatial mirror images of each other. These mirror 
images are electronically and optically distinct, enabling sharp and stable switching proper
ties. According to the company’s Web site, some of the advantages of such a nanomolecular 
switch and molecules with similar properties are:

Stability: Two equal but opposite energy states in these molecules affords stability while 
assuring complete reversibility.

Speed: Electrical field switching will potentially provide femtosecond computational 
switching times. Optical switching will potentially provide nanosecond computational switch
ing times.

Nanoassembly: The molecules will lend themselves to the new techniques of nano
technology self-assembly, enabling the assembly of supramolecular device architectures.

Photonic advantage: The Chiropticene molecule capitalizes in novel ways on the unique 
properties of light in data manipulation: high bandwidth, frequency domain modulation, 
diffraction, refraction, reflection, superposition, and parallelism.

Threshold protection: An intervening neutral state prevents optical switching without elec
trical stimulation.

Molecular engineering: By the judicious selection of constituents, the Chiropticene 
molecule can be tuned to respond to selected laser frequencies and can be engineered to 
meet specific performance requirements.

Nondestructive readouts: The molecule can be interrogated by optical rotation without 
energy absorption.

Commercial attractiveness: Chiropticcne-based devices are expected to have no moving 
parts and operate at room temperature. They are also expected to be enormously cost- 
effective to produce. For additional details on this and similar molecules, the reader is 
referred to the material found in California Molecular Electronics Corporation Web page

Further advances in molecular switches have come from transistor design modifications. 
Recently, a group from IBM reported that their so-called top-gated nanotube field-effect

and a law that still holds today [123]. In the future, however, the laws of physics will begin

1125]-

Prochiral

Figure 7. Chiropiicenc switch molecule. Image courtesy of C A L M E C .
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transistors (FETs) outperform state-of-the-art silicon FETs in terms of switching rate and 
the amount of current they can carry per width of conductor. One key difference between 
the latest design and earlier designs is that the silicon wafers that support the FETs do not 
function as gates. Instead, the gate is fabricated above the nanotube—allowing al FETs in 
contact with the silicon wafer to be switched independently. In addition, the new FET design 
benefits from switching voltages that are an order of magnitude lower than those needed to 
switch older FETs [126].

Just recently, the IBM team developed a catalyst-free procedure for prepariig single
walled carbon nanotubes. Conventional methods for preparing single-walled tubes, such as 
discharge and vapor deposition techniques, rely on particles of nickel and cobali or other 
catalytic transition metals. A  problem with those procedures is that the metal particles left 
behind in the products disturb the electrical properties of the nanotubes, forcing scientists 
to take complex purification measures.

Avouris and coworkers have shown that single-walled nanotubes can be prepared from SiC 
in the absence of metal catalysts at temperatures above 1500°C [127]. The method produces 
nanotubes that are 1.2 to 1.6 nm wide and are aligned along the face of the support. Other 
researchers have reported techniques for growing vertically aligned products, which they 
dub nanotube forests. But nanotubes that grow horizontally are amenable to stanchrd vapor 
deposition methods and may be connected in parallel to lower their electrical resstance.

Despite the recent advances, Avouris asserts that nanotube FETs remain “far Irom opti
mized." Improvements could be made by using thinner insulators with higher dielectric con
stants, he suggests. “But what’s really needed is a better understanding of the mecianism of 
electrical switching in nanotube FETs” [127].

Carbon nanotubes aren't the only useful nanotechnology. Nanowires made ol semicon
ductors such as silicon, gallium arsenide, and indium phosphide have been investigated as 
candidate materials for nanoelectronics. The field is advancing rapidly as researchers are 
making fast progress in synthesis, device fabrication, and testing.

Harvard University chemistry professor Charles M. Lieber and colleagues have published 
widely on carbon nanotubes and semiconducting nanowires [128-134]. These tubes are versa
tile building blocks that can be used in a bottom-up approach to constructing nanodectronic 
circuits. Because the size, structure, and functional properties of nanowires can be controlled, 
they are readily produced via known synthetic procedures.

In 1998, Lieber and coworkers described a vapor-liquid-solid synthesis methoc in which 
laser light is used to ablate nanometer-sized metal clusters that serve as nucleation centers 
and catalysts for nanowire growth. The Harvard researchers used the technique to prepare 
uniform single-crystalline nanowires of silicon and germanium with diameters as small as 
3 nm and lengths up to 30 mm. Since that time, the procedure has been used t) prepare 
nanowires with even smaller diameters, and it has been extended to a wide variety of mate
rials. Examples include f I I—V  semiconductors such as GaAs and 11—V I semiconductors such 
as ZnSe.

Recently, a number of research groups boosted the complexity of materials that can be 
prepared by the cluster-nucleation method. The teams prepared modulated stmctures— 
nanowires composed of dissimilar segments. The two-tone materials are made by turning 
the supplies of reactants on and off during synthesis with pulsed lasers or by other methods. 
These “heterostructured” products open the door to new sophisticated application, such as 
terahertz-frequency photon emitters.

Lieber, Gudiksen, and coworkers used modulation methods to prepare nanowires with 21 
alternating segments of GaAs and Gap. And they prepared Si and InP nanowires with modu
lated doping, such that the wires were endowed with alternating p- and //-type regions. Using 
similar methods, Peidong Yang and collaborators prepared Si-SiGe nanowires 135-139]. 
In addition. Lars Samuelson and colleagues synthesized InAs/GAs nanowires [14)]. These 
nanowires were grown by chemical beam epitaxy using gold nanoparticles as a catalyst. Pho
toluminescence measurements showed spectra consisting of sharp lines with energies and 
excitation power dependency behavior very similar to that observed for Stranski-Krastanow- 
grown In As/GaAs [140] and GaN quantum dots [141]. By reducing the excitat.cn power 
density, they were able to obtain a quantum dot spectrum consisting of only one siigle sharp
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line— the exciton line. An excellent summary of these later developments can he found in 
an article in C&E Ncws by Mitch Jacoby [ 142j.

Table 3 list journals published by Elsevier Publishing Co. and sent monthly to anyone 
interested, via e-mail. The address to subscribe is c-alert.nano(« elsevier.com.

6 .10 . C o m p u ta tio n a l D es ign  and A n a ly s is  of N a n o m o le c u la r C ircu its

The computational techniques that have been discussed in some detail at the beginning 
of this chapter are powerful techniques for proposing, modeling, and simulating possible 
nanomolecular-based electronic circuits and components while strictly adhering to the laws 
of physics. Accurate simulation and approximation of large molecular systems is possible 
on desktop computers, which these days are primarily PCs. This is due to the development 
of modern algorithms, combined quantum methods, bigger and better basis sets and func
tionals, and inexpensive powerful computer platforms. We have previously used molecular 
mechanics, semiempirical, Hartrce-Fock, and DFT computational methods to demonstrate 
how conductive polymer molecules could be used to design and analyze nanoscale molecular 
transistors and logic circuits with electronic properties analogous to macroscale electronic 
components [ l43, 144]. These molecules are composed of fragments of known conductive 
polymers, partially insulating polymers, as well as molecules that exhibit semiconducting 
properties. The properties of the polymer molecules are chosen to achieve conductivity, 
resistivity, rectification, and amplification. This can be demonstrated by considering the bulk 
properties of some of these polymers. The emeraldine base form of polyaniline, which has 
a conductivity of 10l to 10: S/cm, can be used as a molecular wire, and the trans isomer

Table 3. I J s t  o f journals by E lsevier Publishing Co. containing
recent articles on nanotechnology.

A era Materialia 
Applied Catalysis A 
Applied Catalysis B 
Applied Surface Science 
Biomaterials 
Carbon
Chemical Physics Letters 
Composites Part A 
Composites Science and Technology 
Computational Materials Science 
Electrochemistry C omm unications 
Electrochim ica A  eta
Journal o f  Colloid and Interface Science
Journal o f  Electroanalytical Chemistry
Journal o f  Magnetism and Magnetic Materials
Journal o f  Membrane Science
Journal o f  Non-Ciystalline Solids
Journal o f  Nuclear Materials
Journal o f  Photochemistry and Photobiology A
Journal o f  Physics and Chemistry o f  Solids
Journal o f  the American Society' fo r  Mass Spectrometry
Journal o f  the European Ceramics Society
Materials Letters
Materials Science and Engineering A 
Microelectronic Engineering 
Microporous and Me soporous Materials 
Physics Letters A  
Polymer
Solar Energy Materials and Solar Cells
Solid State Electronics
Solid State Ionics
Surface and Coalings Technology
Surface Science
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of undoped polyacetylene, which has a conductivity of 10"° S/cm, can be used as a molec
ular resistor. We have previously proposed a molecular transistor, based on the molecular 
recitifier molecule proposed by Aviram and Ratner (A& R) in 1974 [30]. A&R proposed 
using a tetracyanoquinodimethane (tenq) molecule connected to a tetrathiafulvalene (ttf) 
molecule by a triple methylene bridge as a molecular rectifier. Their calculations showed 
that the proposed molecule would allow a certain current flow in one direction through the 
circuit, but not in the reverse direction, capable of the behavior of a p-n junction rectifier 
diode in microelectronic circuits. The mechanism they proposed was based on separation of 
the p and n molecular fragments with a barrier potential molecule, which requires electron 
tunneling for transmission. It also relied on the fact that a 1 to 2 eV potential bias would 
alter the molecular orbital energy levels enough to allow electron transmission from ttf to 
tenq, but that conduction in the reverse direction required a 9 eV potential, thus achiev
ing current rectification. A slightly modified version of this p-n rectifier molecule concept 
was experimentally proven by Metzger et al. in 1997 [145]. We took the idea and further 
extended the molecule by adding to their molecule another triple methylene bridge and one 
more tenq molecule. This extends their proposed p-n junction, making it a p-n-p junction. 
We believe this molecule to have p-n-p junction transistor properties. Figure 8  is a wire 
frame representation of the proposed molecule.

Methods analogous to those used to analyze solid-state devices were used to analyze the 
current-voltage characteristics of this molecule. A number of assumptions were used in order 
to make the calculations possible. Conductive polyaniline (pani) polymer molecules were 
used for emmiter and collector contacts at both tenq ends of the molecule and in the middle 
of the molecule (at ttf) for the base contact. Each n or p fragment of the molecule (i.e., each 
ttf and tenq) was treated as a separate molecular entity by assuming the methylene bridges 
(n) would effectively separate the electronic t t  states of the ttf and tenq fragments, as there 
is no tt conjugation across the triple methylene bridge. According to the calculations, a 
threshold forward bias >0.4 eV from base (ttf) to collector (tenq-pani) is necessary to raise 
the energy of the occupied levels of ttf to that of the unoccupied levels of tenq, causing 
a threshold forward bias >1.27 eV across the whole molecule (i.e., pani —> tenq —* fl —* 
t t f - *  O - *  tenq —► pani) to be amplified [143]. This transistor molecule was then used as 
a component of a simulated logic AND gate molecule, composed of two p-n-p transistor 
molecules, polyaniline polymer molecules as molecular wires, polyacetylene molecules as 
resistors, and benzene rings as conductive junctions for the polyaniline. Figure 9 is a wire 
frame representation of the large AND gate circuit molecule that was simulated.

The dashed lines in Fig. 9 are used to denote the locations of the p-n-p transistor 
molecules. The A and B inputs are through the polyacetylene resistors, which are attached to 
the p-n-p  transistor next to the ttf molecule. The circuit molecule would operate in the fol
lowing manner. If  a background forward bias >1.27 eV is applied across the whole molecule, 
both transistors would have to be activated from inputs A and B with a voltage >4.32 eV in 
order to provide an output which would be at the benzene ring (the junction point of the 
EB-pani leads coming from the p-n-p transistors and the resistor to the ground). Because 
the p-n-p  transistor molecules are linked together to complete the loop to the output, if 
one of the transistors is inactivated (i.e., A or B input <4.32 eV), there will be no current 
How to the output of the circuit [143]. Thus, the circuit would behave as an AND logic gate.
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F ig u r e  8 . P r o p o s e d  p -n -p  t r a n s i s t o r  b a s e d  o n  A & R  s 1974  m o l e c u l a r  re c t i l i e r
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Figure 9. M olecular A N D  circuit based on p - n - p  transistor molecules.

At the time we proposed these organic molecule transistors and polymer molecule circuits, 
we became aware that single-wall carbon nanotubes could be used to achieve the same or 
higher goals in molecular electronics. We not only recognized the potential of using single
wall nanotubes as molecular wires in nanosized electronic circuits, but also imagined that a 
single-wall carbon nanotube's electronic properties could be altered through the intercalation 
of transition metal atoms into the cavity of the nanotube. Our hypothesis was that a transition 
metal atom’s outer d electrons would interact with the conductive valence “band” of the 
nanotube, causing an altered hybrid electronic state, which would depend on the type of 
metal atom used. We further theorized that it might be possible to obtain /.?- or n-iype 
semiconductor characteristics in the carbon nanotube depending on which metal is used to 
“dope” the tube.

We recognized from the start that this was a lofty goal, even when considering the faster 
generation of PCs that started to be available for calculations 2-3 years ago. The high
est occupied molecular orbital (H O M O ) to lowest unoccupied molecular orbital (LU M O ) 
energy difference [a molecular orbital energy (M OE) gap analogous to a band gap] was 
used as an estimate of the conductive characteristics of the metal “doped” nanotube. This 
required accurate approximations of molecular energy levels for these systems. Small (hydro
gen terminated) single-wall nanotubes composed of 50 carbon atoms, approximately 3.3 A in 
diameter, and substituted with different atoms as high as period 6  on the periodic table were 
simulated. Substituting with increasingly heavy metal atoms was no small task, as relativis- 
tic effects start to affect the calculation in these increasingly heavy nuclei. For this reason, 
the Los Alamos National Laboratory Double Zeta (LANL2DZ) basis set was used within 
the Gaussian94 [146] package of programs. The LANL2DZ basis set uses an effective core 
potential (ECP) to represent the innermost (core) electrons and incorporates parameters 
that account for the relativistic effects that become more prominent in these heavier atoms 
and are mostly restricted to the core electrons. DFT-SCF single-point energy calculations 
were performed on structurally optimized nanotubes using the B3PW91 functional. This pro
cedure was performed for most of the period 4, 5, and 6  transition metals and several group
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a to m ic  n u m b e r

Figure 10. Plot o f the H O M O /L U M O  orbital energy gap o f small single-wall carbon nanotubes substituted with 
different transition m etal atom s.

Ill A, IVA, and VA nonmetallic elements, each time substituting one atom into the small 
nanotube, optimizing the structure, and calculating the molecular orbital energy scheme. 
Figure 10 is a plot of the molecular orbital energy gap of these “doped'’ systems versus the 
atomic number of the element used for doping.

The general trend in Fig. 10 for the transition metals is a decreasing molecular orbital 
energy gap as period number increases. There are several factors that may con.ribute to 
this effect. As the diameter of the intercalated metal atom increases (increasing atomic 
number), there is probably an enhanced overlap between the conductive tt  orbitals of the 
carbon nanotube and the outer cl orbitals of the metal atom. This suggests the existence of 
a hybrid orbital electronic state between the nanotube and metal atom that favors enhanced 
conductivity. However, there are drastic differences between the energy gaps of the odd and 
even electron systems. The odd electron systems have energy gaps 0.5 to 1.0 eV smaller than 
their even electron counterparts, suggesting that paired electron systems are maeh more 
stable, requiring considerably more energy to mobilize their electrons, and the odd electron 
systems have unpaired electrons that are much more unstable and thus mobile.

7 . C O N C L U S IO N

A lot has been discussed in this chapter that spans over four decades of science and tech
nology. Much has happened in that span of time. Computers have evolved from large, few- 
transistor mastodons of yesteryear, capable of relatively few operations per seconc, to sleek 
microsized machines that can fit into one's palm for the most part and perform billions of 
operations in the same amount of time. Computational science has also advanced, taking 
advantage of the computer innovations each decade has offered, and advancing scientific 
modeling to a high level of precision. It was over 4? years ago that Richard Feyrman pro
posed nanotechnology as the science of the future, and computational scientists have been 
working on it ever since. Today, it is clear that we are standing on the doorstep oi that next 
scientific revolution. But it is sad to note that even though theoretical science achieved highly 
accurate modeling methods on powerful computers more than a decade ago and proposed 
novel uses for molecules and nanosized particulates for even longer, the scientific community 
has been very slow to recognize this potential. It is easy to say today that this revolution was 
coming, but in reality, 1 0  years ago most computational studies that proposed tiuly novel 
uses for molecules by exploiting their properties at the nanoscale were not taken seriously
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a n d  w e re  h a rd  to  p u b lis h . It is o n ly  in th e  p a s t  5  y e a r s  th a t  th is  m e s sa g e  h a s  f in a lly  b e e n  
u n d e r s to o d  by  th e  r e s t  o f  th e  s c ie n tif ic  c o m m u n ity  a n d  th e  te c h n o lo g y  h a s  b e e n  e m b r a c e d .  
C o m p u ta t io n a l  s c ie n t i s ts  h a v e  p r e d i c te d  th is  te c h n o lo g y  a ll a lo n g .

In  a d d i t io n ,  th e r e  h a v e  a ls o  b e e n  m a n y  h o p e fu l  e x t r a p o la t io n s  o f  n a n o te c h n o lo g y  to  d a te .  
O n e  n e e d s  o n ly  to  r e a d  th e  n u m e r o u s  a r t ic le s  f o u n d  in  th e  p o p u la r  p re s s ,  te le v is io n , a n d  th e  
m o v ie s  to  s e e  h o w  m u c h  n a n o te c h n o lo g y  h a s  b e e n  h y p e d . P r e d ic te d  a p p lic a t io n s  o f  n a n o 
te c h n o lo g y  h a v e  ru n  th e  g a m u t  f ro m  k il le r  n a n o r o b o t s  to  r e p la c in g  s u r g e o n s  to  p r o te c t in g  
a s t r o n a u ts  o n  d e e p - s p a c e  m is s io n s . N a n o te c h n o lo g y  a ls o  h a s  its  sk e p tic s . T h e y  h a v e  p o in te d  
o u t  th a t  n a n o te c h n o lo g y  is b a s e d  m o r e  o n  w ish fu l th in k in g  th a n  s c ie n c e , a n d  th e y  " c a s t  a  
ja u n d ic e d  e y e "  o n  m o s t o f  th e  c la im s  a n d  c a ll th e m  p ra c t ic a l ly  im p o ss ib le .

T h e  re a l i ty  o f  n a n o te c h n o lo g y  lie s  s o m e w h e r e  b e tw e e n  e i t h e r  s id e  o f  th is  d e b a te .  N a n o 
te c h n o lo g y  h a s  th e  p o te n t ia l  to  d e l iv e r  a m a z in g  p r o d u c t s ,  h ig h  v a lu e - a d d e d  m a te r ia ls  th a t  
c a n  b e  u se d  in c o m m e rc ia l  a p p l ic a t io n s .  I t  w ill a ls o  b e  a t  th e  c o r e  o f  m o s t fu tu re  r e s e a rc h  
a c tiv ity . T h is  te c h n o lo g y  is e x p a n d in g  a n d  w ill c o n t in u e  to  d o  so  fo r  th e  fo r e s e e a b le  f u tu re .  
W e h o p e  th is  a r t ic l e  w ill h e lp , e v e n  if  in  s o m e  s m a ll  w ay , to  a d v a n c e  th is  c a u se .
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1 . IN T R O D U C T IO N

The increasing demand for higher computing power, smaller dimensions, and lower power 
consumption of electronic devices leads to a pressing need to downscale semiconductor 
components. This process has already led to length scales where the electrical device charac
teristics are dominated by quantum-mechanical effects. One of the most interesting of these 
effects is the quantum-mechanical tunneling of charge carriers through classically forbidden 
regions.

It is therefore necessary to account for tunneling effects in the design of semiconduc
tor devices. Several models of varying complexity and accuracy can be derived to describe
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the tunneling current density in semiconductor devices. The models depend on two central 
quantities; namely, the supply function, which describes the supply of available electrons, 
and the transmission coefficient, which describes the probability that an electron can tun
nel through the barrier. The supply function is determined by the energy distribution of 
the electrons. In equilibrium, this distribution can be approximated by a Maxwellian distri
bution. However, the electric field in miniaturized devices is so high that non-Maxwellian 
models have to be considered to describe accurately the shape of the distribution function 
and especially the shape of the high-energy tail of the distribution.

To calculate the transmission coefficient of a dielectric layer, Schrodinger’s equation must 
be solved. One of the most frequently used methods is the Wentzel-Kramers-Brillouin 
(WKB) approximation, which, however, does not reproduce transmission coefficient oscilla
tions as observed in thin gate dielectrics. To describe accurately tunneling through dielectric 
stacks, it is necessary to resolve the effects of wave function interference. This can be achieved 
using the transfer-matrix method with either constant or linear potential segmen:s. However, 
this method is prone to numerical instabilities. A more promising approach is the quantum 
transmitting boundary method, which allows a stable and reliable evaluation of the transmis
sion coefficient.

Unlike what is assumed in idealized models, dielectric layers are not ideal insulators. 
Caused by electric stress or processing conditions, defects arise in the dielectric that give rise 
to trap-assisted tunneling. This results in increased tunneling current at low b.as, which is 
referred to as SILC (stress-induced leakage current). The trap-assisted tunneling process is 
caused by inelastic transitions of carriers supported by the emission of phonons As this is a 
transient process, it is necessary to account for the creation and annihilation of traps in the 
dielectric based on the rate equation of the traps.

All these effects are discussed in Section 2, which treats the theory of tunneing in semi
conductors. This comprises modeling of the supply function, the transmission coefficient, 
and trap-assisted tunneling. In Section 3, several applications are presented. The general- 
purpose device simulator Minimos-NT is used for the simulation of gate leakage currents in 
metal-oxide-semiconductor (MOS) capacitors and MOSFETs (MOS field-effect transistors). 
Emphasis is put on modeling of the different tunneling paths in MOS transistors and on the 
evaluation of alternative high-K dielectric materials. Furthermore, several NVM  (nonvolatile 
memory) devices such as electrically erasable programmable read-only memory EEPROM) 
devices, trap-rich dielectric, or multi-barrier tunneling based devices are investigated.

2 . T H E O R Y  O F  T U N N E L IN G

This section outlines the theory of quantum-mechanical tunneling in semicondu:tor devices. 
Different tunneling mechanisms, such as direct-, Fowler-Nordheim, and trap-assisted tun
neling are covered. As a first step, the Tsu-Esaki model is derived. The derivation of the 
supply function and the transmission coefficient is described in detail. Tunneling from quasi
bound states and compact tunneling models is covered as well. The section continues with 
the description of trap-assisted tunneling and discusses some of the most frecuently used 
models.

2 .1 . T u n n e lin g  M e c h a n is m s

In the silicon-dielectric-silieon structure sketched in Fig. I. a variety of tunneing processes 
can be identified. Considering the shape of the energy barrier alone, Fowler-Noidheim (FN) 
tunneling and direct tunneling can be distinguished. However, a more rigorous classification 
distinguishes between ECB (electrons from the conduction band), EVB (electrons from 
the valence band). HVB (holes from the valence band), and TAT (trap-assisteJ tunneling) 
processes. The EVB process is caused by electrons tunneling from the valence band to the 
conduction band. It thus creates free carriers at both sides of the dielectric, which, for MOS 
transistors, gives rise to increased substrate current. The TAT process can either be elastic, 
which means that the energy of the carrier is conserved, or inelastic, where the ;arrier loses 
energy due to the emission of phonons. Furthermore, in dielectrics with a verj high defect 
density, hopping conduction vi.i multiple defects may occur.
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Figure 1. Schematic of the tunneling processes in a silicon-dicleciric-silicon structure. The different tunneling pro 
cesses are indicated by arrow s and are described in the text. The abbreviations E E D  and H E D  denote  the electron 
and hole energy distribution function.

2.2 . T h e  T s u -E s a k i M odel

The processes ECB and HVB shown in Fig. I can he investigated considering an energy 
barrier as shown in Fig. 2. Two semiconductor or metal regions are separated by an energy 
barrier with barrier height measured from the Fermi energy to the conduction band 
edge of the insulating layer. Electrons tunnel from Electrode 1 to Electrode 2. The distribu
tion functions at both sides of the barrier are indicated in the figure.

In the derivation, the following assumptions are made:

• Effective-mass approximation: The different masses corresponding to the band structure 
of the considered material are lumped into a single value for the effective mass. This is 
denoted by in the electrodes and mM  in the dielectric layer.

• Parabolic bands: The dispersion relation in semiconductors is approximated by

, _ fi-k- _  h2(k-x + k-y + k-: )
2 "!,II 2 /?icff

with the wave vector k =  Avev +  Avev -f A.er.
• Conservation of parallel momentum: Only transitions in the .v-direction are considered; 

the parallel wave vector k/; =  (Avex +  A\ez) is not altered by the tunneling process.
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Figure 2. Schematic o f an energy harrie r with two electrodes that can be used to describe the EiC'B o r HVB 
processes.

The net tunneling current density from Electrode 1 to Electrode 2 can be written as the net 
difference between current flowing from Side I to Side 2 and vice versa [1,2]

J = J1 — 2 (2)

The current density through the two interfaces depends on the perpendicular component 
of the wave vector Av, the transmission coefficient TC, the perpendicular velocity vv, the 
density of states £, and the distribution function at both sides of the barrier:

d J ^ 2 =qTC(kx)vxgl(kx) f l(f:)[l -  f 2(V))dkx

d J ^ t = q T C ( k x)vxg2(kx) f2(T){\  ~ M * ) ] d k t
(3)

In this expression, it is assumed that the transmission coefficient only depends on the 
momentum perpendicular to the interface. The density of k x states g(kx) is

£ ( * , ) =  f  r  g(kx, k v, k ; ) d k tdk (4)

where g(kx, Av, A.) denotes the three-dimensional density of states in the momentum space. 
Considering the quantized wave vector components within a cube of side length L

A k, =
77 77

L • L 
yields for the density of states within the cube

1

IT T

T

g(kxJ<v, k :) =  2
AA. AA, AA . U  47r3

( s :

( b )

where the factor 2 stems from spin degeneracy. For the parabolic dispersion relation (1), 
the velocity and energy components in tunneling direction obey
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Hence, expressions (3) become

cU^2 = -5-7C(/.v)^ v /' /' ./',(>)[1 -./:(/)]</*,.</*-477/1 -Ml ./||'{ )  'M l  

.■v /.x

dJ2.., =  TC( / , ) < / / ,  f  [  . / ; ( / ) [  1 -  / , ( > ) ] dk , <7/c;
4 tt h •/() .'o

Using polar coordinates for the parallel wave vector components

(8)

ki, = J kl + k; k y = kpc os(y)

y =  a rc tan ^ ~ j =  A:,, sin(y)
(9)

the current density evaluates to

4 7 7 /7Zctrq /“'n»!K
{ ',C| [ ...T C ( \ ) d ' ,  [  fAS){\  - f 2( ' ) \ d '

J s  ..Mlh

Airm  ,ffC] nm r v
-  /;; f  TC(%x)dXxJ  / , ( / ) [  1 - / , ( / ) ] </^

(10)

In these expressions, the total energy Vf has been split into a longitudinal part £ p and a 
transversal part f  x

<’ 2 m,ff 2 m,n 1 2 mcff

Evaluating the difference ./ =  Jx_ 2 -  J2 ,,, the net current through the interface equals 

477-mcflq r'
J =

ffl  /* 11 m /
^  j  T C ( \ ) d \  Jf( ( / , ( / )  -  ./: ( 0 ) ^ „  ( 1 2

This expression is usually written as an integral over the product of two independent parts, 
which only depend on the energy perpendicular to the interface: the transmission coefficient 
TC( S x) and the supply function N('£x):

4 7 rmeffq r'"^f , ,n  /• tiiux
y -  j  TC{f  X)N ( f ‘x)d'£x (13)

which is the expression known as Tsu-Esaki formula. This model has been proposed by 
Duke [3] and was used by Tsu and Esaki for the modeling of tunneling current in resonant 
tunneling devices [4]. The values of ?min and V.max depend on the considered tunneling 
process:

• Electrons tunneling from the conduction band (ECB): ^ [Tlin is the highest conduction 
band edge of the two electrodes; ^ mux is the highest conduction band edge of the 
dielectric.

• Holes tunneling from the valence band (HVB):  ̂min is the absolute value of the lowest 
valence band edge of the electrodes; 7 max is the absolute value of the lowest valence 
band edge of the dielectric. The sign of the integration must be changed.

• Electrons tunneling from the valence band (EVB): V-m]n is the lowest conduction band 
edge of the two electrodes; ^ imu the highest valence band edge of the two electrodes. 
It must be checked if ^mjn < "'rmax.

The next sections concentrate on the calculation of the supply function and the transmission 
coefficient.
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2.3. S u p p ly  F u n ctio n  M o d e lin g

The supply function describes the difference in the supply of carriers at the interfaces of the 
dielectric layer. Following (12), it is given as

N ( ' x) =  ( V i C O - / : ^  ))</>,, (14)
«'o

where /,  and f\  denote the energy distribution functions near the interfaces. Because the 
exact shape of these distributions is usually not known, approximative shapes are commonly 
used. Furthermore, it is assumed that the distributions are isotropic.

2.3.1. Fermi-Dirac Distribution
In equilibrium, the energy distribution function of electrons or holes is given by the Fermi- 
Dirac statistics

. /V )  =  T—  ' -  (15)
+  exp( -j—y -)

which can be derived from statistical thermodynamics [5]. Separating the longitudinal and 
transversal energy components /  =  'f-.s +  s f) and splitting the integral in (14) N ( f  x) =  
£ ,( * ,)  -  ^2(r/ i)' l Iie values of £, and £: become

= r M ' f ■)<!'',, = r — ~ d t v / = 1 , 2  ( i 6 )
J" J" 1 +  exp( 1 k;;y

This expression can be integrated analytically using

I  — ----- =  ln ( ---------- 1-------- )  +  f  (17)
J 1 +  exp(.i) \ l + c x p ( - . v ) /

so expression (16) evaluates to

f, =  k„7’ In ( =  1,2 (IX)

and the total supply function (14) becomes

1 +  cxp(— ~  - - )
N(?x) = k „ r i n  | ------------  T~T7~7T I ( I 9 )

1 + exP ( - ^ )

2.3.2. Maxwell-Boltzmann Distribution
For nondegenerate semiconductors, the Fermi energy is located below the conduction band 
edge. Therefore, >mjn — ' tY kBT holds in expression (13), and the Fermi-Dirac distribu
tion (15) can be approximated by a Maxwell-Boltzmann (or Maxwellian) distribution

F
—  'f

- r )  >2m

Using this expression, £ in (14) becomes

e, = f / ( ' ) * *  v =  f  cxp( - - ' 4  ) t l \  i = 1 . 2  ( 2 1  I
•'i) -mi V /  /

which evaluates to
/  -  /

and yields a supply function of

/
A'VJ = kh T exp
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2.3.3. Non-Maxwellian Distributions
The Fermi-Dirac or Maxwell-Boltzmann distribution functions are frequently used to 
describe the distribution of carriers in equilibrium, because they are the solution of 
Boltzmann's transport equation for the case of zero electric field. In the channel region 
of a MOSFET, however, the energy distribution deviates from the ideal shape implied by 
expressions (15) or (20). Carriers gain energy by the electric field in the channel, and they 
experience scattering events. Models to describe the distribution function of such hot carri
ers have been studied by numerous authors [6 - 8 ]. One possibility to describe the distribution 
of hot carriers is to use a heated Maxwellian distribution function

where T„ denotes the electron temperature and A is a normalization constant. The validity 
of this approach, however, is limited. Figure 3 shows in the left part the contour lines of the 
heated Maxwellian distribution function at the Si-SiO, interface in comparison to Monte 
Carlo results. A Monte Carlo simulator employing analytical nonparabolic bands was used 
for this simulation for a MOSFET with a gate length of Lg =  180 nm and a thickness of the 
gate dielectric of 1.8 nm at a bias of Kns =  K(;s =  IV.  It is evident that the heated Maxwellian 
distribution (full lines) yields only poor agreement with the Monte Carlo results (dashed 
lines). The distribution function at two points near the middle of the channel (point A) 
and near the drain contact (point B) are shown in the right part of this figure. Particularly, 
the high-energy tail in the middle of the channel is heavily overestimated by the heated 
Maxwellian model. This is unsatisfactory, because a correct description of the high-energy tail 
is crucial for the evaluation of hot-carrier injection at the drain side used for programming 
and erasing of EEPROM devices.

To obtain a better prediction of hot-carrier effects, Cassi and Ricco presented an expres
sion to account for the non-Maxwellian shape of the electron energy distribution function [6 ]

with \  as fitting parameter and £  being the local electric field in the channel. This Iocal-field 
dependence was soon questioned by other authors such as Fiegna et al. [9], who replaced the 
electric field with an effective field calculated from the average electron energy to model the 
EEPROM writing process. Hasnat et al. used a similar form for the distribution function [10]

(24)

(25)

(26)

in
(>.:<) 0 .1 0  o.on 0 .10  0 .20  0 .3 0  0.4O

x | jjni]
0

Energy [eVJ

Figure 3. C om parison o f the healed Maxwellian distribution  (full lines) with the results from a M onte C arlo sim
ulation (do tted  lines) in a turned-on INO-nm M O SF E T  |I5 0 |.  Neighboring lines differ by a factor of 10. The 
distributions at point A and B are com pared with a cold M axwellian distribution in the right figure.
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They obtained values of £ =  1.3, 17 =  0.265, and v =  0.75 by fitting simulation results to 
measured gate currents. However, these values fail to describe the shape of the distribution 
function along the channel when compared to Monte Carlo results [11]. A quite generalized 
approach to describe the shape of the electron energy distribution (EED) has been proposed 
by Grasser et al.

/(/■ ) =  A exp
ref

(27)

In this expression, the values of ^ rct and b are mapped to the solution variables Tn and (3n 
of a six moments transport model [12]. Expression (27) has been shown to reproduce appro
priately Monte Carlo results in the source and the middle region of the channel of a turned- 
on MOSFET. However, this model is still not able to reproduce the high-energy tail of the 
distribution function near the drain side of the channel because it does not account for the 
population of cold carriers coming from the drain. This was already visible in the right part 
of Fig. 3 near the drain side of the channel: The distribution consists of a cold Maxwellian, 
a high-energy tail, and a second cold Maxwellian at higher energies. Expression (27) cannot 
reproduce the low-energy Maxwellian. A distribution function accounting for the cold car
rier population near the drain contact was proposed by Sonoda et al. [8 ], and an improved 
model has been suggested by Grasser et al. [11]:

/ ( / )  = Alex  p +  cexp -
k Br ,

(28)

Here, the pool of cold carriers in the drain region is correctly modeled by an additional cold 
Maxwellian subpopulation. The values of ^ rcf, /?, and c are again derived from the solution 
variables of a six moments transport model [11]. Figure 4 shows again the results from 
Monte Carlo simulations in comparison to the analytical model. A good match between this 
non-Maxwellian distribution and the Monte Carlo results can be seen.

This model for the distribution function, however, requires calculation of the third even 
moment of the distribution function: the kurtosis /3„. As an approximation, /3„ can be cal
culated by an expression obtained for a bulk semiconductor where a fixed relationship 
between Tn, and the lattice temperature 7j exists:

'Bulk
T(i P'S ( I - ZL

T .
(29)

In this expression, r . , /x„, and fis are the energy relaxation time, the kurtosis relax
ation time, the electron mobility, and the energy flux mobility, respectively. The value of

0.20 -O.l I) 0.(50 0 10 0.21) 
• -Mill I

0.10 0.40
Energy |eV |

Figure 4. Com parison of the non-M axweilum distribution (full l in o )  with the resuits from a M onte C arlo sim ulation 
(do tted  lines) in a turned-on INU-nm M O SFET 1150]. Neighboring lines differ by .1 tactor of 10. The d istributions 
at point A and B are com pared with a cold Maxwellian d istribution in the right figure
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t(3/jls/ t . f±n can be approximated by a fit to Monte Carlo data [11]. Estimating the kurtosis 
from (29), the distribution (27) can be used within the energy-transport or hydrodynamic 
model. For a parabolic band structure, the expressions

T.. = 2 P ( | ) ^
k B

o  = 3 £ i i l £ ( i )

5

are found [12], where V(x) denotes the Gamma function

T(jc) =  f  exp( - a ) a x~] da

(30)

(31)

(32)

Though (30) can easily he inverted to obtain - l.ct(7’„), the inversion of (31) to find b(T„) at 
f3,,(b) = )SBu|k(T„) cannot be given in a closed form. Instead, a fit expression

b ( T „ ) = i + b i)(

b,

(33)

with the parameters b{) = 38.82, b] — 101.11, b2 = 3.40, and b$ =  12.93 can be used. Using 
^ ref( 7/j) and ^(7^,), the Monte Carlo distribution can be approximated without knowledge 
of (in. Figure 5 shows simulation results for a 500-nm MOSFET using the heated Maxwellian 
distribution (24), the non-Maxwellian distribution (28), and the non-Maxwellian distribu
tion (27) using (30) and (33) to calculate the values of ^rol- and b. It can be seen that the lit 
to the results from Monte Carlo simulations is good. However, the emerging population of 
cold carriers near the drain end of the channel leads to a significant error in the shape of 
the distribution at low energy. This is important for certain processes, whereas in the case 
of tunneling, the high-energy tail is more crucial.

With expression (27) for the distribution function and the assumption of a Fermi-Dirac 
distribution in the polysilicon gate, the supply function (14) becomes

A /T O  =
b '£

ref

-  //l:ku7'l In 1 +  exp % +  A>,
k ,  J t.

w h e r e  f ' , ( a \ / 3 )  d e n o te s  th e  in c o m p le te  g a m m a  fu n c t io n

F,(a% v) =  I  c x p ( - a ) a 1” 1 d a
J v

(34)

(35)

In (34), the explicit value of the Fermi energy was replaced by the shift of the two conduction 
band edges Assuming a Maxwellian distribution in the polysilicon gate, the supply 
function can be further simplified to

b  \ y , .

b-

A2knTL exp I -
- f  A * ,

M , .
(36)

Using the accurate shape of the distribution (28), the expressions for the supply function 
become

N(*)  = A ] ref r , ’ ( f - )  +  A xcV.bT2 CXP^ — — /̂ :kn7i ln l+ e * p (
?- +  A / c

for a Fermi-Dirac distribution, and
/)-!

N ( o  = A \ - ^ r ,
i -  (4 ) ]+ "  / , : k " 7'L “ p

(37)

(38)

assuming a Maxwellian distribution in the polysilicon gate.
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/ ( / )  =  A exp -

x ! (.11111

x | j.im |

f ( / )  = Al  exp I -

+  cexp 

(J c
iu T„. and fj„.

K T l

rcl , b% and c derived from

\  i u m |

 ̂rd- and b derived from 
n and 7/r

Figure 5. Different expressions for ihe energy distribution function in u 500-nrn MOSFHT com pared with Monte 
C arlo  results 1152).

2.3.4. Normalization
When implementing the analytical expressions lor the distribution function and the supply 
function into a device simulator, it is necessary to assure consistency: the carrier concen
tration defined by the analytical distribution function must match the carrier concentration
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from the transport model used. Therefore, the normalization prefactor A has to he evaluated 
from

n = (\) = ~ K f f ( k ) (r k  (39)
4 77-' J

This equation can be transformed to spherical coordinates using k = (k] -f k 2v + k:)1 :

n = — - f  da f  sin OdO f  f ( k )k2dk (40)
477 J-TT 'h\ J o

For a parabolic dispersion relation we have dk =  i n ^ / k h :d<r. which finally leads to

47Tt/2/?Zclt
n =  f ( t ) ------—----y/^d’f  (41)

Ji) h

where the integration is performed from the conduction band edge / c =  0. For a Maxwellian 
or heated Maxwellian distribution [expressions (20) or (24)], the normalization constant 
evaluates to

A =  -------------- alt  ,42,
< > r(k

where 7j. is either the lattice temperature (for the assumption of a Maxwellian distribution) 
or the carrier temperature (for the assumption of a heated Maxwellian distribution). Using 
the non-Maxwellian distribution (27), the normalization constant evaluates to

A = --------  nh[b —  (43)

whereas for expression (28), it is

, 1 ’
4 7 T

(44)

2 .4 . T h e  E n erg y  B arrie r

For the calculation of the transmission coefficient, it is necessary to take the shape of 
the energy barrier into account. Electrons tunnel from a semiconductor or metal segment 
through a dielectric layer to another semiconductor or metal segment. Thus, the band dia
gram of a MOS capacitor has to be investigated. Furthermore, the image force, which leads 
to a reduction of both the electron and hole energy barrier for thin dielectrics, will be 
described in this section.

2.4.1. The Metal-Oxide-Semiconductor Capacitor
Figure 6  shows the band diagram and the electrostatic potential in a metal-oxidc-
semiconductor structure for different voltages at the metal contact [13-15]. A central quan
tity is the work function, which is defined as the energy required to extract an electron from 
the Fermi energy to the vacuum level. The work function of the semiconductor is

q <l\ = q*s i -  'f, + r v + q (iJi (45)

where \ s denotes the electron affinity of the semiconductor. The work function difference 
between the work function in the metal q<I>M and the work function in the semiconduc
tor q<t>s is

q(I>Ms =  “  q^s (46)
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d>ix>

t <\Krl

Accumulation 

V(j = ĈMS ” Qsurf “ *Klid < ^
Platband

VC; = O ms < 0

No bias

V,: = 0
Inversion 

= ^MS + ŝmi + 0clie! > ()

Figure 6. Band diagram  and electrostatic  potential in an //M OS structure (negative work function d ifference) in 
accum ulation, under flatband condition, withoul bias, and under inversion condition.

The values of <&M and x$ depend on the material, as shown in Table 1 [5, 16, 17]. However, 
the actual value of the work function of a metal deposited on SiO: is not exactly the same 
as that of the metal in vacuum [17].

As long as Boltzmann statistics can be applied, the Fermi potential 4>f depends on the 
doping concentration of the semiconductor in the following wav:

p-type: <I>f =  —  In f —  )  > 0, (47)q V )

//-type: In f —  )  < 0 (48)
q V n, )

Table I. E lectron affinity of various sem iconductors (left), work function and 
the radius o f the Fermi sphere o f various m etals (right) [18, 197J.

Sem iconductor X* (V) M etal q<«\, (eV) (nin ')

Si 4.05 Al 4.28 17.52
Ge 4.00 Pt 5.65
G aA s 4.07 W 4.63
G aP 3.80 Mg 3.66 13.74
GaSb 4.06 Ag 4.30 12.04
In As 4.90 Au 4.80 i 2.0ft
inP 4.38 Cu 4.25 13.61
InSb 4.59 Cr 4.50
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where NA. /VL), and //, denote the acceptor, donor, and intrinsic concentrations, respectively. 
The concentration-independent part of (46) is labeled <1̂ 1S:

qtlJMs = qcl1M ~ q^s -  \  -  K  (49)

The voltage that has to be applied to achieve flat bands is denoted the Hatband voltage. If 
we deviate from this voltage, a space charge region forms near the interface between the 
dielectric and the semiconductor. The total potential drop across this space charge region 
is the surface potential (/>surt. Due to this potential, all energy levels in the conduction and 
valence bands are shifted by a constant amount, therefore

M O  • \ . n - q<M-0 
%(x) = -  q<M.v)

where / 'c „ and 0 are the conduction and valence bands in the Hatband case. Note that in 
the flatband case 4>(x) = 0  in the whole structure.

In metals, the Fermi energy is located at a higher energy level than the conduction band. 
The difference between the conduction band edge in the metal and the Fermi energy in the 
metal can be calculated considering the frec-clectron theory of metals, which assumes that 
the metal electrons are unaffected by their metallic ions. The sphere of radius k{ (the Fermi 
wave vector) contains all occupied levels and determines the electron concentration

A - f  =  7 3 t t2u  ( 5 1 )

The values of the metal work function and k ( for various metals are summarized in the 
right part of Table I [18]. The value of — r£'c can then be calculated from the carrier 
concentration assuming a parabolic dispersion relation.

At the semiconductor side, the height of the energy barrier is given by q4>e for elec
trons and q<£h for holes. Note that in the derivation of the Tsu-Esaki formula, the barrier 
height q<l>B, which denotes the energetic difference between the Fermi energy and the band 
edge in the dielectric, is used. Depending on the considered tunneling process, q<J>u must be 
calculated from q<t>c or q<I>h.

2.4.2. Image Force Correction
When an electron approaches a dielectric layer, it induces a positive charge on the interface 
that acts like an image charge within the layer. This effect leads to a reduction of the 
barrier height for both electrons and holes [19-21]: The conduction band bends downward 
and the valence band bends upward, respectively. To account for this effect, the band edge 
energies (50) must be modified

= '%.(> -  q<M*) + îmugeM (5?)
* v M  = *v.» -  q<M'V) + îmage (x) 

where the image force correction in the dielectric with thickness rdld can be calculated as [2 2 ]

= - u & z p M s n r f e + < 7 T o b - w + c f f e )  (53)

where x =  0 is at the interface to the dielectric. The symbols k] and k2 are calculated from 
the dielectric permittivities in the neighboring materials

k ] = Kj,~~  ** k2 = — 1 =  -1  (54)
d̂icl ŝi d̂iel m̂ctal

Here, k,  accounts for the interface between the insulator and the metal and evaluates to -1 .
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In the semiconductor, the band edge energies are also altered

q: f , k/ inuiiic
,  '  V  I > 1 +  J l j i j  ( / +  O ' . l i j  +  l - v

In practice, it is sufficient to evaluate the sums in (53) and (55) up to j  =  11 [23]. Figure 7 
shows the band edge energies in an MOS structure for a dielectric layer with a thickness of
2 nm and different dielectric permittivities for an applied bias of 0 V (left) and 2 V (right). 
A lower dielectric permittivity leads to a stronger band bending due to the image force and 
therefore strongly influences the transmission coefficient.

However, there is still some uncertainty if the image force has to be considered for tun-J o
neling calculations. Though it is used in some works [23-26], others neglect it or report only 
minor influence on the results [27-31]. For rigorous investigations, however, it is necessary 
to include it in the simulations. This, however, raises the need for a high spatial resolution
along the dielectric. Simple models like the analytical Wentzel-Kramers-Brillouin (WKB)
formula or the Gundlach formula are not valid for this case, as described in the following 
sections. It may therefore be justified to account for the image force barrier lowering by 
correction factors.

2.5 . T ra n s m is s io n  C o e ffic ie n t M o d e lin g

Now that the shape of the energy barrier has been treated, the calculation of the quantum- 
mechanical transmission coefficient can be investigated. The transmission coefficient TC is 
defined as the ratio of the quantum-mechanical current density

J(r) =  -  v rV 'l')  (56)
2//z

due to an incident wave in Region 1 and a transmitted wave in Region /V; see Fig. 8 . The 
assumption of plane waves in both regions

%{x) = exp(ik{x)
(51)

'I'n(.v) =  A n exp(tkNx)

leads to the transmission coefficient

7T = J j , =  t , " U  | / U ; 

J| A-n/?in \At\-

Distance |nm | Distance (nm]

Figure 7. Effect of the image force in an n M OS device with a dielectric thickness of 2 nm at a gate hias o f (I V 
(left) and 2 V (right).
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A'

B

-►
\

______ W( x )

Figure 8. Schematic of an energy harrie r of a single-layer dielectric. The potential energy M '(.v) may either he the 
conduction hand o r the valence hand energy, depending on the tunneling process. The linear and constant potential 
approxim ations re fe r lo the transfer-m alrix m ethod described in Section 2.5.3.

Note that the quantum-mechanical current density (56) is equal in Region 1 and Region N . 
Considering only the incident wave in Region 1 and the transmitted wave in Region N allows 
definition of a transmission coefficient TC < 1. The wave function amplitudes A t and A s 
can he found by solving the stationary Schrodinger equation [32]

where W(r) is an external potential energy, in the barrier region. This can be achieved 
by various methods. The Wentzel-Kramers-Brillouin approximation can be applied either 
analytically for a linear barrier or numerically for arbitrary barriers. Gundlach's method 
can be used for a single linear energy barrier, whereas the transfer-matrix and quantum 
transmitting boundary methods are applicable for arbitrary-shaped barriers. The transfer- 
matrix method can be applied using either constant or linear potential segments as shown 
in Fig. 8 . The different methods will be described in this section, and a brief comparison at 
the end summarizes their advantages and shortcomings.

2.5.1. The Wentzel-Kramers-Brillouin Approximation
The Wentzel-Kramers-Brillouin approximation is one of the most frequently applied approx
imations to solve Schrodinger’s equation [31,33,34]. Starting from the time-independent 
Schrodinger equation (59), the one-dimensional case reads

I  ~_ J _ v : + W (r) 'l'(r) =  /  'J'(r) (59)

h~ i 1
—  4 - r  +  W ( . X ) - ' /  V ( jr )= 02 in clx-

(60)

If the following Anstilz is used for the wave function

(61)

th e  e q u a tio n s

( 6 2 )
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and

„
dx- ax ax

for the real and imaginary part of (60) can be found. Equation (63) can be sohed by

dS _  C
dx ~ R2

where C is a constant. With (64), Eq. (62) becomes

1 d2R 1 f d S Y  2 m[rf - W ( x ) \
R dx2 h21 dx ) h 2

=  o

With the approximation

d2R 1 / d S X  
R ^  l ^ \ d x  )

we can write

5 ( a ) % J y j ' 2 -  W(x)]dx 

and the wave function 'P(jc) becomes

'iA(x) =  R(x)c\p ( -  J -  W(x)]dx

(63)

(64)

(65)

(66)

(67)

(68)

Now we consider an energy barrier between the classical turning points j, and x2 with an 
incoming wave 'J7, and a transmitted wave 'I*,, and x2 > a,

'I', ( a  < a t , )  ~  exP ^  J \/2m( f  — W(x'))dx 

'I't(x > x2) ~  exp^- J s 2m( — W(x'))dx’̂ j
( 6 9 )

The transmission probability TC(T)  is proportional to I'v4,2 (-̂ 2 ) / ( v 1) I“:

cxp( — jf sj2m\? — W x')]dx'TC = -XP(£ /_« v/2 m[« -  W{x')\dx')

exP (i f -L  v : '" l /  -  W{x-)\dx>) 

exp^ ^ ^ \2m[W(x'~) -  '? |dx ’j (70)

This expression can be evaluated for arbitrary barriers. In Ref. [33], however, it is shown 
that the WKB approximation is only valid for

mh
dW(x

dx «  y'|2m\W(x)- '*\ \> ( 7 1 )

This inequality is fulfilled for points where the variation of the energy barier is small. The 
WKB approximation is therefore not valid in the close vicinity of the classicl turning points.

The WKB approximation is often used for tunneling simulations and las been imple
mented in device simulators [1, 35, 36]. For a linear energy barrier, the numerical calculation 
of the integral in (70) can be avoided. Still, it is necessary to distinguish between regions 
where direct or Fowler-Nordheim tunneling takes place. For the direct tmneling regime, 
Vf < q<i>0 holds (see Fig. 8 ). Therefore, the transmission coefficient

T C P ) =  e x p ^ - i  j" %/2iMJiel(q4> -  q£dieiJr -  >') d x j (72)
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evaluates t(

vTC( Y ) = exp - 4 ; "lu [(q*l> -  f Y ~ -  (q‘l>„ -  *  ) ' 1  (73)
1 3hq£die| I

with £die| being the electric field defined as KiieiAiici ar,d nh\\c\ ^e  electron mass in the
dielectric. The symbols <t> and <!>„ denote the upper and lower barrier heights as shown in
Fig. 8 . The value of <!>„ is calculated assuming a linear potential in the barrier

<l>„ =  -  Edlcl?Jld (74)

For the Fowler-Nordheim tunneling regime it holds /  > q(t>,„ and therefore with a*, defined 
by q<$ -  q i’diciA'i =  rt \  the transmission coefficient

TC ( ' ) = exp  ̂- ~  ^ v7 2»idic1(q<!> -  qEdklx -  ?) dx  ̂ (75)

evaluates to

TC( re) = exp 4^ — (q(|) - y )33 f i q E diC|
(76)

The WKB tunneling coefficient is frequently multiplied by an oscillating prefactor to repro
duce Fowlcr-Nirdheim-induced oscillations [37—41]. However, because no wave function 
interference is t.ken into account, the general validity of this method is questionable.

2.5 .2 . The Gwdlach Method
The Gundlach Method [42) provides an analytical solution of Schrodinger's equation for a 
linear energy birrier. The one-dimensional time-independent Schrodinger equation in this 
ease reads

d~ 2m
7 - t^ (a 0  +  -prP- -  W(x)]V(x) = 0 (77)dx- h-

with the linear potential energy W (x) between the points x{) and x {, W() = W(xn), and 
W, = W(xy),

W — W
W(x) = Wu + ( x -x„) - i - -------   (78)

for xQ < x < a*, Using the abbreviations

I =

(79)

hr  /  V W, -  IV,

and u(x) =  A — v//, expression (77) turns into

d2

With

i ^ ( j r ) - - « U ) ^ ( A - )  =  0  (80)
dx- l-

d2 d d u \  d du | 1 d2

Schrodinger’s euation evolves into the Airy differential equation
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The solutions of this differential equation are the Airy functions Ai[//(.v)| and Bi(i/(.v)] [43|, 
which are depicted in Fig. 9 together with their derivatives. The wave functions consist of 
linear superpositions of these Airy functions

V(x) = AAi[u{x)\  +  BBi[w(jr)] 

where the function u(x) is given as

u(x) =
i m * \  ~  A'o

w, -  w W(x)]

(83)

(84)

Assuming a constant electron mass in the dielectric. Gundlach derives an expression for the 
transmission coefficient [42]

T C  =  i rK \  TT~ y + T B) - { kt c + D

where the abbreviations

A = A i(z ())B i(z v) -  A i(z v)B i(zn) 

B = A i(z„)Bi(zv) -  A i(2 v)B i(2 „) 

C = A i(zs)Bi (zn) -  A i'(z„)Bi(z() 

D = A i(2 „)Bi’(z,) — A i'(2 1 )Bi(2 „) 

have been used, and the symbols z„, z5, and z are given by

at.r.
-  ( q $ o  - v  )

did

! q ( 0  -  «!)„)

a t d id

:q(<& -  <t>0)

2/3

and

z =
a2 q<I> -  qcfj,

did

\ ,/3 2 mdid

(85)

(86)
(87)

( 88) 

(89)

(90)

(91)

The symbols q<T> and q<t>() denote the two edges of the energy barrier as shown in Fig. 8 . The 
Gundlach method is frequently used in the literature [25,44] and implemented in device 
simulators. Numerical problems may occur for flat barriers (<£> % <!>„) due to the exponential 
increase of the Airy functions Bi and Bi' for positive arguments. In practical implementa
tions, the values of z„ and zs have been bounded to values below ^ 2 0 0  to avoid floating 
point overflow.

.1___  ____L
-20 15

Figure 9. The Airy functions Ai and Bi and their derivatives.
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2.5.3. The Transfer-Matrix Method
The use of the transfer-matrix (TM ) method for the calculation of the transmission 
coefficient of energy barriers is based on the work of Tsu and Esaki on electron tunnel
ing through one-dimensional super lattices [4]. It has been used bv numerous authors to 
describe tunneling processes in semiconductor devices [45-49]. The basic principle of the 
transfer-matrix method is the approximation of an arbitrary-shaped energy barrier by a series 
of piece-wise constant or piece-wise linear functions. Because the wave function in such 
barriers can easily be calculated, the total transfer matrix can be derived by a number of 
subsequent matrix computations. From the transfer matrix, the transmission coefficient can 
easilv be derived.

2.5.3.1. Piecewise-Constant Potential If an arbitrary potential barrier is segmented into 
N regions with constant potentials (see Fig. 8 ), the wave function in each region can be writ
ten as the sum of an incident and a reflected wave [50] 'Vj(x) = A } exp(ikjx) +  Bj exp(—ikjx)
with the wave number k j = 2m f i t  — W^/h.  The wave amplitudes A -r  Br  the carrier 
mass mp and the potential energy W■ are assumed constant for each region j. With the 
interface conditions for energy and momentum conservation

Vj(x-) = Vj+}(x+)

I <Wj(x-) l cl%+[(x+)
m, dx m /+! dx

(92)

(93)

the outgoing wave of a layer relates to the incident wave by a complex transfer matrix:

A
=  T i i (94)

The transfer matrices are of the form

/ /  k, . \  , /  k
_  l

-/ “  2

k
v l +

2 < j < N

with tfc phase factor y — exp[;A() -  2)]. The transmitted wave in Region N can then be 
calciuhted from the incident wave by subsequent multiplication of transfer matrices:

B s
= n r, „ (%)

If  it is issumed that there is no reflected wave in Region N and the amplitude of the incident 
wavce i> unity, (96) simplifies to

0
(97)

and tie transmission coefficient can be calculated from (58). The transfer-matrix method 
base^d >n constant potential segments has the obvious shortcoming that, for practical barriers, 
the aeuracy of the resulting matrix strongly depends on the chosen resolution. A more 
rigoirois approach is to use linear potential segments.
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2.5.3.2. Piecewise-Linear Potential A general barrier may consist of several segments 
with linear potential sandwiched between contact segments where the potential is constant, 
as depicted in Fig. 10. The wave functions within these four regions can be written as [confer 
(83) and (84) for a linear potential]

Xlr\(x) = A { exp(ik{x) +  exp(-ik\x)

^ 2 (a) =  /J:Ai[u: (x)] +  Z?2 Bi[w2 (A*)] 

^ (.v ) =  /l,A i[« ,(A )] +  S,Bi[w3 (x)] 

^ 4(a ) =  A4 exp(;A:4.v) +  B4exp(- ik4x) 

with u(x) from (84) and the .v-independent derivative

, clu(x)
dx

2m \  1 3  /  W2 -  H/ l ' 1 ■'
.X "> A i

(98)

(99) 

(100) 

(101)

( 102 )

The conditions for continuity of the wave functions and their derivatives yield the following 
equation system, where abbreviations for the left and right value of u(x) in a layer u ] — 
Uj(lj„2)' 11 )=  llj(Ij i)' anc* ^eir derivatives u) for 2 < j  < N — 1 have been used.

/Ii exp(f/r,/„) -f B} exp( — //c,/n) =  A2A\(u2) -f B2B'\(u2)

A |ik} exp(iA']/„) -  B\ik{ cxp( — /A,/,,) =  A2A\ ' (u2)u2 4- B2Bi,(u2)u\

A tA\(u-,) + B,B i(//,) =  A t,A\(u )̂ +  B ,B i(«3)
‘ ~ ‘ (103)

A2A\'(u2)u2 - f  B2B\ (u2)u,2 =  A}A\' (u})u\ 4- B}B\'(uy)u'}

y43A i(« 3) +  ByBi(f/3) =  A4 exp(i/2k4) -f B4 cxp(-/ /2k4)

AyA\ (u^u'i  +  B3 Bi'(Wj)M', =  A 4ik4exp(il2k4) -  B4ik4exp(—il2k4)

The transfer matrices between adjacent layers are again calculated from (94). Using the first 
two equations of (103) and the Wronskian [43]

W r{Ai(z), Bi(z)} ~  A i(z)B i'(z) -  A i'(z)B i(z) =  tt- i (104)

the matrix T_, can be simplified to

7 ,  = 7 7

exp(/Al/„ ) fBi'(//2) -  Bi(//2) ~ )  exp( - i k lI{]) ^B\ (u2) +  Bi(w2) ~ - )

exp(/A1/u) f  — Ai(u^)  +  A i(«/-,)—7 - )  exp(-zA|/(,)f-A i'(w ^ ) — A i( i/^ )~
V ‘  «*> /  V " ‘ }  /

Figure 10. An energy harrier consisting of constant and linear potential segments.
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Using the next two lines of (103) yields

7 \  =  7 7

 ̂A\ (u t )Bi'(iii,) — ^ B i( i^ )A i '(it-,) B\(u2)B\' (u ----- ^Bi(//3 )Bi'( u -,) ^
u \  ' " ~ l l \

Ai(«^)Ai'(w-») — A i(«*.)A i'(i/0  ^ A i(M ^)B i'(//i) — Bi( £/ -> )A i'(«
\  u ,  " ‘ ‘ a \

and the last two equations yield with the phase factor y = exp(d2kA)

T ,  =  -
— 1 2

^A i(» ,)T  ' +  l Bi(t/3)-y +  -^ -B i'(»3)y 1 ^i k 4 / k 4

Ai(w3)y  -  -“ -Ai'(w 3 )y  Bi(7/3)y -  -^-Bi ( i /3)yik ikA

Though being more accurate than the constant potential approach, this method is computa
tionally more expensive. This drawback, however, is offset by the fact that a lower resolution 
and thus fewer matrix multiplications are necessary to resolve an energy barrier consisting 
of linear potential segments.

Simulations using the transfer-matrix method have been reported by several authors 
[51-54]. Others compared the constant and linear potential approaches and found the con
stant potential method more feasible for device simulation [55]. The main advantage of 
the linear-potential transfer-matrix method is that for linear potential segments, the accu
racy does not depend on the resolution as it does for the constant-potential transfer-matrix 
method. However, the evaluation of the Airy functions must be carefully implemented to 
avoid overflow.

Although the transfer-matrix method for constant or linear potential segments is intu
itively easy to understand and implement, the main shortcoming of the method is that it 
becomes numerically instable for thick barriers. This has been observed by several authors 
[55-59]. The reason for the numerical problems is that during the matrix multiplications, 
exponentially growing and decaying states have to be multiplied, leading to rounding errors 
that eventually exceed the amplitude of the wave function itself for thick barriers.

These problems have been overcome by a further segmentation of the barrier into slices 
with more accurate transfer matrices [56], the use of scattering matrices instead of transfer 
matrices [57], iterative methods [58], or by simply setting the transfer matrix entries to zero 
if the decay factor YlkjXj exceeds a certain value of about 20 [55]. In the next section, a 
method will be presented that avoids this problem and allows a fast and reliable transmission 
coefficient estimation.

2 .5 .4 . The Quantum Transmitting Boundary Method
An alternative method to solve the Schrodinger equation has been proposed by Frensley 
and Einspruch [60], which is based on the tight-binding quantum transmitting boundary 
method (QTBM ) introduced by Lent [61]. It has been used to simulate electron transport in 
resonant tunneling diodes [59]. The method is based on the finite-difference approximation 
of the stationary one-dimensional Schrodinger equation (77) on an equidistant grid with an 
effective mass m . and a grid spacing A

=  - s } +  d , %  -  s y + l ¥ y + I  =  %  ( 1 0 5 )

where s} =  h2/(Ini jA2) and dj = h2/(mj&2) 4- For the evaluation of the transmission 
coefficient, it is necessary to assume open boundary/ conditions. They are introduced by 
writing the wave functions at the boundaries of the simulation domain as

%  — a \ +  

v^n =  +  b N

(106)

(1 0 7 )
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and relate them to the wave functions outside of the simulation domain by

xPi, =  cij e x p ( — ik \ A ) +  ft| e x p ( / ^ ,A ) ,

=  «N exp(-/A. VA) 4- bH cxp(;ANA)

This introduces four unknowns and two equations into the system. Setting

a N =  ^ N ^ N  + I +  £  N '^ N

(108)

(109)

( 1 1 0 ) 

( 1 1 1 )

eliminates the unknown values of bt and /?N and gives a linear system for the N +  2 complex 
values

( I
s, dx -  

—s

\  I  'I',, \

* 1

'I',

bN

-.vN

t  N /

'K

'I',N+ I

f ch \  

0  

0

0

V "N /

(112)

Setting a} = \ and aN =  0 yields the values of the wave function in the whole simula
tion domain for an incident wave from the left side as in the transfer-matrix method. The 
method is easy to implement, fast, and more robust than the transfer-matrix method. A fur
ther advantage of this method is its suitability for two- and three-dimensional problems. It 
directly yields the values of the open-boundary wave functions, which can be used to estimate 
the carrier concentration in the dielectric. Note that the QTBM is closely linked with the 
nonequilibrium Green's function formalism (NEGF): The matrix in expression (1.12) is the 
inverse of the retarded Green’s function for an open system without scattering. However, 
the values of £ and £ are complex, so the matrix admits complex eigenvalues and complex 
solving routines are necessary.

2 .5 .5 . Comparison
Figure 11 shows the transmission coefficient for the described methods for a triangular 
energy barrier (left) and a two-step nonlinear energy barrier (right). The inset shows the 
energy barrier and the values of I'J'p for an energy of 2.8 eV on a logarithmic scale. The dot
ted lines refer to the constant-potential transfer-matrix method. In the left figure, the numer
ical instability of the transfer-matrix method leads to an increasing transmission coefficient 
for energies below I cV. These numerical problems occur for both the constant-potential 
and the linear-potential approaches.

The Gundlach and analytical WKB methods deliver similar results for the triangular bar
rier. For the stacked dielectric shown in the right figure, the analytical WKB and Gundlach 
methods cannot be used. The numerical WKB, transfer-matrix, and QTB methods deliver 
similar results; however, the WKB method does not resolve oscillations in the transmission 
coefficient.

It can be concluded that for a single-layer dielectric, the analytical WKB method yields 
reasonable accuracy as compared to the other, computationally more expensive methods. 
For stacked dielectrics, however, only the numerical WKB, transfer-matrix, or QTB meth
ods can be used in the first place. Because transfer-matrix-based methods exhibit problems 
regarding numerical stability, only the QTBM and the numerical WKB methods remain. 
Because the numerical WKB method also needs a numerical integration, its advantage in 
terms of computational effort is not high enough to rule out the QTBM. Furthermore, if 
resonance effects— such as in dielectrics with quantum wells— have to be taken into account, 
the QTBM remains as the method of choice for a reliable transmission coefficient estimation.
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Energy |eV] Energy [eVJ

Figure 11. The transm ission coefficient using d ifferent m ethods for a dielectric consisting of a single layer (left) 
and for a dielectric consisting o f two layers (right) [ 140]. The shape of the energy harrier and the wave function at 
2.8 eV  is shown in the inset.

2.6 . B ound and Q u a s i-B o u n d  S ta tes

Up to now, it has been assumed that all energetic states in the substrate contribute to the 
tunneling current. However, the high doping and the high electric field in the channel leads 
to a quantum-mechanical quantization of carriers [62,63]. If it is assumed that the wave 
function does not penetrate into the gate, discrete energy levels can be identified. However, 
it cannot be assumed that electrons tunnel from these energies, as for the derivation of the 
levels, it was assumed that there is no wave function penetration into the dielectric. This 
leads to the paradox that was addressed by Magnus and Schoenmaker [64]: How can a bound 
state, which has vanishing current density, lead to tunneling current?

The answer is that it cannot. Taking a closer look at the conduction band edge of a 
MOSFET in inversion reveals that, depending on the boundary conditions, different types 
of quantized energy levels must be distinguished [65]: Bound states are formed at energies 
for which the wave function decays to zero at both sides of the dielectric. Quasi-bound states 
(QBS) have closed boundary conditions at one side and open boundary conditions at the 
other side. Free states, finally, are states that do not decay at any side of the dielectric layer. 
This is shown schematically in Fig. 12. The total tunnel current density therefore consists of

F ig u re  12. Free, bo u n d ,  a n d  q u a s i -h o u n d  s ta te s  in a typical  M O S  inversion layer
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current from the QBS and from the free states:

( = q E ^ >  4 ......... T C { t ) N { f ) d ,

/ 't |V  ' / /  * *min

where the symbol n,,(f)) denotes the two-dimensional carrier concentration [6 6 ]

mkBT
=  Hr— r— In rrh-

1 -f exp ^  F ~  *

kBr
(114)

the symbol is the valley degeneracy, and rq is the lifetime of the quasi-bound state The 
lifetime is based on Gamow’s theory of nuclear decay [67] and denotes the time constant 
with which an electron leaks through the energy barrier. Because bound and quasi-bound 
states are closely related, the computation of bound states will be described first.

2.6.1. Eigenvalues of a Triangular Energy Well
To first order the conduction band edge in a MOSFET inversion layer can be approximated 
by a linear potential (this is actually done by various authors, see Refs. [68-71]). The solution
of Schrodinger’s equation for a linear potential has been derived in Section 2.5.2 and consists
of a linear superposition of Airy functions. If  the triangular energy well is defined as

W, ~ W,
W(x) = W„ + — ------- -.v (115)

a-| -  x„

and no wave function penetration for x < =  x() is taken into account, the wave function for 
x > 0  can be written as [62]

V(x) = AA\[u(x)] (116)

*(A-0) -  AAi[u(x0)] = 0 (117)

Therefore, w(x0) must equal one of the zeros of the Airy function 2 ,:

u(x{)) = Zi < 0  (118)

With u(x) from expression (84), the energy eigenvalues are found as

/  fi- \ l/V w 'i -  ^ o \ 2 3

The first five zeros of the Airy function are -2.34, -4.09. -5.52, -6.79, and -7.94. These 
values are often used to approximate the quantized carrier concentration in the channel of 
MOS devices.

For the assumption of a triangular energy well, the wave function is approximately given 
as (see Section 2.6.1)

^  (.v) — AA\\ u (x ) ] (120)

with
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The square of the wave function is a probability, therefore the normalization can be written
as [62|

f  |'I'["(-V)lh/A' =  1
'Ml

f 1" \AAi[u(x)]\2dx =  1 
*Ai

A 2

( 122)

(123)

(124)

where an infinite barrier is assumed for x  < 0. With .vn =  0, = 0, and the electric field

W,
E =

qx
(125)

the integral becomes

Substituting

r  Ai=Ju h-
x —

q E dx = t -

A (.v)

1/3

(— T I\ 2mqE J h
1/3 j

Ar[X(x)\d\ (x)  = —
A ((I > A -

Using the expression [63]

J  A i 2( x ) d x  =  — z A \ 2( z )  +  A \ 2( z )

(126)

(127)

(128)

(129)

(130)

and A(0) =  A„, the normalization constant becomes

A =

1/2

Ai'“(A0) -  A0 Ai“(Au)
(131

This method can be used to get an estimate of the first few eigenvalues of the system or to 
find initial values for the calculation of the eigenvalues described in the next section.

2.6.2. Eigenvalues of Arbitrary Energy Wells
To calculate the eigenvalues of an arbitrary energy well, it is necessary to solve Schrodinger’s 
equation. This can be done using the method of finite differences. It is based on a discretiza
tion of the Hamiltonian on a spatial grid and given by (105), which is repeated here for 
convenience

HV; J J J

Though in Section 2.5.4, a constant value of the electron mass in the simulated region was 
used, a discretization that allows for a position-dependent carrier mass reads
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and

-
4A- \ m + m (133)

The system Hamiltonian is tridiagonal and, for a six-point example, can be written similar 
to ( 1 1 2 ) but without the entries for C and

( cU - s ; \ ( \

d 2 - . v , % _ %

d , - . v 4 % %

- . v 4 d A ) U J { % )

(134)

The values \^(l and ^  must be 0 in this case; that is, closed boundary conditions are assumed. 
The system Hamiltonian is real and symmetric, therefore all eigenvalues are real. Though this 
matrix equation looks similar to (112), there are important differences. Here it is necessary 
to solve the eigenvalue equation to get a value for and xVr In (112). any value of 'f. leads 
to a valid solution for 'I7,, and the solution is obtained by solving a complex equation system.

2.6.3. The Lifetime of Quasi-Bound States
The tunneling current from quasi-bound states in (113) depends on their quantum- 
mechanical lifetime r  : In contrast to electrons in bound states, which have an infinite 
lifetime, electrons in quasi-bound states have a nonzero probability to tunnel through the 
energy barrier, thus their lifetime is finite [72—74]. This can be seen if the time evolution of 
the states is considered [75]

n i )  =  %  ^ x p ( - f f ' )  (135)

where %  is the initial wave function and the complex eigenenergy is

/  . =  /  -  i t .  ( 1 3 6 )i rc ‘ mi V 1 )

The time-dependent probability becomes

P(t) = ' I 'H 'm / )  =  M t f e x p j =  'I'o e x p ^ - ~ j  (137)

Thus, the imaginary component of the eigenenergy "t is related to the decay time constant by

The QBS are frequently used for tunneling current calculations [76-81]. Three methods 
are established to compute the lifetime of a quasi-bound state in MOS inversion layers: 
computing the full width half-maximum (FW HM ) of the reflection coefficient resonances, 
using the quasi-classicai formula based on the Wentzel-Kramers-Brillouin method, or from 
the complex eigenvalues of the non-Hermitian Hamiltonian. These methods will be described 
in the following.
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2.6.3.1. The Reflection Coefficient Resonances A quasi-hound state forms if one of 
the system boundary conditions is open (^0) and the other one is closed (=0). The carrier 
wave function is reflected at the interface; there is no transmitted wave. Using the transfer- 
matrix method described in Section 2.5.3, the system can be described by

(139)
IK

where the wave functions are plane waves

Vj(x) = Ai exp(ikjx) +  Bj exp(- i k fx) (140)

However, no transmission coefficient can be defined for a quasi-bound state: The transmitted
wave amplitude AN must vanish to fulfill the assumption of closed boundary conditions.
Instead, a reflection coefficient can be defined, which is

B\ 7;,
RC ( ' )  = - r  = - ~ -  ( i4 i)A | T22

For free slates, which is the kind of application investigated in Section 2.5.3, the transfer 
matrix is Hermitian:

tu = t:2 (142)

7’1: =  77, (143)

It is shown in Ref. [72] that for a quasi-bound state, the transfer matrix is not Hermitian 
and its elements obey

7'h =  7|V (144)

7;, =  t:2 (145)

Therefore, the reflection coefficient RC('f) can be written as

RC(’f ) — exp [/(*■)( ̂ )] (146)

The phase (->(/.) varies only weakly at energies away from the resonance energy of the QBS, 
whereas near the QBS the phase changes strongly. Near the complex energy levels * ̂  the 
derivative of the phase factor 8 ( *  ) follows a Lorentzian distribution

d<r) 2’f
—  =  ------------- -̂-------- (147)(\ t  ( /  -  £ ) 2 +  /'r' re t 1 mi

where 2^im is the FW HM value of cl(~)/d'f. Thus, by calculating the phase of the reflection 
coefficient as a function of energy, the lifetimes can be determined. This method has been 
studied intensely by Cassan et al. [6 6 , 82]. They reported numerical difficulties in the cal
culation of the value of di~)/df, which is prone to numerical noise. Similar problems have 
been reported by other groups [83].

An alternative approach has been presented by Cierc et al., who noted that the lifetimes 
can also be extracted directly from the transfer matrix [49]. For a free state, /?N =  0 in (139), 
and the transmission coefficient becomes

TC - A , \T

For a quasi-bound state, As = 0 . Therefore.

/ 1 n ’ 1 ( 1 4 8 )

A | =  Ti:Bs (14<J)
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but, because Tu = 7,*2, the value of |7"n |- 2  may be evaluated as well— even if it camot be 
interpreted as a transmission coefficient. The lifetime of the QBS is proportional o the 
resonance peak of the Lorentzian around the real component of the eigenenergy r£re

<l50>4T4

but no derivative must be calculated this time. As an example of this method, the le:t part 
of Fig. 13 shows the shape of the conduction band edge of a MOS structure in the suburate, 
dielectric, and polysilicon gate. In the substrate, a triangular quantum well forms. Consider
ing closed boundaries, eigenvalues and wave functions can be calculated. The corresponding 
wave functions are shown in the figure, where closed boundary conditions have been used 
at the boundaries of the simulation domain. Note the wave function penetration into the 
classically forbidden region of the dielectric layer. The eigenvalues of the quasi-bound states 
are located at 0.27, 0.47, 0.63, 0.76, 0.86, and 0.95 eV. The same information can be found 
when the value of |7", , | “ 2 is investigated, as shown in right part of Fig. 13: Every quasi-bound 
state in the inversion layer manifests as a peak in the value of |r M|“2. The width of each 
peak is directly related to its lifetime.

2.6.3.2. The Quasi-Classical Formula The calculation of the lifetimes using the 
approaches shown so far is cumbersome and error-prone, as a precise value for the FW HM  
in regions where different QBS overlap is difficult to obtain. As an approximation, the life
time of a QBS can be computed from the quasi-classical formula [83]

1 / 2mjr = —- ----  / / ---------- '— - d x  (151)
11 T C  ( / , ) ! »  \  < .  ( v )

where is the resonance energy of the respective bound state and x, the classical turning 
point for this energy. The transmission coefficient T C ( f ,) can be calculated by the transfer- 
matrix method or any other method that solves Schrodinger’s equation.

2.G.3.3. The Eigenvalues of the Non-Hermitian Hamiltonian For open-bmindary con
ditions, the system is described by a Hamiltonian that is not Hcrmitian and admits complex 
eigenvalues. The most straightforward way to calculate the lifetimes is to find directly the 
complex eigenvalues of the system Hamiltonian. This, however, is not easily possible because 
the eigenvalue problem is nonlinear [84]: The values of the matrix elements (  and £ depend 
on the eigenvalue ?•".

Position |nm |

Figure 13. Wave function of quasi-bound states. Nk 
regions (left). T he respective value o f ;7',,; : as a fun 
erung around the poles is d early  visible.

E n e rg y  j : V |

te the wave function penetration in i' eassieally for'b idden 
.lion  of energy is shown in the right pot. The energy broad-
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Sophisicated methods have been developed to allow an easy solution of this matrix so 
that the Ifetimes can be calculated [85-88], First, the closed-boundary Hamiltonian is con
structed, ind the eigenvalues are calculated. In the one-dimensional case, the matrix is tridi
agonal. I is shown in Ref. [89] that in this case, the LU algorithm is advantageous for the 
calculation of eigenvalues compared to the commonly used QR algorithm, which transforms 
the matrK into an upper Hessenbcrg matrix [90].

Then, he eigenvalues are filtered so that only the values remain that are located in the 
considered energy range. These values are then used as initial values for a Newton search 
around tie closed-boundary eigenvalue [8 6 , 8 8 ]. This is motivated by the fact that for 
being an eigenvalue of H_. the determinant

m(t , )  =  det(W -  ? , / )  = 0  (152)

must be iero. To find the roots of this equation, a Newton search around the closed-boundary 
eigenvalues is used

m ( ' < c j  ■)

,,53)

where m(T)  denotes the derivative of the determinant

d m ( f )
" i ( r ) =  — pr 1  ( 1 5 4 )a f.

For a tridiagonal matrix, it is possible to find an analytical expression for fri( t  ) [91, 92]. For 
general situations, however, the derivative can only be found numerically by

' n P l + V , 2 ) - n y , - * r / 2 )  ^

This has the advantage that it is not limited to one-dimensional problems but can be applied 
to any shape of the Hamiltonian.

The complex eigenvalues have been used to calculate the lifetimes of the structure shown 
in the left part of Fig. 13. The complex energies and lifetimes found are shown in Table 2 
and agree with the values found using the method based on the evaluation of the reflection- 
coefficient.

2 .7 . C o m p a c t T u n n e lin g  M o d e ls

The above-presented models for the calculation of tunneling currents require a considerable 
computational effort. However, for practical device simulation, it is desirable to use compact 
models that do not require large computational resources. That may be necessary for a
quick estimation of the dielectric thickness from IV  data or to predict the impact of gate
leakage on the performance of CMOS circuits [93-98]. The most frequently used model to 
describe tunneling is the Fowler-Nordheim formula [99]. The Tsu-Esaki expression (12) for 
the tunnel current density reads

,H:IY /•*»-

(156)J =
4 7 rqmL.n- r max

TC(f  x) d f
in

,  f u \
A)

Table 2. Eigenvalues found by using a reson:-in ce-fin ding algo:rithm
based on the  determ i nant o f the open -boundai y H am iltonian.

(eV) / .•> mi (eV) 0

1 0.2695 1.503 x 10 4.376 x Id4
■> 0.4695 1.830 x 10 3.594 x 10-
3 0.6256 5.2S5 \  10 '• 1.244 x 10 1
4 0.7549 2.794 X 10 " 2.354 x 10 4
5 0.N629 4.231 X 10 s 1.555 x Ift"
ft 0.9503 2.005 x  10 ' 3.28 J x 10 11
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where the total energy is split into a longitudinal and a transversal energy

/  =  /  +  /
V “  p (157)

The goal is to find a simple approximation of (156) that avoids numerical integration. As 
a first approximation, T —► 0 is assumed [1]. This allows replacement of the Fermi func
tion f ( x )  by the step function

-  'V : )

1 for 'f < t  v ,

0  for 7 > ' /F ,

1 for < "£ F 2

0  for /  > >F 2

(158)

Without loss of generality, it can be assumed that 2 (sec Fig. 14). The innermost
integral can then be evaluated analytically for three distinct regions

/  ! / V  -  >  p. I ) -  / ( ■ '  -  f  F-.. -  * F . 2  f o r  j■M)
/  , for f (159)

1 . 1

This leads to the following expression for the current density:

47rqmCff 'J = IS f  , ' i T C { r x ) ( T. F l ^ r F_i ) d ' ^ , + f ' ' '  7 ' C ( * , ) ( / , , , - ?  ,.)</* (160)

The left integral represents tunneling current from electron states that are low in energy and 
face a high energy barrier. Hence, as a second approximation, the left integral is neglected. 
Still, it is necessary to insert an expression for the transmission coefficient in the right inte
gral. For a single-layer dielectric, two shapes are possible: triangular and trapezoidal. First, 
the formula will be derived assuming a triangular shape.

Figure 14. Schem atic o f an energy harrie r in the R n \le r-N o rd h e in i tunneling (iolt) and direct lunnelinL’ (right) 
regime.
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2.7.1. Original Fowler-Nordheim Formula
The original Fowler-Nordheim formula assumes a triangular shape of the energy barrier. 
This is motivated bv the fact that only tunneling at strong electric fields was studied. The 
WKB approximation (70) for the transmission coefficient reads

7 'C (/A) =  exp,pH.C
The classical turning point .v, is (sec the left part of Fig. 14)

* v. i +  -  (CxXi =
q EL i i d

and the dielectric conduction band edge for a triangular barrier

7 e(-0 =  f i . i + q * i  -q^dici-v

(162)

(163)

where the electric field in the dielectric EM  is caused by the different Fermi levels and the 
work function difference A4>w:

w
q îid

(164)

The third approximation is to assume equal materials for both electrodes, so that A<I\V =  0. 
The WKB-based transmission coefficient can then be applied and yields

=  exp 

=  exp 

=  exp

v/2 mdicl
 ̂ i-\ I H - q * i  - q ^ d i c i x - ' t xdx

m
— (7 i.i + q ^ i -q^ii,i-v -  ’f s). .VK|/-ViC,

v/2 I V!

, -qo>, +  / , r  :
l 3 / iq  £T(ljel

m.

I 3^q£did

Using this expression in (160). the current density becomes

(165)

(166)

(167)

(168)

./ = exp 4 V / 2 ' » d i c l
3ftq£tll,,

[q<T>, -  {> v -  > F. , )]3 ’ ( \W / ' \

This integral cannot be solved analytically. Hence, the fourth approximation is to expand 
the square root into a first-order Taylor series around qct>,:

[qfc, -  ( f x -  <*, ) | : ' =  (q ‘l>, )3'- +  - ( > A -  > , . ,  ) (q <I>1) 

Inserting this expression into (169) and setting e =  V v t  , yields

4,/ i n  i

(170)

,  =  s a fe  exp V  “  did

did
(q<I>,r exp

2 \ /2 /7 7 dicl

hql: ( q  (1} i ) -e
did

ede

With

j e exp(Ae)de = — exp( Ae)( Ae -  1)

(171)

(172)
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and

fl =  - 4 ^ 1"d (q A =  Y 2IWdic' (q(|> , ) ^  (173)
3/lq/idjc| nqi:dje|

the current density becomes

7 =  477 ( ^ — 11 exp(c/) f  exp(\e)ede (174)
•* i

= ~ ^  e X P ( ^ ) ^ 2  C X p [ A (  *f-pf 2 —  ̂F. l ) ] [ ^ ( ^ F .  2  ̂F. I ) V] ( 175)

The fifth assumption is now that ' i ,  i »  i :• leading to

,  =  l ^ c x p W ' (l76)
//- A-

j  = ^  E- e j  (177)
8 7 T/7iditf|/iq4 >| tlK V 3Rq£dicl /

which is the equation commonly known as the Fowler-Nordheim formula [100]. Note that 
there is a difference between the effective electron mass in the electrode (mctl ) and the 
effective electron mass in the dielectric (w l)iC|).

2 .7 .2 . Correction for Direct Tunneling
The equation derived above is only valid for triangular barriers; that is, the case of high 
applied voltages. In Ref. [101], Schuegraf proposed a correction to the Fowler-Nordheim 
formula to account for tunneling in the direct tunneling regime. In this case, the transmission 
coefficient is

TC( %) =  exp ( - ^  l{) /  (>78)

where fdjc, is the dielectric thickness. The conduction band edge is again approximated by a 
linear shape

*,•(-*■) =  7 f .  i +  q^i -  q^i.d-v ( 179)

The band edges q<£> and q<t>() are given by (see the right part of Fig. 14)

qcj> -  7  |:: , +  qct> , ( 180)

q*n - i + q‘i)i -qfjid'did (>81)

As for the triangular energy barrier, it is assumed that the electrodes have equal work 
functions: A<T>W =  0. Using these expressions, the transmission coefficient becomes

7 T ( / A) =  exp(- 2  \ /qct) -  q£tlk.,.v~- /  , </.v ) (182)

(183)exp
in ■1 V  “  tllL’l / -J. f- ’ c . S 1 I 1 ilU'l4 — — - ( q ‘l> -  q r . l l jd .v - \  )

. -^q^ id

•xp -4  ----- - - - 1 (q<!> -  V J  - -  (q .̂p -  . ) ’ ~ ] (184)
I i ,
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The exponent can be approximated using a first-order Taylor series expansion around qcJ>, 
and qcl>, -  q / W dl,|. respectively:

(q4» -  '* ,) ' 2 =  ( ,  , +  qcl>: -  (185)

[q‘l> ( %  s >f  ' (186)

~ ( q (l>!)3/: +  ^ ('f , -  ^F .i)(q ^ i),/: (187)

(q^, -  f , f  2 =  (* v, , + q(l’i -  q£diei'dici -  Y x V '2 (188)

=  [(q^i -  q W d ,e i) -  ( r/ v -  7  k. i ) f  2 ( i 89)

=  (q<t>, -  q £ dici'dici) 3/2 +  ~  '"| . X q ' l ’ -  q£dici^d,c i) l / :  ( 19° )

With the temporary variable r)

17 =  ( q  4> -  rzx )X/2 -  ( q  %  -  '#x ) 3/2

~ —(q^ i— ti^dicirdici)'; "+ (ci^)i )3/" “ ) ' " ~-qĉ i -q^diei^iiei)1 “J O^i)

the tunnel current density becomes

4 7 rqmcll
J = I '/T ( V )  </•=., (192)h . ,/!3

4 " l ^ «  (193,
V 3/iq£di,, )h

With the abbreviations

4 7 rqm„,
a =

h>
(194)

A / o

b = - -^ ^ [ (q * ,)^  -  M ’, - q£«i,-if.HCi)3,Jl (195)
3/iq£did

m ,
c  =  ~ ~ - P ~ [ ( q ^ , ) l/2 ~  (qcD, -  q / W d . d ) ^ ]  ( 1 % )

^q ^d ie l

the tunnel current density can be written as

./ • a exp(fc) / cxp[<( f -  i )|(-‘ , i -  f ,)d-‘ (197)
1

With € — rf  x -   ̂(. , this yields

J — -aexp(b) f exp(ce)ecle (198)
 ̂i. _— i-. i

Using (172), this integral becomes

j  =  « e x £ P ) { [  „ cxp[^ . r , F i _  rS. , )] [ !  +  r ( / F , -  / „ , ) ] }  (199)
c-

which, for simplifies to
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o r ,  in s e r t i n g  th e  e x p r e s s io n s  f o r  a. b. a n d  c

J = ______________q- /y?ctr______________ Ei
87r/,mdicl[(qctl) ' / - - ( q c t 1 - q K | ic,) l'';!]- dicl

x exp [(q(I)|)3/: -  (qfr, -qKhd)3']3ftq£diL.|
(2 0 1 )

which is the equation used in Refs. [101, 102]. In some publications, the equation is rewrtten 
to make it more similar to the Fowler-Nordheim formula:

J =
q- mct

cxp ( -
4v/ 2mdicl(qcf)|) ^ 2

8TrmdMhq®\B\

with the additional correction terms B: given as

3hqEdie I

(20:2 )

B, =

q̂ diclulicl
q<I>,

Cl̂ dicl̂ dicl

i --i

(203)
_  /  j d i d  ̂ dicl \

V q ^ i  /

For a triangular barrier, the correction factors become B{ =  B2 =  1, and the expression 
simplifies to (177). Note that using these equations, the minimum tunneling current occu rs 
for Edk| =  0 V/m, which, for a work function difference ^0, does not occur at the mininu m 
applied bias.

2 .8 . T ra p -A s s is te d  Tu n n e lin g

Besides direct or Fowler-Nordheim tunneling, which are one-step tunneling processes, 
defects in the dielectric layer give rise to tunneling processes based on two or more s:eps. 
This tunneling component is mainly observed after writing-erasing cycles in electrically 
erasable programmable read-only-mcmories (EEPROMs). It is therefore assumed that traps 
arise in the dielectric layer due to the repeated high-voltage stress. The increased tunneling 
current at low bias is called stress-induced leakage current (SILC) and is mainly respon
sible for the degradation of the retention time of nonvolatile memory devices [103]. It is 
now generally accepted that it is caused by inelastic trap-assisted tunnel transitions and that 
the traps are created by the electric high-field stress during the writing and erasing pro
cesses [103-108]. SILC has widely been studied and modeled in MOS capacitors [109-111] 
and EEPROM devices [112].

This section gives a brief overview of trap-assisted tunneling models, describes two fre
quently encountered models (Chang’s and Iclmini’s model), and elaborates on a sophisti
cated model originally proposed by Jimenez et al. The adaption of this model to allow its 
inclusion in device simulators is described in some detail.

2.8.1. Model Overview
Numerous models have been presented to describe trap-assisted tunneling in the gate dielec
tric of MOS devices. These models usually share the equation for the current density, which 
is given by an integration along the gate dielectric [l 13]:

r1 ilid Nt(x )
C(.V ) +  TC( X )

(I. (204)

In this expression, N-T denotes the trap concentration, and rc and rc denote the capture and 
emission times of the considered trap. Because both processes—capture and emission— must 
happen in sequence, they both determine the current density. However, differences exist 
in how the capture and emission times are calculated. Some models use constant capture 
and emission cross sections to calculate the respective times. Another important point is the
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distribution in space, where the traps arc usually assumed to follow a Gaussian distribution. 
The distribution in energy is also crucial. Commonly, it is either assumed that traps have 
a Gaussian distribution in energy or that they are located at a certain energy level below 
the dielectric conduction band. The assumption of a discrete energy level for specific trap 
types is backed by spectroscopic analyses [114]. Additionally, the tunneling process can either 
be elastic, where the energy of the tunneling electron is conserved, or inelastic, where the 
energy of the tunneling electron changes. Reccnt studies and experiments have shown strong 
evidence for the tunneling process being inelastic [115-117].

2.8.1.1. Chang’s  Model A frequently used model is the generalized trap-assisted tunnel
ing model presented by Chang et al. [ 118, 119]. The current density reads

where A denotes a fitting constant, NT(x) the spatial trap concentration, and P{ and P2 the 
transmission coefficients of electrons captured and emitted by traps. Using rc ~  P\/Pi and 
rc ^ P2/P\, this expression reduces to (204). A  similar model was used by Ghetti et al. [76]

who assumed a constant capture cross section CT for the traps. The symbols ./in and 7oul 
denote the capture and emission currents. Essentially the same formula was used by other 
authors as well [116, 1 2 0 ].

2.8.1.2. lelmini’s  Model Considerable research has been done by Ielmini et al. [12l—l24], 
who describe inelastic TAT and also take hopping conduction into account [125, 126]. They 
derive the trap-assisted current by an integration along the dielectric thickness and energy

where ./ denotes the net current flowing through the dielectric, given as the difference 
between capture and emission currents through either side of the dielectric

where f T is the trap occupancy, Tt the trap energy, Wc the capture rate, and f  the energy 
distribution function at the left interface. The symbol Nj denotes the trap concentration in 
space and energy. Ielmini further develops the model to include transient effects, and notes 
that in this case, the net difference between current from the left and right interfaces equals 
the change in the trap occupancy multiplied by the trap charge

(205)

(206)

(207)

(208)

(Jd - J Kt) + (Ja - J et) = qNT (̂it
(209)

an observation that will be revisited in Section 2.8 .2.4. The model assumes a constant capture 
cross section.
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2.8.1.3. Compact Trap-Assisted Tunneling Models For application in circuit simulators 
or to catch a quick glimpse at the effects of trap-assisted tunneling, compact models are 
required. A  frequently used expression is based on the work of Ricco et al. [109]. They 
describe the trapping- and detrapping processes by

yTAT =  JC\TCl(Nj -  nT) = qvnTTC2 (210)

where J is the supply current density at the interface, CT the capture cross section, TC, 
and TC2 the transmission coefficients from the left and right sides of the dielectric to the 
trap, nT the concentration of trapped electrons that is smaller than or equal to the trap 
concentration A/T, and v their escape frequency. The highest contribution comes from traps 
that have TCX ~  TC2\ therefore, the trap-assisted tunnel current becomes

/ t a t  -  q vnTTC =  q v C T N  —  TC (211)JCT +  q v

A modified version of this expression was used by Ghetti et al. [ I l l ,  127]. Other more or 
less empirical trap-assisted tunneling models based on SILC measurements are presented in 
Ref. [128]. These comprise hopping conduction

. / - C l t „ e x  p ( - 3 i )  (2 1 2 ,

where <J>a is an activation potential, and the frequently applied Poole-Frenkcl tunneling 
formula [128-134]. This model describes the emission of trapped electrons and reads

where r is the refractive index of the dielectric, f Y is the difference between the conduction 
band in the dielectric and the trap energy, and the coefficient A depends on the trap con
centration. The main motivation to use this expression is that the trap-assisted gate current 
density was found to be a linear function of the square root of the dielectric field, in contrast 
to the Fowler-Nordheim tunneling current, which is a linear function of the dielectric field. 
Note, however, that no trapping-detrapping considerations enter this equation.

2.8.2. The Model of Jimenez et al.
A model for trap-assisted inelastic tunneling has been developed by Jimenez et al. [135]. 
Their model is based on the theory of nonradiative capture and emission of electrons by 
multiphonon processes [136]. The main difference to the models described before is that it 
does not require constant capture cross sections as fitting parameters but calculates them 
for each trap based on the trap energy level and the shape of the energy barrier.

2.8.2.1. Capture and Emission Probabilities The tunneling model is based on a two- 
step tunneling process via traps in the dielectric that incorporates energy loss by phonon 
emission [135]. Figure 15 shows the basic two-step process of an electron tunneling from 
a region with higher Fermi energy (the cathode) to a region with lower Fermi energy 
(the anode). To avoid integration in energy, the initial electron energy is assumed to be 
located at the average kinetic energy, which, for the parabolic dispersion relation ( 1 ) and 
the Maxwellian distribution (20), is

( / )  i.; / / ( /  )g( f  )d f  ./,? '  ■ : e x p ( - ~ )<// 3

( 1 > / ( '  )g(v ) d't .C  f ' - cxp( — ~J. )il-' 2
k„7’ (214

During the capture process ( M/.). the difference in total energy between the initial and final 
slate is released bv means of phonon emission (hco). An electron captured bv a trap can 
then be emitted into the anode ( W..).
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A node

Dielectric

Cathode

Figure 15. The trap-assisted tunneling process [135].

The rate with which an electron with energy is captured by a trap located at position x
and energy '£! is given by [137]

77
w c(x/ f i ' / f i )  =  t ^ \ K \ 2S[  1 - t t  M f)e x ph-(o S

(215)

Here, S is the Huang-Rhys factor, which characterizes the electron-phonon interac
tion [138]; luo is the energy of the phonons involved in the transitions, A'** =  - — and 
P ~  Aff : / h ( o  is the number of phonons emitted due to this energy difference. In the simula
tions, the value of Shco  was used as fitting parameter.

The population of phonons / P is given by the Bose-Einstein statistics

./ p — exp
h(o -  1

The function / P(£) is the modified Bessel function of order P, with

(216)

(217)

The term \VC\2 in (215) denotes the transition matrix element, which is calculated by an 
integration over the trap cube [136]

\Ve\2 = 5 7 TS{hw)2- ^ — -  r " \ V ( x ) \ 2dx
^ f n d\c\ T  -v(»—-vT

In this expression, x-y denotes the side length of the trap cube, estimated as

h
At =

477

T
1/3

(218)

(219)

The symbol VT denotes the energy difference between the trap energy and the barrier con
duction band edge as shown in Fig. 15. For the emission of electrons from the trap to the 
anode, elastic tunneling is assumed. Hence, the probability of emission to the anode is equal 
to the probability of capture from the anode, which is calculated from (215).
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The numerical evaluation of (218) requires the calculation of the wave functions in the 
dielectric layer, which, however, degrades the computational efficiency of a multipurpose 
device simulator where simulation speed is crucial. To avoid this, the barriers have been 
transformed to take advantage of the well-known solutions for constant potentials. Two cases 
must be distinguished; namely, the case of a trapezoidal barrier and the case of a triangular 
barrier. The two cases are depicted in Fig. 16.

For capture processes and for emission processes where the electron faces a trapezoidal 
barrier, the barrier is transformed into a step function of height equal to the potential at the 
middle point between a* =  0 and a* =  x{) in the left part of Fig. 16), a 0 being the position 
of the trap inside the dielectric. Assuming

xV(x < 0) =  A sin(A:,A* +  a) 

xV(x > 0) =  B cxp(—k 2x)

the wave function at the position of the trap becomes

niu.,1 k

(220)

arctan
k,

c \p ( - k :x) (221)

where m&K{ and mc(i are the electron masses in the dielectric and the neighboring electrode, 
respectively. The wave numbers are given by

k i =  — v/2 wetr(^ -  ?c)
(222)

For emission processes in which the barrier is triangular (the electron energy is above the 
dielectric conduction band al some point between the trap and the anode), two regions in the 
dielectric must be distinguished. The first one, between the interface at x =  0 and the point 
a =  afn (see the right part of Fig. 16) has the height ^ FN. The height of the approximated
barrier in the other region is then the value of the barrier, V?.m, in the middle point between
A' =  a*fn and the position of the trap x =  a*0. With this new barrier and the assumptions for 
the wave functions in the three regions

xV(x < 0) =  A sin(A',A* +  (223)

^ (0  < a* < a'fn) =  Bs'\n(k2x +  a2) (224)

'I'(a-fn < A- < x„) =  C exp[~k,(x -  .vKN)] (225)

Kigure i6. T he iipproximare shape o f the harrie r in the d*reei ( left) and Fow ler-N ordheim  regim e ( r ighl)
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the wave function a I the position of the trap becomes

sin a
sin(A:.vI N 4- ct: ) exp[—A ,(.v -  .v,,N)] (226)' I ' ( a )  =  A

sin as

with the svmbols

os =  arctan

a, =  arctai

The corresponding wave numbers are given as

— j y / 2nh\k\(* ~ * FN) h
(228)

Using expression (221) and (226), the integration in (218) can be performed analytically, 
which allows the capture and emission probabilities to be calculated without the need for 
numerical integration.

2.8.2.2. Capture and Emission Times Once the capture and emission probabilities have 
been obtained, the corresponding times can be calculated. The inverse of the capture time 
is given by [135, 139]

where &.(?■) denotes the two-dimensional density of states and /’. ( / )  the electron energy 
distribution function in the cathode. For the above-stated assumption that all electrons are 
captured from the same energy level ?c -1- 3/2kn7’ in the cathode, this expression can be 
approximated by

where nc is the sheet carrier concentration in the cathode, which is determined bv the 
transport model used in the device simulator. The inverse of the emission time is [135]

Assuming / a(^) ^  0 in the anode and elastic tunneling for the emission process (/■ =  ?'), 
the emission time becomes

where the energy loss is restricted to values less than h(o. To check the validity of the 
approximations for the wave functions, the resulting capture and emission times have been 
compared to results using a Schrodinger-Poisson solver for a MOS capacitor with the param
eters * r = 2.8 eV, Shco = 1. 6  eV, and a trap concentration of N-v = 10|y cm As can be seen 
in Fig. 17, the analytical and the numerical results are very close. Electrons are captured 
from the right and emitted to the left in this figure. Thus, for traps near the right side of 
the barrier, the capture time is very low and the emission time is very high. The oscillations 
in the emission time for high bias are due to the fact that in this regime, the energy barrier 
has a triangular shape, which gives rise to an oscillating wave function, in contrast to the 
decaying wave function for a trapezoidal barrier.

(229)

(230)

(231)

T .  1 ( A )  % We{x, 'f')ga(?' )hw
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x (nm

Figure 17. C om parison of the analytic solution wiih a num erical solution for the capture  and emission lim es at a 
gate bias o f 3 V (left) and 7 V (right) [ 1711.

2.8.2.3. Steady-State Current The total steady-state tunneling current is derived as the 
sum of the trap-assisted tunneling current (204) and the direct tunneling current computed 
from the Tsu-Esaki formula (13)

J  — -A AT ^Tsu-Essiki (233)

Figure 18 shows the dependence of the gate current density on the model parameters / T 
(trap energy level) and Shco for a fixed phonon energy of hco = 10 meV in an MOS capacitor. 
For a low trap energy level, traps are located near the conduction band edge in the dielectric, 
and direct tunneling prevails. With increasing trap energy level, the trap-assisted component 
becomes stronger and exceeds the direct tunneling current for low bias. The current density 
shows a peak at low bias, which is due to the alignment of the trap energy level with the 
cathode conduction band edge. The Huang-Rhys factor has only a minor influence on the 
results, as shown in the right part of Fig. 18.

2.Q.2A. Transient Current Models of trap-assisted transitions are commonly employed 
to calculate steady-state SILC in MOS capacitors, whereas transient SILC has hardly been 
studied [110, 121). However, transient tunneling current becomes important at high switching 
speed where the transients of the trap charging and discharging processes may degrade

Cl

<

(ju te  b ias  [V G iile  b ia s  | V '

Figure 18. D ependence of the tunneling current on ihe trap  energy level (left) and on the H uang-R hys factor for 
a fixed phonon energy o f 10 m eV (right) j 171 j.
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signal integrity. For the calculation of transient SILC, it is necessary to calculate capture and 
emission times at each time step. Considering a spatial trap distribution NT(x) across the 
dielectric layer, the rate equation for the concentration of occupied traps at position a reads

Nt(x )~ J , ~  =  Nj{x)[l ~ fj(X' {) ~ t) (234)

where / T(.v, t) is the trap occupancy function, and rc(x, t) and re(x, t) are the inverse capture
and emission times of electrons by a trap placed at position x. In the static case, capture and 
emission processes are in equilibrium and d f v(x, t)/dt =  0. In the transient case, however, 
capture and emission times include transitions from the cathode and the anode

V V ’ 0  =  Ta, 0  +  T-'Cr, t)
TL: ' ( x ,  t) = T - ' ( x ,  t) +  r-'(.v , t)

where rca and rcc are the capture times to the anode and to the cathode and rca and rcc
the corresponding emission times. To calculate the local trap occupancy, the differential
equation (234) must be solved. If the capture and emission times rcr 1 and r " 1 are constant 
over time, like in a discharging process with a constant potential distribution, the solution 
of (234) can be given in a closed form

. / 1 ( '  • 0  =  /r(-r> °) exp ( ------ j— t t )  +  ^7 —"V Tm( x , t ) J  T , ( X ,
1 — exp

Tni(A', t)
(236)

w ith  t ~ 1 =  t ~ 1 +  r " 1.
A more general approach is to look at the change of the trap distribution at discrete time 

steps. Integration of (234) in time between /, and ti+] and changing to discrete time steps 
yields

f v ( x ,  ti) -  f T ( x ,  I, ,) »  rc:'(.v, /,-_,)At ,  -  Tm' i x ,  t, ,)/A/,

where the abbreviations Af, =  /, — /, , and j] = [fj(x,ij) +  f j (x,  //_ | ) ] / 2  have been used. 
Thus, it is possible to write the trap distribution over time in the following recursive manner:

/ , (*, / , - )  =  Ai + Bi f \(xj ,_\)  (237)

where the symbols Ar Br and C; are calculated from

T ~ ] ( X ,  t i ) M i
A; =

B, =  i — §  (238)
1 +  C;

=  T^(X,tl)^tl

Once the time-dependent occupancy function in the dielectric is known, the tunnel current 
through each of the interfaces is

■ A - A T .A n n d J O  =  q [ J A M -0{t" '(j:, t) -  f T ( x ,  i)[t-J(x, t) +  t;J ( x , t)]\d x  (239) J{)

•̂ TAT.c;i.h,uic(0 =  q /  AVMj r - 'Cv ,  /) -  f T{x. t)[T~'(x, t) + Tt;'(jf, t)]}dx (240)
•'O

2.9 . M o d e l C o m p a ris o n

This section outlined a number of tunneling models useful for the simulation of tunneling in 
semiconductor devices. For practical device simulation, however, it is often not clear which 
model to select for the application at hand. Therefore, Table 3 summarizes the main model
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features and also gives the approximate computational effort. The following points can he 
concluded [140]:

• Especially the Fowler-Nordheim, Schuegraf, and Frenkel-Poole models have a very low 
computational effort because they are compact models. However, they do not correctly 
reproduce the device physics and can only be used after careful calibration.

• The Tsu-Esaki formula with the analytical WKB or Gundlach method for the trans
mission coefficient combines moderate computational effort with reasonable accuracy. 
This approach can be used for the simulation of tunneling in devices with single-layer 
dielectrics.

• The inelastic TAT model allows simulation of all effects related with traps in the dielec
tric and, due to the analytical calculation of the overlap integral, poses only moder
ate computational effort. This model can be used for the simulation of leakage in 
EEPROMs or trap-rich dielectric devices (see Section 3.2.2.1).

• The Tsu-Esaki model with the numerical WKB, transfer-matrix, or QTB method to 
calculate the transmission coefficient represents the most accurate method usable for 
the simulation of tunneling through dielectric stacks, however, with high computational 
effort. The transfer-matrix method should be used with care due to its poor numerical 
stability.

3 . A P P L IC A T IO N S

Gate leakage is one of the most important issues for contemporary complementary metal- 
oxide semiconductor (CMOS) devices. Based on the tunneling models outlined so far, two 
different application areas will be investigated in this section. First, gate leakage in contem
porary MOS transistors will be studied and compared to measurements. Emphasis is put on 
the distinction between the different sources of the tunneling current; namely, the region 
below the gate and the region near the drain and source extensions.

Device engineers commonly rely on gate leakage measurements of turned-off devices 
to evaluate the power consumption of CMOS circuits. This may lead to erroneous results 
because for turned-on devices, hot-carrier tunneling prevails that may exceed the turned-off 
tunneling current. Models that are based on simplified assumptions of the carrier energy 
distribution function fail to predict gate leakage in such cases.

Advanced CMOS devices will use alternative dielectric materials as gate dielectrics. How
ever, a pronounced trade-off between the height of the energy barrier and the dielectric 
permittivity exists. This makes the use of optimization necessary to find the optimum layer 
composition. Furthermore, alternative dielectrics arc not ideal insulators but contain defects 
that give rise to trap-assisted tunneling. As a state-of-the-art example, tunneling in Z r 0 2- 
based MOS capacitors will be studied and compared to measurements.

As a second important application area, nonvolatile memories will be studied. Unlike MOS 
transistors, nonvolatile memory devices represent an application where tunneling is not a 
spurious effect, but crucial for the device functionality. After a short review of nonvolatile 
memory technology, the tunneling current of conventional EEPROMs and advanced struc
tures will be studied. In contrast to these devices, SONOS (silicon-oxide-nitride-oxide-silicon) 
EEPROM devices store the charge not on an isolated contact, but in a layer of trap-rich 
dielectric.

Recent efforts to reduce the charging time of nonvolatile memory devices resulted in 
multibarrier tunneling devices and EEPROMs with asymmetrically layered tunnel dielectrics. 
The operation of these devices will briefly be described at the end of this chapter. Ail 
simulations are performed using the device simulator Minimos-NT [141].

3 .1 . T u n n e lin g  in M O S  T ra n s is to rs

The gate leakage current in contemporary MOS transistors poses a major problem for further 
device scaling. This section describes simulation results of MOS transistors, outlines the effect 
of various device parameters, shows how to account for hot-carrier tunneling in turned-on 
devices, and elaborates on the use of alternative dielectric materials to replace SiO: as a gate 
dielectric. First, however, the tunneling paths in MOS transistor structures will be reviewed.
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3 . 1.1. Tunneling Paths in MOS Transistors
Tunneling in an MOS transistor, as shown in the left part of Fig. 19, basically can be sep
arated into a path between the gate and the channel and a path between the gate and the 
source and drain extension areas [142]. Tunneling in the source and drain extension areas 
can exceed tunneling in the channel by orders of magnitude. This is related to two effects: 
First, instead of n-p or p-n tunneling, n-n or p-p tunneling prevails. Second, the potential 
difference and thus the bending of the energy barrier is high. This increased tunneling cur
rent in the source and drain extension areas can be a serious problem if measurements are 
performed on long-channel MOSFETs to characterize their short-channel pendants, because 
the edge tunneling currents exceed the channel tunneling current by orders of magnitude. 
Furthermore, there is a fundamental difference between tunneling in MOS transistors and 
MOS capacitors [1, 143]. In contrast to MOS transistors, MOS capacitors, which are biased 
in strong inversion, cannot supply the amount of carriers as predicted by the tunneling model. 
This effect is termed substrate-limited tunneling, because the tunneling current is limited by 
the generation rate in the substrate. In the channel of an inverted MOS transistor, on the 
other hand, carriers can always be supplied by the source and drain contacts. This effect is 
depicted in the right part of Fig. 19.

3. 1.2. Channel Tunneling
In this section, the effects of various device parameters on the gate leakage of MOS capaci
tors are studied. This is equivalent to tunneling in MOS transistors if only channel tunneling 
(n-p or p-n) is considered, and the source, drain, and bulk contacts are grounded. The 
parameters investigated are

• the doping of the polysilicon gate contact,
• the doping of the substrate,
• the thickness of the dielectric layer,
• the barrier height of the dielectric,
• the carrier mass in the dielectric,
• the dielectric permittivity, and
• the lattice temperature.

The typical shape of the gate current density in turned-off azMOS and pMOS devices is 
depicted in Fig. 20. A SiO: gate dielectric thickness of 2 nm and an acceptor or donor doping 
of 5 x 10!7 cm- 3  and polysilicon gates was chosen. In the //MOS device, the majority electron 
tunneling current always exceeds the hole tunneling current due to the lower electron mass 
and barrier height (3.2 eV instead of 4.65 eV for holes). In the pMOS capacitor, however, 
the majority hole tunneling exceeds electron tunneling only for negative and low positive 
bias. For positive bias, the conduction band electron current again dominates due to its much 
lower barrier height [ 144].

Figure 19. The different tunneling paths {channel tunneling, source and drain  extension tunneling) in a M OS 
transistor (left). In a MOS transistor biased in inversion (right), tunneling  electrons are supplied from the source 
and drain reservoirs, which is not possible in a MOS capacitor.
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Gate bias | V| Gate bias | V |

Figure 20. C hannel tunneling  regions in an /iM O S (left) and a pM O S (right). The insets show the approxim ate 
shape o f the  band edge energies.

3.1.2.1. Effect of  the Polysilicon Gate Doping on the Channel Tunneling Highly 
doped polysilicon is used as material for the gate contact to allow adjustable work functions 
and realize CMOS circuits. Figure 21 shows the electron and hole tunneling current density 
for different doping of the polysilicon gate contact. In the nMOS, gate leakage generally

Gate bias [V] Gate bias [V|

O o

Gale bias [V| Gate bias (V ]

Figure 21. E lectron (left) and hole (right) curren t density in an /zMOS (top) and a /;M O S (bottom ) with different 
doping o f the  polysilicon gate. Substra te  doping is 1018 cm -3; dielectric thickness is 2 nm.
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increases with increasing doping of the polysilicon gate because tunneling current is dom
inated by electrons. In the /;MOS, a higher polysilicon doping leads to reduced electron 
tunneling current and increased hole tunneling current. The effect on the overall leakage 
depends on the doping and the gate bias.

3.1.2.2. Effect of the Substrate Doping on the Channel Tunneling Figure 22 shows 
the electron and hole tunneling current density for different doping of the substrate. With 
increasing substrate doping, the majority tunneling component (electrons in the nMOS, 
holes in the pMOS)  is reduced in both the //MOS and p MOS devices, whereas the minority 
component increases.

3.1.2.3. Effect o f the Dielectric Thickness on the Channel Tunneling The physical 
thickness of the dielectric has the largest impact on the gate current density, as shown in 
Fig. 23. Increasing the gate dielectric thickness by 0.4 nm leads to a decrease of all tunneling 
current components by several orders of magnitude.

3.1.2.4. Effect of the Barrier Height on the Channel Tunneling The main parameter, 
besides the thickness of the dielectric, influencing tunneling current is the height of the 
energy barrier. The influence of this parameter is depicted in Fig. 24. Different dielectric 
materials strongly differ in their work function difference to silicon. It must be distinguished 
between the barrier height for electrons and for holes. The most frequently used dielectric 
material SiO: has an electron barrier height of about 3.2 eV and a hole barrier height of

Gate bias IVI Gate bias [VJ

<

Gate bias | V| Gate bias | V j

Figure 22. E lectron (left) and hole (righ t) curren t density in an //M O S (top ) and a />MOS (bottom ) with different 
doping o f the substrate. G ate  polvsiiicon doping is 5 * I0J" cm dielectric thickness is 2 nm.
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Figure 23. E lectron (left) and hole (right) curren t density in an /?MOS (top) and a p MOS (bottom ) with different 
thickness of the d ielectric layer. G ate polysilicon doping is 5 x H P  cm '; substrate  doping is 5 x 10,s cm \

approximately 4.6 eV. The measurement of these material parameters is difficult, and values 
in the available literature vary widely (see Section 3.1.5).

3.1.2.5. Effect o f the Carrier Mass in the Dielectric on the Channel Tunneling Being 
the parameter with the highest uncertainty, the electron and hole mass in the dielectric 
is commonly used as a fitting parameter to reproduce measurements. Its influence on the 
gate current density is shown in Fig. 25. An increase in the carrier mass by 0.1 m0 leads 
to a reduction in the gate current density by about a factor of 10. It must, of course, be 
held in mind that with the approaches described so far, tunneling is described by a single 
value for the carrier mass. Its use as a fitting parameter may thus well be justified. Recent 
investigations, however, report an increase of the electron mass with reducing thickness 
of the dielectric layer, which is backed by measurements and tight-binding band structure 
calculations [145-147].

3.1.2.6. Effect o f the Dielectric Permittivity on the Channel Tunneling The permit
tivity of the dielectric layer influences the tunneling current density in two ways: First, the 
shape of the energy barrier— and thus the transmission coefficient— changes. Second, the 
inversion charge— and thus the band edge energy— in the channel is affected. The effect of 
varying dielectric permittivity is shown in Fig. 26. Especially in the low-bias regime, a higher 
permittivity strongly increases the gate current density.

3.1.2.7. Effect o f the Lattice Temperature on the Channel Tunneling The lattice tem
perature enters the gate tunneling current via the electron energy distribution functions 
in the polysilicon gate and in the channel. The transmission coefficient, being based on
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Figure 24. Effect of the electron anti hole barrier height on electron tunneling  current (left) and  hole tunneling 
current (right) in an n M O S  (top) and a p MOS (bottom ) with 2-nm dielectric thickness, 10"" cm - '  polysilicon, and 
5 x 10'* cm"-' substrate  doping.

quantum-mechanical reasoning alone, is not affected by the lattice temperature. However, 
the supply function depends on the lattice temperature. The impact on the gate current 
density is shown in Fig. 27. Rising temperature increases the tunneling current density in all
cases.

3.1.2.8. Comparison to Measurements Because almost all available measurements of 
gate leakage in MOS devices are performed on turned-off MOS transistors, a comparison 
with measurements will be given before turned-on devices are investigated in Section 3.1.4. 
The Tsu-Esaki model with an analytical WKB transmission coefficient is in good agreement 
with recently reported data for devices with different gate lengths and bulk doping f 1 , 142] as 
shown in Fig. 28 for nMOS  (left) and /;MOS devices (right) [148]. It can be seen that the gate 
current density can be reproduced over a wide range of dielectric thicknesses with a single set 
of physical parameters. Additional measurements have been performed on MOSFETs with 
a gate dielectric thickness of 1.5 nm (see the lower part of Fig. 28) arid compared with the 
results of other simulators ( U T q u a n t  [149] and m h d i c i  [150]). Under inversion condition 
the tit is not perfect, whereas under accumulation the measurements can be reproduced 
well. Note that with U T q u a n t ,  the low-bias tunneling current cannot be reproduced, and 
m e d i c  i completely failed for the pMOS device.

3.1.2.9. Validity o f Compact Models Because the computational effort for the numerical 
integration in Tsu-Esaki’s formula or the evaluation of the quasi-bound states is numerically 
expensive, it is reasonable to ask if compact models can describe tunneling, at least for
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Figure 25. Effect o f  the carrie r mass on electron  tunneling  curren t (left) and hole tunneling current (right) in 
an nM O S (top) and a /;M O S (bottom ) with 2-nm dielectric thickness, 10 " cm ’ polysilicon, and 5 x 10IS cm 3 
substrate doping.

single-layer dielectrics. The compact tunneling models outlined in Section 2.7 are compared 
in Fig. 29 for a symmetrical metal-dielectric-metal structure (left) and for an /?MOS structure 
with 3-nm dielectric thickness (right). For the metal-dielectric-metal structure, Schuegraf’s 
model yields almost the same results as the computationally much more expensive Tsu-Esaki 
model. The Fowler-Nordheim model delivers correct values only for high bias. It is thus 
only applicable to describe high-field transport through gate dielectrics, like program and 
erase cycles in EEPROM devices. For the MOS structure in the right part of Fig. 29, the 
Schuegraf model fails to describe the tunneling current density at low bias. For high bias, 
however, it may be used to provide an estimation of the gate current. The Fowler-Nordheim 
model totally fails for this application. Furthermore, the Fowler-Nordheim model shows the 
minimum gate current at minimum electric field in the dielectric, and not for the minimum 
gate bias.

3.1.3. Source/Drain Extension Tunneling
In the following examples, the same devices as in Section 3.1.1 are investigated, but this time 
only the tunneling current in the source and drain extension areas (n-n or p-p) is taken into 
account. Because the barrier height, carrier mass, and dielectric thickness shows the same 
impact on the gate current density as for the case of channel tunneling, the corresponding 
figures are omitted.

3.1.3.1. Effect of the Polysilicon Gate Doping on the Source and Drain Extension 
Tunneling Figure 30 shows the effect of the doping concentration in the polysilicon gate 
on the extension region gate current density. Increasing the polysilicon doping leads to a
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F igure 26. Effect o f the dielectric perm ittivity k / k{) on electron  tunneling  curren t (left) and hole tunneling curren t 
(right) in an n MOS (top) and a p M O S  (bo ttom ) with 2-nm dielectric thickness. 10:u cm ’ polysilicon, and 5 x 
1018 cm 3 substrate doping.

slight increase of the main tunneling component and to a strong decrease of the minority 
tunneling component in both nMOS and pMOS devices.

3.1.3.2. Effect of the Substrate Doping Concentration on the Source and Drain 
Extension Tunneling Figure 3.1 shows the effect of the substrate doping concentration 
on the extension region gate current density. Similar to the polysilicon gate doping, a higher 
substrate doping leads to increased majority and decreased minority tunneling current.

3.1.3.3. Effect of the Dielectric Permittivity on the Source and Drain Extension 
Tunneling Figure 32 shows the effect of the dielectric permittivity on the extension region 
gate current density. In contrast to the channel-tunneling case, the low-bias regime is not 
influenced by the permittivity. Furthermore, the influence on the majority tunneling current 
component depends on the bias: The electron tunneling component in the nMOS decreases 
for negative bias and increases for positive bias. The hole tunneling component in the pMOS 
shows exactly the inverse trend.

3.1.3.4. Effect of the Lattice Temperature on the Source and Drain Extension 
Tunneling Figure 33 shows the effect of the temperature on the extension region gate cur
rent density. Especially the minority carriers (holes in the //MOS. electrons in the pMOS)  
show strongly increased tunneling current with higher temperature. Unlike in the channel 
tunneling case, the majority tunneling component is hardly influenced by the temperature.
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Figure 27. Effect o f the lattice tem p era tu re  on electron  tunneling  cu rren t (left) and hole tunneling current (right) 
in an /zMOS (top) and a p M OS (bo ttom ) with 2-nm dielectric thickness, 102" cm ' polysilicon, and 5 x l(),s cm 
substra te  doping.

3.1 A. Hot-Carrier Tunneling in MOS Transistors
It has been shown in Section 2.3 that the distribution function in the channel of a turned-on 
MOS transistor heavily deviates from the shape implied by a Fermi-Dirac or Maxwellian 
distribution. A model for the non-Maxwellian shape of the distribution function was pre
sented that accurately reproduced the carrier energy distribution along the channel.

To check the impact of this wrong high-energy behavior, the integrand of the Tsu-Esaki 
formula, namely the expression TC ('$.■) N (?-'), has been evaluated for a standard device, as 
shown in the left part of Fig. 34, and compared to Monte Carlo results [151, 152]. The simu
lated device had a gate length of 100 nm and a gate dielectric thickness of 3 nm. Though at 
low energies, the difference between the non-Maxwellian distribution function (28) and the 
heated Maxwellian distribution (24) seems to be negligible, the amount of overestimation of 
the incremental gate current density for the heated Maxwellian distribution reaches several 
orders of magnitude at 1 eV and peaks when the electron energy exceeds the barrier height. 
This spurious effect is clearly more pronounced for points at the drain end of the chan
nel where the electron temperature is high. The non-Maxwellian shape of the distribution 
function, indicated by the full line, reproduces the Monte Carlo results very well.

The region of high electron temperature is confined to only a small area near the drain 
contact, as shown in the right part of Fig. 34, where the gate current density along the channel 
is compared to Monte Carlo results. At the point of the peak electron temperature, which 
is located at approximately v =  0 . 8 the heated Maxwellian approximation overestimates
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Gate bias [ V | Gate bias j V]

Gate bias [V]

Figure 28. C om parison o f sim ulations using different sim ulators with m easurem ents o f //M O S (left) and /;M OS 
(right) devices [1, 142, 148].

<

Figure  29. Com pact m odels for a m elal-dielectric-m ctal structure  (left) and an //M OS structure  (right: literature 
values from [ I 421).
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Figure 30. Effect o f the polysilicon doping on the e lectron  tunneling  curren t (left) and the hole tunneling current 
(right) in the  source and drain extension region o f an mMOS (top ) and a p M O S  (bottom ) with 2-nm dielectric 
thickness and 5 x 10IK cm ’ substrate doping.

the gate current density by a factor of almost 1 0 °. It will therefore have a large impact on 
the total gate current density. The cold Maxwellian approximation underestimates the gate 
current density in this region, whereas the non-Maxwellian distribution correctly reproduces 
the Monte Carlo results.

The non-Maxwellian shape yields excellent agreement, whereas the heated Maxwellian 
approximation substantially overestimates the gate current density especially near the drain 
region. Instead of the heated Maxwellian distribution, it appears to be better to use a cold 
Maxwellian distribution in that regime because it leads to a comparably low underestimation 
of the gate current density.

The effect of hot-carrier tunneling on the total gate current of the devices is shown in 
Fig. 35. In the left part of this figure, the gate current density for a 0.5-/im turned-on 
MOSFET with a dielectric thickness of 4 nm is shown as a function of the gate bias. 
Results from Monte Carlo simulations are also shown in this figure. For low gate volt
ages ( VGS < Kds), the peak electric field in the channel increases with increasing gate bias. 
The electron temperature is high, and the heated Maxwellian approximation massively over
estimates the total gate current. If the gate bias exceeds the drain-source voltage, however, 
the peak electric field in the channel is reduced [153]. Therefore, for Vos > KDS, the electron 
temperature reduces with increasing gate bias, and the heated Maxwellian approximation 
delivers correct results. The non-Maxwellian model (28) delivers correct results for all gate 
voltages.
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Figure 31. Effect o f the substrate doping on the electron  tunneling curren t (left) and the hole tunneling current 
(right) in the source and drain  extension region o f an n MOS  (top) and a /?MOS (bo ttom ) with 2-nm dielectric 
thickness and 5 x U P  cm 3 polysilicon doping.

The question remains if the hot-carricr tunneling current strongly depends on the gate 
length of the device. In the right part of Fig. 35, the gate current is given as a function 
of the gate length for different gate dielectric thicknesses (2.2 nm-3.0 nm). Again, Monte 
Carlo simulation results are used as reference. It can be seen that the heated Maxwellian 
distribution delivers correct results only for large gate lengths, whereas it totally fails for 
smaller devices. The use of a cold Maxwellian distribution, on the other hand, underestimates 
the gate current only slightly and seems to be the better choice if accurate modeling of 
the device physics is not that important or only a quick estimation is asked for. The non- 
Maxwellian model correctly reproduces the Monte Carlo results for all gate lengths and gate 
dielectric thicknesses.

3.1.5. Alternative Dielectrics for MOS Transistors
The further reduction of device dimensions makes the introduction of alternative dielectric 
materials necessary. Because none of the possible materials forms a native oxide on silicon, 
a thin interfacial layer of SiO: cannot be avoided. Thus, a two-layer band edge diagram 
is commonly assumed as depicted in Fig. 36 [l 54]. A wide variety of high-K materials can 
be considered as alternative dielectrics. However, several points must be considered when 
evaluating these materials:

(l ) The dielectric permittivity k .

(2) The barrier height for electrons q<I>c and holes q<I>h on silicon. These values are equiv
alent to the band edge offsets and A>x.
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Figure 32. Effect of the diclectric permittivity k / k{) on the electron tunneling current (left) and the hole tunneling 
current (right) in the source and drain extension region of an n MOS (top) and a /;MOS (bottom) with 2-nm 
dielectric thickness and 5 x 10ls cm ' substrate doping.

(3 ) T he  th e rm o d y n a m ic  s ta b ility  o f  the d ie le c tr ic  m a te ria l on s ilicon : T he  m a te ria l m ust 
w ith s ta n d  a ll fo l lo w in g  p rocess ing  steps.

(4 ) T h e  q u a lity  o f  the  in te rfaces : H ig h  in te rfa ce  roughness may cause increased sca tte ring , 
w h ich  reduces the  c a rr ie r  m o b ility  in  the  channe l.

(5 ) T h e  tra p  c o n c e n tra tio n , w h ich  leads to  trap -ass is ted  tu n n e lin g .
(6 )  T he  fe a s ib ility  and in te g ra b ility  o f  the  d e p o s it io n  m e th o d  in the fa b r ic a tio n  process.

O n ly  the p e rm it t iv ity ,  the  tra p  c o n c e n tra tio n , and the b a rr ie r he ights in fluence  the tu n 
n e lin g  c u rre n t. W h e n  lo o k in g  a t the b a r r ie r  h e ig h t and  p e rm it t iv ity  o f  va rious d ie le c trics  
in  Tab le  4, one n o tices  a s tro n g  tra d e -o ff be tw een  the  b a rr ie r  he igh t and the d ie le c tr ic  
p e rm it t iv ity : d ie le c tr ic s  w ith  a h igh  energy b a r r ie r  have a low  p e rm it t iv ity  and vice versa; see 
Figs. 37 and 38. H ence , o p tim iz a tio n  becom es necessary to  fin d  the o p tim u m  m a te ria l.

C h o o s in g  the m a te r ia l pa ra m e te rs  fro m  Tab le  4, the  gate c u rre n t dens ity  can be co m p u te d  
as a fu n c tio n  o f the  ga te  bias [155 ]. I t  is c o m m o n ly  assum ed th a t an u n d e rly in g  laye r o f  S i0 2 
ca n n o t be a vo id ed — o r  is even d e lib e ra te ly  in tro d u c e d  to  achieve a lo w e r tra p  dens ity  at the 
in te rfa ce  to  s ilico n . T h u s , an u n d e rly in g  S iO : la ye r w ith  a th ickness o f  0.5 nm  was assumed. 
T h e  th ickness o f  the  h igh -K  laye r was a d jus ted  so th a t the e ffec tive  ox ide  th ickness (E O T )  
re m a in s  unchanged  at 1 nm . T h e  gate c u rre n t d e n s ity  is shown in the le ft pa rt o f  F ig. 39 
as a fu n c tio n  o f  the  gate b ias fo r  d if fe re n t m a te r ia l co m b in a tio n s . The  co m m o n ly  assumed 
l im it  o f  1 A c m -2 gate leakage is a lso in d ica te d . B o th  S iO : and S t\N 4 show a m uch to o  high 
leakage, w hereas T a : O s, Z r O : , and H fO : stay b e lo w  1 A c m " 2 at VCtS =  1 V. D ue to  the low
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Figure 34. Integrand of Tsu-Esakis equation (left) and gate current density along the channel (right) of a MOSFET 
with 100-nm gate length and 3-nm gate dielectric thickness 1151. 152J.
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Figure 35. Gate current for different values of the gate bias (left). Dependency of the total gate current on the 
gate length (right) [151, 152].

c o n d u c tio n  band o ffs e t, T iO : shows an espec ia lly  p ro n o u n ce d  c u rre n t increase fo r  pos itive  
gate bias.

T o  assess the m a te r ia l p a ram e te rs  necessary to  stay b e lo w  a specific  m ax im um  gate c u rre n t 
density , the  gate c u rre n t has been ca lcu la ted  as a fu n c t io n  o f  the co n d u c tio n  band o ffse t and 
d ie le c tr ic  p e rm it t iv ity  as show n in  the  r ig h t p a rt o f  F ig . 39. Because i t  is o fte n  not possib le  to  
va ry  the th ickness o f  the  u n d e rly in g  S i0 2 layer, it was again fixed  at 0.5 nm  and the h igh-K  
th ickness was ad jus ted  to  reach  an E O T  o f  1.5 nm . T h e  gate c u rre n t dens ity  was eva lua ted  at 
a fixed bias p o in t o f  VGS =  1.5 V  and VDS =  0 V. T h e  c u rre n t dens ity  decreases s tro n g ly  w ith  
increas ing  c o n d u c tio n  band  o ffs e t. Inc reas ing  the va lue  o f  the d ie le c tr ic  p e rm it t iv ity  k  also 
s trong ly  reduces the  leakage c u rre n t due  to  the h ig h e r physica l stack th ickness. H o w eve r, 
m a te ria ls  w ith  a c o n d u c tio n  band  o ffs e t b e low  1 e V  neve r reach acceptable gate c u rre n t 
densities.

I t  m ay be asked w h ic h  th ickness  o f  the  h igh-K  la ye r is necessary to  achieve a ce rta in  gate 
c u rre n t dens ity . In  the  le ft p a rt o f  F ig . 40, the  gate c u rre n t dens ity  is shown fo r  an e ffec tive  
ox ide  th ickness ra n g in g  fro m  0.5 nm  to  2.0 nm  as a fu n c tio n  o f  the h igh-K  layer th ickness. 
A g a in , the  stack consists o f  an u n d e rly in g  0.5 nm  layer o f  S i0 2 and the s im u la tio n s  are

Figure 36. Schematic of a band energy diagram of a stacked dielectric consisting of a thin underlying interface 
layer and a thick layer of a high k  material with higher dielectric permittivity, but lower barrier height.
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Table 4. Band gap energy and conduction band offset of various dielectric materials.

K/Ktl ( 1 ) Band Gap >(\  (eV)
Conduction Band 
Offset A/l (eV)

Valence Band 
Offset A/, (eV) Reference

SiO: 3.9 9.00 3.00 4.90 [198]
3.9 9.00 3.50 4.40 [193]
3.9 9.00 3.15 4.75 [199]
3.9 8.90 3.20 4.60 [200]

9.00 3.50 4.40 [201.202]
3.9 9.00 3.00 4.90 [41]

Si,N4 7.5 5.00 2.00 1.90 [198]
7.6 5.00-5.30 2.40 1.50-1.80 [ 193]
7.9 5.30 2.40 1.80 [199]
7.0 5.10 2.00 2.00 [200]

5.30 2.40 1.80 [201.202]
7.5 5.00 2.00 1.90 [41]

Ta:Os 25.0 4.40 1.40 1.90 [41. 198]
23.0-25.0 4.40 0.30 3.00 |193]

25.0 4.40 0.36 2.94 1199,202]
26.0 4.50 1.00-1.50 1.90-2.40 [200]

4.40 0.36 2.94 [2011
TiO: 40.0 3.50 1.10 1.30 [41, 198J

39.0-110.0 3.00-3.27 0.00 1.90-1.97 |193]
80.0-170.0 3.05 0.00 1.95 [199|

80.0 3.50 1.20 1.20 |200]
3.05 0.00 1.95 [201]

AU), 9.0 8.70 2.80 4.80 [200|
8.0-9.0 8.8-9.00 2.78-2.80 4.92-5.10 [193]
9.5-12.0 8.8 2.80 4.90 |199]

8.80 2.80 4.90 [201]
10.0 8.80 2.80 4.90 [202]

ZrO: 23.0 5.80 1.40 3.30 1202]
25.0 7.80 1.40 5.30 [198,200]

22.0-25.0 5.00-5.80 1.40 2.50-3.30 [193]
12.0-16.0 5.70-5.80 1.40-1.50 3.10-3.30 11991

5.80 2.50 2.20 [2011
HfO> 25.0 5.70 1.50 3.10 [198,200]

22.0-40.0 6.00 1.50 3.50 [193]
16.0-30.0 4.50-6.00 1.50 1.90-3.40 [199]

6.00 1.50 3.40 [201]
20.0 6.00 1.50 3.40 |202]

Y:0 , 15.0 5.60 2.30 2.20 [200]
11.3-18.0 5.50-6.00 1.30 3.10-3.60 [193]

4.4 6.00 1.30 3.60 1201)
15.0 6.00 2.30 2.60 |202]

ZrSi04 12.6 6.00 1.50 3.40 |193]
4.50 0.70 2.70 ||99]

3.8 6.00 1.50 3.40 [201]
6.00 1.50 3.40 |202|

p e rfo rm e d  a t a fixed  b ias p o in t o f  VGS ~  1.5 V  and VDS =  0 V. In th is  p lo t, the  curves are 
o n ly  d raw n  fo r  an E O T  o f  0.5 n m -2 .0  nm , and co n d u c tio n  band o ffse ts  o f  q<!>. =  1 e V  
to  q <\>c =  3 c V  have been cons idered . F o r a c o n d u c tio n  band o ffse t o f 1 eV, large h ig h - 
k  th icknesses are necessary to  reduce the leakage. Such large stacks m ay pose p ro b le m s  
due to  fr in g in g  fie lds  fro m  the  d ra in  con tac t, w h ich  reduce the  th re sh o ld  vo ltage  o f  the  
device.

T h e  tra d e -o ff be tw een the  d ie le c tr ic  p e rm it t iv ity  and the c o n d u c tio n  band o ffse t gives 
rise to  fu r th e r  e ffects  as show n in the r ig h t p a rt o f  F ig. 40. I f  the  E O T  has to  be he ld  
at a fixed  va lue , an increase o f  the S iO : la ye r th ickness causes a reduced  th ickness  o f  the 
h igh-K  layer. T h is  is show n fo r  d iffe re n t values o f  the p e rm it t iv ity  ( k  — 8 .0  to  k  =  24.0). 
So, the to ta l stack th ickness may be la rge r than 8 nm fo r  k =  24. o r  as sm all as 1.5 nm
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Figure 37. Trade-off between electron harrier height (left) or hole barrier height (right) and the permittivity of 
various dielectric materials [41, 193, 198-202].

i f  o n ly  S iO : is used. Such a re d u c tio n  o f  the  to ta l stack th ickness, how ever, has no  c lea r 
e ffe c t on  the  leakage. I t  m ay cause the  gate c u rre n t dens ity  a t a specific  bias p o in t to  stay 
cons tan t, increase, o r  even decrease d e p e n d in g  on the m a te ria l pa ram eters. F o r exam ple , 
the ga te  leakage fo r  a m a te r ia l w ith  k  =  24 and  a c o n d u c tio n  hand o ffse t o f  1 c V  shows the 
m ax im um  leakage a t a S iO : la ye r th ickness o f  a p p ro x im a te ly  0.8 nm . T h e re fo re , a c lea r s ta te 
m en t a b o u t the  o p tim u m  th ickness o f  the  in te rfa ce  laye r obv ious ly  depends on the m a te ria l 
pa ram ete rs .
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Figure 38. Conduction and valence band edges of various dielectric materials compared to silicon |41. Il>3. 198-202].
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Gate bias [V] High-K conduction hand offset [eV|

Figure 39. Gate current density as a function of the gate voltage for different materials. The dielectric slack consists 
of a 0.5-nm SiO: layer and a high-K layer with a total EOT of 1.0 nm (left). Dependence of the gate current on 
the high-* conduction hand offset and dielectric permittivity of a stack with EOT = 1.5 nm and an 0.5-nm SiO: 
interface layer al a gate bias of 1.5 V (right) [ 155J.

3.1.6. Trap-Assisted Tunneling in Z r0 2 Dielectrics
Because Z r 0 2 o ffe rs  good  m a te ria l pa ram ete rs , it  was fu r th e r  investiga ted  by m eans o f  exper
im en ts , and n u m e ro u s  resu lts  w ere  p ub lished  [156 , 157 ]. Z r O : p M O S  capac ito rs  have been 
fa b rica te d  by M O C V D  (m e ta l-o rg a n ic  ch em ica l v a p o r d e p o s it io n ) on  /;- typ e  ( l 00) s ilicon  
w afers w ith  an a cce p to r d o p in g  o f  l .5 x  I0 IN c m '3 and A l gate e lec trodes [ 157]. T h e  ove r
a ll th icknesses o f  the  d ie le c tr ic  layers have been e va lu a te d  by spec troscop ic  e llip so m e trv . 
E m p lo y in g  a d ie le c tr ic  p e rm it t iv ity  o f  the  h igh-K  m a te r ia l o f  k / k {) =  18, w h ich  has been 
fo u n d  fo r  th ic k e r  film s , the com pa rison  o f  o p tic a l m easurem en ts  and the resu lts  o f  C V  cha r
a c te r iza tio n  im p lic a te s  the presence o f an in te r fa c ia l la ye r w ith  a p e rm it t iv ity  in  the range 
o f  4 to  8. Tab le  5 sum m arizes the  resu lts o f  an e va lu a tio n  o f  the th icknesses o f  the  high-K 
film s  and in te r fa c ia l layers. A ls o  g iven is the  e ffe c tive  o x ide  th ickness E O T  T h e  values fmt 
and /‘high-K d e n o te  the  th icknesses o f  the  in te rfa ce  and the  h igh-K  layer.

In  the  le f t  p a r t o f  F ig . 41, the  m easured gate c u rre n t is show n fo r  the  tw o  d ie le c tric  
layers w ith  the  a p p ro x im a te  shape o f  the energy b a r r ie r  ske tched  in  the  insets. A s  re ference,

high-K' u i\cr ihidaies-* jm n| S i(). Ia\ci' ihukness Imill

Figure 40. Dependence ot the gate current on the high-K layer thickness, conduction hand offset, and permittivity 
of a stack with HOT — 2.0 nm and a 0.5-nm SiO interface layer at a gale bias of 1.5 V (left). Dependence of the 
gate current on the interface layer thickness, conduction band offset, and permittivity of a slack with EOT = 1.5 nm 
at a gate bias of 1.5 V (right) [ 155j.
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Tabic 5. 1 _ayer thicknesses and effective oxide thickness of metal 
organic chemical vapor deposition-deposited ZrO: layers in nano
meters, after Harasek 1156].

Layer Thickness 'in, ĥigh - h EOT

6.9 0.75-2.0 6.15-4.9 2.0
12.7 0.3-1.0 12.4-11.7 3.0

the figu re  a lso shows th e  gate c u rre n t fo r  a 2 -n m  and a 3-nm  S i0 2 laye r (d o tte d  lines). 
A s  expected, the  m easured c u rre n t d e ns ity  is lo w e r than  fo r  the S iO : c o u n te rp a rts . H o w e ve r, 
the T s u -E s a k i m o d e l ca n n o t re p ro d u ce  the  m easurem ents  as it y ie lds  tu n n e lin g  cu rre n ts  
o rd e rs  o f  m a g n itu d e  lo w e r th a n  the  m easurem ents . T h is  ind ica tes the  presence o f  s trong  
trap-assisted tu n n e lin g  due to  a h igh  tra p  c o n c e n tra tio n  in  the  d ie le c tr ic  layer. By assum ing 
a F re n k e l-P o o le - lik e  co n d u c tio n  th ro u g h  the  d ie le c tr ic  layer, the  m easurem ents  cou ld  be 
rep ro d uce d  ( fu l l  lin e s ). N o te  th a t in  p re v io u s  s tud ies  [156], tu n n e lin g  th ro u g h  Z r 0 2 layers 
fab rica te d  by m a g n e tro n  s p u tte r in g  co u ld  be re p ro d u ce d  w ith o u t co n s id e rin g  trap-assisted  
tu n n e lin g . T h a t in d ica tes  the  presence o f  a h igh  tra p  co n ce n tra tio n  due to  the M O C V D  
proccss, in c o n tra s t to  th e  s p u tte r in g  process.

To c la r ify  the  tra p  energy leve l and c o n c e n tra tio n , the  step response o f  the  M O S  capac
ito rs  has been m easu red  as show n in the  r ig h t p a rt o f  F ig . 41 fo r  the  12.7-nm Z r 0 2 laye r 
annea led  in  re d u c in g  c o n d itio n s  ( fo rm in g  gas) and  the  6 .9-nm  laye r annea led  u n d e r o x id iz 
ing  co n d itio n s  [158 ]. T h e  gate vo ltage  is tu rn e d  o f f  a fte r be ing  fixed  a t a va lue  o f  2.5 V, 
and the  re s u ltin g  ga te  c u rre n t is m easured  o ve r tim e . T h e  tra n s ie n t ga te  c u rre n t exceeds 
the s ta tic  gate c u rre n t by o rd e rs  o f  m a g n itu d e  and decays very s low ly . T h is  b e h a v io r can 
be exp la ined  assum ing  defects  in  the  d ie le c tr ic  la ye r 1159]. U s ing  the trap -ass is ted  tu n n e lin g  
m ode l o u tlin e d  in  S ection  2.8.2, a tra p  ene rgy  leve l o f  1.3 e V  be low  the  Z r 0 2 c o n d u c tio n  
band edge, a tra p  c o n c e n tra tio n  o f  4.5 x  1018 c m ~ \  and  an energy loss o f  1.5 e V  have been 
fo u n d . F o r the  d ie le c tr ic  la ye r annea led  u n d e r o x id iz in g  co n d ition s , a tra p  c o n ce n tra tio n  o f  
4 x 1017 c m " 3 was fo u n d .

T o  p re d ic t the  p e rfo rm a n ce  o f  devices based on Z r O : d ie le c trics , a w e ll- te m p e re d  M O S 
F E T  as described  in  R ef. [160] w ith  an e ffe c tive  ch a n n e l leng th  o f  50 nm  has been s im u la ted . 
E O T  th icknesses o f  2 -nm  and 3 -nm  S i0 2 and respective  Z r 0 2 layers have been cons id 
ered. T he  le ft p a r t o f  F ig . 42 d ep ic ts  the  c o n d u c tio n  band edge in  the  channe l fo r  d iffe re n t 
ga tc-source  vo ltages. I t  can be seen th a t the  b a r r ie r  is s lig h tly  lo w e r fo r  the  Z r 0 2 laye r at 
VGS =  1.2 V, w hereas  i t  is s tro n g ly  reduced  a t K CjS =  0.1 V, w h ich  is due  to  the p ro n o u n ce d  
fr in g in g  fie lds  fro m  th e  d ra in  con tac t.

Figure 41. Stationary (left) and transient (right) gate current measurements of the ZrO: layers performed bv 
Harasek [157] compared with simulations [ 158].
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Figure 42. Wei I-tempered MOSFET conduction hand edge along the channel for SiO: and ZrO; dielectrics (left). 
Influence of the dielectric trap concentration on the MOSFET threshold voltage (right) [158].

A n  a d d itio n a l to p ic  o f  in te res t fo r  h igh-K  d ie le c tr ic s  is the in flu e nce  o f  tra p p e d  charges 
in  the  h igh-K  laye r on  the  th re sh o ld  vo ltage  o f  the  device. T h e  tra p  c o n c e n tra tio n  in the 
Z r 0 2 layer was increased fro m  10h c m " 3 to  10iy c m '3 w ith  fu l l  tra p  occupancy in the 
d ie le c tr ic  layer. I t  can be seen in the r ig h t p a rt o f  F ig . 42 th a t the th re sh o ld  vo ltage  s trong ly  
increases w ith  ris in g  tra p  co n ce n tra tio n . T h is  e ffe c t is th e re fo re  c o n tra ry  to  the decrease o f 
the  th re sh o ld  vo ltage  due to  fr in g in g  fie lds  described  above.

3.2 . T u n n e lin g  in N o n vo la tile  M e m o ry  D e v ic e s

T u n n e lin g  e ffec ts  are c ru c ia l n o t o n ly  fo r  M O S  tra n s is to rs  b u t also fo r  n o n v o la tile  sem icon 
d u c to r  m e m o ry  devices. In  co n tra s t to  v o la tile  m e m o ry  devices, they re ta in  the  s to red  in fo r 
m a tio n  w ith o u t e x te rn a l p o w e r supp ly. N o n v o la tile  m e m o ry  ( N V M )  devices can be read and 
p ro g ra m m e d  like  random -access m e m o ry  (R A M )  devices, have a lo w  p o w e r co n su m p tio n , 
are m echan ica lly  robus t, and o ffe r  the  p o s s ib ility  o f  la rge-scale in te g ra tio n . T h e y  co n s titu te  
a b o u t 10%  o f  the  to ta l s e m ico n d u c to r m e m o ry  m a rk e t [161]. H o w e ve r, s im u la t io n  o f  such 
devices is o fte n  ca rr ie d  o u t using s im p lif ie d  com pac t m ode ls  [1 6 2 -1 6 7 ]. F o r the case o f  
s tacked gate d ie le c tr ic s  o r  h o t e le c tro n  in je c t io n , such m ode ls  do  n o t c a p tu re  the  device 
physics and can re p roduce  m easured data  o n ly  on a f i t - fo rm u la  leve l. In  th is  section , som e 
exam ples o f  co n ve n tio n a l E E P R O M  and a lte rn a tiv e  devices wall be s tu d ie d  using  the tu n 
n e lin g  m ode ls  described  above.

3 .2 .7 . Conventional EEPROM Devices
'The basic o p e ra tin g  p r in c ip le  o f  an E E P R O M  was p resen ted  by K a h n g  and  Sze in  1967 at 
B e ll L a b o ra to rie s  [168]. T h e  device consists o f  a c o n tro l gate and a f lo a t in g  gate on to p  
o f  a co n ve n tio n a l M O S  tra n s is to r. A  th in  tu n n e l d ie le c tr ic  separates the f lo a tin g  gate fro m  
the channe l. It  m ust be th ic k  enough to  a llo w  up to  10**' w r it in g  and e ras ing  cycles w ith 
o u t b re a kd o w n — co m m o n  th icknesses are 6 -8  nm . A p p ly in g  a h igh p o s itive  vo ltage  (a b o u t 
8 -1 2  V )  on the c o n tro l gate  raises the p o te n tia l o f  the f lo a tin g  gate by capac itive  c o u p lin g . 
T h e  h igh e le c tric  fie ld  in the  tu n n e l d ie le c tr ic  ( ^ I 0 t; V /m ) leads to  F o w le r-N o rd h e im  tu n 
n e lin g  o f  e lec trons  fro m  the  substra te  to  the  f lo a tin g  gate. T h e  charge on the  f lo a tin g  gate 
changes the th re sh o ld  vo ltage  o f  the u n d e rly in g  M O S  tra n s is to r and is re ta in e d  even i f  the  
c o n tro l gate vo ltage  is rem oved . A  re te n tio n  tim e  o f  10 years is re q u ire d  fo r  co n su m e r a p p li
ca tions  such as m em ory  cards. T h o u g h  E E P R O M  ce lls  o f fe r  random  access fo r  w r it in g  and 
e ras ing  o f  in d iv id u a l b its . F lash ce lls can be p ro g ra m m e d  se lective ly  bu t erased o n ly  at once. 
T h is  has the advantage o f  lo w e r ce ll size. D u e  to  the h igh  e le c tr ic  f ie ld  in  the  d ie le c tr ic , 
d e g ra d a tio n  o r  even b re a kd o w n  o t the d ie le c tr ic  is a m a jo r conce rn . A  com prehens ive  survey 
o f  N V M  techno logy  Is g iven  in Refs. [169] and (170].
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3.2.1.1. S ta tic  SIL C  in E E P R O M s  T h e  speed o f  the p ro g ra m m in g  and erasing process is 
one o f  the  m ain  figu res  o f  m e r it o f  an E E P R O M  cell. T h e re fo re , s trong  e lec tric  fie lds  are 
app lied  at the  c o n tro l gate to  a llo w  F o w le r-N o rd h e im  tu n n e lin g  o f  ca rr ie rs  d u rin g  p ro g ra m 
m ing  and erasing  cycles. H o w e ve r, due to  th is  repeated h ig h -fie ld  stress, tra p  centers in the 
d ie le c tr ic  are fo rm e d , w h ich  a llo w  trap-assisted  tu n n e lin g  at low  fie lds  and thus reduce the 
re te n tio n  tim e  o f  the  devices. T h is  a d d it io n a l c u rre n t at lo w  bias is know n as stress-induced 
leakage c u rre n t (S IL C )  and  rep resen ts  one o f  the  m a jo r re l ia b ility  concerns in  co n te m p o ra ry  
E E P R O M  devices [112 , 135]. In  the  le ft p a rt o f  F ig . 43, m easured S IL C  a fte r d iffe re n t stress 
tim es fo r  a M O S  ca p a c ito r w ith  a d ie le c tr ic  th ickness o f  5.5 nm is show n [105]. T h e  tra p - 
assisted tu n n e lin g  m o d e l o u tlin e d  in S ection  2.8.2 y ie lds exce llen t agreem ent w ith  the m ea
sured da ta  i f  the tra p  c o n c e n tra tio n  is used as a f i t t in g  p a ram e te r dependen t on the stressing 
tim e  (th e  m ode l p a ram e te rs  are sta ted  in  the fig u re  ca p tio n ). The  tra n s it io n  fro m  the reg ion  
o f  m a in ly  trap -ass is ted  tu n n e lin g  fo r  VGS <  5 V  to  the reg ion  o f  F o w le r-N o rd h e im  tu n n e lin g  
fo r  VCiS >  5 V  is c le a rly  v is ib le . T h e  r ig h t p a rt o f  F ig . 43 shows the tra p  occupancy f T across 
the gate d ie le c tr ic  o f  a M O S  ca p a c ito r using  the  gate vo ltage as pa ram e te r. T he  reg ions near 
the gate ( r ig h t)  and  nea r the  subs tra te  ( le f t )  are o n ly  sparsely occup ied . N e a r the gate, the 
em iss ion  tim e  is m uch  s m a lle r than  the  ca p tu re  tim e , and near the substra te , the tra p  energy 
lies above the  e le c tro n  ene rgy  in the  ca thode . Som e o f  the trapped  e lec trons  face a tr ia n g u 
la r b a r r ie r  fo r  the  em iss ion  process, g iv in g  rise to  an a d d itio n a l peak in  the  tra p  occupancy 
near the  gate side (th e  ano d e ) o f  the  d ie le c tr ic . T h is  is due to  the wave fu n c tio n  in te rfe re n ce  
in  the F o w le r-N o rd h e im  re g io n  (th e  o sc illa tio n s  are also observed in the em ission tim e  o f  
the  traps  show n in  F ig. 17).

3.2.1.2. T ra n sien t SILC  in  E E P R O M s  I t  has been shown tha t the  tra n s ie n t trap-assisted 
tu n n e lin g  c u rre n t can be described  by a ra te  e q u a tio n  tha t gives rise to  an exp o n e n tia l 
b e h a v io r o f  the tu n n e lin g  c u rre n t o ve r tim e ; sec S ection  2.8.2.4. The  le ft p a rt o f  F ig. 44 shows 
m easurem ents  o f  the  gate c u rre n t dens ity  o f  M O S  capac ito rs  as a fu n c tio n  o f  tim e  w ith  
d ie le c tr ic  th icknesses o f  8.5 nm  and 13.0 nm  com pa red  to  s im u la tio n s  [104, 171]. In it ia l ly , 
the traps are e m p ty , w h ich  can be ach ieved by a p p ly in g  fla t band co n d ition s . A t t =  0 s, the 
gate vo lta g e  is tu rn e d  on  ( —5.8 V  and —8.3 V  fo r  the th in n e r and the th ic k e r d ie le c tr ic , 
re spec tive ly ) and the  traps  are f i l le d  a cco rd in g  to  th e ir  specific  cap tu re  and em ission tim e  
constants. T h is  ch a rg in g  c u rre n t consists o f  an em iss ion  and a cap tu re  c u rre n t, w h ich  may 
exceed the  steady-sta te  c u rre n t by o rd e rs  o f  m agn itude . A  good fit to  the m easured da ta  can 
be ach ieved using  the  tra p  p a ra m e te rs  in d ica te d  in  the figu re  cap tion .

Figure 43. Comparison of simulations with measurements of a MOS capacitor with a dielectric thickness of 
5.5 nm (105, 1711 is shown on the left. The trap energy is 2.7 eV. the phonon energy 130 meV. and the Huang-Rhys 
factor is 10. The trap concentration was set to y x 10|7 cm \  l()r cm \  3 x JO"' cm \  and 3 x I01' cm ' to til 
the measurements (from top to bottom). The trap occupancy across the gate dielectric at different gate voltages is 
shown on the riuht.
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Figure 44. Transient capture and emission currents (left) of MOS capacitors at a gate bias of -5.8 V and 
-8.3 V [104, 171]. For the thinner dielectric, a imp energy of 2.5 eV and a trap concentration of 3 x 10ls cm ' was 
used, whereas for the thicker dielectric, a trap concentration of l()ls cm ' was found. The right figure shows tran
sient simulation results of a MOS capacitor with a gate dielectric thickness of 3 nm and a trap energy level of 3 eV.

T h e  r ig h t p a r t o f  F ig . 44 shows the gate c u rre n t o f  a M O S  capac ito r fo r  an a p p lie d  re c t
a n g u la r pulse w ith  a fre q u e n cy  o f  100 k H z  assum ing in it ia l fla t band co n d itio n s . I t  can be 
seen th a t the  tim e  constan ts  o f  the  tra p  f i l l in g  and e m p ty in g  processes are n o t equa l b u t 
depend  on  the  a p p lie d  vo ltage , as d if fe re n t vo ltages lead to  d iffe re n t ca p tu re  and  em iss ion  
tim es. T h e  sp ikes in  th is  fig u re  are due  to  the sudden vo ltage  change, w hereas the  tra p  c o n 
c e n tra tio n  rem ains cons tan t: In  the tra n s it io n  fro m  3.0 V  to  3.5 V, the b a rr ie r  shape changes 
sudden ly , and traps are ra p id ly  e m p tie d . T raps nea r the ca thode  are f i l le d , and it takes 
several m icroseconds u n t i l  the new steady-sta te  is reached . Thus, d ie le c tr ic  m a te ria ls  th a t 
have such a h igh  tra p  co n ce n tra tio n  may lead to  co n s id e ra b le  p rob lem s fo r  h ig h -fre q u e n cy  
a p p lica tio n s .

F o r E E P R O M  devices, the cha rg ing  and d isch a rg in g  cha rac te ris tics  are c ru c ia l: P ro g ra m 
m in g  and e ras ing  sh o u ld  happen as fas t as possib le ; th e re fo re , h igh vo ltages are a p p lie d . T h e  
d ischa rg ing  c u rre n t o ve r tim e , on  the  o th e r hand , d e te rm in e s  the re te n tio n  t im e  and  m us t 
be ve ry  low . F u rth e rm o re , the p ro g ra m m in g  and e ras ing  pulses m ust be c a re fu lly  o p tim iz e d  
to  avo id  over-erase, as the  tu n n e l c u rre n t dens ity  fo r  p o s itive  and negative vo ltages  on  the  
f lo a tin g  gate is n o t e qua l. T h is  is fre q u e n tly  addressed in the  lite ra tu re  [172 , 173].

3.2.2. Alternative Nonvolatile Memory Devices
S tro n g  e ffo rts  are u n d e rta ke n  to  im p ro ve  the  s tanda rd  flo a tin g -g a te  E E P R O M  ce ll in  te rm s  
o f  in te g ra t io n  dens ity , endurance , re lia b ility , p ro g ra m  tim e , erase tim e , and re te n tio n  tim e . 
E E P R O M  devices w ith  a tu n n e l w in d o w  near the d ra in  co n tac t have been in tro d u c e d  to  
reduce  the  charge loss fro m  the f lo a tin g  gate and thus reach h ig h e r re te n tio n  tim e . H o w e ve r, 
due  to  the sm all area o f  the  tu n n e l w in d o w , h igh  vo ltages have to  be used a t the  d ra in  
co n ta c t, w h ich  again reduces ce ll re lia b ility .

R ecen tly , C ayw ood  e t al. p roposed  a device s tru c tu re  w he re  nonse lected  ce lls  a rc  iso 
la te d  fro m  the d ra in  and  source contacts by tw o  a d d it io n a l side gates [174 ]. In  th is  dev ice , 
e le c tro n s  tu n n e l fro m  the in ve rte d  channe l to  the f lo a tin g  gate. T he  large area reduces p ro 
g ra m m in g  and e ras ing  tim e . F u rth e rm o re , the ca p a c itive  c o u p lin g  be tw een the c o n tro l gate 
and the f lo a tin g  gate is h ig h e r than  in the s tanda rd  E iE P R O M  ce ll, w h ich  a llow s use o f  lo w e r 
p ro g ra m m in g  and e ras ing  voltages. N o  d ra in -so u rce  b ias is a pp lied  fo r  ch a rg in g , thus  the  
p o w e r c o n su m p tio n  is lo w  and the in jec ted  e lec trons  are less lik e ly  to  cause d e g ra d a tio n  o f  
the d ie le c tr ic . T he  c o n tro l gate fu n c tio n s  as a select tra n s is to r th a t iso la tes unse lec ted  ce lls  
fro m  the h igh  vo ltages at the  shared source and d ra in  con tac ts  d in  ing  read and w r ite  access 
o f  n e ig h b o rin g  cells.
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In  con trast to  the  re d u c tio n  o f  the  ce ll fo o tp r in t, in te g ra tio n  dens ity  can also be increased 
by s to rin g  m ore  than  one  b it  on a s tanda rd  E E P R O M  ce ll. T h is  can be ach ieved by ta ilo r in g  
the p ro g ra m m in g  and e ras ing  pulses in such a way tha t the th re sh o ld  vo ltage  fa lls  in to  one 
o f  4, 8. o r  16 vo ltage  ranges. T h e  d if fe re n t th resho ld  vo ltages can be d is tingu ished  by the 
sensing c ircu its , re s u ltin g  in  tw o, th ree , o r  fo u r  b its  tha t can be s to red  in  the  ce ll. H ow ever, 
charge loss m ust be e x tre m e ly  lo w  o ve r tim e , and the  th re sh o ld  vo ltages have to  be de tected  
very precisely.

S ing le -po ly  devices have been p roposed  to  in teg ra te  N V M  devices in  s tanda rd  C M O S  log ic  
processes, thus e n a b lin g  an em bedded  m em ory. T h e  c o n tro l gate lies next to  the f lo a tin g  
gate, and capac itive  c o u p lin g  is ach ieved by a layer o f  h ig h ly  doped  s ilico n . T hough  such 
devices can re a d ily  be in te g ra te d  in to  ex is ting  C M O S  process flow s, they  com e at the cost 
o f  a large fo o tp r in t.

A  d iffe re n t app ro a ch  to  s to re  m o re  than  one b it  in  a s ing le  m e m o ry  ce ll is to  sp lit the 
flo a tin g  gate in to  tw o  separa te  segm ents. I f  a n o n u n ifo rm  d o p in g  in the  source and d ra in  
side o f  the channe l is used, d if fe re n t am oun ts  o f  charge can be s to red  in  each flo a tin g  gate. 
Such device s tru c tu re s  are e ith e r  ach ieved using separate m e ta llic  f lo a tin g  gates [97 ] o r using 
a la ye r o f  tra p -r ic h  d ie le c tr ic  [175].

In  the fo llo w in g  sections, th re e  o f  the  m ost p ro m is in g  a lte rn a tive  E E P R O M  devices w il l  
be s tud ied  in  d e ta il. These  are

• Q u a n tu m  d o t and tra p -r ic h  d ie le c tr ic  based devices: In  these devices, cha rg ing  and 
d ischa rg ing  is ach ieved  by tu n n e lin g  o f  e lec trons  to  and fro m  loca lized  tra p p in g  centers 
in the  d ie le c tr ic .

• M u lt ib a r r ie r  tu n n e lin g  devices consist o f  a flo a tin g  gate— o r m e m o ry  node— w h ich  is 
separated fro m  the  c o n tro l gate by several th in  d ie le c tr ic  layers. By the use o f  a side 
gate, the tu n n e lin g  c u rre n t th ro u g h  these b a rr ie rs  can be c o n tro lle d  se lective ly. In  c o n 
trast to  E E P R O M s , the  tu n n e lin g  c u rre n t flow s fro m  the  f lo a tin g  gate to  the c o n tro l 
gate and n o t to  the  channe l. E x tre m e ly  high / 0n/ / 0fr ra tios  can be ach ieved because the 
tu n n e lin g  c u rre n t is c o n tro lle d  by a separate side gate con tac t.

• Devices w he re  the  tu n n e l d ie le c tr ic  consists o f  stacked d ie le c tr ic s  th a t are eng ineered  
in  such a way th a t they b lo ck  tu n n e lin g  in the o ff-s ta te  bu t a llo w  s tro n g  tu n n e lin g  in 
the on-s ta te .

3.2.2.1. N o n vo la tile  M e m o ry  D e v ic e s  B a s e d  o n  Trap-Rich D ie lec tr ic s  A  S O N  OS
(s ilic o n -o x id e -n itr id c -o x id e -s ilic o n ) device is a n o n v o la tile  m em ory  w he re  the  charge is s to red  
in  a layer o f  tra p -r ic h  d ie le c tr ic  m a te ria l instead o f  a flo a tin g  gate as in  an E E P R O M . 
F ig u re  45 shows an exam ple  w he re  a laye r o f  S i3N 4 is sandw iched betw een tw o  layers 
o f  S iO : . E le c tro n s  tu n n e lin g  fro m  the substra te  are trapped  and re d is tr ib u te  them selves in 
separate tra p p in g  centers. T h is  has the advantage th a t the charge is s to re d  in d e pe n d e n tly  
in  the traps. A  leaky p a th  in  the  tu n n e l d ie le c tr ic  canno t lead to  fu l l  charge loss, as it 
is the case in  c o n v e n tio n a l E E P R O M  devices. T h e re fo re , re lia b ility  and re te n tio n  tim e  is 
increased [75, 125, 176-185 ].

T h e  band d ia g ra m  a lo n g  the  d ie le c tr ic  o f  such a device is show n in  F ig . 45 fo r  the  p ro 
g ra m m in g , s to r in g , and e ras ing  processes. By a pp ly ing  a pos itive  vo ltage  at the gate con tac t, 
e lec trons  tu n n e l th ro u g h  the tu n n e l d ie le c tr ic  in to  the tra p  reg ion . T h e  traps are f il le d  w ith

Figure 45. Conduction hand edge in a SONOS device for the programming, storing, and erasing process.
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e lec trons  and becom e nega tive ly  charged. Because o f  the  tu n n e l d ie le c tr ic , th is  charge is 
s to red  even i f  the  bias is rem oved . To erase the  m e m o ry  ce ll, a negative  vo lta g e  is app lied  on 
the gate con tac t, le a d in g  to  a reduced  p o te n tia l b a rr ie r  and a h igh tu n n e lin g  c u rre n t o f  elec
tro n s  o u t o f  the  traps. Im p o r ta n t device p a ra m e te rs  are the  cha rg ing  and d ischa rg ing  current 
th ro u g h  the  d ie le c tr ic , the  d ra in  c u rre n t in  the  o n - and o ff-s ta te , and the  re te n tio n  tim e.

T h e  trap-ass is ted  tu n n e lin g  m o d e l can be a p p lie d  to  s im u la te  device ch a ra c te ris tics  o f this 
device, w here  th ree  layers o f  S iO : have been used and the  tra p  co n c e n tra tio n  and tra p  er.ergy 
leve l in the m id d le  laye r was chosen to  resem ble  a laye r o f  s ilico n  n itr id e . T h e  transient 
tra p  occupancy fo r  a d ischa rg ing  process s ta r tin g  fro m  an in it ia l c o n d it io n  o f  2 V  at the 
gate co n tac t is show n in  F ig. 46. In it ia l ly ,  the  traps  are f il le d . O ve r tim e , the  e le c tro n s  leak 
th ro u g h  the  lo w e r d ie le c tr ic  in to  the  channe l. A f te r  10t; s, a lm ost no  m o re  charge is stored 
in the  tra p -r ic h  d ie le c tr ic .

3.2.2.2. M ultibarrier T u n n elin g  D e v ic e s  O ne  o f  the  m a in  sh o rtco m in gs  o f  conven tiona l 
E E P R O M  devices is th a t the c u rre n t in  the  o n -s ta te  and o ff-s ta te — the p ro g ra m m in g  a rd  
leakage cu rre n ts— flo w  th ro u g h  the  same tu n n e l d ie le c tr ic  and face the  same energy barrier. 
T h e y  canno t be o p tim iz e d  in d e p e n d e n tly : In c re a s in g  the  th ickness o f  the  tu n n e l d ie lec tnc 
reduces the  leakage, b u t also reduces the on -s ta te  c u rre n t and thus increases the p rogram 
m ing  tim e . M u lt ib a r r ie r  tu n n e lin g  devices o f fe r  a s o lu tio n  to  th is  p ro b le m . P la n a r loca l zeJ- 
e le c tro n  device m e m o ry  (P L E D M )  cells have been p resen ted  by N a ka za to  e t al. in R e f. [-8 ( ], 
and p ro m is in g  resu lts  have been re p o rte d  [1 8 7 -1 9 0 ]. T h e  p rin c ip le  o f  a P L E D M  is tc p i t  
a P L E D  tra n s is to r (P L E D T R )  on  to p  o f  the  gate o f  a co n ve n tio n a l M O S F E T , as shovn 
in  F ig. 47. T h e  charge on the  m e m o ry  node , w h ich  acts as a f lo a tin g  gate, is p ro \id c d  
by tu n n e lin g  o f  ca rr ie rs  th ro u g h  the  P L E D  tra n s is to r, w h ich  consists o f  a stack o f  Si3N4 
b a rr ie rs  sandw iched be tw een layers o f  in tr in s ic  s ilico n . U p p e r  and lo w e r b a rr ie rs  prevent 
d iffu s io n  fro m  the  p o lys ilico n  con tacts , w hereas the  m id d le  b a rr ie r— the c e n tra l s h u tte r bar
r ie r  (C S B )— blocks  the tu n n e lin g  c u rre n t in  the  o ff-s ta te . T h e  P L E D  tra n s is to r has tw o  sice

i = o s  r  t -  K>''s

Figure 46. Transient trap occupancy in the trap-rich dielectric layer of a SONGS device that is discharged Iron
l  :•.= {) S U) / =  10“ S.
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Figure 47. Conduction hand edge energy in the PLEDM device.

gates th a t are separa ted  by a th in  d ie le c tr ic  layer. In  the  on -s ta te , the energy b a rr ie rs  are 
heav ily  reduced  by the vo ltage  on  the side gales, causing a s tro n g  tu n n e lin g  c u rre n t to  flo w  
at the  in te rface  to  the side gate d ie le c tr ic . In  the  o ff-s ta te , how ever, the side gates are tu rn e d  
o ff, and the energy b a rr ie r  b locks  the  leakage c u rre n t. A s  in  a co n ve n tio n a l E E P R O M , the 
charge on the m e m o ry  node is used to  c o n tro l the u n d e rly in g  M O S  trans is to r. O n ly  a sm all 
a m o u n t o f  charge has to  be added  to  o r  rem oved  fro m  the  m e m o ry  node to  change the s la te  
o f  the  m e m o ry  ce ll.

F o r the  s im u la tio n  o f  such devices, m easu rem en t resu lts  fo r  a s ingle S i3N 4 b a rr ie r  
d io d e  [190] have been used to  c a lib ra te  the  m ode l, as show n in F ig. 48 1191]. F o r c a lib ra tio n , 
the  c a rr ie r mass in the d ie le c tr ic  was used as a fit p a ra m e te r. E le c tro n  and ho le  masses o f
0.5 m () and 0.8 m 0 w ere fo u n d  to  re p ro d uce  the  data. T h e  S i3N 4 b a rr ie r  was m ode led  w ith  a 
b a rr ie r  he igh t o f  5 e V  and a co n d u c tio n  band o ffse t o f  2 e V  to  the  s ilicon  co n d u c tio n  band 
edge w ith  the re la tive  d ie le c tr ic  p e rm it t iv ity  b e in g  7.5.

T h e  e ffe c t o f  the p o s itio n  and size o f  the ce n tra l s h u tte r b a rr ie r  as w e ll as the e ffe c t o f  
s h r in k in g  the  s tack w id th  have been inves tiga ted . T w o  ce ll states have been assumed: an 
on -s ta te  w ith  3 V  app lied  on  the to p  co n tac t and the side ga te , and an o ff-s ta te  w ith  0.8 V  
a p p lie d  on the m e m o ry  node  and 0 V  on the side gate. In  b o th  states, the cha rg ing  and 
d ischa rg ing  c u rre n t was e x tra c te d . T h e  P L E D T R  had a stack w id th  o f  180 nm and a stack 
h e ig h t o f  100 nm . T he  th ickness o f  the u p p e r and lo w e r b a rr ie rs  was set to  2 nm . T h e  le ft 
p a rt o f  Fig. 49 shows the e ffe c t o f  d iffe re n t C SB  th icknesses on the on - and o ff-c u rre n t 
o f  the device. T h o u g h  the o n -c u rre n t is h a rd ly  in flu e nce d  by the d iffe re n t th icknesses, the 
o ff-c u rre n t is very sensitive to  it. A lso , the  p o s itio n  o f  the  C S B  is c ru c ia l, because fo r  a C SB 
loca ted  near the  m em ory  node , the  energy b a rr ie r  w il l  be reduced  in  the  o ff-s ta te  by the 
charge on the m e m o ry  node. If , on  the  o th e r  hand, the  C S B  is p laced near the to p  con tac t, 
the  energy b a rr ie r  is no t suppressed in the o ff-s ta te , and the  o ff-c u rre n t is m uch low er. 
T h e  o n -c u rre n t is also reduced  by th is  e ffe c t, bu t the  a m o u n t o f  re d u c tio n  is m uch low e r 
as com pared  to  the o ff-c u rre n t, due to  the  fa c t th a t the  o n -c u rre n t m a in ly  depends on the 
vo ltage  o f  the side gate. T h u s , the  / on/ / (,tt ra t io  increases w ith  the th ickness o f  the cen tra l 
s h u tte r b a rr ie r  and is h ighest fo r  a C SB  loca ted  near the  to p  co n ta c t. Such an asym m etry  in
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u

Top contact bias [V]

Figure 48. PLEDM calibration of the tunneling current density for a single Si,N4 layer with 1.5-nm and 2-nm 
thickness [191]. The measured values are taken from Ref. [190].

the IV  cha rac te ris tics  depen d in g  on  the  p o s itio n  o f  the  ce n tra l s h u tte r b a rr ie r  has a lready 
been observed e x p e rim e n ta lly  [190].

In  R ef. [192], the  fe a s ib ility  o f  very n a rro w  s ilic o n - in s u la to r s ftc ks  is show n. T h is  e n co u r
ages the  assum ption  th a t a re d u c tio n  o f  the stack w id th  is possib le . F igu re  49 shows the  
on - and o ff-c u rre n ts  o f  the device w ith  a C SB th ickness o f  10 nm  fo r  a s tack w id th  o f  
140 nm  dow n  to  20 nm . I t  can be seen th a t a re d u c tio n  o f  the  stack w id th  leads to  increas ing  
on -cu rre n ts  and decreasing  o ff-c u rre n ts . T h e  reason is th a t the c u rre n t in  the  on -s ta te , w h ich  
m a in ly  flow s as a surface c u rre n t near the  side gate, is n o t reduced  by the  decreased w id th  o f  
the stack. I t  even increases fo r  ve ry  low  stack w id th s , w h ich  m ay be due to  the  fa c t th a t the  
energy b a rr ie rs  at the side o f  the  stack m erge fo r  very lo w  stack w id th s . T h e  o ff-c u rre n t, on  
the  o th e r hand, is d ire c tly  p ro p o r tio n a l to  the  stack area and can thus be d ire c tly  dow nsca led  
by s h r in k in g  the  stack w id th . F o r a stack w id th  o f  20 nm , / on/ / off ra tio s  o f  m o re  than  1032 
can be reached.

3 .2 .2 .3 . N o n vo la tile  M e m o ry  D e v ic e s  B a s e d  on  C r e s te d  B arriers  O n e  o f  the  m ost 
im p o rta n t figu res  o f  m e r it o f  a n o n v o la tile  m e m o ry  ce ll is its  / 0n/ / 0ff ra t io : A  h igh  o n -c u rre n t 
leads to  lo w  p ro g ra m m in g  and e rasing  tim es, and a lo w  o ff-c u rre n t increases the  re te n tio n

Stack width | nm!

Figure 49. On-current density and off-current density as a function of the thickness of the central shutter barrier 
(left) and the stack width (right) |I4M|.
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tim e  o f  the device. T h is  ra t io  can be increased if, fo r  a g iven device, the tu n n e lin g  c u rre n t 
in the on-s ta te  (th e  ch a rg ing /d ischa rg ing  c u rre n t)  is increased o r, in the o ff-s ta te  (d u r in g  the 
re te n tio n  tim e ), decreased. W ith  a s ing le -laye r d ie le c tr ic  it  is n o t possible to  tune on - and 
o ff-c u rre n t in d e p e n d e n tly . H ow eve r, i f  the tu n n e l d ie le c tr ic  is rep laced  by a d ie le c tr ic  stack 
o f  va ry ing  b a rr ie r  h e ig h t as shown in F ig. 50, it becom es possib le . In  th is  figu re , the device 
s tru c tu re  and the  c o n d u c tio n  band edge in the o n - and o ff-s ta te  are shown. T h e  device 
consists o f  a s tanda rd  E E P R O M  s tru c tu re , w he re  the tunne l d ie le c tr ic  is com posed o f  th ree  
layers. T he  m id d le  laye r has a h ig h e r energy b a rr ie r  than the in n e r and o u te r layers. T he  
fla t-b a n d  case is in d ic a te d  by the d o tte d  lines.

In  the  on -s ta te , a h igh  vo ltage  is a p p lie d  on  the to p  con tac t. T he  m id d le  energy b a rr ie r  
is s tro n g ly  reduced  and gives rise to  a h igh tu n n e lin g  c u rre n t. I f  the  d ie le c tr ic  w o u ld  consist 
o f  a single layer, the  peak o f  the energy b a rr ie r  w o u ld  n o t be reduced. Thus, the o n -c u rre n t 
is m uch h ig h e r fo r  the  layered d ie le c tric . In  the  o ff-s ta te , a lo w  negative vo ltage— due to  
charge s to red  on  the  m e m o ry  node— is app lied . T h e  m id d le  b a rr ie r  is on ly  s lig h tly  sup
pressed and b locks  tu n n e lin g . T he  o ff-c u rre n t is o n ly  s lig h tly  lo w e r than  fo r  a s ing le -laye r 
d ie le c tr ic . T h is  b e h a v io r resu lts  in  a h igh / on/ / olf ra tio . A  h igh  suppression o f  the m id d le  
b a rr ie r  in the o n -s ta te  re q u ire s  a lo w  p e rm it t iv ity  o f  the o u te r  layers so tha t the p o te n tia l 
d ro p  in  the o u te r  layers is h igh  [193]. T h is  device design was firs t p roposed  by Capasso e t al. 
in  1988 [194] based on A lG a A s -G a A s  devices and la te r used by several au tho rs  [195, 196], 
w here  i t  becam e p o p u la r  as crested-barrier m e m o ry  o r  V A R IO T  (varying oxide thickness 
device).

T h e  gate c u rre n t d e n s ity  o f  the device dep ic ted  in F ig . 50 is show n as a fu n c tio n  o f  the 
gate bias in the  le ft  p a r t o f  F ig . 51. A  stack th ickness o f  5 nm  was chosen. Because the 
m id d le  layers m ust have a h igh  band gap, o n ly  few  m a te ria l co m b in a tio n s  are possib le. F o r 
the  s im u la tio n s , m id d le  layers o f  A120 3 and S i0 2 have been chosen, w ith  o u te r layers o f 
Y 20 3, Si3N 4, and Z r 0 2. F o r com parison , fu l l  S i0 2 and Si3N 4 stacks have also been s im u la te d  
(th e  d o tte d  and d a sh -d o tte d  lines). T h o u g h  Y 20 3 shows a ve ry  h igh  o ff-c u rre n t, stacks w ith  
o u te r  layers o f  S i3N 4 o r  Z r 0 2 and A I20 3 as m id d le  layer show good ra tios  be tw een the 
on -s ta te  (p o s itive  gate  b ias ) c u rre n t dens ity  and the o ff-s ta te  (nega tive  gate bias) c u rre n t 
density .

T h e  im p o rta n t f ig u re  o f  m e r it, how ever, is the  /on/ / off ra tio . In  the r ig h t pa rt o f  F ig. 51, 
the / on/ / tvff ra t io  is show n fo r  Si3N 4 and Z r 0 2 stacks w ith  S i0 2 and A120 3 m id d le  layers as 
a fu n c tio n  o f  the  th ickness o f  the m id d le  layer. A ls o  show n is the ra t io  fo r  a layer o f  S i0 2 
and Si3N 4 a lone. I t  is o bv ious  th a t the  ra t io  s tro n g ly  depends on the  th ickness o f  the m id d le  
layer, and b o th  m in im a  and m axim a can be observed. O n ly  o u te r  layers o f  S i3N 4 lead to  a

Figure 50. Device structure and operating principle of  a nonvolatile memory based on crested barriers.
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Gate bias [V] Middle layer thickness join

Figure 51. Gate current density as a function of the gate bias for different materials of the middle layer compared 
to full SiO: and Sî N, layers (left). Ratio between the on-current and the off-current as a function of the middle 
layer thickness for different materials of the outer layers (Si,N_, and ZrOO and middle layers (Al:(), and SiO:) 
compared to the resulting current density using full layers of SiO: and Sî N4 (right).

s ig n ifica n tly  increased p e rfo rm a n ce  as co m p a re d  to  fu l l  layers o f  SiC)2 o r  S i3N 4. A  m id d le  
layer th ickness a ro u n d  1-2 nm  fo r  the  assum ed 6 -nm  stack gives o p tim u m  p e rfo rm a n ce .

4. CONCLUSIONS
T u n n e lin g  e ffec ts  in  se m ico n d u c to r devices w ere  in ves tiga ted . A  h ie ra rch y  o f  tu n n e lin g  m o d 
els was o u tlin e d . T h re e  m a in  p ro p e rtie s  w ere  id e n tif ie d  to  in fluence  the tu n n e lin g  process: 
T he  c a rr ie r energy d is tr ib u tio n  fu n c t io n , the  transm iss ion  c o e ff ic ie n t, and the presence o f  
traps in the  d ie le c tr ic  layer.

T he  en e rg e tic  d is tr ib u tio n  o f  c a rr ie rs  was inves tiga ted  using d if fe re n t a p p ro x im a tio n s , 
such as the  fre q u e n tly  a p p lie d  F e rm i-D ira c  o r  M a x w e li-B o ltz m a n n  sta tis tics . H o w e ve r, these 
a p p ro x im a tio n s  are o n ly  v a lid  near e q u ilib r iu m . C o m p a riso n s  w ith  the  resu lts  fro m  M o n te  
C a rlo  s im u la tio n s  show ed th a t in  tu rn e d -o n  devices, the  d is tr ib u t io n  fu n c tio n  s tro n g ly  d ev i
ates fro m  the idea l shape. Som e n o n -M a x w e llia n  m ode ls  w ere  rev iew ed, and it was fo u n d  
tha t a m o d e l th a t is based on the  s o lu tio n  va riab les  o f  a s ix -m om en ts  tra n s p o rt m ode l accu
ra te ly  rep roduces the  M o n te  C a r lo  resu lts .

T he  q u a n tu m -m e ch a n ica l transm iss ion  c o e ff ic ie n t can be co m p u te d  fro m  the s o lu tio n  o f  
the s ta tio n a ry  S ch ro d ing e r e q u a tio n . S evera l a p p ro x im a tio n s  and a n a ly tica l fo rm u la e  w ere 
o u tlin e d . F o r a s ing le -laye r d ie le c tr ic , the a n a ly tica l W K B  a p p ro x im a tio n  o r  G u n d la ch 's  fo r 
m u la  can be used. F o r a rb itra ry -sh a p e d  ene rgy  b a rr ie rs , the  n u m e rica l W K B , the  trans fe r- 
rna trix , o r  the q u a n tu m  tra n s m itt in g  b o u n d a ry  m e th o d  can be app lied . I t  was fo u n d  tha t the 
tra n s fe r-m a tr ix  m e th o d  is p ro n e  to  n u m e rica l p ro b le m s  due to  the repea ted  m a tr ix  m u lt ip l i
cations. T h e  q u a n tu m  tra n s m itt in g  b o u n d a ry  m e th o d  tu rn e d  o u t to  be m ore  robust.

D e fects  in the  d ie le c tr ic  la ye r g ive rise to  trap-ass is ted  tu n n e lin g , w h ich  leads to  an a d d i
tio n a l tu n n e lin g  c u rre n t at lo w  bias. A f te r  re v ie w in g  several m ode ls  fro m  the lite ra tu re , 
a recen tly  p resen ted  ine las tic  trap -ass is ted  tu n n e lin g  m ode l was adap ted  to  avo id  the  n u m e r
ical c a lcu la tio n  o f  the o ve rla p  in te g ra l in the  d ie le c tr ic  layer. T h is  y ie ld e d  a fu lly  ana ly tica l 
m ode l th a t was fu r th e r  deve loped  to  in c lu d e  tra n s ie n t tra p  cha rg ing  and d ischa rg ing  effects.

Several exam ples w ere s tu d ie d  w he re  a gene ra l d is tin c tio n  be tw een tu n n e lin g  in M O S  
transisto rs, w here  it is a p a ras itic  e ffe c t, and tu n n e lin g  in n o n v o la tile  m e m o ry  devices, w here  
it is c ru c ia l fo r  the  device fu n c t io n a lity , was m ade. T u n n e lin g  in  M O S  trans is to rs  was in ve s ti
gated. w here  special a tte n tio n  was p a id  to  the in ve s tig a tio n  o f  the d iffe re n t tu n n e lin g  paths 
fro m  the gate to  the channe l and fro m  the gate to  the source and d ra in  ex tens ion  regions.

F u rth e rm o re , the im p o rta n ce  o f  the  c a rr ie r  d is tr ib u t io n  fu n c tio n s  fo r  m o d e lin g  o f  gate 
leakage in  tu rn e d -o n  devices was show n. I f  a heated M a xw e llia n  a p p ro x im a tio n  was used fo r
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the d e scrip tio n  o f  h o t-e a rr ie r tu n n e lin g , the gate c u rre n t dens ity  was heav ily  ove res tim a ted . 
T h is  e ffec t was fo u n d  to  be espec ia lly  p ro n o u n ce d  fo r  devices w ith  sho rt gate lengths.

In  fu tu re  C M O S  devices, the  use o f  a lte rn a tiv e  d ie le c tr ic  m a te ria ls  instead o f  S iO : w ill 
m ake the re d u c tio n  o f  the e ffe c tive  ox ide  th ickness  possib le . Several cand ida te  m a te ria ls  
w ere stud ied , and it was fo u n d  th a t they show  a p ro n o u n ce d  c o rre la t io n  betw een the b a r
r ie r  he igh t and the  p e rm it t iv ity . T h is  m akes o p tim iz a tio n  necessary to  fin d  the o p tim u m  
layer c o m p o s itio n . F u rth e rm o re , the in ve s tig a tio n  o f  a M O S  c a p a c ito r w ith  a Z r O : d ie le c tr ic  
showed tha t the  s tro n g  de fec t d e n s ity  m akes the  use o f  trap -ass is ted  tu n n e lin g  m ode ls  a sine 
qua non fo r  these m a te ria ls .

In  a d d itio n  to  M O S  trans is to rs , n o n v o la tile  m e m o ry  devices w ere  stud ied . A  genera l 
ove rv iew  o f  n o n v o la tile  m e m o ry  te ch n o lo g y  was fo llo w e d  by an in ve s tig a tio n  o f  th ree  selected 
device s truc tu res : devices w here  the  f lo a tin g  ga te  co n ta c t is rep laced  by a layer o f  tra p -r ic h  
d ie le c tr ic , m u lt ib a r r ie r  tu n n e lin g  devices, and devices th a t are based on  crested ba rrie rs . 
E spec ia lly  the m u lt ib a r r ie r  tu n n e lin g  devices a llo w  an e x tre m e ly  h igh  / on/ / off ra tio . T h e  tra p - 
rich  d ie le c tr ic  devices, on  the o th e r  hand , are eas ie r to  fa b r ica te  and have a sm a lle r fo o tp r in t.  
Devices tha t are  based on crested b a rr ie rs  a llo w  tu n in g  o f  the o n - and o ff-c u rre n t dens ity  
ind e pe n d e n tly . H o w e ve r, the  / on/ / ofl ra t io  he a v ily  depends on  the th icknesses o f  the d ie le c tr ic  
layers, and s im u la t io n  is necessary to  fin d  the o p tim u m  values. T h e  investigated  n o n vo la tile  
m e m o ry  a p p lica tio n s  are expected to  show  h igh  p e rfo rm a n c e ; how ever, the bad q u a lity  o f  
the in te rface  be tw een the d ie le c tr ic  layers m ay o ffs e t the  advantage in the / O11/ / O|t ra tio .
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1. INTRODUCTION
W ith  th e  increased so p h is tica tio n  o f  se m ico n d u c to r techno logy, it  is now  possible to  crea te  
m an-m ade  ob jec ts  th a t d isp lay m any o f the  ch a ra c te ris tic  p ro p e rtie s  n o rm a lly  associated w ith  
a tom s. In  sem iconducto rs , a ll e lectrons are tig h tly  bound  to  the  n uc le i except fo r a ve ry  sm all 
fra c tio n  o f  m o b ile  e lectrons. These m o b ile  e lec trons  can be tra p p e d  betw een tw o  layers o f 
se m ico n d u c to rs , con fined  e ffe c tive ly  to  tw o  d im ensions. T h e y  are then  re s tric te d  fu r th e r  by
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som e la te ra l c o n fin in g  p o te n tia l to  crea te  a q u a n tu m  d o t, o fte n  re fe reed  as to  an a r t if ic ia l 
a to m . T he  a b ility  o f  e xp e rim e n ta lis ts  to  m a n ip u la te  the size and shape o f  these a r t if ic ia l 
a tom s and to  use d iffe re n t m a te ria ls  in th e ir  co n s tru c tio n  has opened  up a w id e  range o f  
p o ss ib ilit ie s  and areas fo r  e xa m in a tio n  [1 -1 0 ].

F o r exam ple , it  is possib le  to  vary the exact n u m b e r o f  m o b ile  e le c tro n s  in  the  d o t by s im p ly  
chang ing  the  vo ltage  a p p lie d  to  the gate e le c tro d e , a llo w in g  one to  scan th ro u g h  the p e r io d ic  
tab le  o f  a r t if ic ia l a tom s w ith  ease. A n o th e r  in te re s tin g  aspect o f  q u a n tu m  do ts  is th a t, u n lik e  
a to m ic  systems, they are no t l im ite d  to  be ing  sp h e rica lly  o r  c irc u la r ly  sym m e tric— we can 
have e ll ip t ic  do ts, re c ta n g u la r do ts, tr ia n g u la r  do ts , and even do ts  w ith o u t any sym m etry'. 
T ra n s itio n s  neve r observed in the spectra  o f  n a tu ra l a tom s can be o b ta in e d  fro m  the  a r t i
fic ia l ones. In  the fu tu re , q u a n tu m  dots m ay be used to  b u ild  m ore  e ff ic ie n t and prec ise ly  
c o n tro lle d  lasers w ith  o the rw ise  inaccessible w ave leng ths, and also as v ita l co m p o n e n ts  o f  
n a n o e le c tro n ic  devices [3, 11-13]. It  is a lso hoped  th a t q u a n tu m  dots m ay one day be able 
to  he lp  rea lize  the d ream  o f  qu a n tu m  c o m p u tin g  [1 4 -1 6 ].

In  a to m ic  systems, e lec trons  are con fined  by the  a ttra c tiv e  C o u lo m b ic  p o te n tia l o f  the 
p o s itive ly  charged  nucleus. In  qua n tu m  do ts  the c o n fin e m e n t o f  the  e le c tro n s  is instead 
the  resu lt o f  an a r t if ic ia lly  c rea ted  p o te n tia l, fo rm e d  by e lec trodes  connected  to  layers o f  
se m ico n d u c to r, as show n in F ig. la . F ro m  q u a n tu m  th e o ry  we kn o w  th a t i f  the e le c tro n s  
are  co n fin e d , then  they are  on ly  a llow ed  to  possess ce rta in  d isc re te  energ ies. In  th is  sense, 
q u a n tu m  dots are just lik e  the n a tu ra l a tom s w ith  w e ll-d e fin e d  energy leve l s truc tu res . W h a t 
does change is th a t the  energy s tru c tu re  associated w ith  these a r t if ic ia l a tom s now  re flec ts  
the  tw o -d im e n s io n a l na tu re  o f  the system. We get a d if fe re n t p e r io d ic  tab le  o f  these tw o- 
d im e n s io n a l “ e le m e n ts ,”  such as th a t show n in F ig. lb .

T h e  a to m ic - lik e  s tru c tu re  o f  qu a n tu m  do ts  has been d e m o n s tra te d  by the  e xp e rim e n ta l 
w o rk  o f  T a rucha  et al. [17 ], in w h ich  e le c tro n s  are rem oved  fro m  a q u a n tu m  d o t one at 
a tim e  by va ry in g  the  gate vo ltage . A  c u rre n t w il l  How o n ly  i f  the n u m b e r o f  e le c tro n s  in 
the  d o t changes. I t  was fo u n d  th a t o n ly  at p a r t ic u la r  vo ltages  can an e le c tro n  be rem oved  
because o f  the d iscre te  n a tu re  o f  its  energy s tru c tu re , g iv in g  rise to  w e ll-sepa ra ted  c u rre n t 
peaks, as show n in  F ig . 2. T h e  energy d iffe re n c e  be tw een consecu tive  c u rre n t peaks is a 
m easure o f  the a d d it io n  energy, w h ich  is the  ene rgy  re q u ire d  to  add  an ex tra  e le c tro n  to  
the d o t and is show n in  the  inset o f  F ig. 2. Such m easu rem en ts  re fle c t the tw o -d im e n s io n a l 
she ll s tru c tu re  o f  the q u a n tu m  do t. N o te , lo r  exam p le , th a t the  gap betw een the  ad jacen t 
c u rre n t peaks is s ig n if ic a n tly  g re a te r w hen the  d o t undergoes changes fro m  tw o  e le c tro n s  to  
th re e , fro m  six to  seven, and fro m  tw elve to  th ir te e n . T h is  co rre sp o nd s  to  the  fa c t th a t a tw o - 
d im e n s io n a l a r t if ic ia l a tom  has co m p le te ly  f i l le d  shells at e le c tro n  num bers  o f  /V =  2, 6, 12. 
T h is  d iffe rs  fro m  a th re e -d im e n s io n a l n a tu ra l a to m , the she lls  o f  w h ich  are c o m p le te ly  fil le d  
a t a to m ic  num bers o f  /V =  2, 10. 1 8 ,3 6 , . . .  ins tead . T he  da ta  o f  T arucha  et al. [17 ] also 
e x h ib it secondary m axim a  in the a d d itio n  energy, w h ich  co rre sp o nd  to  h a lf- f il le d  shells a t 
e le c tro n  num bers N  = 4 , 9 ,  16. T h e o re tic a l analysis shows th a t such she ll s tru c tu re s  c o rre 
spond  to  c irc u la r ly  sym m e tric  c o n fin e m e n t p o te n tia ls , and d e v ia tio n  fro m  th is  g e o m e try  can 
change the  e le c tro n ic  s tru c tu re  in  a s ig n ifica n t w ay [18 ].

(a) -0.5 nm (b)

Side

Figure!. Schematic representation of a typical quantum (Jot. Reprinted with permission from 11J. L. P. 
Kouwenhoven cl uL Rep. Prog. Phys. 64. 70! (2001). ■ • 200!. Institute of Physics.
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Figure 2. Tunneling current and addition energies. Reprinted with permission from |1], L. P. Kouwenhoven et al.. 
Rep. Prog. Phys. 64, 701 (2001). © 2001. Institute of Physics.

T h e  d e ta ile d  e le c tro n ic  s tru c tu re  o f  q u a n tu m  d o t systems depends on  the m a te ria l, size, 
and g e o m e try  o f  the  q u a n tu m  do ts , re q u ir in g  ab initio ca lcu la tio n s  w ith  fu ll quan tum  m echan
ical tre a tm e n t fo r  th e ir  accura te  d e sc rip tio n . T h is  is the  cha llenge im posed on theo re tic ians . 
In  th is  chap te r, we rev iew  and describe  the th e o re tic a l m odels, basic num erica l techn iques, 
and several c o m p u ta tio n a l schem es de ve lop e d  to  solve the co rre sp o nd in g  S ch ro d in g e r’s 
e q u a tio n  and to  eva lua te  the a to m ic  p ro p e r tie s  o f  q u a n tu m  dots.

2 . T H E O R E T IC A L  M O D E L

2 .1 . T w o -D im e n s io n a l M o b ile  E le c tro n s

Q u a n tu m  d o t systems are ty p ic a lly  m ade up  o f  m any layers o f  se m ico n d u c to r m a te ria l w ith  
m e ta llic  gates used to  fo rm  the p a tte rn e d  s tru c tu re s . T h o u g h  them selves cons is ting  o f  ro u g h ly  
103— l()y a tom s and a co rre sp o n d in g  n u m b e r o r  e lec trons , m ost o f  these e lec trons  are t ig h tly  
bo u n d  to  the n uc le i o f  the se m ico n d u c to r m a te ria l, and  on ly  a sm all p ro p o r tio n  o f  the  e lec
tro n s  are m o b ile . I t  is these m o b ile  e le c tro n s  th a t have the greatest e ffe c t on  the e le c tro n ic  
p ro p e rtie s  o f  the  q u a n tu m  d o t [19 ].

A s  an exam ple , the  q u a n tu m  d o t show n in  F ig . la  is a doub le  b a rr ie r  h e te ro s tru c tu re  in 
w h ich  In (M)5G a 0 i)5A s  fo rm s  the ce n tra l w e ll th a t is sandw iched betw een tw o  A l ^ G a ^ A s  
b a rr ie rs . T he  A lG a A s  b a rr ie rs  co n fin e  the  e le c tro n s  m o tio n  in the ve rtica l (z )  d ire c tio n , 
w h ile  the edge o f  the  d o t and the  ga te  p o te n t ia l p ro v id e  a va riab le  la te ra l co n fin e m e n t. 
By re g u la tin g  the  gate p o te n tia l, one  can va ry  the n u m b e r o f  e lec trons  in the  do t. T he  
c o n d u c tin g  source  and d ra in  are Si doped  n -G a A s . T h e  d ia m e te r o f  the d o t is on the o rd e r 
o f  hund reds  o f  nanom ete rs , w hereas the  h e ig h t is a p p ro x im a te ly  10 nm.

T h e  c o n fin in g  p o te n tia l can be separa ted  in to  a ve rtic a l (z )  and a la te ra l ( * ,  y)  co m ponen t. 
T h e  c o n fin in g  p o te n tia l in  the v e rtic a l d ire c tio n  is a ve ry  n a rro w  and e ffe c tive ly  in f in ite ly  h igh 
w e ll [20 ], w hereas the  la te ra l c o n fin in g  p o te n t ia l V ( x ,  y)  has a b o w l- lik e  shape. T h e  energy 
leve l o f  the f irs t exc ited  sta te  in  the  z  d ire c tio n  is ge n e ra lly  hund reds o f  tim es g re a te r than 
m any o f  the low -ene rgy  states in  the  x- y  p lane . T h is  p ro p e rty  a llow s us to  m ode l e le c tro n  
m o tio n  in a q u a n tu m  d o t as tw o  d im e n s io n a l, as the e lec trons  are t ig h tly  con fined  in  the  2 
d ire c tio n , as they  o n ly  occupy the  g ro u n d  s ta te  in  th is  d ire c tio n .

2 .2 . E ffe c tiv e  M ass  A p p ro x im a tio n

A t the  leng th  scales invo lved  in q u a n tu m  d o ts  in  w h ich  the de B ro g lie  w ave length  o f  the 
e le c tro n  is o n  the  o rd e r o f  the c o n fin e m e n t re g io n , e lec trons  be h a v io r is d o m in a te d  by th e ir  
q u a n tu m  m echan ica l p ro p e rtie s , m ost n o ta b ly  a q u a n tisa tio n  o f  th e ir  possib le energies. These 
p ro p e rtie s  are described  by the  e le c tro n 's  w a ve fu n c tio n s , the  e v o lu tio n  o f  w h ich  is gove rned  
by the  S ch ro d in g e r equa tion

rJ 'W r, o-, t)  -
i h ----- --------—  =  H ' V ( r , < r , t

Of (1)
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w here  the system H a m ilto n ia n

w he re  t/^(r, <7 , / )  is the system w a ve fu n c tio n , r rep resents  co lle c tiv e ly  the spa tia l coo rd ina tes 
o f  a ll e lec trons  in  the system , a  rep resents  the  sp in  co o rd in a te s  o f  a ll e lec trons , V is the 
g ra d ie n t o p e ra to r  a c ting  on  the  spa tia l c o o rd in a te s  o f  a ll e lec trons , A  is the  e x te rn a l m a g n e ti; 
v e c to r p o te n tia l, the  m agne tic  fie ld  B  =  V  x A , V  is the  e le c tro n ic  p o te n tia l in c lu d in g  the 
C o u lo m b  in te ra c t io n  be tw een e le c tro n  pa irs , g  is the  Lande  g  fa c to r, Sz is the  z -com ponen t 
o f  the  to ta l sp in , gf i BB S 2 is the  Z e e m a n  energy associated w ith  the in te ra c t io n  o f  spin w ith  
the m agne tic  fie ld , and the last te rm  7 represents  the  sp in  and re la tiv is t ic  in te ra c tio n s .

T h e  above e q u a tio n  p ro v id e s  b o th  spa tia l and phase in fo rm a tio n  o f  the  system a t all 
tim es, and thus  a co m p le te  kn ow ledge  o f  a ll possib le  observab les o f  the  system  u n d e r s tud \. 
H o w e ve r, so lv ing  th is  e q u a tio n  fo r  a ll e le c tro n s  and pa rtic le s  in  the  se m ico n d u c to r is not 
at a ll p ra c tica l. C e rta in  a p p ro x im a tio n s  need to  be m ade by ta k in g  in to  accoun t physica lly 
the  m ost im p o rta n t aspects o f  the system . G u id a n ce  is taken  fro m  p re v io u s  and cu rre n t 
e x p e rim e n ta l and th e o re tic a l stud ies as to  w h ich  e ffec ts  can be neg lected  and w h ich  are 
im p o rta n t, w ith  a tte m p ts  m ade to  und e rs ta n d  the  e ffec ts  on  the fin a l so lu tio n .

F irs tly , o n ly  m o b ile  e lec trons  w ill be cons ide red , w h ile  a ll o th e r e le c tro n s  and n uc le i p ro 
v ide  a la ttic e - lik e  p o te n tia l th a t can be ra th e r co m p le x  because o f  the la rge  nu m b e r o f 
a tom s in the  m a te ria l. H o w e ve r, it has been show n in  th e o ry  and by e x p e rim e n ta tio n  [21 -23 ] 
th a t such la ttic e  e ffec ts  and o th e r loca l e ffec ts  can be a p p ro x im a te d  by an e le c tro n  w ith  
an e ffe c tive  mass m*.  T h e  e ffe c tive  p e rm it t iv ity  e* is a lso d if fe re n t fro m  the  vacuum  p e r
m it t iv i ty  £() because o f  a screen ing  e ffe c t in  the  se m ico n d u c to r. F o r g a lliu m  arsen ide , the 
e ffe c tive  mass m* is a p p ro x im a te ly  0 .()667/nf„  and the  e ffe c tive  p e rm it t iv ity  e* is a p p ro x i
m a te ly  12.9s,, [2 3 -2 5 ]. N o te  th a t a n u m b e r o f  assum ptions are m ade here  a b o u t the  m a te ria l: 
it  is hom ogeneous and u n ifo rm , it has p e rfe c t c ry s ta llin e  s tru c tu re  and  h igh  p u r ity , and it is 
n o n d e fo rm in g  because o f  sc reen ing  (i.e ., the  presence o f  the  c o n d u c tio n  e le c tro n  does no t 
a lte r  the shape o f  the  la ttic e  p o te n tia l) . Second, the  La n d e  g  fa c to r is g e n e ra lly  sm all fo r 
se m ico n d u c to r m a te ria ls  (us ing  G a A s  as an exam ple , [g =  - 0 .4 4 ] ) .  In  th is  case, the  Zeem an 
energy  gfxBB S : is sm a ll and can thus  be neg lected  [26, 27]. O th e r  re la tiv is t ic  e ffects, such 
as s p in -o rb it c o u p lin g , are  a lso n e g lig ib ly  sm all in  co m p a riso n  w ith  the  C o u lo m b  energy, the 
exchange in te ra c tio n , and the  c o n fin e m e n t p o te n tia ls .

These assum ptions lead to  a m uch s im p lif ie d  H a m ilto n ia n  fo r  the q u a n tu m  d o t system,

w he re  N  is the  n u m b e r o f  m o b ile  e le c tro n s  c o n fin e d  ins ide  the  q u a n tu m  d o t, / / ,  is the 
s in g le -e le c tro n  H a m ilto n ia n  a c ting  on  the /th  e le c tro n , / / dwl is the  sum  o f  a ll s in g le -e lec tron  
H a m ilto n ia n  te rm s, and H"u is the sum  o f  a ll tw o -e le c tro n  H a m ilto n ia n  te rm s  d e scrib ing  the 
C o u lo m b  in te ra c tio n s  be tw een each p a ir  o f  e lec trons . F u rth e rm o re , in  th is  re v ie w  chap te r, 
we are m a in ly  conce rned  w ith  the  e le c tro n ic  s tru c tu re  o f  q u a n tu m  dots, w h ich  is inde pe n d e n t 
o f  tim e . In  th is  case, we can separate  o u t the tim e -d e p e n d e n t fa c to r  fro m  the S ch rod inge r 
e q u a tio n  and solve o n ly  the t im e - in d e p e n d e n t S ch ro d in g e r e q u a tio n ; th a t is,

=  H i]o{ +  H mt (3)

H ' V ( r x • • • r v , a r  ■ ■ a v ) =  £ ^ ( r ,  • ■ - r v , <r, • • • a N ) (4 )

A lth o u g h  the  H a m ilto n ia n  g iven by E q. (3 ) does n o t co n ta in  any s p in -re la te d  te rm s, the 
sp in  co o rd in a te s  are s til l ve ry  im p o rta n t in the  d e sc rip tio n  o f  m u lt ie le c tro n  w ave fune tions .



Electronic  S tructure o f Q uan tu m  D ots 549

T h is  is because e lec trons  are fe rm io n s  th a t m ust a lso obey the P au li’s exclusion p rin c ip le . 
T h is  is sta ted m a th e m a tica lly  by the  an tisym m etry ' p r in c ip le ; th a t is, i f  bo th  the spin and 
spa tia l co o rd in a te s  o f  tw o e le c tro n s  are in te rch a n g e d , the  w a ve fu n c tio n  m ust change sign. 
In  o th e r w ords, tw o  e lec trons  w ith  the same sp in  can no t be a t the same place a t the  same 
tim e , as bo th  e lec trons  w o u ld  have the  same co o rd in a te s , m a k in g  the w a ve func tion  van ish. 
A  va lid  w a ve fu n c tio n  w o u ld  sa tis fy  b o th  the  S c h ro d in g e r e q u a tio n  and the P au li’s exc lus ion  
p rin c ip le .

3. BASIC ANALYTICAL AND NUMERICAL TECHNIQUES
T h is  section de ta ils  basic a n a ly tica l and n u m e ric a l techn iques  com m on  to  the va rious  c o m 
p u ta tio n a l schemes deve loped  and used to  s tudy th e  e le c tro n ic  s tru c tu re  o f  q u a n tu m  do ts  
and o th e r nanosystem s.

3.1 . S in g le -E le c tro n  Q u a n tu m  D ots

3.1.1. Analytic Solutions for Parabolic Confinement Potential
I f  the  qua n tu m  d o t is fo rm e d  by a c irc u la r ly  sym m e tric  p a ra b o lic  co n fin e m e n t p o te n tia l and 
an u n ifo rm  ex te rn a l m agne tic  f ie ld  B  is a p p lie d  p e rp e n d ic u la r to  the tw o  d im ens iona l x-y  
p lane, we have ana ly tica l s o lu tio n s  fo r  such tw o -d im e n s io n a l s ing le -e lec tron  q u a n tu m  d o t 
systems. T h is  was f irs t estab lished  by Fock  [28 ] and la te r, in d e pe n d e n tly , by D a rw in  [29 ] and 
Landau  [30 ]. F o llo w in g  F o ck ’s w o rk , we w r ite  the  system H a m ilto n ia n  as the  fo llo w in g :

I /  e * \ 2 1 * ^
H =  - —  - i h V  -  - A  1 +  r

2 m * V c 7 2 0

Because the  m agne tic  f ie ld  is a p p lie d  p e rp e n d ic u la r ly  to  the  x -y  p lane, A  =  (-1- { By ,  — \ B x ,  0 ) 
in  the  sym m etric  gauge. In  th is  case, we have

H i p =  + X-m*( 1)lr>p (5 )
2m* V d* 2 c dy 2 c J 2

w here  ip represents a s in g le -e le c tro n  w a v e fu n c tio n . In  p o la r  co o rd in a te s  ( r ,  0 ); th a t is,

h 2 /  d 2if/ 1 difr 1 i o  h  dijj (m *(o~c r^ 1 2 A ,

h * — S ^ ( ^  + 7 W * ^ )  +  + ( - f - +  2 ™ (6)

w here  co(. =  is the  c yc lo tro n  fre q u e n cy , and we h e n c e fo rth  re fe r to  the  s treng th  o f  m ag 
n e tic  fie ld  in te rm s  o f  coc.

By sepa ra tion  o f  va riab les  and the  s u b s titu t io n  o f  if/ = - ^ f ( r ) e ',n0 in to  the  s in g le -e lec tron

S ch ro d ing e r e q u a tio n  Hi//  =  Eij/ ,  we have

I d /  d \  m 2 f l 2m *2 9 E m
r-

m m  (o.
2 r 3 r \  dr I  2 r 2 2K- h- 2 h

w here  f l 2 =  +  a)^).
A s  r ->  0 , the above d if fe re n tia l e q u a tio n  s im p lif ie s  to

2 r dr \  dr )  2 r-

S u b s titu tin g  f ( r )  =  r l\  we o b ta in

- ( m 2 — p 2) r p~2 =  0

w h ich  has s o lu tio n  p = ±tn.  A s  the  s o lu tio n  sh o u ld  be f in ite  a t the o r ig in , we need p -- \m\.
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A s  r —► oo, the  d iffe re n tia ] e q u a tio n  becom es

2 r dr \  di
k 2

r -  + r r > -  / ( f )  = 0 (9)

the  s o lu tio n  o f  w h ich  is

f U

w h e re  J , and d 2 are  constants, /c =  and / „  and J() are the  m o d ifie d  Bessel fu n c tio n s .
A s  r —> oo, / (>(A :r2/2 )  d iverges. T hus, the physica l s o lu tio n  is K {)( k r / 2 ) y w h ich  is o f  the  fo rm
e -kr-/2 f o r  ia rge

I f  we assume a tr ia l w a ve fu n c tio n  o f  the fo rm

/ ( , • )  =  r " ' e - k,- - g ( r )

and let

Em* mm*co, 
+

2 ft- 2/?. 

then  we get a d iffe re n tia l e q u a tio n  fo r  g(r) ,

[ y : “  2k( \m\  + l ) ] g ( r )  +  ( ~ 2k r  +  2 \m\ + l ) g ' ( r )  +  rg"(r)  = 0

T h e  above e q u a tio n  has the  genera l s o lu tio n

g ( / • )  =  £' ,  I F , +  e-> i F\ ^ - T - + 2 \m\ + 2 X, \m\  + U k r

( 10)

w h e re  e x and e2 are constan ts  and , I] is the h yp e rg e o m e tric  fu n c tio n . To  be ab le  to  n o rm a lize  
the  so lu tio n , the  h yp e rg e o m e tric  fu n c tio n  m ust be f in ite . T h is  im p lie s  th a t , F,(—/?, ft, z), 
w here  n is an in te g e r and ft >  1. T h is  c o n d it io n  is sa tis fied  by the second h yp e rg e o m e tric  
fu n c tio n  in  E q. (10 ), as b =  \m\ +  1 >  1, b u t no t the f irs t h yp e rg e o m e tric  fu n c tio n . T h is  gives 
us th e  c o n d itio n

th a t is,

E  =  ( In  +  \m\ +  1 )h i l  — -rnhco(.

( 1 1

(12)

L'”( k r )  = { ^  ) {F i ( - n , m + l ; k r -)

so the  s o lu tio n  to  Eq. (7 ) is

J (r) = N lr m r ”' e ^  L * ( k r )

w here  the N n^mi is a n o rm a liz a tio n  constan t. A f te r  n o rm a liz in g  using the o r th o g o n a lity  re la 
tio n s  o f  the L a g u e rre  p o lyn o m ia ls , the fin a l resu lt is

T h e  gene ra lized  L a g u e rre  fu n c tio n s  are d e fin e d  by

n H- m

2 k '

i :
r ’«'c a 2,l': / ( k

' s /2 -rr(n  +  \m\y._

These qu a n tize d  energy levels are know n  as the F o c k -D a rw in  states.

( 1 3 )
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W hen th e re  is no a p p lie d  m agne tic  fie ld , Eq. (1 2 ) becom es

t„m = ^ ( 2 / /  +  M  +  1)

and we can deduce th a t the  /7th h ighest energy leve l is /7-fo ld degenera te . T h is  degeneracy is 
b roken  by a p p ly in g  a m a g n e tic  fie ld , as show n in F ig. 3. In  the l im it o f  h igh  m agnetic  fie lds, 
the ene rgy  level re la tio n  becom es

E „ m  =  ^ r ( 2 «  +  M  -  m  +  1 )

and we can see L a n d a u  bands fo rm in g  w ith  energ ies ^ .........

3.1.2. Finite-Difference Shooting Method
For o th e r  fo rm s  o f  co n fin e m e n t p o te n tia ls , we do  no t have a n a ly tica l so lu tions  in genera l. 
H ow eve r, i f  the co n fin e m e n t p o te n tia l is c irc u la r ly  sym m etric , tha t is, V ( r , 9 )  = V(r ) ,  by 
using sep a ra tio n  o f  va riab les  w e can reduce the  tw o -d im e n s io n a l S ch ro d ing e r’s e q u a tio n  to  
a o n e -d im e n s io n a l ra d ia l e q u a tio n ,

l d (  d  \  n r
2 ; - d i \ r J r )  + 2r ~ + V ( r

R(r)  =  E R ( r )  (14 )

w h ile  the  e le c tro n  w a v e fu n c tio n  is

<//(/*, 0) =  - = e " ' wR{r\ 
\J2 it

By a s im p le  su b s titu tio n  R(r )  M(r) / y / r ,  the  above ra d ia l equ a tio n  can be w r it te n  in  the 
fo llo w in g  genera l fo rm :

+  ( r))« (r)  = £N(r) (15)

w here  the  e ffec tive  p o tc n ti;

E q u a tio n  (15 ) can be re a d ily  so lved n u m e ric a lly  by the fin ite -d iffe re n c e  shoo ting  m e th o d  
[31, 32 ], in  w h ich  the second d e riva tive  is a p p ro x im a te d  by

cl~))\(r) _  3 U ;w ,)  +  3 i( r , ,„ ,) -2 ? K (> -,,)  

dr 2 ~

Magnetic field (T)

Figure 3. The evolution of  single-electron energy levels as the external magnetic field increases.
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w here  are the  d iscre tized  ra d ia l w a ve fu n c tio n  and A is the  size o f  the  num erica l g rid
in te rva l. T h is  leads to  the fo llo w in g  fin ite -d iffe re n c e  e q u a tio n :

1 M ( r „ +I ) +  »<(<•„-■ ) - 2 M ( / - „ )

2 A :

w here  the tru n c a tio n  e rro r  is on the o rd e r 0 ( A 2). E q u a tio n  (17) can be rea rra n g e d  so tha t 
we eva lua te  :) ! ( / „  +  I )  using the values o f  ;K(/-„) and ;)((/•„ — 1); tha t is,

N ( r , I+1) % 2;)i( rn) -  ;)((/•„. ,)  +  2 A 2[Veft(r„) -  £ ] » i ( 0  (18)

T he  n u m e ric a l p ro ce d u re  is s tra ig h tfo rw a rd , assum ing tw o  a rb itra ry  in it ia l  va lues fo r  W (r„)  
and N (> ,), and  th e n  using E q. (18 ) to  o b ta in  the o th e r va lues recu rs ive ly . T h e  o n ly  c o m p li
ca tio n  is th a t we do  n o t know  the va lue  o f  energy E.  I f  the  w a ve fu n c tio n  is unbo u n d , the re  
is a s o lu tio n  fo r  any g iven energy, w h ich  can be o b ta in e d  ite ra tiv e ly  fo llo w in g  the  above 
recu rrence  re la tio n . H o w e ve r, i f  the w a ve fu n c tio n  is bo u n d , the energy E  can on ly  take ce r
ta in  q u a n tiz e d  va lues. In  th is  case, the sh o o tin g  m e th o d  sta rts  w ith  an e s tim a te d  E  and then 
sys tem a tica lly  changes its va lue  u n til the fin a l w a ve fu n c tio n  satisfies the  b o u n d a ry  co n d itio n s  
im posed  by the  co n fin e m e n t p o te n tia l.

A  M a th e m a tic a  im p le m e n ta tio n  o f  the s h o o tin g  m e th o d  is g iven be low . We begin by firs t 
d e fin in g  a c o n fin e m e n t p o te n tia l and va rious  p a ram e te rs  fo r  the ca lcu la tio n . W e w ill in teg ra te  
o u t to  a d is tance  o f  jn n a x  w ith  in c re m e n t A.

k 2x 2 1 n r
~ 2  x7: + 2x ^ ’

m  — I ;  k  — 1.35;

xm a x  =  5 .0 ; A =  0 .05;

K va lues  =  T ab le [{.v , V ( x ) ) % {,v, 0 .03 , .vm ax, A } | ;

^ L e n g th  =  L e n g th  [ Vva lues ];

L o w e rE n e rg y  — 0; U p p c rE n e rg y  =  5;

E q u a tio n  (1 8 ) is th e n  used fo r  the in te g ra tio n ; th a t is,

:=  =  2 { - « A 2 +  V K "  -  1 )A ]A 2 +  1 -  ( A , ( 19)

N ext we have the  ite ra to r

D o p  =  (L o w e rE n e rg y  +  U p p e rE n e rg y ) /2 ;

4/ F la tte n [P re p e n d [T a b le [iA ,l>?, {/7, 3, K L e n g th } ] ,  {<//, f , </'2 , } ] ] ;

*//> =  Table[{AzA, 4/ sA i n ]]}  ̂ i n ' ^ L e n g th } ] ;  (20 )

lis t =  Jo in  [lis t, { { ? ,  ij/ / } } ] ;

If [L a s t[« //s ,,] <  0, U p p e rE n e rg y  =  L o w e rE n e rg y  — X ),

{C o u n te r  1, 2 5 }]

T h is  searches fo r  the  co rre c t energy v ia  a b ise c tio n  m e th o d . T he  im p le m e n ta tio n  here 
runs fo r  25 steps. F ig u re  4 is genera ted  by p lo tt in g  the e lem en ts  o f  l ist  every  five  tim e  steps.

3.1.3. Numerov-Cooley Matching Method
The  m a tc h in g  m e th o d  invo lves in te g ra tin g  a tr ia l w a ve fu n c tio n  b o th  in w a rd  and o u tw a rd  to  
some chosen m id p o in t and m a tch in g  the  va lue  and d e riv a tiv e  a t th a t p o in t. T h e  w a ve fu n c tio n  
can s im p ly  be scaled to  be co n tin u o u s , b u t the d e riva tive  can o n ly  be m a tched  fo r  c e rta in
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Energy=2.5 eV Energy=2.65625 eV

Energy=2.70996 eV Energy = 2.70798 eV

Energy=2.708125 eV Energy=2.708129 eV

Figure 4. Convergence of the radial wavefunction calculated by the finite difference shooting method.

va lues o f  energy i f  the  w a ve fu n c tio n  is b o u n d . T h e  basic a lg o r ith m  va ries  the  ene rgy  as a 
p a ra m e te r u n til the  c o rre c tio n  to  the  e s tim a te d  energy E  becom es s u ff ic ie n tly  sm a ll.

T h e  N u m e ro v -C o o le y  m e th o d  uses a h ig h e r-o rd e r a p p ro x im a tio n  than  the  fin ite -d iffe re n c e  
schem e [33 ]. T h e  basic fo rm u la  o f  th is  m e th o d  is the  th re e -te rm  re cu rrence  re la tio n :

w here

y(r,4l) + Y ( n _t) -  2Y( r , )  =  2A: (Veff(/-) -  £)SH(r,.), 

A 2
Y( n )  = i ( K - f f ( 0  -  E) m n ) .

(21)

(22)

A g a in  a tr ia l energy is assumed firs t. T h e  w a ve fu n c tio n  is ca lcu la ted  by in te g ra tio n  in w a rd  
fro m  the o u te r  b o u n d a ry  u n til the  abso lu te  va lue  o f Y { r ^  stops increas ing  w ith  decreasing  
/', and th is  p o in t is set as the m a tch in g  p o in t rm. T h is  is to  m ake sure th a t the  s o lu tio n  is 
s ig n if ic a n tly  la rge  a t th e  m a tch in g  p o in t to  gua ran tee  fast convergence. T h e  w a ve fu n c tio n  is 
then  in te g ra te d  o u tw a rd  fro m  the  in n e r b o u n d a ry  to  rm and n o rm a lize d  so th a t y oul( 0  =  
Y m(rm). T h e  d isc repancy  betw een the  in w a rd  and o u tw a rd  in te g ra tio n s  a t rm is used to  
o b ta in  the  c o rre c tio n  fo r  the energy e igneva lue :

D( E ) K ( U  +  Y ( r J  -  y ( / - „ ,+ l ) / ( 2 A - ) ]  +  [ V j r J  -  W
(23)

T h is  c a lc u la tio n  is re p ea ted  several tim e s  u n t i l  D( E )  is su ff ic ie n tly  sm a ll. T h e n  the  co rre c t 
w a ve fu n c tio n  is o b ta in e d . T h e  node  n u m b e r o f  the  w a ve fu n c tio n  can be c o u n te d  easily  to
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d e te rm in e  the  q u a n tu m  n u m b e r o f  the  o b ta in e d  w a ve fu n c tio n . The  tru n c a tio n  e r ro r  fo r  the 
N u m e ro v -C o o le y  m e th o d  is o f  the  o rd e r ( ) (A 4), p ro v id in g  a m u ch -im p ro ve d  n u m e rica l accu
racy. By using Eq. (23), the convergence  ra te  is a lso d ra m a tic a lly  increased in com parison  
w ith  the s tanda rd  sh o o tin g  m e thod .

W e beg in  the M a th e m a tica  im p lim e n ta tio n  by f irs t d e fin in g  the c o n fin e m e n t p o te n tia l and 
the  va rio u s  p a ram e te rs  used fo r  the ca lcu la tions .

k~r~ m
8 r 2 2 r

k  =  1.35: m  =  1;

num  — 1000; r — 4; A  =
num

V
jcg rid  =  T a b le ) ///, {</, 1, n u m } ];  K t*r id  =

(a .vgrid

X =  TahlcfO , {n u m } ] ;  *[[111 =  0: ,* [ [2 ] ]  =  10 5; 

E q u a tio n  (2 1 ) is then  used fo r  the  in te g ra tio n :

( K -1 -  A-
6

VL := V g r id f [ / ] J;

^ [ [n u m ] |  =  10 \  ^ [ [n u m  -  1]] =  10~4;

All'll;

w ith  in it ia l energy

T h e  ite ra to r  is

lis t =  { } ;

D o fm id  =  C a tc h [D o [/Y [ [ / ] ]
- * ) * [ [ /  +  i l | A -  +  2 y , +l - y ,

1 -  A - ( K  - * ' ) / 6  

H'Ia I I ' I I  <  A l l '  +  1]J> T h r o w ( / ) | ,  { / ,  num  — 2, 1 , - 1 } ] ] + -  1;

DoUU-n =  . {/. num. m,d. - 1} |;

D o fc r fM ] .  m id } ] ;
1/111 JJ 1 - A  ~ { V , - t ) l b  1 n

DoW|i]] =  —jy-f—TT, {;. 1, mid}:,V|[mid]]
lis t =  J o in [ l is t .  { { / ,  ^ } } | ;

(24)

<?  C" \' V 21-
( - Y mid I +  2 V miJ -  ^ n m l i  l )  +  (  Ki mi  “  * ) * [ [ m i d ] ] ) ;

r  =  4  rj  . 

{c o u n te r, 1 ,4 } ]

w h e re  Eq. (2 3 ) is used to  co rre c t the es tim a ted  energy at each ite ra t io n . C onve rgence  can be 
ach ieved  usua lly  w ith in  a co u p le  o f  ite ra tio n s , and the o p tim iz e d  w a ve fu n c tio n s  a rc  shown 
in F ig. 5 fo r  each step.

3.1.4. Direct Matrix Method
T h e  fin itc -d iffe re n c e  s h o o tin g  m e th o d  and the N u m e ro v -C o o le y  m a tch in g  m e th o d  can be 
used to  solve o n e -d im e n s io n a l S ch ro d in g e r equa tions , bu t they  are n o t su ita b le  fo r  tw o  o r  
m o re  d im ensions. In  a o n e -d im e n s io n  p ro b le m , the b o u n d a ry  c o n d itio n  usua lly  conce rns  o n ly  
tw o  po in ts , w h ich  can be hand led  re a d ily  bv the s h o o tin g  o r  m a tch in g  m e thods. In  h ighe r 
d im ens ions , how ever, the  b o u n d a ry  c o n d it io n  is im posed  on lines o r  surfaces, m a k in g  the 
s h o o tin g  o r  m a tch in g  m e thods  in a p p ro p r ia te  [34 ].
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Energy = 2 eV Energy = 2.964 eV

Energy = 2.70017 eV

Figure 5. Convergence of the radial wavefunction calculated bv the Numcrov-Cooley matching method.

A  d ire c t m a tr ix  m e th o d  can be used to  solve gene ra l d if fe re n tia l e igenva lue  equa tions  in 
tw o  o r h ig h e r d im ens ions , w h e re  the w a v e fu n c tio n  as w e ll as the  L ap lac ian  o p e ra to r and 
the  p o te n tia l energy o p e ra to r  are  m apped  o n to  a m u ltid im e n s io n a l g rid . F o r exam ple , in 
tw o  d im ens ions , the S c h ro d in g e r e q u a tio n  can be w r it te n  as the fo llo w in g , w ith  the second 
de riva tive s  in the a p p ro x im a te  f in ite  d iffe re n c e  fo rm :

d2i l /{x,y) d2i f / (x,y)
dx dy 2

+  K ( a\  >’ )<//

<//(/+ 1 , / )  +  <A(/-  l ,y) - 2 I p ( i j )  + 1) +  -  1) -2<//(/,/)
( A * ) 2 (Ay)2

(25 )

F in d in g  the  so lu tio n  a t each p o in t ( / , / )  o f  the  n u m e r ic a l la ttic e  gives a system o f  a lgebra ic  
equa tions , w h ich  can be w r it te n  in  m a tr ix  fo rm  as

Q . . .  Q - 1  0 . . .  0 _1
/  f VJ

4 - ~ T A- ( V L j . - E )  - 1  0 • 0 - 1  0 0

</v I-1

</'/-1./ 

$ M-I.y

7+1

=  0

(26)
w here  we assume A.v =  A y  =  A.

T h e  above m a tr ix  e q u a tio n  can be so lved by m any w e ll-es tab lished  m ethods (see, e.g.. 
Refs. [35, 36 ]). N o te  th a t the m a tr ix  on  the  le ft  s ide o f  the  above equ a tio n  is sparse, w ith
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m any ze ro -va lued  e lem ents. M a k in g  use o f  th is  in fo rm a tio n  can save on storage re q u ire m e n ts  
on  the  c o m p u te r and on o ve ra ll t im e  needed to  fin d  the e igenvalues and e igenvecto rs . In 
a d d it io n , we are fre q u e n tly  o n ly  in te re s te d  in the  low est e ig e n fu n c tio n s  o f  a system .

T h e  a lg o r ith m  we use fo r  so lv ing  the  e igenva lue  p ro b le m s  encoun te red  in th is  w o rk  is 
the  im p lic it ly  re s ta rte d  A rn o ld i fa c to r iz a tio n  a lg o r ith m , as im p le m e n te d  in  the  set o f  lib ra ry  
ro u tin e s  A R P A C K  [37]. In  th is  m e th o d , a set o f  S chur vec to rs  is ca lcu la ted  th a t gives rise 
to  a p p ro x im a te  e igenva lues and e igenvecto rs  o f  the  o r ig in a l m a trix . The  lib ra ry  is w r it te n  in 
such a way th a t w hen  the  m a in  ro u tin e  is ca lled , it  re tu rn s  the user w ith  a vec to r. T h e  user 
is requested  to  m u lt ip ly  the  v e c to r by the  m a tr ix  fo r  w h ich  the e igenvalues are re q u ire d  and 
then  re -ca ll the  same ro u tin e . T h is  process co n tin u e s  u n t i l  convergence is ach ieved. W hen 
the  lib ra ry  d e te rm in es  th a t a reasonable  set o f  S chur vec to rs  has been ca lcu la ted , a separate 
ro u tin e  is used to  ca lcu la te  the  e igenva lues and e igenvecto rs  fro m  the p re v io u s  ite ra tive  
re fin e m e n t.

T h e  A R P A C K  lib ra ry  is m ost su itab le  fo r  use on “ sparse”  m atrices, in  w h ich  the  d e fin i
t io n  o f  “ sparse”  is such th a t the  m u ltip lic a tio n  o f  a v e c to r by the m a tr ix  is an o rd e r  O(n)  
o p e ra tio n . T h a t is, i f  the v e c to r has n e lem ents, and the m a tr ix  has n 2 e lem ents , m ost o f 
the  e lem ents  o f  the  m a tr ix  are ze ro , so th a t the n u m b e r o f  m u lt ip lic a tio n s  and a d d itio n s  
re q u ire d  to  m u lt ip ly  the v e c to r by the m a tr ix  is o n ly  p ro p o r t io n a l to  n (m u lt ip ly in g  a dense 
m a tr ix  w ith  rr  nonze ro  e lem en ts  is an o rd e r ()[nz] process). Thus, the tim e  re q u ire d  to  
co m p le te  the ca lcu la tio n  is p ro p o r tio n a l to  the le n g th  o f  the  e igenvecto rs  and the  n u m b e r 
o f  e igenvecto rs  re q u ire d . T h e re fo re , the  A R P A C K  lib ra ry  is m ost advantageous w hen  on ly  
the  firs t fe w  e igenvecto rs  are re q u ire d , as is the case, fo r  exam ple , w hen c o m p u tin g  the  firs t 
fe w  e ig e n fu n c tio n s  o f  a H a m ilto n ia n .

T h is  m e th o d  was used to  ca lcu la te  the energy s tru c tu re s  o f  s in g le -e lec tron  q u a n tu m  do t 
systems w ith  five d if fe re n t geom etries ; nam ely, c irc u la r , e l lip t ic , tr ia n g u la r, square , and a n n u 
la r r in g  [18 ]. I t  is w o rth  n o tin g  tha t, in a c irc u la r ly  sym m e tric  quan tum  do t, the  angu la r 
m o m e n tu m  o p e ra to r com m utes  w ith  the system H a m ilto n ia n , and thus the  energy e igenstates 
are s im u lta n e o u s  e igenstates o f  the an g u la r m o m e n tu m . In  th is  case, the  energy and  an g u la r 
m o m e n tu m  q u a n tu m  num bers (/?, m)  can be used to  u n iq u e ly  id e n tify  each e igens ta te  o f  the 
system . H o w e ve r, w hen the  c irc u la r sym m etry  is b ro k e n  and the  co n fin e m e n t p o te n t ia l is o f  
an a rb itra r ily  com p lex  geom etry , we do n o t re a lly  have a gene ra l e q u iva le n t set o f  q u a n tu m  
num bers  th a t can be used to  u n iq u e ly  id e n tify  each e igensta te . F o r exam ple , one  can use 
the  n u m b e r o f  nodes (nx ,  ny)  in  the  ( x , y )  d ire c tio n  to  id e n tify  the firs t five  e igen states in 
the  e ll ip t ic  d o t as ( n x , n y )  =  ( 0 ,0 ) ,  ( 1 ,0 ) ,  (0 , 1), ( 2 ,0 ) ,  and (1 , 1), respective ly . H o w e ve r, 
such c lass ifica tion  does n o t w o rk  fo r  the  tr ia n g u la r, the  square, o r  the annua l r in g  d o t. F o r 
each in d iv id u a l q u a n tu m  d o t w ith  a ce rta in  degree o f  sym m etry , it  is possib le  to  f in d  som e 
o p e ra to rs  th a t w o u ld  co m m u te  w ith  the system H a m ilto n ia n , b u t th is  canno t be g ene ra lized .

P resented in  Figs. 6, 7, 8, and 9 are the  e le c tro n  dens ities  o f  the  w a ve func tions  th a t are  the  
e igensta tes o f  the  H a m ilto n ia n  o p e ra to r o n ly , w h ich  neverthe less re flec t the sym m e try  o f  the 
q u a n tu m  dots u n d e r study. T h e  firs t pane l o f  each o f  these figures shows the  c o n fin e m e n t 
p o te n tia l o f  each d o t. T h e  o th e r panels illu s tra te  the  charge dens ity  d is tr ib u tio n s  o f  the 
f irs t five  e igenstates o f  the system, w h ich  re fle c t the  sym m e try  o f  the q u a n tu m  d o t. T he  
co rre sp o n d in g  energy levels are lis ted  in  Table  1. A s  show n, the  degeneracy o f  the  leve ls in 
the  c irc u la r  d o t has been lif te d  to  a ce rta in  e x te n t in  the  o th e r  fo u r  q u a n tu m  d o ts  due  to  
th e ir  lo w e r sym m etries .

In  p r in c ip le , th is  m a tr ix  app roach  is co m p le te ly  gene ra l and can be a p p lie d  to  a rb it ra r ily  
h igh  d im ens ions . H o w e ve r, it  is no t p ra c tica l fo r  p ro b le m s  in th ree  o r  h ig h e r d im e n s io n s , 
n o r  fo r  a tw o -d im e n s io n a l p ro b le m  in  w h ich  a large n u m e rica l g r id  is needed. T h is  is s im p ly  
because the  m a tr ix  size grow s ra p id ly  as the  p ro b le m  d im e n s io n  o r  the  n u m b e r o f  g r id  p o in ts  
in  each d im e n s io n  increases. F o r exam ple , i f  we use 100 p o in ts  in  each d ire c t io n  o f  the 
n u m e rica l g r id , the m a tr ix  size is 10.000 x 10,000 fo r  a tw o -d im e n s io n a l p ro b le m . In  th ree  
d im ens ions , the  m a tr ix  size w o u ld  be 10]2.

3.1.5. Rayleigh-Ritz Variational Method
T h e  R a y le ig h -R itz  v a ria tio n  p r in c ip a l can be used to  so ive genera l d if fe re n tia l e igenva lue  
eq u a tio n s  in tw o  o r  h ig h e r d im ens ions  by using a tr ia l s o lu tio n  th a t is a lin e a r c o m b in a tio n
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t i t

Figure 6. An elliptic quantum dot. First panel: confinement potential: other panels: charge density distributions of 
the first five eigcn-states.

o f  basis fu n c tio n s . T h e  p ro b le m  is again co n ve rte d  to  a m a tr ix  e igenvalues p ro b le m , w h ich  
solves fo r  the co e ffic ie n ts  o f  the  lin e a r co m b in a tio n . H o w e ve r, the  size o f  the  m a tr ix  is 
d e te rm in e d  by the  n u m b e r o f  basis fu n c tio n s  re q u ire d  in  the  expansion , w h ich  is in genera l 
d ra s tic a lly  sm a lle r th a n  th a t re q u ire d  in  d ire c t m a tr ix  m e thod .

F o r com p le teness, we p resen t the  basic th e o ry  here. We beg in  w ith  an e q u a tio n  o f  the 
fo rm

H u „ ( x )  =  A nu„ ( \ ) (27 )

in w h ich  H  is the system H a m ilto n ia n  in the  S ch ro d ing e r equ a tio n  (o r  any o th e r lin e a r 
d if fe re n tia l o p e ra to r) , w „(x ) are its  e ig e n fu n c tio n s , and A„ are the co rrespond ing  eignevalues. 
T h e  p ro b le m  can be fo rm u la te d  as a fu n c tio n a l e q u a tio n ,

f  i/ /* (x ) /? i/ /(x )d x  

f  dx
(28 )

I t  is easy to  see th a t i f  ijj is an e ig e n fu n c tio n  o f  H , ip =  u/n then  A [ ip]  w il l  be the e igenva lue  
o f  A,r  I t  can also be show n th a t i f  som e fu n c tio n  ijj causes A [ijj] to  becom e s ta tiona ry , th a t

S A M
8  ijj

=  0 (2 9 )

th e n  ip is an e ig e n fu n c tio n  o f  H  [38].
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Figure 7. A triangular quantum dot. Same as Fig. 6.

T h e  lin e a r v a r ia tio n a l m e thod  expands i)/ in  te rm s  o f  a co m p le te  set o f  basis fu n c tio n s  
i '- ( x )  so tha t

<A('V) =  J 2 civ, (x ) =  cT i^(x)
i— 1

w here  {c } , — ch and { j ' ( x ) } ,  =  J',-(x), E q. (2<S) becom es

' L i . , cU ' i f  ( x ) ^ ( x ) d x

In tro d u c in g  the R itz  m a tr ix  71

and the o ve rla p  m a tr ix  C

{//}.  =  I  r ' ( x ) / 7 e , ( \ ) c ! x

{^ 1 , , = j  r ( x i r  i . \ k i \

E q . ( 3 1 )  read s

A f v>!
c T // e

(30)

(31)

, v )

( 3 3 )

(34)
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Figure S. A square quantum dot. Same as Fig. ft.

A  v a r ia tio n  o f  E q . (3 1 ) w ith  respect to  the  expans ion  co e ffic ie n ts

5A [t/r]

SC;
=  0 (35 )

leads to  the  gene ra lized  m a tr ix  e ig n cva lu e  e q u a tio n , know n  as the R itz  m a trix  e q u a tio n

=  Af'c (36)

In  gene ra l, H and (' a re  in f in ite  d im e n s io n a l m a trices . T ru n c a tin g  1( and ? to  V x V m atrices, 
the re su ltin g  V -d im e n s io n a l m a tr ix  e ig n cva lu e  p ro b le m .

(e , 11( , )C , =  Ac (37)

can be so lved fo r  n o n s in g u la r c , .  A s  a re su lt o f  th is  tru n c a tio n , the e igenvectors and e igen 
va lues are now  a p p ro x im a tio n s  o f  the ac tua l so lu tio n s .

i/y (\) ~  iA , ( x ) =  £ c , i ' , ( x ) = c ! ' ' i W (38)

A s we increase . \ , we converge  to  the exact e ignevec to rs  and e igenvalues, w ith  the c o n d i
tio n  tha t

A ,,,,, <  A [« M

im p ly in g  th a t A [ i// ] is an u p p e r b o u n d  fo r  the  exact e igenva lues o f  H  [38).



560 E lectronic  S tructure o f  Q uan tu m  Dots

Figure 9. An annular ring quantum dot. Same as Fig. 6.

T h e  R itz  m a tr ix  E q. (36 ) fo r  a s in g le -e le c tro n  system can he re a d ily  co n s tru c te d  and 
so lved, fo r  exam p le , by the  A R P A C K  package, as described in the  p re v io u s  section. 
F o r m u lt ie le c tro n  system s, va rious  c o m p u ta tio n a l schem es have been deve loped  to  o b ta in  
th e ir  w a ve fu n c tio n s  and energy s truc tu res , w h ich  w il l  be the to p ic  o f  S ection  4. C e n tra l to  
these schemes is the  co n s tru c tio n  o f  tw o -p a rtic le  in te ra c t io n  in teg ra ls , w h ich  is discussed in 
the  fo llo w in g  sec tion .

3 .2 . T w o -P a rtic le  In te ra c tio n  In te g ra ls

T o  co n s tru c t the  R itz  m a tr ix  fo r  a m u ltie le c tro n  system , we need to  ca lcu la te  in n e r p roduc ts  
o f  the  fo llo w in g  fo rm

- (< /'„ (* , y)fl>n(x', y' )\H""\il/y(x ,  y W „ ( x \  / ) >  (40 )

w h ich  is an in te g ra tio n  in  fo u r  d im ens ions  and can be ve ry  tim e  consum ing . I f  we p e rfo rm  
th is  in te g ra t io n  as a R e im a n  sum , w here  each t//, is rep resen ted  by a g r id  o f  n x x n v p o in ts , 
we w o u ld  need to  eva lua te  the  in teg rand  n Ax x  n\  tim es  fo r  each possib le  c o m b in a tio n  o f

Table 1. Single-electron energy level:5 (a.u.).

/?th leve1 Circular Elliptic Triangular Square Ring

1 St i.O i.l 0.9933 0.9954 1.005
2nd 2.0 2.1 1.9604 1.977 1.121
3rd 2.0 2.3 1.9604 1.977 1.121
4th 3.0 3.1 2.879 2.761 1.450
5th 3.0 .■'.3 2.974 2.929 1.472
6th 3.0 3.5 2.974 3.194 1.99(>
7th 4.0 4.1 3.852 3.698 1.996
8th 4.0 4.3 3.852 3.698 2.688
9th 4.0 4.5 3.966 4.197 2.702
10th 4.0 4.7 4.008 4. W 3.531
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/3, y , 77. F u rth e rm o re , the in te g ra n d  has a s in g u la rity  at the o r ig in , w he re  r — / ' .  I t  is an 
in te g ra b le  s in g u la rity , b u t th is  necessitates a la rge  n u m b e r o f  g rid  p o in ts , espec ia lly  close to  
the s in g u la rity , to  ach ieve reasonable n u m e rica l accuracy.

In  the fo llo w in g  tex t, we discuss tw o  m e thods deve loped  fo r  accura te  e va lu a tio n  o f  the 
tw o -p a rtic le  in te ra c t io n  in tegra ls . T he  f irs t m e th o d  reduces the fo u r-d im e n s io n  in te g ra tio n  
in to  a sum o f  o n e -va ria b le  in teg ra ls  th a t can be eva luated a lgebra ica lly . T h e  second m e th o d  
casts the p ro b le m  in  the  fo rm  o f  a P oisson’s e q u a tio n  whose so lu tio n  is the  in te g ra t io n  resu lt.

3.2.1. Analytical Formulas
I f  E q . (13 ) is used as the  basis fu n c tio n s , we can a c tu a lly  eva luate the  tw o -p a rtic le  in te ra c 
t io n  in te g ra ls  a n a ly tic a lly  to  a rb itra ry  p rec is ion . In  th is  case, the  in te g ra tio n  can be w r it te n  
e x p lic it ly , in p o la r  co o rd in a te s , as

=  » ....< *, / ) }

-  r r r  r ») »„ ( _<■■ W U s , < n M M d r
A) A) h) h) y/ r2 +  s2 — 2rs c o s (0 — </>)

-X r  *1 tt p27T /?.IW( r ) / ? M ( 5) « flfc (r)/? frf( j ) c ,'(A- ,,,,®+i(rf- ^
= rs —  (--- — --------- dd d(j) d r  ds  (41 )

J{) Jo Jo Jq Arr2y/ r2 -\- s 2 — 2 r s co $(0 — (p)

w here  R„m(r)  =  [2k ^ +ln \ / (n  +  |/w |) ! ]1/2r ,OT,£ ' (* /2)r"L l! ,,,(A :r2).
N o tin g  th a t the  in te g ra n d  is p e r io d ic  in  b o th  0 and </> w ith  p e rio d  277, we can app ly  the 

tra n s fo rm a tio n  (p ->  6 4- S, o r e q u iva le n tly , 0 (p + 8 w ith  de lta  ra n g in g  fro m  0 to  277. 
T hese, respective ly , g ive

-/>«/ =  _ L  [ 2n e ) U .B r  r  f 2n K m{ r ) R n (s )R ah(r)R,, l(s )e ild- ,l)S
mnpq  i (, J0 J{) y r 2 _|_ 5 2 __ 2r$COS(5)

Hmnpq

. | /-27T ... . . .  /■<* /*27r (> )  /?.... (jS’ ) R (ih ( t ) R i l j (  s )  e  ,{" r h ) f )

4 tt‘  • /.I W ,) id  ./„ , / r 2 4- v2 — 2/ s c o s ^ —(510 A) -A) +  52 — 2a\vcos(—S)
(43 )

E v a lu a tin g  the  s ing le  in te g ra l gives 11s

t ( 0 , b — m  +  d — a #  0
/ =  I (44 )

A) [  27t, b — m + d  -  q  =  0

T h is  m eans the  in te ra c t io n  in te g ra l is ze ro  i f  the sum  o f  the  an g u la r m o m e n tu m  q u a n tu m  
num bers  is d if fe re n t fo r  the tw o  o rb ita ls  (i.e ., b +  d  ^  m  +  q).

U s in g  the  fa c t th a t c o s ( - .v )  =  cos( jc) Vx € 1R, and e q u a tin g  the  tw o  in te g ra ls  (42 ) and (43),
the  co m p le x  p a rt o f  the  in te g ra l vanishes and we can rep lace e,{d~q)5 w ith  c o s ( |(d  — q)\8 ). I f
we d e fin e  a new  co n s ta n t a = \b -  m | =  \d — q |, the  in te g ra l (41 ) becom es

. . 1 /•* r277 . ( r ) / ? ( 5) ( r )/? ,.,/(^) co s (a S )
= ^  dS dr  d s  (45)

Z7T A) *'0 */» y r -  +  .s- — 2 /\vcos(5 )

W e can b re a k  th is  in te g ra l dow n fu r th e r  by n o tin g  th a t 

r s R  ( r \ R  ( s )R  ( r ) R  ( cl</l+ l</l+ l _______i _______

(a + \b\)\ (c +  \d\)\ / (n + \m\)\ { p + \ q |)!

cl v //! V pi

x  , F , (—a, 1 +  \b\, k r 2) \F\ (—c\ 1 +  \ d \ , k s 2) 

x . F ( ( - /? ,  1 -j-1/??|, A'/ 2) j F , ( - p ,  1 | f l | ,  k s 2)
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w h e r e  | F , ( - / 7 .  1 +  |/>;|. k r )  =  H ' L „ { ( —«),■/[ (  1 +  a n d  (a ) ,  =  a(a  +  l ) ( f l  +
2 )-  -(a +  / — 1) is the  P o ch h a m m e r sym bo l o r  ris in g  fa c to r ia l. T h e  expansion  is f in ite , as 
( - /? ) ,  w o u ld  be ze ro  fo r  / > / ? + ! .

I t is c le a r then  th a t the o r ig in a l in te g ra l (4 1 ) is s im p ly  a lin e a r c o m b in a tio n  o f  in te g ra ls  o f  
the fo llo w in g  fo rm :

-■x -2tt co s(a 8 )e~k(r~^'~)k (>/ k ) ‘1+brash , , f .
/ /  /  ------  . — — —---------dr ds d  8 . (46)

*• y//*2 +  -v2 — 2/w cos(5 )

Because any po w e r o f  r and .s c o m in g  fro m  the  expans ion  o f  the h yp e rg e o m e tric  fu n c tio n  w ill 
be even, we o n ly  have to  w o rry  a b o u t the  pow ers o f  r and s co m in g  fro m  /■!'w|+,* i+ i5!< /IW H . 
D e fine  the fu n c tio n  (t (h ) by

Io , n o d d ;
(47)

c\ n even.

T h is  fu n c tio n  has the p ro p e rty  th a t (r(ti +  m)  =  cr(±n ±  m) .  R e m e m b e rin g  tha t b — m  +  
d -  tf — 0, then tr(b -  m + d  -  q) = e => cr(\b\ +  |/;i| -  (|</| +  |</|)) =  c, so {\b\ +  \m\ +  1) -  
(\d\ - f  \cj\ 4- 1) is even. T h is  m eans a -  b w il l  a lways be even.

We app ly  a n o th e r tra n s fo rm a tio n  /* —► p s in (A )  and s ->  p  cos(A ) w ith  p  e [0 , co] and 
A e [0 , 2tt\. T h is  gives us

,.x ,.tt/2 -in co s(a 8 )e kp~k(y / k) tnhp ‘Hhsiri,(A)cosh(A) ,
j  I / p - t - -  — = .. = d 8 d pdA

yjpl s in '(A )  - f  p 2 cos2(A ) — 2p2 s in (A ) cos(A ) cos(S )

77 2 '•27r c o s (a 6 )s iiV ,(A )c o s />(A )
= [  e~k k ( y/kYn h pl,*h dp  f  ~ r  (48 )

A) A) ■/.» / l  - s in ( 2 A ) c o s ( 8 )

N o w  /nx kfr k ( y / k y ,+hpu+hdp  =  l / 2 v / / : i ' ( ( l  +  a +  b ) / 2 ), w here  T is the E u le r gam m a fu n c 
tio n . Thus, o u r in te g ra l becom es:

W ! ± 4 + ^  f  ) s in - (A )c o s " (A )  (W (
V 2 /  •/» ./(» y  1 — s in (2 A ) cos (5 )

T h e  im p o rta n t p o in t to  no te  he re  is th a t the  in te g ra l is p ro p o r tio n a l to  >/k fo r  a ll the 
in te ra c tio n  te rm s, w here  k is the  e ffe c tiv e  h a rm o n ic  w e ll cons tan t. T h is  a llow s us to  ca lcu la te  
the in te ra c tio n  in teg ra ls  fo r  k = 1 and  then  use these fo r  any o th e r va lue  o f  k by m u lt ip ly in g  
by an a p p ro p ria te  fa c to r. T h is  in te g ra l has a lo g a r ith m ic  s in g u la r ity  at A =  w h ich  resu lts  
fro m  the C o u lo m b  in te ra c tio n  d iv e rg in g  w hen the  tw o  e lec trons  are in  the  same lo ca tio n . 
H ow eve r, th is in te g ra l can be done  in  c losed fo rm , n o tin g  th a t the in te g ra n d  is sym m e tric  in 
a and /?, and fu r th e rm o re , th a t a and b can o n ly  d if fe r  by an even num ber.

I f  we le t Z „  rep resent the p a rt o f  the  in te g ra n d  th a t does no t invo lve  s in tf(A ) cos*(A ) and 
assume, w ith o u t loss o f  g e n e ra lity , th a t b >  a and le t b — a = 2n. we get fo r  n — 1 

— — . ">
/  Z,|S in 'l (A )co s " 'L2( A)dA =  j  Z ,,s in "(  A )cos"( A )( 1 — s i t r (  A))dA

•Ml -M)

= 1 Z ns in "( A )cosM(A )J A  — I Z „s in "^ " (  A )co s "(A )t/A  (50 )
•M» J\\

Because *' Z (l s in "(A ) cos,M': (A ) dA =  /„" ~ Z „  s in " -’’ ( A) cos"( A) <7A, we have

I Z „  s in ‘'(A )  c o s ,m 2 ( A) </A =  -  I Z l l s in l'(A )e o s 1/(A ) (/A (51)
‘Ml 2 -'U

L e t Z r (a)  -- “ Z „s in " (  A) cos*' ?n(A)d. \ .  and we can use the same w o rk in g  as be fo re  to
show tha t fo r  n > 2.

Z„UO =  Z „  A a) - Z  (u +  2 ) (52 )
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i t  can a lso he easily v e r if ie d  tha t

7 r ' : f ( (  1+ a  +  f l ) / 2 )  / 2 « \  / l l - f - 2  a  3 +  2 «  1 + a + t f l  I 2 + a  + a
( « ) = ■„.. -77-:^  -----— -t v :  h M  — , — ■— • --------------- ^------  . l + « . ------- r ------l ’ ((2 +  ft +  a )/2 ) \  a

(53 )

z . \ ( a ) = \ z , { a )  (54)

T h e  above re cu rs io n  re la tio n s  (5 2 -5 4 ) are s u ff ic ie n t to  ca lcu la te  the in teg ra l in te rm s  o f  
a sum o f  h y p c rg e o m e tr ic  fu n c tio n s . Mathematica  eva luates the  hyp e rg e o m e tric  fu n c tio n s  
exactly , w h ich  a llow s  the  exact c a lc u la tio n  o f  in te ra c t io n  e lem ents . T h is  e lim ina tes  nu m e rica l
p ro b le m s  th a t m ay arise in e va lu a tin g  these in teg ra ls .

3.2.2. Poisson-Fourier Approach
F o r a rb itra ry  basis fu n c tio n s , we do  n o t have a gene ra l a n a ly tic  fo rm u la  fo r  the in te ra c tio n  
in te g ra l. H o w e ve r, we can cast the p ro b le m  in the  fo rm  o f  P o isson ’s equa tion , w h ich  can 
be so lved by us ing  F o u r ie r  tra n s fo rm a tio n s . In  th is  way, the fo u r-d im e n s io n a l in te g ra tio n  is 
reduced  to  tw o -d im e n s io n a l F o u r ie r tra n s fo rm a tio n s  and a tw o -d im e n s io n a l R e im an sum. 
M o re  im p o rta n t, the  s in g u la r ity  is rem oved  fro m  the  in te g ra tio n .

In  C a rtes ian  co o rd in a te s , the  in te ra c t io n  in te g ra l is

<i( i j x .  y ) ^ ( x \  y' )\H""\il/y(x,  y ) i j i ^ x \  y ')>

= 1 1 1 1  - d . r d y i/ / ; ( .v '.  y')ijf ( x ,  y ' ) ( l x 'dy '  (55 )
J. ^  J x ■' x J ( x  -  .v ')2 +  (>’ -  y ' )

T h e  essentia l s tep  is to  eva lua te  the  fo llo w in g  tw o -d im e n s io n a l in te g ra l,

..........  « » )
t - ' 1-*  J i * - * r -  + ( y - y r -

fo r  a ll possib le  values o f  a  and y , w h ich  co n ta in s  the  s in g u la rity . D ire c t ly  using  R e im an sums 
to  e va lua te  the  above in te g ra ls  m ay g ive rise to  in a ccu ra te  resu lts  unless a very large n u m b e r 
o f  p o in ts  are used close to  the s in g u la rity . A lte rn a tiv e ly , these in teg ra ls  can be re la ted  to  
s o lu tio n s  to  Poisson's e q u a tio n  in  the  fo l lo w in g  way.

T h e  d e v e lo p m e n t o f  th is  te ch n iq u e  is in sp ire d  by the fac t th a t the  th re e -d im e n s io n a l 
in te g ra l

//(.v , v, z) = f  f  f  —  — —  -   ̂ =  d x  dy  d 2 (57 )
J J J y/ ( x - x y -  + ( y - y r -  + ( z - z y -

a c tu a lly  sa tis fies the  Poisson's e q u a tio n

V ~ u ( x , \ \ z )  =  p ( x , v, z ) (58 )

T h is  e q u a tio n  can be so lved a ccu ra te ly  by s tanda rd  n u m e rica l techn iques such as the F o u rie r 
and cyc lic  re d u c tio n  m e th o d  described  in  N u m e ric a l R ecipes [39 ].

To  re la te  the  tw o -d im e n s io n a l in te g ra ls  g iven  by Eq. (5 6 ) to  the  Poisson's equa tion  (58 ), 
we assume

P(Xn v, z) = P , , J ( Z )  (59 )

w h e re  p x x =  i//M(.v, v)«Ay(.v, v) and f ( z )  can be taken  as the  D ira c  de lta  fu n c tio n  (i.e ., the 
e le c tro n  is c o n fin e d  to  an in f in ite ly  n a rro w  shee t). T a k in g  a d iscre te  F o u rie r tra n s fo rm a tio n
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in a* and y and a co n tin u o u s  F o u rie r tra n s fo rm a tio n  in  z o f  bo th  p ( j t ,  v , z )  and w (jc , v, z), 
we have

w here  p A.  ̂ , F(A:-)> anc* t / ( & A, & V,A \ )  are the  F o u r ie r  tra n s fo rm s  o f  p  v, / ( z ) ,  and 
u(x ,  y,  z ) , respective ly .

W e can now  a p p ly  the o p e ra to r V 2 to  u(x,  > \ z ) and o b ta in

I t  is im p o rta n t to  no te  th a t the d iscre te  F o u rie r tra n s fo rm a tio n  im p lie s  p e r io d ic  b o u n d a ry  
c o n d itio n s  on  the  source te rm  p(x ,  y , z ), w h ich  means the last p o in t o f  the  da ta  set in 
each c o o rd in a te  needs to  be connected  sm oo th ly  to  the s ta r tin g  p o in t in tha t c o o rd in a te . I f  
p ( x , y, z ) is close to  ze ro  a t the edges o f  the  nu m e rica l g r id , such a b o u n d a ry  c o n d it io n  is 
then  sa tisfied. I t  is th e re fo re  necessary to  m ake sure the  g r id  space is s u ff ic ie n tly  la rge  to  
have accura te  so lu tio ns  to  the  P o isson ’s equa tion .

A ls o  no te  th a t the  P o isso n -F o u rie r approach rem oves the  s in g u la r ity  at x  — x'  and y =  y'  
in  the in te ra c tio n  in te g ra l. H o w e ve r, we have a d if fe re n t s in g u la rity  now  at k x =  k v =  0. 
T h is  te rm  co rresponds to  a zero  frequency : tha t is. an a d d it io n  o f  a co n s ta n t co m p o n e n t 
in  u(x ,  v, z ). We can exclude th is  te rm  in the su m m a tio n , and then  it is a s im p le  m a tte r 
to  co rre c t fo r  th is  by eva lu a tin g  the va lue  o f  the in te g ra l v ia  a R e im an  sum at o n ly  a few  
po in ts . T he  resu lt o f  the R e im an sum can be com pared  w ith  the resu lts  ca lcu la ted  us ing  the 
P o isso n -F o u rie r app roach , and an a p p ro p ria te  sh ift is th e n  a pp lied . T h e  use o f  a n u m b e r o f  
p o in ts  (typ ica lly  the fo u r  co rners  o f the g r id )  means tha t any m in o r  e rro rs  in the  s h ift shou ld  
average o u t.

In  th is  way, the  in te ra c tio n  in te g ra l can be eva lua ted  by tw o  F o u r ie r  tra n s fo rm a tio n s  
and a tw o -d im e n s io n a l R e im an sum , instead o f  a fo u r-d im e n s io n a l R e im an  sum . o ffe r in g  a 
s ig n ifica n t tim e  saving. T h e  P o isson -F ou rie r approach  is also m uch m ore  accura te  than  the 
d ire c t R e im an sums w hen using a m ode ra te  num be r o f  n u m e rica l p o in ts , as the s in g u la r ity  
has been rem oved  fro m  the in te g ra tio n . F igure  10 uses a gaussian source p o te n t ia l to  test

and
H — l '• v — 1 r  i ^

«(.v, y,  z)  =  E  L  ~7= /  U ( k x, k r, k z )e ' k:: dk (61)

p \ 2 i r k A x / n ,. ^  i 2 7~k vy / n  v

(62 )
E q u a tin g  te rm s betw een Eqs. (60) and (62), we have

( - k ; - k l - k l ) U k^ ( k , )  = p k^ vF ( k :) (63)

th a t is,

(64)

Because we are o n ly  in te res ted  in  the  z =  0 p lane  and F ( k . )  is the F o u r ie r  tra n s fo rm  o f  the 
D ira c  de lta  fu n c tio n , by using the res idue theo rem , Eq. (61 ) becom es
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Figure 10. A cross section of the integrals m(jc, y\ z) obtained by the direct Reiman sums and the Poisson-Fourier 
technique. Solid line: Poisson-Fourier 64 points; dashed line: Reiman sum 64 points; dashed-dotted line: Reiman 
sum 128 points; dotted line: Reiman sum 256 points.

the accuracy o f  the  P o isso n -F o u rie r m e th o d  against eva lu a tin g  the  in te g ra l d ire c tly  v ia  a 
R e im an  sum . A s show n, a la rge  n u m b e r o f  p o in ts  are re q u ire d  to  achieve the same accuracy 
i f  the d ire c t R e im an  sum  m e th o d  is app lied .

3.3 . N u m e ric a l D iffe re n tia tio n  U s in g  F o u rie r T ra n s fo rm a tio n s

O ne o f  the  tasks in vo lve d  in  q u a n tu m  d o t ca lcu la tio n s  is e va lu a tin g  the  de riva tives  o f  a 
fu n c tio n  re p resen ted  on  a n u m e rica l g r id . A n  exam ple  o f  th is  is so lv ing  the s ing le -e lec tron  
S ch ro d in g e r e q u a tio n  fo r  a g iven p o te n tia l. In  th is  case, we need to  eva luate  the ac tion  o f  
the L a p la c ia n  o p e ra to r V 2 on a g rid  o f  p o in ts  accu ra te ly  and e ffic ie n tly .

T h e  m ost co m m o n  way to  eva lua te  the  d e riva tive  o f  a data set g iven on  a nu m e rica l g r id  
is the  use o f  fin ite  d iffe re n c e  m e thods. F o r exam ple , the 5 -p o in t f in ite  d iffe re n ce  m e thod  
(F D 5 ) fo r  the  second d e riv a tiv e  a t g r id  p o in t m  has a fo rm u la

d V
dx 2 +  lA /w - l “  3 0 -I- 16/m f, -  f m+2) (66 )

2 A x 2

w here  A x  is the g r id  spacing. I f  h ig h e r accuracy is re q u ire d , the 7 -p o in t f in ite -d iffe re n c e  
m e thod  (F D 7 ) can be a p p lie d ; th a t is,

d 2J_
1 -  ( 2 / _ ,  -  2 7 /„ , 2 +  27 0 /,„ , -  4 9 0 /„, +  270f m+, -  27f m+2 +  2 /„ ,+3) (67)

180 A x

H o w e ve r, f in ite -d iffe re n c e  m e th o d s  are based on loca l a p p ro x im a tio n s  to  the de riva tive  o p e r
a to r, w h ic h  b rings  a b o u t e rro r . A ls o , the  convergence  w ith  decreas ing  g rid  spacing is slow.

A  m ore  accura te  and  c o m p u ta tio n a lly  e ff ic ie n t scheme [40 ], w h ich  is based on the d iscre te  
F o u r ie r  tra n s fo rm  (D F T ) ,  uses the  fa c t th a t i f

/ ( . v , , x 2, . . . ,  x L) =  I  f  ■ ■ ■ f  F ( k l , k 2, . . . ,  k difc, d k 2 ■ ■ ■ d k L, (68 )

w here  F ( k ^  k 2......... k })  is the F o u r ie r  tra n s fo rm a tio n  o f  / ( * , ,  x 2, • • • ,  x L), then  the  p a rtia l
d e riva tie s  are

....) ( j r „  as, . . . ,  x L) =  { { ■■■[  ( (2 t t  i k  f)"' (2 v  i k  ,)"2 ■ ■ ■ (2 tt  i k L)"< )F (7 c ,, k 2, . . . , k L)

x  +...,kl Xl) d k  ̂ d k  ̂ d k i  (69)

I t  fo llo w s  th a t the  d e riva tie s  can be eva lua ted  by f irs t ca lcu la tin g  F ( k {, k 2, . . . ,  k L), using 
the D FT , and second, ta k in g  the  inverse D F T  o f  the p ro d u c t:

( 2 t t  i A , )#/| ( 2 t t  i A2)"- ■■■(lir' ik,  )"> F ( k ^ k 2......... k L). (70 )
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Table 2. M axi mum error in e;il cula ting the second
dcrivativC Of (' 1‘ using various methods

A.v FC>5 FC)7 DFT

0.01 1.3 x 10 s 5.0 x 10 11 7.0 x 10 11
0.02 2.1 x 10 ‘ 1.9 x 10 1.2 x 10 11
0.05 8.3 x 10-“ 4.7 x 10 s 2.0 x 10 i:
0.1 1.3 x 10 4 2.9 x 10 ,l 5.9 x 10 ,
0.2 2.0 x 10 1.7 x 10 4 4.1 x 10 14
0.3 9.0 x 10 3 l.fl X 10 ' 8.1 x 10 n

F o r N  da ta  p o in ts  o f  a o n e -d im e n s io n a l fu n c t io n  / ( a ) ,  separated by u n ifo rm  spacing Aa\ 
the c o n tin u o u s  F o u rie r in te g ra l can be a p p ro x im a te d  using the  D F F ; th a t is.

v -  i
F(k , )  =  E  f U J e - - * 1 \  (71)

w here  x,„ = w A a , AA =  1 /( /V A a ), and A, =  /A A '. T h e  co rre sp o nd in g  inverse D F T  is

/ ( - O  =  77 E  (72)
N  / - H I

F o r any sa m p ling  in te rva l A.v, the  m ax im um  fre q u e n cy  in its F o u rie r tra n s fo rm  is Amax =  
1 /(2 A a ) , w h ich  is the N yq u is t c r it ic a l fre q u e n cy  (41]. In  o th e r w ords, the va lid  frequency  
com ponen ts  are co n ta in e d  in F( k j )  w ith  j  e  [0 , N / 2], w hereas F ( k l) = F*(ks- ; ) fo r  j  e  
\ N / 2 +  1, N  — 1], w here  *  in d ica tes  com p lex  c o n ju g a tio n . A s  a consequence, the  inverse 
F o u rie r tra n s fo rm  g iven by Eq. (69) is d isc re tized  to  a good  a p p ro x im a tio n  as

=  t v  E ( 2 7 T i / A k ) " F ( k y " » ' » \  (73 )
j-ti

w here  j  =  j  fo r  j  e  [0 , N j 2 \  and j  — j  -  N  fo r  j  e  [ 7V/2 +  1, N  — 1 ]. S im ila r ly , fo r  a tw o - 
d im e n s io n a l da ta  set o f  /V, x  N 2 p o in ts , the d iscre te  fo rm  o f  E q. (6 9 ) is

/V, - 1 ,\\ - 1

f in' 'n'-)(x»,r x„l2) =  x :  X ]  ( 2 t t  i/ iA A * , )W|(27r i j y ^ k ^ Y ' - F i k ^ , k f2)e2ni{miJt+m2j2)/iNiN':). (74 )
j\ /:=n

T he  D F T  schem e p rov ides  a g lo b a l re p re se n ta tio n  o f  the  d e riva tive  o p e ra to r and is h ig h ly  
accurate  fo r  fu n c tio n s  w ith  p e r io d ic  b o u n d a ry  co n d itio n s .

Table  2 lists the m ax im um  e r ro r  in  e va lu a tin g  the  second o f  e~v\  using fin ite  d iffe re n ce  
m e thod  and the  F o u r ie r  T ra n s fo rm  m e thod  fo r  va rious  g r id  spacing.

4 . C O M P U T A T IO N A L  S C H E M E S  F O R  
M U L T IE L E C T R O N  Q U A N T U M  D O T S

A  n u m b e r o f  c o m p u ta tio n a l schem es o f  va ry ing  so p h is tica tio n  can be used to  o b ta in  so lu tio ns  
o f  the m u ltie le c tro n  S ch ro d ing e r e q u a tio n

HiJ/( r, • • • r  v , cr, • ■ • r r v ) =  £«/'( r , • • • r v , <r l • • • r r v ) (75 )

w here  H — /? tlot +  is the system H a m ilto n ia n  de fin e d  by E-q. (3 ). T h e  so lu tio ns  to  the 
above e q u a tio n  w o u ld  p ro v id e  a d e ta ile d  th e o re tica l d e s c rip tio n  o f  m u ltie le c tro n  qu a n tu m  
dots, and in p a rt ic u la r  th e ir  energy s tructu res.

I f  the e lec trons  w ere assum ed to  n o t in te ra c t w ith  each o th e r, the  above equ a tio n  cou ld  
be reduced  to  a s in g le -e lec tron  S ch ro d ing e r e q u a tio n , w h ich  can be solved by the m e th 
ods described in  the p rev ious  sec tion . These e le c tro n s  w o u ld  then se q uen tia lly  fi l l  the
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s in g le -e lec tron  energy levels, s ta r tin g  fro m  the low est sta le acco rd ing  to  the Pauli's exclus ion  
p rin c ip le . T h e  to ta l energy o f  a m u lt ie le c tro n  q u a n tu m  d o t w o u ld  he a s im ple sum o f  the 
energ ies o f  in d iv id u a l e lec trons  in  the do t.

H ow eve r, the C o u lo m b  in te ra c tio n s  be tw een the  e lec trons  are s ign ifican t, especia lly  
w hen they are co m p a ra b le  w ith  the co n fin e m e n t p o te n tia l im posed  by ex te rna l e lec trods , 
and th e re fo re  ca n n o t be igno red . Several c o m p u ta tio n a l schemes have been deve loped  to  
deal w ith  the in te ra c t in g  e lec trons  in  q u a n tu m  m e chan ica lly  co n fin e d  systems, such as a tom s 
and m olecu les. These m e thods have been ex tended  to  s tudy the e le c tro n ic  s tru c tu re  o f  
q u a n tu m  do ts  and o th e r nanosystem s. T h e ir  s treng ths  and lim ita t io n s  are rev iew ed in th is  
section.

4.1 . C o n s ta n t In te ra c tio n  M odel

T h e  s im p les t th e o re tic a l d e sc rip tio n  fo r  a m u ltie le c tro n  q u a n tu m  d o t is the constan t in te ra c 
tio n  m ode l, in  w h ich  the C o u lo m b  in te ra c tio n s  be tw een  an e le c tro n  in the d o t and a ll o th e r  
e lec trons  inside and  o u ts id e  o f  the  d o t are p a ra m e te rize d  by a set o f  constan t capacitances 
[ I ,  3, 4 2 -4 4 ]. U n d e r th is  a p p ro x im a tio n , the g ro u n d  state energy o f  an /V -e lec tron  q u a n tu m  
d o t can be w r it te n  as

I v
U ( N )  = [c(N  -  N„) -  C , Vx \2—  + £  E n{B)  (76 )

//=l

w here  V,, is the ga te  vo ltage , /V„ is the  n u m b e r o f  e le c tro n s  in  the q u a n tu m  d o t w hen VK — 0, 
C\  is the  capacitance betw een the  d o t and the ga te , C  is the to ta l capacitance betw een the 
do t and a ll e lec trodes  (i.e ., gate , source, and d ra in ) , and E„(B)  is the energy o f  the  nih 
s in g le -e lec tron  sta te  in  an ex te rn a l m agne tic  fie ld  B.

T he  q u a n tity  m easured  by the e xp e rim e n ts  o f  T a rucha  et al. [45] is the a d d itio n  energy,
w h ich  is the energy re q u ire d  to  add an extra  e le c tro n  to  the  system. T h e  chem ica l p o te n tia l
o f  the system is d e fin e d  as

f i ( N)  =  U ( N )  -  U ( N  -  I )  (77 )

and si) we have

f i ( N)  =  ( ,V  -  yv„ -  ^  eVK~  + £ v (78)

w here  is the h ighest fil le d  s in g le -e le c tro n  sta te  o f  the N -e le c tro n  do t. T h e  a d d itio n  
energy is g iven by

=  f i {N  +  1) -  f i ( N)  =  £ v + , -  £ v +  ^  =  I E  +  ^  (79 )

H e re  the  firs t te rm  is the energy d iffe re n c e  be tw een  the h ighes t occup ied  and the low est 
unoccup ied  s ing le  e le c tro n  state, and the  second te rm  represents  co lle c tive ly  the energy o f  
e le c tro s ta tic  re p u ls io n  be tw een the  e lec trons . T h is  assumes tha t the e lec trons  in the d o t 
w ill spread evenly o ve r the do t area, regard less o f  the  n u m b e r o f  e lec trons  in the d o t, and 
the capacitance C  can be re la te d  to  the  physica l d im e n s io n s  o f  the qu a n tu m  d o t, using the 
pa ra lle l p la te  ca p a c ito r fo rm u la .

D esp ite  the  s im p lic ity  o f  the cons tan t in te ra c t io n  m ode l, it  is able to  describe the va rious  
p ro p e rtie s  o f  a q u a n tu m  d o t system . F o r ins tance, it  p rov ides  a su rp ris in g ly  good d e sc rip tio n  
o f  the a d d itio n  ene rgy  fo r  a q u a n tu m  d o t, e x p la in in g  b o th  the  unusual peaks in the  a d d itio n  
energy spectrum  and the v a ria tio n s  in  the  p o s itio n  o f  c u rre n t peaks as a fu n c tio n  o f  gate 
vo ltage  in a va ry in g  m agne tic  fie ld . It is a lso so s im p le  th a t it can deal w ith  a large n u m b e r 
o f  e lec trons  easily.

As an exam ple  we take the w o rk  o f  T a rucha  e t al. [17 ]. F igu re  2a shows the m easured 
c u rre n t th ro u g h  a q u a n tu m  do t as a fu n c tio n  o f  gate vo ltage . T h e  a d d itio n  energ ies w ere 
o b ta in e d  fro m  the  d iffe re n ce s  betw een the consecu tive  c u rre n t peaks. C le a rly  seen are 
m axim a values o f  the  a d d itio n  energy fo r  2, 6, and 12 e lec trons . K ouw enhoven  et al. [1|
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use the  constan t in te ra c tio n  m ode l to  exp la in  the  exis tence o f  large ju m p s  in  the a d d it io n  
energy at these “ m agic num b e rs .”  F o r m u lt ie le c tro n  q u a n tu m  dots, th e re  are degenera te  o r  
nearly  degenera te  s in g le -e le c tro n  energy levels. In  p a rt ic u la r , fo r  a tw o -d im e n s io n a l p a ra b o lic  
p o te n tia l, the  f irs t energy leve l has tw o  degenera te  states, the  second energy leve l has fo u r , 
and the th ird  leve l has six. In  th is  case, the co n s ta n t in te ra c t io n  m ode l p re d ic ts  th a t fo r  2,
6, and 12 e lec trons , w il l  be nonze ro , and th e re  is thus an a b n o rm a lly  large a d d it io n  
energy.

The  cons tan t in te ra c tio n  m o d e l a lso p rov ides  an e x p la n a tio n  fo r  the  v a ria tio n s  in the 
m easured chem ica l p o te n tia l as a fu n c tio n  o f  m a g n e tic  fie ld . C o n tin u in g  w ith  the  assum ption  
o f  a p a ra b o lic  p o te n tia l, the  s in g le -e le c tro n  so lu tio n s  are the F o c k -D a rw in  states, as p lo tte d  
in F ig. 3. T h e  crossing  o f  the  energy levels o f  the  F o c k -D a rw in  states w ith  d if fe re n t an g u la r 
m o m e n tu m  means th a t the  g ro u n d  state fo r  a g iven  n u m b e r o f  e lec trons  changes the  va lue  
o f  its  to ta l an g u la r m o m e n tu m  as the m agne tic  fie ld  is va rie d . F igu re  11 shows the v a r ia tio n  
in the e xp e rim e n ta l chem ica l p o te n tia l as the a p p lie d  m agne tic  fie ld  increases, a lo n g  w ith  
the chem ica l p o te n tia l p re d ic te d  by the cons tan t in te ra c tio n  m ode l.

A lth o u g h  the cons tan t in te ra c tio n  m ode l is capab le  o f  e xp la in in g  som e o f  the q u a lita t iv e  
fea tu res o f  qua n tu m  dots, it  is n o t very usefu l as a to o l fo r  p re d ic tin g  pa ram e te rs  fro m  ab 
initio ca lcu la tions . T he  m ode l assumes th a t the  va lue  o f  A E  de rives fro m  the  energy leve l 
spacing fo r  n o n - in te ra c tin g  e lec trons  and is th e re fo re  m ost v a lid  in  s itu a tio n s  in w h ich  the 
w a ve fu n c tio n  and energy is n o t changed s ig n if ica n tly  by in te ra c tio n  w ith  o th e r  e lec trons . T h is  
is the s itu a tio n  in  w h ich  the  e le c tro n  is s tro n g ly  co n fin e d  by an ex te rna l p o te n tia l.

4.2 . H a rtre e -F o c k  M eth o d

In  1928, H a rtre e  [46 ] estab lished  a m e a n -fic ld  m o d e l fo r  q u a n tu m  systems, in  w h ich  
each e le c tro n  is assumed to  experience  an averaged re pu ls ive  p o te n tia l caused by a ll the 
o th e r e lec trons  in  the  system. T h e  m u lt ie le c tro n  S ch ro d in g e r e q u a tio n  is thus  reduced  to  a 
s ing le -e lec tron  H a rtre e  equ a tio n

/= i
(80 )

w here  W, is the s in g le -e le c tro n  H a m ilto n ia n  a c tin g  o n ly  on  the / th  e le c tro n , as d e fin e d  
in  E q. (3 ); i/ / ,( r ; ) is the s in g le -e lec tron  w a v e fu n c tio n  fo r  the  /th  e le c tro n ; and £ , is the 
co rre sp o nd in g  e igenenergy.

A  se lf-cons is ten t p ro cedu re  was p roposed  to  so lve the  H a rtre e  e q u a tio n . In  th is  app roach , 
an in it ia l guess is m ade fo r  th e  w ave func tions  o f  a ll e le c tro n s  except the /th  e le c tro n . T h e  
above H a rtre e  e q u a tio n  is then  solved fo r  the w a v e fu n c tio n  o f  the /th  e le c tro n . T h e  s o lu 
tio n  is then used as an im p ro ve d  tr ia l w a ve fu n c tio n  in  the  c a lc u la tio n  fo r  o th e r e lec trons .

Magnetic field (T)

Figure 11. Chemical potential versus applied magnetic field: (a) experimental daia; (b) calculated results using the 
constant interaction model. Reprinted with permission from [ 17]. S. Tarucha el al,. Pins. Rev. La i. 77. 3613 (19%). 
€* 19%. American Physical Society.
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S elf-cons is tencv is o b ta in e d  by re p e a tin g  th is  process ite ra tiv e ly  fo r  one e lec tron  at a tim e  
u n til no  fu r th e r  change to  the  w a ve fu n c tio n s  is no ticeab le .

H ow eve r, the  H a rtre e  m e th o d  d id  n o t cons ide r the a n tisym m e try  re q u ire m e n t on  the 
w ave fu n c tio n s  im posed  by P a u li’s exc lus ion  p rin c ip a l. In  1930, Fock and S la te r [47 ] m ade 
an ex tens ion  know n  as the H a rtre e -F o c k  m e thod , in w h ich  the  to ta l w a ve func tion  o f  a m u l- 
tie le c tro n  system is described  by a S la te r d e te rm in a n t th a t is a n tis ym m e tric  by d e fin it io n . 
A  d e riv a tio n  o f  the  H a rtre e -F o c k  eq u a tio n s  is g iven be low  th a t fo llo w s  some o f  the steps 
g iven by B ransden and Jocha in  [48 ].

A ssum ing  E{) is the  g ro u n d -s ta te  energy o f  the system and <1> is a tr ia l w a ve fu n c tio n , the 
v a r ia tio n a l p r in c ip le  te lls  us th a t

In  the H a rtre e -F o c k  m e th o d , the  tr ia l w a ve fu n c tio n  is de fined  as a S la te r d e te rm in a n t; th a t is,

w h e re  q, = (r,, o-j) rep resents  b o th  the spa tia l and the sp in  c o o rd in a te  o f  the i th  e le c tro n , 
ijjK(q .)  =  z/A( r , ) ^  is the  s p in -o rb ita l o f  the  /th  e le c tro n  w 'ith a co lle c tive  quan tum  n u m b e r A, 
and u and x  are respective ly  the  spa tia l and sp in  w a ve func tion . T h is  d e fin it io n , in co n ju c tio n  
w ith  the  re q u ire m e n t o f  o r th o n o rm a lity , th a t is,

ensures tha t the  to ta l w a v e fu n c tio n  is a n tis ym m e tric . T h e  S la te r d e te rm in a n t can also be 
w r it te n  as

w h e re  P  is the  p e rm u ta tio n  o p e ra to r, ui =  ~  Y , r ( ~  l ) r P is the  a n its ym m e triza tio n  o p e ra to r, 
and  ct> is a s im p le  p ro d u c t o f  the  in d iv id u a l sp in -o rb ita ls .

T h e  a n tis y m m e triz a tio n  o p e ra to r  possesses tw o  im p o rta n t p ro p e rtie s ; firs t, -4* =  -4 and 
:42 — :■/, and second, i t  co m m u te s  w ith  b o th  pa rts  o f  the  H a m ilto n ia n  [ / / dul, ://] =  [ Hm\  :4\ =  
0. A s  a resu lt, we have

£ „  <  E [cD] =  <<fr|//|<t>) =  <4>|Wd°l +  H ml|4>) (81)

< M q i)  V ^ (q i)  • • •  ^ ( q i )

v/AM
(82 )

(83)

N

i — I l>
.-V

( 8 5 )

w h e re  A =  1 . . .  A; . In  the  second to  last lin e , the  sum ove r p e rm u ta tio n s  is d ro pped  because 
the  o r th o g o n a lity  c o n d it io n  means th a t o n ly  the  id e n tity  p e rm u ta tio n  w il l  have a nonze ro
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va lue. In  the  last line , the sum ove r / is rep laced w ith  a sum ove r a ll occup ied  o rb ita ls  A. 
n o tin g  th a t the  te rm s w il l  eva lua te  id e n tic a lly  fo r  any given /. We also have

-  /V !<cp|/7 in,:- '/ |^ )

i- i r \ I ' a

= n *
i

( 86 )

w here  the s in g u la r p e rm u ta tio n  o p e ra to r Pn in te rchanges the co o rd in a te s  o f  e lec trons  / and 
j .  T a k in g  in to  accoun t the  o r th o g o n a lity  o f  the in d iv id u a l sp in -o rb ita ls . the above fo rm u la  
can be s im p lif ie d  fu r th e r  as

{ H""\ ‘i1/)) = •' V  v /  >P,\ (■4,)(q,■) i — j 'Aa (q,)'/v (q,)) -  ( f , (q,)'/v (q,) — j <Mq,) q,-))
“  A ju \ i 1 n I I \ } i>\ I

(87 )
T h e re fo re , we have

£[cI)/>] = v  i//((q.);/7 i.'/.(q ),. + — <M(| )</', (q t)
A “  A M \ l U  I

i f n
</v(q,)<Mq

T h e  v a ria tio n a l e q u a tio n  reads

( 88)

(89)

w here  the  Lagrange  m u lt ip lie rs  have the p ro p e rty  eAju — e*A. M a k in g  a u n ita ry  tra n s fo rm a tio n

ll/\ = E L//< A (90)

does no t a ffec t the fu n c tio n a l /ffcl>7>] at a ll and o n ly  a ffects <l>/} by a phase fa c to r. H ow ever, 
th is  a llow s us to  a rrange fo r  the m a tr ix  o f  e lem ents e K{x to  be d iagona l; th a t is.

S E  - E ^ S ^ I i / z a )  =  <>
A

P roceed ing  w ith  the v a r ia tio n  leads to  the system o f  equa tions

(91)

1 1w.'/Mq,) + E I (q,) — (q,)<-'q,'Z’s(q,) - E / (q,) - ( q,) Jq.«/v(q,) = MMq,)
~ i /■* “ I ‘ *•!

(92 )
w h ich  arc the  H a rire e -F o e k  equa tions.

T o  solve the H a rtre e -F o c k  equa tions, an ite ra tive  p rocedure  was again adop ted . A t  the 
nth ite ra t io n , vvc have an es tim a te  fo r  each sp in -o rb ita l deno ted  bv t/^ . We can re w rite  the 
H a rtre e -F o c k  equa tions  as

H. ij/1! ' 1 (q ,) +  V  j  {//; «<!,) — {//;• (q ,) dq , i//* ’ 1 (q ,) 
p -■ i

(93 )
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Separa ting  the sp in  p a rt fro m  the spatia l p a rt o f  the w ave functions : tha t is. i///x( q ; ) =  
///7 ( r . ).\ . we o b ta in

S e lf-consistency is o b ta in e d  by repea ting  th is  process ite ra tive ly  u n til the d iffe re n ce  betw een 
i / / " M and i//" is n e g lig ib ly  sm all.

O ne  o f  the f irs t th e o re tica l studies o f  q u a n tu m  dots cam e fro m  K u m a r et al. [49 ], w ho  
used the H a rtre e  m e th o d  and igno red  exchange and c o rre la tio n  e ffects com p le te ly . In  th e ir  
w o rk , the H a rtre e  e q u a tio n  [E q . (8 0 )] was solved se lf-cons is ten tly  in co n ju n c tio n  w ith  the 
Poisson's equ a tio n

6 * V V  +  P (95)

w h ich  p rov ides  the e le c tro s ta tic  p o te n tia l —ap. T he  bounda ry  co n d itio n s  were d e te rm in e d  
by vo ltages a p p lie d  to  the  gates and contacts. T h e  e le c tro n  dens ity  p in the qua n tu m  d o t was 
re la te d  to  the s in g le -e le c tro n  w ave func tions  at each ite ra tio n . T hey  ob ta in e d  the energies 
fo r  the  lowest states o f  a qua n tu m  d o t w ith  seven e lec trons  as a fu n c tio n  o f  the app lied  
m agne tic  fie ld , as show n in Fig. 12. T h e ir  resu lts  p rov ides  a q u a lita tiv e  d e sc rip tio n  o f  the 
m a in  fea tures o f  a m u ltie le c tro n  qua n tu m  do t.

Soon a fte r, P fannkuche  et al. [50] p e rfo rm e d  H a rtre e -F o ck  se lf-cons is ten t ca lcu la tions  
fo r  a tw o -e le c tro n  q u a n tu m  do t (i.e ., the a r t if ic ia l h e liu m ) and com pared  them  w ith  resu lts  
o b ta in e d  fro m  the  H a rtre e  m e thod  and a d ire c t num erica l d ia g o n a liza tio n  o f  the  tw o -p a rtic le  
H a m ilto n ia n . T h e  researchers o b ta in e d  exce llen t ag reem ent be tw een the  H a rtre e -F o ck  and 
the  exact n u m e rica l ca lcu la tio n s  fo r  the lowest t r ip le t  state (S =  1) bu t ob ta in e d  m arked ly  
d if fe re n t resu lts  fo r  the  g ro u n d  s ing le t state (S  — 0), as show n in F ig. 13. T h is  ind ica tes tha t 
sp in  c o rre la t io n  is no t fu lly  accounted fo r  in the H a rtre e -F o ck  fo rm a lism  fo r  such a system. 
P lo tte d  in the same fig u re  is the researchers' H a rtre e  c a lcu la tio n , w h ich  does no t d is tingu ish  
the s ing le t and tr ip le t  states and s ig n ifica n tly  overestim ates the g ro u n d  state energies.

B (T)

Figure 12. The lowest energy slates of a quantum dm with 7 electrons versus applied magnetic Held using the 
Hartree method. Reprinted with permission from |41)]. A. Kumar el al.. Phys. Rev. B 42. 5lh(> (I WO). < I WO. 
American Phvsical Socielv.
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Figure 13. The lowest energy states of a quantum dot with 2 electrons versus applied magnetic field using the 
Hartree method. Hartree-Fock method and exact numerical calculation. Reprinted with permission from [50], 
D. Pfannkuche el al.. Phys. Rev H 47. 2244 (1993). '0 1993. American Physical Society.

N everthe less, m any au th o rs  have subsequen tly  used the H a rtre e -F o ck  m e thod  to  study 
the  e le c tro n ic  s tru c tu re  o f  q u a n tu m  d o t systems, as it e x p lic it ly  takes in to  account the 
exchange e ffe c t, and at least p a r t ia lly  the e le c tro n -e le c tro n  co rre c tio n s  f 18, 5 1 -5 7 ]. T h e  m ost 
c o m m o n ly  adap ted  app roach  is the  so -ca lled  u n re s tr ic te d  H a rtre e -F o c k  m e thod , in w h ich  the 
tw o  e lec trons  in  the  same she ll, b u t w ith  o p p o s ite  spins, are no t re s tric te d  to  having  the same 
sp a tia l w a ve fu n c tio n . T h is  g e n e ra lly  p ro v id e s  m ore  accura te  energ ies in  com pa rison  w ith  
the  re s tric te d  H a rtre e -F o c k  app ro a ch . A n  im p le m e n ta tio n  o f  the u n re s tr ic te d  H a rtre e -F o ck  
m e th o d  in  Mathematica was deve loped  by M c C a rth y  et al. [58].

O a k n in  e t al. [59 ] and P alacios e t al. [51 ] ca rr ie d  o u t b o th  H a rtre e  and H a rtre e -F o ck  
ca lcu la tio n s  to  s tudy the p ro p e rtie s  o f  a m u ltie le c tro n  q u a n tu m  do t u n d e r the in fluence  o f  
an ex te rn a l m agne tic  fie ld . T h e y  a lso ca rr ie d  o u t a com p a riso n  betw een the u n re s tric te d  
H a rtre e -F o c k  ca lcu la tio n s  and  exact n u m e rica l d ia g o n a liz a tio n  so lu tions  fo r  up to  five  e lec
tro n s , as show n in  F ig. 14, and  fo u n d  th a t the  H a rtre e -F o c k  g ro u n d  state energ ies are o ve r
e s tim a te d  in genera l, espec ia lly  fo r  ze ro  o r  low  e x te rn a l m agne tic  fie lds . A ls o  show n in th is 
fig u re  is the tra n s it io n  o f  the g ro u n d  state fro m  the  pa ram agne tic  state to  the  fe rro m a g n e tic  
sta te  w hen the a p p lie d  m a g n e tic  fie ld  is a ro u n d  4 T  to  6 7 .

F u ji to  et al. [52 ] a p p lie d  the  same approach  to  s tu d y in g  a n iso tro p ic  p a ra b o lic  qua n tu m  
do ts . T h e  researchers o b ta in e d  the  energy and w a ve fu n c tio n  o f  the g ro u n d  states fo r  large 
and  sm all q u a n tu m  do ts  c o n ta in in g  up  to  12 e lec trons . T h e y  fo u n d  th a t the large dots had 
a g ro u n d  state th a t is c o m p le te ly  sp in  p o la rize d , w hereas sm a ll do ts  w ere  not. T h e y  also 
s tu d ie d  the e ffe c t o f  the  v e rtic a l e x te n t o f  the  d o t, using  a th re e -d im e n s io n a l m ode l p o te n tia l

I . . , I , .
I ( r ) =  -b y ~) -r (% )

F igu re  15 shows ihe  capac itance  versus the n u m b e r o f  e lec trons  in a qua n tu m  d o t w ith  
the same . bu t d if fe re n t v e rt ic a l ex tend  oj: . B ic lir is ka -W a z  et al. [60 ] s tud ied  tw o  e le c tro n  
systems co n fin e d  in a th re e -d im e n s io n a l w e ll, w h ich  is described bv a co m b in a tio n  o f  a 
co u lo m b ic  (1 //* ) and a h a rm o n ic  ( o r r )  te rm , to  see how  changes to  the p o te n tia l a ffec t the 
spectra  o f  exc ited  states.

Several researchers [53. 55. 56] used the  H a rtre e -F o ck  m e thod  to  exam ine W ig n e r crys
ta lliz a tio n  in single and d o u b le  q u a n tu m  do ts , w h ich  re fe rs  to  the tra n s it io n  fro m  a system
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B (T)

Figure 14. Chemical potential f i ( N )  calculated using the Hartree-Fock method (dashed lines) and the configuration 
interaction method (solid lines). Reprinted with permission from [51], J. J. Palacios et al., Phys. Rev. B 50. 5760 
(1994). V  1994, American Physical Society.

o f  t ig h tly  b o u n d  c lc c tro n s  to  a m o re  loose ly  b o u n d  sta te , in w h ich  e lec trons  behave in  a 
m ore  classical m anne r, fo rm in g  iso la ted  p u d d le s  in  the e le c tro n  charge d is tr ib u tio n  [61 ]. 
M u lle r  e t al. [53 ] d e m o n s tra te d  th a t the  q u a n tu m  d o ts  u n d e rg o  a g radua l tra n s it io n  to  a 
sp in -p o la r ize d  W ig n e r c rys ta l w ith  increas ing  m a g n e tic  fie ld  s treng th . Y annou leas et al. [55 ]

2
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Number of Electrons N

Figure 15. capacitance versus the number of electrons for various dot sizes with /, = 10.7 nm: (a) /. = 0 nm; 
(b) / = 0.53 nm: (c) /.. = 2.13 nm; and (d) /. = 7.1 I nm. Reprinted with permission from |52|, M. Fujito et al., 
Pins. Rev. II 53, 9952 (1996). (0 1996, American Physical Society.
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discussed th re e  types o f  W ig n e r c rys ta lliza tio n , in c lu d in g  pu re  spin dens ity  waves [62 ]. spa tia l 
lo ca liza tio n  o f  charge dens ity  in a single q u a n tu m  d o t, and the sepa ra tion  o f  charge d is t r i
b u tio n  o n to  each in d iv id u a l d o t o f  a m u lt id o t system , even at ze ro  ex te rna l m agnetic . T he  
researchers p re d ic te d  tha t W ig n e r c ry s ta lliz a tio n  occurs in qua n tu m  dots w hen the in te re le c 
tro n  C o u lo m b  re p u ls io n  and the  h a rm o n ic  co n fin e m e n t p o te n tia l becom e com pa rab le , as 
show n in F ig. 16. Reusch et al. [56 ] also observed  W ig n e r c rys ta lliza tio n  in th e ir  ca lcu la tions  
at fa ir ly  h igh  e le c tro n  density, as show n in F ig. 17. H ow eve r, th is appears to  be a p re m a tu re  
c la im  and is lik e ly  an a rtifa c t o f  b roken  spa tia l sym m e try  in the H a rtre e -F o rk  fo rm a lis m , as 
m ore  exact approaches seem to  ind ica te  [56, 63).

B e d n a re k 's  g ro u p  ca rr ie d  o u t a series o f  re s tric te d  and u n re s tric te d  H a rtre e -F o c k  ca lcu la 
tions  (R H F  and U H F )  [54, 57, 6 4 -6 6 ] to  s tudy  sphe rica l and c y lin d ric a l q u a n tu m  dots m ade 
o f  Si and G a A s  c o n ta in in g  up  to  20 e lec trons . T h e y  eva lua ted  the c r it ic a l va lues fo r  the 
co n fin e m e n t p o te n tia l pa ram ete rs , w h ich  a llo w  the  q u a n tu m  do t to  co n ta in  1-20 e lectrons. 
Poisson's e q u a tio n  was used to  d e te rm in e  the  shape o f  the la te ra l c o n fin in g  p o te n tia l in  a 
q u a n tu m  d o t, as show n in F ig. 18. based on  m easurem ents  o f  the d im ens ions  o f  an actua l 
device. T he  S ch ro d ing e r e q u a tio n  was so lved se lf-cons is ten tly  w ith  the  Poisson's eq u a tio n  
to  o b ta in  the  w ave fu n c tio n s  and the energy levels o f  the  system. In  the p a rt ic u la r  case o f  
tw o  e lec trons  co n fin e d  in s ing le  iso la ted o r  d o u b le  co u p le d  q u a n tu m  dots, they  p roposed  an 
e ffe c tive  e le c tro n -e le c tro n  p o te n tia l to  rep lace the C o u lo m b  in te ra c tio n , en a b lin g  the so lu 
t io n  o f  th is  m ode l p ro b le m  exactly. S hown in  F ig. 19 is a d ire c t com pa rison  betw een the exact 
s o lu tio ns  and R H F  and U H F . I t  was found  th a t the p re d ic tio n  fo r  the tr ip le t  state energ ies 
fro m  b o th  R H F  and U H F  is accura te  fo r  a ll sizes o f  the qu a n tu m  d o t. F o r the s ing le t state 
energies, the U H F  resu lts  are reasonab ly accura te , especia lly  fo r  sm all o r  ex trem e ly  large 
d o t size, w hereas the R H F  prov ides  p re tty  p o o r p re d ic tio n s .

W ang and H ines  [18]  p e rfo rm e d  ca lcu la tio n s  fo r  a c irc u la r ly  sym m e tric  q u a n tu m  d o t and 
a tr ia n g u la r  q u a n tu m  d o t w ith  up to  13 e lec trons . T h e  c o n fin e m e n t p o te n tia l is de fined  as 
V( r )  =  m* k 1 ( x 1 - f  y 2) / 2 and V (/*) =  m ' k 1 ^ 2 +  v : ) ( l  +  2 c o s (3 0 ) /7 ) /2 ,  respective ly . T he  
energy levels o f  the tw o  dots w ith  a single e le c tro n  are p lo tte d  in F ig. 20 to  assist the assign
m en t o f  g ro u n d  state co n fig u ra tio n s . F o r the c irc u la r  d o t, the  firs t shell is fu lly  f ille d  w ith  tw o  
e lec trons , and the subsequent shells are fu l ly  f il le d  w ith  fo u r , six, and e igh t e lectrons. F o r 
the  tr ia n g u la r  d o t, the m ax im um  nu m b e r o f  e le c tro n s  fo r  each she ll is d iffe re n t, be ing  tw o , 
fo u r , tw o , fo u r , fo u r , and tw o  fo r  the firs t to  the s ix th  shells, respective ly . T h e  c o n fig u ra tio n s  
lis ted  in Tables 3 and 4 are fo u n d  to  p ro v id e  the low est energy and th e re fo re  co rrespond  to  
the  g ro u n d  state o f  these systems. The  shell f i l l in g  o rd e r indeed  obeys H u n d 's  ru le  in bo th  
cases. A s  show n, each shell is f i l le d  w ith  e le c tro n s  o f  the  same sp in  u n til h a lf- fu ll and is then 
f i l le d  w ith  e lec trons  o f  the o ppos ite  spin u n ti l  fu l l .  A ls o  lis ted  in Tables 3 and 4 are th e ir  
ca lcu la ted  resu lts  fo r  the  to ta l energy o f  the  q u a n tu m  d o ts  w ith  k — 0.2 eV.

A  good way to  dem ons tra te  the shell s tru c tu re  o f  q u a n tu m  dots is to  p lo t the  a d d itio n  
energy, w h ich  is de fined  by Eq. (79). As the energy re q u ire d  to  add an a d d itio n a l e le c tro n  to  
the  next shell is la rg e r than to  add an e le c tro n  to  the  same shell, the peaks in the a d d itio n  
energy spec trum  co rrespond  to  the  n u m b e r o f  e le c tro n s  in a fu l l- f i l le d  she ll. S im ila rly , ex tra  
energy is re q u ire d  to  add an e le c tro n  o f  o p p o s ite  sp in  because o f  exchange e ffec t, and thus 
the  secondary peaks in the a d d itio n  energy sp e c tru m  co rrespond  to  the n u m b e r o f  e lec trons  
in  a h a lf- f il le d  shell.

(C)r + T

Figure 16. Llcctron density distribution of a six electron quantum Jo! with //• = 5 mcV and H 0: (a) R 0 : ()5. 
(hi R — ! : 4.s. (e) R t — 3 : IS. where R is the ratio between the inteieieeiron Coulomb repulsion and the 
harmonic confinement potential. Reprinted with permission from |5>|. C Yannouleas ami L\ Landman. /7/vs. Rev. 
(elf. <N2. 5325 < ll)W. American Phvsieal Sociciv.
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Figure 17. Electron density distribution of a seven-electron quantum dot, forming a Wigner molecule as the 
Coulomb interaction strength between the electrons is increased. Reprinted with permission from [56|. B. Reusch 
et al.. Phys. Rev. H 63. 113313 (2001). © 2001. American Physical Society.

Figure 18. Potential energy calculated from the Poisson equation as a function of cylindrical coordinates. After 
reprinted with permission from |05], S. Bcdnarck et al., Phys. Rev. B 64, 195303 (2001). © 2001. American Physical 
Society.

b [nm]

Figure 19. Estimated errors of the t i ll (solid curve) and RIIE (dashed curve) methods for the singlet stale and 
both l !III and RUE (doited curve) for the triplet state of a two-electron quantum dot. Reprinted with permission 
from [fo|. S. Bcdnarck el al.. Phys. Rev. H 04. 105303 (2001). < 2001. American Physical Society.
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Figure 20. Energy levels (in a.u.) for a single electron in the circularly symmetric dot (solid lines) and the triangular 
dot (dashed lines). The labels on the left (right) side denote the shells for the circularly symmetric (triangular) dot. 
The numbers in the bracket represent the maximum number of electrons allowed in the corresponding shell.

Show n in  F ig. 21 are th e ir  ca lcu la ted  a d d it io n  energ ies fo r  the  c irc u la r and tr ia n g u la r dots. 
C le a rly  seen are the  expected fu l l- f i l l in g  peaks a t N  =  2, 6, and 12 e lec trons  fo r  the  c irc u la r 
d o t and N  =  2, 6, 8, and 12 e lec trons  fo r  the tr ia n g u la r  do t. T h e  researchers also o b ta in  the 
secondary h a lf- f il l in g  peaks a t N  = 4 and 9 fo r  the  c irc u la r d o t and N  =  4 fo r  the tr ia n g u la r 
do t. In  th e ir  p rev ious  w o rk  [58 ], a secondary peak at N  =  8 was re p o rte d  fo r  the  c irc u la r  d o t. 
T h is  was fo u n d  to  be an a rt ifa c t o f  the  lim ite d  m a tr ix  size used in th e ir  e a r lie r  c a lcu la tio n . 
N o te  tha t, fo r  the tr ia n g u la r do t, the  energ ies fo r  th ird  and fo u r th  she lls  are very close. A s 
a resu lt, the N  =  8 fu l l- f i l l in g  peak is no t as p ro n o u n ce d  as the  o the rs , and the  N  =  7 and 
N  =  10 h a lf- f il l in g  peaks are n o t obv ious  fro m  th e ir  ca lcu la tions .

T he  spa tia l e le c tro n  charge dens ities  p ( x , y )  =  Yh  y ) | 2 f ° r  the  c irc u la r  d o t and the 
tr ia n g u la r d o t a re  p lo tte d  in  Figs. 22 and 23. T h e  to ta l n u m b e r o f  e le c tro n s  in  the  dots 
ranges fro m  =  2 to  A ' =  10, show n fro m  le ft to  r ig h t and fro m  to p  to  b o tto m . The  
n u m b e r o f  sp in -u p  and sp in -dow n  e lec trons  fo r  each d o t is d e te rm in e d  acco rd in g  to  Tables 3 
and 4, w h ich  co rrespond  w ith  the  g ro u n d  sta te  c o n fig u ra tio n . Indeed , the dens ities  re flec t 
the sym m etry  o f  the  q u a n tu m  dots.

4th(8) ---------  -------—  ----------  --------- 6th(2)
----- 4s*r— ■ ■ 5th (4)

3 3rd(6) ------------ — 4t h(4)

2nd(4) _ _ _ -------  — ------------ -2nd(4)

1st (2) ----------------- 1st (2)

4.3 . D e n s ity  F u n c tio n a l T h e o ry

D e n s ity -fu n c tio n a l th e o ry , lik e  the H a rtre e -F o c k  m e th o d , is also a se lf-cons is ten t m ean- 
fie ld  m ode l. H o w e ve r, the e le c tro n  dens ity  d is tr ib u t io n  « (/*), ra th e r th a n  the m u ltie le c tro n  
w a ve fu n c tio n  (nam e ly , the S la te r d e te rm in a n t) , is used in its fo rm u la t io n . T h e  m a in  advan
tage o f  th is  m e th o d  is th a t i t  can deal w ith  a huge n u m b e r o f  e lec trons  in  the system s im u l
taneously, w hereas the  w a ve fu n c tio n  approaches (such as the  H a rtre e -F o c k  m e th o d  and the  
c o n fig u ra tio n  in te ra c t io n  m e th o d  to  be discussed in  S ection  4.4) a re  l im ite d  to  q u a n tu m  
systems w ith  o n ly  a sm all n u m b e r o f  active e lec trons .

Table 3. Shell filling order for the circular dot (k —0.2 eV).
The full shells are labeled by ' *and half-shells by *

N 1st Shell 2nd Shell 3rd Shell E(cv)

I +i 0.200
-»..*■ 11 0.452
3 T1 l 0.916
4* i t T 1.409
5 Ti t i 1 1.952
6‘* U t i U 2.517
7 N t i t i t 3.287
8 11 t I t .1 4. A1 1 4.078
9* ta 1i t i * t T 4.889
I0 l i H T i ti T T 5.748
n t i 11 U t ; t -i r 6.633
12" 11 t i 11 U  t i  t i 7.522
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Table 4. Shell filling order for the triangular dot (/< = 0.2 eV). The 
full shells are labeled bv

,v 1st Shell 2nd Shell 3rd Shell 4th Shell E(ev)

1 -t1 0.199
-) • • t l 0.449
3 11 t 0.905
4 n t T 1.386
5 ti t i 1 1.918
(V t i t l t l 2.472
1 t i t i t l I 3.208
8" tl t i t l t l 3.973
9 t i t i t l t l t 4.780
10 t i t i t i t l ti t 5.617
11 t i t l t l t l t l t 6.483
12" t i t i t i t l t l t l 7.381

A t the  hea rt o f  the d e n s ity - fu n c tio n a l th e o ry  is the se lf-cons is ten t s ing le -e lec tron  K o h n - 
Sham e q u a tio n  [67]:

^ V - ^ . ( r )  +  [ K , ,  +  K ( r )  +  V „ ( r ) M r )  =  e M  r )  (97 )2 nr

de ve lop e d  fro m  the  H o h e n b e rg -K o h n  theo rem s [68 ]. T h e  te rm  Kcxt represents the ex te rna l 
e le c tr ic  p o te n t ia l im posed  by, fo r  exam p le , ex te rna l e lec trodes; <//, is the w a ve fu n c tio n  fo r  the 
/ th e le c tro n , w h ich  is solved fro m  the  K ohn -S ham  e q u a tio n  to  p ro v id e  the e lec tron  dens ity  
d is tr ib u t io n  /? ( r ) ,  d e fin e d  as

/ ; ( r )  =  £ | ( M r ) | :  ( 9 «)
i— I

Number of Electrons

Number of Electrons

Figure 21. Addition energies for a circular dot (top) and a triangular dot (bottom) (♦ k = 0.2 eV; ★ k =  0.1 eV: 
■ A: = 0.05 eV).
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Figure 22. Charge density distribution lor a circular dot (A -- a.2 eV) with V = 2 to ,Y 
to right and top to bottom).

!() electrons (from left

T he  C o u lo m b  p o te n tia l is then given by

f  n(r' )
c( r ) =  ,-----  / ;-------- 7 d r4 my ■’ r  -  r

w hereas the exch a n g c-co rre la tio n  p o te n tia l I\ L( r )  depends fu n c tio n a lly  on  the e le c tro n  d e n 
s ity  d is tr ib u tio n  n( r ) .  I f  the exact e xch a n g e -co rre la tio n  fu n c tio n a l t ’xc| / / ( r ) |  is used, the 
K o hn -S ham  eq u a tio n  in co rp o ra te s  a ll m a n y -p a rtic lc  e ffec ts . H ow eve r, exchange e ffec ts  com e 
d ire c tly  fro m  the a n tis y m m e triz a lio n  o f  w ave fu n c tio n s  as re q u ire d  by the Pau li's  exc lus ion  
p rin c ip le . In  the d e n s ity -fu n c tio n a l theo ry , th is  is a m a jo r p ro b le m  because the m a th e m a t
ica l ob jec t is the e le c tro n  dens ity  d is tr ib u tio n  fu n c tio n , ra th e r than the  e le c tro n  w a ve fu n c 
t io n . m a k in g  eva lu a tio n  o f  the  exchange in te ra c tio n  in tr in s ic a lly  d if f ic u lt .  F o r m any q u a n tu m  
systems, th is  fu n c tio n a l canno t be exactly  d e fin e d , and recen t w o rk  has in vo lved  a c o n s id e r
ab le  am oun t o f  e m p ir ic a l p a ra m e te riza tio n  |6 C), 70].

Figure 23. Charge dcnsit\ distribution lor a triangular dot (k -  0.2 eV) with V — 2 to \  -- H» electrons (from left 
lo righi and top to bottom).
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I he s im p les t and the m ost w id e ly  used re p resen ta tion  fo r  A’xt. | / / ( r ) | is the so-ca lled loca l- 
dens ity  a p p ro x im a tio n  ( L D A ) :  th a t is.

E LDA = j t \ , ( t  )/;(r) dr. (W )

w here  C rep resents  the  sp in  p o la r iz a t io n  and t \ c is the exch a n g e -co rre la tio n  energy. L D A  is 
va lid  fo r  hom ogeneous tw o -d im e n s io n a l e lec trons  and a lso fo r  system s w ith  sm all v a ria tio n  
in e le c tro n  dens ity . T h e  e xch a n g e -co rre la tio n  energy can he pa ra m e te rize d  as

(6 ) = 1 + (i\(i)y/x + MO* + MO\/*
(100)

w here  .v re la tes to  the  e le c tro n  d ens ity  and is de fined  as the rad ius  o f  a sphere c o n ta in in g  
one e le c tro n . T h e  c o e ff ic ie n ts  </,(0) and </,■( 1) were d e te rm in e d  by T a na ta r and C e pe rley  [71 ] 
fo r  the g ro u n d  sta te  o f  tw o -d im e n s io n a l e le c tro n  gas using the G re e n 's  fu n c tio n  M o n te  C a rlo  
m e thod . F o r o th e r  va lues o f  £, one can use [62. 72, 73]

c \ A c )  =  t \,(0 )  + (1 +  0 3 :  +  ( 1 - £  )3 : - 2
<-\A ! ) - < ' . c (« )]. (101)

T he  K o hn -S ham  e q u a tio n s  are so lved ite ra tiv e ly . T h is  is s im ila r  to  the H a rtre e  m e thod  
described in S ection  4.2. T h e  w a ve fu n c tio n  o f  each e le c tro n  is so lved, ta k in g  in to  accoun t 
a p o te n tia l f ie ld  d e te rm in e d  by the  average p o s itio n  o f  a ll o th e r  e lectrons. A fte r  a so lu tio n  
is o b ta in e d , the  p o te n tia l fie ld  is reca lcu la ted , and the K ohn -S ham  equ a tio n  is solved fo r  a 
new so lu tio n . T h e  c a lc u la tio n  is thus  ite ra te d  u n til bo th  the p o te n tia l fie ld  and the so lu tio n  
cease to  change.

M acueci et al. [7 4 -7 6 ] used the  L D A  fo rm a lism  and the  pa ram ete rized  exchange- 
c o rre la tio n  ene rgy  g iven  by Eq. (100 ), ig n o r in g  the spin p o la r iz a tio n  e ffec t. T h e ir  ca lcu 
la ted  resu lts  fo r  the  a d d it io n  energ ies o f  up  to  25 e lec trons  are  shown in F ig. 24a. Lee 
et al. [7 7 1 im p ro v e d  the  fu n c tio n a l a p p ro x im a tio n  fo r  Z:xt. [ / / ( r ) ]  by using a genera lized

Number of electrons

1-----1----- 1----- 1----- r

4 6 8 10 12
Number of electrons

Figure 24. Addition energies calculated by Macueci et al. Reprinted with permission from [7h|. M. Macueci et al.. 
Phys. Rc\: B 55. 4N7lJ ( llW7). v IW7. American Physical Society, (top) with confinement potential of hio =  
4. 2.5 meV and Lee et al. Reprinted wiih permission from [77). I. M. Lee el al.. Phys Rev B 57. y<)35 (IWS).
‘1 llWS. American Phvsical Societv. (bottom) with ho> = 21). 10.4 meV.
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g ra d ie n t a p p ro x im a tio n  d e ve lop e d  by P erdew  e t al. [78, 79] to  co rre c t fo r  some o f  the loca l 
e ffects. T h e ir  resu lts  are show n in  F ig . 24b.

K o sk in e n  e t a l. [62 ] p e r fo rm e d  d e n s ity - fu n c tio n a l ca lcu la tio n s  fo r  q u a n tu m  dots c o n ta in in g  
up  to  46 e le c tro n s . T h e ir  c a lc u la tio n s  in c lu d e d  sp in  e x p lic it ly  ( th e re fo re  ca lled  sp in -dens ity - 
fu n c tio n a l th e o ry )  and es tab lished  a rich  v a r ie ty  o f  m a g n e tic  s tru c tu re s  in the g ro u n d  state 
even in the  absence o f  an e x te rn a l m a g n e tic  fie ld . H o w e ve r, som e o f  th e ir  observed fea tu res, 
such as the  so -ca lled  sp in -d e n s ity  w ave, w ere  la te r  fo u n d  to  be a rtifa c ts  o f  b ro ke n  spin 
sym m e try  in  the  d e n s ity - fu n c tio n a l fo rm a lis m . H i rose and  W in g re cn  [80 ] ex tended  th e ir  w o rk  
to  58 e le c tro n s  and a lso s tu d ie d  e llip t ic a l e x te rn a l p o te n tia ls . T hey  fo u n d  th a t H u n d 's  ru le  
d e te rm in e s  the  g ro u n d  sta te  sp in  c o n fig u ra t io n  o n ly  fo r  c irc u la r  p a ra b o lic  qua n tu m  do ts  w ith  
a sm a ll n u m b e r o f  e le c tro n s  (a ro u n d  22 fo r  the  m o d e l p o te n tia l used in  th e ir  ca lcu la tio n s ). 
F o r e l l ip t ic  c o n fin e m e n t p o te n tia ls , the  q u a n tu m  d o t e xh ib its  a m ore  P a u li- like  behav io r.

W ensauer e t al. [81 ] ex tended  the  sp in -d e n s ity  fu n c tio n a l th e o ry  fu r th e r  to  s tudy tw o  la te r
a lly  co u p le d  q u a n tu m  d o ts  (o f te n  nam ed  q u a n tu m -d o t m o lecu les ) w ith  tw o , fo u r , and e igh t 
e lec trons . F o r tw o  e le c tro n s , th e  sp in -d e n s ity  fu n c tio n a l th e o ry  p re d ic te d  a tra n s it io n  fro m  a 
s p in -u n p o la r iz e d  g ro u n d  sta te  to  a s p in -p o la r iz e d  g ro u n d  sta te . T h is  was fo u n d  again to  be 
an a r t ifa c t o f  the  d e n s ity - fu n c tio n a l fo rm a lis m . H o w e ve r, fo r  h ig h e r num bers o f  e lec trons , 
the resu lts  a re  expected  to  be m o re  re lia b le  as the  co n ce p t o f  e le c tro n  dens ity  becom es m ore  
a p p lica b le . T h is  is. to  som e ex ten t, d e m o n s tra te d  by the  ca lcu la tio n s  o f  W ensauer e l al. fo r  
fo u r  and e ig h t e lec trons .

4 .4 . C o n fig u ra tio n  In te ra c tio n  M e th o d

B o th  the  H a rtre e -F o c k  m e th o d  and  d e n s ity - fu n c tio n a l th e o ry  are se lf-cons is ten t m e a n -fie k l 
m ode ls , b u t they  are fu n d a m e n ta lly  d if fe re n t in  the  w ay o f  tre a tin g  exchange and c o rre 
la tio n  e ffec ts . In  the  H a rtre e -F o c k  m e th o d , exchange is cons ide red  exactly  by the p ro p e r 
a n tis y m m e tr iz a tio n  o f  w a ve fu n c tio n s , w hereas c o rre la t io n  in the  m o tio n  o f  the e lec trons  is 
neg lected  because o n ly  a tim e -a ve ra g e d  e ffe c tiv e  p o te n t ia l is used in  its fo rm u la tio n . In  
d e n s ity - fu n c tio n a l th e o ry , b o th  exchange and c o rre la t io n  e ffec ts  are in c lu d e d  exactly in  p r in 
c ip le  b u t o n ly  a p p ro x im a te ly  in  p ra c tice  in  m ost s itu a tio n s , and  pe rhaps w orse s til l, the re  
is no  c le a r ro u te  fo r  the  d e n s ity - fu n c tio n a l th e o ry  to  p ro v id e  conve rgen t results. T o  fu l ly  
un d e rs tand  the exchange and  c o rre la t io n  e ffe c ts  and to  estab lish  an accura te  d e s c rip tio n  o f  
the q u a n tu m  d o t system s, b e n ch m a rk  ca lc u la tio n s  w ith  a rb it ra r ily  h igh  n u m e rica l p re c is io n  
w o u ld  be re q u ire d .

A s  discussed in  the  p re v io u s  sec tion , the H a rtre e -F o c k  m e th o d  uses a s ing le  S la te r d e te r
m in a n t th a t is an a n tis y m m e tr ic  fu n c t io n  and o p tim ize s  the  s in g le -e le c tro n  w a ve fu n c tio n s  
used in  the  c o n s tru c tio n  o f  th a t d e te rm in a n t. A  m o re  accu ra te  fo rm a lis m  is to  use a lin e a r 
c o m b in a tio n  o f  a ll S la te r d e te rm in a n ts  th a t can be fo rm e d  fro m  a g iven set o f  n o n in te ra c tin g  
s p in -o rb ita ls , each o f  w h ich  describes a d if fe re n t c o n fig u ra tio n . T he  n u m b e r o f  s p in -o rb ita ls  
can be increased  to  im p ro v e  the  accuracy o f  the  ca lcu la te d  resu lts . T h is  m e th o d  is te rm e d  
as the c o n fig u ra t io n  in te ra c t io n  ( C l)  m e th o d , w h ich  p ro v id e s  a conve rgen t ro u te  to  o b ta in  
n u m e ric a lly  exact s o lu tio n s  o f  m u lt ie le c tro n  systems.

S p e c ifica lly , we have

w here  is the S la te r d e te rm in a n t as d e fin e d  in E q. (8 2 ) fo r  each d if fe re n t co n fig u ra tio n . 
T he  n u m b e r o f  S la te r d e te rm in a n ts  to  be in c lu d e d  in the expans ion  is g iven  bv

w here  K is the  n u m b e r o f  a va ila b le  s p in -o rb ita ls  to  be used in  the  expansion ; N ' and N 1 are 
the n u m b e r o f  e le c tro n s  w ith  up  and dow n  sp in , resp e c tive ly ; and  Nv >  AT +  /V ; , w h ich  is the  
to ta l n u m b e r o f  e le c tro n s  in  the  system . T h e  lin e a r R a y le ig h -R itz  v a r ia tio n  p r in c ip a l can be 
used to  d e te rm in e  the  expans ion  c o e ff ic ie n ts  d t: nam e ly , by so lv in g  the e igenva lue  p ro b le m  
o f  H a m ito n ia n  m a tr ix  w ith  e lem en ts  (<!>;.,!/ V l ^ ) ,  as described  in  d e ta il in S ection  3.1.5.

(102)

(1 0 3 )
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T he  m a in  d if f ic u lty  o f  the C l m e th o d  lies in the  ra p id  e xp lo s io n  o f  the  n u m b e r o f  S la te r 
d e te rm in a n ts  to  be in c lu d e d  in  the expans ion  as the  n u m b e r o f  s p in -o rb ita ls  increases. F o r 
exam ple, to  rep resen t a s ix -e le c tro n  q u a n tu m  d o t w ith  10 a va ilab le  sp in -o rb ita ls , we need 
44,100 S la te r d e te rm in a n ts  in  the  expans ion , w hereas w ith  20 sp in -o rb ita ls , the n u m b e r o f  
S la te r d e te rm in a n ts  to  be in c lu d e d  is 1,502,337,600.

As a re su lt, a tru n c a te d  C l app roach  is a lm o s t in e v ita b le  in  p ra c tice . F irs t, the  set o f  
s p in -o rb ita l bases needs to  be o f  reasonab le  size, and so one  is re q u ire d  to  select the  m ost 
a p p ro p ria te  basis fu n c tio n s  to  a p p ro x im a te  the  tru e  w a ve fu n c tio n . Second, assum ing th a t 
the low est few  energy states o f  the  system s u n d e r s tudy  are o f  m a jo r conce rn , one can 
d e te rm in e  the tru n c a tio n  in  the  C l expans ion  on  the  basis o f  to ta l n o n in te ra c t in g  energy 
£ " on =  ( < I ^ | / / llo l|<t>;; ). D e te rm in a n ts  g iv in g  rise  to  lo w e r va lues o f  £ " on are g e n e ra lly  
m ore im p o r ta n t to  the  low est-ene rgy  states th a n  those w ith  h ig h e r va lues o f  £ " on, and they  
are thus in c lu d e d  p re fe re n tia lly . A  c u to f f  va lue  can be set so th a t o n ly  d e te rm in a n ts  w ith  
£ non be low  th is  va lue  are in c lu d e d  in  the  expans ion . C onve rgence  is ach ieved  i f  the  so lu tio n s  
and energ ies re m a in  the  same w hen  inc re a s in g  the  n u m b e r o f  s p in -o rb ita ls  and the c u to f f  
n o n in te ra c t io n  ene rgy  in  the  C l expansion .

T he  m ost c o m p u ta tio n a lly  in tens ive  aspect o f  the  p ro ce d u re  is the  e va lu a tio n  o f  a la rge  
nu m b e r o f  H a m ilto n ia n  m a tr ix  e lem en ts

=  Nl(*\:AHzi\<t>')

=  (104)

w here  <!>„ is a S la te r d e te rm in a n t and <P is a s im p le  p ro d u c t o f  the  in d iv id u a l sp in -o rb ita ls . 
S la te r and C o n d o n  [1 0 0 -1 0 2 ] es tab lished  a set o f  ru les  ( th e  so -ca lle d  S la te r-C o n d o n  ru les), 
w h ich  a llo w  us to  reduce  the  N -e le c tro n  in te g ra l (1 0 4 ) to  a sum  o f  o n e - o r  tw o -e le c tro n  
in teg ra ls  and, fu r th e rm o re , to  id e n tify  ze ro  H a m ilto n ia n  m a tr ix  e lem ents .

F o r com p le teness, we in c lu d e  the  d e r iv a tio n  o f  these ru le s  be low . N o te  th a t the  s tanda rd  
S la te r-C o n d o n  ru les  are o n ly  a p p lica b le  i f  the  tw o  S la te r d e te rm in a n ts  and <P’D are  lin e d  
up  in  m a x im u m  co inc idence . F o r exam p le , i f  w'e have 4> =  ^
w o u ld  need be a lig n e d  up  by pa irw ise  p e rm u ta tio n  to  /^i/y^/y4t//6. W e fo u n d  it is eas ie r to  
s im p ly  use th e  o rd e re d  lis ts cp and 4>' as they  are (i.e ., n o t necessarily  a lig n e d ) bu t to  in tro d u c e  
a s im p le  phase fa c to r  in these ru les. T h e  fo rm u la s  de rive d  b e lo w  re q u ire  t// be an o rth o g o n a l 
set; it  is, how ever, possib le  to  de rive  s im ila r  fo rm u la s  fo r  a n o n o rth o g o n a l basis [82 ].

T h e o r e m  4.1. In the case that H  =  // ,„  which is independent o f  electron coordinates, 
<<I>„|//|<D ',) =  h {) i f  <X> =  <!>' and otherwise (<E>/ |̂/ / 1 =  0.

P r o o f .  Following Eq. (84), we have 

I //!<!>;,> =  hnN \ (

= /zn£(-l)''<cl;|/5<p')
r

=  K  E  ( - 1 ) ' < ' / '  11 'K' i > I < / v 2 )  • • • ( <A,v I < / v . v )  ( 1 0 5 )
P

Because o f  the  o r th o g o n a lity  o f  the  ip,, the  above expression  is 0 unless t//, =  ip'Fi V /. T h is  is 
o n ly  possib le  i f  a ll e lem en ts  o f  <t> a rc  the  same as the  e lem en ts  o f  <!>'. Because each e le m e n t 
o f  $  is u n iq u e , c le a rly  o n ly  a s ing le  p e rm u ta tio n  satisfies th is  c o n d it io n . Because the  set <T> 
has its e le m e n ts  a rra n g ed  in  the  same o rd e r  as <f>', th is  is the  id e n tity  p e rm u ta tio n , and thus 
( - 1 ) /J =  1. B y se ttin g  h{] =  1, we fin d  th a t the  S la te r d e te rm in a n ts  fo rm e d  fro m  a set o f  
o r th o n o rm a l o rb ita ls  are them se lves an o r th o n o rm a l set.

T h e o r e m  4.2. In the case that H  =  J2i=\ h r  where /?, is the one-electron operator involving 
only coordinates o f  the ith electron,

a. <<!>,)| W I^'d) =  0, i f  and  (t>' differ by more than one orbital;
b. (<̂ r>/)|/ / 1 =  ( — l ) |/_w,Ktfy/K7/|tAw)* t f  ^  anci ^  differ by one orbital ipj versus where 

I is the position o f  if/, in <I> and m  is the position o f  tp'm in ct>';
C. <cp d \ h \ v d ) =  i f *  -  cty.
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Figure 25. Energy levels obtained from the Cl method lor a square nano box. Reprinted with permission from |<S3). 
G. W. Bryant, Phys. Rev. Leu. 59, 1140 (19N7). (c- ll)S7. American Physical Society.

P r o o f .  T h e  c o n tr ib u t io n  o f  It, to  ( <l)/ , |/ / 1(I>/^) is g iven  by

/’

=  (>06)
i> i ~ i

w h ich  is 0 unless t//,- — tAJ, V / ^  / because o f  the  o r th o g o n a lity  o f  the basis fu n c tio n  <//,.
L e t us assume th a t th e re  are at least tw o o rb ita ls  i//, and «//,„, w h ich  appear in <!> b u t n o t 

4>'. I f  th is  is the case, then  the re  does no t exist any va lue  / fo r  w h ich  t/// =  t//J, V / ^  and 

th e re fo re  ( ^ /) |/?/ |cI>y) ) =  0 V/. T hus, (<I>/>|/ / =  0 w hen  <t> and <!>' d i f fe r  by m o re  than 
one o rb ita l.

N ow  assume there  is o n ly  one o rb ita l t///. w h ich  is in <I> bu t n o t in <!>'. T h e n  the re  
exists on ly  one va lue  / =  / fo r  w h ich  the c o n d it io n s  iff, =  i//), V / ^  / can be sa tis fied .

Figure 26. Energy levels obtained from the Cl method including the influence of an external magnetic field. 
Reprinted with peimission from IN4|. P. A. Vtaksym and ’!. Chakraboitv. Phvs. Ret Leu. f>5. ION (WO). < IWi). 
.American Physical Society.
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In th is  ease.

i - 1

* - 1 r ./*/

=  ( - l ) ,’ («A/ | / ; / | ^ , )  (107)

w here  ( —1);> =  ( — l ) i/_#M as we need |/ — /??| p a ir  p e rm u ta tio n s  to  a lign  <I> and <I>'.
As an exam ple  co ns ide r the  S la te r D e te rm ia n ts  fo rm e d  fro m

cj> =

C le a rly  we need to  fin d  P  such th a t

/><!>' =  <//, e//si//3*//4 i//r>

T h is  can be ach ieved th ro u g h  tw o  pa irw ise  p e rm u ta tio n s

<!>' =

P, 4(JV =  (110)

=  </'i

and th e re fo re  ( — I)7' = ( - 1 ) :  = 1. T h is  is e q u iva le n t to  m| =  ( - 1 ) 2 =  1, w here  I =  2
and ni — 4.

F in a lly  we co n s id e r the case =  <1)', w he re  the co n d itio n s  i//; =  i//^  V / ^  / can be satis fied  
fo r  any cho ice  o f  / and we have

(108)

(109)

(HD

Magnetic Field (T) Magnetic Field (T)

2 4 6
Magnetic Field (T)

Figure 27. Chemical potentials for two to eight electrons in three different dots: (a) hto =  IOlJ meV. (b) hco — 
5 4 .S meV and (e) f no  =  1 0 .%  meV. Solid lines are from the configuration interaction calculations, alternate dash 
and dot lines are from the Hartree-l ock calculations, and dashed lines are from the constant interaction model
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TH E O R E M  4.3. In the case that H  — Yl]'. , r  which is the two-electron operator involving 
only coordinates o f  the ith and  j th electron,

a. (<t>D\H \W D) =  0, i f  4> and  <J>' differ by more than two orbitals;

b. ( * d \ H \ V d ) =  i f * ’ a " d  V  d if fe r  by
two orbitals, ipt and i/js in and  t//m and iff] in 4>'.

c. (4>f i |/ / |4 > ;,)  =  -  ( M i \ g i . i i f  (1> differs by one 
orbital, ip/ in <t>, and ifj'm in 4>'.

d. («Dd |// |4 > ;,)  =  r U ( M M i . j \ M j )  ~  (Mjlgi. j l ' l ' j t l ' i )),  i f ®  = V -

P r o o f .  In  genera l, we have

=  E E ( - ^ ( ^ n ) ( ^ n )  ■ ■ ■ (M jlg i. jW p ^ 'r j) ' '
ic j f>

(V

= Y . H ( - [ )l' ( llJi'l>j\gl.j\'l) 'ri'l, 'rj) n W kW n) '  
i -  j  p  k ^ i .  j

w h ich  is 0 unless

' h  = ty'pk

because o f  the o r th o g o n a lity  o f  the basis set i//.

2 Electrons 3 Electrons

>,350cn
a> 325 
W 300

2 4 6
Magnetic Field (T)

4 Electrons

Magnetic Field (T) 

5 Electrons

Magnetic Field (T) 

6 Electrons

Magnetic Field (T) 

7 Electrons

_  1900 
>0)
E 1800 

j? 1700
CD

W 1600

1500
2 4 6

Magnetic Field (T)
2 4 6

Magnetic Field (T)

( 112)

(113)

1 2400 ______

S ^  / ^
>
|  2300

>  2200 ^  y y^
\ E? ^ -------  S ^ /

l  2100 '  ” ^ s "
r LU - __—̂  y /

2000

Figure 28. Energy levels for a parabolic quantum dot with ho) =  109 meV: configuration interaction calculations
(solid lines), Hartree-Fock calculations (dashed lines).
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Clearly, if <l> and <!>' differ by more than two orbitals, i he re is no permutation operator 
capable of satisfying the conditions given by Eq. (113), ;md therefore {<!>,,| / / |  <■!>),) — 0. If 
<t> and (b' differ by two orbitals, *///t//v in <I> and ( / / ,  i//' in <1 >. there are only two possible 
permutations P and L — PLkP  satisfying these conditions, where

<Pm = Vrt' 

=  'A/v

(114)

and

4>k = ^Lk

=  '/'U

= ^'l.l

(115)

Then we have

=  +  ( - 1)' <lV/ </', 

=  ( —i ) '■ ( ( t/'.j , .j <a;„ <//; > - (116)

2 Electrons 3 Electrons

Magnetic Field (T) 

4 Electrons

Q>c 475
LU

2 4 6
Magnetic Field (T)

6 Electrons

Magnetic Field (T) 

5 Electrons

4  6

Magnetic Field (T) 

7 Electrons

Magnetic Field (T) Magnetic Field (T)

Figure 29. Energy levels for a parabolic quantum dot with h io  — 54.<S mcV: configuration interaction calculations
(solid lines), Hartree-Fock calculations (dashed lines).
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noting that L  =  PimSP* which means ( ~ \ ) L — — (— I)7’. Also, as it takes |/ -  m\ perm uta
tions to align (/// and and |.v -  /| permutations to align <//' and t//A, we have (-1) '*  — 
( _  1)|/-/h| + |a-/:#

If and c])' differ by only one orbital, ip/ in <J> and ij/m in <t>', the conditions given by 
Eq. (113) can be satisfied when / =  I. But j  can take on any value allowed by the original 
definition of H . For any given value of /. there are two possible permutations that give 
nonzero results, so again we find

,v

( ^ n \H \a Q  = X^((—l )/,<iA/«A,-|g/.
j*i
\

=  E < t,,/>lft.iltl>)>) =  -  <tA/iA/L<r/ . (117)
/=/

If and (I> are identical, no permutation is necessary to align and <!>'. and all gt , 
contribute to give

I ■ I 
A

(1 18)

2 Electrons 3 Electrons

Magnetic Field (T) 

4 Electrons

Magnetic Field (T) 

5 Electrons

Magnetic Field (T) 

6 Electrons

Magnetic Field (T) 

7 Electrons

Magnetic Field (T) Magnetic Field (T)

Figure 30. Energy levels tor a paiaholic  quantum  dm  with !uu  — |(l.W> meV: cunliguiatinn interaction calculations
(solid lines'). H anree -Foek  ealeulations (dashed lines).
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The pioneering theoretical study on the electronic structure of quantum dots was carried out 
by Bryant, using the Cl method for up to six electrons [S3]. Bryant modeled the quantum  
dot system as an ultrasmall square box. and his calculated energy levels for noninteracting 
electrons and interacting electrons in various sizes of boxes are shown in Fig. 25. Despite 
the simplicity of the model, a very rich variety of electron properties, including impaired 
electrons, weakly correlated states, and Wigner crystallization, were predicted. Maksym and 
Chakraborty [84] extended the Cl calculations to include the effects of an external magnetic 
field, which was applied perpendicular to the plane of the dot. A more realistic confinement 
potential was also used in their calculations and was assumed to be parabolic in the form 
V( r )  =  ^m'co~r2. This was believed to be a good approximation to most experimentally 
studied quantum dot systems, especially when the num ber of electrons is small. Figure 2b 
shows their calculated energy levels for three and four electrons at four different magnetic 
field strengths as a function o f ./, which is the sum of the single-electron angular mom entum  
number /. Subsequently, many research groups have used the Cl approach to study a wide 
variety of quantum dots and o ther nanosystems [20, 50. 51. 63, 85-90].

In this work, we make a direct comparison of the calculated chemical potential using 
the constant interaction model, the HF method, and the Cl method, which is defined by 
Eq. (77) as the difference between the ground state energy for N  and N  — 1 electrons. As 
demonstrated in Fig. 27, the H F  and Cl calculations are in excellent agreement, especially 
for tightly confined quantum dots (i.e., those with high to values), but they become more 
different as the confinement becomes weaker and eleetron-eleetron correlation starts to 
dominate. The chemical potential provided by the simple formula of the constant interaction 
model is different from the HF and Cl calculation, but the general trend is the same. For 
comparison purposes, we fit the capacitive term to the spacing between electrons being 
added to the same orbital as that given by the configuration interaction method at zero field.

Figures 28 to 30 show the lowest energy levels of the three quantum dots containing up to 
seven electrons. The general trend of increasing accuracy of the HF method with increasing 
confinement strength is clearly demonstrated. In addition to this, we note that Hartree-Fock 
calculations are more accurate for spin polarized stales. This is because the unpolarized

0.3

g 0.2 
cn
£co
ca
Q.
LU

T3
CD
N

| 0.1 
CL 

LU

0.0
0.0 0.2 0.4 0.6

1/rs

Figure 31. Energy difference between the fully p o k m /ed  (.S' =  3) and param agnetic  (.S' =  (I) sla tes for quantum  
dot with six e lectrons us a function o f l / / \  =  K t t / l  w here i\ is the W igner-Seitz radii and n the e lectron density. 
R eprinted with perm ission from |fi3). S. Reimunn el ;il.. /Viw. Rev. H 62. SIDS (2(H)(1). 2000. A m erican  Physical
Socictv.
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Figure 32. Charge density of a quantum  dot with six e lectrons in a harm onic well: exact result (solid line) and the 
D F T  result (dashed line). R eprinted with permission from [63]. S. R eim ann et al., Phys. Rev. R 62. SI OS (2000). 
€> 2000, Am erican Physical Society.

configuration has a higher degree of correlation between the motion of the electrons, and 
therefore the mean field model of Hartree-Fock is less accurate.

Reimann et al. compared the energy levels and electron charge densities obtained using 
the Cl method and the density functional theory. As demonstrated in Figs. 3 1 and 32, for a 
quantum dot containing six electrons, the density-functional theory predicts the correct trend 
for both the energies and the densities. However, the differences are also clearly visible.

5 . S P IN -A D A P T E D  C O N F IG U R A T IO N  IN T E R A C T IO N  A P P R O A C H

The Cl m ethod takes into account the full interaction and correlation of the electrons in the 
system as long as the numerical results converge with an increasing num ber of basis func
tions. However, the standard Cl method involves the calculation of a very' large number of 
interaction integrals and the inversion of large matrixes, which can be prohibitively expensive 
in terms of computer resources. Reimann et al. had employed matrices of  dimensions up 
to 108,375, with 67,521,121 nonzero elements for a six-electron quantum dot. Calculations 
for any higher number of electrons in the system were not considered numerically possible 
using the standard Cl formalism [63, 88].

In this section, we develop a novel spin-adapted configuration interaction method to cal
culate the energy structure of an N-electron quantum  dot. By isolating spin eigenstates of 
the system, which in turn restrict the possible form of the spatial wavefunctions, we are 
able to reduce significantly the size of the configuration interaction matrices in comparison 
with the standard Cl method. This has allowed us to investigate quantum dot systems with 
electron numbers greater than six using PCs and Mathematica. A similar approach has been 
employed in quantum chemistry, and an in-depth analysis of the methodology can be found 
in Ref. [91]. However, it has not yet been used in mesoscopic physics.

5 .1 . An O rth o n o rm a l S p in -A d a p te d  B as is

5.1.1. Spin E igenfunctions
T h e  p ro jec t io n  o f  th e  sp in  a n g u la r  m o m e n tu m  o p e r a t o r  fo r  an  .V -e lec t ron  system  is g iven by
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where S: (i)  is the projection of the spin operator for the ith electron. The eigenfunctions of 
S: are products of the single electron eigenfunctions; namely,

0k — a (  1 )<t(2) ■ ■ ■ cr{/V), (120)

where a( i )  =  a( i )  or /3(/) represents spin up or spin down of the /th electron, respectively. 
We term the elementary spin eigenfunctions. The eigenvalue for a particular 0k is simply 
the sum of the eigenvalues of the individual spin operators. If we define fi as the number of 
as  and v as the number of /3s in 0k, then

S A  = ' J ^ » t > k (121,

where fx 4- v is equal to N, the num ber of electrons in the system.
For a given number of electrons, any linear combination of eigenfunctions 0k with the 

same eigenvalues is also an eigenfunction of S: with the same eigenvalue. It is easy to verify 
that a complete set of eigenfunctions for the particular eigenvalue (fi — v ) h / 2  is given by all 
possible permutations o f  the eigenfunction 0] =  a(  1)«(2) • • • a( f i )P( f i  +  1 )/3(/z +  2) • • • +
v). There are (*) of these functions, where (*) =  binomial coefficient, and they
form a complete orthonormal basis for eigenfunctions of Sz with that particular eigenvalue.

The elementary spin eigenfunctions are generally not eigenfunctions of S , but linear 
combinations of elementary spin eigenfunctions can be constructed to be simultaneously 
eigenfunctions of S2. In the N-electron case, the S 2 operator has the following form [91]:

& X  = ' £ P ijX  + j { 4 - N ) X  (122)

where P-n is a permutation operator and X  = J^k ck6k are simultaneous eigenfunctions of 
both S :2 and S z.

Let X  — ck®k(N* M ) be a linear combination of all elementary spin eigenfunctions of 
S: for a given number of electrons N  and the projection of total spin quantum number M  — 
( fi -  v) /2.  Let v be the corresponding vector of coefficients; that is, v =  ( c ,, c:2.........p .

Define the matrix {5- } by {52}/; =  ( ^ | 5 2| ^ ) ,  whose elements can be calculated using Eq. 
(122). Then the action of S 2 on X  can be represented by the matrix operation {,V2} • v. The 
eigenfunctions of S 2 are then found by solving the matrix eigenvalue problem.

As an example, the calculation of the spin eigenfunctions for three electrons with M  = 
1/2 is presented. In this case, the possible elementary spin eigenfunctions are 0, =  aaf3 , 
02 z=i a[3a, and 03 =  f ia a .

i j

— P yi\aa(3) +  P[}\aa(3) 4- P2$\aotl3) 4- “ (4 -  3 ) |a a fi)

3
=  \aaf3) +  \/3aa) +  \a fia )  +  - |  a a fi)

=  ^ i >  +  l ^ )  +  l ^ )  (123)

Similar calculations lead to the matrix elements o f  {52}:
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The eigenvalues of the above matrix arc -y =  +  I) and  ̂ + +  1). which corresponds
to the total angular momentum quantum numbers S = * and 5 =  i ,  respectively. The
orthonormalized spin eigenfunctions are obtained by first solving for the eigenvectors and
then applying the Gram-Schmidt orthonormalization procedure. These are

* , ( 3 , ^ )  =  -j=(aap + apa + pact) (125)

A ' , ^ 3 ,  - j  =  ~ ( ~ a a p  +  Paa) (126)

X: ( 3. =  - j= (—aap + 2aPa -  Pact) ( 127)

Here X'k( N . S. M)  are termed as spin eigenfunctions as opposed to the elementary spin 
eigenfunctions, and k is a positive integer denoting different eigenfunctions in a multidi
mensional spin eigenspace.

5.1.2. Spin A d ap ted  Basis
Next we need to include the spatial wavefunetions to form an orthonormal and properly 
antisymmetrized basis. The basis elements have the form CiltA<PXk( N , S,  M ), where C\v is 
a normalization constant, A = -L^i( - \ ) f ,P  is the antisymmetrizer, X k( N %S,  M ) is the spin 
eigenfunction, <t> — i / / , ^  • • • i//N is a representative spatial wavefunction. and <// are single
electron orbitals (i.e., eigenfunctions of the single-electron Hamiltonian). We occasionally 
abbreviate X k( N ,  5 ,  M)  to X k, when the values of N,  .S', and M  are fixed in a given calcu
lation. Different elements of this basis have different spatial and spin combinations.

Note that both the spin and spatial variables are permuted in ClVA ^ X k, as required by 
the antisymmetry principle. We also note that any product spatial wavefunction with three 
or more orbitals that are the same will vanish when multiplied by a spin eigenfunction and 
antisymmetrized. This implies that the greatest num ber of orbitals that can be the same in 
a representative spatial wavefunction is two, which we call a doubly occupied orbital.

In the following, we demonstrate that by using the spin eigenfunctions that are also eigen
functions of the permutation operators P2i 1 2/ for 1 — K 2 ,  where / < 4  and spatial 
wavefunetions that only have doubly occupied orbitals sequentially at positions (2/ — 1,2/) 
for i =  1 , 2 , . . . ;  where i < —, we can construct a orthogonal basis in which vanishing ele
ments can be easily identified and the normalization constant is of a simple form. This is 
similar to the Scrber construction [92]. Following the nomenclature of Salmon and Rue- 
denberg [93], as also adopted by Pauncz [91], we will call a pair of numbers of the form 
(2/, 2/ -  1)— a geminal pair. Correspondingly, we call the set of permutations mentioned in 
the previous paragraph the geminal permutations.

Because the S 2 operator commutes with any permutation and the geminal transposition 
operators pairwise commute, it is possible to construct a complete set of orthonormal spin 
eigenfunctions that commute with all of these operators. To compute this basis, we first
obtain the orthonormal spin eigenfunctions, X {] =  {X \ \  . . . ,  A'"}, as in the previous section.
We then use these to compute the representation matrix U ( P ]2). The representation matrix 
for any permutation P is defined by

/
P X k(;V. .V. A/) =  V  U ( P ) lkX A N  . S .  A/) (128)

/--i

It can be shown that for any two permutations R and P.

U ( R P )  =  L ( R ) U ( P )  (129)

satisfying the condition for a representation of the symmetric group. This is independent of 
the particular spin basis chosen.



Electronic Structure of Q uantum  Dots 591

Note that AJv'(/V, S,  M)  are not, in general, eigenfunctions of Pl2. However, the orthonor
malized eigenvectors of U ( P ]:) will give the linear combination of vectors of A'° that form 
a new orthonormal basis. A'1 =  {A’,1...........Y j for the spin space that are also eigenfunc
tions of P ,■*.

For example, we can start with the three electron spin eigenfunctions, with .S’ =  \  and 
M =  given by Eqs. ( 126) and ( 127),  and obtain

' ' ' = 4 ' 4 H 4 4 4 t  4 4  D -  

'’4 4 4 4 4 4 ) 4 4 4 )
(130)

Therefore

U ( P r_)

( ]
1

s/3 -1
V 2 ' Y  /

(131)

The eigenvalues of the above matrix are ±1 , corresponding to the eigenvectors ( V ,  \  ) and 
( ~ ,  V )-  This means that the new spin eigenfunction basis is

4 4 4 4 4 4 4 4 4 )
=  —  (-2aa(i  +  at (3 a  +  fia a )  

v 6
(132)

-=(-4 ) 4 4 ' 4 ) 4 4 -4 )
-.(afia  — jBaa) (133)

The basis elements are now eigenfunctions of P i: . Note that the first spin eigenfunction is 
symmetric in the first two electrons, whereas the second is antisymmetric. This means that 
the first will vanish if we multiply it by a spatial wavefunction in which the first two electrons 
are in the same orbital and then antisymmetrize. This will not be the case for the second 
spin eigenfunction; thus, we are allowed to combine it with spatial wavcfunctions in which 
the first two orbitals are the same.

The symmetry properties of the spin eigenfunctions dictate with which spatial orbitals it 
can be combined. This is a general feature that is developed in the next section. Specifically, 
we will see that the choice of spin eigenfunctions that are simultaneous eigenfunctions of 
geminal transpositions allows us to restrict the spatial representative wavcfunctions we need 
to consider to those with the doubly occupied orbitals in the geminal positions.

If we have more than three electrons, we can use X 1 to calculate the representation 
matrix U ( f \ 4), which creates a new basis A : . This process continues till we use all possible 
geminal transposition operators. The pairwise commutative property of the geminal trans
position operators  guarantees that subsequent bases will still be eigenfunctions of earlier 
geminal transpositions after each transformation. After this process, we will have produced
a spin-adapted basis, X  = { X , ...........Y , \ .  in which the spin eigenfunctions are simultaneous
eigenfunctions of all the geminal transposition operators.

There are o ther construction methods, such as the Serber construction [92], which pro
duce bases with the same properties. In the Serber construction, spin eigenfunctions are 
constructed by adding two electron singlet and triplet spin eigenfunctions using the angular 
momentum addition formula and the Clebsch-Gordan coefficients. Degenerate eigenfunc
tions can be traced using their Serber path symbol |91, 94]. For an odd number of electrons.
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the last electron can be added using the one electron-addition formulas. This produces a 
orthonormal spin eigenspace, with the spin eigenfunctions also being eigenfunctions of the 
geminal transposition operators.

As the calculation of the spin eigenfunctions in our studies takes only a small proportion of 
the computational effort compared to the calculation of the Hamiltonian matrix, the above 
matrix eigenvalue method was chosen for simplicity of implementation. The Serber method 
may prove useful for systems with larger numbers of electrons.

5.2 . P ro p e rtie s  o f th e  S p in -A d a p te d  B as is

In this section, we discuss the general properties of the spin-adapted basis X  =  
{A^, . . . ,  X i  ). Each X k is a simultaneous eigenfunction of S 2 and the geminal transposition 
operators. We also derive the formula for the normalization constant C(j).

We are restricting the position of any doubly occupied orbitals in the spatial wavefunctions 
to be sequentially in the geminal positions. Also, two representative wavefunctions for differ
ent basis elements are never noninvariant permutations of each other. With this restriction, 
we show that we can construct an orthonormal basis.

The following two theorems were used in proving the properties of the spin adapted 
basis:

T h e o r e m  5.1. Let  <£> =  ipl4f2 • • - i/jn with i//2/_ [ =  *p2i (i.e., there is a doubly occupied orbital 
at this position). Then i f  A<X>Xk ^ 0  we have P2j_| ^ X k =  —X k and U( P 2l_x 2l)kk =  — 1-

The above theorem is simply a result o f the antisymmetry principle. As the spatial wave
function is symmetric under P2i ul i , the spin eigenfunction must be antisymmetric to com
pensate. The condition A<t>X k ^  0 is included because we can not have zero elements in the 
basis if we want a well-constructed matrix eigenvalue problem.

If the spatial wavefunction <1> has d  pairs of doubly occupied orbitals, then the invariance 
group .S',,, is given by all products of transpositions in the set {P i 2, / \ 4, . . .  ^ / - i , ;></}• As each 
of these elements is of order 2 (i.e., P ~; is the identity permutation), this set has 2J elements 
given by P  =  P[\]2 * P";A * ■ • • * P2;f [ 2<l where a, =  0 or 1 , / =  1... d.

T h e o r e m  5.2. Let <l> =  if/11//2 • • • ij/n with i/>, =  f/y2, . . . ,  il/2(l i =  :</ where d  =  11(0) is
the number o f  doubly occupied orbitals in <I>. Then i f  P e  Si]} =  {P e  S N : P<t> =  <f>}, with 
A <PXk /  0 we have U ( P ) kk = ( — 1);> where ( — l )7' is the parity o f  the permutation P.

P r o o f .  Now if P e S,h then P  =  P”\  * P ”:4 * • • • * P ”*_, 2ij where n, =  0 or 1 , / =  1 , . . . ,  d. 
Thus, using the multiplicative property of the representation matrices,

U( P)  =  U(P?;2) U( l * ; 4) . . . U { P % _ U2il)

= U ( P L2)" ' U(Py ^  . . . u ( P 2<l̂ 2(ly<>

where U ( P ) [) is the identity matrix. The t / ( P 2/ - i . 2/) are diagonal, so

U ( P ) kk =  U ( P L2) Z U ( P , J l k . . . U ( P 2trL2(l)f̂

=  ( —!)" .(—i)"- . .  . (  — I p

=  ( — 1)"'! ( 134)

where we have used U( P2i \ 2i)l<k — I [Theorem 5.1]. The parity of P  is given by (—IK  =
( _ j )"! 4n,im so U ( P ) kk =  (—I)7’, which is the result we require.

As the antisymmetrizer is Hermitian and proportional to its square [91], we can simplify 
the inner product of basis elements.

T h e o r e m  5.3. The basis functions /H l> X l and A xV X k are orthogonal i f  <f> P XV for al! 
permutations P
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P r o o f .  As the antisymmetrizer is Hermitian and proportional lo its square [91|, we can 
simplify the inner product of basis elements:

(A<\>X j \ Ax\rX k) = (<bXi \ AAf V X k)

= ( Q X j \ A ' V X k)

=  (<\> X  j \sfN Aty X  k)

= B - D /’<‘i>\ p v ) < x , \ p x k)
r

= ' £ { - ! ) "  ( ® \ P * ) L !(P) j k < (135)
r

but <cl>|P V )  =  0 VP e  S v . Thus,

( A ^ X j \ A ^ X k) =  0. (136)

This means that basis elements are orthogonal for different spatial wavefunctions. Note that 
the basis does not include spatial wavefunctions that are noninvariant permutations of each 
other. The only case in which two basis elements would have the same spatial wavefunction 
is when it is multiplied by a different spin eigenfunction. This case is dealt with by the next 
theorem.

T h e o r e m  5.4. The basis elements A<t>X j and A<l'Xk are orthogonal where
A<l>Xj, A<t>Xk ^  0. That is, fo r  j  /  k their inner product is 0. Furthermore, for j  — k , their 
inner product is 2<l, where d  is the number o f  pairs o f  doubly occupied orbitals in <J>.

P r o o f . Because

( A*Xj \ A<t >x t ) = (137)
r

and
[ 1, P e S(U

(cp\pct>) =  (138)
[ 0, otherwise,

Eq. (137) transforms to:

(A<PXj\A<PXk) =  £  ( " I )pU(P)ik-  ( l3y)

If P e  .S’,,,, then P  =  P \'\P ":4 ■ ■ • P ”('f  , 2(l, where //, =  0 or 1, i =  1 , . . . ,  d  and d  =  Il(4>) is
the number of doubly occupied orbitals in <t>.

If j  z/z k ,  then

(A<t>Xj\A<t>Xk) = 0 (140)

as LJ(P)ik is diagonal for P e  5 (|>.
If  j  =  A\ th e n

/■e.v.,,

-  £  ( - 1 ) ' ’( - 1 ) "

=  |5«.,|

=  2‘',  (141)

where we have used theorem 5.2, which states ( J (P)kk =  ( — 1 )/J when /UPA'/. ^  0 and P  e  S(|). 
Thus, 0 ,^ 4  4 ^  is a properly normalized basis function with O h — 1 /  s/2?.

T h e o r e m  5.5. The basis function A (P r<\>) X  k is a linear combination o f  the basis functions 
A<bX, fo r  i — 1....................................f  where f  is the dimension o f  the spin eigenfunction space.
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P r o o f .  Let P' be the part of permutation P  that acts on the spatial component of the 
basis function and P ,r be the part that acts on the spin component.

A (P '^ )X k = -~=Y^(-\),‘QrP r^ Q "X k

= ^ = Y ' ( - \ r T r'S>rr( p - ' r x k 

= 4 = B - ' r r w - ' t u i P  [)lllkx m
v/V! , „1=I

-  £  ' r v r x , , ,
hi--i VN! j

=  E  ( - 1 ^  1 )».* -7 =  B  - 1 ) ' r  (i, r rm=l V7 A/ ! f
I

=  E ( - l  (142)
in- I

noting that 7 =  (7 / \  Thus, A(P<-\>)Xk is a linear combination of the basis functions A<l>Xtjr 
with the coefficients given by ( —I )r U ( P

This means that the spatial wavefunctions from two different basis elements are never 
noninvariant permutations of each other. Therefore, if representative spatial wavefunctions 
have doubly occupied orbitals, we can choose to put the doubly occupied orbitals sequen
tially in the geminal positions. Thus, if <1> has d  doubly occupied orbitals, they will be in 
the positions (1 ,2 ) ,  (3. 4) • - • (2d -  1, 2d).  For example, we would use </; i hut not

To construct a basis for the matrix eigenvalue problem for N  electron, we first calculate the 
spin-adapted basis. We must then choose a set o f  representative spatial wavefunctions that 
are products of the single-electron energy eigenfunctions, making sure any doubly occupied 
orbitals appear first and that none are a noninvariant permutation of another in the set. We 
then combine the spatial wavefunctions with each spin eigenfunction and antisymmctrize, 
eliminating any basis elements that are zero. Last, we multiply each basis element by the 
appropriate normalization constant. The accuracy of the final calculation will depend on 
which spatial wavefunctions are chosen but will improve by increasing basis size.

5.3 . S im p lify in g  th e  H a m ilto n ia n  E le m e n ts

We wish to use the basis described in the previous section to calculate the Hamiltonian 
matrix elements of the form {C,ltA<t>X j l H l C ^ A t y  X k), where H — //,, -1- /7im; H {) =  £ ; x=, H{)i 
is the single-electron component and H in[ =  , / / ( / , / )  is the interaction component that
acts pairwise. This is the general form of a spin-free Hamiltonian in which spin-orbit and 
spin-spin interactions are neglected. This gives us

( C ^ A ^ X / i H l C v . -IM'AV, -  (CiVA ^A'J/V,, +  /-/„J C * A V X k)

=  <C',|i/M>A'; |/?(i| C 1. /M / A'a) 4- (ClhA ^ X :\ H^ \ C , vA ^ X . \  (143)

5.3.1. S ing ie-E lectron Integral
The single-electron integral is quite straightforward, noting that the single-electron orbitals 
are the eigenfunctions of that is. /-/„,<I>(r s /: ,(b ( r s). where /:. is the energy eigenvalue. 
Therefore.

( r , 1,ici>A\i/ylI!C\l, j ^ A ' , )  =  c . ltc \  ^ ( - \ ) {,W H u\ p ^ ) U ( P ) lk
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where f /„ (P 'l ' )  =  f:,,{nP x\r. and L r{n is the single-electron energy eigenvalue of the /th 
orbital ii />vl7. However. (<I>|P'I7) =  (1 VP unless <1> =  P 'l '  for some P e Sn. In the basis 
construcion we only need to use representative wavefunctions that are not permutations of 
each o tlrr .  Thus, if <[> =  P 'l7 for some P , then P € .S’,,,: that is,

(C\vA ^ X f\H{)\C\yA ^ X k) =  0 for <I> #  M7. (145)

Otherwi.'O,

(c,i,-4ti>A'y|/v,,|c,„/i<t>x k) =  £  ( - n ' T , , , , ^ ) * / ^ ) , ,
/= 1 /’fc.S.,.

=  G Z  2 " " » E , 8 )k
/--I

=  6 , ■ * £ / • ,  ( 1 4 6 )
/=l

where is the Kronecker delta. In o ther words, if the basis functions /KhA', and A XV X k
are the same in both the spin and spatial components, that is, <1> =  'I7 and j  =  A,
then (C„/lcl)A'/ |/yil|Q/l<I>A,/) is the sum of single-electron eigenvalues Y,iL\ • Otherwise, 
<Ci,/K1>// |/?1(|C î ^ A ' a) = 0 .

5 .3 .2 . Reduction of the Sum Over Permutations 
n the Interaction Integral

Becausethe interaction Hamiltonian acts pairwise, that is, / / jm =  ; / / ( / ,  7 ), where / / ( / , / )
is the ineraction term between the /th and / th  electron,

<<4>|/7(/, /)|vF) =  . . .  f//x | / / ( / ,  y ) |</>,c/>. • • • </>v)

=  (1A, t/fj | / /  (/, j ) | (bt cf) ,) 11 ̂ , . {<//* | </>A) (147)

Thus (4 ' /7 ( / , / ) |M 7) =  0. unless =  M7A VA ^  /, /'.
Consequently,

V

=  c „ c „  £ E ( - - i ) ,,< « i> |/y ( / ,y ) |P ^ ) t /( / , )„
<■ 1 r

1.1 r '

x n  l ( ^ J ' D ^ % )  (148)

where w- have used the notation that (PM7), is the /th orbital in PM7; for example, if vl7 =  
*lh H1(-l 1*^  — * then ( P xl7): — t//3 as «//, is the second orbital in PM7.

Let L , be a permutation operator that aligns <1> and vl7. such that «//A — (L, ,VI7)* VA ^  /, /. 
If this permutation does not exist for a particular (\k xl7, /. and j .  then define L,f as 0 and 
U [ L tl\k, =  0. For this permutation. Ha,,. =  1-

This fermutation will not be unique as the set o f permutations L l }Q and P, }L, fQ,  for 
Q e  5i|r will also be line up permutations, where P, , is the transposition of the electron i 
and j.  Tiese sets are not necessarily distinct, as L t O and P, ,L, tQ  will produce the same 
integral I (P ' l7), =  (PH7),.
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we have f t k ^ i . j ( ^ k \ ( P ^ ) k )  =  ()- T h e re fo re .

{C,x,A<bXj \H-ml\ C y A ' V X k)

=  C „  C „ E  E  2  '5| " r ' 1 f ( - 1 ) /( ' '  ( 7  ( L , ( ) A, ( ipj tfij | / / ( / , / )  | w , w  ( )

Define w, as (L,- ^I'), and cot as For all permutations not in L, tQ  or P, ,L,

=  C pC„ E  E  2  ' ( ~ \ ) " U ( L l, l )kmU ( Q ) ml( ^ l \R( i , j ) \ cuiwj )
i - 1  c<=.v,

= c„c„E E 2- — i —iy'U{Lt' ,)*/(—i)w , ! # (/../)l^>

-  ( -  i )' ( -  1)''U ( P, I L , j ) u (-1 ) ' '(< //> ,i W(/. j ) IWjw,))

= c l,c„Ei^K-i)'' 2 ,(0'(/.,>),/<iA,<///|W(/.y)î a»,)

-  j )  K « , > )

-  ( y ( JL,. j )ki {>P,4\H( i .  j ) |WjW,)) (149)

which is a reduction of Eq. (148) using the line-up permutation. In particular, the 2 ~ hli,,,-l0' ) 

factor makes sure integrals are not counted twice. The sum over all permutations is removed 
as permutations produce vanishing integrals because of the orthogonality of the orbitals.

5.3.3. Hamiltonian Elements in Special Cases
Let us first define the orbital difference between two spatial wavefunctions <1> and XV as the 
number of orbitals that appear in 'I7 but do not appear in the corresponding number of times 
in <I>. For example, the orbital difference between <1> =  t//, llJ\ and M7 =  t//|t//2 *s
1, because the orbital i//5 appears in 'V but not in <I>, whereas the o ther four orbitals are in 
both functions.

We can now simplify Eq. (149) further, based on the orbital difference of the two spatial 
functions <t> and XV in (C ilyA<$X j\H m \C\v A y\rX k \). The following formulas are general in 
that they will work for any set of orthonormal single-electron orbitals. They are similar to 
the Slater-Condon rules for matrix elements between Slater determinates.

C a se  1. O rbital D iffe ren ce  E q u a ls  Z ero  With the basis we have chosen, if the orbital 
difference of two spatial wavefunctions is zero, the orbitals must be equal. This is because 
we are not including spatial wavefunctions that are noninvariant permutations of each other 
in the basis. This means the line-up permutation L, will be the same for any pair ( / , / ) ;  
namely, the identity permutation P{)% the corresponding matrix of which is the identity matrix. 
Therefore, we have

< C.,, A  <l> A' i\H inl\ C |( A ,Y k) -) rt( < » i.J

U(P, ,L,  ill, | / / ( / .  j ) !w ,w , ))

I ' ( P. , )k, ■: ijf,» / / . ! / / ( / ,  j ) |(o.co, ; )  ( 150 )
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Case 2. Orbital Difference Equal to One In this ease there is one orbital in that 
does not appear in XV. We label this orbital The only pairs (/. /) in Eq. (149) that give 
nonzero results are those containing the orbital If i//dit appears once in position /, then 
these pairs are

(1, /), (2, / ) .........( / -  1, / ) , ( / , / +  1 TV)

If t/rdi| appears twice in positions / and / +  1, remembering that doubly occupied orbitals are 
next to each o ther in the basis, then these pairs are

(1, /), (2, / ) .........(/ -  1, /), (/, / +  1).......... (/, /V) and

(! , / - ( -  1), (2, / 4- 1 — 1, i -j- 1), (/ +  1,/ +  2 ) +  \ . N) .

It is important to note that i/j, =  =  ipM, so the integrals in the second case are exactly
the same as the integrals in the first case except the pair (/, / +  1) only appears once. We also 
note that if L, • is the line-up permutation for the pair (z, y), then Pi i+XL ( j is the line-up 
permutation for the pair (/ +  1 , y). Using this information and Eq. (149), we obtain

{C^At oXAHiJCvAVXt )  

y =!.;>/

-  ^  (z3/. / L ij)ki('l'i'l'j I w (/, y) | MjWi> )+ ( wdif - 1)

E  [ 2 1 ) " ...+

-  U ( / J, ,/ + 1P i..jL i . j ) k i { ^ i + \ llJ, ' j \H( '  +  l J ) \ w j C0,+i) )]

_  2 «(w,-1.<«,»( — j i  [fy (Z.l-_/+l)yt/<i /̂i/f(-+l | / ? ( / , /  +  1 )|w, w,+l)

-  u (/>,.i +, Li., , , ) , ,  <l A , 1 1 H  (/, / ■+ 1) k +, :)] j , (151)

where /zdif is the num ber of times the orbital i/fdif appears in 0 .  The (//dir — 1) term accounts 
for the cases in which (/rdjf occurs twice in <J>.

Using the fact that j//, =  and

/+>«)*/ =  =  ( - l ) /v' " ^ ( ^ ) 4/ -  -£ /( /?)* ,.

we obtain

(C,,, A*l>X k \H ml\C q,A 'l' X  t)

=  ^  E  2 ' 8,"f 1 (■-1 ( U ( L , ,),,(</,,«//,IW(/ , ; ) | c ,
L 'i' <-•:./**

U ( .  y L , , )  *, < «A/«A: | H  (.f J ) | co j w,)) +  (.« d i ,■ -  1)

C„
X ~  E  2 - s^ ( - \ U - \ ) ,' ( ( ~ l ) U ( L Lj)u (il;lil;]\ H( i J ) \ c o icoj )

L > |'  \ j= i . j* i

- ( - 1  ) U ( / ’ / ) k , IH ( iJ)\o)jO>i))

_ 2  I 1 ( - 1 ) ' ' ■ » 1 [ £ /  ( L,- i+ ] ) k l ( i l / i i l ji + i \ H ( i , i + l ) \ w , w , + ,>

- ^ ( / V / . . ^ . i+i)*/<^>/+Il « ( ' - '  +  l ) k , ■+.«,■)])• (152)
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Note that we have used many of the mathematical properties developed earlier to obtain 
the above formula.

Case 3. Orbital Difference Equal to Two If the orbital difference of the fl> and M' is 2,
then only one selection of orbitals ijft and t// will give a valid line-up permutation; that is, 
the orbitals that appear in <f> but do not appear in XV. Although there is only one choice for 
the orbitals, this could correspond to more than one pair of /, /, as each of <//, and <//; could 
appear up to twice in 4>.

Let v, and v, denote the orbitals in <J> that do not appear in Let /j(u, <i>) be the number 
of times the orbital v  appears in the function <1>.

The justification for this formula is similar to that for orbital difference of one.

Case 4. Orbital Difference Greater than or Equal to Three In this case a line up 
permutation, L ir does not exist for any i and /, no m atter which permutation you choose. 
A a consequence.

where the last step follows as we define U ( L n ) to be the zero matrix if L n docs not exist.
Note that in each of these cases only one line-up permutation needs to be calculated. 

We also know how to calculate the special spin basis in which the spin eigenfunctions are 
also eigenfunctions of the transpositions l \  / \ a. I \  u. and so on, and elements of the 
re p re se n t a t i o n m a t r i c e s U ( P ).

5.4 . R esu lts  and  D is c u s s io n

(154)

where ,v( v r  (t>) is defined by

0,
s(Vj.  vr  4>)

/ / (Vj, 4>) -f n ( v r  <t>) -- 2, v t ^  Vj

(C ,,A 4)A’ 1 | C , „  A V  X k | ) =  ^  E (■-1 )'■ ■ . 2     (U ( L, , ) ,M>,4>t |H  (/, . ,)  |w,o, i>

=  0 (155)

The main advantage of the SAC1 approach is that it allows the calculation of energy lev
els and system wavefunctions to arbitrarily high precision, while using less computational
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resources than the conventional Cl methods. The results presented in this section can then 
act as benchmarks for o ther approximate methodologies developed to study more complex 
systems.

For illustration purpose, we consider again circularly symmetric quantum  dots of the form 
V ( r )  =  where (o{) relates to the steepness of the harmonic well and the exter
nal magnetic field is applied perpendicular to the plane of the dot. Figure 33 shows the 
convergence of the ground state energies for multielectron quantum dots at zero magnetic
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Figure 34. The first 50 energy levels for a two electron quantum  dot with h io ,, — 10 meV.
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field with increasing basis size. Here we take the harmonic well parameter hu)u to be 
10 meV and the values of m * =  0.067 and e =  13.1 to correspond to the experiments using 
GaAs dots [45]. From the convergence calculation, we are confident in asserting that the 
ground state energies obtained from our calculations for two, three, four, five, six, and seven 
electrons are accurate to  within 0.03%, 0.024%, 0.045%, 0.05%, 0.1%, 0.15%, and 0.2%, 
respectively.

From the same calculation, we also obtained accurate information on the excited states of 
these systems. Figure 34 shows the energy level structure for a two-electron quantum dot. In 
the triplet states, the two electrons have the same spin and are thus forbidden from being in 
the same orbital by Pauli’s exclusion principle, whereas in the singlet states, the two electrons 
have different spin, and thus can be in the same orbital. As a result, the basis functions 
used in the singlet wavefunction expansion include both doubly and singly occupied orbitals, 
whereas the basis for the triplet system can only include singly occupied orbitals. This means 
the \ / r  Coulomb interaction is less significant for the triplet states than the singlet states, 
and thus there is more degeneracy in the triplet energy levels of  the system.

The charge densities for two and three electrons at zero magnetic field are shown in 
Figures 35 and 36. The most notable aspect of these plots is that the spatial extent of the 
electron density ranges from 50 to 100 nm. Thus, the electron density at the edge of a dot 
of diameter 500 nm is negligible, and therefore edge effects should not be important in the 
modeling. The fact that the electron density is concentrated close to the center of the dot 
also means the harmonic well approximation should be quite reasonable, as any circularly 
symmetric potential well can be approximated as a harmonic well near its center.

Figure 37 gives the calculated addition energy, which is defined by Eq. (79), at zero mag
netic field at various values of hco{). The plot shows large maxima at two and six electrons, 
where the shells are filled, and a secondary maxima at four electrons because of the shell 
being half filled. From the graphs, we see that the peaks are more pronounced for larger 
values of h(o{), which is a more tightly confined well. This is in agreement with the measure
ments of Tarucha et al. [45].

Figure 35. C harge densities for the lowest (> sta tes with I. — 0 for ;i two electron quantum  dot (top  left to  bottom  
right).
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Figure 36. C harge densities for the lowest 6 states with L — 0 for a three e lectron  quantum  dot (lop left to bottom  
right).

The wavefunetions of the electrons in quantum dots are spread over a much larger area 
than those in natural atoms, and the excited state energies are much closer to the ground 
state energies. This makes the energy levels in the quantum dot more sensitive to changes in 
magnetic field than in natural atoms. As an example, Figure 38 shows the energies of various 
states as a function of magnetic field for a quantum dot with two electrons. In this case, 
the harmonic well param eter h(o{] is set to be 5.5 meV to compare with the experimental 
results o f Tarucha et al. [45]. The most noticeable feature of this figure is the singlet to 
triplet transition in the ground state that occurs at around 4 7 ,  which is in agreement with 
the experimental data.

These calculations were carried out using Mathematica  on a PC with the Pentium IV 
2.4 G H z processor. This work can be readily extended by using a more efficient programming

Number of Electrons

Figure 37. Addition energies ob tained  using the SACI approach, where the energies for cS electron do ts were also 
required and evaluated with accuracy within t).2rr. The plots correspond to f u o lt =  4 mcv (solid lines). htou =  10 meV 
(alternate  dashes and dots) and fnot, — 20 m eV (dashed line).
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M agnetic  Fiefd (T)

Figure 38. The evolution o f the energies o f a 2-electron quantum  dot with external m agnetic field. T he harm onic 
well param eter hojt) — 5.5 meV.

language such as Fortran or C + +  and more powerful computers to study quantum dots 
containing more electrons or having more complex geometry.

6. CONCLUSIONS
Quantum dots have shown themselves to be tiny laboratories in which fundamental concepts 
in quantum mechanics can be tested and a new regime of physics can be learnt. This has 
led to a huge amount of recent activity investigating various aspects of these systems. This 
chapter focused on the theoretical models and computational schemes developed over the 
last decade to understand the electronic structure of few-electron quantum dot and other 
nanosystems, especially in which one can obtain numerically exact solutions.

In particular, we have presented the spin-adapted configuration interaction theory, which 
takes into account all perceivable interactions and full spin correlation effects, giving a level 
o f accuracy not available in alternative approaches such as the density functional theory 
or the self-consistent Flartree-Fock method. It also has an advantage over the standard 
configuration interaction method using Slater determinants in that a much smaller basis 
is needed since the spin eigenfunctions already have the required symmetry. The results 
presented in the last section of this chapter provide a benchmark against which one can test 
o ther approximate methodologies required to study more complex systems.

For a broader overview of this rapidly developing field, we refer the reader to other 
review papers and books on related topics; for instance, Jacak et al. (the first comprehensive 
review on both experimental and theoretical work on quantum dots) [27], Chakraborty (on 
electronic and optical properties of quantum dots and antidots) [95], Maksym et al. (on 
molecular aspects of electron correlation in quantum dots) [96], Alhassid (on the statistical 
theory of quantum dots) [97], Kouwenhoven et al. (on electron transport experiments on few- 
electron quantum dot devices) [1|; Reimann and Manninen (on shell structures in artificial 
atoms) [88], and Aleiner et al. (on quantum transport and charge fluctuations) [98]. which 
also contains many references to o ther works in this field).

The fabrication of quantum dots and other nano-structured systems is currently under 
way at many research institutes around the world. Much of the research undertaken thus 
far is concerned with the actual fabrication of these devices and observing fundamental 
quantum phenomena. Recent efforts have started to focus on using these structures to build 
usable computing devices such as single-electron devices, quantum bits and logic gates, and 
laser devices. Many studies have demonstrated non intuitive behavior and promising potential 
for novel electronic and laser devices with eccentric functions. As the fabrication of these 
structures becomes more widely available and their properties understood, they will start to 
he increasingly important in the laser and electronic industry.

However, to study these quantum phenom ena systematically through experiments is dif
ficult and very costly because this would require a new device to be fabricated for each
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geometric configuration. In this regard, com puter simulations provide a very powerful way 
of providing detailed and often very accurate information about these systems. Through the 
use of computer code and an appropriate model description, potential problems and novel 
electronic devices may be identified and studied. Questions that previously could only be 
speculated on can now be addressed in great detail. With further development of theoretical 
models and new computational algorithms, considerable new information will be gained and 
added to the knowledge base of nano-electronic devices. This field of research is still in its 
infancy.
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1 . IN T R O D U C T IO N

The quantum-dot laser (Q D L) is a complex nonlinear system in which the spatiotempcral 
dynamics of light fields propagating within a cavity is fundamentally linked with the physical 
properties of an ensemble of QDs. Due to its characteristic physical properties such as, for 
example, discrete energy levels, strong carrier localization, and low amplitude phase coupling 
(frequently expressed a  factor) QDLs represent extremely promising laser sources for many 
applications (e.g., in optical communication networks) [1]. Moreover, recent technological 
progress in the field of quantum-dot lasers [2] has led to the concept and realization of 
innovative laser devices suitable for the generation of long-wavclength radiation with good 
spatial and spectral purity.

For theory and modeling, QDLs represent— due to the high complexity of carrier relax
ation and light-matter coupling— many challenges. To unravel the complexity of this inter
play, a profound theoretical analysis of this novel laser type is necessary, in particular for 
interpretation of recent experimental results (e.g., on beam quality, ultrafast time dynamics, 
and high-speed performance). Even more, clear insight is needed for technological design 
of quantum dot lasers with improved physical properties. In recent years, the impressive 
technological progress in the field of quantum-dot lasers has gone hand in hand with a 
development of various new theories that specifically focus on the physical properties of 
QDs and QDLs. Although the investigation of the electronic and optical properties of QDs 
represents a formidable task all by itself, for the Q D L one has to set up a theoretical basis 
that combines the particular quantum optics of an ensemble of QDs with the special mate
rial properties of  QDs. O ur mesoscopic theory discussed here is based on a self-consistent 
space-dependent integration of material properties into spatiotemporally resolved equations 
for the light field and carrier dynamics. It thereby bridges theoretical descriptions of micro
scopic material properties of QDs with macroscopic phenomenological laser theories. This 
chapter is organized as follows: In Section 2 we derive and explain the Q D  Maxwell-Bloch 
equations. Section 3 shows results of our computational modeling of the spatiotemporal 
dynamics of Q D  lasers. Section 4 presents simulation results on ultrashort time dynamics, 
and Section 5 concludes this chapter.

2 . T H E O R E T IC A L  D E S C R IP T IO N :  Q U A N T U M -D O T  
M A X W E L L -B L O C H  E Q U A T IO N S

In this section, we derive and discuss the quantum-dot Maxwell-Bloch equations (Q D M BEs) 
[3]. The QDM BEs combine the semiconductor Bloch equations describing an ensemble of 
QD s (QDSBEs) with a suitable form of Maxwell's wave equation. The QDSBEs consider, 
in particular, a hierarchy of carrier relaxation processes including both intradot scattering as 
well as the interaction with carriers and phonons in the embedding medium. To represent the 
dynamic sub-wavelength variations in the light field dynamics, we will derive from Maxwell’s 
equation a wave equation tailored for quantum-dot lasers. The coupled system of partial 
differential equations then constitutes the quantum dot Maxwell-Bloch equations that model 
on a mesoscopic basis the spatiotemporal light-matter interplay that characterizes a QDL.

Figures I and 2 illustrate the typical geometry of a section of a QDL. In Fig. 1, the active 
layer contains an ensemble of spatially distributed QDs that are embedded in the quantum 
well wetting layer (WL). Depending on the epitaxial growth process, the laser may consist 
of several layers defining vertical “Q D  stacks” (columns). Light propagates within the active 
layer in the resonator predominantly along the longitudinal (z)  direction. This dynamics of 
the light fields is described by Maxwell's wave equations ("M W Es”) considering the spa
tiotemporal changes of the light fields propagating in the forward ( " + ” ) and backward (“ — ” ) 
directions in the laser cavity (see Fig. 2). The layered vertical (v) structure is considered 
via effective material and device parameters. In particular, these are the effective refractive 
index and the guiding properties of the layer as well as the physical properties of the Q D  
stack (vertically averaged energy levels, damping rates or Q D  size). The vertically averaged 
physical properties characterize an "effective" QD. The properties that enter the QDSBEs 
in a self-consistent way arc the energy levels, the initial occupation of the levels (established.
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Figure I. Schematic o f an idealized active layer of a quantum  dot laser: columns o f identical pyram idal quantum  
dots are aligned on a perfect grid.

e.g., via optical or electrical pumping), the dipole matrix elements coupling the individual 
electron and hole levels, as well as the size of the QDs.

Via the polarization (dipole density) of the active Q D  medium, the light fields are locally 
coupled to the dynamics of the carriers and to the interlevel dipole dynamics (described on 
the basis of the QDSBEs). In particular, their spatial and spectral characteristics are fully 
taken into account and include, for example, the localization of the dots in the medium, 
fluctuations in size and shape of the QDs, the spatially dependent light field propagation 
and diffraction, as well as spatially dependent scattering processes and carrier transport.

The time-dependent calculation of the carrier distributions and the light field dynamics 
allow an explicit consideration of the individual timescales of the various interaction pro
cesses. The relevant timescales range from the femtosecond regime (for the fast carrier 
scattering processes) up to the picosecond and nanosecond regime (for the dynamics of the 
propagating light fields and o f  the spatial carrier density).

2.1 . C a rr ie r  D yn am ics  w ith in  a Q u an tu m  Dot

Starting from the single particle density matrices for the electrons, t f  =  ( rV ) ,  and holes, 
n h =  {(I'd),  and for the interlevel polarization, p  =  (rfY), where c and d  are the local 
annihilation operators for electrons and holes, respectively, one can derive semiconductor 
Bloch equations specifically for quantum dots. The resulting quantum dot semiconductor 
Bloch equations (“QDSBEs") mesoscopically describe the dynamic changes of the elec
tron and hole distributions inside the dot (for each energy level) and the dynamics of 
the interlevel dipoles (for each combination of electron and hole energy levels). If one 
considers an ensemble of quantum dots as the active medium in a quantum  dot laser, 
additional terms and effects are of relevance and have to be included in the model. These are

Ax |

E+(r,t)

Ri R2

Figure  2. Schematic of the quantum  dot laser model geometry. The counter-propagating  light fields [h. ) spatio- 
tcm porullv couple with carriers in the ensem ble of quantum  dots. C haracteristic fluctuations in size and location of 
the  quantum  dots are effectively represented  on a num erical grid with equally spaced grid points in the lateral (.v) 
and  propagation U ) direction {details see text).
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contributions describing the electrical injection of carriers (pumping) Ac h (including Pauli- 
blocking), induced recombination (with generation rate g c h ), spontaneous recombination of 
the carriers (Fsp), carrier-carrier and carrier-phonon scattering for the intradot relaxation 
( d , f - h/dt  |CQ-Dph) and the interaction with the wetting layer ( d t f ^ / d t | 0 d - w l ) *  The dynamics of 
the occupation of electrons (e, level index “i”) and holes (h, level index “j ”), r f A\  and the 
dynamics of the interlevel polarizations p ± (coupled to the forward (+ )  and backward ( - )  
propagating optical fields) within a QD are then governed by the equations of motion

dnc(i)
dt

<>nhU)
cIt

r>P± {j ,  0
('It

=  Ae(/) [ D l' ( 0  -  nc(i)] +  g e{i) -  y mn c( ‘)

-  E r»P"c(') - "h0‘)
dnc(i)

dt

c —ph

+
d n Q(i)

OD dt OD WI.

£ r sp/,h( . / ) . / f ( 0  +
dnc(i)

dt

ph

+
OD dt

(1)

QD-WL

=  - [ i w( y ,  /) +  y p\ p ± {j,  i) -  £ [ nu( 0  +  « ”(./)] "U

dt

p - p h

OD

where ynr represents the rate due to nonradiative recombination, and yp denotes the dephas- 
ing rate of the interlevel dipole. The pump term

AL( 0  — I qds
I v
eh IJ » ( l )  -  «"(/)]

(2)

mesoscopically represents the carrier injection and includes the pump-blocking effect (c =  
e, h and I = i, j for electrons and holes, respectively). It depends on the absolute injec
tion current, / ,  pump efficiency 77, and the thickness of the active area, h. D c(l) denotes 
the degeneracy of an end energy level (i.e., the maximum occupation with carriers). r 0DS 
describes the reduction of the pump efficiency resulting from the vertically arranged QDs, 
that is, the “spatial overlap” between carrier injection and a vertical stack of Q D s in the 
medium.

The generation rates given by

£<-•(0 =  R e ( i  £ { [  i r  P A’ ( j ,  i) +  i r P - ( j ,  /)] -  [ / /+> +(./\ i) + n ' P (7, o ] } )  

g*U) = R e ^ — £ { [  t r  p - ( y ,  i) +  /)] -  [ / / • / - • ( / .  i) + u - p -  (j .  / )]} )
( 3 )

depend on the interlevel polarization p  and on the optical field contributions of sponta
neous and induced emission constituting the local field !jU±, The Langevin noise term F q* 
describes dipole fluctuations [4] with amplitude Fp ~  ( f  J 2 a e x) /(/?,-L  ). The local fields
t r  — d ( j , i ) E ± -f 8 U ± are composed of the optical light field contributions £ x as well 
as those induced by Coulomb screening in each quantum dot and by the Coulomb inter
actions between the carriers in the Q D  and the carriers in the welting layer, 5 // .  d ( j j )  
is the interlevel dipole matrix element. The interlevel polarization depends via a)(j, /) — 
h  1 h- / ,h ) — 10 (co is the frequency of the propagating light fields) on the carrier energies 
'fc h that are given by

&*(!) = € CU) + S ^ ( I ) (4)
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with the unperturbed level energies ec h (i.e., neglecting the carrier dynamics). The charac
teristic level energies ec,h of the unperturbed Q D  are microscopically calculated [5] and 
are self-consistently included in the theory. The Coulomb-induced screening that leads to a 
renormalization of these energy levels and also results in additional local field contributions 
strongly depends on the specific Q D design (size, shape). These respective corrections have 
been determined in detailed calculations (e.g., [6—8]) and are represented in the QDSBEs 
(1) in the form of spatially dependent energies (hco and local field contributions 8 z/1).

2.2 . C a rr ie r  R e la x a tio n  D yn am ics

In each quantum dot, the relaxation of the electrons and holes is determined by a variety 
of physical mechanisms. These are the intradot relaxation (r>/ie- h( / ) / ^ / |0 r>) v,a acoustic and 
optical phonons or multiphonon processes as well as scattering (dnc b (l)/c)t |0D .Wi.) between 
the carriers in the Q D  and the carriers and phonons of the wetting layer. The physical prop
erties of an individual Q D  (size, shape, energy levels) and the phonon distribution thereby 
determine the relevance of the various relaxation processes. Here we will use dynamic scatter
ing rates for carrier-phonon relaxation processes on the basis of microscopically determined 
matrix elements for the respective interaction. The elastic scattering between the QD carriers 
and the carriers of the wetting layer will be considered on the basis of perturbation theory.

2.2.1. Intradot Relaxation
The scattering rates for carrier-phonon intradot relaxation generally include emission (“ —”) 
and absorption (“+ ”) of longitudinal acoustical (LA) phonons, longitudinal optical (LO) 
phonons, and, in particular, multiphonon processes ( ±  2 LO, ±  2 LA, and ±  LO ±  LA). 
They are determined on the basis of microscopic calculations, allowing a self-consistent 
mesoscopic inclusion of all scattering processes that are relevant in Q D  lasers via a depen
dence of the rates on the spatially and temporally varying carrier and phonon distributions 
within the Q D and the surrounding layers. Starting from the quantum kinetic equations of 
motion of the single particle density matrices with respect to the carrier-phonon Hamilto
nian [9], factorizing the intraband and interlevel matrices into single-particle density matrices 
and using the Markov approximation (i.e., assuming slowly varying distributions), one obtains 
after adiabatically eliminating the dynamics of the density matrices the following equations:

c h i \ j )  h-ph
E 2 l ^ ^ o - . . y ) { ( « , + i ) « h(yl)[/>h( ; ) - « ho - ) ] - -« ,« ho - ) [ o h( y , ) - n ho-.)]}

j  i >j

-E2-^-^(;',y.){(«, + i)«h0')[̂ h(y.)-nh(;'.)]-«X0i)[£>h0')-/lh0')]}

h~
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Thereby, the phonon distributions have been approximated by their quasi-equilibrium dis
tribution given by the respective Bose statistics, n (j = \ /{exp[ha)(f/ ( k T ) \  — 1} with phonon 
frequency a)(f. g e h is the coupling constant of the respective carrier-phonon interaction [10]. 
The function I  describes the dependence of the carrier-phonon interaction on the con
tributing Q D  level energies and the energy of the respective phonon. It also contains the 
damping resulting from higher order contributions. For carriers interacting with an optical 
(LO) phonon, J: can be expressed by a Lorentzian line shape

I1.0

with / =  / for electrons and l =  j  for holes. The lifetime t 1() withi.o
i. 1  _  ~

i.o l] (7)ft-

includes the decay of optical phonons into two acoustical phonons via the anharmonic 
interaction potential I /Anh. The lifetime of acoustical phonons is usually much longer than 
the lifetime of optical phonons. As a result, the function J can be approximated by a 8- 
function, J ( / , , / : ) =  h — 'fph). in the case of direct interaction of carriers with acous
tical phonons.

In addition to the emission and absorption of one single phonon, the influence of mul- 
tiphonon relaxation has to be considered. Among all multiphonon processes, the most 
relevant ones are the emission/absorption of an LO phonon accompanied by the absorp
tion/emission of an acoustical phonon (±  LO ±  LA) and the emission/absorption of two 
acoustical phonons ( ±  LA ±  LA). The respective relaxation terms derived in analogy to the 
above read

t i f f . „  __ 1 .
-^ -L .:p h ( / ) = 2 L  L  j. k „ 4

1 1 /,  ■//,  - l  > i :  n

x \ (n<,Jhh +  1 K ^ i ) L O c( / ) - / ; 1 (/)]-(«,,_, +  l ) / ; (/|/(L' ( / ) [/>'(/, ) - / (° ( / | )J [

+ 2E E ,.(/| :̂)r

+ 2E E
x {//„,(»,. + l ) « 1-(/1) [ D l- ( / ) - ^ ( / ) ] - ( H 1/:+ l ) ; , I,i» t ( / ) [ D t ( / l ) - / / l' (/ | )]}

+2 E E !! 4  j h  < g; j  “
/ •/,/ ■/, ,/> "

x | ( /!,,, +  * ) ' V ' C( / | ) I ^ ' ( / > - n ' - ' ( l ) ] 1 » L( / ) [ / > ■ ( / , / , ) ] }

+ 2E E
J */,/--/; •/;

x j n c ( / | ) f  [)L( I ) -  «' ( / ) ! - ( « , , ,  + U ( «,,, -t- I )/rc( / ) f />c{ / | ) — i f  (/ , ))}

+-E E VM . )+#$,#$.
i Uy .1 /, n

x |(«./; +  l)/i,/i« ‘:( / | ) [ D c( / ) - > f c( / ) l < f r - l ) / i c( / ) [ D l ( / , ) ~ / i l ( / l )]}

where j th and J cr are line shapes that depend on the phonon energy and damping rate. 
,tf(\ , are the coupling constants of the respective carrier-phonon interaction.
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2.2.2. Scattering Processes Between Quantum Dots 
and the Wetting Layer

In addition to the intradot relaxation, the dynamics of the quantum dot laser depends on the 
earrier-carrier and carrier-phonon scattering processes that occur between the QDs and the 
wetting layer in which they are embedded. Those are both inelastic emission and absorption 
of phonons as well as elastic collision processes. For the inelastic scattering processes, we 
will consider the inelastic Coulomb interaction between Q D  carriers and the 2D carrier 
plasma of the wetting layer via Auger recombination, the ionization of a QD  via excitation 
of carriers bv absorption of a phonon as well as carrier capture from the wetting layer in a 
(up to then unoccupied) state of the Q D  by emission of a phonon, that is,

dj f ( l )
dt

dtf( l )

QD-Wl dt

Aim

QD-W l.
+

dt f ( I )
dt

c  -  p h  

QD -  WL

The relaxation rates

dnc
dt

c — p h

(/) =
OD-WL.

J  (Loo)  (10)

describe the interactions between the discrete energy levels o f  the QDs and the states of 
the surrounding quantum well layer via emission and absorption of optical and acousti
cal phonons, where the level description oo in 7 (/ ,oo) refers to the respective energy of 
the valence and conduction bands of the wetting layer. In (10), the scaling factor f ^ D Wl 
represents the fraction of wetting layer states to which a single (effective) QD couples. It 
is determined by the dot density and by the epitaxial structure defining e.g. the potential 
barrier between the Q D  and the surrounding layers. /i [ A / (/)] denotes the phonon num
ber available at energy values higher than the energy given by the potential step between 
the respective Q D  level and the wetting layer. I he Auger carrier capture kinetics may be 
attributed to the following processes: (1) A Q D  electron or hole in the wetting layer collides 
with a 2D electron and is captured by the QD. The final state of the second 2D electron is 
then a wetting layer state of higher energy. (2) A 2D hole is captured via Coulomb scattering 
with a Q D  electron by the dot while the electron is excited into a wetting layer state. We 
will represent the two processes by the rates [11]

■j c I Aug

~ ~ l  ( ' )  =  - ^ i k ^ w i X / ' c ( ,’) [ d I , ( ) ) - ' ' !,0 ' )1 +  Q ( /vwi . ) : 1 Dc( i ) - n c(i
Iqd- wi

dn I 
dt

I Aug

OD-W L

+ c M LN * l\ [ r u ) - , m \

(.j ) -  She< 1 . E , ’>'(i ) [D" ( j ) -  Hh(,/)] +  Chh(Nil, )-[Dh(j) - nh(j))

( I I )

In the wetting layer, the carriers are not as strongly localized as in the quantum dot islands 
and may therefore diffuse within the layer. With denoting the local density of electrons 
(c =  e) and holes (c =  h ), the dynamics of wetting layer carriers is represented by the diffusion 
equation

dN< J
_ m = a d .(a m v 1) +  —  +

rW
C( dt

h
WL 7w A/cyvwi. ( 12

OD-WL
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with a pump term describing carrier injection and a rate for nonradiative emission processes. 
In (12), the change in carrier density due to Auger relaxation can be expressed as [11]

dN'
dt = J2Bh<K\.iic(i)lD''(j)-nh(j)]nOD-J2CcANw f l D':U)-"':(i)]>iun

OD-W l. /. / i

o n
(1

= - E f lh ^ w i  »c(/)[oh(;) - « h(y)K o -  E c hh ( ^ L)-|Dh(y) - i ! h(y)]ii0D
OD-W L i . j  j

E  ^Wl. N W1 [ O '1 11 (./')] " OD

In ( I I )  and (13), Bhc, Ccc, Cdl, and Chv are the respective Auger capture coefficients, which 
we take from the detailed calculation in [11). n ()D is the dot density.

The elastic Coulomb scattering processes between the QDs and the wetting layer are 
treated on the basis o f perturbation theory [12, 13|. Elastic collisions do not change the 
occupation of the levels. However, they may lead to significant changes in electronic energies 
and damping that result in a spectral shift and spectral broadening represented by an energy 
correction term <5> c h and the dipole damping rp. These spatiotemporally varying quantities 
are self-consistently included in the QDSBEs. They lead to spatially dependent line shapes 
and frequency differences co between the frequency of the propagating light field and the 
eigen frequencies of the spatially localized Q D s in the laser structure. The shift of the emis
sion frequency and the carrier damping rate resulting from the elastic Coulomb scattering 
between Q D  and the surrounding layer are

&(ol

Ay,

X )  W L

h
O D - W l

2kT

12k f
nr

c.h yyC.h 
(r<0 /VW1.

,rC-h/VC'h (K. / v w |

(14)

h  y

where cr£,h and h denote the intersection areas of the scattering processes given by [13]

=  f  2<lb 
A) OD COS

< h =  f 2d/>ol,sin f d f A w ^ ( r )
(15)

w i t h

A C . 11
OD “

C h =

C ' h =

c t .h

O D

± e 2

•c. h 
_

A
QD

j8/iOD (16)
("Ctf
e~

167r2s 2nAci[h h

The sign ±  in C\'" refers to the situation where the carriers in the Q D  and in the wetting 
layer that participate in the collision process have equal (+ )  or different ( - )  sign, respec
tively. b0D is the spatially dependent collision parameter, h 0D and r0D are the height and the 
radius of the QD. /?cff is the effective index of the material. The coefficient (3 is a measure of 
the linear Stark effect (resulting from expressing the com ponent of the dipole in the direc
tion of the Q D  axis as j8//QD). and k v is a coefficient describing the quadratic Stark effect 
which can be estimated from the dipole moment and the eigen energies 114]. The collision- 

od wi *s added to the spatially dependent energy renormalization hrtinduced correction A ox
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and Ay(j () WI contributes to the damping rates yL‘ h and y p in the density matrices. We note 
that the spatial dependence of />OD, /*0D and h 0D modeled in the form (X  =  ftor>, h 0D, rOD)

* o i > =  * q d (1 +  * o d ) ( > 7 )

where denotes the average value, and is the spatially dependent fluctuation, which 
represents an arbitrarily distributed ensemble of quantum dots of varying size and shape. 
/?ur> considers for example the spatial fluctuation of the collision param eter resulting from 
a spatial localization of the Q D s in the laser. The higher the amplitude of the fluctuations, 
the higher is, the degree of disorder in the spatial distribution of the effective QDs. rQD 
and h 0D are the average radius and height of the QDs, respectively. This leads to spatially 
dependent energy corrections and damping rates.

The QDSBEs including the dynamic intradot scattering and the interactions with the wet
ting layer constitute a fundamental basis for a microscopic analysis o f the relevant physical 
processes such as the influence of many-body interactions, spontaneous recombination, car
rier relaxation, and carrier injection. Via the generation rate and the dipole dynamics at 
each location in the laser structure, the carrier dynamics within the Q D  (1) and the wetting 
layer (12) fundamentally linked to the light field dynamics that, in turn, is described by a 
suitable wave equation.

2.3 . O p tica l F ie ld  D y n a m ic s : C o u n te rp ro p a g a tio n  and  D iffra c tio n

Spatiotcmporal light field dynamics plays a major role for relevant physical quantities such 
as the spatiospectral gain and induced index of the system that, in combination with the 
complex carrier dynamics, determ ine output quantities of the laser system (i.e., emission 
wavelength, spectral bandwidth, saturation properties and temporal emission characteristics). 
A realistic theoretical trea tm ent consequently requires full consideration of the spatially 
and temporally varying optical fields (associated with spontaneous and induced emission 
processes) that are mesoscopically coupled to the dynamics of the electrons and holes in the 
QDs. The Q D  ensemble represents a strongly inhomogeneous gain medium with spatially 
distributed QDs with individual material properties (dielectric constant, refractive index, 
etc.). This spatial inhomogeneity is even more intensified by the spatiotcmporal dynamics 
of the carrier distributions in the QDs and in the wetting layer as well as by the nonlinear 
interaction of both carrier systems with each other. One may immediately sense that these 
space and time-dependent variations lead to strong phase changes during the propagation of
the light fields in the laser resonator. Consequently, the calculation of the light field dynamics
has to include the temporal and spatial changes of the field amplitudes in an appropriate 
manner.

We start from Maxwell’s equations for the optical field E and the polarization P  and the 
material equations and derive the wave equation

1 I f)2 d2
+  E  = ̂  — P (18)

£„ c~ dt- at-

where e () and f i{) are the permittivity and the permeability in vacuum, respectively, and c is 
the velocity of light. Insertion of the ansatz

£  =  e ip:- ia“(ET + e . E. )
' ' (19)

p  =  e , p z - m , ( p  + e , / \ )

for the optical fields and the polarization leads to

a d2 
d~z+ l h z

d \  ( .  ~ d \  1 /   ̂ d d2

[ 3 - + 2 t f ~  + ~ )  (Er + e: E : ) +  Vj ( £ T +  ̂  £ . )  -  VT VT -  VTE

-  ( \ft + £  )  ( ,  E,  -  ( i f l  +  ±  )  Vt £ t  +  i  +  2 »  t  -  y  )  (Et + e: E 2)

l  , . 3 d2 \
( 2 0 )



6 1 4 Spatiotemporal Dynamics of Q uantum -D ot Lasers

with the propagation constant fi and frequency With the main field propagation in p a r 
allel and antiparallel to the resonator axis in (20), we may neglect the mixed derivatives, 
VT(d/dz),  ( d / dz )YT. Similarly, VT£ T% — \(3EZ such that the deviates VTVT£  and VTi/3£. can 
also be safely omitted. Disregarding the second-order derivate (d2/ d t 2)P o f  the polariza
tion (in analogy to the microscopic Bloch equations where one implicitly assumes a linear 
response function), we finally obtain the following effective wave equation for the counter- 
propagating ( + ,—) optical fields in a Q D  laser:

^ j E :i ± 2 i / 3 ~ E ± +  + 2̂ I e ± - \  1 - E *  =  - ^ a r P * - X u y P *  +  FEq E (21 )
az oz~ c a t  c~ ot~ d t

The Langevin noise term FEq E that has been added to (21) has been derived from quantum 
Maxwell-Bloch equations [4]. It considers spontaneous light field fluctuations that depend via 
Fe =  (y /2hco{)) / ( v/6r€(() on the specific material parameters and on the emission wavelength 
of the device. q B( r j )  obeys the correlation relation

( qE( r , t ) q E( r ' j ’)) =  K 8 ( r - r ' , t - t ' )  (22)

where k =  \ / ( 2 L ) \ n [ R { R 2] corresponds to the damping rate of the resonator. The polariza
tion of the active semiconductor medium

P  =  V  (23)

is the source of the optical fields ( V  denotes the normalization volume of the crystal).
Our derivation of the “quantum-dot Maxwell-Bloch equations” (Q D M BEs) reflects the 

spirit of describing the (spatiotemporal) dynamics of (spatially inhomogeneous) semicon
ductor lasers on the basis of Maxwell-Bloch equations [15J. The QDM BEs mesoscopically
consider the dynamics of the carrier distributions in the dots and the interlevel dipoles
together with the spatiotemporal dynamics of the optical fields (including spontaneous light 
fields, amplified spontaneous emission (ASE) and induced recombination).

Specific laser configurations of an actual device that is characterized by its geometry, mir
ror reflectivity, current injection, and so forth, are fundamentally included in our description. 
They enter the theory in the form of boundary conditions for the dynamically varying opti
cal fields and the carriers, like the pum p term of the Q DM BEs. The laser cavity induces 
additional counterpropagation and wave-guiding effects which superimpose the carrier-field 
dynamics. The resulting complex dynamic spatiospectral interactions between the QDs, the 
optical fields, and the surrounding layers influence the emission properties (e.g., the tem 
poral behavior of  the optical fields, emission spectra). In the following Section 3, we will 
discuss selective results o f numerical simulations that illustrate the interplay of light field 
and carrier dynamics in quantum dot lasers.

3 . C O U P L E D  S P A T IO T E M P O R A L  L IG H T  F IE L D  A N D  
IN T E R - / IN T R A L E V E L  C A R R IE R  D Y N A M IC S  IN  
Q U A N T U M -D O T  L A S E R S

In the following, we will present selective results of numerical simulations based on 
QDM BEs. Specifically, we will consider spontaneous and induced light emission in the active 
dot medium and analyze the influence of spatial inhomogeneities (in quantum dot param e
ters such as dot size, level energies, dipole matrix elements) on the spatiotemporal light field 
and carrier dynamics. For specificity, the Q D L  structure is assumed to consist of three dot 
layers (InAs/GaAs [5]) with a dot density of 10l() cm "-'. The dots arc assumed to be of pyra
midal shape with base length 12 nm and with three energy and five hole levels. The length 
of the laser is 1 mm, its width (of the active zone) 10 j im. At every location in the medium, 
the QDSBEs are coupled to a diffusion equation describing the spatial distribution of the 
carriers in the surrounding layers via dynamic scattering terms. The general representation 
of physical properties and components of a Q D L by the Q D M B Es is sketched in Fig. 2.



Spatiotemporal Dynamics of  Q uantum -D ot Lasers 6 1 5

In the simulation of the spatiotemporal dynamics, the spatial dependence of the carriers in 
the wetting layer (WL) and the propagating light fields (E1 ) are considered via a numerical 
grid with equally spaced grid points in the lateral ( a )  and propagation (z) directions. The 
local distribution of QDs is defined by spatial coordinates with respect to this grid. Thereby, 
the spatial distance between the position of each Q D  and the center of the respective cell 
(with length Az and width A.v) is saved in a spatially dependent variable that is used for the 
collision rates between the Q D  and the wetting layer. Each mesh (size A.v Az) contains the 
following information: num ber of (effective) QD s in the mesh, N 0D (note that a “hole” in 
the spatially distributed QDs, i.e., N 0D =  0, is also possible), position of the QDs (i.e., their 
distance from the center of the area (A.v-Az)), and the individual material properties of the 
QDs. The specific laser configuration is defined by the size of the medium and the reflectiv
ities of the facets (/?,, R 2) and enters the theoretical description as boundary conditions for 
the optical light fields.

A convenient way to visualize the spatiotemporal light dynamics of spontaneous and 
induced emission processes is in the form of snapshots of the spatial light fields and of car
rier distributions. To additionally grasp the complex microscopic carrier relaxation dynamics, 
we will focus on the dynamics of the level occupations. On route, we will analyze the influ
ence of spatially varying quantum dot properties (e.g., dot size, level energies, dipole matrix 
elements) on the spatiotemporal light field and carrier dynamics.

3 .1 . S p a tio te m p o ra l L ig h t F ie ld  D yn am ics : In te rp lay  o f S p o n tan eo u s  and  
In d u c e d  E m is s io n

One of the very characteristic properties of a laser is the buildup of coherence in the light 
field from the initial spontaneous emission. In the quantum dot laser whose active medium is 
fundamentally characterized by the spatially inhomogeneous ensemble distribution of active 
quantum  dot sources, one would expect that this transition is determined by this very feature 
together with the dependence on the (electrical or optical) excitation of the system. For low 
electrical injection current, Fig. 3 shows typical snapshots of the spatial light field distribution 
in our model quantum dot laser structure. The time interval between the snapshots— showing

0(H) 3.75 7.50 I 1.25 15.00
X | p m  |

Figure 3. Dynamics o f the lum inescence p a tte rn  o f spontaneous emission of an idealized quantum  dot laser with 
perfect an d  uniform  dot arrangem ent and identical param eters for dot size, level energies, and dipole matrix 
elem ents. Bright colors indicate high levels of intensity. T he time betw een successive snapshots is 3 ps. Reprinted 
with perm ission from [3|. E. Ciehrig and O. I less. Phys. Rev. A  65. 033804 (2002). ©2002. Am erican Physical Society.
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the speckle distribution that is a characteristic of the quantum dot medium— is 3 ps. In 
this example, we have assumed the very ideal case where the distribution of the dots in 
the structure is uniform (i.e., the dots are positioned with constant dot-to-dot distance). 
Furthermore for each dot within the structure, we have used an identical set of parameters 
for dot size, level energies, and dipole matrix clement. The injection of carriers has been 
chosen such that the occupation of the energy levels of  the dots is near transparency. In spite 
of the “ideal” conditions assumed for the laser structure, spatial fluctuations in light and 
carrier distribution arise. They are the result o f  spontaneous light fluctuations, microscopic 
carrier relaxation dynamics, and the nonlinear coupling between the light fields and the 
charge carrier plasma. The carrier dynamics within each dot is determined by processes such 
as carrier injection, spectral hole burning, intradot carrier relaxation via phonon emission, 
and absorption and carrier-carrier and carricr-phonon interaction with the wetting layers 
as well as screening. We will later focus on them in more detail. For now we can see that 
for the light field dynamics the underlying physical processes consist of both coherent (in 
the case of, e.g., induced recombination) and incoherent contributions (e.g., spontaneous 
emission, carrier relaxation). Consequently, they vary from dot to dot even when identical 
dot parameters and an ideal uniformity of the dot distribution in the layers are assumed.

The interplay of incoherent and coherent interactions yields a spatially varying num ber 
of electrons and holes in the energy levels of the quantum dots. Together, the sponta
neous and induced light emitted by a quantum dot then contributes to the forward and 
backward propagating light fields and is thus transferred to the neighboring dots leading 
to complex spatiotemporally varying light-matter interactions. The propagating light fields, 
on the o ther hand, experience a spatially dependent modification via the interaction with 
the quantum dot ensemble. In combination with the diffraction of the light field this leads 
to a spatially varying light field dynamics (Figs. 3a-3c). The nonlinear and inhomogeneous 
light-matter interaction and the carrier dynamics affect the spatial charge carrier density at 
the same time. For the time frame of Fig. 3c, Fig. 4 shows the distribution of electrons as 
an example. The spatially varying level occupation and the formation of characteristic opti
cal patterns are a direct consequence of spontaneous light fluctuations and scattering. The 
microscopic intradot scattering of the carriers within the dots via emission and absorption 
of phonons, the interaction of the “dot carriers '’ with the carriers and the phonons of the 
wetting layer, and the nonlinear coupling to the propagating light fields leads to a spatially 
varying occupation of the dots and subsequently to complex transverse carrier dynamics. It 
is important to note that the interplay of light with the carriers results in a spatiotemporally 
varying occupation, although we have assumed the “ideal” case of uniform carrier injec
tion and regular matrix-like positioning of quantum dots that each have identical properties 
(size, level energies, matrix elements). The spatiotemporal light field dynamics changes if we
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Figure 4. Snapshot of the spatial electron distribution corresponding to the luminescence pa tte rn  o f Fig. 3(c). 
R eprinted with perm ission from f3 1. E, G ehrig  and O. Hess, Phys. Rev. A  fo . 033804 (2002). €32002, A m erican 
Physical Society.
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increase the excitation level (carrier injection) by increasing the respective pump term in the 
Bloch equations so that the dots are almost completely filled with carriers. In this case, the 
snapshots (again with time steps of 3 ps) of Figs. 5a-5c show the result of a significant inver
sion: light amplification by induced recombination occurs in addition to the spontaneous 
emission processes. The first intensity distribution is taken 100 ps after the initial excitation 
of the dots. In the longitudinal (z) direction, one can observe dynamically varying intensity 
modulations. These longitudinal structures are typical for the onset of laser oscillations of a 
device immediately after start-up. They are a measure of the characteristic internal coher
ence length scales that typically lie in the micrometer regime. In time, the structures lead to 
intensity spiking and relaxation oscillations in the light emission. In the lateral direction (i.e., 
parallel to the output facet), the intensity is rather uniform when compared to Fig. 3. This 
uniformity originates from induced emission processes which now' play a major role in the 
overall behavior of the device: The initial filling o f  the dots establishes a carrier inversion 
and thus a high gain. Due to the increased influence of induced emission processes, a spa
tiotemporal coherencc builds up that via the propagating light fields is transferred in both 
time and spatial dimensions. The coupling of the carriers in the dots with the propagating 
light fields in combination with the high gain characterizing the dot medium may then lead 
to a narrow-band stable laser output.

3.2 . T h e  S p a tia lly  In h o m o g e n e o u s  Q u a n tu m -D o t E n sem b le :
In flu e n c e  o f D iso rd er

Contrary to the ideal situation assumed so far, slight dot-to-dot variations in size, energy 
levels, and material parameters exist in real quantum  dot laser systems. In addition, the dots 
are not equally positioned on a grid within the layers. The respective variations in quantum- 
dot parameters and dot-to-dot distance depends on the material system and the epitaxial 
growth process of the particular quantum dot system. In the numerical simulations in the 
following, we will discuss some first steps in the analysis of disorder in quantum dot lasers 
and its influence on the spatiotemporal light fields and carrier dynamics and on emission 
spectra. In particular, we will focus on spatial fluctuations in the position of the quantum 
dots, their size, energy levels, dipole matrix elements, and scattering rates that vary from dot
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Figure 5. Spatio tem poral dynamics of stim ulated em ission in quantum  dot lasers pum ped above threshold. The 
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to dot in a real laser device. Thereby, we can systematically change the spatial fluctuation 
of the individual parameters. In this section, we will focus on the influence of the variation 
of dot size in the inhomogeneously distributed quantum-dot ensemble that constitutes the 
active laser material. A consequence of this will be a variation of energy levels and scattering 
matrix elements.

The dynamics of the light fields in quantum dot lasers is determined by induced and spon
taneous recombination processes that, in turn, depend on the spatiospectral carrier distribu
tion in the dot levels. The mutual influence of light and matter is particular strong during 
the start-up regime of the laser and leads to characteristic oscillations in the time domain. 
Figure 6 shows the first 10 ns (after start-up) of the dynamics of the optical nearfields (left) 
and carrier distribution (right) at the output facet of an InGaAs quantum-dot laser. Its 
width and cavity length are 50 /xm and 500 ^ m ,  respectively, and the density of quantum dots

t [ns] t [ns]

Figure 6. Dynamics o f the optical nearlicld  emission (left) al the output facet ant! corresponding! carrier den*it\ 
dynamics (righ t; of a quan tum  dot lasei (InG aA s. width 51) /nin. cavity length 500 f i m.  j — 2 . dot  densil} 
10'" cm ) with spatially varying dot param eters. From top  to  bottom , the am plitude o f the (G aussian-shaped 
fluciuaiions is \ r , .  Y f . and  x f ' .



Spatiotemporal Dynamics of  Q uantum -D ot Lasers 6 1 9

(self-organized growth) is 101" cm "2. In the lop frames of Fig. 6, the Q D  parameters devi
ate only slightly from their average values (1% variance), whereas in the middle and lower 
frames the variance of the param eter values of the spatially distributed QDs (i.e., their size, 
dipole matrix elements, energv-levels) is Gaussian with variances of 4% and 8rr ,  respectively. 
The nearfield intensity distributions show modulations on a picosecond timescale. They orig
inate from dynamic interactions between the light fields and the dot carriers ranging from 
the femtosecond timescale (in the case of microscopic carrier scattering) up to the picosec
ond and nanosecond timescales (reflecting the resonator round trip time of the propagating 
light fields and the slow build-up and decay of the spatial carrier density). In combination, 
the light diffraction and the spatially dependent interaction of light with the carriers in the 
dots and in the wetting layer lead to formation of dynamic optical patterns. The timescales of 
the carrier dynamics thereby are transformed into characteristic interaction lengths like the 
coherence length via the propagation of the light fields. In combination with the diffraction 
of the light fields this leads to transverse modulations in the micrometer regime.

Dynamic carrier capture and escape, the complex intradot level dynamics and the diffrac
tion of the propagating light fields lead to a transverse coupling of the field distribution 
arising at the individual dots. Via the light field propagation, these fluctuations are then 
transfered to respective longitudinal (z) and temporal (/) changes. Due to the coupling and 
interplay of spatial with temporal degrees of  freedom, these material inhomogenieties thus 
affect both the transverse nearfield distribution as well as the dynamics of the light fields. 
With increasing fluctuation amplitude, a characteristic filament structure evolves. The spatial 
variation of dot size and level energies directly determines the spatial dependence of the 
nearfield. Via the term ico-j-yp of the Q D  Bloch equations, the spatial fluctuations in the dot 
properties are transferred to spaliospectral changes in the interlevel polarization. This, in 
turn, affects the amplitude and phase of the propagating light fields. Thereby, the individual 
level energies lead to locally varying transition energies and frequencies that contribute to 
the spatial and spectral properties of  the propagating light fields. Via the spatial light field 
polarization these are passed on to the propagating light fields as dynamic changes in both 
amplitude and phase. As Fig. 6 shows, an increase in energy fluctuations consequently leads 
to corresponding fluctuations in the light field dynamics. Via the generation rate, the dynam
ics of the carrier system depends on the light fields that in turn are spatiotemporally modified 
by the spatially varying dot parameters. In addition, the dynamics of the carrier relaxation 
processes (phonon emission or absorption and interaction w'ith carriers and phonons of the 
wetting layers) depends on the energy differences of the levels involved and thus is also 
directly affected by the spatially varying dot parameters. As a consequence, dynamic char
acteristic filament structures evolve in both the light field and carrier distributions.

The spatially varying dot properties not only determ ine the emission dynamics, they also 
induce dynamic changes in the real and imaginary parts o f the light fields. O ur numeri
cal simulation allows us to analyze the influence of the spatially varying dot properties on 
the spaliospectral emission characteristics. Figures 7a-7e show spatially resolved emission 
spectra corresponding to Fig. 6 with 1%, 4%, and 8% fluctuations. The vertical axis refers to 
the lateral position at the output facet of the quantum  dot laser; the horizontal axis shows 
the frequency dependence in a range of 600 GHz. With a cavity length of the device of 
500 f i m, this corresponds to approximately 7 longitudinal modes. The spectral width of each 
longitudinal mode is determ ined by a large variety of physical effects. The characteristic 
times of induced and spontaneous recombination define a lower limit for a laser linewidth. 
However, the real spectra! width is significantly broadened. First, in large-area lasers, the 
transverse degree of freedom leads to a characteristic transverse migration of the light fields 
that is determ ined by the dynamic interplay of light diffraction, dynamic self-focusing, as well 
as carrier scattering and relaxation. As a consequence, a group of transverse modes arises for 
each longitudinal mode. Second, the transverse dynamics is determined by inhomogeneous 
broadening resulting, for example, from the spatially varying quantum-dot parameters. They 
affect both the coherent l ight-m atter coupling (via the carrier dependence of the generation 
rate) and the incoherent processes such as carrier-carrier and carrier-phonon interactions.

Figure 7 clearly dem onstrates that an increase in fluctuation amplitude affects both the 
spectral as well as the spatial degree of freedom. The spatially varying transition energies
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Figure 7. Emission spcctra o f  a quantum  dot laser with G aussian fluctuations with am plitude (from  top  to bottom )
I r/t . 4'% and 8% . T he vertical axis refers to the lateral position at the output facet o f the quantum  dot laser; the 
horizontal axis shows the frequency dependence in a range of 600 GH z. With a cavity length o f the device o f 
500 f im , this corresponds to  approxim ately 7 longitudinal modes.

lead to significant broadening of the emission spectra. This originates from the variance in 
transition energy and (indirectly) the intradot and interdot scattering dynamics. The light 
propagation and diffraction in combination with carrier scattering and relaxation not only 
lead to a coupling of longitudinal and transverse degrees of freedom but also to a coupling of 
spectral and transverse dynamics. As a consequence, the spatially resolved emission spectra 
show inhomogenieties in both the transverse dimension (i.e., over the lateral extension of 
the quantum dot broad-area device) and the spectrum.

3 .3 . D yn am ic  F ila m e n ta tio n  an d  B eam  Q u a lity  o f Q u a n tu m -D o t L asers

In the following, we present a comparative study of numerical simulations and experi
ments on the spatiotcmporal dynamics and emission characteristics of quantum-well and 
quantum-dot lasers of identical structure. The simulations show that, in the quantum-dot 
laser, the strong localization of carrier inversion and the small amplitude-phase coupling 
enable a significant improvement of beam quality compared to quantum-well lasers of iden
tical geometry. Near-field profiles and beam quality (A/2) parameters calculated on the basis 
of time-dependent effective Maxwell-Bloch equations into which the physical properties of 
the active media are included via space-dependent material parameters, effective time con
stants, and matrix elements are fully confirmed by experimental measurements. Together 
they indicate that in the quantum -dot laser, the strong localization of carrier inversion and 
the small amplitude-phase coupling enable a significant improvement of beam quality com 
pared with quantum-well lasers of identical geometry. Figure 8 shows in direct comparison 
the theoretical (a, b) and experimental (c) [16, 17] results of the nearfield characteristics 
of quantum-well (Fig. 8, left) and quanlum-dot lasers (Fig. 8, right) of identical waveguide 
design. The width of the lasers is 6 /xm, the cavity length was 1.3 mm. Figure 8a shows 
the calculated nearfield dynamics of a quantum-well (left) and quantum-dot laser (right). 
In the example, the injection current density was chosen such that the output power was 
60 mW. For small output pow'crs, the nearfield of a quantum-well laser is stili ra ther uni
form. However, if we operate  the laser at higher power levels, a very different behavior can 
be observed. Physical processes such as carrier diffusion and scattering in combination with
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Figure 8. Sim ulated spatio tem poral nearfield dynamics (a) and tem porally averaged nearfields (b: theory, c: exper
im ent) at the ou tpu t facet o f a quantum -well (left) and  a quan tum -dot (right) laser. Both lasers have the sam e 
geom etry (width 10 ^ m , cavity length I m m). R eprin ted  with perm ission from [18], E. G ehrig et al., Appl. Phys. 
Lett. 84, 1650 (2004). © 2004, A m erican Institute o f Physics.

light diffraction lead to a complex transverse migration of the light fields (Fig. 8a, left). In 
contrast, the transverse dynamics of the light fields propagating in the quantum-dot laser 
(Fig. 8a, right) is still rather uniform (for the same output power). This complex light field 
dynamics is governed by the (space- and time-dependent) mutual interplay of carriers with 
spontaneous and induced emission processes. In combination with (counter-) propagation 
effects and transverse migration of the light fields, it affects and determines the nearfield 
and beam quality that can be measured and observed in an experimental investigation.

A comparison of the calculated and measured time-averaged nearfields of a quantum- 
well laser (left) and a quantum-dot laser (right) (Fig. 8b) demonstrates that the increased 
influence of the transverse degree of freedom leads in the quantum-well laser to the form a
tion of filaments, whereas the quantum-dot laser shows a Gaussian-shaped uniform nearfield 
distribution. The theoretical results obtained with the Maxwell-Bloch equations are in good 
agreement with an experimental m easurem ent of the nearfield distributions [17] (Fig. 8c). 
The side lobes next to the laser ridge that can be seen in Fig. 8c result from current- 
spreading in the cladding and waveguide layers. The suppressed transverse light field dynamics 
observed in experiment and simulation clearly dem onstrate the promising device performance 
of quantum-dot lasers compared to large area  lasers and laser-amplifiers, which show a strong 
tendency for filamentation formation [20-22].

By varying the carrier injection current and the laser width in the simulation, we have sys
tematically analyzed the spatiotemporal light field dynamics of quantum-well and quantum- 
dot lasers. The theoretical and measured values of the beam quality factor M~ as obtained 
by the spatiotemporal simulation are depicted in Fig. 9 in dependence on stripe width (a) 
and output power (b) (for the same output power of 20 mW). With increasing stripe width 
(Fig. 9a), the transverse degree effectively gets more important: Physical processes such as 
carrier diffusion and diffraction of the light fields lead to characteristic dynamic optical pat
terns that typically lie in the micrometer regime. In combination with the dynamic phase 
changes, this results in a deterioration of the beam quality, that is, the ;V/2-parameter of the



622 Spatiotemporal Dynamics of Quantum -Dot Lasers

4

3

2

1

0
0 2 4 6 8 10 12 0 10 20 30 40 50 60

experiment
5 -

4

3

2

1 

0
0 2 4 6 8 10 12 0 10 20 30 40 50 60 70

stripe width [pm] output power [mW]

Figure 9. C alculated and m easured [ 17] beam  quality param eter ( M : ) in dependence o f stripe width (a) and ou tput 
power (b). R eprinted with perm ission from [16], L. G ehrig et aL, Appl. Phys. Leu. <S4. 1650 (2004). © 2004, A m erican 
Institute o f Physics.

quantum-well and the quantum-dot laser increases with increasing stripe width. However, 
due to the strong localization of the carriers and the reduced cv-factor, the A/2-values of the 
quantum-dot laser are always smaller than the respective values of the quantum-well struc
ture. In particular, the quantum-dot laser shows a characteristic threshold near 8 /xm. In this 
intermediate stripe regime, the quantum-dot laser is still single mode, whereas M 2 > 2 for 
the quantum-well laser.

The dependence of M 2 on output power is shown in Fig. 9b (for a stripe width of 6 /xm). 
In the quantum-well laser, an increase in the injection current density not only increases 
the output power but simultaneously leads to an increase in the A/2-parameter. This is a 
direct consequence of dynamic carrier diffusion and light diffraction affecting the light fields 
during their propagation in the laser. In contrast, the quantum-dot laser shows almost no 
dependence on output power. The dependence of M 2 on stripe width and output power can 
be confirmed by experimental measurements performed on the same devices [17].

Our numerical results clearly demonstrate that quantum-dot lasers have a much better 
beam quality compared to quantum-well lasers of same geometry. The strong localization 
of the carriers in the dots in combination with the reduced amplitude phase coupling thus 
guarantees a good spatial quality.

For an analysis of the spectral properties. Fig. 10 shows calculated (spatially resolved) emis
sion spectra of the quantum-well (a) and the quantum-dot laser (b). In the figure, the vertical 
axis denotes the lateral coordinate of the laser; the horizontal axis refers to the frequency. 
Both structures show a set o f longitudinal modes that coexist in the laser— according to the 
Fabry-Perot modes of the cavity. In the quantum-well laser (Fig. 10a), the width of the laser 
is larger than typical interaction length scales of the laser. As a consequence, a characteris
tic transverse spatiospectral coupling arises, leading to spectral broadening of the individual 
modes. In addition, each longitudinal mode is surrounded by a set of transverse modes. In 
the case of the quantum-dot laser (Fig. 10b), the strong carrier localization and the discrete 
energy levels lead to reduced carrier diffusion, a reduction of transverse dynamics, and to
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Figure 10. C alculated em ission spcctrum  o f a quantum-well (left) and a quantum -dot laser (right). Reprinted with 
perm ission from [16], E. G ehrig  et al., Appl. Phys. Lett. 84. 1650 (2004). © 2004, Am erican Institute of Physics.

low amplitude-phase coupling (alpha-factor). As a consequence, the emission spectrum is of  
much higher spectral purity than in the situation of the quantum-well laser.

For characteristic sets o f  material parameters describing the active quantum-well or the 
quantum-dot media, the Q D  Maxwell-Bloch approach allows a realistic simulation of the 
spatiotemporal dynamics of quantum-dot and quantum-well lasers complementing experi
mental measurements of nearfield profiles and beam quality factors [17]. The self-consistent 
inclusion of all relevant geometrical parameters and material properties (e.g., refractive index 
and waveguide structure, dot density, and spatial dot distribution) provides a fundamental 
description of the underlying physical processes and guarantees a realistic modeling of the 
laser behavior. In particular, the simulations allow the systematic variation of the individ
ual parameters and properties with respect to their influence on beam quality and power. 
O ur results clearly indicate that the quantum-dot laser is a highly promising laser source 
for the generation of long-wavelength radiation with improved spatial and spectral purity. 
Experiment and modeling together may thus significantly contribute to the development of 
optimized, innovative quantum-dot devices.

4 . U L T R A S H O R T  T IM E  D Y N A M IC S : P U L S E  P R O P A G A T IO N  IN  A  
Q U A N T U M -D O T  W A V E G U ID E

A typical means of probing the internal ultrashort time dynamics of a quantum-dot laser is to 
inject an optical pulse into the laser and analyze the ultrafast dynamics of the output signal. 
The dynamics of ultrashort pulses propagating in a quantum-dot amplifier is determined by a 
complex nonlinear coupling and dynamic interplay of light fields and carriers in the spatially 
inhomogeneous quantum -dot ensemble. Computational modeling shows that in spite of the 
large complexity, the strong localization of the carrier inversion and the low-amplitude phase 
coupling may allow the amplification and transmission of ultrashort light pulses with mini
mum deterioration of the pulse properties (e.g., pulse shape, duration). Simulation results 
of the nonlinear pulse propagation in quantum-dot optical amplifiers allow visualization and 
interpretation of fundamental nonlinear processes such as selective depletion and refilling 
of quantum -dot energy levels, leading to a complex gain and index dynamics that affect the 
amplitude and phase of a propagating light pulse. Computational modeling thus may lay the 
foundation for an optimization and tayloring of pulse properties.

4 .1 . D y n a m ic  S h a p in g  and  A m p lifica tio n  o f U ltra s h o rt P u lses

For the simulation of a typical pulse propagation configuration, we consider a light pulse 
propagating in a laser waveguide (width of the structure 10 fim ,  length 1 mm) filled with an 
inverted quantum -dot ensemble. The snapshots displayed in Fig. 11 show the intensity (a-c) 
and the carrier density (d-f) in the active area of a Q D  laser during the propagation of a 
light pulse whose frequency corresponds to the transition energy of the QDs. The injection 
current density has been chosen such that the population of the dots in the layers of the Q D  
waveguide are significantly above transparency. For the dot-to-dot fluctuation, a variance of 
5%  has been assumed. The time between successive plots is 3 ps. Figures 1 la and 1 Id repre
sent the spatial distributions of the intensity (a) and the carrier density (d) immediately after
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Figure 11. Propagation o f an  u ltrashort pulse (full width at half maximum o f 500 fs) lim ed to  resonance o f an 
inverted quantum -dot ensemble: (a -c): snapshots of the light field and (d—f): corresponding snapshots o f  the carrier 
density. The time betw een successive snapshots is 3 ps. R eprin ted  with perm ission from |3], E. G ehrig and O. Hess, 
Phys. Rev. A  65, 033804 (2002). © 2002, Am erican Physical Society.

optical injection. It is important to note that initially the lateral spatial shape of the injected 
light field is Gaussian-shaped with a width (FW H M ) of 6 jum, and the temporal profile of 
the pulse is chosen Gaussian as well with a full width at half maximum of 500 fs. Immedi
ately after injection, the light pulse starts to interact with the ensemble of populated QDs. 
During its propagation through the laser, the pulse locally reduces the population in the dots 
established by the injection current by induced recombination. With continuing propagation, 
the light pulse is significantly amplified (Fig. 1 lb). Due to the nonlinear light-matter interac
tion between the pulse and the spatially distributed dots, a complex spatiotemporal behavior 
arises. It is directly reflected in the dynamic spatial structures in both intensity and carrier 
density. The pulse is laterally structured and temporally distorted via the interaction with 
the dots (Figs. l i b  and 1 lc). At the same time, spatial hole burning effects can be observed 
in the carrier distribution Fig. 1 le and I lf). The partial refilling of the dots—determined by 
carrier injection, carrier capture and thermaiization via carrier relaxation— defines a finite 
“response time” of the Q D  medium. As a consequence, the spatial extension of the hole 
burnt by the light pulse (Fig. 1 If) significantly exceeds the spatial area covered by the opti
cal pulse (Fig. l ie ) .  The microscopic response and relaxation of the excited charge carrier 
system typicaliy occurs on ultrashort timescales (50 fs ... 500 Is). As a result, we expect 
the dynamic shaping and amplification of the light pulse to be strongly dependent on the 
duration of a light pulse propagating in a Q D  laser amplifier. In order to investigate the 
influence of pulse duration, we compare the dynamics of pulses with durations of 150 fs 
and 1.5 ps, respectively. Figure 12 shows snapshots of the propagating light pulses near the 
output facet of a Q D laser amplifier (cavity length 500 jLtm). The figures refer to the small 
signal regime (Figs. 12a and 12b) and to the saturation regime (Figs. 12c and 12d) for a 
pulse with a duration (full width at half maximum) of 150 fs (Fig. 12a and 12c) and 1.5 ps 
(Fig, 12b and 12d), respectively.
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Figure 12. Snapshot of the intensity in the active a rea  o f an optically injected quantum  dot laser (width of active 
laser stripe: 10 jum, cavity length 500 j i m) with a duration  o f (a, c) 150 fs and (b. d) 1.5 ps of the injected pulse. 
Parts (a) and (b) refer to the small signal regim e, parts (c) and (d) to the saturation  regime.

The characteristic spatial and temporal distortions the light pulse experiences during prop
agation in an inverted dot medium strongly depend on the duration of the light pulse: If 
the QD laser amplifier is operated in the small signal regime (e.g., small values of the 
injected light pulses), a light pulse more or less retains its shape during its propagation in an 
inverted Q D  laser amplifier, independent of the duration of the injected pulse. However, if 
we increase the input power level (approaching the saturation regime of the Q D  waveguide), 
the dynamic pulse shaping shows a strong dependence on the pulse duration. Figure 12 
displays the profile of light pulses with a duration o f  150 fs (a, c) and 1.5 ps (b, d) after 
the propagation in a Q D  laser amplifier (width of active laser stripe: 10 j im, cavity length 
500 jLtm). Please note that only a part around the pulse and not the entire active area is 
plotted. The leading part of the pulse with duration of 1.5 ps (Fig. 12d) is significantly ampli
fied by the nonlinear interaction with the charge carrier system. The trailing part “sees" the 
reduced carrier inversion and consequently experienced a smaller gain leading to an asym
metric pulse shape. In this case, it is, in particular, the spatial variation of inversion and gain 
that determines the amplification and shaping of the pulse. The situation is changed if the 
pulse duration is in the order of magnitude of the carrier relaxation (150 fs; Fig. 12c). In that 
case, the microscopic intradot carrier dynamics as well as the interaction with carriers and 
phonons of the embedding medium gain importance. In combination with light diffraction 
and propagation, this leads to a characteristic curvature of the pulse front and modulations 
in the trailing part. The amount of spatial and temporal distortions the light pulse experi
ences consequently strongly depends on both, spatial effects (such as dot density, uniformity 
of the dot distribution, spatial fluctuations) and microscopic “spectral” effects (determined 
by the characteristic relaxation times and microscopic dot properties). The dynamic ampli
fication and shaping of ultrashort pulses are thus—via the coupling between wave equation 
and QD-Bloch equations— the result of a complex carrier dynamics within the dots.

4.2 . L u m in e s c e n c e  o f O p tic a lly  E xc ited  Q u a n tu m -D o t M ed ia

In Section 4.1, we have considered the propagation of a resonant light pulse in an inverted 
quantum-dot medium, that is, an electrically pum ped QDL. Although this certainly repre
sents the preferred mode of operation of quantum-dot lasers in most applications, in many 
current experimental setups, however, one investigates the luminescence of optically excited 
Q D  media by an (ultra-) short optical pump pulse. In the Q D  laser, this corresponds to an 
approximately 5-shaped excitation of carriers into one or more high-energy carrier reservoirs 
either in the dots themselves (direct optical pumping) or by carrier capture from the optically 
pum ped wetting layer (indirect pumping). Because the dynamic interplay between the dots 
and the wetting layer is determined by a large variety of relaxation processes involving the 
dot-carriers and the carriers in the wetting layer, the excitation of the dots via the wetting 
layer represents a particularly interesting case. In the following, we will thus focus on the
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case of an ensemble of (initially empty) dots that is dynamically filled from the wetting layer 
(the high-energy carrier reservoir). The dynamic coupling between the dot-carriers and the 
carriers of the wetting layer is determ ined by the density of quantum dots, the individual 
dot properties, and the epitaxial growth process. These factors contribute simultaneously 
and lead to a characteristic response of the quantum-dot system. Thus, the resulting lumi
nescence is influenced by and directly reflects the multitude of physical quantities that are 
involved in the characteristic excitation and relaxation processes. These are characteristic 
(material) properties like the optical matrix elements for the various (intradot and dot- 
wetting layer) carrier and carrier-phonon interactions, the transition matrix elements of the 
dot levels involved, the energies of the dot levels and the wetting layer states, the dot den
sity, and the spatial dot distribution. Because a detailed analysis and variation of all these 
parameters (some of which are presently not even known in detail) involves extensive simu
lations, in the following we will restrict ourselves to an investigation of the influence of the 
filling degree, the coupling strength and the energy levels. Thereby we implicitly assume the 
remaining parameters to be (spatially-dependent) constants.

Figures 13, 14, and 15 show the characteristic luminescence, that is, the laterally averaged 
intensity at the output facet o f an optically pum ped Q D L  structure. The degree of initial 
filling of the high-energy reservoir and the coupling strength between the dots and their 
environment determines the time constants for carrier capture into the dots and the degree 
of dot filling. In combination, this may lead to very different characteristic emission behavior 
discussed below.

4.2.1. Influence of Excitation Strength
The three curves displayed in Fig. 13 show the dependence of the luminescence on the tilling 
degree of the carrier reservoir. The solid, gray, and dotted lines show the situation where 
all, half, and significantly less than half of the available wetting layer states are filled with 
carriers, respectively. For a m oderate  initial excitation, the loading of the QDs with carriers 
is comparatively slow, leading to delayed onset of light emission. An increase in the initial 
carrier filling of the reservoir provides a higher inversion in the dots, resulting in intense 
light emission. The variation of the reservoir not only determ ines the instant and intensity 
of the light emission, it also affects the shape of the curve: For high excitation, a selective 
saturation of individual transitions may occur. As a consequence, a second transition can be 
involved, leading to mode beating, temporal modulations, or a second peak in the emission 
curve.

time [ps]

Figure 13. D ependence of I Ik- Q D  lum inescence on excitation level. Solid. Lira) and do tted  lines correspond  to 
completely, half, and significantly less than half-li I led welting layer stales, respectively. R eprin ted  wilh perm ission 
from [3j, L. G ehrig and O. Hess. /Vjy.v. Rr\. 1 fo. 033N04 (2002). 21)02. A m erican Physical Society.
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Figure 14. D ependence o f the Q D  lum inescence on the coupling strength . High coupling strength (black) provides 
a fast filling and efficient refilling o f the dots that are partially dep leted  via induced emission processes. Weak 
coupling (gray) leads to a gradual depletion  o f the carrier reservoir. R eprin ted  with perm ission from [3], E. G ehrig 
and O. H ess. Phvs. Rev. A  65. 033804 (2002). © 2002, A m erican Physical Society.
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Figure 15. D ependence of the Q D  lum inescence on  the transition  energies. T he black lines pertain to a Q D L  
with the highest matrix e lem ents separa ted  bv m ore than the EC) phonon energy. The gray curves illustrate the 
ease w here the respective transition  energies are very close to  each o ther. The respective emission properties 
represen ted  by the solid curve in Fig. 15b shows one intense peak belonging to the main transition. The dashed 
curves visualize the carrier occupation for the dot system with close transition  energies. R eprinted with permission 
from [3|. E .  G ehrig  and O. Hess. Phvs. Rc\. .1 65, 033804 (2002). €) 2002. A m erican Physical Society.
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4.2 .2 . Influence of Coupling Strength
In order to analyze the influence of the coupling strength, we have calculated the intensity 
and level occupation in the dots in relation to the fraction of wetting layer states to which 
the dots couple (normalized to a unit cell Az x A.v). In a given laser structure, this value is 
determined by the dot density and by the potential step between the dots and their environ
ment determined by the size and shape of the dots as well as the particular material systems 
and epitaxial growth processes. The resulting dynamic behavior of the emitted intensity is 
depicted in Fig. 14. First, a high coupling strength provides a faster filling of the (initially) 
empty dots. As a consequence, the dot occupation reaches the characteristic threshold value 
that is apparent in Fig. 14 at an earlier time step. Second, it enables efficient refilling of the 
dots that are partially depleted via induced emission processes. In combination, this leads to 
an intense peak in the emission curve (black). A weak coupling (gray), on the o ther hand, 
leads to a slow depletion of the carrier reservoir. As a result, it delays the onset of light
emission and “stretches” the shape of the emission curve in time.

4 .2 .3 . Influence of Quantum-Dot Size and Growth: Variation of 
Energy Levels

Variation in the size and epitaxial growth of a quantum dot has a direct consequence for its 
energy levels. These variations in eigen energies enter directly in the Q D Bloch equations. In 
the following, we will consider two channels of transitions with the highest transition matrix 
elements for two different cases: (1) a QD  system with close transition energies (i.e., sep
arated by less than the LO phonon energy) and (2) a Q D  system where the carrier levels 
belonging to the two most dominant transitions differ by an energy much higher than the LO 
phonon energy. For these two examples. Fig. 15 shows the temporal behavior o f  the (elec
tron) level occupations (Fig. 15a) and the resulting emission curve (Fig. 15b) after the initial 
excitation of the QDs. The black lines in Fig. 15a pertain to the QDL where the transitions 
with the highest matrix elements are separated by more than the LO phonon energy. The
gray curves correspond to the situation where the respective transition energies are very
close to each other. For the example with higher level separation, the carriers populating the 
two QD  levels are mainly decoupled: the carrier recombination is mostly restricted to one 
level (belonging to the transition with the highest dipole matrix element), whereas the sec
ond level absorbs carriers from the reservoir. The respective emission properties represented 
by the solid curve in Fig. 15b show one intense peak belonging to the main transition. For 
the same excitation conditions, the dashed curves visualize the carrier occupation for the 
dot system with close transition energies. In this situation, the two main carrier levels inter
act and “ interfere” via dynamic carrier and phonon scattering. The resulting emission curve 
(dashed line) shows two maxima. The specific shape of the temporal emission characteristics 
is thus a direct consequence of the dynamic interplay of competing transitions and spectral 
modes.

4.3 . In te r- an d  In tra leve l C a rr ie r  D y n a m ic s  D u rin g  th e  Pu lse  P ro p a g a tio n

The spatiotemporal dynamics discussed in the past sections are the finger-prints o f  a complex 
carrier-dynamics in the charge carrier ensemble in the dots. In the QDMBEs, the inter- and 
intralevel dynamics are automatically represented and calculated. The level dynamics allows 
visualization of the microscopic interactions occurring within the dots. As an example. Fig. 16 
visualizes the temporal dynamics of the level occupation in quantum dots during the passage 
of an ultrashort (150 fs) light pulse. Displayed are the level occupations of the hole levels 
(normalized to their initial value) at the center of the output facet. The respective electron 
level occupations show a qualitatively similar behavior. We will consider the gain (wavelength 
of the injected light pulse: 1270 nm) and transparency (wavelength of the injected light 
pulse: 1216 nm) regime, respectively. The pulse leads to an optical excitation of the carrier 
system and to a selective ievel-hole burning (e.g.. Fig. 16a): Depending on the dipole matrix 
elements for the individual states and depending on the frequency detuning of the pulse 
with respect to the frequency of the respective electron and hole states, a reduction of 
the individual level occupation and a partial refilling via carrier injection and microscopic
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Figure 16. Dynamics o f the occupation  of hole levels during the propagation of a light pulse: (a) amplification 
regime, (b) transparency regim e.

scattering processes occurs. The microscopic scattering processes involved in this “ level- 
burning” are determined by emission and absorption of phonons, multiphonon interactions, 
and the interaction with the carriers and phonons of the wetting layer. The magnitude of 
the various “channels” for relaxation mechanisms thereby depend on the Q D  energy levels, 
on the energy difference to the surrounding layers, and on the coupling of a dot to its next 
neighbors. The dot-to-medium and dot-to-dot interactions thereby are determined by the 
dot density and the light propagation that mcsoscopically couples the QDs. In particular, 
the levels of a dot may “ talk'’ to each o ther via carrier and phonon scattering. This dynamic 
carrier exchange and level dynamics then leads to characteristic modulations that can be 
seen near transparency (Fig. 16b). We note that this phonon interaction responsible for the 
fast intradot redistribution of carriers is limited to level separations approximately equal to 
the LO phonon energy: More deeply confined dots with level separations much larger than 
this value would not display this behavior but show decoupled level dynamics and selective 
level hole burning instead. In particular, the degree of coupling between the individual levels 
strongly effects the saturation behavior o f  a Q D laser waveguide that has been optically 
injected with a light pulse: For the same characteristics of an injected light pulse (i.e., input 
power, duration, pulse shape), a Q D  medium with decoupled level energies (i.e., energy 
separation larger than the LO phonon energy) will show' a stronger saturation behavior than 
a Q D  ensemble with a strong coupling of the level energies where a mutual exchange of 
level occupations via scattering and relaxation dynamics occurs.
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The ultrashort carrier dynamics is directly reflected in the microscopic gain which can he 
derived from the (spatially averaged) microscopic distribution of the dipole density that is 
dynamically calculated within the framework of the Q D  Bloch equations. The computational 
results can then directly be compared to the results of an experimental pump-probe mea
surement. Figure 17 shows experimental [21] and theoretical results on the dynamics of the 
gain for three different wavelengths of the injected light. The longest wavelength (1270 nm) 
corresponds to the amplification regime, whereas the shortest wavelength (1216 nm) cor
responds to the transparency regime. The intradot scattering (via emission and absorption 
of phonons) of the gain typically occurs on timescales of a few hundred femtoseconds up 
to a few picoseconds leading to a fast partial recovery of the gain. Near transparency the 
partial exchange of inversion via absorption and emission of phonons leads to characteristic 
modulations in the gain dynamics that are directly correlated to the corresponding increased 
level dynamics within the charge carrier ensemble of the QDs. The modulation depth and 
period thereby depends on the energy separation of the levels as well as on injection cur
rent and input power. The temporal regime after approximately 1 ps is characterized by a 
comparatively slow reestablishment of the inversion via the injection current and the inter
action with the carriers of the embedding layers.

The calculation of the ultrashort time dynamics of the charge carriers clearly demonstrates 
that it is both operation conditions (e.g., injection current density and input power) and 
material properties (in particular, the energetic separation of the energy levels) that affects 
the dynamic shaping as well as the saturation characteristics of a propagating light pulse.

Delay (ps)

Figure 17. M easured (a) [21] and calculated (h ) gain change during propagation  of a ^hort pulse {15(1 fs) at I2U> nm 
(solid line). 1250 nm (dashed line), and 12*70 nm (do lled  line).
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4.4 . S p a tio sp ec tra l G ain  and  In d ex  D y n a m ic s

A light pulse propagating in a semiconductor laser directly couples to the carrier populations 
in the energy levels. Thereby, it induces highly nonequilibrium distributions. As a conse
quence. dynamic changes in both gain and refractive index arise that relax on femto- and 
picosecond timescales toward a new equilibrium distribution. Within this temporal regime, 
the complex dynamics of the charge carriers leads to strong distortions of both the temporal 
and the spectral profile of the pulse. In order to theoretically investigate the ultrafast carrier 
dynamics, we calculate the dynamics of the real- and the imaginary part of the polariza
tion at the output facet o f a semiconductor laser amplifier that has been optically excited 
by an ultrashort light pulse (duration 150 fs). This spatially varying polarization is directly 
correlated and composed of microscopic dipoles that are dynamically calculated within the 
framework of the Bloch equations. Thereby, every combination of electron and hole states 
is taken into account via the corresponding dipole matrix element. As a consequence, the 
polarization dynamics directly reflects the microscopic spectral gain (proportional to the neg
ative imaginary part of the polarization) and the induced refractive index (proportional to 
the negative real part of the polarization). The lateral and temporal dependence of P ( x j )  at 
the output facet consequently will allow a fundamental analysis of the physical processes that 
are responsible for temporal and spectral properties of an amplified light pulse. The results 
of the simulations of gain and induced refractive index are summarized in Fig. 18 in a time 
window of 1 ps. The bright spot on top of the figures indicates the corresponding dynamics 
(duration and position with respect to the displayed time axis) o f  the light pulse. In the cal
culation, the injection current density has been set to 2.5 \!hr. The central pulse frequency is 
located within the amplifier gain bandwidth leading to an amplification of the pulse. During 
its propagation, the pulse reduces the carrier distribution in the dots, leading to dynamic 
level hole burning. The gain and induced refractive index are via the polarization of the 
Bloch equation correlated to the dynamics of electrons and holes in the dots. They thus 
directly reflect the highly nonequilibrium carrier dynamics in the dots determined by hole 
burning, carrier injection, as well as carrier-carrier and carrier-phonon scattering processes. 
The partial refilling of the hole via carrier relaxation and carrier injection typically occurs 
on timescales of a few hundred femtoseconds. These processes consequently determine the 
temporal and spectral shape of the “spa tio -spec trar  trench burnt by the pulse in the spa
tiospectral gain and index. The level hole burning and carrier heating induced by the pulse 
“shape1' the gain during the passage of the pulse (negative values in Fig. 18a correspond to 
high gain), leading to amplifying and absorbing regions. At the same time, the reduction of 
the inversion in the dot levels induces a dynamic induced refractive index (negative values 
in Fig. 18b correspond an increase in the induced index). In particular, if the pulse duration 
is <1 ps, the duration of the carrier relaxation may significantly exceed the pulse duration 
(i.e., the distributions are still excited after the passage of the pulse). As a result, the pulse 
envelope may not *‘see” the entire spectral index dispersion (that typically leads to signifi
cant spectral broadening of picosecond pulses) but select only a part of the index curve. The 
propagating light pulse may consequently experience either a red or a blue shift, depending

Figure IS. Dynamics ol' imaginary (a) and real (h) part of the polarization (calculated al ihc output facet of a Q D  
laser amplifier) during the propagation o f an u ltrashort (150 fs) pulse.
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on, for example, input power and injection current shaping the corresponding minima and 
maxima in the gain and index distributions. The spatiotemporally resolved calculation of 
the pulse-induced gain and index dynamics thus allows one, for a given laser geometry, to 
directly obtain and analyze all information on fundamental interaction processes that affects 
and shapes the nonlinear amplification process and spectral dynamics of ultrashort pulses. 
As an example, we will in the following vary the width of the active area and analyze the 
resulting gain and index dynamics. Figure 19 shows for three values o f the width of the active 
area the lateral and temporal dependence of the imaginary and real part of the polarization 
reflecting gain and index at the output facet of a Q D  laser amplifier during the propagation 
of an ultrashort laser pulse. Dark areas reflect high gain and index, whereas light shading 
reflects absorption and a reduction of carrier-induced index, respectively. The top row shows 
the corresponding intensity plot. Due to the nonlinear light-matter interactions, the pulse 
continuously “shapes” its gain and index distribution during propagation. This leads to char
acteristic temporal modulations in both gain and index. Because carrier relaxation occurs 
on timescales of a few hundred femtoseconds, the dynamic gain and index distribution are 
still excited after the passage of the pulse. The temporal shift in gain and index visualize 
the pulse-induced gain (dark shading) within the pulse, as well as induced index dispersion 
resulting from the dynamics of the real and imaginary part of the interlevel polarization. In 
the Q D  laser amplifier with cavity width w =  10 f i m, the distributions are rather uniform. As 
a consequence, the pulse will be characterized by a uniform lateral beam profile. An increase 
in lateral width leads to characteristic modulation in transverse direction. In particular, these 
structures show a characteristic curvature in lateral dimension. This is a direct consequence 
of the intensity-dependent carrier depletion in the levels induced by the spatial profile of 
the pulse. It is these optical patterns of dynamic gain and index that shape the pulse in the 
next time step.

4.5 . P u lse  P ro p ag a tio n  in QD and Q W  O p tica l A m p lifie rs

The comparative study of numerical simulations and experiments on the spatiotemporal 
dynamics and emission characteristics of quantum-well and quantum-dot lasers of iden
tical structure (Section 3.3) has demonstrated that, in the quantum-dot laser, the strong 
localization of carrier inversion and the small amplitude-phase coupling enable a signifi
cant improvement of beam quality compared to quantum-well lasers of identical geometry. 
It would thus be of interest to investigate whether a similar difference in beam quality can 
be observed in quantum well and quantum-dot amplifiers that have been optically injected 
by an ultrashort light pulse. For a comparison of the beam properties of an ultrashort light 
pulse (150 fs) propagating in a quantum-dot and quantum-well laser of same material and 
geometry, Fig. 20 shows temporal snapshots of the nearfield profile taken at the output facet 
during the passage of the pulse maximum. The distributions shown on the left of Fig. 20 
were calculated for stripe widths of w =  10 /zm, 30 /zm, and 50 /im, respectively. The pulse

w = 10 pm  w = 30 pm w = 50 pm

Figure 19. Dynamics of intensity (top  row), imaginary (m iddle row), and real pan  (boltnm  row) o f ihe poiari'a tion  
during the propagation  of a 151) Is puke  in dependence on stripe width.
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X

Figure 20. C om parison o f the spatial beam  profile at the output facet o f quan tum -dot and quantum -well amplifiers 
during the p ropagation  o f the pulse maximum for stripe widths of w — 10 /xm, 30 (xm, arid 50 f i m (left) and the 
dependence on injection current density (right).

propagating in the quantum -dot laser amplifier of 10-/xm stripe width shows a laterally uni
form profile, whereas the pulse propagating in the quantum-well laser of identical stripe 
width is characterized by a two-lobe structure. The strong carrier localization in the dots in 
combination with the low alpha factor lead to a reduced influence of the lateral degree of 
freedom and consequently to an improved beam quality compared to quantum-well laser of 
identical material and geometry. The nearfields of the quantum-dot amplifiers with stripe 
widths of 30 and 50 fim  show small transverse modulation originating from the mutual inter
action of light diffraction and dynamic intradot relaxation and scattering between the dots 
and their environment. However, the structures are still less pronounced than in the case 
of the quantum-well laser. In a quantum-dot laser, the transverse extension thus is— due to 
the reduced transverse light-matter coupling— not as crucial as in the bulk media, leading 
to less transverse beam distortions during the propagation and amplification of ultrashort 
light pulses. Furthermore, the pulse propagating in the quantum-dot laser amplifier is less 
affected by an increase in injection current density (Fig. 20, right).

5 . C O N C L U S IO N S

In conclusion, we have set up a mesoscopic theory on the basis of a Maxwell-Bloch descrip
tion. The resulting Q D M B E s consist of coupled spatiotemporally resolved wave equations 
and Q D  Bloch equations for the electron and hole levels within each quantum-dot of a 
quantum-dot ensemble inside a quantum-dot laser.

We have presented results o f numerical simulations that aim to mesoscopically represent 
realistic Q D  laser structures. The simulations include, in particular, microscopic Q D  p rop
erties, spatially dependent Q D  parameters and fluctuations, spatially inhomogeneous light 
propagation, and dynamic scattering. The carrier scattering processes are considered on a 
mesoscopic level and include both the intradot relaxation and the interactions between the 
Q D  carriers and the surrounding layers. The specific laser configuration of a model device 
is considered via the macroscopic boundary conditions and constraints. The QDM BEs allow 
calculation and visualization of spatial distributions of the light field intensity and carriers. 
The dynamic calculation of level occupations provides a detailed analysis o f  the various relax
ation processes. Furthermore, computational results on the basis of the QD-Maxwell-Bloch 
equations allow the calculation of measurable quantities such as beam quality, nearfields, and 
optical spectra. Simulations of the ultrashort time dynamics in optically injected quantum-dot 
lasers allow a fundamental analysis and visualization of the light-field and carriers dynamics, 
as well as the calculation of spatiospectral gain and index dynamics affecting amplitude and 
phase of an ultrashort light pulse propagating in the spatially inhomogeneous QD  ensemble.
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Furthermore, the calculation of level occupations provides a detailed analysis of the various 
relaxation processes. For a specific set of parameters (injection current, pulse, and power 
of the injected light pulse) the quantum-dot Maxwell-Bloch theory allows a microscopically 
founded interpretation of spatiospectral saturation and dynamic pulse shaping. The meso
scopic theory and computational modeling discussed in this chapter may thus establish a basis 
for linking the microscopic analysis of Q D  material properties with the quantum electronics 
of modern quantum-dot laser systems.
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1 . IN T R O D U C T IO N

Silicon quantum  dots can be divided into two categories: the relatively large quantum dots 
made on Si substrate, and the nanometer crystallites. Current lithography techniques can be 
used to make quantum dots and wires as small as 20 nm [I, 2]. These quantum dots are
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used for single-electron devices [1, 3, 4] taking advantage of their Coulomb blockade and 
quantum transport effects [5-7]. One or two monolayer Ge depositions on Si substrate can 
produce self-assembled Ge or GeSi alloy quantum dots [8-10]. This type of quantum dots 
has a base size larger than 50 nm [8-10]. The exciton radius in bulk silicon is about 5 nm; 
thus, to change the electron wavefunction and to see the quantum confinement effects, one 
needs to used the smaller, nanometer quantum dots. These are the quantum dots on which 
we will focus in this review.

There are many ways to synthesize nanometer Si crystallites. Because the covalent Si—Si 
bond is much stronger than the bonds in II—VI and III—V materials, a high temperature 
(e.g., 1000°C) is often required to form this bond, and hence to synthesize Si quantum 
dots. As a result, the wet chemistry methods [11-13] used to synthesize various types of 
II—VI and III—V quantum dots are difficult to apply to synthesizing IV-IV Si quantum dots. 
Under high temperature, the Si quantum dot can be synthesized either in gas phase or in an 
embedding matrix. U nder these conditions, the synthesis parameters (temperature, density, 
etc.) cannot be controlled as well as they can in wet chemistry conditions. This has resulted 
in rather large size distributions in most synthesized Si quantum dots; which makes the small 
Si quantum dot study rather difficult and is one of the main reasons why there are still so 
many controversies after so many years of studies.

In the gas phase synthesis. Si sources are provided by organic gas molecules containing 
Si atoms (e.g., disilane) [14] or  a melted and vaporized solid Si source [15, 16]. The aerosol 
reaction can happen in a chamber and is usually followed by reactions with passivating gases 
(e.g., H or O). A nother common way to provide Si source is via laser ablation [17], where 
part of the Si crystal is evaporated under laser pulse. Similarly, sputtering caused by ionic 
bombardment can also be used to generate Si crystallites [18].

For all these techniques (gas phase, laser ablation, and sputtering), the Si crystallites arc 
formed in a open space (air or vacuum) and then simply collected on a substrate. Another 
approach is to ion-implant Si in some substrate (e.g., S i0 2), and then form nanometer Si 
quantum dots through thermal annealing [19]. Recently, it has been demonstrated that this 
ion implantation m ethod can synthesize Si nanocrystals in quartz or in S i0 2 on silicon sub
strate, and the resulting samples have achieved optical amplification— a major step toward 
Si-based laser [20].

One extremely important Si nanosystem is porous Si (p-Si). P-Si has been popular ever 
since Canham [21] reported strong photoluminescence (PL) of it 13 years ago. Bulk Si is an 
indirect material with almost no photoluminescence. This is a problem for building optical 
devices based on Si substrate and for integrating optics with Si-based microelectronics. P-Si 
can be produced by anodic etching (this was known back in 1956 by Uhlir [22]). In this 
etching process [23], Si wafer is used as the anode in an electrolyte solution containing HF. 
When the electric current is larger than a critical current density, p-Si will be formed on the 
surface of the Si wafer. After this etching process, the Si wafer is taken out of the solution 
and dried in the air with special care (to avoid cracking the skeleton of the porous structure). 
Because of the simplicity and low cost of this procedure, p-Si has become very attractive. It 
provides a potential way to integrate the optics on the Si wafer under the same technology 
of Si microelectronics. During the last 10 years, there has been almost one paper per day 
for p-Si. It is fair to say that p-Si has dominated the Si nanom eter crystallite research. In 
some extent, porous Si is a synonym of Si nanometer crystallite.

Current p-Si can be made with porosity up to 95% [24]. The porousness is generated when 
the etching channels penetrate the Si wafer and start to branch [25-27]. After the etching, 
only a skeleton of the Si lemains in the p-Si. The morphology is shown in Fig. 1 [28], where we 
can see the vertically penetrating etching channels and the remaining Si skeletons. However, 
it is not obvious why the remaining Si skeleton in the p-Si should be considered as Si quantum 
dots, and not wires or some more complicated structures. A transmission electron microscope 
(TEM) image of the p-Si is shown in Fig. 2 [29]. From that figure, we can see a nanom eter
sized grainy structure. A schematic showing how the etched p-Si become isolated quantum 
dots is summarized in Fig. 3 [30]. As one can imagine, there could be many sizes and shapes 
of such quantum dots in a p-Si. This makes quantitative comparison between experiment 
and theory for p-Si more difficult than Si nanocrystallites synthesized by the o ther methods
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Figure 1. Scanning electron m icroscope images o f cleaved cross-section o f porous Si. R eprin ted  with permission 
from [28], J. P. G onchond et al.. in “M icroscopy o f Sem iconducting M aterials 1991” (A. G. C’ullis and N. J. Long, 
Eds.), p. 235. Institute of Physics, Bristol. 1991. © 1991, Institute o f Physics.

discussed earlier. One advantage of the p-Si is that all the remaining Si skeletons are still 
aligned roughly in the original crystal orientation as the Si wafer. This can be shown from 
the transmission electron diffraction pattern [29]. This makes it possible to do polarization 
experiments for photoemission [31]. The x-ray experiments [14] and direct T E M  observations 
[32] have confirmed that the internals of the Si quantum dots are still in a bulk diamond 
structure with a lattice constant within 0.25%  of the bulk Si value. This is true both for the 
p-Si and the nanocrystallites synthesized by the methods discussed above.

As complex as the p-Si structures shown in Fig. J and Fig. 2 are, it is no wonder that 
there have been many suggestions for the mechanism of the strong PL from p-Si. These sug
gestions range from crystalline Si to surface state recombinations. Six suggestions are sum 
marized in Fig. 4 [33]; they are: crystalline silicon, hydrogenated amorphous silicon, surface 
hydrides, defect states, molecules, and surface state recombinations. Over the years, how
ever, only the crystalline silicon model has survived. This is mainly because of the following 
observations: first, the PL energy changes with p-Si grainy size, having larger PL energy for 
smaller sizes, showing quantum confinement effects; second, phonon-assisted PL emissions 
with the phonon energies matching the ones in bulk phonon assisted transitions, as shown 
in Fig. 5 [34], and with the spectrum shape agrees with phonon replicas analysis, as shown 
in Fig. 6 [35]; third, good agreements between experimental measurements and theoretical

Figure 2. Transm ission electron  m icroscope images o f porous Si samples; nanom eter scale, colum nar Si structures 
arrow ed. R eprin ted  with perm ission from [29], A. G. ('n ilis and I.. T. C anham . Nature 353. 335 (1991). © 1991. the 
N ature Publishing G roup.



638 Theoretical Investigations of  Silicon Quantum Dots

FRESHLY ETCHED

Hydride passivated 
Si quantum wires

PARTIALLY OXIDIZED 
AT ROOM TEMPERATURE

Wet oxide passivated 
Si quantum wires

HEAVILY OXIDIZED AT 
ELEVATED TEMPERATURES

Dry oxide passivated 
Si quantum dots

COMPLETELY OXIDIZED AT 
ELEVATED TEMPERATURES

Porous glass

Figure 3. Idealized schematic steps in the oxidization process o f highly porous silicon. R eprin ted  with permission 
from |30 |, L. I. t 'an h am . “Optical Properties o f Low Dim ensional Silicon Structures" (I). C. Benshael et aL  Lids.). 
NATO AS1 Series. Vol. 244. p. SI. Kluwer Academ ic Publishers. D ordrecht. IW3. V' l lW ,  Kluwer Academic 
Publishers.

calculations based on Si quantum  dot models. This includes PL energy confinement effects, 
exchange splitting, phonon-assislcd transition, emission lifetimes. Auger process rate, and 
surface passivation effects. All these agreements are difficult to be achieved by the other 
models shown in Fig. 4.

The strong photoluminescence in Si nanocrystallite and p-Si was first explained by the 
breaking of the momentum conservation rule in nanostructures. As a result, the valcnce-band 
maximum (VBM) to conduction-band minimum (CBM) transition becomes pseudodirect, 
and dipoles are allowed. However, the PL lifetime calculated this way is larger than the 
experimentally measured lifetime (Fig. 7 [36]). Later, it was found both experimentally and 
theoretically that the phonon-assisted emission is still stronger than the zero phonon emis
sion (Fig. 5). This means that the pseudodirect transition might not be the main reason why 
the PL intensity is strong in these nanosystems. A more relevant explanation is the exciton 
localization. In the Si crystallite, an excited exciton is physically confined within one quan
tum dot. As long as there is no surface nonradiative center, the exciton will eventually decay 
radiatively with an emission of a PL phonon. This explains why although the PL lifetime in 
Si quantum dot is very long (in microseconds), the PL quantum efficiency is still high (on 
the order of 50% for the best Si nanocrvstals and 1 ()r/  for p-Si). In the bulk Si. the exciton 
will move around and will usually be captured by some nonradiative center, o r  will aggregate 
around some neutral impurity. In the lalcr ease, although the imparity will not annihilate 
the exciton directly by emitting phonons. the Auger process among different exeitons will 
kill the exciton nonradialively. As a results of these processes, the PL quantum efficiency 
in the bulk Si is only 10 Arr [37]. In Si nanocrystals, when the power of the optical pump 
is large enough, there will be more than one exciton in each quantum dot. Then, similar 
Auger processes will be activated to annihilate exeitons nonradiatively. This is the reason of 
the nonlinear optics in Si nanocrvstals. However, in the linear optical regime, there is only 
one exciton in one quantum dot; thus, the Auger process does not play any important roles, 
and the PL quantum efficiency is high.
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Figure 4. The six groups o f m odels proposed to explain the Photolum inescence (PL) from  porous Si. (a) T he 
PL com es from the in terior o f the  crystalline silicon, (b) T he PL com es from hydrogenated am orphous silicon 
surrounding the crystalline silicon, (c) The radiation comes from the silicon hydride bonds, (d) The PL. com es from 
various defects as radiative centers, (e) T he PL com es from Si-based polym ers with a structure  o f siloxene. (f) T he 
PL com es from surface localization states. R eprinted with perm ission from  [331. A. Ci. Cullis et a l . . ./. Appt. Phys. 
<S2. 909 (1997). 0  1997. The A m erican  Institute of Phvsics.
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Figure 5. Photolum incscence (PL ) spectrum  taken at 2 K with resonant excitation. Vertical do lled  lines indicate 
the position o f the no-phonon (N P) onset and its transverse optical (T O ) and transverse acoustic (TA) phonon 
replicas. R eprin ted  with perm ission from |34 |. P. D. J. Calcoit et al., /  L u m in . 57. 257 (1993). © 1993. Elsevier 
Science.
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Photon energy (meV) Photon energy (meV)

Figure 6. (a) T he experim entally observed variation of the Photolum incscence (PL) line shape (a t 2 K) with laser 
energy. For each spectrum , the value o f the laser energy is indicated by a vertical do tted  line, (b) The m odeled 
variation o f the PL line shape with laser energy, assuming that all the PL is from quantum  confined crystalline
Si. R eprinted with perm ission from [35], P. I). J. C’alcott et al.. in "M icrocrystalline and Nanocrystalline Sem icon
ductors '’ (R . W. Collins el al., Eds.). M aterials Research Society, p. 465. Pittsburgh, PA. 1994. © 1994, M aterials 
Research Society.

Although the cxciton localization enhances the radiative decay of the exciton, it also causes 
problems for device applications. In device applications, not only PL is important; what is 
more important is the electroluminescence (EL). To realize EL, the electron and hole need 
to be provided electrically, which requires electron and hole conductivities. This is in direct 
conflict with the electron and hole localizations in these nanosystems. That is why the EL 
efficiency in the p-Si is about 10 times smaller than the PL efficiency. Although the PL 
efficiency in p-Si can be 10%, the best EL efficiency is still less than 1% [38]. Improving the 
EL efficiency is still a major challenge.

In the early days of Si nanocrystal and p-Si studies, different experiments often pro
duced very different results. In addition, the calculated optical band gap was often found 
to be larger than the experimentally measured ones. Recently, it has been realized that

Energy (eV)

Figure 7. Calculated recom bination rate of an excited electron-hole pair in silicon crystalline (crosses) with respect 
to  the photon energy at 300 K. C ontinuous line plots the experim ental dependence o f decay rates on photon energy 
for three 65%  porosity layers that differ by oxidation level. R eprin ted  with perm ission from  j36|, M. Lannoo and 
C. D elorue. in "S tructural and Optical P roperties o f Porous Silicon N anostructures" {G. A m ato  et al.. Eds.), p. !«S7. 
G ordon and Breach. A m sterdam , 1997. >0 1997. G ordon and Breach.
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the surface passivation and oxidization are extremely important. In ambient air, oxygen will 
incorporate into a fresh-etched p-Si surface in a few minutes [39, 40]. Thus, unless extreme 
cares are taken, there will always be oxygen on the surface. In addition, to stablize the sur
face passivation, the p-Si samples are often intentionally oxidized [41]. This oxidization will 
introduce a red-shift in the PL energy, as shown by many recent theoretical calculations. 
This explains why previous calculations assuming a pure H passivation have produced PL 
energies larger than the experimental ones. After being exposed to ambient air for a long 
time, the surface of the p-Si will be oxidized aggressively and might eventually become pure 
SiO: , as illustrated in Fig. 3. As a result, the interior Si nanocrystallite becomes smaller with 
time, causing larger quantum confinements and blue-shifts o f the PL energy, as shown in 
Fig. 8 [30]. Thus, extreme care must be taken when comparing experiments with the theoret
ical calculations, or when comparing different experimental results. The surface passivation 
condition must be taken into account. These surface passivation conditions for porous Si are 
summarized in Table 1 [33].

In summary. Si nanocrystallites and p-Si are complex systems compared with other 
nanocrystallites like CdSe. Experimentally, their sizes and shapes are more difficult to control 
than the II—VI quantum dots, and their surface passivations are critical to the PL process. 
However, the motivations are high because of the potentials to integrate optics with Si-based 
microelectronics and to use the mature Si process technologies in making these devices. The 
recently realized optical amplification resulting from silicon nanocrystals on Si substrate [20] 
and the possibility of using optical communication as the interconnect in a Si chip [42] have 
stimulated new interest in these systems. Unlike the lithography-generated large Si quan
tum dots, where the interest is in using them as single electron devices under the Coulomb 
blockade, the interest in smaller Si nanocrystallites is mainly in its optical properties. This 
is the area we will focus on in this review. Physically, the bulk Si is an indirect band-gap 
material. This is different from the 11—VI direct band-gap material. As a result, phenom 
ena like the phonon-assisted transitions play important roles in Si quantum dots, which are 
not important in direct band-gap 11—VI quantum dots. These new phenom ena provide the 
physical incentives to investigate these systems.

Photon energy (eV)

3.0 2.0 1.6 1.2

Photon wavelength (nm)

F ig u re 8 . Photolum inescence spectra from a porous Si layer (porosity 11%, thickness 11.6 /im ) following storage 
in air for the indicated tim es. R eprinted with perm ission  from  [30], L. T. C anham . in “O ptical Properties o f Low 
D im ensional Silicon S tructures'' (D . C. Benshael et al., E ds.), NATO AS1 Series, Vol. 244. p. 81. KJuwer Academ ic 
Publishers, D ordrech t, 1993. © 1993, Kluwcr A cadem ic Publishers.
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C ondition of Porous Si
C'hcmicsi] Term ination 

of Skeleton Surface

In-sim  in H F during and after form ation SiFl H,
Freshlv etched in interam bient air SiH,
Placed in am bient air for hours SiO xH,
Chemicallv o r  anodicallv oxidized SiO .H ,
Aged in am bient air for m onths to  years S il .H .C .
Rapidly therm ally oxidized at high tem peratu res S iO ,H l

Source: Reprinted with permission from |33|. A. G. Cullis et a l . . ,/. )ppl. Phys. N2. ( l (W7). C 1W7.
The American Institute of Phvsies.

The poor experimental characterization of these systems, on the one hand, makes the 
comparison with theory difficult, but on the o ther hand, it also makes reliable theoretical 
investigations important and necessary. The indirect band gap means the widely used effec
tive mass k.p method for the 11—VI quantum dots can no longer be used effectively for the 
Si quantum dots. The sensitivity to surface passivation makes atomistic calculations nec
essary. Thus, new methodology development is essential. Like bulk Si and Si surfaces. Si 
quantum dot has also served as a test ground for many theoretical methods of computational 
nanoscience.

There are already many excellent review articles for p-Si and Si nanocrystallites 
[33, 43-45], both for experimental measurements and theoretical results. Not to repeat these 
previous reviews, but here we will focus on the theoretical methodologies, their develop
ments, and their results in Si nanosystems. We will use Si nanocrvstallites as a test ground 
for these different theoretical methods.

2 . S IN G L E -P A R T IC L E  M E T H O D O L O G IE S

2.1. A  S im p le  P ro c e d u re  to  C a lc u la te  th e  O p tic a l B and  G ap

In a few eminent papers [46-48] about 20 years ago, Brus proposed a simple effective mass 
model to calculate the ionization and optical energies for nanocrystals. In this model [46], the 
energy of an electron inside a quantum  dot has been divided into the kinetic energy (which 
is described by the effective mass model) and an electrostatic potential energy caused by a 
surface polarization potential P ( r ) .  This / ' ( r )  is the classical electric-static potential caused 
by a point charge at position r  inside a nanocrystal of dielectric constant e. The idea is to 
compare the bulk and the quantum dot for their electrostatic interaction energies between 
the bare electron and the medium. The extra interaction energy for an electron at r  of a 
quantum dot is P(v).  If the nanocrystal is infinitely large, and r is away from the surface. 
P ( r) will be zero. This is similar to the image potential when a point charge is near a 
dielectric medium or near a metal surface, but here, the electron is inside the medium, not 
outside. Thus, this potential P ( r )  is also called the image potential of the charge at r ,  and 
it is induccd by the surface of the nanocrvstal. On quantization, P ( r) is treated as an on 
site potential in the particle’s Schrodingcr's equation. For an effective mass theory, we then 
have

V  + P( r ) <//(r) =  £<//( r )  ( I )

here ni ‘ is the effective mass and L  is the ionization energy (or say the election affinity) 
of the small nanocrvstal. Note that the above equation K only for the electron inside the 
nanocrvstal. Outside the nanocrvstal, the wavefunction is zero for an infinite barrier. In other 
words, we should also add another confinement potential L.om,(r) in Eq. ( I ). where KcnllI =  0 
for r  inside the dot. and I '.lin! =  ^  for r  outside the dot. Equation I is the basic single
particle Schrodinger’s equation, although the effective mass kinetic energy and the infinity 
confinement potential L . <1Ii:( r )  can be replaced by more realistic models.
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When there are two particles. Bins [47] proposed an classical electrostatic interaction 
energy among these two particles as

I '(r,. i%) = ± — ^ ----- ± I\, ( r,. i%) + /J(r ,) + P(r,) (2)e | r , - r : |

here the first two terms are interactions between these two particles, whereas the last two 
terms are self-interactions, as in Eq. (I). The P w is the interaction between one particle's 
surface-induced polarization and the o ther particle's charge. Note that P (r) =  Pst(r, r)/2. 
In Eq. (2), the plus is for two same charged particles (two electron or two hole), the minus 
is for an electron-holc system. Place K ( r , . r : ) in an effective mass quantum confinement 
Hamiltonian; we then have [47]:

1 i 1 e2
^cxci...n =  -  ,—  v2 -  ^ -  n ---------- 7 +  polarization (3)2m , 2m h e|r,. -  r j

Again, nir and are the electron and hole effective mass, respectively. In Eq. (3), 
polarization =  —Ps, ( r (>, r /f) +  P ( r t.) +  (r /;). In solving Eq. (3), the screened electron-holc
interaction term 1-------h polarization can be treated  iterativelv. As a result, the effectiveeir.- r/il h 1
mass solution for Eq. (3), under infinite barrier of spherical radius R can be written down 
analytically as

' 1 1
—  +  — m.. mF* E  +  —* 2R-

.tte2
+  small-term (4)eR

here E,, is the bulk semiconductor band gap. The small-term  is caused by the polarization 
term in Eq. 3. The majority term of —PA/( r (., r /f) cancels that in P (r (.) and P(rh) because 
P(r)  = Px/(r . r ) /2 .  However, because in - P u ( r t., r /z). r .  and r /; are not the same, this can
cellation is not complete. Nevertheless, this remaining small-term is often small and can be 
ignored in practice for spherical quantum dots.

Equation (4) outlines a general strategy to calculate the exciton energy (or, say, the optical 
hand gap) of a nanocrystal: first calculate the single-particle electron and hole eigen energies 
under quantum confinement [Eq. ( I )  without the P ( r) term], then calculate the electron 
and hole screened interaction inside the nanocrystal perturbatively. This is, however, only 
an ansatz derived from classical electrostatic considerations, not from quantum mechani
cal formalism, which treats the whole nanocrystal as a many-body quantum system. This 
approach especially ignores the dynamic screening of the system and the local held effects 
of the dielectric function. Thus, this approach is probably good only for quantum dots larger 
than a few atomic bond length. When Eq. (1) is solved without the P{r)  term, the definition 
of the single-particle eigen energy E  needs to be treated with care. Here, we will assume 
that the single-particle Hamiltonian H  [excluding the P ( r)  term] is local in real space (i.e., 
the operation of H is defined point by point), and the operation of H at a given point r 
depends only on the local atomic structure and charge density around r. Thus, if the interior 
of a quantum dot has a bulk crystal structure, then the H  inside the dot will be the same as 
the H  inside a bulk. H  will only be changed near the dot surface with a confinement poten
tial. This gives an unique definition of the single-particle Hamiltonian and its eigen energy. 
As we will show later, the single-particle energy defined this way will be different from the 
quasi-particle energy defined in a usual GW formalism. However, the single-particle energy 
defined here is a natural extension of the traditional quantum  confinement treatment in 
lower-dimension systems like superlattices and quantum  wells. In the following text, we will 
discuss a few approaches to calculate the single-particle wavefunctions and eigen energies, 
using the single-particle Hamiltonians defined here.

2 .2 . E ffe c tiv e  M ass  and K .P  M e th o d s

Effective mass and k.p methods [49-52] have been used widely to study the quantum con
finement effects in superlattices and quantum wells. They have also been used to study the 
energy levels of quantum dots, especially for direct materials [53]. For a single-band effective
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mass theory, the electron wavefunction is described by its smooth envelope function <£(r).  
The equation for (/>(r) under confinement potential Kconf is

nr
4>( r)  =  E<t>( r)  (5)

here, m* is the effective mass of the electron or hole. For a simple model, Vcon( is zero 
for r  inside the nanocrystal, and infinite for r  outside. U nder this assumption, Eq. (5) can be 
solved analytically for simple geometric systems. For a spherical quantum dot with radius /?, 
E  =  ■ However, it was found that such calculated band gaps are much larger than the
experimentally measured values [54, 55] for Si quantum dots. Effective mass theory often 
overestimates the quantum confinement effect.

Effective mass theory can be considered as a lowest-order Taylor expansion of the bulk 
band structure around a given high-symmetry k-point. If there are degenerated states at this 
k-point (e.g., at the F-point top of valence bands) single-band effective mass Hamiltonian 
can no longer describe the band structure properly. In this case, the wavefunction needs to 
be described as a sum of these few bands: ^„(r)<iMr)' where f/„(r) is the Bloch state is
of band n at the symmetry k-point, and (/•>„(r) is the envelope function of this Bloch state. 
Then the electron wavefunction is represented by the envelope function set [<£„(r)|, and the 
k.p Hamiltonian is used to describe the movements of [<■/>,;(r)] as

H kp\ M  X M ]l<M O ] +  K , „ , I (« • )[<£ , , ( r ) ]  =  E[<i>„(r)J ( 6 )

here H k p[M  x M] is a M  x M  matrix with matrix elements consisting of V, V? and k.p 
parameters, and M is the number of bands included in the k.p model. The construction of 
H k p[M  x M] is purely based on the symmetry of the bands at the high-symmetry k-point. 
For a given band symmetry, the lowest-order band structure Taylor expansion with k has a 
fixed form. After changing k 2 to V2, and k to V, we get the Hamiltonian matrix H k p[M  x M] 
in the above equation. A detailed description of the k.p Hamiltonian can be found in 
Refs. [50, 51, 56]. Note that the single-band effective mass Eq. (5) is just a special case of 
the k.p model with M  — 1. For most semiconductors, to describe the top of valence band 
at the F-point, a six-band (including the spin) k.p model is often used. If the band gap is 
small, the coupling between the conduction band and the valence band is important. Then 
an eight-band k.p model with six bands at the top of valence band and two bands at the 
bottom of conduction band is often used.

Six-band and eight-band k.p models are used very successfully in the calculations of semi
conductor superlattices and quantum wells [57]. As a natural extension, they have also been 
widely used to study quantum dots. Under spherical approximation of the k.p model, the six- 
band and eight-band k.p wavefunction [Eq. (6)] can be solved analytically [58, 59]. This has 
contributed to much of our understanding of electronic structures of many quantum dots, 
especially for direct-material systems. However, even for direct materials like CdSe and InP, 
problems still exist for the use of k.p Hamiltonian. Unlike many superlatticcs and quantum 
well systems, in which the size can be rather large, the colloidal quantum dots are often only 
a few nanom eters in size. In reciprocal space, this might correspond to a k point 1/3 toward 
the Briilouin zone boundary. As a result, the lowest-order Taylor expansion might no longer 
be adequate. Indeed, it is found that the k.p result and a more accurate calculation might 
differ by 50%  in their confinement energy [60], and sometimes the energy order of differ
ent states might be wrong in the k.p calculations [61]. In addition, the boundary condition 
is often problematic for k.p Hamiltonian, especially for the eight-band k.p model. Without 
care, spurious states might appear in k.p calculations [62].

Silicon is an indirect material. Thus, the application of the k.p model is often complicated. 
As mentioned above, in the early days, single-band effective mass theory was used for Si 
quantum dot band structure calculations [54]. However, this is apparently inadequate for the 
valence bands. Recently, Niquet et al. [63] have tested the six-band k.p model with the more 
accurate tight-binding calculation for Si quantum dots. It was found that the k.p method is 
not accurate even for quantum dot diameters as large as 8 nm. For the conduction band, the 
intermixing of the six bands near X  point-degenerated valleys makes the lowest-conduction
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band state <\ or /, symmetries, depending sensitively on the quantum dot sizes [64]. To 
adequately describe these state symmetries, a intermixing between these degenerated valleys 
has to be considered. This is beyond the commonly used k.p models.

2.3. T ru n c a te d  C rys ta l M e th o d s

As discussed above, one of the problems of effective mass theory is that the involved effective 
k points, which are inversely proportional to the size of the nanosystem, are far away from 
the F point. As a result, the band structure is no longer under the parabolic approximation, 
as assumed in the effective mass theory. To correct this problem, one approach is to directly 
use the bulk-band structure. This has been called the truncated crystal method (TCM). In 
this method, the energy E  of the one-electron state in a nanosystem is taken directly to be 
the bulk-band structure energy eJ'u,k(A') ( n is a bulk-band index) at some appropriate k-point 
k. Thus, the nanostructure states are mapped into the bulk-band structure, and the task is 
to find the relationship between the nanostructure states and the k-point.

For thin films, the truncated crystal method often works well. Figure 9 [65] shows one 
mapping scheme between the directly calculated thin-film eigen energies and their corre
sponding bulk energies for Si (001) thin-film [65]. These k points along the (001) direction 
are taken as 7r j / L ,  with L  being the thin-film length and j  being the eigen state index
0, 1 , 2 ___The error of this mapping is less than 50 meV. The bulk-band structure and the
thin-film eigen states are calculated using empirical pseudopotential m ethod (EPM ), and the 
surfaces of the Si thin film are not passivated [65].

For an exact one dimensional system, with a Hamiltonian like [ — +  v (x )] inside
[-L/2,L/2] [and v(x +  a )  =  u ( a ') ,  v ( x )  =  - u ( j c ) ] ,  and infinite potential outside this region, it 
has been proved by Ren [66, 67] that the thin-film eigen energy is exactly E n j =  e ^ ( i r j / L ) .  
This agrees well with the above Si thin-film example, although the Si thin film is not exactly 
a mathematical one-dimensional case, and the boundary does not abruptly go to infinity. 
A nother interesting finding from both the Si thin-film calculation and R en’s derivation for 
the one-dimensional system is that there could be a “zero” confinement state, with its eigen 
energy independent of the film thickness. The wavefunction of this “zero” confinement 
state is uniformly distributed inside the thin film. This state is a result o f a bulk-state nodal 
plane parallel to the surface. Consequently, the existence of this state depends sensitively 
on the boundary condition. For example, it is found that when the surface of the thin film

(a) Si (001), A/=12 (b) Si (001), A/=11

Figure 9. M apping of the directly calculated film energy levels (solid dots) at the tw o-dim ensional Brillouin zone 
cen ter F on to  the truncated  crystal energy level for (a) a 12-laver Si (001) film and (b) an 11-layer Si(001) film. 
T he vertical do tted  lines indicate the quantized  k \  values. Thus, the intersections betw een the bulk dispersion and 
the vertical d o tted  lines give the truncated  crystal energy levels. R eprinted with perm ission from  [65], S. B. Zhang 
e t al., Phys. Rev. B  48, 11204 (1993). © 1993, T he A m erican Physical Society.
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is passivated by hydrogen, the energy of this “zero" confinement state will change with thin 
film thickness.

Rama Krishna and Friesner (RKF) [68] have applied the truncated crystal idea to a spher
ical quantum dot with a radius R.  There the k is taken as rrj /R along (111) direction. Both 
conduction-band states and valence-band states are calculated this way. When compared 
with the results of experiments, these results are found to be better than the effective mass 
results. However, unlike in the thin-film cases, it was found later [69] that the eigen ener
gies calculated from the RKF method and the direct calculation method do not agree well. 
The RKF method underestimated the quantum confinement energy, as shown in Fig. 10 
[55, 68, 69]. There are two reasons for this discrepancy: first. There is no prior reason to 
argue that why the k point should be in (111) direction, but not in other directions. For a 
nonisotropic band structure like the Si top of the valence band, this ambiguity of direction 
can cause problems. Second, The truncated crystal approach does not allow band mixing. 
This is okay for one-dimensional confinement systems like the thin film, where different 
bands do not mix together. However, as can be seen from spherical quantum dot k.p calcu
lations for the valence-band states, different bands will be mixed. This is also true in other 
shapes (e.g., the cubic shape) of quantum dot systems [69]. Actually, there is no known quan
tum dot shape with which different valence-band states will not mix. In contrary, the RKF 
formula always takes the highest bulk valence-band energy without mixing as the quantum 
dot eigen-state energy. As a result, the RKF valence-state energies are always higher than 
the directly calculated values, and the confinement energy is underestimated.

Attempts have been made to improve the truncated crystal method for nanosize quan
tum dots. For example, instead of one k point, multiple k points, or even k-point inte
grals can be used. To get the appropriate band mixing is still a challenge. O ne idea is to 
use the k.p method to figure out the band mixing and k-point coefficients [70], and then 
use the bulk-band structure to correct the k.p band dispersion error. Before such methods 
become reliable, however we have to rely on direct atomistic calculations.

2 .4 . T ig h t-B in d in g  M eth o d s

O ne problem of the continuum effective mass and k.p m ethod is that it does not have the 
information of the intrinsic length scale of the atomic structure. As a result, it does not 
have important information like the Brillouin zone, and the Hamiltonian has the same form: 
one is either calculating a 100-nm system or a 2-nni system. To overcome this problem, 
atomistic calculation should be used. The tight-binding (TB) method is the simplest method 
to include the atomic structure in the calculation. In an empirical TB method, the atomic 
TB basis functions are not explicitly assumed. What do enter into the calculations are the 
parameters of onsite energies and overlap energies between neighboring atom basis sets.

Hffecti\e diameter d (A )

Figure 10. Band gap versus the effective si/e  <1 for three prototype quantum  dot shapes. 4>. sphere: rectangular
boxes: ■ . cubic boxes. Also shown are effective mass (EM A ) results |55] and truncated crystal results of Kama 
Krishna and Frisna [KSJ. R eprin ted  with permission from (M l.  L. W. W ang and A. Z u n g e r. ./. /V/y.v. C h c m .  9,S. 215.S 
( IW 4). IW.J. The A m erican Chemical Societv.
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Ren and D o w  (71) have first used the em pirical  T B  m eth o d  to  ca lcu late  Si nanocrvstals 

con ta in in g  3019 Si atom s. T h e  q uan tum  dot su rfac e  is passivated w ith  hydrogen atom s. 

A  sfr'p* T B  basis and  n earest-neighb or  interaction  w e r e  used in their  calcu lation. T h is  leads 

to a 16397 x  16397 matrix for  its H a m ilton ian . T h e  T(f sym m etry  o f  the sp herica l  quan tum  dot 

is used to partially  d iag on alize  the H am ilton ian  into sub blocks a cc o r d in g  to their  irreducible  

representation s. T h is  reduces the d im en sion  o f  the H a m ilton ian  to — 1000. T h e  reduced  

H am ilton ian  is then d iag on alized  directly. D en sity  o f  s tates o f  the n an ocrysta ls  are ca lcu lated  

and their e v o lu tio n  is traced from  five-atom  small clusters to 3 0 19 -S i  a to m  quan tum  dot. It 

was foun d that fo r  the 3019-Si quan tum  dot, the den sity  o f  the state is very  close to that o f  

a bulk  state.

T h e  sim ilar  T B  m eth o d  has b een  used by Hill a n d  W h a le y  [72—74] to ca lcu late  even larger 

q u an tu m  dots. F o r  large systems, instead o f  d iag o n aliz in g  the H a m ilto n ia n  directly, they 

have used  a time evolution  m ethod. In this m eth o d , an initial ran dom  w a vefu n ctio n  t//(0) is 

e volved  with time base d  on the t im e-d ep en d en t  S ch ro d in g er 's  eq uation:

iP(t) =  e  ' " > ( 0 )  (7)

here H  is the T B  H a m ilton ian . N um erica lly ,  E q. (7)  is ev a lu a ted  by sep a ra tin g  the tim e / 

into N steps d t:  e~,in = [e~,Hdl]s , and  exp an d in g  the e~,Htlt using T r o te r  exp an sion  [75] and 

split o p e r a t o r  fo rm  [76]. A f t e r  *//(/) is o b ta in ed , the s ingle-particle  density  o f  state //(£) can 

be d er ived  from  the  F ou rier  transform  o f  t/>(/). M o r e  specifically, w e have

« ( £ )  =  - R e e**:im ) ) M t ) ) d t  (8)
7r Jo

For a finite system, and for  a lon g tim e run, o n e  can  find p e ak s  in n ( E )  indicating individual 

states. I f  the e ig en -state  en ergy  E j is know n  for  a g iven  state, then its w a vefu n ctio n  can be 

p ro d u c e d  from  the F ourier  tran sform  o f  i j /(t)

<A(r, E j )  =  i -  P  tfr(r, t ) e i,:' ' d t  (9)
ITT y_..x

T h is  t im e -d e p e n d e n t  a p p ro ach  can also be used to c a lc u la te  two particle  states o f  an cxciton 

[77] and  f o r  optical  abso rp tions [78]. T h e r e ,  the H am ilton ian  is the tw o-p artic le  H am ilton ian  
with a C o u lo m b  interaction  b etw e en  the e lectro n  and the hole, and the  w avefu n ction  is a 

tw o -p art ic le  w a vefu n ctio n  with on e  basis index for  the e lec tro n  and o n e  index for  the hole. 

Q u a n tu m  dots  with 147 a tom s have b een  c a lc u late d  in this w a y  [77, 78).

B o th  R en  and D o w  [71] a n d  Hill and W h a le y ’s [74] w o r k  have  used  the  T B  p a ra m eters  

fro m  R e f.  [79]. U s in g  this T B  m odel,  Hill and  W h a le y  [74] have c a lc u la te d  the Si optical  g ap  

as a fun ctio n  o f  the q u an tu m  dot size; the results s e e m e d  a g ree  well with the exp erim ent.  

H o w e v e r ,  it was later  pointed out that this a g r e e m e n t  with the e x p e r im e n t  is fortu itous [80]. 
T h e  p r o b le m  is that the sp ' s *  basis with n ea rest-n e ig h b o r  interaction  is n ot flexible en o u g h  

to d escr ib e  accu ra te ly  the Si bulk c o n d u ctio n  band. E x tre m e  care  must b e  taken w h en  using 

these em p irica l  T B  m ethods. D e le r u e ,  A l la n ,  and L a n n o o  ( D A L )  [81] have  used a T B  m odel 

with th ird -n earest-n e igh b o r  interactions and an o r th o g o n a l  basis set. T h is  m odel describes  

the  co n d u ctio n  b an d  well, and  the results a g ree  with m o re  reliable  p s e u d o p o te n tia l  m ethods. 

A s  in the w o r k  o f  R e n , D A L  [81] also used sym m etry  to r ed u ce  the d im en sion  o f  the T B  

H a m ilto n ia n  m atrix  and d iag on alize  the red u ced  m atrix  directly. T h e y  have ca lcu late d  Si 

n an ocrysta llites  and d ifferen t shapes o f  wires. F igu re  I I [81) shows these results.

M a n y  w o rk s  have  b een  published by the D A L  g ro u p  using the th ird -n ea rest-n e igh b or  T B  

m o d el,  w h ich  is ta k e n  from R ef. [82]. H o w eve r,  recently , N iq u e t  and D A L  [63] po inted  out 

that e v e n  this T B  H am ilto n ian  has its prob lem s. Its v a le n ce -b a n d  e f fe c t iv e  mass p a r a m e 

ters y 2 =  1.233 an d  m ]  =  0.567 are  far from  the exp erim e n ta l ly  m e a s u r e d  values o f  y 2 =

0.320, m ]  =  0.916. A  m o re  r igorous fitting p r o c e d u r e  is p r o p o se d  to fit the  T B  ban d struc

ture to G W -c a lc u la te d  band structures th ro u g h o u t  the w h o le  Brillouin zo n e .  In total, there 

a re  21 p a r a m e te rs  fo r  this n ew  th ird -n earest-n eigh b or  T B  m odel.

In the T B  calcu latio n s,  the surface o f  a Si n anocrystal is o ften  passivated  by hydrogen  
ato m s. T h e  T B  n ea rest-n e ig h b o r  matrix e le m e n ts  K,_sj b e tw e e n  H and Si can  be scaled  from
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Figure 11. C a l c u l a t e d  o p t i c a l  b a n d - g a p  e n e r g i e s  f o r  v a r i o u s  s i l i c o n  c r y s t a l l i t e s  (  +  ) o r  w i r e s  ( 1 0 0 ,  x ;  1 1 1 . * ;  I l l ,  Q )  

w i t h  r e s p e c t  t o  t h e i r  d i a m e t e r  cl. T h e  b l a c k  d o t s  a n d  s q u a r e s  a r e  t h e  e x p e r i m e n t a l  r e s u l t  o f  R e f .  [ 3 7 ] .  T h e  d a s h e d  

l i n e  i s  t h e  b a n d - g a p  e n e r g y  f o r  t h e  c r y s t a l l i t e s  i n c l u d i n g  t h e  C o u l o m b  i n t e r a c t i o n  b e t w e e n  t h e  e l e c t r o n  a n d  t h e  

h o l e .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ S I  j .  C .  D e l e r u e  e l  a l . .  Phys. Rev. B  4 8 ,  1 1 0 2 4  ( 1 9 9 3 ) .  €>  1 9 9 3 ,  T h e  A m e r i c a n  

P h y s i c a l  S o c i e t y .

the S i-S i  matrix e le m e n ts  KSi_Si acco rd in g  t o - H a r r is o n ’s rule [83]: KM Si =  ^si_si(^si-siAAi-si)2; 
here, <7sj_si and d H Sj are the b ond distances  [71]. A n o t h e r  w ay to treat the su rface  passivation 

is simply to re m o v e  the d a nglin g  b ond states from  the ca lcu late d  results. T h e s e  danglin g 
b o n d  states can a lso be d ep le ted  from  the T B  H a m ilto n ia n  b e fo r e  the matrix is d iag on alized . 

T h is  is d o n e  by rem o v in g  the hybrid s p y d a n g lin g  b o n d  orbital  from  the T B  H am ilto n ian  basis 

set (e.g., r e m o v e  the H am ilton ian  matrix  c o lu m n s  and rows e x p a n d e d  by these s p y basis) 
[73]. T h is  is an u n iq u e artificial passivation o n ly  a p p lic ab le  to  T B  calcu latio n s.  T h e  ability 

to describ e  the surface  atom istically  is o n e  b ig  a d v a n ta g e  o f  the T B  m o d el  c o m p a r e d  with 

the co n t in u u m  effect ive  mass k .p  m o d el.  U s in g  T B  H a m ilto n ia n ,  nan ocrysta ls  with differen t 

surface  passivations have b e e n  studied  by Hill an d  W h a le y  [73].

2.5. Empirical Pseudopotential Method
O n e  p ro b le m  o f  the above  T B  m eth o d  is its lack  o f  explicit basis functions. T h e  s, p .  and 

s* orbital bases  are  n eve r  explicitly  assum ed. T h is  c au se s  p ro b lem s to ca lcu late  physical 

p rop erties  like d ip o le  transitions and C o u lo m b  and  e x ch a n g e  interactions. A l th o u g h  explicit 

basis fun ctio ns can be a d de d  a fter  the T B  e ig en  states have  b een  ca lc u la te d ,  these basis 

fun ctions a re  not an intrinsic part  o f  the T B  H a m ilto n ia n  and its fitting process;  thus, their 

com patib il ity  is a prob lem . O n e  w a y  to o v e r c o m e  this p r o b le m  is to use E P M .  In E P M ,  the 

w avefu n ctio n  is explicitly  exp ressed  by p la n e w a v e  basis, and  its fo rm alism  is the  sam e as the 

m o d ern  a b  ini t io  ca lculations. T h is  m a k e s  it easy  to be im p r o v e d  by the a b  ini t io  calculations, 

as in the sem iem pirica l  p s eu d o p o ten tia l  a p p r o a c h  and the c h arg e -p a tc h in g  m e th o d ,  which 
will be d iscussed later.

T h e  E P M  m e th o d  was first used in 1960s by C o h e n  et al. [84, 85] to fit the sem ic o n d u cto r  

b an d  structures. E ven  today, for  m a n y  s e m ic o n d u c to r  system s, it still g ives the best available  

b an d  structures. In the E P M  m e th o d ,  the w a v e fu n c tio n  is e x p an d e d  by a p la n e w a v e  basis set

- M r )  =  E C ( q V ' ,T  ( i o )
q

Usually , the p la n e w av e  recip ro cal  lattice v e c to r  q is ch o se n  inside a sp h e r e  o f  c u to f f  en e rg y  

E cur T h e  E P M  S c h ro d in g e r ’s e q u a t io n  is

r) = i v : 4- V(r) <i,(r) =  E.^f j ir )  ( 1 1 )
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|/(r) =  |r -  R aU,m|) (12)
ati tm

here, R alom a rc  the ato m ic  posit ion s and v.aom( r ) s  are the spherical E P M  atom ic  potentials.  

T o  variation ally  ch an ge  C , ( q )  o f  E q. (10 ) w h e n  solving the S ch ro d in g er 's  equation  Hip,  — 
E'll/j, it is eq u iva len t to d iag o n a lize  the m atrix  r \ H \ e ' ilyr) =  (q, |/ / |q2). This  requires  

the evalution  o f  l7 (q, — q 2), w h ich  is the F o u r ie r  tran sform ation  o f  V  ( r )  in E q. (12).  N ote  

that K ( q )  — £ atom u (lom(|q|)<?/qR;tI,tm. In the orig in al  E P M  p ro ce d u r e  for  b u lk  crystals, typically 

only three rec ip ro ca l  v e c t o r  v a lu es  o f  u.llom(|q|) are  assum ed to be n on ze ro , and all the 

higher |q| va lu es  o f  u.ltom(|q|) are  a ssu m ed  to  be zero . T h e s e  few  n o n ze ro  f aloni(|q|) va lues  

are used as fitting p a ra m eters  to  fit the exp erim e n ta l  b u lk  b an d  structure at various special 

k points.

T h is  tu rn e d  out to be an e x tr e m e ly  su cce ssfu l  pro ced u re . Surprisely, m ost o f  the I I —V I,  
III—V, and V I - V I  se m ic o n d u c to r  b an d  structures  can  be fitted well using this simple p r o c e 

dure. T h is  m e a n s  that the single particle  d escrip tion  is in d e ed  a g o o d  picture for  s e m ic o n 

d u ctor  b an d  structure and  a local p o ten tia l  V (r) can be used as a m ean  field to represent 

the e ffe cts  o f  the c o m p le x  m a n y -b o d y  e lc c tro n -e le c tr o n  interaction s in a crystal.

T o  extend  this traditional E P M  a p p ro a c h  to  n an ostructures, w e n e e d  tw o im provem en ts.

T h e  first im p ro v e m e n t is to  have  a co n t in u o u s  v.aom( q )  curve. For  a n an ostructure, the 

sup ercell  is ve ry  large, and  h e n c e  the rec ip ro ca l  lattice v e cto r  q is m u ch  m ore d en se  than 

in a crystal. A s  a result,  w e  n e e d  a co n t in u o u s  v.llom( q )  curve, not just a few  discrete points. 

We also n e e d  to fit the p s e u d o p o te n tia l  fo r  su rface  passivating atom s like H. W e will fit a 

co n t in u o u s  v.avm( q )  u n de r  a certain  fo rm  to  a series o f  exp erim e n ta l  data  and to deta iled  

first-principles calcu latio ns on  re leva n t p ro to ty p e  systems. T h is  will include b ulk-ban d struc

tures, c le an  su rface  w o rk  fu n ctio n , and the d en sity  o f  states o f  ch em iso rb e d  surfaces. U n lik e  

the case in T B  ap p ro a c h es ,  w e  will b e  a b le  to c o m p a re  the en su in g  potentia l V(r) with 

scre en ed  first-principles local den sity  a p p ro x im at io n  ( L D A )  results. T h is  gives  us the ability 

to im p rove  V (r) in the future.

T h e  se c o n d  im p ro ve m en t is to  solve E q .  ( 1 1 ) .  E ven  for  a relatively  small kinetic en ergy  

c u t o f f  £ ail for  the p la n e w av c  basis set, th ere  co u ld  be rough ly  50 p la n e w av es  for each atom . 

T h a t  translates into ~  5 0 ,0 0 0  basis fo r  a ~  1000-atom system. V ery  o ften , w e  want to solve 

system s as large as 10,000 atom s. A s  a result,  the direct d iag on aliza tion  m ethod  based  on 

<q,|//|q2) can  no lon ger  b e  used. E v e n  the co n v e n tio n a l  c o n ju g ate  grad ie n t m eth o d  [86] that 
is o fte n  used in ah  ini t io  ca lc u lat io n s  c a n n o t  b e  used  b e c a u se  it scales as 0 ( N y ). H o w e v e r,  w e  

m ay not n e e d  all the e ig en sta tes .  For  e x a m p le ,  to study, the  threshold  optical prop erties  o f  

s e m ic o n d u c to r  quan tum  structures, w h at d o  w e  n eed  are  the  e ig en v a lu e s  and e ig en fu n ction s  

o f  the  b an d  e d g e  states, the total and  local  e lec tro n ic  density  o f  states, and the optical 
a b so rp tio n  sp ectra .  W ith th e se  th ree  p r o p e r t ie s  ca lcu late d , m ost o f  the optical p rop erties  o f  

the system  can  be d ete rm in ed .  T h e  “ fo ld e d  sp ec tru m  m e t h o d ” ( F S M )  has b een  d e v e lo p e d  

by W an g a n d  Z i in g e r  [87] to  c a lcu la te  the b a n d  e d g e  states, and the “ ge n e ra l ized  m om en ts  

m e t h o d "  ( G M M )  has b e e n  d e v e lo p e d  by W a n g  [88] to ca lcu late  the density  o f  states and 

o p tica l  a b so rp tio n  spectra. W e  will discuss th e  F S M  in this section  and the G M M  in a later 

section.

2 .5 .1 . C onstructing  the E P M  H am ilton ian
T h e  co n t in u o u s  Si local p s e u d o p o te n t ia l  in rec ip ro ca l  sp ace  is p resen ted  in the fo l lo w in g  

fo r m  [65]

uSi(<7) =  Cl\ ( V  -  a 2) / { a ^ ir -  l )  (13 )

T h e  c o eff ic ien ts  w ere  fitted to  the b u lk -b an d  structure  at h igh-sym m etry  points [89-93], the 

e f fe c t iv e  m asses  [94, 95], and  the su rface  w o r k  fun ction  [96]. T h e  b u lk -b an d  structure w as 

ca lc u la te d  in a p lane w a v e  basis with an e n e r g y  c u t o f f  o f  4.5 R y  (the sa m e  c u to f f  is used in 

su b s e q u e n t  calcu latio ns)  and  a lattice  co n stan t  o f  5 .43 A .  T h e  fit gave a { =  0.2685, a 2 —- 2.19,
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Table 2. C o m p a r i s o n  o f  i h e  e m p i r i c a l  p s e u d o  p o t e n t i a l  m e t h o d  ( F . P M )  b u l k  S i  b a n d  s t r u c t u r e s  

a n d  e f f e c t i v e  m a s s e s ,  a n d  e x p e r i m e n t a l  r e s u l t s .

P r o p e r t y E P M E x p e r i m e n t

IV,. I) (I

r i . - 1 2 . 5 7 —  12 . 5 ( 6 ) "

r,5. 3 . 2 4 3 . 3 5 ( 1 ) '

r, 4 . 1 2 4 . 1 5 ( 5  ) h

- 1 0 . 1 9 —9 . 3 ( 4  )c
l -U - 7 . 2 5 —6 . » S ( 2 ) L'

- 1 . 2 S — 1 . 2 ( 2 ) h

2 . I S 2 . 0 4 ( 6 ) "

L , t 4 . 0 2 3 . 9 (  I f

•vL - 3 . 0 1

■V,. 1 . 3 2 1 - 1 3 ( 7 ) '
V“ mill - 4 . 4 7 - 4 . 4 c S h

1 . 1 0 7 1 . 1 2 4 ‘ *

w 4 . 9 6 4 . 9 h

m  j ( e ) 0 . 9 2 8 0 . 9 1 6 '

m ,  ( c ) 0 .  | 9 9 0 . 1 9 ’

m \~ '\  (//) 0 . 2 7 2 0 . 3 4 l'

0 . 1  f iN 0 . 1 5 -

m \~ ',  (//) 0 . 6 6 9 0 . 6 9 ^

m \ "/(//) 0.09N 0.1 \*

Note: The num bers in the bracket of the experim ental data indicate the estim ate J  e rro r in the last digit. 
Both ///,’ y ( h )  and  niy , ( h)  stand for the non-spin-coupled effective hole mass |defined as { h k ) : / 2 A /. | in the 
I' V and I' L  directions, w here i denotes the hand degeneracy. T he variable is ihe work function. Lnergies 
are in electron volts, mul effective masses are in the unit ol electron mass.

Source: R eprin ted  with perm ission from [l)7j. 1 . W. Wang et al. "Sem iconductor N anocluslers,” Studies in 
Surface Science and  Catalysis. Vol. 103. p .IM . L lse\icr. l‘J% . hlsevier Scicnee.

11 from Ref. |N*)|. h from Ref. [9f)|. L from Ref. [411. ''f ro m  Ref. | * > 21. ‘ from Ret. 103). ’ from  Ref. ((M|. 
 ̂from Ref. jl)5|. h from Ref. [%].

a 3 =  2.06, and a A =  0.487 in ato m ic  units (H a r tr e c  for energy, inverse B o h r  fo r  q ) .  T able  2 

[97] co m p a re s  the fitted quan tit ies  with the ex p erim en ta lly  m easured o n e s  [ 8 9 - % ] .  W e can 

see  that the fitted-band e n erg ies  are within 0.1 e V  o f  the exp erim ental  data, w hich is similar 

to the exp erim en ta l  uncertainty.

Figure  12 [97] co m p a re s  the curren t a tom ic  Si p seudopo ten tia l  usj( q )  w ith the Fourier  

tran sform  o f  the (se lf  consistently)  scre en ed  local L D A  pseudopoten tia l  [98]. T h e  c loseness
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Figure 12. C o m p a r i s o n  b e t w e e n  t h e  S i  e m p i r i c a l  p s e u d o p o t c n l i a l  a n d  i h e  f i r s t  p r i n c i p l e  L D A  l o c a l  p s e u -

d o p o t e n t i ; i l  f o r  b u l k  S i .  T h e  f i r s t  p r i n c i p l e  p o t e n t i a l  I  { ( V )  i s  d e c o m p o s e d  i n t o  a t o m i c  p o t e n t i a l s  a c c o r d i n g  t o  

c \ p ( / R  =  l ’ ( O ' ) .  w h e r e  ( i  i s  t h e  b u l k  r e c i p r o c a l  l a t t i c e  v e c t o r  a n d  R. i s  i h e  S i  a t o m i c  p o s i t i o n .

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  | 9 7 | .  L  V V . W a n g  a n d  A .  Z u n u e r .  i n  " S e m i c o n d u c t o r  N a n o c l u s i c r s "  ( P .  V .  K a m a t  

a n d  D. M e i s e l ,  H d s . ) .  S t u d i e s  i n  S u r f a c e  S c i e n c e  a n d  C a t a l y s i s .  V o l .  | ( ) 3 .  p .  1 6 1 .  F l s e v i e r  S c i e n c e .  A m s t e r d a m .  1 9 9 6 .  

0  1 9 % ,  H l s e v i e r  S c i e n c e .
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o f  the E P M  potential and the L D A  potentia l en sures  that the E:PM potentia l is realistic. 
H o w ever,  the small d if feren ce  b etw e en  the em pirical  pseu d op o ten tia l  and the L D A  potential 

reflects the fact that the EiPM potential corrects  the L D A  ban d -g a p  erro r  [99, 1001.

B efore  the fitting o f  the hydrogen  potentia l,  w e  must find w ay  to d e te rm in e  the a tom ic  

positions and ge o m etries  o f  the surface hydrogen  atom s. In the w o rk  o f  W ang and Z u n g e r  
[97]. the quan tum  dot surface  atom ic  configuration  is m o d ele d  fo l lo w in g  H -cov ered  Si thin- 

film (100). ( 1 10), ( 1 1 1 )  surfaces. T h e s e  surface reconstruction s are well s tudied  both e x p e r 

imentally  and theoretically  [10 1-10 4 ].  O n e  exam p le  is given in Fig. 13 [104], show in g the 

(001) surface with on e  surface Si atom b ein g  passivated  by two hydrogen  atom s. It turns out 

that all the surface a tom s o f  a con v ex  q uan tum  dot can be co n s id e re d  as in on e o f  those 

three flat surfaces.
A f t e r  the surface a tom ic  positions are o b ta in ed, the surface hydrogen  pseu d o p o ten tia l  is 

fitted to the surface local density  o f  states ( L D O S )  o f  the ab o v e  three H -cov ere d  flat Si 

surfaces [(100), (110 ),  ( 1 1 1 ) ] .  T h e  im portant point here is to get  the correct  en erg ies  o f  
the surface S i - H  bonds. T h e r e  are ultraviolet p h otoe m iss ion  sp ec tro sco p y  [105, 106] ( U P S )  

and angle-resolved e lectron -energy-loss  sp ectro sco py  [107] ( A R - E E L S )  m easu rem en ts  for 

the L D O S  o f  these H-passivated surfaces. T h e s e  exp erim e n ts  indicate that the bon din g S i -H  

states are located  a roun d E v - 5  eV, w h e re  E v is the v a lc n c e -b an d  m axim um . For the en ergy  
positions o f  the con d u ction  band S i - H  a n tib on din g states, a b  ini t io  ca lcu latio n s results can  be 

used. T h e s e  calculations indicate that the un occu p ied -sta te  an tibon din g su rface  state should  

be aroun d at > E c +  1 eV. F igure  14 shows the fitted L D O S  for  the th ree  surfaces. T h e  

resulting v n ( q )  is

V}f( q )  =  - 0 . 1 4 1 6  +  9.802 x  10 +  6.231 x  10 2q 2 -  1.895 x  10 V  w h en  q  <  2

=  2.898 x  10' 2/ q  -  0.3877/</: +  0 .9 6 9 2 / ^  -  1.022/</4 w h en  q  > 2  (14)

Figure 15 shows the co n to u r  plots o f  the real-space em pirical pseu d o p o ten tia l  potential 

V ( v )  p ro d u c ed  from Eq. (12 )  o f  a H -co v ere d  (100) Si film and the total screen ed  p o te n 
tial from a selfeonsistent L D A  calculation. T h e  two potentia ls  are very  c lose,  show in g the 

transferability  o f  the em pirical  p seu d op o ten tia l  I7 ( r ).

T h e  above  em pirical p seu d o p o ten tia ls  are  fitted sole ly  from b an d  structures and density  o f  

slates. T h e  a b  ini t io  ca lcu latio n s are used for  their  band energies ,  but not for  their screen ed  

potentials. A n o t h e r  ap p ro a c h  is to use the L D A  potentia l KU)A(r )  d irectly  and to try to use 

E q. (12 )  to fit this L D A  potentia l.  U sin g E q. (12 ) .  the v.Mom( q )  for  the discrete  reciprocal 
lattice ve cto r  q can be solved point by point for  d ifferen t crystal structures if  the L, L)A(q) is 

not zero .  A s  a result,  the so-ob ta ined  v.Mom( q )  can  be p lotted  as a fun ction  o f  q, as shown 

in Fig. 16 [108]. Turns o u t  that this v.lUm( q )  o b ta in ed  from differen t crystal structures falls 

n icely  into a single curve and can be rep resen ted  by a sm ooth form  T h is  v [ ^ ( q )
is ca lled  spherical approxim ation  o f  the L D A  poten tia l.  It w as fou n d  that [ 108] the spherical 

ap p roxim ation  can rep ro d u c e  the original ban d  structure within 0.1 eV. A f t e r  this step, 

1 atom( q ) ls m odified slightly to correct  the L D A  b an d -g ap  error. T h e  final result is

Figure 13. T h e  a t o m i c  s t r u c t u r e  o f  c a l c u l a t e d  c a n t e d  d i h y d r i d e  (001) S i  s u r f a c e  v i e w e d  f r o m  (1 10). R e p r i n t e d  w i t h  

p e r m i s s i o n  f r o m  [ 10 4 1, J. E .  N o r t h r u p .  Phys. Rev. B  44, 1419 (IVW1). <& 1991. T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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Figure 14. S u r f a c e  l o c a l  d e n s i t y  o f  s l a t e s  o f  t h r e e  p r i m a r y  H c o v e r e d  s i l i c o n  s u r f a c e s  c a l c u l a t e d  u s i n g  e m p i r i c a l  

p s e u d o p o t e n t i a l s  o f  S i  a n d  H .  T h e  v e r t i c a l  a r r o w s  i n d i c a t e  t h e  e n e r g i e s  o f  t h e  S i - H  b o n d i n g  a n d  a n t i b o n d i n g  

s t a t e s .  T h e  d a s h e d  v e r t i c a l  l i n e s  s h o w  t h e  b u l k  v a l a n c e - h a n d  m a x i m u m  a n d  c o n d u c t i o n - h a n d  m i n i m u m  ( C B M ) .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 9 7 ] ,  L .  W .  W a n g  a n d  A .  Z u n g e r ,  i n  " S e m i c o n d u c t o r  N a n o c l u s t e r s "  ( P .  V .  K a n i a t  

a n d  D .  M e i s e l ,  E d s . ) ,  S t u d i e s  i n  S u r f a c c  S c i e n c e  a n d  C a t a l y s i s ,  V o l .  1 0 3 ,  p .  1 6 1 .  E l s e v i e r  S c i e n c e ,  1 9 9 6 .  ©  1 9 9 6 ,  

E l s e v i e r  S c i e n c e .

ca l led  sem ienipirica l  p s e u d o p o te n tia l  ( S E P M )  [108]. T h e  ad va n ta g e  o f  this S E P M  is that its 

p o ten tia l  is co n stru cte d  to be c lo se  to  the L D A  results and, con sequen tly ,  its w a vefu n ctio n  

has a 9 9 %  o v e r la p  with the  or ig in al  L D A  w a v e fu n c t io n .  T h is  S E P M  a p p r o a c h  has b een  

a p p lied  to C d S e  [108], InP [109], an d  Si [108] system s, rep rese n tin g  II—V I ,  I I I -V ,  and  I V - I V  
se m ic o n d u cto r  systems, respectively.

2.5.2. So lving  the EPM  E igensta tes
A f t e r  the E P M  H a m ilto n ia n  H  is k n o w n , the next step  is to  solve the s in g le-partic le  w a v e 

fun ction  «//,-(r )  from  Sch ro d in g er  E q. ( 1 1 ) .  In the e a r ly  study, the m ethods in the total en ergy  

ca lcu latio n s  are  used to ca lc u late  the e ig en sta tes .  T h is  m eth o d  is used to stu d y  100-atom 

q u a n tu m  wire systems. O n e  o f  the  resu lts  fo r  d i f fe re n t  q u an tu m  wire states is shown  in 

Fig. 17 [ L10]. H o w e v e r,  for  large system s, the m e t h o d s  u se d  in the total e n e r g y  ca lcu latio n s  
sca le  as faster  m eth od s  have  to b e  used.

T h e  m e th o d  in total en e rg y  c a lc u la t io n  [86] is to  m in im ize  the en ergy  (t//|//|t//) by varying 

the exp an sion  coeff ic ien ts  C ( q )  o f  ip U] Eq- (10).  T h e  first (!/ o b ta in ed  this w ay is the lovvest- 

e n e r g y  e ig en sta te  o f  H .  T o  find a h igh er  s tate , o n e  n e e d s  to o rth o g o n alize  ij/ to  all previously  

c o n v e r g e d  en e rg y  e igen states. T h e  e n fo r c e m e n t  o f  this o r th o g o n aliza t io n  scales as N :\
T h e  key  to avo id in g  this p ro b le m  is to so lv e  o n ly  a few  sta te s  near the b an d  g a p  by rea liz in g  

that info rm ation  o f  these b a n d -e d g e  states  is e n o u g h  to d e te rm in e  m any o p tica l  p ro p ert ies  

o f  the n anosystem s. T o  solve the in ter io r  e ig e n s ta te s  n e a r-e n e r g y  E rcf w ith ou t so lv ing all the 

o th e r  states b elow  E ref, the e ig en  e n e r g y  sp e c tru m  o f  H  is first fo ld ed  into the  sp ec tru m  o f
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F i g u r e  1 5 .  T h e  c o n t o u r  p l o t s  o f  t h e  ( 1 1 0 )  c r o s s  s e c t i o n  o f  t h e  t o t a l  p o t e n t i a l  o f  a  H - c o v e r e d  ( 0 ( ) 1 )  S i  s l a b .  T h e  

c o n t o u r  l e v e l  i n t e r v a l  i s  0 . 2 5  H a r t r e e .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 9 7 ] ,  L .  W .  W a n g  a n d  A .  Z u n g e r ,  i n  ' ‘ S e m i 

c o n d u c t o r  N a n o c l u s t e r s "  ( P .  V .  K a m a t  a n d  D .  M e i s e l ,  E d s . ) ,  S t u d i e s  i n  S u r f a c e  S c i e n c e  a n d  C a t a l y s i s ,  V o l .  1 0 3 ,  

p .  1 6 1 .  E l s e v i e r  S c i e n c e ,  1 9 9 6 .  €>  1 9 9 6 ,  E l s e v i e r  S c i e n c e .

M o m e n t u m  q ( B o h r  1 )

F i g u r e  1 6 .  T h e  s p h e r i c a l  l o c a l  d e n s i t y  a p p r o x i m a t i o n  ( S L D A )  p o t e n t i a l  % . D A ( | G | )  a s  o b t a i n e d  f r o m  s e l f - c o n s i s t e n t  

b u l k  L D A  c a l c u l a t i o n s  o f  f i v e  c r y s t a l  s t r u c t u r e s  a n d  c e l l  v o l u m e s .  D i a m o n d  s y m b o l s  r e p r e s e n t  t h e  r e s u l t s  f o r  i n d i 

v i d u a l  | G | .  S o l i d  l i n e s  r e p r e s e n t  l e a s t  s q u a r e  f i t s  o f  a l l  t h e  d i a m o n d  s y m b o l s .  D a s h e d  l i n e s  r e p r e s e n t  t h e  e m p i r i c a l l y  

a d j u s t e d  p o t e n t i a l  t o  f i t  t h e  e x p e r i m e n t a l  e x c i t a t i o n s .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 0 8 ] ) ,  L .  W .  W a n g  a n d  

A .  Z u n g e r ,  P hys. Rev. B  5 1 .  1 7 3 9 8  ( 1 9 9 5 ) .  ©  1 9 9 5 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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(a) Wire with free surface (b) H covered wire
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Figure 17. (001 ) - d i r e c l i o n  a v e r a g e d  w a v c - f u n c t i o n  s q u a r e s ,  e n e r g y  s e p a r a t i o n s ,  a n d  l i f e t i m e s  f o r  t h e  n e a r  b a n d - g a p  

s t a t e s .  T h e  d o t s  d e n o t e  p o s i t i o n s  o f  o u t e r  S i  a t o m s .  C B M  s t a n d s  f o r  c o n d u c t i o n  b a n d  m i n i m u m .  V B M  s t a n d s  f o r  

v a l e n c e  b a n d  m a x i m u m .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 1 0 ) ,  C .  Y .  Y e h  e t  a l . .  A pp l. Phys. Lett. 6 3 .  3 4 5 5  ( 1 9 9 3 ) .  

©  1 9 9 3 .  T h e  A m e r i c a n  I n s t i t u t e  o f  P h y s i c s .

( H  -  EKt)-. T h is  is show n  sch em atica l ly  in Fig. 18. If the re feren ce  en ergy  £ rcf is within 

the band ga p ,  then e ith e r  the  C B M  (con d u ction  band m inim um ) or  the V B M  (va len ce  band 

m axim um ) will b e  the first e ig e n  state in the spectrum  o f  ( H  — £ ref)2. N o tice  that the eigen  

state i'pi satisfying E q. ( 1 1 )  a lso  satisfies

(W -  Eu,y,!, = V" +  V { r )  — F (15)

C B M  —

4-

s p e c t r u m  f o l d i n g

{ [t\. “  }

F i g u r e  I S .  A  s c h e m a t i c  v i e w  o f  f o l d i n g  t h e  s p e c t r u m  -{<=,} t o  s p e c t r u m  { ( f ,  -  e iC , ) ' j .  C B M .  c o n d u c t i o n - b a n d  

m i n i m u m ;  V B M .  v a l a n c e - h a n d  m a x i m u m .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 9 7 ] .  L  \ V . W a n g  a n d  A .  Z u n g e r .  i n  

" S e m i c o n d u c t o r  N a n o c l u s t c r s "  ( P .  V .  K a m a t .  D .  M e i s c ! .  F i d s . ) .  S t u d i e s  i n  S u r f a c e  S c i e n c e  a n d  C a t a l y s i s .  V o l .  1 0 3 .  

p .  1 M .  H k c v i e r .  I W v  ! 9 W > .  F N e \  i e r  S c i e n c e .
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B ecau se  num erically, // and (// — £'iv!-): has the sam e matrix d im en sion, that m eans they 

have the same n u m b er o f  eigenstates. T h en , an e ig en sta te  o f  (// — /:rd ): must also be an 

eigen state  o f  H .  Thus, w e can solve the eigen states  o f  ( H  — Z;,.d ): to get the interior e ig e n 

states o f  H .  T o  solve the lowest eigen states  o f  ( H  -  E rc{) : . the traditional conjugate  gradient 

m ethod  is used to m inim ize F  — (i/ / | ( H  — elci ) : |<//). H o w eve r ,  c o m p a rin g  this calculation with 

the m inim ization  o f  ( iI / \ H \ iIj ),  the use o f  ( H  -  erci): con s id e ra bly  slows dow n the co n v e rg e n ce  

o f  the standard m inim ization  m ethods. T h is  prob lem  is solved here by using a p recon d it ion e d  

conjugate  gradien t m eth od  with a large n u m b er  o f  c o n ju g a te  gradien t steps. T o  calculate 

we apply  twice [ - | V 2 4- V ( r )  -  ercf] to t//(r) =  £  C ( q ) c ,/qr. T h e  term — l V : t// is c o m p u te d  in 

reciprocal space, and V (r ) i ) / ( r )  is ob ta in ed  by using the fast Fourier  transform ation ( F F T )  to 

transform  C ( q )  to real sp ace *A(r), then applying V ( r )  to and tran sform ing the product 

back  to q space. T h e  detailed  o f  this p ro c ed u re  is descr ibed  in R ef.  [ 111] .  A  parallel c o d e  

called  P E S C A N  has b een  d e v e lo p e d  that can be routinely  used to calcu late  systems for  a 

few  thousand atom s, or  even  nearly  a million atom  system s [112]. B ecau se  only  a few  w a ve-  

functions are ca lcu late d , the co m p u tatio n a l  effo rt  scales linearly to  the size N  o f  the system. 

R ecently , the fo ld ed  spectrum  m eth od  has also b e e n  used to solve the T B  H am ilton ian  

[113].

2.6. The Local Density Approximation Method
T h e  a b o v e  em pirical  pseu d op o ten tia l  is not solved  self-consistently. T h is  might be a p rob lem  

for the q uan tum  dot surface, especially  w h en  d ifferen t surface passivations and surface states 

n eed  to be calcu lated . It could  also be a prob lem  fo r  impurity and sem ico n d u cto r  alloys. 

T h e s e  pro b lem s can be solved by the self-consistent a b  ini t io  m eth od s  like the density- 

functional th e o ry  ( D F T )  [114 , 115], and its L D A  [ 1 15].

T h e  genera l  flow chart o f  a L D A  calculation  is described in Fig. 19. Basically, M  lowest- 

en e r g y  oc cu p ied  states o f  E q. ( 1 1 )  are solved using m eth o d s  like the con ju g ate  gradien t 

m eth o d  [86]. T h e n  the total ch arge  density p ( r )  o f  the system is given by

.1/

f'(r) = H l'Mr)l:
/-I

a t o m i c  p o s i t i o n s  {R,}

N e w  H a m i l t o n i a n

H = - ^ + V J r )

S o l v i n g  t h e  S c h r o d i n a e r ' s  e q u a t i o n  

H 'Y i = E J'¥ l

J  u p d a t e  VF  (

C G  s t e p s  " n i i n e "  I

p ( r )  =  I  | T J 2 

l U O  -  ^ l d a  [ P ( r ) l

s e l f c o n s i s t e n t  i t e r ,  " n i t e r "  |  E t o t .  F o r c e s  

N e w  a t o m i c  p o s i t i o n s  { R }

a t o m i c  m o v e m e n t  " n u m  m o v "  f  

F igure 19. A  H o w - c h a r t  o f  I  h e  s e l f - c o n s i s t e n t  l o c a l  d e n s i t y  a p p r o x i m a t i o n  c a l c u l a t i o n .
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and the po ten tia l  V (r) in E q .  11 is then c a lc u la te d  as

V ( r ) =  E  %.rc(r -  Ralom) +  f 7 ^ “7^' V +  / i ' . f ' | p( r ) |  ( I 7)
J r — ratom 1 1

here v hare( r  -  Ratom) is the  bare, un screen ed  L D A  p seu d o p o ten tia l,  w hich  m ight contain  

nonlocal  parts  [116 ] ,  and  / z ^ A (p) is the L D A  e x c h a n g e-co rre la t io n  fun ction. In the self-  

consistent L D A  ca lcu latio n , the V(r)  calcu lated  fro m  E q. ( 1 7 )  is taken b ack  into E q. ( 1 1 ) ,  

and the i/r,-(r) a re  reca lcu la te d , until the input and  o u tp u t  poten tia l  V ( r )  b e c o m e  the sam e 

(self-consistent). T h e  details  o f  this p ro ced u re  can b e  fo u n d  in Ref. [117].

T h e  b iggest  co m p u ta t io n a l  ch allen ge  o f  the se lf-con sisten t L D A  m eth o d  is its 0 ( N :' )  

scaling. H o w e v e r ,  using a lim ited linear c o m b in at io n  o f  a to m ic  orbital ( L C A O )  basis, D e l le y  

and S te ig m e ie r  [118] w e r e  able to c a lcu late  700-atom  Si q uan tum  dots. T h e y  get  a b an d -g a p  

increase that scales like \/R. A n o t h e r  im p ro v e m e n t c a m e  w h en  C h elikow sky, T roubllier ,  and 

Saad [119] d e v e lo p e d  a real sp ace  finite d i f fe r e n c e  m e th o d  to calculate the w avefu n ctio n  

o f  E q. ( 1 1 ) .  C o m p a r e d  to p lan e w av e  basis exp an sion  o f  E q. (TO), the real sp ace calcu latio n  

does not n e e d  the fast F o u r ie r  tran sform ation, w h ich  is the  m ost t im e-con sum ing part o f  the 
co m p u tatio n . A n o t h e r  a d van ta ge  o f  the real sp ace  c alcu latio n  is that it can b e  paralle lized  

naturally, w ith  ea ch  c o m p u t e r  pro cesso r  ca lcu lat in g  o n e  real space part o f  the  grid. U sin g  

this m e th o d ,  O g u t ,  C h e lik o w sk y ,  and L o u ie  [120] have  c a lc u la te d  800 a to m  Si q u an tu m  dots 

using the L D A  m e th o d .  A lth o u g h  there is n o  d irect  com p a riso n  b etw e en  the real sp ace 

m eth od  and the m o re  traditional and m ature  p la n e w a v e  m eth od , it is b e l ieve d  that the real 

space m e th o d  is p ro b ab ly  m ore  accu rate  than the l im ited-basis  L C A O  m ethod.

A lth o u g h  the L C A O  and the real sp ace m eth o d s, c o m b in e d  with large-scale  s u p e rc o m 

puters, can  be used  to  c a lcu late  th o u san d -ato m  systems, these m ethods still scale  as 0 ( N * ) .  
It is still difficult to ca lcu late  ev en  larger  system s o r  o th e r  m aterials  with d  e lec tro n  states. 

O n e  w ell-studied  a p p r o a ch  is the self-consistent ( ) ( N ) m e th o d .  A  d eta iled  review  abou t this 

m ethod  is given  by G o e d e c k e r  [121]. U n fo rtu n a te ly ,  e v e n  a fte r  a d e c a d e  o f  resea rch ,  th e re  

is still no  reliable  O ( N )  ah  ini t io  ca lcu latio ns and  robust c o m p u te r  codes,  ex cep t  fo r  the 
strongest c o v a len t  system s like graphite  [122]. T h u s ,  an a lternative  a p p ro ach  is n e e d e d  to 

m a ke  L D A - ty p e  ca lcu latio n s  for  th o usan d-atom  system s easy  and practical.

O n e  o f  such a ltern ative  ap p ro a c h e s  is the c h a r g e  p a tc h in g  m eth o d  ( C P M )  [1 2 3 -1 2 5 ] .  T h e  

basic assum ption  o f  the  C P M  is that the ch arge  den sity  at a given point d e p e n d s  only  on  the 
a to m ic  a rra n g e m e n t a ro u n d  this point. T h is  is true i f  th e re  is no long-range extern al e lec tr ic  

field and  i f  there is a b a n d  g a p  in the m aterial.  O n  the basis o f  this a ssum ptio n, the idea is 

to ca lcu late  the c h a rg e  densities from  so m e small p ro to ty p e  systems and  then tran sfer  the 

ch arge  densities from  these systems to get the c h arg e  den sity  o f  a given large n an osystem .

M o r e  specifically, c h a r g e  density  m otifs are  c a lc u la te d  fro m  the c h arge  den sities  o f  the 

pro to typ e  system s as

w A \ r  — R J )/», ( . •  -  R ) =  p,,DA(r ) —— - (18)
L k ,, » ’„ ( ! • - - R J )

here R f( is a a to m ic  site o f  atom  typed a ,  and  m } ( r  — R 0) is the c h arg e  density  m o ti f  
b e lo n g in g  to this a to m ic  site, and p u )A(r)  is the self-con sisten tly-ca lcu lated  c h arg e  d e n 

sity o f  a pro to typ e  system. T h e  variable  w n ( r )  is an exp on en tia l  d eca y  fun ction; thus. 

w it(|r -- R , | ) / E r  w t, ( \ r  ~~ R«'|) ‘s a distribution fun ctio n  that divides the sp ace into regio n s 
b e lo n g in g  to  each atom . N o te  that //// (r — R (/l is a loca lized  function and. hen ce, can be 

stored in a fixed-size n um erica l  array. T h e  i n in m ,  is used to denote the a to m ic -b o n d in g  

en viro n m e n t o f  the a to m  a  at R /(.

A f t e r  t n f for all the  possible b o n d in g  e n viro n m e n ts  I (t is ob ta in ed , the c h a rg e  d en sity  o f  

a given n anosystem  can  be g e n e ra te d  by patching the c h a rg e  motifs tog eth er

Piih ( r )  =  V / h , ( r  - R „ )  (1 ■>)

here  the  a t o m ic  b o n d i n g  e n v i r o n m e n t  f n o f  a t o m  a  at  R rl sh o u ld  be the  s a m e  as in Eq.  (18).
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Th is  c h arge -p atch in g  m e th o d  can be used to g e n e ra te  the ch arge  densities o f  carbo n  

fu lleren ces  [124], s e m ico n d u cto r  alloys [125], sem ico n d u cto r  impurities [123], and s e m ic o n 

d u ctor  quan tum  dots. T h e  resulting p a tc h e d  ch arge  density  is typically within \ %  o f  the 

self-consistently-calculated  L D A  c h arg e  density, and the resulting single-particle eigen state  

en ergies  are  within 50 m e V  o f  the direct  self-consistent calculation  results. C o n s id e r  that the 

typical n um erical u n certa inty  (d u e  to basis function truncations, d ifferen t nonlocal p s cu d o p o -  
tential treatm ents, and d ifferen t n o n lo ca l  pseu d o p o ten tia ls)  o f  a L D A  calculation  is a b ou t

50 m eV, this ch arge -p a tc h in g  m e th o d  can be considered  as accurate  as the direct a b  ini t io  
calculations. A f t e r  the c h ar g e  den sity  is g e n e ra te d ,  E q. (1 7 )  can be used to ge n e rate  the L D A  

poten tia l  ^ ( r ) ,  and  K h o n - S h a m  E q. ( 1 1 )  can  be solved by the fo ld ed  sp ectrum  m ethod  fo r  a 

few b an d  e d g e  states. F igu re  20 sho w s the V B M  and C B M  states o f  a 1000-atom Si q uan tum  

dot ca lc u late d  by the c h a rg e -p a tc h in g  m ethod. Such  calculations take only 1 hour on  a 64- 

pro cesso r  I B M  S P  m achin e. If  d irect  L D A  calculation  for  the sa m e system was a ttem p ted , 

it w ould  take a fe w  weeks.

O n e  p ro b lem  o f  the L D A  ca lcu latio n  is that its band g a p  is severely  u n derestim ated  

[99, 100]. Strictly sp eakin g, the  den sity-function al theory  is only  valid for  groun d-state  p r o p 

erties, and  there is no physical m e a n in g  fo r  the K o h n - S h a m  e ig en  en ergies  [115]. O n e  w a y  to 

c ircum vent this c o n c e p t io n a l  d iff iculty  is to use t im e-d ep en d en t  D F T , w hich will he discussed 

later. In practices, L D A  ca lcu latio n  d o c s  g ive reliable results fo r  quantum  dot confin em ent 

en ergies  (the ban d -g ap  in crea se  as a fu n ctio n  o f  the  q uan tum  dot size). It w as foun d  that the

51 L D A  q u an tu m  co n fin em e n t e n e r g y  is practically  the  sam e as the confin em ent energy , as 

ca lcu late d  from  the  em p irica l  p s e u d o p o te n tia l  results and the th ird-nearest-n eighb or tight- 

b in ding results, as shown in Fig. 21 [69, 126 -12 9].  O n e  practical w ay to  correct  the L D A  

b an d -g ap  erro r  is to m o d ify  the  L D A  po ten tia l  V ( r )  slightly. O n e  w a y  to d o  this is the 

K risten son  m e th o d ,  which puts a small spherical potentia l at the crystal interstitial region. 

A n o t h e r  w ay is to  m odify  the .v, /?, and  d  nonlocal  p seu d o p o ten tia ls  [ 123].

3. MANY-BODY METHODOLOGIES
A ll  the m eth od s  in Section  2 solve the sin gle-particle  eigen states  and energies. T o  calcu late  

the o p tica l  transitions, usually  s im ple  z e r o -o r d e r  e lectro n -h o le  interactions are a d de d  on 

top  o f  the s ingle-particle  e ig e n  en ergies .  H o w e v e r ,  there are  cases  in w hich the m an y-b o dy  

e ffe cts  m ight be im portant. In this sectio n, w e  will discuss a fe w  m eth od s  that e ith er  treat 

m a n y-b o dy  e f fe cts  explicitly (c on fig u ration  interaction m eth od ),  that are d erived  from  many- 

b o d y  a rg u m en ts  and  th e o r ie s  (e.g., t im e -d e p e n d e n t  L D A  [ T D L D A ] ,  G W  +  B e th e - S a lp e t e r  

eq u a tio n ) ,  o r  that directly  treat the n an osystem  as a w hole ,  using m any-body description s 

(q u an tu m  M o n te  C a r lo  m e th o d ) .

(a)CBM (b)VBM

Si 1327 quantum dot

F igure 20. T h e  c o n d u c t i o n - h a n d  m i n i m u m  a n d  v a l a n c e - h a n d  m a x i m u m  o f  a  I O ( H ) - S i - a l o m  q u a n t u m  d o l  p a s s i v a t e d  

w i t h  H  a t o m s .  T h e  c h a r g e  d e n s i t y  i s  g e n e r a t e d  w i t h  t h e  c h a r g e - p a t c h i n g  m e t h o d .  T h e  c o n d u c t i o n - b a n d  m i n i m u m  

a n d  v a l a n e e - b a n d  m a x i m u m  s t a l e s  a r c  c a l c u l a t e d  w i t h  t h e  f o l d e d - s p e c t r u m  m e t h o d .
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Figure 21. E n e r g y  g a p  v e r s u s  \ / d  f o r  H - t c r m i n a t c d  S i  d o t s ,  w i r e s ,  a n d  s l a b s .  L o c a l  d e n s i t y  a p p r o x i m a t i o n ,  ( f i l l e d  

a n d  e m p t y  d o t s )  R e f .  [ I 2 A | .  (  +  )  R e f .  [ 1 2 7 ] ,  ( A )  R e f .  [ 1 2 8 ) .  ( * )  R e f .  | 1 2 9 ) .  E m p i r i c a l  p s e u d o p o t e n t i a l :  ( x )  R e f .  [ f i 9 | .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 2 6 | .  B .  D e l l e y  a n d  E .  F .  S t e i g m e i e r .  A p p l. Phys. L e u .  6 7 ,  2 3 7 0  ( 1 9 9 5 ) .  0  1 9 9 5 ,  

T h e  A m e r i c a n  I n s t i t u t e  o f  P h y s i c s .

3.1. Time-Dependent Density Functional Theory Methods
A s  discussed a bo v e , r igorously  sp eakin g, D F T  on ly  w orks  for  g ro u n d  states. O n e  w a y  to study 
the excited  state is to study the respo n se  o f  the system u n d e r  t im e -d e p e n d e n t  extern al e lectric  

field perturb atio n. R ig o ro u s  th e o ry  [ 130-132] can be d er iv ed  sim ilar to the  t im e-in d ep en d en t 

D F T  w hich relates the true m any-bo dy t im e-d ep en d en t  resp o n se  to  the K o h n - S h a m  n o n in 

teract ive  system response. U n d e r  the tim e-d ep en d en t D F T  ( T D D F T ) ,  o n e  solves the time- 

d e p e n d e n t  K o h n - S h a m  equation:

_ I v -  +  K ( r , f )

and

p (  r , 0  =  X > , ( r , / ) | 2 (21)
/= |

U n d e r  r igorous T D D F T ,  V ( r , t )  at time / is a fun ctional o f  the ch arge-den sity  function  
/)(r, /') fo r  all / <  t.  H o w e v e r,  un der  L D A  and ad iab atic  a p p ro x im atio n ,  K ( r .  t )  d e p e n d s  

o n ly  on p ( r ,  /) and the relationship  b etw e en  F ( r ,  /) and  p ( r ,  /) is the  sa m e as in E q. (17 ) ,  

but rep la cin g  V ( v )  with K ( r ,  t ) ,  p ( r) with p ( r ,  /) for  the sa m e  time t and  ad din g  an extern al 

p e rtu rb at io n  term  Kcxl(i\ t ) .  T h e  absorption  sp ectrum  c an  b e  ca lcu late d  from  the charge-  

d ensity  response p ( r ) .  T h is  a p p rox im ation  is called T D L D A .

O n e  w ay to n um erica lly  c a lcu late  T D L D A  is to  in tegrate  explicitly  E q. (20) in tim e f 133]. 

T o  d o  that, a step fun ction  in tim e is used for  the extern al po ten tia l  Kcxl( r ,  / ). This is rather 

like d o in g  E q. (7). H o w eve r,  unlike in E q. (7), w h ere  on ly  o n e  sin gle-particle  w a vefu n ction  

is integrated, in E q. (20), all M  o c c u p ie d  states are in tegra ted . T h e  ab so rp tio n  sp ectra  for  

all the e n erg ies  are calcu lated  from  the time F ourier  tran sfo rm  o f  p ( r .  /) and K A(( r ,  t ) .
T h e  d irect tim e integration  m eth o d  is g o o d  for  relat ively  large systems. H o w eve r,  for a 

small system, a m ore  effic ient w ay  is to solve Eq. (20) in freq u e n cy  sp ace.  T o  do  that, o n e  

has to assum e that the perturb atio n  is small, so linear resp o n se  th e o ry  can  be applied. U s in g  

a linear response theory, an exciton en ergy  to can be so lv ed  from  the fo l lo w in g  eq u a tion

C o n f i n e m e n t

£ [(< ? ,  -  ** )‘% A ;  +  (/, -  t \  )K.k.  .7(w)]C';/ =  «>Cik 
:l

(22 )
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h e r e  e t and ek arc  the L D A  g ro u n d -sta te  K o h n - S h a m  eigen  en ergies ,  and /’ and fk are the 
o c c u p a t io n  n u m bers  o f  K o h n - S h a m  e ig en states  i//, and «//A, respectively. For an a diab atic  

T D L D A  ap p roxim ation , K lk ^((o)  is in d e p en d en t o f  w  as

K;k. I =  j ]  d r td  r : i//; ( r ,) «//A ( r ,) +  f ) ( r ,  -  r : ) i/r.-( r 2) ^ ( r : ) (23)
r , - r ; | f ' p ( r , )

V e r y  often, Eq. (22) is rewritten  as a q u ad ratic  fo rm  for  num erica l  stability [134]

X v  0Jik f>ij&k I +  “  J  ) i k  COik K  i k . jl ( ( 0 ) y J  f j l C0 Cji =  co-C) (24)

w h e r e  w lk =  e ,  -  e k , f ik =  j ]  -  f k . In E q. (23), the first term can be called the ex ch a n g eik —  ’ J ik ~  J i  J k
in tera ct io n  [because  <//,(r } ) and  ij/k ( r |) b e lo n g  to v a le n ce  and  co n d u ctio n  bands, respectively]. 

T h e  secon d  term  can  be c alled  the sc re e n e d  C o u lo m b  interaction  (this c o m e s  from  the 

c o m p a r is o n  to  co n fig u ra tio n  in teraction  and the G W  4- B e t h e - S a lp e t e r  eq u ation  m ethods).  

T h e  C o u lo m b  in teraction  here  is n o  lon ger  an n on local  integral b etw e en  r ,  and r 2. T h is  

is b e c au se  in the L D A  form alism , the scre en ed  e x c h a n g e  interaction  term  is written  as 

a Local ex c h a n g e-co rre lat io n  fu n ctio n a l ,  instead o f  b e in g  an explicit integral based on 1 / r  
in te rac t io n .

T h e  T D L D A  has b e e n  ex ten sively  used for  optical sp ectra  for  m o lecu les  and small c lus

te rs .  F o r  these sm all systems, the T D L D A  results o ften  a g ree  well with the exp erim e n ta l  

m e a s u r e m e n t ,  as sh o w n  in F ig. 22 [135]. C o m p a r e d  to L D A  results (i.e., using e ( -  ek as 

t h e  transition en erg ies) ,  the T D L D A  is m uch im proved. U sually ,  so m e m ajor L D A  pe ak s  

a r e  b lue-shifted. T h is  shift is o f t e n  c a u se d  by the u n scr c e n e d  repulsive exchan ge interaction  

in E q. (23). For  ex tre m e ly  sm all system s like m o lecu les ,  this exch a n g e  interaction  is very  

s tro n g ,  especially  for  h ig h -e n e rg y  {/, k }  pairs. R e ce n tly ,  B e n e d ict  et al. [135] foun d out that 

t h e  s c re e n e d  C o u lo m b  in teraction  in E q. (23) d o e s  not play any im portant roles for  small 

cluisters. In additio n, fo r  the low est excitation  state (exciton  en ergy) ,  the T D L D A  result is 

rotughly the sam e as the L D A  e ig en  en e rg y  d if fe re n ce  ( C B M - V B M ) .  For  bulk system, it is 

kniown that [136] the T D L D A  b an d  e d g e  will be  the sam e as the L D A  band e d g e . T h u s, 

t h e  result d o es  not im p rove  the L D A  b an d -g a p  error. Strictly  sp eakin g, this is on ly  a p r o b 

l e m  o f  the T D L D A .  For  T D D  FT, the ban d  g a p  sh o u ld  be correct,  even  though the exact 

D F T  K o h n - S h a m  e ig e n  e n e rg y  b an d  g a p  co u ld  still b e  d ifferen t from  the true ban d  gap. 

T hie  T D L D A  also d o e s  not im p r o v e  the bulk  optical a b so rp tion  sp ectrum  from  the L D A

S i H 4

w a v e l e n g t h  ( A n g s t r o m s )

Figjure 22. C a l c u l a t e d  a n d  m e a s u r e d  o p t i c a l  . s p e c t r a  o l  S i l  l.,. T D L D A ,  t i m e - d e p e n d e n t  l o c a l  d e n s i t y  a p p r o x i m a t i o n :  

B S i E ,  B e t h e - S a l p e t e r  e q u a t i o n :  L D A .  l o c a l  d e n s i t y  a p p r o x i m a t i o n .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 13 5 j .  L .  X .  

B e m e d i c t  e t  a l . .  Phys. Rev. l i  6< S . 8 5 3 1 0  ( 2 0 0 3 ) .  v  2 0 0 3 .  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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results, as sh o w n  in Fig. 23. A l l  these  p ro b le m s  c o m e  from  the screen ed  C o u lo m b  interac

tion term  in E q. (23). F o r  larger  systems, the C o u lo m b  interaction b e c o m e s  im portant. A n  
on  site interaction , as in E q. (23) can n o t  d e sc r ib e  the co rrect  long-range b eh a vio r  o f  this 

interaction. F o r  not very  small nan osystem s, the C o u lo m b  interaction b e c o m e s  larger  than 

the e x c h a n g e  interaction: It c an n o t  be ignored. T h u s ,  for  larger  nanosystem s and  bulks, not 

on ly  the T D L D A  inherits the L D A  b an d g a p  e r r o r  but it also lacks the acc u rate  scre en ed  

C o u lo m b  interaction . N o te  that the d iag o n a l  s c r e e n e d  C o u lo m b  interaction  is negative. T h e  

lack o f  an e ffe ct ive  C o u lo m b  in teraction  will m a k e  the T D L D A  have difficulty  cap tu r in g  the 

b o u n d  exc iton  effect ,  w hich cau se s  red-shift  o f  the p e a k  weights in the optical  absorption  

sp ectra  (Fig. 23).

T D D F T  can also be im p le m e n te d  by d en sity -fu n ction al a pproxim ations o th e r  than the 

L D A  ap p roxim ation . O n e  o fte n -u se d  d en sity-fun ction al approxim ation  is the B 3 L Y P  fu n c

tional [137]. T h is  fun ctio n al is a hybrid o f  exact H a r tr c e - F o c k  ex c h a n g e  with local and 

gra d ie n t-c o r re cte d  e x c h a n g e  and  corre la t io n  term s. M o r e  exactly, the exch a n g e  and c o rre la 
tion fun ction  is e xp ressed  as:

=  (1 -  a n) E ? ' »  +  <7(1A /:[ i f  +  « , A / - r  +  « X XV +  (1 -  «,.)£,VWN (25)

h ere £‘| SDA is the local spin density  a p p ro x im atio n  ( L S D A )  exchange local density  functional,  

E J11 is the H a r t r e e - F o c k  e x c h a n g e  energy , A E [m  is the D e c k e 's  grad ie n t correct io n  [138] 
to the e x c h a n g e  fu n ctio n a l ,  £ m> is the L e c - Y a n g - P a r r  corre lation  functional [139], and 

£ vwn is the V o sk o ,  W ilk, and N u sa ir  local c o rre la t io n  functional [140]. T h e  variables  </„, a x 
a nd  a (. are fitting param eters .  T h e y  are  used to fit the p rop erties  o f  m any small m olecules. 

T h e  n u m b ers  used for  B 3 L Y P  are  a {) ~  0.2, a x =  0 .72, and ut. =  0.81. Strictly sp eakin g, the 
B 3 L Y P  is n o  lo n ger  a d en sity-fun ction al th e o ry  b e c a u s e  the H a t r e e - F o c k  exch a n g e  en ergy  

E [ u  is exp ressed  as a fu n ctio n a l o f  the sin gle-particle  w avefu n ction s,  not as a functional o f  

the total c h arge  density, and the S c h r o d in g e r ’s e q u a t io n s  for  the w a vefu n c tio n s  are not the 

local poten tia l  K o h n - S h a m  eq u a tio n s .  B 3 L Y P  can  be v ie w ed  as a hybrid m eth o d  betw e en  
the L D A  (o r  G C f A  [g e n e ra l ize d  grad ie n t a p p ro x im a tio n ])  and the H a t r e e - F o c k  method. 

T h e  B 3 L Y P  m e th o d  giv es  q u ite  g o o d  band g a p s  for  va r io u s  bulk  crystals [141]. For  bulk Si, 

the a g r e e m e n t  with the  ex p e r im e n t  is ab ou t 0.3 e V  for  various special k-points, w hich is 

o n ly  slightly large r  than the results o f  the G W  and q u an tu m  M o n te  C a r lo  m eth od s. B ecau se  

it a lso  has the explicit e x c h a n g e  integral,  it will give a long-range C o u lo m b  interaction in 

E q. (22) and (23). T h u s,  the T D D F T - B 3 L Y P  co u ld  m itigate  the two p ro b lem s o f  T D L D A  

discussed a b o v e . In p ract ice ,  as the H F  e x c h a n g e  integral is used, B 3 L Y P  is often  solved 

using G a u ss ia n  ato m ic  orbita l  basis. R e ce n tly ,  T D D F T - B 3 L Y P  has b een  used  to calcu late

Kigure 2 3 .  S o l i d  l i n e :  c a l c u l a t e d  t i m e - d e p e n d e n t  l o c a l  d e n s i t x  a p p r o x i m a t i o n  ( T D L D A )  r e s u l t  t o r  h u l k  S i  a b s o r p t i o n  

s p e c t r u m .  D a s h e d  l i n e ,  e x p e r i m e n t .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  | 1 3 5 | .  L .  \ .  B e n e d i c t  e l  a l . .  / V m  v  R n .  l i  (>X. 

S ; v  ! U  i .  2 1 1 0 3 .  T h e  A m e r i c a n  P l n s i c a !  S o c i c i v .
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small Si clusters, and  the result is foun d to a g r e e  well with the m ult ire feren ce  sec o n d -o rd e r  

perturbation  theory  ( M R - M P 2 )  [142], a lth o u g h  a m ore recent study [143] found that the 

basis set used in Ref. [142] m ight not be co n v erg e d .

3.2. Configuration Interaction Method
A n o t h e r  a p p ro a ch  to ca lcu late  the m an y-b o dy  interaction  is via  the configuration  interac

tion approach. T h is  is used  in con ju n ct io n  w ith  the s ingle-particle  m eth od s  described  in 

S ection  2. A f t e r  the sin gle-particle  e ig en sta tes  in E q. ( 1 1 )  arc  o b ta in ed , w e can use them  to 

form  S later  d ete rm in a n ts  to solve the m a n y -b o d y  configuration  interaction  ( C l )  H am ilton ian . 

M o re  specifically, on e  can construct  the grou n d -sta te  S later  d ete rm in an t as

ct>(l(r , ,  . . . ,  r u ) =  ://[(/', ( r , ) . . .  i/y„(r„). . .  <AA/( r (26)

here t//,(r) are  the sin gle-particle  w a v e fu n c t io n s  from  E q. ( 1 1 ) ,  and  :A is the antisym m etriz- 

ing op erato r .  A  s in gle-excitation  S later  d e te rm in a n t  that rep lace s  a va len ce  state \\fv with a 

con d u ction -ba n d  state ip( is

<J\., (r, ....... rA;) =  .v/[t/f](r,)...  i//,.(r„)...  r„)J (27)
T h e n ,  the exciton w a v e fu n c tio n  ^  can  b e  e xp ressed  as a l inear co m b in at io n  o f  <!■>,, (. as

^ = (28) 
l'=l c=l

T h e  coeff ic ien ts  C V (. are o b ta in e d  by d ia g o n a liz in g  the H a m ilton ian  matrix

E = E[(£r -  £,)5,,,,5r.,. + K vl, t, r . -  ]c„.f. = E C m. (29)
p'c' i>V'

here E v and E c are  the sin gle-particle  e ig en  e n e r g ie s  in E q. ( 1 1 ) ,  and  E  is the exciton energy. 

T h e  Kvl. and JV(. rV are the e x ch a n g e  and  C o u lo m b  interactions, respectively

K
JJ e ( r , , r : )|r, — r: l

J,.
r r  M ' . w a t m a t w m ) „

JJ e(r,, r: )|r, -  r: |

E q u a tio n s  (29), (30), and (3 1 )  can be der ived  by apply ing E q. (27) to the original m any-bo dy  

H a m ilton ian . H o w e v e r,  in E q. (30) and (3 1) ,  w e have used the d ie lectr ic  screen in g for  both 

the ex ch a n g e  and C o u l o m b  interactions. F o r  a b u lk  exciton. the screen in g  o f  the C o u lo m b  

interaction  can b e  d er ived  fro m  m an y-b o dy  th e o ry  [144, 145]. A n  a lternative  derivation  is 

g iven  b y  Strinati [146], using the G W  fo rm alism . Form ally, the e ffe ct ive  d ielectric  screen in g  

can  be rewritten  as

1 /• ■ 1----------— ---------------- =  / 6)  r >Tr— T T ‘ , r  <3 2 >6(rl, r : ) | r1 -  r: | J ...* 1 |r -  r

h ere  r) is the bulk  inversion  o f  the d ie lec tr ic  function  6(r,, r). T h is  is d ifferen t from

6 1 ( r , , r), as the d irect  w h o le -s p a c e  inversion  o f  the e(r,, r) matrix for  the quan tum  dot sys

tem . T h e  e "'1 ( r j , r ) con ta in s  a su rface  p o la r iz a t io n  potentia l P ,  as discussed in S ection  2.1. 

T h e  b u lk  inversion 6hJlk(r p r), h ow e ver,  has no such surface  p o la r ization  potential.  H o w 

e v e r ,  the use o f  this b u lk  ^bu!lk( r ,, r) in E q. (29) and (3 1)  c o rra b a te s  well with the fact that 

the sin gle-particle  e n e r g y  E r and E t are d e r iv e d  from  Eq. ( 1 1 ) .  which contains no surface  

po la r iz at io n  term  P from  E q. (1) .  If  the  su r fa ce  polarization  term  P is included in the 

s in gle-particle  e q u a t io n ,  as in E q. (1 ) ,  then the full w h o le-sp ac e  inverse d ielectric  fun ctio n  

e ~ ! (r| ,  r) should  be used. T h e  su rface  p o la r iz a t io n  term s wi 11 can ce l  out at the end. T h is  is 

th e  situation  in the G W  +  B e t h e - S a lp e t e r  fo rm alism , as will be discussed in the next section.
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It is o f te n  a r g u e d  that the exch a n g e  interaction  K ri. Jl (, should  not be screen ed . T h is  can be 

v ie w ed  from  the tw o-p artic le  G r e e n 's  fun ction  c o n stru ction , w here  scre en in g  o f  the e x c h a n g e  

term  will c a u se  d o u b le  c o u n t in g  [ 1 4 7 1. N ev erth e less ,  in practice, it is foun d that the e x ch a n g e  

consisted  o f  a lo n g -ra n g e  and  a sho rt-ran ge te rm  [ 148J. A lth o u g h  the short range term  

should  b e  u n s c r e e n e d ,  the lon g-ran ge term  should  be s c re e n e d  by the bulk  d ie lectr ic  fun ctio n  

[1 4 9 - 1 5 1 ] .  T h e  use o f  the e ffe ct ive  d ie lectr ic  fun ction  e ( r , , r2) in E q. (30) d o e s  satisfy this 
co n d it io n  b e c a u s e  e(r,, r2) —>■ 1 fo r  |r, — r2| —► 0. T h e  p roblem  o f  the con tra d ict io n  to  the 

G r e e n ’s fu n c t io n  a rg u m e n ts  can be resolved by rea liz in g  that if only a limited co n fig u ratio n  

sp ace is used  in E q. (29), then the effect  o f  o th e r  u n used  configurations can be included  in 
the e x c h a n g e  sc re e n in g  term  [147].

N o t ic e  that the  C l  in E q. (29) has the sa m e  form  as in E q. (22) for  the T D L D A ,  a lth o u g h  

the e x p res s io n  fo r  the e x c h a n g e  and the C o u lo m b  interaction  is d ifferent. C l  m e th o d  is 

often  used  in c o n ju n ct io n  with the non-selfcon sistent single-particle  m eth o d s  discussed  in 

S ection  2. C l  m e t h o d  has b een  used to ca lcu late  very  large systems, including pyram idal 

q u a n tu m  d o ts  w ith  n early  o n e  million a to m s [152]. T h e  key  here is to use a lim ited w in d o w  

for the c o n fig u ra tio n s .  O n e  can never a ffo rd  to use the full configuration  sp ace  for  such 

large system s. A n o t h e r  a d v a n ta g e  for the C l  a p p r o a ch  is that it can also be used to study 

o th er  m a n y -b o d y  p ro b lem s, such as two e lec tro n s,  o r  m ulti-excitons, and A u g e r  e f fe cts  [153]. 
It is difficult to s tudy these system s by the T D L D A  and G W  -j- B e t h e - S a lp e t e r  e q u a t io n  

a p p r o a c h e s .  H o w e v e r ,  cau t io u s  must be used w h e n  d e a lin g  with the scre en in g  issues for  

those m u lt ip a rt ic le  excitations.

3.3. GW and Bethe-Salpeter Equation Approach
G W  and B e t h e - S a l p e t e r  eq u a tio n  have b een  used to study optical abso rp tion  sp ectra  fo r  

small m o le c u le s  an d  clusters. T h is  ap p ro a c h  can be sep a ra ted  into tw o steps. In the first 

step, the  G W  q u asip art ic le  e ig en  e n erg ies  are  c a lc u late d . T h is  is a sin gle-particle  step, rath er  

like the m e th o d s  in S ection  2. In the se co n d  step, the B e th e - S a lp e t e r  eq u a tio n  is so lv ed  for  

e le c t r o n - h o le  p a ir  exciton s, based  on q u asip artic le  e n erg ies  and w avefunctions.

Q u a s ip a r t ic le  is d efin ed  as the po les  in freq u e n c y  sp ace  in the sin gle-particle  G r e e n 's  

function

here i//(rO is the  particle  cre atio n  o p e r ato r ,  |A/) is the M  p article-gro und state, and T  is 

the t im e -o r d e r in g  o p e r a to r .  It can be sho w n  that [154, 155] the pole  en ergy  E,  c o rr e s p o n d s  

to the e n e r g y  fo r  ad d in g  o n e  e lectron  into the system to state /, e, =  E ( M  4- 1, / ) — E ( M )  
(w hen  e, is large r  than the Ferm i en ergy) ,  o r  for ta k in g  o n e  electron  out from  the system , 

=  E ( M )  — E ( M  -  1, /) (w h en  e , is less than the Ferm i energy). T h e  q uasip artic le  e n e r g y  

e , can b e  c a lc u la te d  with the G W  a p p roxim ation  [156. 157] as

N ote  that, c o m p a r e d  with the L D A  p o ten tia l  in E q. (17 ) .  the L D A  c x e h a n g e-eo rre la t io n  

p o ten tia l  /x‘ ;nA[ p ( r)] has b e e n  replaced  by a n on local  se lf-en ergy  potentia l l ( r .  r : e , ). T h is  

se lf-en erg y  p o ten tia l  has the fo l lo w in g  G W  exp ression

G'(r/ ,r  / ) =  ~ i ( M \ T i [ f ( r t ) i j / f ( r ' t ' ) \ M ) (33)

a tom

- ( r .  r  , w )  =  - V  i//A (r ) i//A ( r ) j ]  i i ' fr.  r , e ,  -  t o
h

lm H' (r .  v , <o )
----------------------------------— J o )  ( . O )
to  —  e k - -  oj - b  / f t

here the d y n a m ic a l ly  s c re e n e d  interaction  i.s

i r  i -• r  j
(36)

H e r e  e 1 ( r , r , ,  o j )  is th e  invers ion  o f  th e  d ie lec t r ic  m a tr ix  e ( i \  r , .  t o ) .
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Su p p o se ly  Eqs. (34) and  (35) should  be solved  self-consistently . H o w e v e r,  in reality  [100], 

o n e  usually  uses the L D A  K o h n - S h a m  w a v e fu n c tio n s  and e ig en  e n erg ies  for  t//A and  ek 
in Eq. (35). and  takes  an exp ectat io n  v a lu e  (i}/k |S|i//A) for  the se lf-en ergy  term , instead o f  

solv ing E q. (34) exactly. T h is  is ca lled  z e r o - o r d e r  a p p rox im ation  o f  the G W  p r o ced u re .  

R e ce n tly ,  s o m e se lf-con sisten t calcu latio ns [15 8 -16 3 ]  o f  Eqs. (34) and (35) sh o w e d  that 

the self-con sisten cy actually  m a ke s  the s p ectru m  p ro p ert ies  w o rse  (e.g. for  q u asip ar l ic le  

excitation  energy , b an d w id th , lifetimes, and p la sm o n  satellites). T h u s, in practice ,  o n e  should  

just take the z e r o -o r d e r  results o f  the G W  eq u a tio n .

A s  fo r  the q u asip artic le  en e rg y  b e in g  the p o le  o f  the s ingle-particle  G r e e n 's  fu n ctio n  o f  

Eq. (33), the in fo rm a tio n  a b o u t  the exciton  e n e r g ie s  is co n ta in e d  in the tw o-p artic le  G r e e n 's  

function:

G ( v , ,  r : /2, r  ] t \, r \ / 2) =  - ( M \ T i f / ( r [t [ )f//(r2/2)«A+( r 2, t 2)il'~'( r ' j ,  t \ ) \ M )  (37)

B y  ta k in g  t ] =  t\ +  0“ , t 2 =  +  ()“ . the tw o -p art ic le  G r e e n ’s function  can be tran sfo rm ed

into fr e q u e n c y  sp ac e  as G 2(co),  and the exciton  e n e r g ie s  are  the po les  in G : (w ).  T h e  D y s o n ’s 

e q u a tio n  for  this tw o-p artic le  G r e e n ’s fun ctio n  is [146, 155] (written in a co n c ise  w ay):

G z ((o) =  Gi0,(w) +  G (2 \ c o ) K ' ( c o ) G 2(co) (38)

here  G (->(,)(co) =  G , G ,  is the n o n in teractin g  tw o-p artic le  G r e e n 's  function, and  K  (co)  is an 

e le c tro n -h o le  in teraction  kernal.  E q u a t io n  (38) fo r  e le c tr o n -h o le  pairs is a lso  ca l led  the 

B e t h e - S a lp e t e r  eq u a t io n  [146]. It can b e  so lv ed  by e x p a n d in g  the exciton  w a vefu n c tio n  

| M , S ), using q u asip art ic le  e le c tro n -h o le  pairs

| M , 5 )  =  E E Q « l A t |-W) (39)
C

H e r e  a [  c re a te s  a quasi  hole, and  b ]. c re ate s  a q u asi-e le ctron . O n  the basis o f  E q. (39), the 

e ig e n  state  e q u a t io n  for  C lH. is

( € (. -  €V) C V1. -  Jvc, r v K V v  ”  ».S-C,V (4())
v'c'

h e r e  e ;j, em are  the q uasi-particle  e ig en  e n e r g ie s  o f  Eq. (34), and i l s  is the  exciton  en ergy . 

T h e  K  and J are  the e x c h a n g e  and scre e n e d  C o u lo m b  interactions. A lth o u g h  the (,v  

is the sa m e  as in E q. (30) w ith o u t  the s c re e n in g  e ( r , ,  r : ) [or, say, the first term  in E q. (23)], 

the sc re e n e d  C o u l o m b  interaction  is

Jv,.vc =  I f dwe~'M‘ W( r .  r , w)

x [(lls — (t) ~ (€,.' — £,,) +  nr) 1 +  (11 s +  (0 — (e t. — 6(1) -f- /0 r ) !] (41)

w h e r e  W ( r, r \  co) is the  scre e n e d  C o u lo m b  interaction  given  by E q. (36).

G W  plus the  B e t h e - S a lp e t e r  eq u a tio n  is c o n s id e re d  o n e  o f  the most a cc u rate  m e th o d s  to 

c a lc u la te  the op tica l  ab so rp tio n  sp ectra  and  exc ited -sta te  e lec tro n ic  structures. It has been 
u se d  to  c a lcu la te  m o le c u le s  and bulk  crystals. F ig u r e  24 [164] sho w s the G W - B c t h e - S a l p e t e r  

e q u a t io n  results fo r  the optical  abso rp tion  sp ectra  for  bulk  Si. T h e  a g r e e m e n t  with the 

e x p e r im e n t  is excellen t.  It is the first time the lo w er  en e rg y  p e ak  e m e rg e d  in the c a lc u 

lated  results. T h is  p e a k  has lon g b een  e x p e c te d  to be c au se d  b y  exciton ic  e ffects .  W ith o u t 

th e  e le c tro n -h o le  in teraction  in the B e t h e - S a l p e t e r  e q u a tio n ,  this p e a k  d o e s  not exist.  T h e  

G W - B e t h e - S a l p e t e r  eq u a t io n  results can b e  c o m p a r e d  with the T D L D A  results sh o w n  in 

Fig. 23. T h e  T D L D A  result  is very  s im ilar  to the or ig in al  L D A  result.  T h e  p r o b le m  is that 

the  C o u lo m b  in teraction  in T D L D A  is a local te rm  [the seco n d  term  in E q. (23)]. T h is  local 
a p p r o x im a t io n  is in a d e q u a te  to d escrib e  the ex c ito n ic  b o u n d in g  effect.

T h e  B e t h e - S a l p e t e r  e q u a tio n  o f  E q. (40) can be c o m p a r e d  with the T D L D A  o f  E q. (22) 

a n d  the  C l  o f  E q .  (29). T h e s e  three e q u a t io n s  a re  exact ly  the  sam e, excep t that the m ean in gs
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F i g u r e  2 4 .  C a l c u l a t e d  o p t i c a l  a b s o r p t i o n  s p e c t r u m  o f  S i  w i t h  ( s o l i d  l i n e s )  a n d  w i t h o u t  ( d a s h e d  l i n e s )  e l e c t r o n - h o l e  

i n t e r a c t i o n  u s i n g  G W - B e t h e - S a l p e t e r  e q u a t i o n ,  w i t h  t h r e e  v a l e n c e  b a n d s ,  s i x  c o n d u c t i o n  b a n d s ,  5 0 0  k  p o i n t s  i n  

t h e  B Z ,  a n d  a n  a r t i f i c i a l  b r o a d e n i n g  o f  0 . 1 5  e V .  T h e  o p e n  a n d  f i l l e d  c i r c l e s  a r c  e x p e r i m e n t a l  d a t a .  R e p r i n t e d  w i t h  

p e r m i s s i o n  f r o m  [ 1 6 4 ] ,  M .  R o h l f i n g  a n d  S .  G .  L o u i e .  Phys. Rev. B  6 2 ,  4 9 2 7  ( 2 0 0 0 ) .  ©  2 0 0 0 ,  T h e  A m e r i c a n  P h y s i c a l  

S o c i e t y .

o f  the sin gle-particle  e ig en  e n e r g ie s  e h the e x c h a n g e  in teraction  K ,  and  the screen ed  

C o u lo m b  interaction  ./. In the  G W - B e t h e - S a l p e t e r  e q u a t io n  a p p ro a c h ,  the quasi-particle  

en ergy  e t in E q. (34) can be d e f in e d  as the total  e n e r g y  d if fe re n c e  E ( M  +  1, /) -  E ( M )  
f o r  co n d u ctio n  bands, and E ( M )  — E ( M  — 1, /) fo r  v a le n c e  ban ds. P h e n o m e n o lo g ic a l ly ,  this 

‘M i f r g y  includes a su r fac e  p o la r iz a t io n  te rm , as d e sc r ib e d  by P ( r )  in E q. (1 ) .  A n o t h e r  w ay 

ro^look at this is that the s c r e e n e d  interaction  W ( r , r \ a j )  includes a w h o le  sp a ce  inver

sion  e_l (r,  r , ,  c o )  o f  the d ie lec tr ic  m atrix  e ( r ,  i*,, c o ) .  C o m p a r e d  to  the b u lk  inverse d ielectric  

fun ction  used in E q. (32), the n an ocrysta l  inverse d ie le c tr ic  fu n ctio n  e ~ l c o n ta in s  a surface  

p o lar ization  term . T h is  su rface  p o la r iz a t io n  e n e r g y  is u n scr e e n e d  and  scales  as 1 //?; thus, it 

is a rather large en ergy . In con tra ry ,  in the  c o n v e n t io n a l  im p le m e n ta t io n  o f  the C l  ap p roach , 

the P ( r )  term  has b een  r e m o v e d  fr o m  E q. (1) ,  and  the  s in gle-p artic le  S c h r o d in g e r ’s e q u a 

tion b e c o m e s  E q. ( 1 1 ) ,  with the p o ten tia l  V (r) b e in g  th e  sa m e  as the b u lk  va lu e  at the 

interior  o f  the q u an tu m  dot. A s  a result, the s in g le-p art ic le  e n e r g y  E , in the  C l  a p p roach  

(in the m eth o d s  o f  Sec t io n  2) is n o  lo n g e r  E ( M  +  1, /) — E ( M )  o r  E ( M )  — E ( M  -  1, /). 

T o  relate to these ion izatio n  e n e r g ie s ,  a su rfac e  p o la r iz a t io n  term  n e e d s  to b e  a d d e d  [165]. 

T h u s ,  the  G W  sin gle-particle  e n e r g y  and  the C l  s in gle-p art ic le  energy' are  fu n d a m e n ta l ly  
d ifferent. F o r  the T D L D A  o f  E q .  (22), the  s in g le-p a rtic le  e n e r g y  is ju st  the  K o h n - S h a m  

e ig en  energy. T h is  e n e r g y  is c lo se r  to the  C l  s in g le-p a rt ic le  en ergy . In the  L D A  K o h n -  

S h a m  eq u a tio n , the poten tia l  V ( r )  o f  E q .  ( 1 7 )  at the in ter io r  o f  a q u a n tu m  d o t  will be 

th e  sam e as its b u lk  va lu e. T h e r e  will b e  no s u r fa c e  p o la r iz a t io n  term . A g a in ,  this is p r o b 

ably  b ecau se  the L D A  e x c h a n g e  c o rre la t io n  in teract io n  is local.  T h e r e  is n o  w h o le -sp ac c  

inverse d ielectric  fun ction  as in the G W  fo rm u la .  H o w e v e r ,  a d i f fe r e n c e  b e tw e e n  T D L D A  

and  C l  a p p ro a ch  is that th ere  is a b an d -g a p  e r ro r  in L D A  eig en  en ergies .  T h is  will even 

b e  true for  exact d en sity-function  theory.  F o r  the exa ct  T D D F T ,  h o w e ver ,  o th e r  te rm s will 

c orrect  this b a n d -g a p  er ro r  o f  the  K o h n - S h a m  e ig en  e n e rg ie s .  T h is  is n ot true in the case o f  
T D L D A .

T h e  \ / R  p o lar ization  term  in the G W  q u asip art ic le  e ig en  en e rg y  c a n ce ls  a term  in the 

scre en ed  C o u lo m b  interaction  J  in E q .  {40) and  (41). T h is  is b e c a u s e  the  sam e surface 

p o la r ization  term  a lso  exists in the  ^ ( r ,  r \  w) o f  E q .  (4 1) .  T h is  c a n c e l la t io n  is c o m p le te ly  
a n a lo go u s  to the c an ce lla tion  o f  the  P XI( r j , r : ) an d  / ^ ( r , ) ,  P ( r : ) te rm s in E q .  (2) o f  the 

classical p h e n o n e m o lo g ica !  analysis. R e ce n tly ,  using T B  G W - B e t h e - S a l p e t e r  e q u a t io n  ca lc u 

lations, D e le r u e ,  L a n n o o  and A l la n  [166] have sh o w n  n u m erica lly  that the C o u lo m b  c o r r e c 

tion  term exact ly  can ce ls  the p o la r iz a t io n  term  in the s e lf-e n e r g y  o f  the q u asi-particle  eigen  

energy. T h u s, at the en d, the result  o f  G W - B e t h e - S a l p e t e r  e q u a t io n  sh o u ld  be s im ilar  to 

the results o f  C’l, w h e r e  the C o u lo m b  in teraction  J  is s c r e e n e d  by the bulk  inverse d ielectric  

function, not the n an ostru ctu re  d ie lec tr ic  fu n ctio n  w h o le -s p a c e  inversion. F o r  the T D L D A
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ap p roach , the C o u lo m b  interaction  is local; thus, it is a lso  e f fe ct iv e ly  scre en ed  by the bulk 

d ielectric  fun ctio n, not the n an o stru ctu re  o n e .  T h is  c o r r o b o r a t e s  well with the fact that 
the single-particle  eq u a t io n  in T D L D A  E q. (22) d o e s  not include the surface  polarization  

effect . T h e  d if fe re n t  c a n ce l la t io n  s c h e m e  can  b e  seen  by c o m p a r in g  the calcu lated  a b so rp 

tion spectra  from  the m a n y -b o d y  E qs. (40), (22), and  (29) w ith  the spectra  calcu lated  from  

the single particle  e ig en  e n e r g ie s  a lo n e . A s  sho w n  in Fig. 25 [167], the B e t h e - S a lp e t e r  e q u a 

tion absorp tion  sp ectra  fo r  sm all S^H ,,,  c lusters  red-shifted  fro m  the results ca lcu lated  using 

the  G W  eig en  e n e rg ie s  a lo n e . T h is  is m ain ly  b e c a u s e  o f  the  n ega tiv e  surface  polarization  

en ergies  in the C o u l o m b  in teraction  ./. H o w e v e r ,  as sh o w n  in F ig .  22, the T D L D A  optical 

absorption  sp ectru m  b lu e -sh ifted  fro m  the L D A  results. T h is  is b e c au se  in the T D L D A  c a l

culation, the p o la r iz a t io n  e n e r g y  d o e s  not exist in b oth  the C o u l o m b  interaction term and 

the L D A  K o h n - S h a m  e ig en  e n ergy . A s  a result, it is the  e x c h a n g e  interaction that d o m i

nates the sp ectru m  shift. N o t ic e  that, if  the  total e n e r g y  d i f fe r e n c e s  E ( M  - h i )  — E ( M )  and 

E ( M )  — E ( M  — 1) fro m  L D A  calcu lat io n s,  instead o f  the K o h n - S h a m  eigen energies, are 

used in the m an y-bo dy  e q u a t io n  [e.g, E q. (22)], then the c o r r e s p o n d in g  interactions with the 

surface p o lar ization  te rm  m ust be used [120, 168]; o n e  c a n n o t  use the C o u lo m b  interaction 

o f  Eq. (3 1)  and  (32).

3.4. Quantum Monte Carlo Methods
A ll  the a b o v e  m e th o d s  discussed  so fa r  are  d er ived  from  solid-state m any-particle  

ap p ro a ch es .  T h e y  treat  the  exc ited  system  as an e le c tr o n  a n d  hole  tw o-particle  system. 

U n d e r  the q u a n tu m  M o n t e  C a r lo  ( Q M C )  a p p r o a c h  [169], the  w h o le  system is describ ed  by 

a m any-bo dy  w a v e fu n c t io n .  T h e r e  are  var iat io n a l  q u a n tu m  M o n t e  C a r lo  m eth od s  [170, 171] 

( V M C )  and  d iffusion  q u a n tu m  M o n te  C a r lo  m e th o d s  [172 , 173] ( D M C ) .  U n d e r  V M C ,

t— |— |— |— i— i— |— j— |— i— i— |— i— i— n r

E n e r g y  [ e V ]

Figure 25. C a l c u l a t e d  o p t i c a l  a b s o r p t i o n  s p e c t r u m  o f  S i , , , ! ! , ,  c l u s t e r s  u s i n g  G W - B e t h c - S a l p e t c r  e q u a t i o n .  T h e  s p e c 

t r a  i n c l u d e  a n  a r t i f i c i a l  b r o a d e n i n g  o f  0 . 0 4  e V .  T h e  d o t t e d  l i n e s  s h o w  t h e  s p e c t r a  w i t h o u t  e l e c t m n - h o l e  i n t e r a c t i o n .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  | U > 7 | .  M .  R o h l l i n g  a n d  S .  C i .  l . o u i e ,  P hys. Rev. L e tt. S O ,  3 3 2 0  ( W c S ) .  ©  W N ,  

T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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the m a n y-b o dy  w avefu n ctio n  xI '( X )  is a p p r o x im ate d  by a S late r  determ in an t multiplied b\ a 
Jastrow  term

M M
M^(X) =  D r( R ) D *  ( R )  exp E-V(r,) - E"(lr; - r/

■ 1 = 1  i - J

(42)

h ere  X  =  {r,, *?,} for  / =  I , M . U sually ,  H F  o r  L D A  single-particle  w avefun ction s are 

used  to  construct  the slater  d e te rm in an t  D , and p a ra m e tr ize d  form s are used to express 

X and it. W ithin  V M C ,  the total  e n e rg y  o f  the system  is o b ta in e d  via the variational m inimum 

o f  the ex p ectat io n  va lue  E  =  ('vl/|//|xI ')/{ 'vI/ |xl ' ) ,  here  H  is the m any-body H am iltonian. This 

m u ltid im en sio n a l integral is e v a lu a te d  usint* the M o n te  C a r lo  m ethod

//MMX)
'I'(X) V ( X ) \ 2d X

(43)
[ \ ' V ( X ) \ 2d X  f \ ' V ( X ) \ 2d X

U n d e r  the m etro p o lis  M o n te  C a r lo  sc h em e , the a b o v e  integral can be statistically averaged 

using a w a lk e r  with its eq uilib r iu m  prob ability  distribution  in the m ultidim ensional space X 
e q u a ls  | ^ ( X ) | : . U n d e r  this sch em e

_ J (44)

w h e r e  X s is the position o f  the w a lk e r ’s .s step, and N s is the total n u m b er  o f  the steps. T h e  

| ^ ( X ) | 2 probab ility  distribution will be  re a ch e d  if in the m etrop olis  schem e, a new step X ' =  
S X  -b X  from  the  current s te p  position  X  will be a cc e p te d  w h en  / i  =  |x;l/( X ,)|2/|vI/(X )|2 >  1, 

a n d  a ccep ted  with probability  ( i  w h en  f i  <  1. T h is  M o n te  C a r lo  tech n ique using | ^ ( X ) | 2 as 

the  w a lk er  distribution  is a lso  ca lled  “ im portan t sa m p lin g .” It sam ples the important region 

heavily, thus red u ce s  the statistical f luctuations. N o te  that if  xI; (X )  is exact, satisfying the 

S ch ro d in g e r ’s eq u atio n  H \ V  — E XV,  then the sa m p lin g  v a lu e  in Eq. (44) is always E ,  and thus 
th ere  is no  statistical f luctuation  at all. T h e  main c o m p u ta tio n a l  effort in the V M C  is the 

ev alu tio n  o f  M'(X) and H xV ( X )  for  a given  X, esp ecia l ly  w h en  on e step S X  is taken, typically 

m o v in g  only  o n e  r, a m o n g  the M  p artic le  c o ord in ation s.  It turns out [174] that the evalution 

o f  both H t y ( X )  and 'J '(X ) d e p e n d  heavily  on the ev alu tio n  o f  the Slater d eterm in an t in 
E q .  (42).

F o r  the diffusion  Q M C  m e th o d  ( D M C ) ,  the m a n y -b o d y  imaginary-tim e Sch ro d in ger ’s 

e q u a t io n  is treated  as a classical d iffusion  eq u a tio n  [172 , 173]. Follow ing an analogy o f  a 
c lassical d iffusion  p rob lem , the eq u il ib r iu m  distr ibution  (the solution o f  the Sch ro d in ger ’s 

e q u a t io n )  can  be reached  fo l lo w in g  the particle  d iffusion , w h ich  can be described by M o n te  

C a r lo  w alkers.  H o w e v e r,  for  F e r m io n  system , a n tisym m etry  is required  for  the m any-body 

w avefu n ctio n . T h is  pauses a sign p r o b le m , which is usually  a p p roxim ately  solved by a fixed 

n od al a p p ro xim atio n , w h e r e  an auxiliary  w a vefu n ctio n  is used to give the fixed nodal for  

the  D M C  w a vefu n c tio n . T h is  auxiliary  w a v e fu n c t io n  a lso serves  as a gu id in g w avefun ction  

fo r  im portant sam pling. U sually , the V M C  w a v e fu n c t io n  o f  E q. (42) is used as this auxiliary 
w a vefu n ctio n .

W ith  the use o f  p s e u d o p o te n tia ls  [174], both  V M C  and  D M C  m eth od s  have b een  used 

to solve system s o f  up to a d o z e n  atom s. W ill iam son  et al. [175] also showed that Q M C  

m e th o d s  can be used to solve  exciton  e n e r g ie s  for  exc ited  states. T h e  key is to replace 

o n e  s ingle-particle  va len ce  w a v e fu n c tio n  w ith  a co n d u c tio n -b a n d  w a vefu n ction  in the S later  

d e te rm in a n t  D  in E q. (42). T h e  D M C  u n d e r  such a new nodal structure autom atically  takes 

ca re  o f  the resulting corre la t io n  effects .  T h e  so -ca lcu lated  Si band structure agrees w ell  with 

the exp erim e n ta l  values, as show n  in Fig. 26. Q M C  is o n e  o f  the most accurate m ethods 

fo r  small system calculations. R e ce n tly ,  G r o s s m a n  et al. [176] have co m p a re d  the Q M C  and 

the  G W - B e t h  e - S a l  peter  eq u a tio n  results fo r  S iH 4 and C H 4; excellen t agreem ents  are found 

fo r  these tw o m eth ods, ran gin g from  ion izatio n  p o ten tia ls  and electron affinities to various 
o p tica l  excitation  energies.

T h e  a bove-d iscu ssed  Q M C  m e th o d s  are  lim ited to a d o ze n  atoms. H ow ever, the d e v e l

o p m e n t  o f  a linear-scaling Q M C  m e th o d  has c h a n g e d  that limit [177]. T h e  idea is to use
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F i g u r e  2 6 .  T h e  d i f f u s i o n  q u a n t u m  M o n t e  C a r l o  h a n d  s t r u c t u r e  f o r  b u l k  S i  ( f i l l e d  c i r c l e s  w i t h  e r r o r  b a r s ) .  T h e  s o l i d  

l i n e s  a r c  t h e  r e s u l t  o f  e m p i r i c a l  p s e u d o p o t e n t i a l  f i t t i n g  t o  e x p e r i m e n t a l  d a t a .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  1 1 7 5 ] ,  

A .  J .  W i l l i a m s o n  e l  a L  Phys. Rev. B  5 1 ,  1 2 1 4 0  ( 1 9 9 8 ) .  ©  1 9 9 8 .  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .

localized  W ann ier  fun ctio ns in the S la te r  d ete rm in an ts .  N o tic e  that, under a unitary 

transform ation  a m o n g  the  sin gle-particle  w a vefu n ctio n s ,  the S later  d ete rm in an t  D  will not 

chan ge. H o w eve r ,  un der  such unitary tran sfo rm atio n , the s ingle-particle  e ig en fu n ction s  can 

be c h an ge d  into loca lized  W a n n ier  functions. A s  a result, these W an n ier  functions can be 

truncated in sp ace and sto red  o n  real sp a ce  grid. T h is  m a ke s  the S later  d ete rm in a n t  D  sparse 

for  any given po in t X; h en ce ,  it a lso m a ke s  its ca lcu latio n  pro p o rt io n a l  to the size /V, instead 

o f  N } as in the o ld  sc h em e . T h is  a p p r o a c h  allow s the Q M C  c alcu latio n  o f  a few h u n d red  

atom s and m a ke s  it possible  to use the Q M C  m e t h o d  to ca lcu late  small q uan tum  dots [178].

4. PHYSICAL PROPERTIES OF SILICON QUANTUM DOTS
In Section s 2 and  3, w e discussed  d if fe re n t  m e th o d s  to ca lcu late  the e lec tro n ic  structures and 

optical p rop erties  o f  n an ostructures.  In this section, w e  will discuss the results o f  these m e th 

o ds applied  to  n a n o m e te r  Si q u an tu m  dots  an d  will c o m p a re  these results to exp erim en ta l  

m easurem en ts.

4.1. Optical Band Gap
T h e  single-particle  e ig en  e n e rg ie s  o f  H passivated  Si q u a n tu m  dots and  wires ca lcu late d  
using the m e th o d s  o f  Sec t io n  2 are  sh o w n  in Fig. 21. R esults  for  three types o f  m eth od s  

are  shown: em p irical  T B  m eth o d , em p irica l  p s e u d o p o te n t ia l  m eth o d , and L D A  m ethods. 

AH these m e th o d s  give basica lly  the sa m e  curve. N o t ic e  that for  the T B  m eth od , the results 

o f  Ren [71] and H i l l - W h a le y  [72-74] are not included  b e c au se  it w as fo u n d  later [80] that 

their  T B  p a ram eters  d o  not r e p r o d u c e  the p r o p e r  Si b u lk -b an d  structures. For the L D A  

m eth o d , a rigid shift is u se d  to co rrec t  the b u lk  L D A  b an d -g a p  error. F ro m  the g o o d  mutual 

a g r e e m e n ts  b e tw e e n  these m eth od s, o n e  can  say that the s ingle-particle  eigen state  en erg ies  

for  H -p assivated  Si q u an tu m  dots  a re  w ell  u n de rstood .

In addition  to the th ree  m e th o d s  d iscussed a b o v e ,  the e ffect ive  m ass theory  and  the 

tru n cated  crystal m e th o d  d o  not p r o d u c e  a ccu rate  single-particle  b an d -g ap  energies. T h is  

is shown in Fig. 10. T h e  e ffe ct ive  m ass a p p ro x im atio n  [54, 55] severely  ov erest im ates  the 

b an d -g ap  op en in g, w h e r e a s  the tru n cated  crystal m e th o d  o f  R K F  [68] un de re stim ates  the 

b an d -g ap  op en in g. N o te  that the tru n ca ted  crystal m eth o d  w o r k s  well for  tw o-dim en sion al
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thin film, but not for  w ires and q uan tum  dots. F igu re  10 also shows that the b an d  g a p  for 

d if feren t  sh ap e s  o f  q u an tu m  dots  ag g reg a te  into a s ingle  curve w hen  plotted  as a function 
o f  the total n u m b e r  o f  Si a to m s in the q u an tu m  dot.

To be c o m p a re d  with the exp erim en ta l  optical ban d  gap, the e lectro n -h o le  interactions 

must b e  included. T h u s,  the m eth o d s  o f  Sect io n  3 m ust be used. T h e  results o f  these m eth 

o d s  are  shown in Fig. 27 for  H -passivated Si q u an tu m  dots [143]. N o te  that, the D M C  

m e th o d  and G W - B S E  m e th o d  p ro d u ce  a lm o st  the sa m e band gap for  very  small quan tum  

dots. F o r  slightly larger  q u an tu m  dots  up to  a d ia m e te r  o f  1.6 nm, the D M C  result is almost

1 e V  a bov e  all the o th e r  results. It rem ains to be seen  how  accurate  these D M C  results are, 

fo r  exam ple ,  w h en  c o m p a re d  with w ell-co n tro l led  exp erim e n ts  (p e rh ap s  for  o th e r  m aterial 

q u an tu m  dots such as C d S e ) .  T h e  T D L D A  m e th o d  is fou n d  to be a lm ost the sam e as the 

L D A  m ethod, ta k in g  the C B M - V B M  o f  the L D A  single-particle  e igen  en ergy  as the band 

gap . T h is  m e a n s  that both  the exch an g e and C o u lo m b  interaction in the T D L D A  results 

are  very  small. N o te  that in Fig. 27, the T D L D A  result is taken from  the lowest possible 

transition in the abso rp tion  spectrum . T h is  is d if fe r e n t  from  Ref. [179], in which a c u to f f  

criterion  is used in the ca lc u la te d  absorption  sp ectru m  to d ete rm in e  the optical b an d  gap. 

T h e  ban d  g a p  o b ta in e d  that w ay  is higher than the result shown in Fig. 27. and brings it 

to a b etter  a g r e e m e n t  with the G W - B c t h e - S a l p e t c r  eq u a tio n  and Q M C  results. H o w e v e r ,  it 

w as a rg u ed  that [143] to c o m p a re  to the exc iton  e n e r g y  calcu lated  in G W - B e t h e - S a l p e t e r  

eq u a tio n  and Q M C  m ethod, the first possible  transition  in T D L D A  absorption  spectrum  

sho uld  be taken. In addition  to T D L D A ,  T D D F T - B 3 L Y P  w as p e r fo rm e d  in Ref. [143] and 

Ref. [142]. A l th o u g h  their results are slightly d ifferen t b ecau se  o f  the use o f  d ifferen t basis 

sets, overall ,  the T D D F T - B 3 L Y P  band g a p  is b e lo w  the D M C  result,  especially  for  re la

tively large q u an tu m  dots. H o w e v e r ,  in the w o r k  o f  R ef. [142], it w as shown that fo r  small 

m o lecu les ,  the T D D F T - B 3 L Y P  result agrees,  with the M R -M P 2  q uan tum  chem istry  ca lcu la 

tions. T h e  results fo r  the T B  m e th o d  and the E P M  can  be c on s id ered  as the low est-order  

results o f  the C l  in E q. (29) (i.e.,  on ly  the z e r o - o r d e r  s c re en ed  C o u lo m b  interactions b etw e en

Number of Silicon Atoms

Diameter (nm)

Figure 27. S i z e  d e p e n d e n c e  o f  o p t i c a l  g a p s  o f  s i l i c o n  n a n o c l u s t e r s ,  c a l c u l a t e d  u s i n g  d i f f u s i o n  q u a n t u m  M o n t e  

C a r l o  ( D M C ) .  C i W - B e t h c - S a l p e t e i  e q u a t i o n  ( B S H ) .  l o c a l  d e n s i t y  a p p r o x i m a t i o n  ( L D A ) ,  a n d  t i m e - d e p e n d e n t  L D A  

( T D L D A ) ,  t i m e - d e p e n d e n t  d e n s i t y - f u n c t i o n a l  t h e o r \  t D F T )  w i t h  B 3 L Y P  f u n c t i o n a l  ( T D D F T - B 3 L Y P ) .  s c m i c m p i n -  

c a l  t i g h t - b i n d i n g ,  a n d  s e r n i e m p i r i c a l  p s e u d o p o t e n t i a l  m e t h o d s .  N o t e  t h e  D M C  a n d  C i W - B S L :  r e s u l t s  a r e  a l m o s t  t h e  

s a m e  f o r  t h e  f e w  s m a l l  c l u s t e r s .  R e p r i n t e d  f r o m  ( 1 4 3 ) .  A .  J .  W i l l i a m s o n  e l  a ! . .  Phys. Rev. Le tt.  S 9 .  1 % S ( ) 3  ( 2 U ( ) 2 > .  

£ : 2 0 0 2 .  T h e  A m e r i c a n  P h v s i c a !  S o c i e t y .
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the V B M  and C B M  states are  tak en  into a cco u n t) .  T h e  T B  and E P M  results agree well with 

e a c h  o th e r .  H o w e v e r ,  they are b e tw e e n  the T D L D A  result and T D D F T - B 3 L Y P  results.

O v e r a l l ,  a m o n g  the theoretical  ca lcu lat io n s ,  the D M C  result is a b o v e  all the o th er  m eth od s  

for  d  <  1 .5-n m  Si q u an tu m  dots. T h e  L D A  and  T D L D A  have the low est band gap, fo llow ed  

by th e  T B  and E P M  limited C l  results. S lightly  h igh er  than the T B  and E P M  results are  

the T D D F T - B 3 L Y P  results. F o r  ve ry  sm all q u a n tu m  dots, the D M C  results agree with the 

( iW ’- B e t h e - S a l p e t e r  eq u a tio n  results.
T h e  c o m p a r is o n s  with the e x p e rim e n ts  are  m u ch  m o re  com p lic ate d .  T h is  is for  tw o r e a 

sons: the un ce rta in ty  o f  the q u a n tu m  dot sizes an d  the  com p licatio n  o f  surface passivations. 

A s  d iscussed  in S ection  1, the e x p erim e n ta l  d a ta  a re  very  scattered. T h e  situation is illus

trated  in Fig. 28 w ith o u t  listing all the  o v e r w h e lm in g  ex p erim e n t data  exist in this field. From  

Fig .  28, w e  can se e  that, w h en  the ex p e r im e n ta l  b a n d -g a p  is m e a su r e d  from  the absorption  

sp e c tru m , the m e a s u r e d  b an d -g a p  o p e n in g  a g re e s  w ell  with the E P M  calcu lated  openings. 

H o w e v e r ,  the m e a su re d  exp erim e n ta l  P L  e n e rg y  is system atically  lo w e r  than the th e o r e ti

cally  c a lc u la te d  o n e .  N o tice  that the  o th e r  th e o r e t ic a l  results ( D M C  and T D D F T - B 3 L Y P )  

arc  e v e n  large r  than the E P M  results  sh o w n  in Fig. 28. T h u s, this co n clu sio n  is true for  all 

the th e o ret ic a l  results (a lthough m ost e x p e r im e n ta l  d ata  are in a q u an tu m  dot size region 

larg e r  than the  th e o retica l  ca lcu latio n s  show n  in Fig. 27, excep t for  E P M  and T B  m ethods).  

T h is  d i f fe r e n ce  b e tw e e n  the c a lcu late d  exciton  b an d  g ap  and the exp erim e n ta l ly  m easured  

P L  en e rg y  will be  recon ciled  in S ec t io n  4.5 by c a r e fu l ly  co n s id e rin g  the  surface  passivations.

In additio n  to  the optical band gaps, x-ray em iss io n  has b een  used to m ea su re  the band 

s h o u ld e r  shifts o f  the va len ce  b an d s  and  c o n d u c t io n  bands sep arate ly  [180, 181]. W h e n  

th e se  shifts a re  p lo tted  as fun ctio ns o f  the Si q u a n tu m  dot sizes, the m easured  shifts are 

still sm aller  than the theoretically  c a lc u la te d  results. H o w e v e r ,  the s izes o f  these q u an tu m  

dots  are  m e a s u r e d  by the ato m ic  fo r ce  m ic ro s c o p y  ( A F M )  via the heights o f  the q u an tu m  
dots  on  a substrate .  It is not c le ar  w h e t h e r  th e se  q u an tu m  dots h ave  spherical shapes. In 

additio n, q u a n tu m  dot ag g reg a tio n s  on  the  su b strate  m ight a lso  red u ce  the  effe ct ive  q u an tu m  

co n fin e m e n t [180]. N evertheless ,  w h e n  the  v a le n c e  b an d  shifts and  co n d u c tio n  band shifts 

are  plotted  aga in st  ea ch  other, the  size  u n ce rta in ty  issue can be e l im in ated . T h e  calcu lated  

[182] A e VRM/ A e ( BM curve agrees  w e ll  with the  e x p e rim e n ta l  results, as shown in Fig. 29.

4.2. Screening Effects and Dielectric Functions
D ie le c tr ic  sc re e n in g  in a small q u a n tu m  dot is o n e  o f  the most fu n d a m e n ta l  physical issues 

in n an osc ien ce. It is also a rather un sett led  issue at this point. A s  o n e  can see in S ection  3, 

m any o f  the m e th o d s  involve d ie lec tr ic  fu n ct io n s  and inverse d ie lectr ic  functions for  the 

q u a n tu m  d o t  systems. In the s in gle-particle  fo r m a lism  o f  S ection  2, the d ielectric  function

F i g u r e *  2 8 .  C a l c u l a t e d  e x c i t o n i c  h a n d  g a p  | 6 9 J  a n d  m e a s u r e d  h a n d  g a p  a n d  p h o t o l u m i n c s c c n c e  ( P L )  e n e r g i e s  a s  

a  f u n c t i o n  o f  n a n o c r y s t a l  s i z e s .  T h e  c a l c u l a t e d  a n d  m e a s u r e d  b a n d g a p s  ( f r o m  a b s o r p t i o n  s p e c t r u m )  a r e  i n  g o o d  

a g r e e m e n t ,  w h e r e a s  t h e  P L  e n e r g y  i s  c o n s i s t e n t l y  l o w e r  t h a n  t h e  e x c i t o n i c  b a n d g a p .  R e p r i n t e d  w i t h  p e r m i s s i o n  

f r o m  | 4 4 | .  P .  M .  F a u c h e t  e t  a l . .  Phys. S la t. So l.  ( a )  1 6 5 ,  3  ( 1 9 9 8 ) .  ©  1 9 9 8 .  W i l e y  I n t e r S c i e n c e .
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Figure 29. C o n d u c t i o n - h a n d  e d g e  s h i f t s  v e r s u s  v a l a n c e - b a n d  e d g e  s h i f t s .  ( l ) .  a n d  ( 2 ) .  a n d  ( 3 )  a r e  c a l c u l a t e d  r e s u l t s  

u s i n g  d i f f e r e n t  d i e l e c t r i c  c o n s t a n t s ,  a n d  t h e  e x p e r i m e n t a l  d a t a  a r e  f r o m  R e f .  [ 1S 1 1 .  R e p r i n t e d  w i t h  p e r m i s s i o n

f r o m  [ 1 N 2 ] .  L .  W .  W a n g  a n d  A .  Z u n g e r .  Phys. Rev. Le tt.  7 3 .  1 0 3 9  ( 1 9 9 4 ) .  €> 1 9 9 4 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .

and its c o rr e sp o n d in g  surface  polarization  also play essen tial  roles. A  better  u n d e rsta n d 
ing o f  the dielectric  fu n ctio n  o f  a quan tum  dot will h e lp  us c o m e  up  with a b ette r  m odel 
for the sem iem pirica l  m e th o d s  discussed in Section  2 an d  with a b etter  definition o f  the 

single-particle  e igen  e n e r g ie s  and surface  im age p o ten tia l  interactions.

W e discussed the classical screen in g  m odel in S ect io n  2 w h e n  w e introduced  the su rface  

polarizations. In that m od el,  the dielectric  co n stan t  inside the q u an tu m  dot is 6, w hich is
taken as the sa m e as in the bulk system. Tsu et  al. [183] p o in ted  out that this con stan t

inside the dot might be d ifferen t from the bulk. T h is  is a rg u e d  using a g e n e ra l ized  P e n n ’s 

m odel ( G P M )  [184]. W ithin  this m o d el,  the d ielectric  co n stan t  is exp ressed  as a fu n ctio n  o f  

the absorption  sp ectrum  p e ak  position. B eca u se  this p e a k  po sit ion  will shift un der q u a n tu m  
c onfin em ent,  it is then a rg u e d  that the dielectric  co n stan t  might a lso ch an ge . T h e  g e n e r a l iz e d  
Penn's m o d el  given b y  T su  is

here eh =  11 .4  is the b u lk  die lectr ic  constant, and a  =  10.93 A  and / =  2.

T o  test this p h e n o m e n o lo g ic a l  m o d el ,  W ang and Z u n g e r  [182] have carried out a d ire ct  
calculation  based on the E P M  m ethod. T h e  task is to c a lc u la te  the im aginary  part o f  th e  

dielectric  function  (e.g., the optical absorption  sp ectru m ). T h e n ,  by a frequency in tegrat io n , 

on e can get the real part o f  the dielectric  function. T h is  ca lcu lat io n  is d on e using a G M M  
(ge n e ra lized  m o m e n ts  m e th o d )  [88]. W ithin this m e th o d ,  to  ca lcu la te  the im aginary  p art  
e?( E )  o f  the d ielectric  fun ctio n, w e first calculate  a tw o -d im en sio n al  spectral function

A f t e r  r ( £ , ,  E 2) is o b ta in e d ,  the e : ( E )  is calcu lated  fo l lo w in g  the ran d o m  phase approxim ai- 
tion [185]

w h ere  A  =  $7r2e ?-h : / 3 n r .  and f t  is the v o lu m e  o f  the system . T o  ca lcu late  r ( E . .  E_)  withouit 

know in g all the sin gle-particle  e igen  states i]/f and <//, in E q. (46), o n e  can first g e n e ra te  tine 

tw o-dim ensional C h e b y c h e v  m o m en ts  Vn ,,, o f  the sp ectra  r ( E ^ E : ). T h e s e  m o m en ts  I',,,,,, 
can be g e n e ra te d  in the fo l lo w in g  way

(4 b )
(■ i

( 4 7 )

=  ( W A p U M )  ■
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h e r e  T„ an d  Tm are  C h e h y e h e v  p o ly n o m ia ls ,  t//, is a random  starting w a vefu n ctio n ,  and the 

oute r a n g le  b ra ck e t  d e n o te s  a statistical a v era g e  o v e r  the random  w a vefu n c tio n  <//y. T h en , 
f r o m  F„ ,,, to ■(/:,. E z ). o n e  has the fo l lo w in g  transform ation:

t ( £ „ £ 2) =  ( - )  (1 - £ ? ) .' : (1 - £ 5 ) - , / : E  M  ) 7 ; j £ \ ) r , (49)
' ^  ' II. If I

h e r e  b n — 0.5 fo r  n =  1, and 1 fo r  all the o th e r  n.  T h is  tran sfo rm atio n  can  be carried  out 

u s in g  F F T  b e c a u s e  Tn( E )  can  b e  cast as a cosine  function. U sin g  this G M M  m eth od , the 

d e n s ity  o f  state ( D O S )  and jo in t  D O S  ( J D O S )  can also b e  calcu lated . T h e  details  o f  G M M  

are  d e s c r ib e d  in R ef. [88].
U s i n g  the G M M  fo rm alism , W a n g  and Z u n g e r  [182] calcu lated  the optical absorption  

s p e c tr a  fo r  Si q u an tu m  dots, as sh o w n  in Fig. 30 [186]. T h e n  the d ie lectr ic  constants as 

fu n c t io n s  o f  the q u an tu m  d o ts  are  ca lcu la te d  as an integral from  the optical abso rp tion  

sp e c tr u m . In d e e d ,  the d ie lectr ic  co n stan t  is fo u n d  to  red u ce  significantly  from  its bulk  value, 

as s h o w n  in Fig. 31. For a q u a n tu m  d ot,  d if feren t d ielectric  co n stan t  can  be defined. O n e  
as th e  to ta l  po la r izat io n  o f  the q u a n tu m  dot, a n o th e r  as the sc re e n in g  inside the q u an tu m  

dot. T h e s e  tw o die lectr ic  c o n stan ts  are  d ifferen t. U sin g  the fo r m u la  o f  Eq. (45), the E P M  
result  f o r  the total  p o lar ization  can  b e  fitted by a  =  4.25 A  and I =  1.25, and the internal 

s c r e e n in g  d ie lec tr ic  constant c a n  b e  fitted by a  =  6.9 A  and / =  1.37. T h e  small exp onentia l  

c o m p o n e n t  / c o m p a re d  to th e  g e n e r a l iz e d  P e n n ’s m odel is rem iniscen t o f  the soft sealing o f  
the c a lc u la te d  E P M  q u an tu m  c o n f in e m e n t  c o m p a r e d  with effect ive  m ass result.

T h e  d ie lectr ic  constant w a s  a lso  ca lcu la te d  by using se lf-con sisten t calculations. In 
R ef.  [187], L a n n o o ,  D e le r u e ,  and A l la n  ca lc u la te d  a d o n o r  impurity at the c en ter  o f  a q u a n 

tum  d o t  w ith  a L C A O  basis and a  H a r tr e e  C o u lo m b  interaction. Self-co nsistent poten tia ls  
an d  d o n o r  b in d in g  en erg ies  a re  c a lc u la te d ,  and the results are fitted to d ielectric  screen in g

E(ev)

Figure 30. C a l c u l a t e d  o p t i c a l  a b s o r p t i o n  s p e c t r a  o f  S i  s y s t e m s  w i t h  d i f f e r e n t  s i z e s .  T h e  e x p e r i m e n t a l  d a t a  i n  ( a )  a r e  

f r o m  R e f .  1 1 8 6 | .  T h e  v e r t i c a l  a r r o w s  d e n o t e  b a n d  g a p  v a l u e s .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 8 2 | .  L .  W .  W a n g  

a n d  A .  Z u n g e r .  P hys. Rev. Le tt. 7 3 .  1 0 3 9  ( 1 9 9 4 ) .  ©  1 9 9 4 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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Q u a n t u m  D o t  R a d i u s  R (A)

Figure 31. C a l c u l a t e d  r e d u c e d  d i e l e c t r i c  c o n s t a n t s  i n  a  S i  q u a n t u m  d o t .  T h e  d a s h e d  l i n e  i s  f o r  t h e  g e n e r a l i z e d  

P e n n ' s  m o d e l ,  e 4 i s  f o r  t o t a l  p o l a r i z a t i o n ,  a n d  e x i s  f o r  e x c i t o n  s c r e e n i n g .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 8 2 ] ,  

L .  W .  W a n g  a n d  A .  Z u n g e r ,  Phys. Rev. L e tt.  7 3 ,  1 0 3 9  ( 1 9 9 4 ) .  ©  1 9 9 4 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .

m odels .  T h e  so -ca lcu lated  results can be litted with a  =  9.2 A and / =  1.18. F u rth erm o re , 

the d ie lectr ic  sc re e n in g  has been ca lcu lated  using L D A  m ethods [120]. T h e  total p o lar ization  

o f  the q u an tu m  dot is calcu lated  u n d e r  an external perturbation. A g a in ,  the result can  be
_ o

fitted by Eq. (45) with a  =  9 .1  A  and I =  1.3. E xp erim entally ,  it is very  difficult to m easure  

the d ie lectr ic  c o n s tan t  o f  a q uan tum  dot directly. Krauss  and Brus [188] have used  a A F M  
tip and tip-substrate cap acita n ce  to m easure  the total po larization  and ch arge  e f fe ct  o f  a 
single q u an tu m  dot w h e n  it is po sit ion ed  b etw een  the A F M  tip and the substrate. T h e ir  esti

m a te  o f  the d ie lectr ic  constant fo r  a C d S e  q uan tum  dot roughly  a g re e s  with the theoretical  
p red iction  [189].

O n e  recent a d v a n c e  on the issue o f  d ielectric  screen in g is the w o r k  by O g u t ,  B urdick, 

S aa d , and C h e l ik o w s k y  [190]. In this w ork, the die lectr ic  matrix e ( r , , r 2) is c a lc u la te d  and 

the w h o le  m atrix is inverted, using so m e m athem atical  tricks. T h e  inverse d ie lectr ic  function 
6 _l(r| ,  r2), written  as an effect ive  e ( r , ,  r2) in the style o f  E q .  (32) [replacin g e bi]i]k with in 

E q. (32)]. Is shown in Fig. 32. T h is  e ( r , ,  r2) ap p ro a c h es  1 b efore  the q u an tu m  dot radius R.  
U n fo rtu n ate ly ,  the qu an tu m  dots are to o  small to derive any defin ite conclusion s regardin g 
issues like the su rface  polarization  m odel.

4.3. Photoluminescence Lifetime and Phonon Coupling
B e c a u s e  o f  the finiteness o f  the q u an tu m  dot, the translational sym m etry  o f  the periodic  

crystal has b e e n  broken . A s  a result, there is no m o m en tu m  co n serv atio n  rule in the optical 
transition. T h e  indirect Si transition in bulk  has c h an g e d  into a p s eu d o d ire ct  transition. I f  the

Figure 32. T h e  a v e r a g e d  s c r e e n i n g  f u n c t i o n s  e‘ ( r )  =  l / e  * ( 0 , /  )  f o r  t h e  t h r e e  q u a n t u m  d o t s  S i l t 4 ,  S i 5 H ! : ,  a n d  

S i ^ H ^ , .  T h e i r  e f f e c t i v e  r a d i i  a r e  3 . 2 ,  5 . 4 ,  a n d  1 0 . 4  a . u . ,  r e s p e c t i v e l y .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 9 0 ] ,  S .  O g u t  

e t  a l . .  Phys. Rev. Le tt.  9 0 ,  1 2 7 4 0 1  ( 2 0 0 3 ) .  {0  2 0 0 3 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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sin glc-p artic le  w a vefu n ction  *//, has b e e n  calcu lated  from  Eq. ( I I ) ,  the optica! transition 

lifetim e r  b e tw e e n  states / and f  can  be ca lcu lated  as

-  =  />|2 ( 5 ())
t  3 m~c~

w h e r e  n =  2.6 is the effe ct ive  refractive  index o f  Si quan tum  dot, and co is the p h oton  

a n g u la r  freq u e n cy , a  =  e 2/ h c .  E q u a t io n  (50) has b een  used to calcu late  the C B M  to  V B M  

r e co m b in a t io n  rate at room  te m p e r a tu re  un der the E P M  approach; the result is shown in 

Fig. 33 [191,  192]. T h e  em pirical T B  calcu latio n  p ro d u c e  alm ost identical results [36) shown 

in Fig. 7. Fro m  Figs. 7  and 33, w e  see  that the ca lcu lated  P L  life tim e is abou t 10 tim es 

lo n ger  than the exp erim e n ta lly  m e a su re d  value. T h is  m ean s  that a lthough the C B M  to V B M  

transition is a llow ed  and p s e u d o d ire ct ,  this transition itself is not stron g en o u g h  to explain 

the o b se r v e d  P L  l ifetim e.
E xp erim en ta lly ,  it is shown (Fig. 5) that the phonon-assisted  transitions are strong, with 

their P L  p e a k  am plitudes stron ger  than the nonassisted transition. Thus, the key  to get a 

b etter  a g re e m e n t  w ith  the e x p e r im e n t  for  the transition lifetime is to con sider  the p h o n o n -  

assisted transitions. T h is  w as first d o n e  by H ybertsen  [193]. H ybertsen  used an effe ct ive  

mass m odel for  the e lectro n  w a v e fu n ctio n s  and bulk  p a ram eters  for  the e le c tr o n -p h o n o n  

couplings. H e  was a b le  to show  th at the ph onon-assisted  transitions are indeed a bou t an 

o r d e r  o f  m a gn itu d e larger  than the ze r o -p h o n o n  transition, as sho w n  in Fig. 34. R ecently , 

D e le ru e ,  A l la n ,  and L a n n o o  [194] have  ca lcu late d  the phonon-assisted  transitions using a 
T B  m odel.  In this calcu lation, the e lectro n  and p h on o n  systems are treated  as a w h ole .  

This  a llows a treatm en t o f  m u lt ip h o n o n  processes. A l l  the ph ono n  m o d es  are ca lcu lated  

using a va len ce  force  field m od el,  a n d  the c o u p lin g  betw e en  all the ph ono n  m o d e s  and the 

transition e lectron ic  states arc  c a lcu la te d  explicitly using H a r r iso n ’s rule [83] fo r  ch a n g e s  o f  

T B  p a ram eters  fo l lo w in g  the a to m ic  disp lacem en ts.  A g a in  strong ph onon-assisted  transitions 
are ob ta ined. In particu lar  the reso n an t P L  sp ectrum  shapes with the ph on o n  replica  p eaks 

are calcu lated , and they c o m p a re  w ell  with the exp erim ental  results, as shown in Fig. 35. 

A ll  the w o r k  has d em o n stra ted  that the P L  lifetim e and phonon-assisted  transitions in Si 

q uan tum  dots  are re latively  w ell  u n de rstood .

P h o t o n  E n e r g y  ( e V )

Figure 3 3 .  T h e  r a d i a t i v e  r e c o m b i n a t i o n  r a t e  a s  a  f u n c t i o n  o f  t h e  l u m i n e s c e n c e  p h o t o n  e n e r g y .  E x p e r i m e n t a l  c u r v e s  

( 1 )  a n d  ( 2 )  a r e  f r o m  R e f .  ( 1 9 1 ]  a n d  [ 1 9 2 ] ,  r e s p e c t i v e l y .  T h e  s y m b o l s  ♦ ,  - h  a n d  ■  r e p r e s e n t  c a l c u l a t e d  r e s u l t s  

f o r  s p h e r i c a l ,  r e c t a n g u l a r ,  a n d  c u b i c  q u a n t u m  d o t s  a n d  a r e  f o r  z e r o - p h o n o n  p r o c e s s .  R e p r i n t e d  w i t h  p e r m i s s i o n  

f r o m  [ 6 9 J ,  L .  W .  W a n g  a n d  A .  Z u n g c r ,  J. P hys. C lten i. 9 8 ,  2 1 5 8  ( 1 9 9 4 ) .  ©  1 9 9 4 ,  T h e  A m e r i c a n  C h e m i c a l  S o c i e t y .
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MA)

Figure 34. R a d i a t i v e  r e c o m b i n a t i o n  t i m e  a s  a  f u n c t i o n  o f  t h e  b l u e - s h i f t  o f  t h e  p h o t o n  e n e r g y  f r o m  t h e  b u l k  S i  

b a n d  e d g e :  z e r o - p h o n o n  t r a n s i t i o n s  ( d o t s ) :  t r a n s v e r s e  o p t i c a l  ( T O )  p h o n o n - a s s i s t c d  t r a n s i t i o n s  ( l i n e ) .  T h e  t o p  s c a l e  

i n d i c a t e s  t h e  e q u i v a l e n t  c u b e  s i z e .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 9 3 ] .  M .  S .  H y b e r i s e n .  Phys. Rev. L e tt.  7 2 .  1 5 1 4  

( 1 9 9 4 ) .  € -  1 9 9 4 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .

4.4. Exchange Splitting
T h e  P L  l i fe t im e  discussed  in previous sections is the l ifetim e at room  te m p eratu re .  A t  very 

low  te m p e ra tu re ,  the  P L  l ifetim e can he m uch longer, and the fine structure o f  the e lectron ic  

state  can he d e d u c e d  fro m  the l ifetim e analysis. By studying the P L  lifetim e d e p e n d e n c e  on 

the te m p e ratu re ,  C a lc o t t  et al. [195] have p ro p o sed  a two-level m odel. In this m odel, the P L  

c o m e s  from tw o e n e r g y  levels split hy A. T h e  u p p er  level has a short lifetime r r , and  the 

lo w e r  level has a lo n g  l ifetim e r 7 , and this level is three fo ld  d e g e n e ra te d .  T h e s e  tw o levels 

are  o c c u p ie d  hy th e rm a l  distribution  un der  k T .  A s  a result,  the total P L  life time r  is

T ' =  [ 3 t ; ‘ +  r r ' exp( — A/A:7')|/[3 +  e x p ( - A / A T ) ]  (5 1)

W h e n  form u la  is used  to fit the exp erim e n ta l  data, they get  t l  and r r , as sh o w n  in Fig. 36. 

W h e n  the te m p e r a t u re  is high, the r ,  and tl: c h an g e  with T . T h a t  might indicate that o th er  
e n e r g y  levels are  involved , and E q. (5 1)  m ight no  lo n ger  be a g o o d  descrip tion , but w h en  the 

te m p e ra tu re  is low, t l and  r L- are in d e p en d en t  o f  7\ sh o w in g the validity  o f  this m odel. T h e s e  

tw o  levels ca n n o t  b e  ex p la in e d  by p h o n o n  replicas. Instead, they have b een  assum ed to be 

the result o f  e x c h a n g e  splitting [ 195]. In particular, this will explain the th re e fo ld  d e g e n e ra cy  

o f  the lo w er  level state  and its lo n g  radiation lifetim e: it is a 5  =  1 spin fo rb id d en  dark  state. 
T h e  fitted e n e r g y  sp litt ing A  as a fun ction  o f  the P L  en ergy  (and thus the q u an tu m  d o t  size) 
is shown in Fig. 37.

E n e r g y  ( m e  V }

F i g u r e  3 5 .  E x p e r i m e n t a l  r e s o n a n t  p h o t o l u m i n e s e e n c e  s p e c t r u m  ( f u l l  l i n e )  c o m p a r e d  t o  t h e  t h e o r e t i c a l  r e s u l t  f o r  a  

h v d r o g e n - p a s s i v a t e d  d u s t e r  w i t h o u t  ( d a s h e d  l i n e )  o r  w i t h  ( d o t t e d  l i n e )  p h o n o n - a s s i s t c d  e n h a n c e m e n t .  R e p r i n t e d  

w i t h  p e r m i s s i o n  f r o m  | ! 9 4 J .  C .  D e l e r u c  e t  a l . .  Phys. Rev. B  h 4 .  1 9 3 4 0 2  ( 2 0 ( H ) .  €  2 0 0 1 .  T h e  A m e r i c a n  P h y s i c a l  

S o c i e t y .
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Figure 36. T e m p e r a t u r e  d e p e n d e n c e  o f  t h e  P h o t o l u m i n e s c e n c e  (PL)  d e c a y  t i m e .  E a c h  b r o k e n  l i n e  i s  a  f i t  o f  t h e  

M a t a  a t  a  s i n g l e  P L  e n e r g y  t o  t h e  m o d e l  o f  a  t h e r m a l - e q u i l i b r i u m  t w o - l e v e l  s y s t e m ,  w i t h  t h e  u p p e r  l e v e l  l i f e t i m e  

t, a n J  l o w e r  l e v e l  l i f e t i m e  t( a n d  a  f i x e d  e n e r g y  s p l i t t i n g  A .  T h e  r a t i o  o f  t h e  l o w e r  s l a t e  t o  t h e  u p p e r  s t a t e  

d e g e n e r a c i e s  i s  a s s u m e d  t o  b e  t h r e e .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 9 5 ] ,  P .  D .  J .  C ' a l c o t t  c t  a l . . . / .  Phys. C o n d cn s . 
M atter. 5 .  L 9 1 ( 1 9 9 3 ) .  ©  1 9 9 3 .  T h e  I n s t i t u t e  o f  P h y s i c s .

T h e r e  is a n o th e r  w ay  to m easure  this en ergy  splitting directly; ca l led  on set  e n e r g y  in 

reso n an tly  excited  P L. It is foun d  that the m ea su red  P L  sp ectru m  has a on set  e n e r g y  A on 
b e lo w  the exciting laser energy. A b o v e  this en ergy  (i.e., in the e n e r g y  ran ge o f  E );iscr -  A on 

and £ lascr), th ere  is a lm ost no P L  signal. T h e  P L  sp ectrum  starts b e lo w  £,ascr -  A on. T h is  is 

like a S to k e s  shift, not in the P L  peak , but in the starting point o f  the P L  sp ec tru m . T h is  

e n e r g y  loss can b e  easily  explained with the two-level m odel; thus, the on set  e n e r g y  A on is a 

d ire ct  m e a su r e m e n t  o f  the tw o-level splitting A. T h e  result o f  this o n se t  e n e r g y  is a lso  shown 

in F ig. 37. N o te  that this on set  en ergy  is system atically  sm aller  than the A  m e a s u r e d  from  

P L  life time analysis o f  Eq. 51.

T h e o re t ica l ly ,  M artin  et al. [196] have calcu lated  the exch a n g e sp litt ing  using the em p irical  
T B  m o d el.  T h is  can be view ed  as a lim ited C l  calcu lation  using E qs. 29 and 30. H ere, 

on ly  the V B M  and C B M  states are used in the C l  con fig u ration  with their  fo u r  possible 

spin com b in at ion s .  T h e s e  four  d e g e n e ra te d  states are split by the e x c h a n g e  interaction  o f

G a p  ( e V )

Figure 37. E x c h a n g e  s p l i t t i n g  b e t w e e n  t h e  t w o  l o w e s t  e x c i t o n i c  l e v e l s  i n  a s y m m e t r i c a l  s i l i c o n  c r y s t a l l i t e s  w i t h  r e s p e c t  

t o  t h e i r  e x c i t o n i c  b a n d  g a p .  C r y s t a l l i t e s  h a v e  u n d u l a t i n g  e l l i p s o i d a l  s h a p e s  w i t h  a  l o n g e r  a x i s  i n  t h e  ( 1 0 0 )  d i r e c t i o n  

( o p e n  c i r c l e s ) .  ( 1 1 0 )  d i r e c t i o n  ( o p e n  t r i a n g l e s ) ,  a n d  ( 1 1 1 )  d i r e c t i o n  ( 4 - ) .  C r o s s e s  c o r r e s p o n d  t o  t h e  a v e r a g e  o f  t h e  

s p l i t t i n g  o v e r  a l l  t h e  o r i e n t a t i o n s .  B l a c k  s q u a r e s  a r e  t h e  f i r s t  o n s e t s  m e a s u r e d  b y  s e l e c t i v e l y  e x c i t e d  p h o t o l u m i 

n e s c e n c e ,  a n d  b l a c k  d o t s  a r e  t h e  e n e r g y  s p l i t t i n g  d e r i v e d  f r o m  t h e  t i t  o f  t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  l i f e t i m e .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 9 f t ] ,  E .  M a r t i n  e t  a t . ,  Phys. Rev. H 5 0 .  1 8 2 5 8  ( 1 9 9 4 ) ,  ©  1 9 9 4 .  T h e  A m e r i c a n  

P h v s i c a l  S o c i e t y .
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Eq. (30), p ro d u c in g  a S  =  I low er  e n erg y  state an d  S  =  0 h igh er  en ergy  state. T h e  ca lcu lated  
splitting for  d ifferen t shapes o f  q uan tum  dots  is sh o w n  in Fig. 37. A lth o u g h  o f  the sam e 

o r d e r  o f  m agn itude, the c a lcu late d  results are system atica lly  sm aller  than the ex p erim en ta lly  

m ea su red  values. L e u n g  and W h a le y  [78j r e c a lc u la te d  this e xch an g e  splitting using their  
T B  m odel;  their result is m uch larger than the result o f  M artin  et al. [196], a lthough both 
used em pirical T B  m odels .  A s  shown in Fig. 38 [197], L e u n g 's  result agrees  well with the 

A from  lifetim e m e a su r e m e n t in R ef.  [195]. T h is  situation  fu rth er  ch an g e d  w h en  R e b o r e d o  

et al. [198] rec a lc u la te d  this e xch a n g e  splitting usin g the E P M .  In the E P M , the e xch an g e  

interaction  in Eq. (30) can be c a lcu late d  direct ly  w ith o u t  m a kin g  any assum ptions for  the 
a to m ic  w a vefu n c tio n s  like in the T B  m odels .  A s  sho w n in Fig. 38, the resulting E P M  splits 
agree  w ell  with the ex p erim en ta lly  m e a su r e d  o n se t  e n e r g y  in Ref. [195]. T h e r e  are o th e r  

e xp erim en ta l  A  using the l ifetim e analysis. S o m e  [197] o f  these results a gree  with the therm al 
analysis data  in Ref. [195], and so m e [43] agree  with the sp ectrum  onset data  in R ef. [195]. 

Interestingly, R e b o r e d o  et  al. [64] have a lso  p r o p o s e d  a n o th e r  m od el,  in which the en ergy  

levels o f  a perfect ly  Td sym m etry  Si q u an tu m  d o t  can  b e  split by the C o u lo m b  interaction 
a lo ne , w ith out the help  o f  the e xch an g e  interaction .

4.5. Effects of Surface Passivations
A s  w e discussed earlier, the exp erim e n ta l  P L  e n e r g y  d e p e n d s  sensitively on  the surface 
passivation and oxidization. Table 1 lists the possib le  su rface  passivation a to m s for d ifferen t 

synthesis m eth o d s  and postsynthesis  c on d itio n s.  F igu re  8 sh o w s the agin g e ffe ct  o f  Si 

qu an tu m  dots  p laced  in the atm o sp h ere  as the su rfa ce  is g r a d u ate ly  oxid ized  away. F igure  39 
shows the scatter  o f  exp erim e n ta l  P L  e n e r g ie s  p r o d u c e d  by d ifferen t ex p erim e n ts  [199]. T h e  

h igh er-energy  points in Fig. 39 m ight be the result o f  d if fe re n t  P L  peaks, which are related  
to bulk  direct transition V25 -  V]5. E ven  for  the lo w e r -e n e r g y  points in the sh ad ed  area,  

h o w e ver ,  the scatter ing is about I eV. N ev erth e less ,  as sho w n  in Fig. 28 all these scattered  

exp erim en ta l  P L  en erg ies  are  b e lo w  the th e o re tic a l ly  c a lcu la te d  on es,  assum in g full H p as
sivations. N o w  m ost research e rs  b elieve  that this d i f fe r e n ce  is the result o f  the ex istence o f  

su rface  O  atom s. A s  shown in Table  1, O  a to m s exist in a lm o st all the sam ples, unless the 
sa m p le  is un der very  c are fu l  control.  A  c a r e fu l  e x p e r im e n t  has b e e n  carried  o u t  by W olkin 

et al. [39] to  address  the q uestion  o f  su rface  O  and the red-shift it produces.  T h e  result is

Excitonic Gap (eV)

Figure 38. E x c h a n g e  s p l i t t i n g  b e t w e e n  t h e  t w o  l o w e s t  e x c i t o n i c  l e v e l s  a n d  c o m p a r i s o n  t o  d i f f e r e n t  m e t h o d s ,  b o t h  

t h e o r i e s  a n d  e x p e r i m e n t s .  T h e  c a l c u l a t e d  r e s u l t s  a r e  R e b o r e d o  f o r  R e f .  ( 6 4 j .  a n d  L e u n g  f o r  R e f .  17 8 ) .  T h e  e x p e r 

i m e n t a l  r e s u l t s  a r e  C a l c o t t  e t  a l .  ( o p t )  ( T h e r m )  f r o m  R e l .  [ J 9 5 ] ,  K o v a l e v  e t  a l .  f r o m  R e f .  [ 4 3 ] ,  a n d  B o r n g e r s m a  

e t  a l .  f r o m  R e f .  [ 1 9 7 ] .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 6 4 ] .  F .  A .  R e b o r e d o  e t  a L  P hys. Rev. li 6 1 .  1 3 0 7 3  ( 2 0 0 0 ) .  

€ >  2 0 0 0 .  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .
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diameter (nm)

Figure 39. S u m m a r y  o f  d i f f e r e n t  e x p e r i m e n t a l  d a t a  o n  p e a k  P L  e n e r g y  v e r s u s  S i  n a n o c r y s t a l  s i z e .  R e p r i n t e d  w i t h  

p e r m i s s i o n  f r o m  [  1 9 9 ] ,  J .  P .  W i l c o x o n  e t  a l . ,  P hys. Rev. B  6 0 ,  2 7 0 4  ( 1 9 9 9 ) .  <Q 1 9 9 9 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .

shown in Fig. 40. It is sho w n  that fo r  Si q u a n tu m  dots with d iam e ter  less than 2 nm, the 

introduction  o f  O  can c ause  a P L  red-shift  as large as 1.0 eV. H o w eve r,  b e fo re  the red-shift, 

the fully  H -p ass ivated  q u an tu m  d o t  has a P L  e n erg y  that agrees  excellently  with the E P M  

and em p irica l  T B  ca lcu late d  results.
T h e  O  passivation  e ffe ct  on  Si q u a n tu m  d o t  is curren tly  un der intense theoretical  inves

tigation. It has b e e n  c a lcu late d  by m a n y  m eth o d s, including em pirical T B ,  H F - C I ,  L D A ,  

T D L D A ,  and  Q M C .  In the sa m e p a p e r  by W o lk in  et al. [39], A l la n  and D e le r u e  have c a lc u 

lated the O  e ffe ct  by con s id e rin g  a S i = 0  d o u b le  b o n d  (silinone). T h e y  found that the ban d  

ga p  is, indeed, reduced. T h e y  h a ve  classified  th ree  zon es  a ccord in g  to the q u an tu m  d o t  d ia m 

eter  d .  W h e n  d  >  3 nm, the su rfac e  O  a to m  has no e ffe ct  on the PL. W h e n  1.6  <  d  <  3 nm, 

the su rface  O  atom  will p r o d u c e  a lo ca l ized  co n d u ctio n  band state. W h e n  d  <  1.6 nm, the 

su rface  O  will also p ro d u c e  a lo c a l iz e d  v a le n c e -b a n d  state. T h e  calcu lated  overall  b an d  g a p  

agrees  well with the ex p erim e n ta l ly  m e a su r e d  values, as shown in Fig. 40.

Figure 40. C o m p a r i s o n  b e t w e e n  e x p e r i m e n t a l  a n d  t h e o r e t i c a l  P L  e n e r g i e s  a s  a  f u n c t i o n  o f  c r y s t a l l i t e  s i z e .  T h e  

u p p e r  l i n e  i s  t h e  c a l c u l a t e d  b a n d  g a p  f o r  f u l l y  H  p a s s i v a t e d  S i  q u a n t u m  d o t s ,  a n d  t h e  l o w e r  l i n e  i s  t h e  c a l c u l a t e d  

b a n d  g a p  i n  t h e  p r e s e n c e  o f  o n e  S i  =  0  b o n d .  T h e  •  a n d  O  a r e  m e a s u r e d  p e a k  P L  e n e r g i e s  f o r  f r e s h l y  

s y n t h e s i z e d  a n d  o x i d i z e d  S i  c r y s t a l l i t e s  r e s p e c t i v e l y .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 3 9 ] ,  M .  V .  W o l k i n  e t  a l . ,  8 2 ,  

1 9 7  ( 1 9 9 9 ) .  ©  1 9 9 9 ,  T h e  A m e r i c a n  P h y s i c a l  S o c i e t y .



678 Theoretical Investigations of  Silicon Quantum Dots

T h e  e ffe cts  o f  su rface  O  a to m  have also been stu d ie d  by C a ld a s  [200], using a q u an tu m  

ch em istry  sem ie m p irica l  H F - C I  m eth o d . In this study, it is fo u n d  that the S i = 0  can  be 

en erg e tica l ly  costly  c o m p a re d  with o th e r  O  su r fac e  in corpo ration s,  like an Si—O —Si bridge, 

with o n e  O  rep lacin g  two H a to m s b o n d e d  to tw o  n e ig h b o rin g  Si a tom s. H o w e v e r ,  it has 

a lso  b een  fo u n d  that the Si—O —Si has a small e f fe c t  on  the  optical transition en ergy . O n  the 

o th e r  hand, the S i = 0  bond will p r o d u c e  a large red-shift,  as in the em p irical  T B  calculation. 

F u rth e rm o re ,  it is fo u n d  that a  large S to k e s  shift exists in the excited  state, c o rr e s p o n d in g  to 

a large surface  relaxation. T h is  is true even in p u re ly  H  b o n d e d  surfaces. Such excited-state  

S to k e s  shift m ight cau se  som e H d e fe c t  states, as p r o p o s e d  in R ef.  [201].

T h e  sam e O  passivation  e f fe cts  have b een  stu d ie d  u sin g the L D A  m eth o d . In the L D A  

ca lcu latio n s  [202-204], as b e fo r e ,  it w as  foun d that the the S i = 0  bond will introduce a large 

b a n d -g a p  reduction, w h erea s  the S i - O - S i  b r id ge  con fig u ra tio n  will on ly  introduce  a small 

red u ct io n . T h is  is show n  in F ig . 41 by the C B M - V B M  band g ap  o f  the L D A  calculation. 

In reality, many O  a tom s can be on  the surface. T h u s ,  the e f fe cts  o f  m ultiple  O  a to m  have  

a lso  b een  studied. In the w o r k  o f  L u p p i  et al. [203], a saturatio n  level is fo u n d  a fter  a few

O  a to m  incorpo ration s,  and the final en e rg y  level  is in d e p e n d e n t  o f  the  q uan tum  dot sizes 

(a lth o u g h  they are  all small q u an tu m  dots up to 35 Si a tom s).  T h is  is show n  in Fig. 42. 

H o w e v e r ,  in the calcu latio n  o f  P u zd er  [202], fo r  a 6 6-Si-atom  q u an tu m  dot, the b an d  gap  

c o n t in u e s  to d e c re a s e  a lm ost dow n  to the bulk  b an d  g a p  as the  n u m b er  o f  O  increases. T h is  

is show n  in Fig. 43. T h is  result see m s d ifferen t  fro m  that in Fig. 42.

S im ilar  systems have  a lso  b een  studied  by Vasil iev  et al. [205], using the T D L D A  m ethod. 

A g a in ,  red-shift has b een  foun d. H o w e v e r ,  th ey  fo u n d  a lm o st  e q u a l  a m o u n t o f  optical  

b a n d -g a p  red-shifts fo r  S i - O - S i  and  S i = 0  passivations,  a lth o u g h  the ab so rp tion  sp ectra  

sh a p e s  are d ifferen t for  these two types o f  passivations. T h is  conclusion  is d ifferen t  from  

all the  o th e r  calcu lations.  T h is  m ight be the result  o f  the special criterion  used in their 

study to d e te rm in e  the op tica l  band gap. E sp ec ia lly  in this case , as r ep o rte d  in R ef. [205], 

the  direct optical transition b e tw e e n  C B M  and V B M  fo r  both  the S i - O - S i  and S i — O  are 

forbidden .

Finally, the Q M C  m eth o d  is used to c a lcu la te  the  O  passivation  [178]. T h e  results are 

sh o w n  in Fig. 44 [206, 207]. T h e  Q M C  results a re  sim ilar  to  the L D A  results, but they
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Figure 41. C o m p a r i s o n  o f  l o c a l  d e n s i t y  a p p r o x i m a t i o n  ( L D A ) - p r e d i c t e d  c o n d u c t i o n - h a n d  m i n i m u m - v a l a n c e - b a n d  

m a x i m u m  g a p *  f o r  H - p a s s i v a t e d  s i l i c o n  n a n o d u s t e r s  ( ■ ) .  w i t h  a  s i n g l e  S i  —  O  b o n d  ( ♦ ) .  S i - O - S i  b r i d g e  ( A ) ,  a n d  

i n t e r s t i t i a l  o x y g e n  s i t e  ( • ) .  H O M O - L U M O .  h i g h e s t  o c c u p i e d  m o l e c u l a r  o r b i t - l o w e s t  u n o c c u p i e d  m o l e c u l a r  o r b i t .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 2 0 2 J .  A .  P u z d e r  e t  a l . .  J. C h e w . Phys. I ! 7 .  (> 7 2 1  ( 2 0 0 2 ) .  ©  2 0 0 2 ,  T h e  A m e r i c a n  

I n s t i t u t e  o f  P h v s i c s .
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N u m b e r  o f  S i = 0  D o u b l e  B o n d s

Figure 42. T h e  l o c a l  d e n s i t y  a p p r o x i m a t i o n - c a l c u l a t e d  c o n d u c t i o n - b a n d  m i n i m u m - v a l a n c e - b a n d  m a x i m u m  e n e r g y  

g a p s  a s  a  f u n c t i o n  o f  t h e  n u m b e r  o f  S i  — O  b o n d s  a t  t h e  c l u s t e r  s u r f a c e .  T h e  d i f f e r e n t  v a l u e s  f o r  t h e  s a m e  c l u s t e r  

a t  f i x e d  n u m b e r  o f  S i ^ O  b o n d s  c o r r e s p o n d  t o  d i f f e r e n t  r e l a t i v e  l o c a t i o n s  o f  t h e  S i = 0  b o n d s  a t  t h e  s u r f a c e .  

R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  ( 2 0 3 ] ,  M .  L u p p i  a n d  S .  O s s i c i n i ,  J. A p p l. Phys. () 4 ,  2 1 3 0  ( 2 0 0 3 ) .  ©  2 0 0 3 .  T h e  

A m e r i c a n  I n s t i t u t e  o f  P h y s i c s .

are  up-shifted, as sho w n  in Fig. 27. H o w e v e r ,  the shift for  the purely  H -p assivated  case is 

m o re  than th e  shift fo r  the O -p a ss iv ate d  case. T h is  is probably  b ec au se  for the O -p assiv ate d  

case ,  both  the C B M  and V B M  are localized  n ear  the S i = 0 .  C o n se q u e n t ly ,  the e lectron - 

h o le  C o u lo m b  interaction  is larg e r  in this case than in the purely  H -passivated  case. T h u s, 

if the C o u lo m b  interactions o f  E q .  (3 1)  w ere  included in the L D A  result, the L D A  S i— O  

curve  in Fig. 44 should be lo w e r e d  d o w n  relative to the purely  H-passivated curve. T h is  
w ould  brin g  the L D A  result c lo s e r  to the Q M C  result for the crossover  q u an tu m  dot size. 

O v era l l ,  the co m p a riso n  with the ex p e r im e n t  results is illustrated in Fig. 44. W e  see that 

using the O  passivation, w e can  at least qualitative ly  explain the scattered  exp erim en ta l  

data.

N u m b e r  o f  O x y g e n  P a s s i v a n t s

Figure 43. T h e  l o c a l  d e n s i t y  a p p r o x i m a t i o n - c a l c u l a t e d  c o n d u c t i o n - b a n d  m i n i m u m - v a l a n c e - b a n d  m a x i m u m  e n e r g y  

z a p s  a s  f u n c t i o n s  o f  t h e  n u m b e r  o f  S i  —  O  b o n d s  a n d  S i — O — S i  b r i d g e s .  T h e  s y s t e m  i s  a  S i Wl c l u s t e r .  H o m o -  

L u n i o .  h i g h e s t  o c c u p i e d  m o l e c u l a r  o r b i t - l o w e s t  u n o c c u p i e d  m o l e c u l a r  o r b i t .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 2 0 2 ] ,  

Y  P u z d e r  e t  a l . .  J. C h cn i. Phys. 1 1 7 ,  6 7 2 1  ( 2 0 0 2 ) .  € >  2 0 0 2 ,  T h e  A m e r i c a n  I n s t i t u t e  o f  P h y s i c s .
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Diameter (nm)

Figure 44. E n e r g y  g a p  v e r s u s  d i a m e t e r  f o r  H - p a s s i v a t e d  s i l i c o n  n a n o c l u s l e r s  w i t h  a n d  w i t h o u t  S i — O  b o n d s .  T h e  

u p p e r  p a n e l  ( a )  s h o w s  r e s u l t s  o f  l o c a l  d e n s i t y  a p p r o x i m a t i o n  ( L D A )  a n d  q u a n t u m  M o n t e  C a r l o  ( Q M C )  c a l c u l a t i o n s .  

T h e  c a l c u l a t e d  g a p s  o f  t h e  f u l l y  h y d r o g e n a t e d  c l u s t e r s  a r e  m a r k e d  b y  f i l l e d  c i r c l e s .  T h e  t h i c k  l i n e s  a r e  e x p o n e n t i a l  

f i t s  t o  t h e s e  c a l c u l a t e d  g a p s  t h a t  a p p r o a c h  t h e  r e s p e c t i v e  t h e o r e t i c a l  b u l k  g a p s .  T h e  l o w e r  p a n e l  ( b )  c o m p a r e s  t h e  

r e s u l t s  o f  e x p e r i m e n t s  ( S c h u p p l e r ,  R e f .  [ 2 0 6 ] ;  v a n  B u u r e n ,  R e f .  [ 1 8 0 ] ;  D i n h ,  R e f .  [ 2 0 7 J ) w i t h  t h e  ( s o l i d )  c u r v e s  

f i t t e d  t o  t h e  Q M C  g a p s .  R e p r i n t e d  w i t h  p e r m i s s i o n  f r o m  [ 1 7 8 ] ,  A .  P u z d e r  e t  a l . ,  Phys. Rev. L e tt.  8 8 ,  9 7 4 0 1  ( 2 0 0 2 ) .  

€>  2 0 0 2 .  T h e  A m e r i c a n  P h y s i c a l  S o c i c t y .

5. CONCLUSIONS
Si q u an tu m  dots can be divided into tw o classes: o n e  that is the l ith og rap h ic  o r  surface 

d ep osition  that synthesized  relatively  large q u an tu m  dots, and the o th er  is the small n a n o 

m e te r  q u an tu m  dots synthesized  via a variety  o f  m eth o d s. For the large Si q u an tu m  dots 

(10 -3 0  nm), on e o f  their  m ain  a p plicat io n s is the s in g le-e lectro n  device. T h u s  physical p h e 

n o m e n a  like C o u lo m b  B lo c k a d e  and q uan tum  tran sport a re  im portant. F o r  the  small q u an 

tum d o ts  ( 1 - 7  nm), their m ain  ap plicat io n  is for  o p tica l  devices. T h u s, their o p tica l  properties 

are essential.  In this review, we have  focu sed  on the small quantum  dots and their  optical 

prop erties .  O n e  especially  im p o rta n t type o f  the  sm all Si quan tum  dot is the p-Si. Since 

the d iscovery  o f  the stron g lu m in e sce n c e  o f  p-Si, t r e m e n d o u s  effort has b e e n  d e v o te d  to its 

study. In the last d ec a d e ,  it has b e e n  on e  o f  the m ain  topics in nanoscience.

L ike  bulk  silicon and silicon surfaces .  Si q u a n tu m  dot has b een  a test g ro u n d  for  m eth o d 

olog y  d e v e lo p m e n ts  and has p layed an im portan t ro le  in co m p u tatio n a l  n an osc ien ce. It is an 

interesting physical system b e c au se  it is indirect, that provides  many n ew  p h e n o m e n a  that 

do  not exist in a direct m ater ia l  svstem. H o w e v e r,  it is a lso  a difficult svstem b eca u se  the
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e x p e r im e n t a l  sa m p les  are o fte n  in h o m o g e n e o u s  with large size a n d  sh a p e  distributions. Its 

o p t ic a l  p r o p e r t ie s  a lso d e p e n d  sensitively  on  the surface passivations. In the early  days, this 
has c a u s e d  a lots o f  c on fu sion , but a fter  carefu l  clarif ication, the sensitivity  on su rfac e  passi

v a t io n  can  also p ro v id e  rich physical p h e n o m e n a .  C o m p a r e d  with the o rgan ic  su rfac e  passi
v a t io n s  in 11—V I  q u a n tu m  dots, the Si surface  passivation  is actually  s im p ler  and a m e n d a b le

lo  th e o r e t ic a l  investigations.
A f t e r  a d e c a d e  o f  w ork, a p icture  o f  the m ech an ism  for  op tica l  transitions in Si q u an tu m  

d o t  has e m e r g e d .  It is now  w id e ly  b e l ie v e d  that the P L  o f  p-Si and m o s t  o th e r  small Si q u a n 
tu m  d o ts  c o m e s  from  the interior  q u a n tu m  co n fin e m e n t states. T h e r e  are  fo u r  m a jo r  optical 

p r o p e r t ie s  in Si qu an tu m  dots: q u a n tu m  co n fin em e n t,  l ifetim e, p h o n o n  replica, and exch an g e 

sp litt ing. F o r  all th ese  fo u r  p ro p ert ies ,  th e o retica l  calcu latio ns h a v e  y ie ld  qualitative  to q u a n 

titative  a g r e e m e n ts  with exp erim e n ts .  For the blue-shift q u an tu m  c o n fin e m e n t  e f fe c t  on P L, 
fo r  very  sm all q u an tu m  dots ( < 2  nm), O  passivation  is n e e d e d  to  exp la in  the exp erim e n ta l  

results. T h is  is still an o n g o in g  investigation, and it has b e e n  stu d ie d  intensively  b y  various 
th e o r e t ic a l  m ethods.  It is still not k n o w n , for  ex a m p le ,  given  m u lt ip le  O  passivations, what 

is th e  critical size c/t., b e y o n d  w hich the states involved in optical tran sition  ch an ge  from  su r

fa ce  s ta tes  to inter ior  states o f  the q u an tu m  dot. D if fe r e n t  c a lcu la t io n s  have not c o n v e r g e d  

on this issue, and the a g r e e m e n t  w ith  the e x p e rim e n t  is q u alita tive  at best. If d c is large, 
then  o n e  has to  reth in k  the results in lifetim es, p h o no n-assisted  transitions, and e xch an g e  

splittings. A t  present,  the c a lcu la te d  va lu es  fo r  these pro p erties  a g r e e  w ell  with e x p e r im e n ta l  

results; b ut the ca lcu latio n s  are  d o n e  u n d e r  the assum ptio n  that the P L  transitions are  fro m  
th e  in ter io r  e ig en sta tes  and that the su rface  is fully passivated  by  H. C le a n e r  s a m p le s  with 
n a rro w e r  size distributions are highly d esirab le  for  b etter  th e o r y-e x p e r im e n t co m p ariso n s.

O n  the issues o f  m e th o d o lo g y  d e v e lo p m e n ts ,  th ere  are still a lot o f  w o r k  to do. C o m p u t a 
tional n an o sc ie n c e  is still in its infancy. N e w  m e th o d o lo g ie s ,  esp ec ia l ly  e m b e d d in g  te ch n iq u e s  

like the c h ar g e -p a tc h in g  m eth o d ,  are  highly desirable. O ( N )  scalin g is essential  for  a n y  m e t h 

o d s  to d e a l  w ith  th o usan ds o f  atom s. O n e  o f  such m eth o d s  is the s in gle-p art ic le-C I a p p ro a ch .  
H o w e v e r ,  at p rese n t  this a p p r o a c h  is b ase d  o n  classical m o d e l  d e r iv a tio n s  and physical intu
itions. A  m o r e  solid derivation  b ase d  on m an y-b o dy  th e o ry  will be  v e ry  helpful. A n o t h e r  very  

p r o m is in g  a p p r o a c h  is the Q M C  m e th o d .  It is n ow  possible to c a lc u la te  a few  h u n d re d  a tom s 
usin g this a p p ro a ch .  T h e  c o n c e p tu a l  s im plicity  o f  this m e th o d  is o n e  o f  its m ain a p p e a lin g  

qualit ies ,  but this m e th o d  is still re latively  n ew  for  excited-state  and large-system  calcu latio ns.  

M o r e  testing is n e e d e d  for  its accuracy .  If  th e re  is n o  r igorous p r o o f  that the D M C  many- 
b o d y  w a v e fu n c t io n  b ased  on  a  s ingle  excitation  con figuration  S la te r  d e te rm in a n t  (rep la c in g  

o n e  sin gle-particle  va len ce -b a n d  state  with o n e  c o n d u ctio n -b a n d  sta te )  will be o r th o g o n a l  to 

th e  g rou n d -sta te  D M C  m a n y -b o d y  w a v e fu n c t io n  based o n  the g ro u n d -sta te  S la te r  d e te rm i
nant. I f  the C l  sc h em e is any g u id e ,  then the exc ited  state m a n y -b o d y  w a v e fu n c t io n  should  
b e  a l in e ar  c o m b in at io n  o f  m a n y  sin gle-excitation  con fig u ra tion  S la te r  d ete rm in an ts ,  not a 
s ingle  S late r  dete rm in an t.  A  linear c o m b in a t io n  o f  S later  d e te rm in a n ts  p ro b ab ly  has  d ifferen t 

n o d a l  structures  than the single S la te r  dete rm in an t.  W ith o u t  a n y  p r o o f  for these issues, the 

b est  a p p ro a ch  is to  test this m e th o d  w ith  exp erim e n ts ,  b o th  for  b ulks  and for  q u a n tu m  dots. 
F o r  G W - B e t h e - S a l p e t e r  e q u a tio n ,  o n e  ch allen g e  is to m a k e  it sca la b le  to larger  systems. 

A t  present, this m e th o d  can  on ly  b e  ap p lied  to systems with d o z e n s  o f  atom s. F o r  the G W  

m e th o d ,  o n e  issue is to deal  with the intrinsically  n onlocal  se lf-en erg y  term . S o m e  n um erical  

a p p ro x im atio n  m ight be essential there . F o r  the B e t h e - S a lp e t e r  e q u a t io n  the d iag o n aliza t io n  
u n d e r  the s ingle-excitation  con fig u ra tio n  sp ac e  is a b o tt le n e c k .  P e rh a p s  so m e d yn a m ic  time 
integration  sc h e m e  that ch a n g e s  th e  B e t h e - S a lp e t e r  eq u a tio n  to a t im e -d e p e n d e n t  s in gle

particle  eq u a tio n  is the key. T h is  sc h e m e  w o u ld  be sim ilar  to  the T D L D A  s c h e m e , w hich 

c o n n ec ts  the t im e -d e p e n d e n t  K o h n - S h a m  eq u a tio n  with the B e t h e - S a l p e t e r  e q u a t io n  as in 
E q .  (22). It will  be  interesting to c o m p a r e  Eqs. (22), (29), an d  (40) m o r e  care fu l ly  f o r  T D L D A ,  

C l  and G W - B e t h e - S a l p e t e r  e q u a t io n  respectively . S uch  c o m p a ris o n  will reveal the c o n n e c 

tion betw e en  these m ethods, an d  p erh aps will give the em p irica l  a p p r o a c h e s  s o m e  solid 

gr o u n d  and give the high -end a p p r o a c h e s  s o m e  ways o f  a p p ro x im a tio n s .  A t  the c e n t e r  o f  this 
c o m p a riso n  is the u n derstan d in g  o f  the d ie lectr ic  sc re e n in g  in n an ostru ctu re s ,  in c lu d in g  its 
local field effects  and dyn a m ic  sc re e n in g  effects . T h is  d ie lectr ic  sc re e n in g  is used in all three  

m ethods, and the d ifferen t a p p ro x im a tio n s  o f  it have c o n tr ib u te d  to  the d i f fe re n ce s  o f  these
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three a p p ro a ch es .  F inally, fo r  large systems, a n o th e r  w ay to solve Eqs. (22), (29), and (40), 

is to write the tw o-p artic le  w a vefu n c tio n  in a variation al form [e.g., as in Eq. (42) with a 
Jastrow term ]. It n eed s  to  be p rov en  that the variation al m inim a o f  such tw o-p artic le  (e lectron  

and h o le )  w a v e fu n c t io n s  with an ap p rop ria te  tw o-p artic le  H am ilton ian s are  the solutio ns o f  
Eqs. (22), (29), and  (40).
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1. INTRODUCTION
M o d e l in g  o f  n an oscale  d e v ic e s  is curren tly  acq u ir in g  g ro w in g  im p ortan ce  and is reachin g 

m atu rity ,  in the sen se that q u an tita t ive  p red ictive  cap ab ilit ies  have b een  achieved. In partic

u lar, m o d e lin g  has b e c o m e  instrum ental  in the design o f  n ew  devices, in the interpretation  

o f  e x p erim e n ta l  results, and  in the ev alu a tio n  o f  n ew  d ev ice  proposals .

In particular, this latter  issue, the ev a lu a tio n  o f  new d ev ice  proposals , has b e c o m e  

e x tr e m e ly  relevant in the last few  years, a f te r  rea liz in g  that very  significant research effo rts  

h a v e  b een  spent in the d e v e lo p m e n t  o f  te c h n o lo g ie s  w h o se  intrinsic w eak n e sses  co u ld  have 

b e e n  d e te cte d  from  the v e ry  b egin n in g , if realistic  m o d els  had b een  co n s id e re d  instead o f  

v e r y  sim ple,  idealized  m od els ,  not including real-life  nonidealities, such as fabrication  to le r

an ces,  extern al in ter fere n ces ,  and asym m etries .

I S B N :  I - 5 8 8 8 3 - 0 5 2 - 7  H a n d b o o k  o f  T heoretica l a n d  C o m p u ta tio n a l N a n o tech n o lo g y
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687



688 Nanoscale Device Modeling

It is at the sam e tim e a p p a ren t  that a w ide range o f  simulation tools is n e ed ed  at d ifferen t 

levels  o f  approxim ation : realistic  m odels  are req u ired  for  single devices, to verify  their  o p e r 

ability in a variety  o f  con d itio n s and in the p rese n ce  o f  im perfections.  H ig h er- leve l,  m o re  
a p p ro x im a te  m o d els  m ust instead be d e v e lo p e d  to investigate circuits including from  a few  
to  millions o r  billions o f  devices. B e c au se  o f  c om p u tatio n a l  constraints, deta i led  m o d els  c a n 
not treat m o re  than a few dev ice s  at a time; th e re fo re ,  a hierarchy o f  s im u lat ion  tools  must 

be c re ate d ,  ran gin g fr o m  a tom istic  a p p ro ach es  to logic  level sim ulations.
In S ectio n  2 a b ro a d  o v e rv ie w  o f  the m od elin g  techn iques used for  n a n o d e v ice s  will be 

p resen ted . It is in d eed  im possible, within the space o f  this chapter, to c o v e r  all o f  these 

te ch n iq u e s  in dep th , th e re fo re ,  w e  have chosen to discuss in detail several  se le cted  top ics  in 
the rem ain in g  sections.

In Section  3 w e discuss a few  techn iques for the analysis o f  ballistic tran sport, starting 
fro m  those initially d e v e lo p e d  for  the investigation o f  d isordered  m ateria ls  a n d  o f  q u an tu m  
in ter fere n ce  devices. In particular, w e present a p p ro a c h e s  for  the ca lcu lat io n  o f  the tran s
mission and reflection m atrices  o f  a g en eric  n an ostructure, b ased on the recursive G r e e n 's  

fun ctio n, the m o d e-m a tc h in g ,  and the recursive scattering m atrix techn iques.  W e treat a lso 
the inclusion  o f  the e f fe c t  o f  a m agn etic  field, discussing a d van tages  a n d  sh o rtc o m in g s  o f  a 
few  m eth o d s  that can  be fo u n d  in the literature.

S ectio n  4 deals  with the s im ulation  o f  ballistic qu an tu m  wires defin ed  by realistic  p o te n 

tials, w ith  a discussion o f  so m e simplified sem ianalytic  tech n iqu es a llo w in g  the ca lcu latio n  o f  
the p o ten tia l  in a g a te d  heterostructure .  T h e  subtle issue o f  the b o u n d a ry  c o n d it io n s  at the 
ex p o s e d  surface will b e  e x a m in ed  in detail, presentin g the d ifferen t a p p r o a c h e s  that have 
b e e n  p ro p o se d  in the literature.

S ec tio n  5 will focus on  the sim ulation  o f  q u an tu m  dots and g e n e ric  n an ostru ctu res  with 
c o n fin e m e n t in all spatial d irections. T ech n iqu es  based on finite d ifferen ce s  will be d iscusscd  
for  the solution o f  the S c h ro d in g e r  equation. T h e n  the p ro b lem  o f  a ch ie v in g  se lf  consisten cy  
with the solution o f  the Poisson eq u a tio n  will be addressed , introducing also the u n d e rre la x 
ation techn ique.

In S ectio n  6 w e m o v e  on to  the sim ulation o f  ‘‘artificial m o le c u le s"  (i .e., system s m a d e  up 

o f  m ultip le  interacting q u an tu m  dots). T h e s e  structures require  particu lar  a tten tion  b ecau se  
o f  the presence  o f  q u a s id e g e n e r a te  states and the re levan ce  o f  the e lec tro stat ic  interaction , 
which can no t be sim ply  co n s id e re d  as a perturb ation  o f  the con fin em e n t en ergy . In such 
con d itio n s,  iterative m e th o d s  o ften  fail to con v erge , and if they do  n ot include a prop erly  

co n s tru cte d  m a n y-b o d y  w a ve  function (as in the c ase  o f  a density  fu n ctio n a l  a p p r o x im a 
tion), they  m ay yield  e r r o n e o u s  results. W e discuss the m eth od  b ase d  on a H u b b ard -like  
H a m ilto n ia n  and then a m o r e  ge n e ra l  and co m p le x  ap p ro a ch  based o n  an im p lem e n ta tio n  
o f  the c o n fig u ra tio n - in te ra c t io n  tech n iqu e c o m m o n ly  used in m o le cu la r  chem istry.

Finally, Section  7 dea ls  with the s im ulation  o f  sin gle-electron  circuits o n  the basis o f  the 
“ o r t h o d o x ” C o u lo m b  b lo c k a d e  theory. In particular, we fo c u s  on the M o n te  C a r lo  ap p ro a c h ,  

the m a ster  eq u ation  te ch n iq u e , and the ap p roxim ate  introduction o f  c o tu n n e lin g  into s im u 
lation codes.

2. OVERVIEW OF MODELING TECHNIQUES
In co m p a riso n  to the s im ulat ion  o f  traditional e lec tro n ic  circuits, such as th o se  b ase d  on 

C M O S  (c o m p le m e n ta r y  m e t a l -o x id e -s e m ic o n d u c to r)  transistors, in the case  o f  n an oscale  
d ev ice s  the hierarchy o f  too ls  must extend further toward the b otto m  e n d  (i.e., m o r e  refined, 
physics-based tools are  necessary). A to m istic  a b  ini t io  s im ulation  [1], starting from  first p r in 
ciples, w o u ld  be ideal, but it takes up huge co m p u tatio n a l  resources  as soo n  as structures 
are  larg e r  than 10-20 nm (c o rresp o n d in g  to o v e r  100,000 atom s); th e re fo re ,  ev en  with the 

m ost p o w e rfu l  s u p erc o m p u ters ,  it is applicab le  on ly  to a very lim ited n u m b e r  o f  cases. A  s tep 
fu r th e r  in sim plification is rep resen ted  by som e tight-binding a p p ro a c h e s  [2], w hich are still 

very  difficult  to apply  to an actual device , a lthough at the nanoscale, a n d  then by effe ct ive  
m ass ap proxim ation s,  w hich  can be s ingle-band or  m ulti-band, as in the c ase  o f  the k ■ p  
m e t h o d  [3],

A n y  o f  the ju st-m e n tio n e d  ap p ro a ch es  requires in general  the solution  o f  a self- 
con s is ten t S ch rod in ger-P o isson  p ro b lem , w iih  a level o f  c om plex ity  d e p e n d in g  on the specific
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ch ara cte ris t ics  o f  the device and on the relative im p orta n ce  o f  the electrostatic  interaction  
with respect  to the q uan tum  co n fin e m e n t en ergy. Significant simplification in transport p r o b 
lems can  be a ch ie v e d  using so called  hard-wall m od els ,  b ased on the assum ption that the 

d e v ic e  is d e l im ite d  by infinite poten tia l  barriers. In such cases, it is o ften  possible to use 
analytical so lutio n s o f  the S ch ro d in g e r  equation  in each  region, which significantly reduces  

the c o m p u ta t io n a l  e ffo rt  w hile  p reserv in g  m ost o f  the relevant physics.
T h e r e  are a lso techn iques that, a lthough introducing further simplifications in the d e sc r ip 

tion o f  the d e v ice  structure, include a m ore  prec ise  treatm en t o f  specific physical aspects. 

A n  e x a m p le  is rep rese n te d  by the L u ttin g er  liquid form ulatio n  o f  q uan tum  wire p ro b lem s 

14, 5], in w hich a very  abstract representation  o f  the involved nanostructure is a c c o m p a n ie d  
by a d eta i led  tr e a tm e n t o f  e lectron  correlations.

A n o t h e r  im p ortan t issue, for  which a co m p le te ly  satisfactory solution has not b een  fou n d  

yet, is the inclusion o f  dep h as in g  and dissipation p h e n o m e n a .  B asic  m odels  arc  ballistic 
(i.e. they  include an elastic  treatm en t) ,  which is a d e q u a te  as long as the d evice  is very  
small and the te m p e r a tu re  very  low. Actual  d evices  are, how ever, significantly a f fec ted  by 
d ep h a s in g  and dissipation  p h e n o m e n a  [6], with the fo r m e r  being particularly  im portant in the 

g ro w in g  field o f  q u an tu m  co m p u tin g . D e p h a s in g  and dissipation are most often  the results 

o f  the interaction  betw e en  the q u an tu m  system that w e are analyzing and the en viron m en t,  

w hich is ve ry  difficult  to m odel in a realistic way. A p p r o a c h e s  such as those b ased on  the 

C a ld e ir a - L e g g e t t  m o d e l  [7] for  dissipation are usually  n ot feasible from  a co m p u tatio n a l  
point o f  v iew  b e ca u se  they w ould  require  us to introduce interaction with too  large a n u m b er  

o f  h a rm o n ic  oscillators; o th e r  a p p ro ach es ,  based on  nonequilibrium  G r e e n ’s fu n ctio n  [8-10] 
and on the K eld ish  form alism  do  in d eed  find so m e  co m p u tatio n a l  application, but they are 
limited to very  s im p le  structures. O th e r ,  m o re  p h e n o m e n o lo g ica l ,  m eth o d s  have a lso  b een  
p rop osed . B u tt ik er  has introduced  a techn ique b ased  on  the insertion o f  a vo lta g e  p ro b e  
[11] ,  w hich acts as a p h ase -b reakin g  e lem en t; oth ers  have included partial d ep h as in g  by 

ad din g  a ran d o m  p h ase  to the e le m e n ts  o f  the scattering matrix o f  the d evice  or  c on s id e rin g  
a c o m p le x  c o n fin e m e n t  potential.

M o v in g  up in the ladder o f  sim ulation  levels, c ircuits must be trea ted  on the basis o f  
simplified m o d els ,  as in the case  o f  classical e lectron  devices, with the d ifferen ce  that o ften  
c o m p a c t  m od els  (such as for M O S  transistors) c an n o t  be derived  or  cannot be used in a 

S P I C E - l ik c  a rch itectu re  [12]. A  typical e xa m p le  is rep resen ted  by sin gle-electron  circuits, fo r  
which a S P I C E  description  is not possible, unless cap ac ita n c es  m uch larger  than those o f  

the tunnel jun ction s are present at the n odes c o n n e ctin g  devices (so that C o u lo m b  B lo c k a d e  
effe cts  are q u e n c h e d  at n odes in tercon n ectin g  d ifferen t devices), and new co n c e p ts  had to 
be derived fo r  circuit sim ulation, b ased  on a M o n te  C a r lo  [13] o r  on a m aster  eq u a tio n  [14] 

approach.
T h e  sa m e is true fo r  innovative architectures, such as the Q u a n tu m  C e l lu la r  A u to m a to n  

( Q C A )  co n c ep t,  w hich w as p r o p o se d  by C r a ig  L en t  and c o w o rke rs  [15] for  the im p le m e n 
tation o f  logic circuits b ased  on a bistable build ing block. In this and in a n a lo g o u s  cases, 

simulation p ro g ra m s must be d e v e lo p e d  ad hoc, b ased  on the specific characteristics  o f  the 
circuit.  A s  the n u m b e r  o f  b asic  cells in the circuit grows, increasingly radical sem iclassical 

approxim ations m ust be introduced.

3. TRANSPORT IN BALLISTIC SYSTEMS
T h e  m ethods trea ted  in this section  w ere  initially d e v e lo p e d  in the 1980s for  the analysis o f  
q uan tum  in ter fere n c e  devices o r  o f  the effects  o f  d iso rd er  in conductors. In particular, the 

recursive G r e e n 's  fun ction  ap p roa ch  was first in trod u ced  to study w e a k  localization  effects . 
A ll  o f  the m eth o d s  that w e will discuss in this section are used to essentially  solve a scatter in g  

problem , c o m p u t in g  the transmission and the ref lection  m atrices through the n an ostructure  
b eing con s id ered . Fro m  the k n o w le d g e  o f  such m atrices  it is possible to obtain  the c o n d u c 
tance o f  the d evice  in quasiequilibr ium  conditions, on the basis o f  the L an d a u e r-B ii t t ik e r  

form ula [16, 17]:
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w h ere  (' is the e le c tro n  ch arge , h  is P lan ck 's  constant and tLj  is the e le m e n t  o f  the transm is
sion matrix b etw e en  input m o d e  j  and output m od e /. In this case , the transmission m atrix 

is rep rese n te d  o v e r  a basis o f  transverse e ig e n m o d e s  o f  the input and output chan nels. T h e  

assum ptio n  that is usually  m a d e  fo r  num erical treatm en t is that semiinfinite ideal chan n els  
a re  attach ed  to the input and ou tpu t ports  o f  the device , to im p lem e n t properly  transm itting 

b o u n d a ry  conditions.

It has been  shown that fu r th e r  inform ation  can  be o b ta in e d  from  th e  transm ission  matrix, 
such as the shot noise p o w er  spectral density. F ollow in g the p io n e e rin g  w o rk  by K hlus [18] 
and Lesovik  [19], B u tt ik er  p ro v id e d  a deta iled  trea tm en t o f  the re lat io nship  b e tw e e n  the

sh o t noise curren t p o w e r  sp ectra l  density  S ,  and  the transm ission  m atrix T  [20], the result

o f  which is exp ressed  b y  the relat ionship

S , = 4 j \ e V \ T T [ t * « l  - t ' t ) ]  (2)

w h e r e  V  is the v o ltag e  a p p lied  across the sam ple, and that can  be a lso  written  as

S l = 4 <j - \ e V \ Y . T l ( \ - T l ) (3)
i

with the TjS b e in g  the e ig e n v a lu e s  o f  the t f  matrix.

T h e  im p ortan ce  o f  havin g availab le  effic ient m eth o d s  fo r  the n um erica l  calculation  o f  the 

transm ission m atrix  is th e re fo re  apparent.

3.1. Recursive Green’s Function Technique
T h e  fou n d atio n s  for  th e  recursive G r e e n  s function te ch n iq u e  w e r e  set by T h o u le s s  and 
K irkp atr ick  [21] and by L e e  and F ish er  [22] for  the investigation  o f  d isordered  con d u ctors .  
G u in e a  and V erges  [23] ex te n d e d  this study to the specific  case o f  a o n e-d im en sio n a l  chain  

with a ran d om  distribution o f  linear side b ran ch es  and loops. T h e y  in trod u ced  a form alism  

b a se d  on  the analytical derivation  o f  the G r e e n ’s fun ctio n s fo r  an infinite linear chain  and 
for  a finite seg m en t o f  a linear chain , and on their  n um erica l  co m b in a t io n ,  with an a p p r o a c h  

d erived  from  D y s o n ’s eq u a tio n . Such  a tech n iqu e w a s  then e x te n d e d  to the investigation  

o f  tw o-dim en sion al structures  by Sols  et al. [24] and by M a c u c c i  e t  al. [25]. In the next 
sub section , w e  will discuss this fu rth er  e v olu tion  o f  the m e th o d  in detail.

F o r  the applicat ion  o f  the recursive G r e e n ’s fun ction  m e th o d  w e  con s id e r  the w h o le  su r
face  (in the tw o-d im en sion al case)  o r  v o lu m e  (in the th ree -d im en sio n al  case)  o f  the d e v ice  

to b e  filled with a re c tan g u la r  o r  p ara l le lep ip ed  tight-binding lattice, substantia lly  equ iva len t  

to a lattice fo r  a f in ite-d if fere n ce  sc h em e . In the m eth o d s  orig in ally  derived  for  the a n a ly 
sis o f  d isord ere d  co n d u cto rs ,  the G r e e n 's  function fo r  a sem iinfinite  lead at the ou tpu t is 
d er ived  analytically  and  then a layer o f  the d iscret izatio n  lattice is a d d e d  at each  step o f  

the recursive p ro c e d u re  [26]. If, h ow ever,  there are sections o f  the d evice  c h ara cte r ize d  by a  
lon gitudinally  constant transverse poten tia l,  they can b e  trea ted  as single sections, for  w hich  

the G r e e n 's  fun ctions can  b e  d erived  analytically.
T h e r e fo r e ,  in o u r  a p p r o a c h  the d evice  is further  sub d iv id ed  into sections, ea c h  o f  w hich 

is assu m ed  to be c h ar a cte r ize d  by a longitudinally  constan t transverse potentia l,  as shown in 

Fig. 1, to have D irich let  b o u n d a ry  con d itio n s at the en ds ( th e re fo re  to  be “ se a le d ") ,  and to

Figure 1. Subdivision of a structure into siiees with constant transverse potential
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o v e r la p  the n e ig h b o r in g  section  by o n e  lattice unit. If w e consider two n eighb oring sections, 

the overall  H am ilto n ian  can  be w ritten  as

H  =  H„  +  V  (4)

w h e r e  H {] is the H a m ilto n ian  for  the tw o d e c o u p le d  sections and V  is the perturb ation  

c o r r e s p o n d in g  to co u p l in g  them  to g e th e r  ( th ereby  o p e n in g  up the facing ends o f  the two 
sec t io n s) .  T h is  is quite a large pe rtu rb at io n , as it c o rresp o n d s  to a substantial variation  o f  

the system  ge o m etry .  T h u s ,  it c a n n o t  be trea ted  with perturbation  theory  including on ly  low- 
o r d e r  terms. A l l  te rm s m ust b e  taken  into account. T h is  is possible using D yson 's  eq u a tion ,

w h ic h  con n ects  the G r e e n 's  fu n ctio n  o f  the u n p ertu rbe d  system G n (d e co u p le d  sections)

w ith  the G r e e n ’s fun ctio n  for  the p e rtu rb e d  system G  (joint sections):

G  =  G {)V G  (5)

T h i s  is an implicit eq u a t io n ,  as the G r e e n 's  fun ction  G  appears  on both  sides o f  the equal 
sign. It is possible, with s o m e  a lg eb ra ,  to o bta in  an explicit expression for  G .  W e will discuss it 

w ith  a specific  ch o ic e  o f  the G r e e n ’s fun ctio n  representation . Specifically , w e c h o o se  a m ixed 
represen tation : in real sp ace  in th e  longitudinal d irection  and in the space o f  transverse 

e ig e n m o d e s  in the transverse d irect ion. T h u s, the m atrix represen tin g the G r e e n 's  function 

0 , 1  b e tw e e n  tw o locat io n s  / and j  a lo n g  the d evice  has e lem e n ts  (/, s|G|/, /) ,  w h e re  s  is a 
transverse e ig e n m o d e  at location  i and / is a transverse e ig e n m o d e  at location /. If  e a c h  sec

tion has, as previously  s tated, a lon gitudinally  con stan t transverse potentia l,  there is no m od e 

m ixing within it; th e re fo re ,  the m atrix  rep resen tin g  its G r e e n 's  function will b e  d iag o n al  (i.e. 
(/, s \G \ t<  j )  =  0 fo r  s  ^  /). E a c h  e le m e n t  (/, s \ G \ s ,  j )  can be treated  as the G r e e n ’s function 

fo r  a on e-d im en sio n a l  d iscrete  chain  ex te n d in g  from  / to /, with an en ergy  co rr e sp o n d in g  

to the lon gitudinal e n e r g y  c o m p o n e n t  availab le  for  that specific  m ode. B ec au se  o f  the sep 

arability  o f  the S c h ro d in g e r  e q u a t io n  a lo n g  the longitudinal and the transverse d irect ion, it 
is possible to subdivide the total e n e r g y  o f  the im pin gin g particles into a transverse c o m p o 
nent, co rresp o n d in g  to the e n e r g y  e ig e n v a lu e  associated  with the particular  transverse m o d e  

w e  are c on s id e rin g  and into a lon gitu d in a l  co m p o n e n t,  equal to the d ifferen ce  b e tw e e n  the 

total e n erg y  and the ju s t-m e n tio n e d  transverse c o m p o n e n t .  F o r  each  section, the p rob lem  is 

th e re b y  tran sform ed  into a c o l le ct io n  o f  n o n in teractin g  o n e-d im en sion a l problem s.
B e fo r e  discussing the o n e -d im e n sio n a l  G r e e n ’s functions in detail, let us e x a m in e  the 

p r o c e d u r e  for  the d e te rm in a t io n  o f  the explicit expression  o f  the G r e e n ’s function  for  a 
chain  a  -  d  resulting from  the c o n n e c t io n  o f  tw o  sections a -  b  and c  -  d  (see Fig. 2), for
ea ch  o f  w hich the u n p e rtu rb e d  G r e e n 's  functions G [](ur Gjj/f, G (t!r, G {)hh, and G {)cil h ave  been

ob ta in ed  analytically. L e t  us start from  a c o n crete  rep resen tation  o f  the D yson  eq u a tio n  for  

o u r  specific  case:

( a \ G \ d )  =  ( a \ G " \ d )  +  ( a \ G " V G \ d )  (6)

which, using the co m p le te n e s s  re lat io n sh ip s  (i.e., 5L|/)(/|  =  ^  10 *he e lem e n ts
o f  a co m p le te  basis) can  be rew ritten

( a \ G \ d )  =  ( u \ G " \ d )  +  ^ 2 ( a \ G ° \ m ) ( m \ V \ n ) ( n \ G \ d )  (7)

Figure 2. Green's functions in two neighboring sections.
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B e c a u s c  the perturb ation  V  acts only b e tw e e n  sites h  and c\ there are only tw o n o n ze ro  
term s in the sum  o v e r  /;/, n:

( a \ G \ d )  =  ( a \ G " \ d )  +  (a \ G " \ b ) ( b \ V \ c ) ( c \ G \ d ) +  ( a \ G " \ c ) ( c \ V \ b ) ( b \ G \ d )  (8)

which, con s id e rin g  that, b efore  V  is a p plied , there  is no conn ection  betw een a and cl and 
b e tw e e n  a  and c,  simplifies to

( a \ G \ d )  =  ( a \ G " \ b ) { b \ V \ c ) ( c \ G \ d )  (9)

as ( a \ G []\ d )  =  ( a \ G ll\ c )  = 0 .  In shorthan d n o ta tion  we can  write

G tUi =  G {:ihy lH. G r</ (10)

w hich, ho w e ver ,  is still an implicit eq u atio n , as it con ta in s  the un kn ow n  term  G cd. T o  obtain 

an explicit expression  for  G (l(h w e  n eed  to d o  so m e m o re  a lg eb ra  and in particular  to exp an d 
the exp ression s for  G C(/ and G hll:

( c \ G \ d )  =  ( c | G " | J )  +  { c \ G " V G \ d )

=  ( c \ G " \ d ) +  Y l ( c \ G " \ m ) ( m \ V \ H ) ( n \ G \ d >
/?/ . //

=  ( c \ G „ \ d )  + ( c \ G \ c ) ( c \ V \ b ) ( b \ G \ d )  (11)

which can be written as

G ,,/ =  0 ’ i1!,/ +  G "’ . K * 6 ’ m  ( 12 )

A s  far  G hd is c o n c e r n e d ,  w e get

( h \ G \ d )  =  <b \ G " \ d ) +  ( h \ ( i " V G \ d )

=  (b \ G " \ d ) +  Y , ( b \ G " \ m ) { m \ V \ n ) { n \ G \ d )
m . n

=  { b \ G " \ b ) ( b \ V \ c ) ( c \ G \ d )  (13)

which, in sim plified n otation, reads

G M =  G " hVhcG al (14)

Substitutin g E q. (14 )  into Eq. (12) ,  w e o bta in

=  +  (15)

which can be rew ritten  as

[ i - g ^ v ^ 0 ^  =  0 1 ,  (16)

If w e m ultiply  both sides by the inverse o f  / -  G;'(T /i/, G !/')/lK/,l., w e  get an explicit exp ression  
for  G ri,

G r,  =  ( I  - G ^ y <hG i v hc) 'g ;*/ ( 1 7 )

which can  be substituted  into E q .  (10). y ie ld in g  an explicit  expression  for G il(i

O at, =  G"lhv , j l  -  C O \ . hG " hVhl) -'G';,, ( IS )

To be able to attach o n e  fu rth er  section  lo  the left o f  a -  d  and to c o m p u te  the o verall

G r e e n  s function, we also n eed  to ev alu a te  G nr an explicit expression o f  which can be
derived  with a p ro c e d u r e  co m p le te ly  a n a lo g o u s  to the o n e  just presented. We start from  the 

implicit expression  for G iUI o b ta in e d  from the D yson  eq u atio n

c ; t!H =  d ^ )
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th e n  o b ta in  the expression  fo r  G cu

C , 0 =  C ^ V cb G htl (20)

a n d  fo r  G hll

G ha =  G 'L +  G " hV hcG ca (2 1)

S u b s titu tin g  E q .  (21)  into E q .  (20), w e  get

Gca =  G"cKbGl ,  + G" < K , (22)
w h ic h  can be rew ritten  as

( /  -  G « - K b G b b K c ) G ca =  G l K l > G l  ( 2 3 )

so  that, m ultip ly ing b y  the inverse o f  I  — G {̂ V chG\\hVhc, w e  obtain  an explicit expression  

f o r  G ca

G’ c« =  (/  -  G l K : b G l , y i u r l G l K b G L  (2 4 )

w h ich  can  be inserted  into E q. (19 ) ,  y ie ld in g  an exp lic it  expression  for  G (UI

Gan =  G aa +  G M !  ~  G c r  K b G "b Vbe) "  ' G "t- K b G ba ^

L e t  us n ow  discuss the derivation  o f  the analytical expressions for  the on e-d im en sio n a l  

G r e e n ’s fun ctio n s for  a sem iinfinite  ch ain  and for  a finite segm ent. In particular, w e n eed  

the G r e e n ’s function  fo r  the sem iin fin ite  chain fro m  its first site b ack  to itself ( G \ {) and 

fro m  its first site to a g e n e r ic  site / ( G ) , ) ,  as well as the G r e e n ’s function  fo r  a finite chain 

with N  sites from  its first site b ack  to itse lf  ( C { , )  a n d  b etw een  its en ds (Cr{/V).
W e start fro m  the G r e e n ’s fun ctio n  b e tw e e n  tw o g e n e ric  sites (/ and m )  in an infinite 

chain. For a d iscret ized  chain , it is g iv en  [27] by

G  lm = 2 V  sin 0

w h e r e  6 =  k 5, with k  b e in g  the w a v e  v e c t o r  for  p r o p a g at io n ,  and 8  is the discretization  step.
T o  derive  the G r e e n ’s fun ction  f o r  a sem iin fin ite  chain , w e can apply  D y s o n ’s e q u a tio n  

backw ard, b ased  on the structure sho w n  in Fig. 3, in w hich  an infinite chain  is split b e tw e e n  

a  and b.
If  w e  indicate  as G v the G r e e n ’s fun ction  for the sem iinfinite chain and as G  the G r e e n ’s 

function fo r  the infinite chain, the D yso n  eq u a tio n  reads

G  =  G s +  G SV G  (27)

which, fo c u s in g  on the pair  o f  sites at / an d  m , b e c o m e s

( l \ G \ m )  =  ( l \ G ' \ m > +  ( G s V G \ m )  (28)

Inserting the c o m p le te n e ss  re lat ion  a n d  c o n s id e r in g  that the p ertu rb atio n  V  acts only 

betw een  a  and b . w e  obtain

( l \ G \ m )  =  ( l \ G ' \ m )  +  ( l \ G s \ a ) ( a \ V \ b ) ( b \ G \ m )  +  ( l \ G s \ b ) ( b \ V \ a ) ( a \ G \ m )  (29)

a b 
•  *

Figure 3. Inlinitc chain split into two semiintinitc sections.



694 Nanoscale Device Modeling

and, as ( I \ G s \a)  =  0,

</|G>i> =  ( l \ G ' \ m )  +  ( l \ G ' \ b )  { b \ V \ a )  ( a \ G \ m )  (30)

which, with the a lre a d y -u s e d  sho rthan d notation, b e c o m e s

G lm =  G ]m +  G ) hVl» G am (31)

Let  us now  assu m e that m  is co in c id en t  with b.  In such a case

G lh =  G ] h +  G'lhVhllG Ilh (32)

T h u s

so that

G )h =  G lh( \  +  V G llh) '  (33)

jgi\l~b\H /  jgiUt-htfi  ^  I

G "’ =  2 V s \ n t i  ( ' +  [/ 2 V sin

i e i \l-h\H , i e i,l
I +

2 K s i n # \  2 s \ n 0

=  (34)
v

T h e r e fo re ,  the G r e e n 's  function  fo r  a sem iinfinite chain from  the first location  back to itself 

is given by

G l ,  =  (35)

w h erea s  that b e tw e e n  the first and the /th site will read

G h  =  (36)

Let us now m o v e  to  the G r e e n ’s fun ctio n s for  a seg m en t.  W e will fo l lo w  a p ro c e d u r e  
a n a lo go u s  to that u se d  to obtain  the G r e e n 's  fun ctio n s fo r  a sem iinfinite  chain  from  that 
for  the infinite ch ain .  W e  co n s id e r  the structure shown in Fig. 4a: T h e  semiinfinite chain 

exten din g to the right o f  site b  is in terrup ted  betw e en  I a n d  / 4- 1. W e  can write the G r e e n ’s 

function for  the sem iin fin ite  chain G s by m eans o f  D y s o n ’s eq uation:

G )h =  ( l \ G " \ b )  +  { l \ G [iV G s\b)  (37)

w h ere  G „  is the G r e e n 's  fun ction  for  the structure d isc o n n ec ted  b e tw e e n  / and / +  1, A s  usual, 

w e apply the c o m p le t e n e s s  relation and co n s id e r  only the n o n ze ro  term s o f  the sum m ation , 
obtaining

G)„ =  , V G ) ^ h (38)

(a)

(b)

1+1

•  •
a d

F ig u re  4. (a ) Scm iiniin ite chain with an interruption he tween sites / and / 4- I
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L e t  us  n o w  focus on the ev a lu a tio n  o f  the G r e e n 's  function o f  a s e g m e n t o f  length 1. which 

c o r r e s p o n d s  to setting  / =  b  an d  th e r e fo r e  a llows an im m ediate  der ivat io n  o f  an explicit 

e x p res s io n :

G'„ =  G'j, +  G",VG'h ]  , (39)

w h ich  y ields

G lh =  G s„ ( \ +  V G sM t l y x (40)

B y  substitut in g Eqs. (35) and (36) into E q. (40), w e  obtain

G " = ------ ------  =  s in( l  (41)
"  2  V  cost)  V  sin 2$

W e  c a n  then e v a lu a te  the G r e e n 's  fu n ctio n  fo r  a chain  o f  tw o sites by c o m b in in g  those for  

tw o  o n e-s ite  chains. With r e fe r e n c e  to Fig. 4b, Eq. (18), the G r e e n 's  fun ctio n  for the two 

c o m b in e d  on e-site  sections, will read

1 / 1 1 \ 1 1 sin 0
G . ,  = -----------VI  1 ---------------- V -----------V I —--------- =  — -------- (42)

lt 2 V  cos 0 \  2 V  c o s  9 2 V  c o s  0 )  2 V  co s  0 V  sin 36

It is a lso possible  to  show, using again  E q. (18), that if the G r e e n 's  fu n ctio n  b e tw e e n  the 

en d s  c  and d  o f  a finite chain o f  length  N  -  1 is

« -= ^
the G r e e n ’s fu n ctio n  for  a chain o b ta in e d  addin g o n e  site (and th e r e fo r e  o f  length  N )  is

-  W T W e  l44)

w hich  c o m p le te s  the p r o o f  o f  E q. (44) by recursion. A ctu a lly ,  to c o m b in e  the G r e e n 's  fun c

tion for  a one-site  chain with that for  a N  — 1-site chain, the G r e e n ’s fu n ctio n  fo r  finite 

a chain  from  o n e  end b ac k  to itse lf  is also n eed ed . It can be sh o w n , with an an a lo go u s  

recursive p r o c e d u r e ,  that fo r  a chain  o f  length M

sin M O
O il  = -----:----------------  (45)

11 K s in (A f  +  l ) 0

A s  far  as the co u p lin g  p o ten tia l  V  is c o n c e r n e d ,  it is d e p e n d e n t  f ro m  the discret ization  in 

the longitudinal d irection  and is g iv en  simply by

V  =  (46)
2 m a -

w h e r e  h  is the red u ce d  Planck co n stan t,  m  is the e f fe ct ive  mass o f  the e le c tr o n ,  and a  is the 

discretization  step. T h e  m atrix e le m e n ts  o f  the c o u p lin g  poten tia l  are  thus ju st  the o ver la p  

integrals  o f  the transverse m o d e s  in the two facing sections tim es V .
Such m o d e s  are co m p u te d  by  so lv in g  the o n e-d im en sio n a l  ( fo r  a tw o -d im en sio n a l  wire) 

or  tw o-d im en sion al (for  a th ree -d im en sio n al  w ire)  S ch ro d in g er  e q u a t io n  in the transverse 

direction with the con fin em e n t po ten tia l  o f  each  section.
If the effect ive  mass varies a lo n g  the transverse d irect ion, the ev a lu a t io n  o f  the matrix e le 

m ents o f  V must b e  don e c o n s id e r in g  m  not as a c on stan t but as a fu n ctio n  o f  position , and

the transverse e ig en fu n ction s  m u st b e  ev a lu a ted  with a so m e w h at  m o r e  c o m p le x  p roced u re , 

as d eta iled  in R ef. [28].
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O n c e  the G r e e n 's  fun ctio n  m atrix  for  the w h o le  stru ctu re  has b een  o b ta in ed , the transm is
sion and ref lection  m atrices  can  be co m p u te d  on the basis o f  the fo l lo w in g  re lat ionship s  [24], 

w hich have b een  d er ived  a d a p tin g  to the discrete case  the continuum  re lat io n ship s  p r o p o se d  
by S ton e and S z a fe r  [29]. F o r  the transmission m atrix  b e tw e e n  locat ions j  and /, w e get

tnm =  —i 2 V (sin 6„ sin 0 J ,/V (W" ' ' ^ > < , i | G ;/|m> (47)

w h ile  the reflection  m atrix  is given  by

r„m =  - ( s i n  0,,/sin ( i 2 V  sin dm ( n \ G „ \ m )  +  Sm„)  (48)

In both these eq u atio n s ,  dn and 0„, are the p ro d u c ts  o f  the longitudinal  w a ve  v e c to r  fo r  the 

n th  m o d e  in section  j  and fo r  the rath m o d e  in sectio n  / tim es the longitudinal d iscret iza 

tion  step, and Snm is a K r o n e c k e r  5, which differs  fro m  z e r o  only  if n =  m .  C le a r ly ,  only 

p r o p ag a t in g  m o d e s  m ust be con s id e re d  in this ca lcu latio n .

3.2. Recursive Scattering Matrix Technique
A  d ifferen t ap p ro a ch  to the calcu latio n  o f  the tran sm ission  matrix, w hich allow s inclusion 

o f  the effects  o f  a m a g n e tic  field in a relatively  s tra ig h tfo rw ard  way, is the o n e  b ased  on 

the recursive scatter in g  m atrix form alism . T h e  sca tter in g  m atrices  o f  e le m e n ta r y  sectio n s are 
c o m p u te d ,  and they are  then co m b in e d  starting from  the right and a d din g  o n e  section  at 

a time, m ov in g  b ackw ard. T o  apply  this ap p ro a c h ,  the structure  to b e  invest igated  m ust be 

sub divided  into sections, ea c h  o f  w hich is c h ar a cte r ize d  by a single d iscontin uity  o f  the tran s

ve rse  c o n fin em e n t poten tia l.  T o  this purpo se, w e  start from  a partition in g o f  the structure 
into slices, within  e a ch  o f  w h ich  the transverse po ten tia l  can  be assu m ed  constant, as shown 

in Fig. 5 for  a hard-wall  structure  (slice b o u n d a rie s  are re p re se n te d  with dash ed  lines). T h e  

sections for  the ca lcu latio n  o f  the e le m e n tary  scatter in g  m atrices s traddle  fro m  the m id 
d le  o f  o n e  slice to the m id d le  o f  the n e igh b o rin g  o n e  (th e ir  b o u n d a rie s  are  m a rk e d  with 

d ash-do t lines in Fig. 5), th e re b y  including a s ingle  discontinuity. T h e  scatter in g  m atrix for  
such sections can  be c o m p u t e d  applying the m o d e -m a tc h in g  tech n iqu e (i.e. w rit in g  a g e n e ra l  
solution  fo r  the S ch ro d in g e r  e q u a tio n  o f  each  o f  the tw o fa c in g  sections, and then ev alu atin g  

the u n kn ow n  c oeff ic ien ts  by e n fo rc in g  the con tin u ity  o f  the w a ve fun ction  and o f  its n o rm al 

d erivative  at the interface).  In g en era l,  the scatter in g  m atrix  S  is defin ed  by

w h e r e  B  and C  are the v e cto rs  o f  the am p litu d es  o f  the m o d e s  c o m in g  o u t  o f  the scatter ing 

region  from  the left and fro m  the right, respectively , and A  and D a r e  the v e cto rs  o f  the 

am p litu d es  o f  the m o d e s  g o in g  into the scatter ing reg io n  from  the left and from  the right, 

respectively , as shown in Fig. 6. In term s o f  the tran sm ission  and reflection  m atrices, w e  can  
interpret r + and p + as the “ fo rw a rd ” transmission a n d  reflection  m atrices  (i.e.,  the m atrices  

rep rese n tin g  transmission an d  reflection  o f  the fo rw a rd - im p in g in g  m o d es) .  C o rre s p o n d in g ly ,  
t ~ and p~ can  be see n  as the “ b ac k w a r d "  transm ission and reflection matrices.

Figure 5. Subdivision of a device into slices with constant transverse potential.
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Figure 6. D e f i n i t i o n  o f  t h e  e l e m e n t s  o f  t h e  s c a t t e r i n g  m a t r i x .

L e t  us co n s id e r  the section sh o w n  in F ig. 7. O n  the left o f  the interface, the w ave  function  

c a n  b e  w ritten , assum ing that a s in gle  m o d e  is im pin gin g from the left and that x  is the 

d ire c t io n  o f  e lec tro n  p rop ag atio n ,

w h e r e  x,(y) are  the transverse e ig e n fu n c t io n s  in the left region. T o  the right o f  the interface 
th-e w a v e  fu n ctio n  will contain  o n ly  r ight-going m odes:

y )  =  £  - / = ' / , «  c x P ( —i k mx)4>m( y )  (5 1)
m v K m

w h e r e  4>m(y) are  the transverse e ig e n fu n c t io n s  in the right region.
L et  us a ssu m e that the origin  o f  the c o o rd in a tes  for  the x  axis co in c id es  with the interface

(th is  m ay not be the best ch o ice  in actual  scattering m atrix calculations, but it is certainly
co n v e n ie n t  fo r  the presentatio n  o f  the m atch in g  p ro ced u re) .  W ith such a choice, e n fo rc in g  

th e  c o n t in u ity  o f  the w a ve  fu n ctio n  at the interface [i///(x, y )  =  $ r ( x ,  v)|Ai,„] w e obtain

~ X i ( y )  +  L ~ j = ri)Xj(y) = E (?2)
\ ^ i  j  J  k j  ni V m

4>Ax, y )
A

Figure 7. Elementary section for the calculation of the scattering matrix.



698 Nanoscale Device Modeling

T h e  m atch in g con d itio n  fo r  the norm al derivative will read

(53)

In principle, su m m a tio n s  in Eqs. (52) and (53) should run o v e r  an infinite n um ber o f  

e lem e n ts ,  but in practical ca lcu latio n s  they are limited to N  transverse m o d es  on the left 

and to  M  transverse m o d e s  o n  the right, with N  and M  chosen in such a w ay  as to include 
a rea so n a b le  n u m b er  o f  ev an escen t  m od es,  in addition to all p ro p ag at in g  m odes. In general,  
M  and  N  sho uld  be increased  until no ch an ge is o b serve d  in the solution.

B oth  Eq. (52) and Eq. (53) d ep en d  on the transverse variable y (or  they w o u ld  d ep en d  on 

the transverse va riab les  y  and z , if w e  con sidered  a three-dim en sion al structure) and contain  

a total o f  N  +  M  un know ns. W e the re fo re  need N  +  M  a lgebraic  eq uations,  which could  be 
o b ta in ed , for  exa m p le ,  by c h o o s in g  a sufficient n u m ber  o f  points a lo n g  y  on which to en fo rce  

Eq. (52) and Eq. (53). T h e r e  is, h ow ever,  a s im pler  a p p roach , which allows a simplification 
o f  the eq u ation s  and a u tom atica lly  y ields linearly in d ep en d en t equations: We “ project ' '  the 

m o d e -m a tc h in g  e q u a tio n s  o n to  a basis o f  transverse m odes; that is, w e  integrate o v er  the 
transverse d im en sion  the p ro d u ct o f  a set o f  transverse m odes tim es the eq uations

In the case o f  “ soft w alls ,”  that is, o f  a g en eric  co n fin em e n t potential,  w e  can c h o o se  eq u iva 
lently  the transverse e ig en fu n ctio n s  o f  the left or  o f  the right region for  the projection . T h is  
is not the case fo r  a hard-wall potentia l,  such as that rep resen ted  in Fig. 7. If w e  project 

both  the w a ve  fu n ctio n  and the norm al derivative m atch in g eq u a tio n s  o n to  the transverse 
m o d e s  o f  the n arro w e r  section, w e will not en fo rce  any condition  for  the w a ve  function  in the 

o u t e r  seg m en ts  o f  the interface b e lo n g in g  to the w id er  region, w h ere  a zero  va lue  should be 

e n fo r ce d .  If  w e instead pro ject  b oth  eq u ation s  o n to  the w a ve fun ctions o f  the w id e r  region, 

w e  will en fo r ce  the w r o n g  con d itio n  for  the norm al derivative in the o u t e r  seg m en ts  o f  the 
w id e r  region: the n orm al derivative  will be  set to zero ,  a lthough no condition  sho uld  be set 
on it.

It is th e re fo re  a p p a r e n t  that the c o rre c t  approach  consists in p ro jec t in g  the eq u a tio n s  for  
the w a ve  function  m a tch in g  o n to  the transverse m o d e s  o f  the w id er  reg io n  and the e q u a tio n s  

fo r  the norm al d erivative  m atch in g  o n to  the transverse m o d es  o f  the n arro w e r  region:

w h ich , con s id e rin g  the o r th o n o r m ality  o f  the e le m e n ts  b e lo n gin g  to a basis o f  e ig en vecto rs,  
can  b e  rewritten

(54)

(55)

V
<<M.v)!* ,( . ' ’ )) +  E  — '■/,(<M-v)l*;-(.v)) =  T .

i / k  rn V ^  in

(56)

w h e r e  8 n is the K r o n e c k e r  delta , w hich eq u als  1 if / — j  and 0 oth erw ise .



In this w ay, w e obtain exactly  N  +  M  eq uations,  if N  are the m o d es  con s id e re d  in the 

n a r r o w e r  region  and M  are those in the w id er  region. From  these equations, w e get  the rn 
a n d  tnn coeffic ients, which co rresp o n d  to the e le m e n ts  o f  the /th row o f  the su b m atrices  p"  
a n d  r  . To d e te rm in e  all rows, the calcu lation  must be repeated  M  times, con s id e rin g  each  

o f  r..he possible  im pin gin g m odes.
W e  are then faced  with the prob lem  o f  c o m b in in g  the scattering m atrices o f  two a d ja c en t  

sectio n s .  W ith  referen ce  to Fig. 8, w e can write the fo llow in g  tw o relationships from  the 

d efin it ion  o f  the scattering m atrices for the two sections:
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(cB)
D '\ / P : T: \ / C '

T? p

T o  obtain  the scattering m atrix b etw e en  the input o f  the first section and the ou tp u t  o f  

t h e  second section, o n e  must e lim inate  C  and D'  from  the a b o v e  equations, as d iscussed, 

f o r  exam ple,  in R ef. [30]. In ex te n d ed  form , Eqs. (57)  and (58) will read

B  =  p i  A  +  r f D'  (59)

C  =  t * A  +  p x D'  (60)

D' =  p ^ C  +  t ; D  (6 1)

c = r t c  + p2D (62)

If wc substitute Eq. (62) into E q .  (61), w e  obtain  an expression  for  C  as a fun ction  o f  A  
anid D:

c  =  { I - p \ p $ r ' ( T + A  +  p \  t ; D )  (63)

W'e :hen substitute Eq. (62) into E q .  (60), obta in in g

B  =  p \ A  +  r f  ( p t C  +  t ;  D )  (64)

wlhich, on  its substitution into E q .  (63), yields

B =  [ p l  +  T|” (/  -  p F P : )  ‘ r f M  +  [ r ^ P t U  ~  P \ P i )  'P\ T: +  7 \ 7i ^D  (6 5 )

T i e  coeff ic ien t o f  D  can be fu rth er  simplified:

t ,  p t ( i  -  p i p t y ' p ; ^ -  +  t ; t ,  =  T|_ [ p\  ( /  -  p \ ' p i )  V r  +  I \Ti

=  h ■ { [ ( p t p r ) ! - 7 ] ' '  +  j } t 2 (6 6 )

I n  t i e  sq uare  b ra ck et  w e  have an expression  o f  the type

( M  1 -  / ) “ ' +  I  (67)

F'igire 8. Combination of the scattering matrices relative to the two cascaded sections.
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w hich  can  b e  s im p lif ied  as

( A T 1 - / ) - ' + /  =  ( I M  l -  M M - 1) ' +  I 

= [(/  -  M ) M - ' ] - '  + /

=  M ( 1  -  M ) - [ + I 

=  M ( I  -  M ) - '  +  ( /  -  M ) ( I  -  M)~'

=  ( M  +  I  -  M ) ( l  -  M ) - '  (68)

T h u s

~  I V '  +  I } t 2“ =  t ~ ( I - P 2+P i T I t 2~ (69)

so  that

B  =  [p+ +  T, p2+( /  -- p, +  [t|” ( /  - p j p p  ' r ;:]D  (70)

T h e r e fo re ,  f r o m  E q .  (70) w e get the exp ression s for tw o o f  the su b m atric es  o f  the scattering 
m atrix  o f  the tw o jo in t  sections, p + and r  :

P+ =  P+\ + T\ Pi  ( I  -  Pi Pi ) " V  

t ~  rj ( /  — p t P i )~' t 2

T h e  o th e r  tw o  su b m atrices,  t + and p~  can  be quickly ob ta in ed  substituting Eq. (63) into 
E q .  (62):

C  =  T y ( I  -  Pi p i )  1 (Tj*' A  +  p , T : D )  +  p ,  D

= ^  (7 -  pi p i )Tt A + \t2 (J -  Pi Pi y ] pi t2 + pi ] (72)

so  that

T ^ T 2+ ( / - p r p 2+ )T,+ (73)

P = T; ( /  -  P1 P2 ) ‘Pi Tl + P l

uin as follows:
W e  can  easily  s h o w  that the scattering m a trix  is unitary. L et  us d efin e  the v e cto rs  uout and

u™' = (c)

- f t

(74)
/  A\u.

W ith this defin ition

Urn,1 =  Su,n (75)

and, b e c a u s e  fo r  the co n serv atio n  o f  the prob ab ili ty  current \uoul |2 =  T n |z/in j2, which 
can  also be w ritten

o«l o il! ui 1

w e  have

U,T,„ ,U „u . =  U ,> i n  ( 7 6 )

(Suin)-(Suin) =  u > iR

" : : S S " :  ( 7 7 )

\  S' =  /

w hich  c o m p le t e s  th e  p r o o f  o f  th e  s c a t t e r in g  m a tr ix  unitarity .
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A l t h o u g h  the m eth od  w e have describ ed  is c h ara cte rize d  by high n u m erica l  stability, it is 

n e c e s s a ry  to  represent n um bers  at least in d o u b le  precision to k e e p  a sufficient a cc u r ac y  in 

c a lc u la t io n s  fo r  exten ded  o r  co m p le x  structures. O n e  g o o d  ch eck  o f  the n u m erica l  a cc u ra cy  
is r e p r e s e n te d  by the verification o f  the unitarity  o f  the scatter ing m atrix, w hich  sh o u ld  be 

sa t is f ied  within at least 10-6 .

3.3. Transport in the Presence of a Magnetic Field
L e t  us n o w  co n s id e r  the ca se  o f  tran sport  in the p resen ce  o f  a m a g n etic  field o r th o g o n a l  to 
lh e  p la n e  o f  the device. T h e  H a m ilto n ia n  reads

+  V ( r ) H r )  =  E H r )  (78)

w h e r e  A  is the v e c to r  potentia l,  and V { r )  is the usual scalar potentia l.

L e t  us co n s id e r  a tw o-dim en sion al d evice  lying in the x - y  p lane, with a m a g n e t ic  field 
a lo n g  the z  d irection: there  are  several  possible ga u g e  ch o ice s  fo r  the re p r e se n ta t io n  o f  

th e  v e c to r  poten tia l,  and w e will fo c u s  in particular  on tw o transverse gau g es ,  o n e  w ith  a 

n o n z e r o  c o m p o n e n t  only a lo n g  the d irect io n  o f  e lectron  p rop ag atio n  ( A  =  [— B y ,  0, 0]7 ) and 

th e  o th e r  with a n o n ze ro  c o m p o n e n t  in the transverse direction ( A  =  [0, B x , 0]r ).

F o r  the specific  tw o-dim en sion al p rob lem  that w e are considering, the S c h r o d in g e r  e q u a 

t io n  reads

( —i h V  +  q A ) 2i p ( x , y )  +  V ( x ,  y ) i j j ( x ,  y )  =  E t p ( x ,  y )
2 m  (79)

( — h 2V 2ili — i h e V  ■ ( A iJj ) — i h e A  ■ Vip +  e 2\ A \ 2ij/) +  Vi// =  Eip
2 m

B e c a u s e  for b o th  g au g es  w e  are co n s id e rin g  V  A  =  0, the previous e q u a t io n  b e c o m e s

h2 d2ip h1 c)2\\f . he dip e2A2
/ -— - A - ----V —— -\\i +  Vijj =  Ei//

2 m * d x 1 2 m * d y 2 2 m *  d y  2 m
m

h 2 d2 1 (  d V
- i p  -f- - — I - / f t —  + e A ]  ifj +  Vijf =  Eifj

2m*  d x 2 2m*  \  d y

L et  us first discuss the solution  o f  this S ch ro d in g er  eq u a tio n  for  the c h o ice  o f  g a u g e  w ith  a 

n o n z e r o  c o m p o n e n t  only in the tran sverse  d irection, A  =  [0, B x , 0]r , w hich has b e e n  w o r k e d  

o u t  in detail  by G o v e r n a le  and B o s e  [31]. B e c au se  the term  { —i h ~  -I- e A \  y ie lds  a cross  term  

w ith  the partial derivative o f  (// with respect  to v and A , w e  n eed  to co n s id e r  reg io n s  in w hich  

the d e p e n d e n c e  o f  A  on x  can be n e g le c te d  if  w e  w ant to separate  the S c h ro d in g e r  e q u a t io n  
into  a longitudinal eq uation  (with o n ly  an x  d e p e n d e n c e )  and a tran sverse  e q u a t io n  (with 

on ly  a y  d e p e n d e n c e ) .  T h is  result can  be ach ie ved  con s id e rin g  slices in w h ich  n ot on ly  the 

x  d e p e n d e n c e  o f  the transverse co n fin e m e n t poten tia l  is neglig ible but a lso the d e p e n d e n c e  

o f  A  on  x  can  b e  ignored. To this p u rp o se , w e  need to con sider  slices that are r a th e r  thin 
an d  n u m ero u s, even  if there  is a ve ry  s low  variation  a lo n g  x  o f  V . W e  will then c o m p u t e  the 

scatter ing m atrix o f  sections c o n ta in in g  a discontinuity  in the v e cto r  po ten tia l  and, possibly , 

in the transverse potentia l.  In o th e r  w ords,  e ach  slice will be assigned a co n stan t  v a lu e  o f  the 

ve cto r  potentia l,  based on  its x  c o o r d in a te ,  a n d  ea ch  section, straddling b e tw e e n  the cen ters  

o f  nearby slices, will thus include a d iscontinuity  o f  the v e cto r  p o ten tia l.  W ith  the a b o v e  

hypotheses, the H am ilton ian  can b e  split into a longitudinal and a tran sverse  part ( fo r  e a ch  
co o rd in a te  .v,):

h  = - * L * L
long ' 2 m *  d x :

d

2m *  \  d v

(81)
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S in ce  the e ig e n fu n ctio n s  o f  the longitudinal H a m ilton ian  are  sim ply  plane waves, the generic  
eig en fu n ctio n  o f  the c o m p le te  H a m ilto n ian  fo r  each section  will have the expression

w h e r e  Ay(-V,, >’) is the y'th e ig en fu n ctio n  o f  the transverse H a m ilto n ian  in x (. It is possible to 
verify  by substitution that the transverse e ig en fu n c tio n s  \ ' j ( x h y )  equal the transverse e ig en 

fun ctio n s in the case  o f  no m a g n etic  field tim es a phase fa cto r  e x p \ ( —i ( e  /  h )  A ( x  i ) y ) ] .  This 

is quite a sim plification, b e c au se  no special ap p roach  is n e e d e d  to co m p u te  the transverse 
e igen function s.

T h e  requ irem e n t that must be satisfied to obtain  reliable results is. as a lread y  stated, that 
the v e cto r  poten tia l  u n d e rg o e s  little variation  within e ach  slice and, m ore  quantitatively , that 
the m agn etic  flux th re a d e d  by e a ch  slice is less than a flux qu an tu m . T h e  main draw b ack  o f  

this ap p ro a ch  is rep rese n te d  by the very  large  n u m b er  o f  slices that are n e ed ed  to perfo rm  

a calcu latio n  in the c a s e  o f  a large va lu e  o f  the m a g n etic  f ield, o r  o f  an exte n d ed  structure, 

e v e n  if the transverse poten tia l  can be a ssu m e d  constan t in lon g  sections (and just a few 

slices w o u ld  be n e e d e d  from  this point o f  v iew ). T h is  a p p r o a c h  is quite co n v en ien t  in the case 

o f  a m agn etic  field var iab le  a lo n g  the lon gitudinal  d irect io n  o r  in the case o f  a transverse 
po ten tia l  that u n d e rg o e s  rapid fluctuations a lo n g  a . th e re b y  fo rc in g  a d iscretization  with a 

very  large n u m b e r  o f  slices.

W ith this particu lar  gau g e , the g r o u p  v e lo c ity  o f  the m o d e s  is u n ch a n ged  with respect  to 

the case o f  no m a g n etic  field and is given  by v, — h k x / m * .  T h u s ,  the sam e n orm alization  

p ro ce d u re s  used for the calcu latio ns w ithout m agn etic  field do  apply  in this case.
A  differen t ap p r o a c h  consists in c h o o s in g  the ga u g e  with n o n z e r o  c o m p o n e n ts  on ly  a lo ng 

the longitudinal d irection  ( A  =  [ - B y ,  0, ()]/ ). In such a case ,  the S ch ro d in g cr  eq u ation  is 

not sep ara ble  in the sen se  that the transverse solution d e p e n d s  on  the longitudinal w ave 
v e c t o r  (thus, the transverse e ig e n fu n c tio n s  must be re c o m p u te d  for  each  value o f  the en ergy  

o f  the im pin gin g particle) ,  a lthough the w a ve  function can  still b e  written as a product o f  a 
fun ction  o f  x  and o f  a function o f  y .  In this case ,  the g r o u p  ve locity  o f  the m o d es  d o e s  not 

have  the sam e exp ression  as in the a b se n c e  o f  m agn etic  field an d  is given by [32]

w h e r e  l n is the so-ca lled  m a g n etic  length: IB =  s f c B / h .  T h e  v a lu e  o f  v n is relevant for  the 

co rrect  ca lcu latio n  o f  th e  transm ission and reflection  co eff ic ien ts .  If, in the m o d e-m a tc h in g  
e q u a t io n s  for  the d e te rm in a t io n  o f  the scatter in g  matrix o f  e a ch  section, m o d e s  w ith out any 

n orm alizat io n  co eff ic ien t for  the lon gitudinal  c o m p o n e n t  are  used, such as exp (M  v )</>„( y), 

the co rrect  reflection  and transmission co e ff ic ie n ts  are o b ta in e d  m ultip ly in g the results from  

m o d e -m a tc h in g  by the ratio  v m/ v , „  w h ere  the /?th m o d e  is the im pin gin g m o d e  and the m th 
m o d e  is transm itted  o r  reflected.

ln the literature, several  a p p ro a c h e s  have b e e n  p r o p o se d  fo r  the calculation  o f  the trans

verse  w ave functions with this c h o ic e  o f  g a u g e .  In particu lar,  w e m en tion  the m eth o d s  p r o 

po se d  by P alacios  and T e je d o r  [33] and by T am u ra  and  A n d o  [34], focusin g on the latter.
Palacios and T e je d o r  p r o p o s e  a solution  b ase d  on d iscret iz in g  the S ch ro d in g c r  e q u a tio n  

o n ce  a trial so lution  o f  the form  exp(---/7v v x )<b; (y )  has b e e n  substituted into it. A  system 
o f  linear eq u a tio n s  is o b ta in e d  that has a n o n z e ro  solution  on ly  if the coeff ic ien t m atrix 

is s ingular. T h e  d ete rm in an t  o f  the co eff ic ien t  matrix can  be exp ressed  in the form  o f  a 

p o lyn om ial  in k A: th e re fo re ,  the a llo w e d  va lu es  o f  k x c o r r e s p o n d  to the roots  o f  the p o ly
nom ial.  U n fo rtu n a te ly ,  f inding the roots o f  a po lyn om ial  is a p ro b lem  that is very  sensitive 

to n um erical  precision, a n d  ser ious n u m erica l  p ro b lem s a p p e a r  as soon as the n u m b er  o f  

transverse d iscret ization  points g o e s  b e y o n d  a few tens. S o m e  im p ro ve m en t can be a ch ie ved  

w h e n  tran sform ing the p r o b le m  o f  finding the roots o f  a p o lyn om ial  o f  o r d e r  /V into an 

e ig e n v a lu e  p rob lem  o f  d im en sio n  2/V. but the a ch ieva ble  prec is ion  is still unsatisfactory for

(82)

(83)
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T h e  te ch n iq u e  pro p o sed  by T a m u ra  and A n d o  is e x trem e ly  stable from  a n um erical  point 
o f  v ie w . It consists  o f  w rit ing  the transverse e ig e n fu n ctio n s  as linear co m b in at io n s  o f  the 

tra n sv e rs e  e ig e n fu n c tio n s  in the a b se n ce  o f  a m a g n e t ic  field:

4>?(y) = ' L c f i X "(y)  
)=I

(84)

e q u a t io n  w h e r e  ($>J(<b~) is the tran sverse e ig e n fu n ctio n  associated  with the i th right- (left-) 

g o in g  m o d e  and x 'Ky )  ‘s j  th tran sverse m o d e  in the ab se n ce  o f  a m agn etic  field.
T a m u ra  an d  A n d o  have sh o w n  that the co eff ic ien ts  c i r  as well as the longitudinal e ig e n 

v a lu e s  k x , can  b e  o b ta in ed  as the first N  e le m e n ts  o f  the N  e ig en va lu e  problem s

0 I
A  B

k t W
7T

(85)

w h e r e  c f  =  [ c * , . . . ,  c*v ]7 and d f  =  (A:* W / r r ) c f . F u rth erm o re ,  the e lem e n ts  o f  the N  x  N  
m a tric es  A  an d  B  are given  by

k ^ \  _  E i
rr )  E \

( Tty 
V T F

B,
ho).

, h w c
jr I 2 e ; x

T r y )  
w  ) X r

(86)

w here 8 jr is the K r o n e c k e r  d elta ,  k r  is the Ferm i w a ve  v e c to r  o f  the im pinging e lectron , E j  
is the tran sverse e ig en va lu e  asso c iated  with the j  th m o d e  in the absence o f  a m a g n etic  field, 

E *  =  ( h 1 i t 2 ) /  ( 2m *  W 2),  and coc =  e B / m * .
W i t h  this a p p ro a ch  the tran sverse  e ig e n fu n ctio n s  can  be o b ta in ed  efficiently  ev en  for  large 

v a lu e s  o f  the m a gn etic  field and re lat iv e ly  w id e  structures, as long as a large en o u g h  n u m ber  

o f  basis e le m e n t s  is c o n s id e re d  ( tran sverse  m o d e s  for  the case o f  B  =  0). For ex a m p le ,  in a 
stru ctu re  8 /xm w ide in the p r e se n c e  o f  a 3-T m a g n e tic  field, abou t 800 basis e le m e n ts  are 

n-eeJcd.

4. REALISTIC SIMULATION OF QUANTUM WIRES
S-o far, w e  have c o n s id e re d  the c a lcu latio n  o f  the transmission matrix fo r  a given  c o n 

finem en t p o ten tia l  w ith o u t to u ch in g  o n  the n u m erica l  tech n iqu es that are n e e d e d  for  the 

s«eli-consistent d ete rm in a t io n  o f  such a c o n fin e m e n t  potential.  We will now  discuss a few 
a p p ro a c h e s  f o r  the c o m p u ta t io n  o f  the po ten tia l  in q u asi-on e-dim en sional n anostructures, 
m e n d in g  rath er  a p p ro xim ate  and sim plified te ch n iq u e s  as well as detailed  self-consistent 

rme.hods.
A  very  s im ple, a lthough e f fe c t iv e ,  te ch n iq u e  fo r  a first-order estim ate o f  the co n fin em e n t 

po ten tia l  in a nan ostructure  d ef in ed  by m ea n s  o f  d ep letion  gates  was introduced  by D avies, 

L a  kin, and S u k h o ru k o v  [35]. T h e y  d er ived  sem ian alytica l  expressions for  the calcu latio n  o f  

the b are  c o n fin em e n t po ten tia l  (i .e., the poten tia l  resulting from  the electrostatic  co n tr ib u 
tion o f  the gates, w ithout the term  fro m  e le c tr o n - e le c tr o n  interactions) in a h eterostru ctu re  

w i t i  po lyg o n ally  sh a ped  m etal  g a te s  on  its surface.

:n particular, they p rese n t  a ve ry  s tra ig h tfo rw a rd  m eth o d  for  the evaluation  o f  the e le c 
trostatic poten tia l  in the a p p ro x im atio n  o f  “ p in ned  su rfa ce ’1; that is, if w e  assum e that the 

JFe*mi-level at the su rface  is co n stan t  and in d e p e n d e n t  o f  the bias vo ltag es  ap p lied  to the 

g a e s .  T h is  is a co m m o n ly  a c c e p te d  a p p ro x im atio n  that can be fou n d  quite often  in the litera- 
itujs, a lth ou g h  it is not exact (it is a p p a ren t  that, to  k e e p  the potentia l at the surface constant 
;anl eq u a l to  zero  as the g a te  v o lta g e s  are c h a n g e d ,  ch arge  should  be transferred  from  the 

:gaes to the surface to c o m p e n s a te  fo r  their  e lectro stat ic  action). U n d e r  the hypothesis  o f  

p im e d  surface ,  it is possib le  to sh o w  that the p o ten tia l  in the h eterostructure  can  sim ply be 
expressed as a linear su p erp o sit io n  o f  the co n tr ib u tio n s  o f  e a ch  gate, which greatly  simplifies
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the problem . T o  find the exp ression  o f  the potentia l resulting from  each single gate, w e  add 

the further  co n d it io n  that the e lectr ic  field van ishes  d e e p  inside the heterostructure. This 

implies that, i f  w e  defin e as 4>(q,  0) the Fourier  tran sform  o f  the potentia l <b(r,  0) at the 
surface (w h ere  q  is th e  w a v e  ve cto r) ,  the d e p e n d e n c e  o n  z  will introduce an exponential 
behavior:

4>(q, z )  =  ( / > ( q , 0 ) e x p ( - \ q z \ )  (87)

B e c a u se  a m ultip lication  in the tran sform ed d o m a in  is eq u iva len t to a convolution in the 

real-space d o m a in ,  the spatial d e p e n d e n c e  o f  the po ten tia l  is given b y  the convolution  o f  
the poten tia l  at the surface  tim es the inverse F o u rie r  tran sform  o f  exp ( — \qz\ ):

D av ies  et al. p rov ide  exp ress ion s  o f  the contrib ution  to the e lectrostatic  potential at the 
level o f  the 2 D E G  (2-d im en sion al e lectron  gas) fo r  several  basic  g e o m e tric  shapes (such 
as triangles, finite and infinite rectangles, etc.)  and for  ge n e ric  po lygons. Let  us discuss 

specifically  this last case ,  w h ich  is o f  m o re  c o m m o n  interest.

L e t  us assum e w e have N  p o lygon al gates, each  c o v e rin g  a su rface  S (. O u r  b ou n d ary  
condition  will be ex p ressed  by </>(/% 0) =  Vt if r  b e lo n gs  to o n e  o f  the regions S,\  oth erw ise ,  

<f)(r, 0) =  0, as e x p e c te d  from  the hypothesis  o f  su r face  pinning. F ollow in g  Ref. [35], w e n ow  

con sider  the G r e e n ’s fun ction  o f  the L a p la c e  e q u a tio n  in the h a lf  sp ac e  for  z  >  0, with the 
b o u n d ary  condition  that it will vanish for  z  =  0 and r  —> oo. U s in g  the m eth od  o f  im ages 

[36], such a G r e e n ’s fu n ctio n , satisfying the definition V 2G ( j ? ,  R')  — —8 ( R  -  R ' ) ,  reads

G ( R ,  R' )  = ------ - ■!■_■ = --------- — ^  1 =  (89)
477-yir -  r  '|* +  ( z  -  z ' ) 2 4 iTyJ\ r  -  r ' \ 2 +  ( z  +  z ' ) 1

w h e r e  R  =  ( r ,  z ) .  W e k n o w  the potentia l </>(r, 0) at the su rface  o f  the h eterostruclure, the 
only region  in o u r  s im plified m o d e l  in w hich the so u rc e  term  fo r  the L a p la c e  equation  (i.e.. 

the c h a rg e  p)  d o es  n ot vanish. T h u s, w e can exten d  cf) to the w h o le  sem isp ace  with z  > 0 
using G r e e n ’s th e o rem  [37, 38]

=  j j  d s ' [ ( l > ( R ' ) V ' G { R ,  R  ) -  G ( R ,  R' )V<t>{R' )  (90)

w h e r e  the surface  D  is a h e m isp h e r e  o f  very  large radius c lo sed  at the b ottom  by a circle 
b e lo n gin g  to the p la n e  z  =  0, with the ve cto r  d s ’ a im ed inside the surface. B e c au se  the 

electric  field vanishes at infinity, the contribution  from  the integral o v e r  the hem isphere 

van ishes  too, i f  w e  let its radius g o  to infinity and w e  are left s im ply  w ith  an integral over  
the p lan e  2  =  0:

H R )  =  J J  d f ' W ,  0 ) [ - ^ G ( / ? ,  R ' ) ]  _(| =  V M R )  (91)
i

w h e r e  the integrals  J{( R )  are  given by

I.

thereby  c o rre sp o n d in g  to  an integration  o v er  the su rface  o f  e a ch  g a te  [since everyw here else 
d>(r \  0) =  0]. T h e  next step consists  o f  using the d ive rg en ce  th e o rem  to  recast such surface 

integrals into c o n to u r  integra ls  a lo n g  the b o u n d a ry  o f  ea ch  gate  d S t . T o  this purpose, let us 
con sider  the d iv e rg e n c e  in tw o  d im en sions o f  the fu n ctio n  r / r 2:

d i v ~  2 n 8 ( f )  (93 )
r
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T h i s  im plies that if we co n s id e r  a ge n e ric  function  M ( r ) .

d iv -  "  + 2 f f A f ( 0 ) g ( r )  (94)
, / A / ( r )  dr

r- r

w h ic h ,  with the ap p licat io n  o f  the d ive rg en ce  th e o re m , leads to

=  - [  M ^ ' d-  - 2 i r M ( 0 ) 6 ( r )  (95)
Jus, r~

w h e r e  9 ( r )  =  1 i f  the point r  =  0 b elon gs  to S t and 9 ( r )  — 0 otherwise , and the v e c to r  d l  
is p e rp e n d ic u la r  to the b o u n d a ry  d S { and d irected  inward.

I f  w e  n o w  a ssu m e M ( r )  =  —z ( r 2 +  z 2)~ l/2, w e  get

dM(r)

- 4 —  =  z ( r 2 +  z 2) - 3/2 (96)
r

w h ich ,  c o m b in e d  with E qs. (92) and (96), yields

; , ( « )  =  /  .; + 2  « y , ( F )  (97)
hs, \r -  r '\2y/ \ r '  — r\2 -I- z -

w h e r e  %-(F) =  1 if  r  e  S, and y ^ r )  =  0 oth erw ise .  C o n s id e r in g  that the reg io n s S,  are
p o lyg o n s ,  a c o n t o u r  integral a ro u n d  their  b o u n d a rie s  is the result o f  the sum o f  line integrals

a lo n g  the straight seg m en ts  fo rm in g  each  ed g e. T h u s  E q. (97) can  be rewritten as

/,■(*) =  £ / ------------- ^ H = =  +  2 1r y i ( r )  (98)
,  ( D 2 +  / I )  D 2 + Z 2 +  /2

w h e r e  E ik is the k i h  e d g e  o f  the ith gate, and D ik is the distance b etw e en  such an e d g e  and 

th e  point r, as sho w n  in Fig. 9. T h is  integral can b e  p e r fo rm e d  analytically [35, 39] and w e 

ob ta in

/,(/?) =  a r c t a n -------  ~~lk ■ — —  4- a r c t a n ------- —  — —  (99)

k D ik J z 2 +  D f k  +  t f k  D i k y J z 2  +  D ,k  +

— > r

Figure 9. Definition of the quantities used for the calculation of the field resulting from a polygonal electrode.



706 Nanoscale Device Modeling

where b ik and c lk are the distances between the vertices delimiting the A-th edge and the 
point A  o f  the edge closest to r, both measured outward from A .  It is to be noted that a in 
b lk, and D ik can be negative, and in such cases the arctangents are to be intended according 
to the usual definition (i.e.. with an angle limited to the domain [ - 7 7 /2 ,  t t / 2 ] )  and not to 
that o f  the four-quadrant arctangent (atan2 in Fortran).

E q u a tio n s  (9 1)  and (99) can  be easily im p lem e n te d  into a c o m p u t e r  c o d e  (an e xa m p le  is 
availab le  on the P h a n to m s  H u b  [40]) to c o m p u te  the bare co n fin e m e n t po ten tia l  from  an 
arbitrary  con fig u ra tio n  o f  p o lyg o n a l  gates.

L et  us now briefly  d iscuss how  the contribution s from  the ionized d o n o rs  and from  the 
e lectro n s  can b e  in tro d u c e d  into this sem ianalytical a p p roach . W e shall fo l lo w  the m ethod 

p ro p o sed  by M a r to re l l  c t  al. [41, 42], specifically  for  the case o f  an e lectro statica lly  defined 
q u an tu m  wire.

W e con sider  a g a te  lay o u t  such as the o n e rep rese n te d  in Fig. 10: a split g a te  that defines 

an indefinitely lo n g  q u a n tu m  wire. T h e  z axis is p e rp e n d ic u lar  to th e  su rface  o f  the h et
e rostructure,  as in the o th e r  exa m p les ,  w h e re a s  y  is a lo n g  the wire and a * is in the transverse 

direction. In such a case ,  with gates ch ara cte r ize d  by an infinite ex ten sio n , the b are  co n fin e
m ent potential can  be c o m p u t e d  with a sem ianalytica l  expression  a n a lo g o u s  to the o n es  we 
have previously d iscussed , given  by D av ies  et al.:

w h e r e  VH is the v o lt a g e  a p p lie d  to both  sides o f  the split gate ,  and w  is the width o f  the gap. 
W e notice  that, as e x p e c te d  from  the translational invariance, there is no d e p e n d e n c e  o f  c/> 

on  the c o o rd in a te  y  a lo n g  the wire. T h e  o th e r  two contribution s to the po ten tia l  actually  seen 
by the e lectron s in the w ire  derive from the o th e r  e lectron s and fro m  the ion ized  donors. 
A n o t h e r  result o f  the tran slat ional invariance will be that the Poisson a n d  S c h ro d in g e r  e q u a 

tions (to  be so lved  s e l f  consisten tly  with the inclusion o f  the g lobal  e le c tro sta t ic  po ten tia l)  
will be  sep ara ble .  In p a rticu lar,  the S ch ro d in g er  eq u a tio n  can  be s e p a ra te d  into a lon gi

tudinal o n e -d im e n sio n a l  e q u a t io n  and a transverse tw o-dim en sion al eq u a t io n .  B e c a u se  o f  
translational in varian ce  a lo n g  a , the solution  o f  the longitudinal e q u a t io n  is simply a plane 

w ave. T h e  solution  o f  the transverse tw o-d im en sion al e q u a tio n  must instead  be ob ta in ed  
num erically.

A s  far as the c o n tr ib u tio n  o f  the d o n o rs  is c o n c e rn e d ,  a very  s im p le  ca lcu latio n  is possi
ble if  w e assum e c o m p le t e  ion ization  (the case o f  in co m p le te  ion izatio n  is treated , too , in 
Ref. [42]). L et  us c o n s id e r  a d o n o r  layer with a un iform  ch a rg e  den sity  p d located  b etw e en  

z =  c  and z  — c  +  d .  In such a case the electric  field in each  region  can be ev a lu a ted  by 

m ea n s  o f  G a u s s 's  th e o r e m  a n d  the m e th o d  o f  im ages. In the region for  0 < z  < c,  there 
is n o  charge; th e re fo re ,  the e lectr ic  field is the result o f  the action  o f  the c h a r g e  con tain ed  
in the slab b e tw e e n  c  a n d  c  -I- d  and its im age lo ca ted  b e tw e e n  — c  a n d  —c  — d .  E ac h  slab

( 100 )

Figure 10. Indefinitely long w ire defined in a heierostructure by means of a split gate
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(th e  actual  o n e  an d  its im age) con trib utes  with a term  - p tjd / ( 2 z ) .  T h u s ,  for  0 < 2 < c  the 

d o n o r  c o n tr ib u tio n  </>(/ to the po ten tia l  can be o b ta in ed  simply from  the integration  o f  the 

e le c tr ic  field:

c/>(/(.v. 2 ) =  — —  2  for  0 <  z  <  c  ( 1 0 1 )

F o r  z in te r m e d iate  b etw e en  c  and c  +  d ,  w e have  the action o f  the im age, w hich gives 

a c o n tr ib u tio n  E  — - p dd / { 2 s )  to  the potentia l,  o f  the ch arge  in the region  b e tw e e n  

c  a n d  2  [ E  =  ( z  -  c ) p lf/ ( 2 e ) ] *  and o f  the ch a rg e  in the region b etw e en  z  and c  +  d  
[/; =  — (c* +  d  -  z ) p (l/ { 2e)], w here the electric  field expressions have b e e n  o b ta in e d  by a p p ly 
ing G a u s s ’s th e o r e m  to  the p a ra l le lep ip ed s  shown in Fig. 11. P ara l le lep ip ed  A  has a side 

p a ra l le l  to s e m ic o n d u cto r  surface  at 2  and o n e  at c ,  and p a ral le lep ip ed  B  has a side at 2 and 

th e  o th e r  at c  +  d .  In the limit o f  a very  large extension a lo n g  x  and y ,  these are the on ly  
s ides  w ith  a n o n n eg lig ib le  flux o f  the electric  field, as the o th e r  s ides are  so  fa r  aw ay that 

the e le c tr ic  field can be assu m ed  to be null there. T h u s, the flux p e r  unit o f  su rface  th rou g h  

e a c h  o f  the tw o  m e n tio n ed  surfaces  is o n e  h alf  o f  the charge  p e r  unit o f  su rface  c o n ta in e d  in 
the p a r a l le le p ip e d  ( p (, times the p a ra l le le p ip e d  thickness) divided by twice the perm ittivity. 

T h e r e fo r e ,  the total e lectr ic  field in the region b e in g  con s id ered  reads

P ,i‘l  , ( z  ~  c )P.i c +  d  -  z  „ P d ( d  +  c )  , z p d
L   ̂ H-------- -̂----------------- -̂------ Pci = --------------------r  — -2 s  2 s  2 e  e e

Finally  the electric  field for  z  >  c  +  d  is z e ro ,  as the contrib ution  fro m  the d o n o r  c h a rg e  

and the im a g e s  c an ce l  each  other.
W e can  n ow  c o m p u te  the p o ten tia l  by integrating the electr ic  field. For 0 < 2  < c  w e  have

=  =  ( ,o 3 )
Jo £ £

for  c  <  z  <  c  -f  d  w e  get

jl /.* w  a fcul PAd + c) , Z'P«/ .1,/ ePd <pAz) =  -  / ----------- + —  dz =j . p. p. £
d z  -  ^ ( 2  -  t-y (104)

and for  2  >  c  4- d  the poten tia l  is constan t and eq ual to the va lue o f  the prev io u s  exp ression  

co m p u te d  fo r  2  =  c  -f d:

=  y ^ P j d i l c  +  d )  (105)

T h e  ca lcu latio n  o f  the con trib ution  from  the d o n o rs  is slightly m o r e  c o m p le x  if partial io n 

ization o f  the d on ors  is included; such a case is trea ted  in detail  in R ef.  [42].
A n o t h e r  c o m m o n ly  used b o u n d a ry  condition  at the exp osed  surface  o f  the s e m ic o n d u cto r  

is the so-ca lled  “ fro z e n -s u rfa c e ” hypothesis , in w hich , contrary  to the “ F erm i-le ve l  p in n in g ” 
hypothesis, the su rface  charge  is s u p p o se d  to be frozen ; that is, not to v ary  as a c o n s e q u e n c e  

o f  variation s in the g a te  vo ltag es  and in the e lectr ic  field at the su rfac e ,  w hich is a ssu m ed  
to be z e r o  (o r  in s o m e  cases con stan t) ,  thereby e n fo rc in g  a N e u m a n n  b o u n d a ry  co n d it io n  in 

the free  su rface  reg io n  and a D ir ic h let  b o u n d a ry  condition  u n de r  the g ate s  fo r  the solution  

o f  the Poisson eq u atio n . It is to b e  n oted  that with a frozen  su rfa ce  b o u n d a ry  con ditio n ,

z
.......

c

d Tl B

Figure II. Surfaces for the application of Gauss’s theorem to the calculation of the potential in the donor region.
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the potential c an n o t  b e  c o m p u t e d  as a sup erp osition  o f  the con trib u tion s  from  the d ifferen t 

ga tes ,  as in the case o f  Ferm i-level  pinning. T h e r e fo r e ,  the treatm en t is significantly m o re  
com p lex ,  as o utlin ed  in R ef. [35].

N e ith e r  Ferm i-level  p in n in g  n or  the frozen  surface  hypothesis  y ield  results that are in 
g o o d  q uan titative  a g re e m e n t  with the exp erim en ta l  data, b e c a u se  the real b eh a vior  o f  the 

sem ic o n d u cto r  su rfac e  is in te rm e d iate  b e tw e e n  the tw o assum ptions w e  have discussed so far.

A  better, a lth ou g h  n ot exce l len t in all cases, a g r e e m e n t  w ith  exp erim en ta l  data  can be 

o b ta in ed  w ith  the su rfac e  tr e a tm e n t  p r o p o s e d  by Ia n n a cc o n e  et  al. [43]. T h is  is a two- 

s tep p rocess  b ased  on the k n o w le d g e  o f  the exp erim e n ta l  sh eet  ch a rg e  density at e q u i l ib 
rium  and o n  the assum ptio n  that the su rface  c h arg e  d o es  not c h an g e  w hen  vo ltag es  are 
ap p lied  to  the gates. T h e  first step consists o f  assum in g that all g a te s  are gro u n d ed  and 

that th ere  is F erm i-le ve l  p in n in g at the exp osed  surface  at a level within  the b an d ga p  that 
is c o m p u te d  by fitting the exp erim e n ta l  sheet ch a rg e  density. B y  solv ing the Poisson e q u a 
tion, the e lectr ic  f ield at the su rface  is co m p u te d ,  and thus the c h a rg e  density. W e  then 

assum e that such a ch a r g e  den sity  rem ain s the sa m e w h en  g a te  vo lta g e s  are applied, and 

a N e u m a n n  b o u n d ary  co n d it io n  with the sam e value  o f  the e lectr ic  field is used. W ith  this 

ap p ro a c h ,  a r e a so n a b le  a g r e e m e n t  fo r  the p in ch -o ff  vo ltag es  o f  several  quantum  point c o n 
tacts o f  d ifferen t width can be a ch ie ved , but p ro b lem s a p p e a r  for  split gates  with a g a p  w id er  

than 200 nm.

A  m ore co m p le te  trea tm en t  can be o b ta in ed  with the m eth o d  p r o p o se d  by C h e n  and 

P o ro d  [44]. T h e y  assu m e the p o ten tia l  to be c o n t in u o u s  across the surface ,  with a variation  
o f  the n orm al e lectr ic  field d e p e n d in g  on  the su rface  ch arge  density:

e v £ v  =  f i a i r ^ i r  +  G su r f  O 0 6 )

w h e r e  e s and E s are th e  perm ittiv ity  and the e lectr ic  field in the sem icon d u ctor,  e air and E ajr 

are  the sam e quan tit ies  in the air, and (>surt is the surface  c h arg e  density. T h e  surface ch arge  
is c o m p u te d  in the eq u ilib r iu m  c on d itio n , as in the previously  m e n tio n e d  approach, w h e r e a s  
the solution o f  the P oisson e q u a tio n  is p e r fo rm e d  not only in the se m ico n d u cto r  but a lso in 
the air a b o v e  it, with z e r o  field b o u n d a ry  con d itio n  at infinity.

A  further te ch n iq u e  fo r  the trea tm en t o f  surface b o u n d a ry  c o n d it io n s  is presented  by Fiori 
et al. in R ef.  [45], c o n s id e rin g  a con stan t density  o f  surface  states p e r  unit energy p e r  unit 

a re a  D v with an e f fe ct iv e  w o rk  fun ction  4>*. Indicating the v a cu u m  level with E {), the su rface  

states  with e n erg y  b e lo w  E () — q<t>* act as accep tors,  w h e r e a s  th o se  a b o v e  act as donors. T h e  
o c c u p a n c y  o f  such states  is d e te rm in e d  self-consistently, b ased on  the solution  o f  the Poisson 
eq u a tio n . T h is  a p p r o a c h  has p ro v id e d  quite  a g o o d  a g r e e m e n t  w ith  exp erim ental  data  on  

the p in ch -o ff  v o ltag e s  fo r  q u an tu m  po int con tacts  o f  several d im en sions.

5. SIMULATION OF QUANTUM DOTS
M a n y  co m p u tatio n a l  te ch n iq u e s  fo r  the investigation o f  q u an tu m  dots  have been d e v e lo p e d  
d u rin g  the last tw o d e c a d e s ,  starting from  the ea r ly  w o r k  by K u m a r,  L a u x  and Stern  [46], 

the m o d e ls  fo r  c ircu lar  dots  by M a k sym  et  al. [47], and then m o v in g  to the sophisticated  
a p p r o a c h e s  by S to p a  [48], S ch o lz e  [49], M a ta ig n e  [50], and H a w r y la k  [51]. D ifferen t authors  

have  fo c u sed  on limiting the ap p roxim ation s  in specific  p o rtio n s o f  the calculation. S o m e  

c o n s id e r  a very  s im plified co n fin e m e n t poten tia l  and apply  refined m eth o d s  to the treatm en t 
o f  the e le c tr o n - e le c tro n  in teraction  w ithin  the dot, w h e r e a s  o th e r s  sp end  a larger  e ffo rt  

on  the co m p u tatio n  o f  a realistic  c o n fin em e n t po ten tia l  consisten t with the layout o f  the 

e le c tr o d e s  and use less a d v a n c e d  m eth o d s  fo r  the solution  o f  the m an v-b ody prob lem . In 
ge n e ra l ,  th e re  is no a p p r o a c h  that is p re fe ra b le  o v e r  the oth ers. T h e  choice b etw e en  the 

m an y  te ch n iq u e s  that h ave  b e e n  d e v e lo p e d  for  q u an tu m  dot s im ulat ion  dep en ds on the 

sp ecific  characteristics  o f  the p ro b lem , on  the quan tit ies  that o n e  w'ants to com pute,  and on 
the level o f  detail with w h ich  the p a ra m e te r s  o f  the device  are  known.

T h e  ideal solution  w o u ld  involve usage o f  the least ap p ro x im ate  m e th o d  (i.e., the exact 

d iag o n aliza t io n  o f  the H a m ilto n ia n ) ,  w hich, h ow ever ,  is possible  on ly  fo r  a very  small n u m b er  
o f  e lec tro n s  (b e lo w  10) w ith  the curren tly  availab le  c o m p u tatio n a l  facilities. T h e  seco n d  least
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approximate approach is configuration-interaction, which will be discussed in detail in the 
following section, dedicated to the numerical simulation of multiple quantum dot systems, 
coupled with the solution of the Poisson equation. With configuration-interaction, the many- 
electron wave function is properly symmetrized, being represented as a linear combination 
of Slater determinants (whereas, for example, Hartree-Fock uses a single, optimized Slater 
determinant), but if the electrostatic interaction is more complex (as in almost any situation 
of interest), knowledge of the complete Green’s function of the Poisson equation is needed.

In the other methods, self-consistency between the solution of the Schrodinger and of 
the Poisson equations is achieved with an iterative procedure, solving repeatedly for the 
wave functions and for the electrostatic potential. In these approaches, the electrostatic 
interaction between electrons is usually introduced with some type of mean-field approxima
tion (Hartree, density-functional theory). Convergence is achieved swiftly if the electrostatic 
interaction leads only to a small perturbation of the quantum confinement energy, although 
it may become hard or even impossible to attain when it accounts for a significant part of 
the particle energies.

Let us first discuss approaches in which a so-called “bare confinement potential” is pos
tulated (sometimes it is parabolic, such as in Ref. [47], and other times it is the result of 
a distribution of positive charge on a finite surface [52]). This corresponds to the poten
tial that would be felt by a single electron occupying the quantum dot. As we have more 
than one electron in the dot, each electron will be subject also to the interaction with the 
other electrons, which will be represented as a “mean” field contribution, averaged over 
their probability distribution. The original mean-field theory was the result of Hartree and 
involved a different Schrodinger equation for each orbital, as each electron should see the 
electrostatic contribution of all other electrons except for its own. The solution of such a 
system of equations is somewhat time consuming; therefore, many authors resort to the so 
called Common Hartree Hamiltonian (CHH), a Hamiltonian that is common to all orbitals, 
because the self-interaction is not removed. Oaknin et al. propose [53] a correction to the 
usage of the C H H  by subtracting the self-interaction contributions from the eigenvalues 
obtained at the end of the self-consistent procedure.

Other commonly used approaches are based on the local density functional approxima
tion (LDA); that is, on the assumption that the electron density in the quantum dot varies 
slowly enough to allow the application of density-functional theory [54, 55]. Within these 
approaches, the Hamiltonian is the same for all orbitals and, in addition to the Coulomb 
interaction term, contains exchange and correlation terms:

where ^ ( r )  is the wave function for the ith orbital, e,- is the eigenvalue associated with 
the z'th orbital, and Kc(rj) is the Coulomb interaction term, which in the simple case of an 
isolated quantum dot will read

where N  is the total number of electrons in the dot; e0 and er are the absolute and relative, 
respectively, dielectric permittivities; and V is the volume of the quantum dot.

If  the dot is not isolated, the term Kc(rj) must be obtained, solving the Poisson equation 
in the structure. The only exception is represented by the particular case of a quantum dot 
defined in a medium of constant permittivity and located close to a conducting plane, in 
which case the term Vc(r}) can be obtained summing the contributions from the images to 
the expression given above [52].

As far as the exchange and correlation terms are concerned, their expressions depend 
on the dimensionality of the problem. In three dimensions they are given, in atomic units

(107)

(108)
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(h — 1, e =  1, m* =  1) and in the spin unpolarized case, bv the Kohn-Sham theory [54] and 
Ceperley's parametrization [55] as

y  =  — ^[3nr-p(r)]'-3 (109)
77 L

and

Korr =  /~j . n - J r - n---- 1 +  T /6/3 ! +  4/3)32/*v) for /*v >  1
U  i P |  V  7*v +  H 2 r s)~  ( H O )

K w  =  4̂ In rs -I- ( S  -  /4/3) +  2/3Cr, In rv +  1/3(2D -  C )r¥ for /; < 1

where rv =  a/a{)n with a = 1/ ^JWp (p being the local electron density) and aK) the Bohr radius
in the considered material; y = —0.1423: =  1.0529; /3, = 0.3334; A = 0.0311; B = -0.048;
C = 0.0020; and D = -0.0116.

In two dimensions (very often quantum dots are studied as two-dimensional structures,
becausc their vertical dimension is significantly less than those in the horizontal plane),
following Ref. [56] and taking the functional derivatives [52, 54], they read

4 V I  1
Kx = ------------ ( i n

77 r,

I7 n  1 +  d Iw  +  d 2w 2 +  d} ui' +  d4w A
*corr 0  / i  , ^  . r '  ,(1 +  C ,?i> +  C2w- -f- C3iu*')-

where C„ =  -0.3578, C, =  1.13, C2 =  0.9052, C3 =  0.4165, w = N/r7,.rf, =  2.26, rf, =  2.635, 
</3 =  2.007, and </4 =  0.70597. ' ' 4 ^

Equation (107) can be discretized and solved numerically in a number of ways. We will 
discuss specifically the approach based on finite differences in one and two dimensions (the 
three-dimensional case is just a trivial extension of the two-dimensional case). With finite 
differences in two dimensions and assuming a constant discretization step A.r — .v, -  v, 
we get

h 2 iM - t , - , )  -  2 i / / ( x , )  +  i l>(xi + l ) r , n
------------------- ^ ------------------- +  [ K  (Xi )  +  K J - O  +  Kon (-V, =  £«/'(*,) (113)

which corresponds to as many algebraic equations as the number of discretization points 
considered in the solution domain. Let us consider a domain extending from x =  0 to .v —  a ,  

as shown in Fig. 12. Let us also assume that it is divided into N mesh intervals, each of 
which will have a length Ax =  x / (N — 1). If Dirichlet boundary conditions (i.e., vanishing 
wave function), are enforced at a =  0 and .v =  a\ the first equation, for / =  1 will read

h 2 — 2«//(a'j) -h il/(x->) r f _
~ 2 ^ ~ A ^  +  1 F“ (V |) +  Kv r r M ^ 'V , )  =  f <A(-v:) ( ’ I4)

where the term i//(x0) has disappeared, as it vanishes as a result of the boundary condition 
at x  — 0. The second equation will read

h2 </r(.V,) -  2iA(a-2) +  </'(*,) .
---------  + L1 ,(•'■;) +  K-* (•'■':) +  l\.,,rr (.V: )j(//(.V: ) =  eu(.v2) (115)■>m- A.v:

Figure 12. D iscretization in on e  dim ension for the solution of the Schm dinger equation
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a n d  th e  s a m e  f o r m a t  will he val id for  all o t h e r  e q u a t i o n s ,  excep t  fo r  the  last,  which will r ead  

h : i / / ( . y v : ) - 2 ( / / ( . v v  , )

m v A.v +  [  K (  X S  -  I ) +  K - \  ( V Y - 1 ) +  K o r r  ( -V \  | ) ] * A ( - V;V I I )

(116)

where the term ijj(xN) does not appear, because of the Dirichlet boundary condition at
x =  N.

This system of linear equations can be written in matrix form:

V+Vi - V 0 0
2 t)-\-V2 -7] 0

-T] 2iri+V? -ri

-7 / 277+ 1^,3 -7] 0
0 -7} 2r)+VN_1 7}
0 0 - 7 ]  ‘ 2r/+ Kv_i)

'I'n-
*I*N- 

K * N - \ /

=  €

f V-'i  ̂
•A:

'/'.i

<A/V-2 
V fv - I /  

(117)

where 7] = h1/(2m*Ax2) and K, =  K ('v,) +  KjxC*/) +  K»rr(*/)- Equation (117) represents 
an algebraic eigenvalue problem in which the matrix for which the eigenvalues are to be 
computed is tridiagonal; that is, it has only the three middle diagonals that are nonzero. 
This simplifies the task of computing the eigenvalues remarkably, because one of the many 
available routines for the efficient solution of tridiagonal eigenvalue problems can be used, 
such as TQLl in the EISPACK package. It is also possible to enforce different boundary 
conditions at a =  0 or x = x; in particular, we can enforce a Neumann boundary condition 
(i.e., a condition involving the derivative being zero at the boundary). If the derivative is zero 
at the boundary, it means that, as shown in Fig. 13a, the wave function must have symmetric 
values around it. In particular, if we are considering the left boundary, we should enforce 
that the wave function in x , has the same value as in x { (i.e., <// , =  <//,). Because we are 
using a three-point formula for the derivatives, it is not easy to enforce such a condition 
directly. We can rather enforce the condition <A0 — i/r,, which is equivalent to placing the 
Neumann boundary condition in the middle between a*0 and x,. In such a case, the first 
equation will read

2 m*
2tp{xi) + ii>(x2)

\ x :

Figure 13. Neumann boundary condition in the origin with uniform discretization mesh (a) and with nonuniform 
discretization mesh (b).
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which, being ip(x{)) = ^ (x ,), becomes 

h 2 - ( / ' ( * ] )  - f  i / j ( x 2)

2 m* Ax: + [K(Xl) + K-xUl) +  KwrUl )]</'(*! ) =  e<A(*|) ( 1 1 9)

The other equations remain unchanged, as they are not affected by the boundary condition. 
It is also possible to enforce the Neumann boundary condition exactly in x0, using a nonuni
form mesh, and in particular a mesh that is twice the size between x() and x,, as shown 
in Fig. 13b. This issue will be discussed in greater detail in the following, when treating 
the solution of the Schrodinger equation in polar coordinates. The discretized equations 
undergo some changes as a consequence of the nonuniform mesh. The second derivative in 
x { will be discretized as

iy/(..V:)-l//(.Vi ) __ t )-(//(a-i
A .V J A .v „d2\fj\

dx2 _i_I .v=.v, 2 2
<A(x2) -  <//(x,) iA (a , )  -  i j j ( x {))

A

where Axy =  x f -  x() and Aa, =  x2 -  X,. This procedure can be straightforwardly extended 
to include a generic nonuniform mesh.

Let us now consider the two-dimensional case. The V2 operator will be discretized as

T  -------------4 7 -------------+ --------------— —  ( |21>

which, in the simplified case of Ax =  Ay yields the discretized Schrodinger equation 

h2 ~ +  lA,,y+1
2m* Ax2 +  t'.-.A> =  e ( |22)

If we consider a rectangular N x M domain and order the mesh points in the so-called 
lexicographic order (i.e., moving from left to right along each row, starting with the top row 
and ending with the bottom row), we obtain, writing the discretized equations corresponding 
to each mesh point, an eigenvalue problem with a five-diagonal matrix in which the three 
middle diagonals are nonzero, as well as the two that are N elements away from the middle 
on both sides (which correspond to the and ,-+1 terms). Considering that the dimen
sion of the resulting eigenvalue problem is N  x M by /V x A/, its numerical solution may 
result quite challenging, in particular if the determination of all eigenvalues is attempted. 
Because we are in general interested only in the lowest eigenvalues and eigenfunctions, it 
is convenient to use iterative solvers that compute only a given number of the lowest eigen
values instead of attempting the full solution. There are a number of such solvers available:, 
based on the Lanczos method, on the Ritz procedure, or on conjugate gradient approaches,.

5.1. The Solution of the Schrodinger Equation in 
Polar Coordinates

It is possible to simplify the solution of the Schrodinger equation in the presence of sym
metries; in particular, circular symmetry allows a reduction of the dimensionality of the 
problems via separation of the variables.

As an example, let us examine the simple case of a two-dimensional circular region delim 
ited by hard walls. The first step is to write the Laplacian in polar coordinates:
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The polar representation of the Schrodinger equation is thus given by

ft2 1 l d dil){p,(t>)~
n

\ p  <'P <'p .

+
cj>)

d4>2
+  [/(p)tA(p, </>) =  Eip(p, 4>) (124)

where we have included a potential V(p) that only depends on the radial coordinate (there 
is actually no advantage in using the polar coordinate if the potential also depends on the 
angle <f>). To solve the previous equation, we can insert a trial solution written as if/(p, </>) =  
P(p) X( <f >)  (i.e., a solution factorized into the product of a function of p  and a function of 
</>). In this way we obtain:

hr ( 1 d
2m [ p dp

h2

p^-P{p)X(<t>) 
. dp

+
1 d2P(p)X (4>) 1

r 9P(p) i
\ pop P nL llP _

X(4>) + ~ P ( P)
p- C><p-

h1 ( dP

+ V{p)P{p)X(4>) = EP{p)X(<t>)

+  V(p)P(p)X{4>) = EP{p)X{ct>) (125)

d2P „d2X
— —--- { p X  + p~ X ——r + P -2m \ dp dp- d<f>2

Vp2PX = Ep2PX

By dividing all terras by —h2/(2m)PX  we obtain 

I 3P
P dp

, 1 d2P
P~pJp^ +

I d£X  2m -------------------p- V =
x  (i4y- n2 H

2 m
~w Ep2 (126)

The previous equation can be divided in two equations, each one depending only on one 
variable. Before doing that, let us define K = 2m/{hl )E and add and subtract the constant 
v2 in Eq. (126). We obtain an equation for the angular dependence

1 d2X
~ x W

and an equation for the radial dependence

4- v 2 = 0 (127)

n2) ' P  p i P  Im

dp- p dp h2 V p-J

(128)

We start the analysis of the solutions from the angular equation [Eq. (127)]. The generic 
solution can be written as X(4>) = Aelv* +  Be~ir<t>, but because of the space periodicity, 
X (cf)) = X((f) +  2ttN)  and the previous expression can be valid only for integer values of v. 
Moreover, the assumption that the potential does not depend on the angular variable implies 
that the modulus of the angular solution does not depend on <£, and thus we can write

X(ct>) = eii’(b
V €  I (129)

Once the angular solution has been decided, a numerical solution to the radial equation 
Eq. (128) can be obtained by enforcing the proper boundary conditions. In the case we are 
considering, the wave function must vanish at p = R (i.e., on the disk edge). The other 
boundary that has to be considered is the point p = 0, at which the condition to be satisfied 
depends on the value of v. If v is even, after a it rotation, the wave function assumes 
the same values, and then on the radial origin we need to impose a Neumann boundary 
condition, i.e. the vanishing of the first derivative of the wave function. In the other case, 
a 77 rotation produces a change of the sign of the angular function, and this is reflected in
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a Dirichlct condition for the radial function in p =  0. These results are summarized in the 
following:

OPv even —► —  
dp = 0

(130) 

V  odd -> />(()) =  0

Notice that the previous considerations are valid also in the case of soft-wall radial con
finement. In such a case it is sufficient to impose the Dirichlct conditions at a distance at 
which the value of all the considered wave functions equals zero. As an example, let us con
sider the hard-wall case with V(p) = 0 within the circular domain p < R (V =  oo for p > R).
The radial equation becomes

,02P DP ,
P~^TT +  P—  +  (A"p- -  ir)P(p) =  0 (131)Op- Op

This equation is formally identical to the Bessel equation, the solutions of which are 
called Bessel functions, with the correspondence P(p) = J,,(Kp). Let us point out that the 
solutions of the previous expression do not depend on the sign of v. A sketch of the first 
three Bessel functions is shown in Fig. 14. Let us point out that the previously discussed 
boundary condition at p =  0 is satisfied: The first derivative vanishes for v — 0 and v = 2, 
whereas the function itself vanishes for v — 1. To satisfy the boundary condition at p =  /?, 
we need to impose Jr(KR) = 0. and thus, if we call Z r the /th zero of the Bessel function 
of order v, we must have

KR — Z v (132)

This last expression leads to the following eigenvalues:

<■»>
and to the eigenfunctions:

il,r (p,ct>)=, A e ^ ’J^K' .p)  (134)

where Kr = Z vJ R , and A is a proper normalization constant. Notice that for v — 0 the 
system is nondegenerate, whereas for different values of v there is a double degeneracy as 
a result of the two possible values of v with opposite sign.

Let us now discuss the numerical solution of the Schrodinger equation for a realistic sys
tem. Quantum dots can be obtained by embedding tiny regions of a semiconductor material 
within another semiconductor that has a higher conduction band. A simplified geometrical 
representation is that of a lens-shaped dot with cylindrical symmetry and with the cross 
section as shown in Fig. 15. Because of the system symmetry, we can work in cylindrical

Figure 14. The first th ree  Bessel functions.
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R

Figiure 15. Cross section of a lens-shaped dot.

coordinates. By writing the solution as the product of an angular function and a function 
defending on the radius p and the height z only, i//(p, z, ct>) = U(p , z)iY (</>), and by using 
the previous results, it is possible to separate the Schrodinger equation into the following 
tw<o equations:

whiere m* indicates the effective mass of the electrons that, for simplicity, we assume to 
be the same in the two materials (this approximation will be released in the following). To 
numerically solve the previous equations, a proper discretization of the three-dimensional 
spjace is needed. The goal is to reduce the Schrodinger equation to a standard eigensystem 
in w hich the matrix to be diagonalized is as simple as possible. This can be achieved by 
accurately choosing the discretization mesh, but let us start with a natural, although not opti- 
mial, discretization. The {p, z} space is chosen as shown in Fig. 16, with Dirichlet boundary 
conditions on all the borders but p = 0. This last condition must be carefully chosen. For the 
previously mentioned symmetry reasons, we need a Neumann condition for even values of v 
amd a Dirichlet condition for odd v. There is a problem in enforcing one or the other bound
ary condition on the same mesh, which can be easily explained with the help of Fig. 17. If 
w(e choose a discretization mesh h in such a way that the first discretization point coincides 
wfith p =  0, it is easy to enforce a Dirichlet boundary condition by requiring U(0, z) — 0. 
Hiowever, a Neumann condition can be enforced only by setting £/((), z) — U(\ , z )  =  0, 
w'hieh is equivalent to enforcing the boundary condition in 0.5/7 and not in 0. The Neumann 
boundary condition is thus displaced by half a mesh, a problem that could be solved by using

(135)

D i r i c h l e t  c o n d i t i o n s

bandgap discontinuity

p = (>
Dirichlet conditions

Figure 16. T he discretization space.
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Dirichlet condition 

v|/(0) = 0

1 2  3 4 5

Actual boundary for Neumann condition 

vj/(0) = \y( I )

Figure 17. Boundary condition problem.

a nonuniform mesh, but that can also be neglected if h is small enough. With the stated 
approximations, the discretization of the equation for (7(p, z) reads

Ui+i.y U. 2 Ui-j
h2

-  U,_Li
2 h

U
+ 1

* ( /h)
u2 M

2m*
i s ™ - (136)

where £/, y =  U(ih, jk)  and h ,k  are the discretization steps along the two directions. This 
can be represented as a pentadiagonal matrix that, unfortunately, is not symmetric, making 
its diagonalization more difficult.

It is, however, possible to symmetrize the problem, with a simple transformation. Let us 
consider the second equation in Eq. (136) and multiply both sides by p:

dp \  dp J 

which can be rewritten

h2 d

d /  dU \  d2 2m* v2
0 3 7 )

h2 d2 h2 v2
p— U + p V - — -~U = - p E2m* dp \  dp )  2m*r dz2 r 2m* p

Let us first focus on the discretization of the operator

(138)

d
dp (%■) (139)

which leads to the asymmetry in the previous treatment. If we center the derivatives over 
half-mesh points, the discretization of such a term will read

n û -u‘ -  n u‘.Lf«-
P i - t - l /2  /, Pi - 1 / 2  h------ =  Pi. -  U i

n- P i-1
h2 (140)

where h is the discretization step along p. This is a symmetric operator, as are those deriving 
from the discretization of the other terms in Eq. (138). However, Eq. (138) does not repre
sent an eigenvalue problem because p, which is a vector in the discretized version, appears 
in the right-hand side; that is, we have a problem that can be written as

AU  =  pEU ( 1 4 1 )
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where A is the discretization coefficient matrix. Let us left-multiply both sides by p l/2:

p~]/2AU = p ' /2EU 

(p- ' /2A p ]/2)(p'/2U) =  E(p]/2U) (142)

( p ]/2Ap-]/2)lV = EW

which is a regular eigenvalue problem: once the eigenvectors W have been computed, the 
actual wave function U can be obtained by left-multiplying it by p~A/1.

Let us now look for a more general approach, in which a spatially variable effective mass 
can be treated as well as a nonuniform mesh.

I f  we have regions with different effective masses, one way of writing the Schrodinger 
equation that preserves the probability flux is the following:

-  — vY —  v A  +  Vip = Etp (143)
2 \m* )

We should, however, point out that it is not at all rigorous to define an effective mass close 
to the boundary between two different materials, as the effective mass is a bulk property.

Considering that the effective mass can depend on the position, we obtain a new expres
sion for the action of the Laplacian over the wave function; namely,

+ 1- ± ( ± ^ 1- )  + L ( ± } L )  (,44)
\m* J p dp \  m* dp )  p d(f> \  m* dcfr p )  dz \  m* dz )

Because our system has cylindrical symmetry, m* does not depend on 0. Therefore, we can 
write

- L v ^  = I  ± L ± 3j t )  +  ± ± ? * + ± ( ± Sj L )  (,45)
m* )  p  d p \  m* d p  J p - m* d(f>- d z  \ m *  d z  J

By inserting the previous expression in the complete Schrodinger equation, and by factoring 
the wave function [<//(p, z, 4>) =  U(p, z ) X (<}))], we can separate the problem into the two 
fo llcwing equations:

Vw+m'0=o <146)
w:here m*(H) =  v2 with v integer, and

1 d 
pdp

1 d U  

f  m* dp
+ L ( ^ dJ L \ - L V U - - ^ — U = ^ E U  (147)

dz V m* dz J h- p2m* h2

The angular equation has the usual exponential solutions [Eq. (129)] whereas the solution 
otf tie equation for U(py z) can be numerically approached if we refer to the discretization 
scheme of Fig. 18.

The resulting set of equations can be written in a concise notation as

aj jUj+i j +  fii jU^t j +  yi j(Ji i+l +  8jjUjj_j +  V i j U i j  — ( ^ 8 )

w/htre the definition of the coefficients depends on the boundary conditions. At the left ver- 
tiica boundary (i.e., at p = 0), we need to enforce either Dirichlet or Neumann boundary 
ciorditions, depending on the value of v, as discussed before. To avoid the mentioned prob- 
len in enforcing the Neumann condition on the first point, we shall use a uniform mesh 
e'veywhere except for p — 0. The first mesh interval starting from the origin will be identical



718 Nanoscale Device Modeling

Figure 18. Discretization scheme.

to the others in the case of Neumann boundary conditions, and only half a mesh in the case 
of a Dirichlet boundary condition. Moreover, we shall shift all the mesh points of half a 
mesh toward the radial origin. This ensures, as shown in Fig. 19, that the boundary condition 
is always enforced in the same position. With this choice we have

a, , =  ------- — ---------for 1 < / < /V, 0 otherwise (149)

for 1 < 1 5 N,  0 otherwise (150)

for 1 < j  < M n 0 otherwise (151)

for 1 < j  < M,  0 otherwise (152)

2 1 Pi+1/2!-s
f 

1 
1

- i  +  hj  
2

Pi m Ul/2. jh i 

1 Pi 1/2

'  h, _ i +  h; Pi m h f i j h  i

?
L. 1 1

1 k j _ i 4  k j k i * K i + 1 / :

2 1 1

ki_ , 4- kj k , ra? >-1/2

4 •  • •  • • •  Dirichlet condition
0

Neumann condition

Figure 19. The mesh for N eum ann and D irichlet h.c.
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2 1 P,-1 : _ _2______ P, i :
/?f_i +  //, p, /»;+, . V  , + h, Pi m\ \ 2.,jl>-\

2 1 1  2 1 1

/7Z/.y-^i/2 ^ i - 1 +  * / - 1 m l j  \ i

2 vl
----- - Vi ■----- - tor 1 < i < N and tor i = 1 and Dirichlet b.c. (153)hr ■ pj

2 1 Pi-t-l .2 _  2 1 _______l _
li,_i +  h, p l/2Jhi k , +  k k. m; jtl :

2 1 1  2 y2_  --------- --------------------------- _ y -----_ for j — i an(j  Neumann b.c. (154)
kj..t +kj  kh] /n;.;-_i/2 fi- p-

5.2. Self-Ccnsistent Solution
As previously stated, self-consistency between the solution of the Schrodinger equation and 
that of the electrostatic problem must be achieved with an iterative procedure. As the 
dimensions of a quantum dot increase, the electrostatic interaction becomes more and more 
important compared to the quantum confinement, because the Coulomb energy scales with 
the inverse of the distance between charges (and therefore with the inverse of the dot size), 
whereas the confinement energy scales approximately with the square of the dot size. It is 
thus apparent that achieving convergence will be increasingly difficult for bigger dots. Some 
improvement can be obtained with the application of underrelaxation techniques, which con
sist of considering at each iteration a weighed average of the potential obtained from the 
current solution of the Poisson equation and of that at the previous iteration. In mathe
matical terms, the potential V r(xi) used in the Schrodinger equation at the pih iteration is 
obtained as

V<\x, )  = l/i’oi% v,)a +  V 1' ~ '(*,.)( 1 -  a) (155)

where l/ p o l s s ( A ' , )  is the potential from the solution of the Poisson equation (or from the eval
uation of the Coulomb term, in the simplest cases), ^ “ '(.v,) is the potential at the previous 
iteration, and is the underrelaxation parameter, which varies between 0 and 1 (no under
relaxation). If  small values of a are used, convergence will be very slow and particular care 
must be exercised when choosing the convergence criterion to stop the iterative procedure. 
Indeed, the most common stopping criterion consists of checking when the modulus of the 
difference between the eigenvalues or the mean square error between the eigenfunctions at 
two consecutive iterations is less than a given threshold. If a small value of a is used, such 
parameters may be very small even if convergence is not achieved at all.

Calculations on quantum dots may have the objective of determining the chemical poten
tial in the quantum dot once the occupancy of the dot is given or, vice versa, of determining 
the number of electrons in the dot once the Fermi-level in the reservoirs connected to the 
quantum dot is known. Let us examine the two cases in detail, with the assumption, for 
the time being, that the temperature is 0 K (finite temperature situations will be discussed 
in the following), which is often a reasonable approximation, as experiments are usually 
performed in the tens of millikelvin range.

If the number of electrons in the dot is given, our aim is to compute the chemical potential 
in the dot, which can be achieved either using the definition itself of chemical potential or 
applying Slater's transition rule. By definition, the chemical potential p  of a system is given 
by the variation of its free energy T7, as the number of particles in the system is varied by 1:

fi(N) = F(N) -  F(N -  1) (156)
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The free energy corresponds, at 0 K, to the internal energy E ( N ) of the system, which 
has the expression, if the LDA approximation has been used for the calculation of the 
eigenenergies [54],

, = 1 2 JJ 4irsQEr |r -  pI

+  J  n(r) j £ ex[/i(r)] +  £ airr[/i(r)] -  Va [n(r)] -  Vmil[n(r)]\dr (157)

where N  is the total number of electrons, 6, are the energy eigenvalues for each elec
tron, n(r) is the total electron density, and £ ex[/?(r)], £ corr[/7(r)], ^cx[/?(r )]> K.orr[^(r )] are 
the exchange and correlation energies and potentials, respectively. The problem with this 
approach is that the calculation of the chemical potential involves a subtraction between 
two terms, E(N)  and E(N — 1), which can be rather close to each other, and therefore the 
result may be affected by significant numerical error.

An alternative approach consists of applying Slater’s transition rule [55], which states that 
a good approximation of the chemical potential for N electrons is given by the eigenvalue 
corresponding to a fictitious half electron added to a system with N — I electrons:

fx(N) = e(N -0 .5 )  (158)

This approach, in addition to being much less heavy from the computational point of view, 
leads in general to much better precision.

The determination of the number of electrons in the dot, if the chemical potential of the 
external reservoirs is given, requires a procedure for the minimization of the free energy 
of the system, which, in this case, includes also the external voltage sources. Stopa [48] has 
worked out this problem in detail while investigating, with a three-dimensional approach, 
conductance through a quantum dot defined electrostatically in a GaAs/AlGaAs heterostruc
ture. The expression for the free energy provided by Stopa includes the sum of the energy 
eigenvalues of the electrons, two terms for the removal of the double counting of the inter
action energies, and a term representing the work done by the external voltage sources:

F{nr  N , Vj) = £  tij 6j - ~ j  dr pel(r)</>sc(r) + ~ j  dr piim(r)<f>x (r) -  ~ £  0,-F, (159)

where the sum over j  is over orbitals, n} represents the occupancy of the j  th orbital, pei(r) 
is the local electron density in r, <£sc(r) is the self-consistent electric potential, pion(r) is the 
charge density resulting from the donor and impurity ions, and Qt and V, are the charge and 
voltage on the ith electrode, respectively. Because electrons will tunnel into the quantum 
dot until its chemical potential equals that Ef of the external reservoirs, the equilibrium 
condition will be reached when f i {N , Vj) ~  Ef \ that is,

F ( N , J/) -  F(N -  1, Vf) = Ef (160)

Sometimes, in quantum dot calculations at a finite temperature, a Fcrmi-Dirac distribution 
function is assumed to compute the energy levels of the quantum dot. This is in principle 
not correct, although it is often not too far from the exact result. Indeed, the Fermi-Dirae 
distribution function is obtained in statistical physics as the limit for a system containing 
an infinite number of fermions. The number of electrons in a quantum dot is in general 
relatively small, and therefore the actual occupancy of the ‘levels would be given by the Gibbs 
distribution, whose calculation, however, is quite challenging, because it requires knowledge 
of the partition function of the system, and therefore of the energy associated with all 
possible electron configurations. In the literature there are some proposals to compute the 
Gibbs distribution function by means of Monte Carlo techniques, which allow an estimation 
of the configuration energies with an acceptable computational burden.
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6. SIMULATION OF MULTIPLE INTERACTING  
QUANTUM  DOTS

Multiple quantum dot systems pose new simulation challenges compared to single quantum 
dots, in particular because of increased difficulties in achieving a self-consistent solution and 
of t he larger size of the problem.

A  simplified model that can already provide interesting results consists in the Hubbard 
formalism, which is usually known as “occupation number Hamiltonian,” as it neglects the 
detailed electronic structure of each single quantum dot. Each dot, and its interaction with 
the others, is described by means of phenomenological parameters: the tunneling energy, 
the confinement energy in the dots, and the electrostatic interaction. The success of such a 
description is in capturing the overall behavior and in providing a qualitative understanding 
of the underlying physics, but quantitative predictions lie beyond the possibilities of such 
methods. Hubbard-like formulations have been used, for example, by Tougaw et al. [15] to 
study the cell-to-cell response function for a Quantum Cellular Automaton (QCA) cell, or by 
Das Sarma et al. [57] and Klimeck et al. [58] to analyze the appearance of collective Coulomb 
Blockade phenomena in arrays of quantum dots, or more general transport phenomena in 
coupled quantum dots.

As we have seen in the previous section, rather refined techniques based on iterative 
self-consistent procedures can be developed for the analysis of single quantum dots. These 
approaches, however, fail in reaching convergence when the electrostatic interaction in the 
system is comparable to the confinement energy and when strong degeneracies resulting 
from symmetries are present, as in the case of OCA cells.

To overcome these difficulties, noniterative methods have been developed, based on tech
niques typical of molecular chemistry, that allow the detailed simulations of realistically 
described multiple quantum dot systems. In particular, we shall focus on the configuration- 
interaction technique.

6.1. Occupation-Number Hamiltonian
The occupation-number Hamiltonian represents a relatively straightforward approach 
requiring limited computational resources, but it has the drawback of relying on the intro
duction of the tunneling energy I and of other quantities as phenomenological parameters.

The system is described by means of an occupation number Hamiltonian,
,?2 . t* n 2 . j.> • • * nN% f  nN. i)» where n, n  indicates the occupation number of the ith dot by 
electrons with up or down spin. On this basis the Hamiltonian of the system can be written 
in terms of the creation and annihilation operators b] (T and bA- (T that create or annihilate, 
respectively, an electron of spin cr in the ith dot:

H0 =  E  ,n, „ +  £  t(bl irbj. „ +  bl  A  J  +  E  EQ. " , i  +  E  61)
/ , i t i > ] ,  ( j  i  i > j ,  (t , cr' | K j  K  j  j

where E{) ,• is the ground-state energy of the single, isolated ith dot; rij ir = b} (rbT; (T is the 
number operator for electrons in the ith dot with spin cr\ t is the tunneling energy between 
adjacent dots; VQ is equal to ez/(Aire), with e being the electron charge and e the dielectric 
permittivity of the medium; EQi is the on-site charging energy for the ith dot; and R{ is the 
position of the center of the ith dot.

The nearest-neighbor assumption for tunneling can be lifted, but this would imply the 
definition of tunneling energies that depends on the distance, making the phenomenolog
ical description of t more difficult. In this simplified case, the tunneling energy t can be 
related to the actual potential confining the dots by means of simple approximations. It is 
usually estimated to be equal to one half of the level splitting caused by coupling between 
neighboring dots.

If we rewrite this Hamiltonian in the representation corresponding to the occupation 
number basis, we obtain a sparse matrix that can be diagonalized by means of standard 
procedures. The lowest eigenvalue obtained from the diagonalization corresponds to the
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ground state |<//„) of the system, and the associated electronic configuration can be evaluated, 
computing the average number of electrons in each dot as

P, =  M i I«/T +  nn\^)) (162)

6.2. Configuration-lnteraction Method
Other, more accurate, “one-shot" methods are based on the representation of the many- 
clectron wave function on a basis of Slater determinants. Within this representation, the 
computation of the many-electron system ground state can be written as an algebraic eigen
value problem. Techniques of this kind are typical of molecular chemistry [59], among which 
we describe here the configuration-i interaction method and its specific application to the 
study of multiple-dot systems [60].

Let us consider the following /V-electron Hamiltonian, corresponding to a system of quan
tum dots located at a distance z from a conducting plane:

"> = E
/-I

+ E
] e

. . 4 7 7 £ | r , - r ,  i - j i / i 4 7T£ I (163)

where N is the number of electrons; ^ (r,) is the confinement potential seen by the /th 
electron; £ is the dielectric permittivity; r, and r are the coordinates of the i th and of the j  th 
electron, respectively; z is the distance between the plane containing the quantum dots (i.e., 
the 2DEG plane) and the surface of the hetcrostructure (for which we assume Fermi-level 
pinning); and e is the electron charge. The last two terms correspond to the contribution to 
the total energy from the images resulting from the presence of the conducting plane.

Dealing with confined systems, we can consider a numerable complete basis {<£,(<7)}, where 
q denotes all the electron coordinates (both spatial and spin), to the elements which we shall 
refer as spin-orbitals. Using such a basis, all possible independent Slater determinants can 
be built:

/ < p „ J q i )  ■ • ■ ¥ y v l ( 9 i ) \

<p„,4(<y2 ) 2 )<i>, =
•//V!

(164)

where k labels the Slater determinants and the integer njk specifies which spin-orbital 
appears in the /th column of the A'th Slater determinant. The set {<t>A.} is a complete 
orthonormal basis for the N-electron eigenfunctions ^  of the Hamiltonian (163) [61]:

'I', = E
k=  1

The eigenfunctions of H can be obtained by solving the secular equation

He — E cn 1 1

where the infinite-dimensional “Hamiltonian matrix" is

7/u  =

(165)

(166)

(167)

Ej is the i th eigenvalue of , and the vector c, contains the coefficients c ik of the expansion. 
To treat the problem numerically, this approach cannot be implemented “exactly": We must 
consider a finite set of M spin-orbitals {$,((/)}. with i — I . . .  M . From /Y-electrons and A/ 
spin-orbitals (with M > N). ,\sn different Slater determinants will be built, where

( 1 6 8 )
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The secular equation [Eq. (166)] thus represents a Hermitian \ s/) x . \sl) eigenvalue problem. 
Computation of the matrix elements of the Hamiltonian [Eq. (163)] between two Slater 
determinants is not a trivial task [61]. For the diagonal elements one finds:

i ij

where h represents the "one-body" terms of Eq. (163), g represents the “two-body” terms, 
and in general,

(<Pi<PM\<Fi<Pm) =  j  dq\dq1t f ( q ])v]{qz)g{T\*r1)yl{qi)ipin{q1) (170)

“Selection rules” (Slater’s rules [59, 61]) exist and simplify the computation of the off- 
diagonal matrix elements between two different Slater determinants <!\, <l\ . There are only 
two possible cases in which (4>A. does not vanish (i.e., when <Pk, <Pk. either differ by 
one spin-orbital or by two):

1. one spin-orbital difference (<pHk /  <Pnlk.)

(4\ . | /7|4) , .}  =  (<P„Jh\<p„a .) +  T , ( { ‘P..,k ‘P n J g \ ‘Pnlk. ‘P , J  -  (<P«l t<P„lk\g\<Pn)l<Pnlt.)) ( 17D

2. two spin-orbital difference (<pflk (p„k, and tpn ^  <P„lk )

(av|W|<lV) =  (<Pnl l ‘P „ J g \ ‘Pn,k, ‘Pnlk.) ~  K *  fP„, J #  W n ,, V n ,, ) (172)

The expressions in Eqs. (171) and (172) refer to the case in which the spin-orbitals that 
are common to both Slater determinants occur in the same columns. If this is not the case, 
it i;s possible to perform a permutation of the columns of one determinant so that the above 
condition is satisfied; the permutation has the effect of changing the sign of the matrix 
element if it is of an odd order.

Finally, it is worth pointing out that Eqs. (169), (171) and (172) are valid only if the 
ortthonormality condition on the spin-orbitals is satisfied.

We notice that, in virtue of Eqs. (169), (171) and (172), the number of nonzero matrix 
elements of the total Hamiltonian between two generic Slater determinants is less than 
(.A s/)): [see Eq. (168)] and is given by the following expression:

x M - N \ / N \  / M  -  N \  ( N \  ,
I HlM 2 /  ( 2 )

=  ( " ) * [ ( « -  N)N + - ! > * ( * - ■ >  + (173)

Once the N -electron wave function % has been obtained, the corresponding electron density 
is simply given by

Pii?) = £  N  f  |^ ,(F ,.?,. c/2........<7v )|“ dq2.. .  dqs (174)
s \

For a system with no more than one electron per dot, a limited number of spin orbitals, 
buil* from the single-particle eigenfunctions of each dot, is needed for a proper represen
tation of the wave function 'P/, because, in the absence of a strong electrostatic interaction 
(s;uch as that of two electrons in the same dot) the components of the wave functions do not 
umdergo too large a deformation. The situation changes if there are more than one electron 
ini each dot. In such a case, a larger basis is needed, because the wave function compo- 
n»en:s are significantly distorted and the number of determinants to be considered grows 
ven quickly. For example, to study a QCA cell with four dots and single dot occupancy 
o f one electron or less, 24 determinants are sufficient to achieve good precision, whereas
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if we allow the presence of two electrons in each dot, a number of determinants of the 
order of 600 must be included. There are several selection techniques that help in selecting 
the determinants which give a more significant contribution to the correct solution, but the 
combinatorial growth of the problem as the number of electrons is increased remains the 
main limitation of this otherwise powerful technique.

Another limitation is represented by the fact that, if the electrostatic interaction cannot 
be simply represented with terms such as those appearing in Eq. (163) but has instead to 
be treated with the solution of the Poisson equation, the calculation of the matrix elements 
relative to the two-body terms g becomes much more involved. Such terms correspond to 
the Green function of the Poisson equation, which must be evaluated numerically for each 
pair of grid points, an extremely complex numerical test.

7. SIMULATION OF SINGLE-ELECTRON CIRCUITS
Single-electron circuits are characterized by the dominant role played by Coulomb blockade 
effects, which, to become observable, require that the charging energy be large compared to 
the thermal energy kT  and that strong electron localization be present on the nodes, as a 
consequence of tunneling resistances being much larger than the inverse of the conductance 
quantum 2e2/h.

These conditions are required for the applicability of the so called “orthodox theory” of 
the Coulomb blockade pioneered by Kulik and Shekhter [62], which has played a key role 
in the development of single electronics by Likharev and others.

When the orthodox theory is applicable, electrons behave as classical particles localized 
on the nodes and moving from one node to another, if this is energetically allowed, with 
instantaneous transitions. This completely classical (except for the tunneling effect) picture 
is at the basis of the application of the Monte Carlo method to the numerical simulation of 
single-electron devices [13, 14, 63-65].

A typical single-electron circuit can be described as a network of dots (nodes) that are con
nected, among them or to external leads, by standard capacitors and by tunneling capacitors 
(i.e. capacitors across which tunneling is possible with a nonvanishing probability). Tunneling 
capacitors are described as standard capacitors with a tunneling resistance in parallel. An 
example of a single-electron circuit is shown in Fig. 20, where the tunneling junctions are 
represented as double boxes.

The behavior of such a circuit cannot be studied with SPICE-like simulators (i.e., simula
tors that derive currents and voltages in the circuit from the current-voltage characteristics 
of the single devices). SPICE simulations of circuits containing single-electron devices yield

Vg

Figure 20. Singlc-eleciron device: a single-electron transistor.
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reliable results only if the capacitances on the nodes connecting different devices are much 
larger than those present in the devices themselves, so that no Coulomb Blockade effect 
takes place outside the device (whose internal l - V  characteristics have been determined 
analytically or with some other technique based on the orthodox theory).

The mentioned conditions for the applicability of SPICE are in general not satisfied in a 
circuit like the one in Fig. 20, and a different approach to circuit simulation is thus needed, 
one that is capable of properly treating Coulomb blockade effects.

Two main approaches have been developed to treat this problem based on the Monte 
Carlo technique or on the master equation formalism.

Let us first examine the approach based on the Monte Carlo method, which is more intu
itive. The relevant quantity for the determination of the probabilities of electron transitions 
through the tunnel junctions, to be used in the Monte Carlo calculation, is the free energy: 
Transitions that lower the free energy of the system are favored, whereas those that raise it 
are not (they are not allowed if the temperature is zero).

As already discussed in the previous sections, the free energy of a system corresponds to 
the total energy of the system (in this case the electrostatic energy stored in the capacitors) 
minus the work done by the voltage sources:

where v is the vector of the voltages on the leads and q, q’ are the vectors of the charge 
on the nodes and on the leads, respectively. The term C 1 is the inverse of the capacitance 
matrix, which describes the capacitive couplings among all circuit nodes. The capacitance 
matrix is defined in the following way: Once the circuit nodes are numbered, the diagonal 
term i has the value of the sum of all the capacitances that are connected to the /th node. 
Each off-diagonal term C,. has the value of the capacitance connecting node i to node j, 
multiplied by -1 .

Once the free energy associated with the initial configuration of the circuit has been 
determined, we can consider all the configurations that can be reached from the initial con
figuration as a consequence of single electron transitions and, by using Eq. (175), the energy 
difference between the new configuration and the previous one is evaluated. Thus we obtain 
a set of energy differences A£,, each corresponding to a single electron transition through 
a different junction. From these free-energy variations we can compute the corresponding 
probability rates F,, using the orthodox Coulomb blockade theory [66]:

where Rr is the tunneling resistance of the junction relative to the considered transition.
We thus have all the information needed for treating the system evolution via the Monte 

Carlo approach, but the details of the simulation will differ, depending on the simulation 
goal. Let us describe two different examples: in the first example, we are interested in the 
stationary behavior, whereas in the second one we want to study the temporal evolution.

In both cases the first step is to enumerate all the possible configuration changes associ
ated with a single-electron transition. For each new configuration we compute the transition 
rate F, and we indicate the sum of all the transition rates with Flol. With this choice, the 
probability density function for the time interval A/ between two consecutive transitions can 
be written as

Thus the At for each simulation step can be obtained statistically by extracting a random 
number distributed following Eq. (177). The generation of random numbers with a given 
distribution is the core of any Monte Carlo algorithm and can be approached in different 
ways. The methods most commonly used are the Transformation method and the Rejection 
method [67, 68]. The Transformation method is usually the faster between the two, but it

(175)

(177)
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can be used only for a restricted set of distribution functions; namely, when the inverse 
function of the indefinite integral of the distribution function is known analytically or at 
least, is easily numerically computable. This is the case in our situation, and thus we shall 
give a brief description of the method.

Let us start from the transformation law for probability distributions. Consider a random 
variable x distributed with a probability distribution p(x) and a change of variable described 
by a certain function }’(.v). The distribution of the new variable y will be connected to 
the old distribution by the Jacobian of the transformation; namely, in the one-dimensional 
case, p(y) = p(x)\dx/ dy\. Let us now suppose that we want to obtain a random variable 
v distributed according to a given function p(y) = f (y)  and that the initial variable a is 
chosen as a uniform deviate [p(x) =  1 if 0 < x < 1; p(x) =  0 otherwise]. Then the relat on 
between the new and the old variable can be obtained by solving the following differen.ial 
equation: f (v) = dx/dy that leads to

y(x) = F [(x) ( 178)

where F(y) is the indefinite integral of f(y).
The inverse of the indefinite integral of the probability function described by Eq. (177) can 

be calculated analytically, and thus the time between two consecutive transitions is obtained 
starting from a uniformly distributed random number r in the [0, 1) interval and apply.ng 
the transformation

Once the time step has been obtained, we must decide which transition actually occurred. 
This is done by normalizing the rates in a way that their sum ru„ is equal to one. The raies 
of the different transitions can thus be represented with intervals in the [0, 1| range, each 
one with a length proportional to the associated probability. Another uniformly distributed 
random number in the [0, 1] interval will be used to choose one of the intervals and the 
associated transition.

This procedure is repeated a sufficient number of times to obtain the quantity of interest 
with the desired statistical precision. Typical quantities of interest are the charge on the 
nodes, which is calculated via a simple average over the different realizations, or the current 
through a junction or a lead, which will be obtained taking into account also the transition 
times for each event, as obtained by the previously described Monte Carlo procedure.

This procedure is quite efficient, especially in the case in which the transition rates are 
small, because the appropriate time step is dictated by the transition probability itself. How
ever, it is clear that the described approach cannot be used in the nonstationary case, as, 
for example, when the externally applied voltages change on a timescale that is comparable 
with the transition time.

In such a case, the evolution of the external voltages sets the timescale, and thus a different 
approach has to be considered that is closer to the standard solution of equations of motion. 
A proper time step 8t must be chosen that is smaller than the characteristic time between two 
transitions (a proper choice would be to consider an adaptive time step) because changes in 
the external conditions (the external voltages) can strongly affect the transition rates. Starting 
from the initial conditions, the rates of all possible transitions are computed as shown before, 
and then by comparing the total transition probability P — with a random number, it is 
possible to decide whether a transition has occurred. If it has, we have to choose again among 
the various transitions, as described earlier, and then to increase the time and update the 
electronic configuration; moreover, the external voltages are to be changed according to their 
temporal dependence. If no transition has occurred, only the external voltages are updated. 
In any case, new7 transition rates must be computed, because of the changed conditions. 
Each single-electron transition can be observed, but each simulation represents a different 
realization of a random process. Averaged values must be obtained by repeating the same 
simulation several times, starting from the same initial condition (but using a different seed 
to start the random number generator): that is. performing ensemble averages.
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Avs it shiould he apparent from the previous discussion, single-electron circuits are com- 
pleUely classical stochastic systems whose evolution is driven by a quantum process: electron 
Uimneling. The just-described Monte Carlo method takes directly into account this random- 
nesis, generating random transitions and thus obtaining the desired quantities by means of 
tirrne or ensemble averaging.

A nother approach to the simulation of single-electron circuits is based on the solution of 
the master equation describing the stochastic system [69]. This equation defines the time 
evolution of the occupation probability for each state, in our case the occupation probability 
of each node in the circuit, and can be written as

!y  = E [ W ' ) - r / i(l)] (180)
' }* i

wh<ere Pj(t) indicates the occupation probability of the ith node as a function of time and 
1 )j the rate for transition from node i to node j.

The main assumption behind this equation is that we deal with a Markov process (i.e., 
I rains ition processes possess no memory), which is exactly the same assumption underlying 
the: implementation of the Monte Carlo method. Equation (180) can be solved numerically, 
as was done for example in Ref. [14]. The main problem to be faced when trying to solve a 
maister equation is the inclusion of all the relevant states, which can be a very large number if 
the; system is not trivial. Typical circuits actually possess an infinite number of states, because 
the; number of unbalanced electrons in a node is not bounded. It is clear that states with 
a wery large number of excess electrons are quite unlikely, but it is almost impossible to 
exclude states a priori. Moreover, even if we consider only charge configurations consisting 
of nodes filled with a single charge, or hole, or empty, the number of states scales as 2VV/2. 
Thie best way to proceed is to use adaptive techniques, in which the set of states, starting 
from a reduced set, is changed at every step by excluding the states that have too small 
a probability to be populated and by adding new states until convergence in the results is 
rcsached. To proceed in this way, it is, for example, possible to choose a probability threshold 
Pr Hi and to disregard all the states that have a occupation probability smaller than such a 
vailue. This naturally depends on the actual configuration, and thus at every iteration new 
stmtes may be added to the initial set, which could quickly increase the number of states, 
altthough usually convergence is easily reached.

If we define the vector of state probability p = [P\(t), P2( t ) . .. Eq. 0 ^ )  can be
written as p — 1/?, where I' is the matrix of transition rates. The formal solution can be 
written as p(t) = exp[F/]/;(0), and thus the numerical calculation, once the basis set has been 
buiilt, reduces to the evaluation of the exponential of a matrix. This is not a simple task: One 
o f the best algorithms to obtain this result relies on the use of the Pade approximant [70], 
but reliable results are produced only when the exponent is small. In our case this implies 
chioosing a very small time step, and thus an increase of the computational time. A better 
solution is to use Krylov subspace techniques [71], as such methods allow us to isolate the 
dominant eigenvalues, and thus to reduce the computational complexity. The main idea 
behind the Krylov technique to compute f ( A )v  for analytical function f  of the matrix A is 
to> approximate this expression by projecting onto a small subspace defined by the repeated
application of the matrix to the initial vector: Km — {t>, Av ........A m~]v}. In this way, the
piroblem is reduced to the calculation of /( / / ,„ ) ,  where Hm is the tridiagonal matrix obtained 
applying the Lanczos method with u /IM I2 as initial vector. Once the tridiagonal matrix has 
bteen computed, the Krylov approximation reads

f ( A )v ^ \ \ v \ \ 1Vmf ( H ni)el (181)

w'here Vm is the orthonormal basis of the subspace obtained with the Lanczos method and 
e , is the first column of the m x  m identity matrix. The advantage of such method, compared 
to other polynomial approximations of the exponential of matrices, is that no information 
o>n the matrix spectrum is needed.
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7.1. Many-Electron Processes
A further step in the simulation of circuits made up of quantum dots is the inclusion of 
cotunneling effects [14, 72, 73]. Cotunneling is a quantum coherent process whereby two 
or more electrons simultaneously change their state. This process is clearly less common 
than the single tunneling event and can be usually neglected in the simulation of single
electron devices, but it can become important or even dominant in particular cases in which 
the single electron tunneling processes are not energetically viable (i.e., in the Coulomb 
blockade regime), whereas simultaneous many-electron tunneling transitions can lead to a 
lower energy state.

The rate of an Nth order cotunneling process can be written as [74, 75]:

27T /  N \ ^  /  27V
p (.'V ) —

h ( f l« / )  (  ‘S': (W |, . . . ,  w2A) x S^AE.v +  X > , )  J il l  - f ( w , ) ] d ( o ,  (182)

where A £ v is the change in electrostatic energy in the entire cotunneling process and /  is 
the Fermi function. S is defined as

.V-I j
5 (« , ........<o2s ) =  e  n -  ( i83)

pcrmuiation{(A ]  A y )} /— ) ^

where ek = AEk +  £ /= i -f w2/) arc the increments in the total energy of the system
during cotunneling to an intermediate state, (oj2I_{ +  co2l) is the energy of the electron-hole 
excitation created, and permutations are over all the possible sequences of intermediate 
states.

A rigorous simulation of this effect is quite a difficult task, but approximate solutions 
can be used if we restrict ourselves to the simplest case, namely, the two-electron case. An 
approximate two-electron tunneling expression has been proposed by Fonseca et al. [14], 
who wrote the two-electron cotunneling probability as

r = — ---- !— —
I2tt-£'4 r}" +AE(,) — AE/2 -  A£/2_

l h  \(AE2 + (2TrkliT):)\
CXP( i j r )  -  1

(184)

where A £ (1,2) represents the energy change resulting from the transitions and /?(rl” ) indi
cates the respective tunneling resistances. This is not an expression suitable for numerical 
simulation: divergences occur when one of the intermediate transitions matches one half 
of the total energy difference. This problem can be solved by means of accurate numerical 
procedures [14] or, if we are interested in the order of magnitude of the cotunneling, by 
resorting to an approximate expression:

r, 16 h C2 AE
1  =  - tsF'r  i  ( A E ' +  i2"k»T)'n < 1 8 5 >3 7r e*R-r  exp( ^— ) -  I

where Rr and C represent, respectively, the average value of the tunneling resistance and 
that of the capacitance of the junctions involved in the cotunneling event. This expression 
has been shown [14] to give the correct order of magnitude of the effect.
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1 . INTRODUCTION
Modelirg of electronic transport in mesoscopic systems requires a theory that describes open, 
qiuantun-statistical systems driven far from thermodynamic equilibrium. Several formu- 
laitions of quantum transport have been employed practically, such as those based on the 
diensity natrix, nonequilibrium Green’s functions, and the Wigner function.
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A quantum-mechanical phase-space distribution was introduced by Eugene Wigner n 
1932 |1). The purpose was the formulation of a quantum correction for the thermodynamic 
equilibrium of a many-body system by means of a quasiprobability function. In more receit 
times, the definition of the Wigner function has been generalized as a Fourier transform )f 
a many-body Green's function [2].

The Wigner function is a real-valued but not necessarily positive definite quasidistriba- 
tion and represents a quantum generalization of Boltzmann’s N-particie distribution. Tie 
Wigner function formalism is attractive as it allows the expression of quantum dynamics n 
a phase-space formulation, directly comparable with the classical analogue. A phase-space 
approach may appear more intuitive compared with the more abstract density matrix ard 
Green’s function approaches. The method of quasidistributions has proved especially usefil 
in providing reductions to classical physics and kinetic regimes under suitable conditions.

To discuss the physical interpretation of a quasidistribution, let us consider the simpe 
case of a one-particle distribution. Starting with the classical case, the distribution f d ( p, r , ;) 
is proportional to the probability density of finding a particle of momentum p and positic n 
r in the phase-space volume d 'pdV . This is a purely classical interpretation, directly con
flicting with the uncertainty principle. The quantum mechanical quasidistribution / w(p, r, />, 
however, is not positive definite and has to be interpreted as a joint density of p and 
r [3]. Only the marginal distributions are positive definite, that is, integrating /u (p, r, t) over 
momentum space gives the probability density in r-space, and vice versa.

An excellent review of quantum-mechanical phase-space distributions in scattering theory 
has been given by Carruthers and Zachariason [4]. This work deals with potential scattering, 
the two-body problem, and the N-body problem. A coupled hierarchy for reduced distribu
tion functions and its truncation to the Boltzmann-Vlasov equation is presented. Tatarskii [3] 
concentrates on quantum-mechanical systems in a pure state and investigates the represen
tation of quantum mechanics by phase-space distributions. He points out that not every 
function that solves the Wigner equation describes a pure state. Therefore, initial condi
tions for the Wigner equation have to be subjected to a supplementary restriction. Today, 
phase-space quantization is considered to be a third autonomous and logically complete for
mulation of quantum mechanics beyond the conventional ones based on operators in Hilbert 
space or path integrals [5, 6]. This formulation is free of operators and wave functions. 
Observables and matrix elements are computed through phase-space integrals of c-numbcr 
functions weighted by a Wigner function.

Important quantum mechanical properties of electronic transport in semiconductor struc
tures are often those associated not with the degeneracy of the Fermi system but rather with 
quantum interference effects [7]. A wide variety of electronic quantum transport problems 
of interest are essentially one-particle in nature. In such cases, a full many-body description 
of the problem is not necessary, and a description of electronic transport that makes use of 
the one-particle approximation can be used from the very outset. However, even when the 
electron-electron interaction effects are of interest, certain approximations do exist, allowing 
their description on a one-particle level [7]. Therefore, we shall consider in the following 
only electronic systems with one-particle degrees of freedom.

1.1. History and State of the Art Review
Reports on finite-difference solutions of the one-particle Wigner equation for device applica
tions are due to Ravaioli [8), Kluksdahl [9], and coworkers, and date back to the mid 1980s. 
Frensley [10-12] was the first who introduced boundary conditions on the Wigner function 
to model open quantum systems. Later, seif-consistencv was added to the Wigner equation 
solvers [13, 14]. Main and Haddad included a reduced Boltzmann scattering operator in tran
sient Wigner function-based simulations [15]. Research on finite-difference solution methods 
for the Wigner equation culminated in 1990 when the review articles of Frensley [lh] and 
Buot and Jensen [ 171 appeared.

The 1990s have seen further extensions and applications of the finite-difference Wigner 
function method. High-frequency operation of resonant tunneling diodes has been studied 
by Jensen and Buot [18, 19], and the transient response by Gullapalli (20) and Biegel [21]. 
and later by [22]. A new finite-difference discretization scheme has been proposed in [23].
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bn 20102, implementations of Monte Carlo methods for solving the Wigner device equation 
wer e reported [24, 25]. Although with the finite-difference method, scattering was restricted 
to t:he relaxation time approximation and the momentum space to one dimension, the Monte 
C airlo method allows scattering processes to be included on a more detailed level, assuming 
a tlhree-dimensional momentum-spacc [26, 27]. Issues such as choosing proper up-winding 
sch<emes, restrictions on matrix size and momentum space resolution are largely relaxed 
or do not exist when using the Monte Carlo method. Construction of new Monte Carlo 
algorithms is complicated by the fact that the kernel of the integral equation to solve is not 
positive semidefinite. As a consequence, the commonly applied Markov chain Monte Carlo 
method shows a variance exponentially increasing with time, prohibiting its application to 
reailistic structures or larger evolution times [25, 28, 29]. Because of this so-called negative 
sigin problem, the concept of Wigner paths alone [30, 31] is not sufficient to construct a stable 
Monte Carlo algorithm. Instead, additional measures have to be introduced that prevent a 
rumaway of the particle weights and hence of the variance [26, 32]. Note that in [26], the 
statistical weights are termed affinities.

ILarge basic research efforts on the Monte Carlo modeling of clectron-phonon interaction 
baised on the Wigner function formalism have been reported in [28, 31, 33-35].

The effect of a spatially varying effective mass in Wigner device simulations has been 
demonstrated in [36] and [37]. A nonparabolic version of the Wigner equation has been 
derived by Buffer [38]. Multiband models have been reported in [39-41].

A Wigner equation including a magnetic field has been solved in [42]. The gauge-invariant 
foirmulation of the Wigner equation has been given by Levinson [43], and a discussion can 
be found in various works [4, 44-47]. Two-time and frequency-dependent Wigner functions 
ane considered in [2, 47-49].

Finally, we note that the Wigner function formalism is often used to derive reduced trans
port models, such as the quantum hydrodynamic model [50, 51-53], or to find quantum 
conrecitions to classical models, such as the ensemble Monte Carlo method [54] or the spher
ical! harmonics expansion method [55, 56].

2.. TH E  WIGNER FUNCTION FORMALISM
Ini the Schrodinger picture, a physical system is quantum-mechanically described by a state 
ve*xtor I'l'lO ) as function of time /. Often, the precise quantum-mechanical state of a 
system is not known, but rather some statistical information about the probabilities 
fo>r the system being in one of a set of states. Suppose that there is a set of ortho-normal 
states I'K ), . . .  }, and that the probabilities that the system is in one of these states
aire {Pi» P2 > • ‘ - }• Then, the expectation value of operator A associated with the observable 
A\ is given by

<A) =  E / » / < W W  (1)
I

W'hich is a quantum and statistical average. Introducing the density operator p as

p =  L p .-I^ > (^ I (2)
/

tine expectation value becomes

(A ) =  Tr(pA) =  Tr(Ap) (3)

Formulations (1) and (3) require the operator A to be self-adjoint. Equation (3) can be 
e:asily verified by expressing the trace of some operator X in the basis {|x̂ )} .

Tr (X ) =  £ < * , . |X |V (.) (4)
i

Th-e fact that the probabilities sum up to unity. J2i P, — U expressed by the fact that the 
t.race of the density operator is also unity. Tr(p) =  1. If the system is in a pure state |tyf-) it
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holds f)j ~  1 and =  0 V j  ^  /, and the density operator is idem-potent, p1 =  p. Otherwise, 
the system is in a mixed state, and p does not obey the idem-potency condition. From tie 
Schrodinger equation for the state vector and the definition of p, we immediately obtain tie 
Liouville-von Neumann equation for the evolution of the density operator.

ihj-t = [fi 'p]  (■') 

Introducing the one-particle approximation [7] implies that the electron system is modeled 
as consisting of many, noninteracting electrons. In the next step, one chooses the coordinate 
representation, where the set of basis vectors is given by the electron position eigenstates |r*. 
The eigenstates of the system are then represented by the wavefunctions ^ ( r ,  /) =  (rl'P,-(/)•, 
and the density operator by the density matrix p(r , , r2, /).

p ( r , ,  r : , / )  =  ( r , | p ( 0 | r ; ) =  E  / ? , ^ ( r , ,  t) (f)
i

The Liouville-von Neumann equation in coordinate representation is found as

dp(r,, r2, t)
cH (Hr> - / / r> ( r „  r2, / )  (7)

2.1. The Wigner Function
The Wigner function is obtained from the density matrix by means of the Wigner-Wcyi trans
formation. This transformation consists of a change of independent coordinates to diagonal 
and cross-diagonal coordinates

r =  ^ (r| + r2), s =  r, -  r2 (b)

followed by a Fourier transformation with respect to s [16]. The variables r, and r2 may be 
expressed in terms of the new ones.

s s
r, =  r +  r2 =  r -  -  (9)

Then, the elementary definition of the Wigner distribution is given by the following trans
formation of the density matrix.

/sv(k, r, /) =  / p ( r + | , r - ^ / j e - ' k'd s  (10)

The Wigner function (10) is real-valued, but not positive semidefinite. In terms of the wave 
functions, the definition (10) becomes

/w(k, r, 0  =  E  Pi I  ^ ( r + 5 '  ' ) * ;  ( • • - ? -  ' ) e ,ks ds ( 11 >

The normalization of the Wigner function results from the normalization of the wave 
functions.

L_ / j,- j  dk/w(k, r, t) =  1 (12)

Here, the k-integration can be performed first, giving / e ,ksdk =  (27t):'£(s). The normal
ization (12) ensures that the quantity NfKK, where N is the number of electrons in the system, 
will approach the classical distribution function in the classical limit [35].

Sometimes it is convenient to use the inverse Fourier transform of (10).

p( r  + ~ . r -  * . / )  =  I A (k , r, r)e 'ksdk (13)
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( h;anging variables gives a transformation that inverts the Wigner-Wevl transformation.

p (r , .r : . 0  =  ( ^ ); / /,. (k . ^ 4 ^ - / )  c/k(r' r-"dk (14)

Arc important feature of the phase-spaee approach is the possibility of expressing quantum- 
me'.chanical expectation values in the same way as it is done in classical statistical mechanics, 
emiploying integration over the phase-space. The expectation values of operators of the form 
A( r) and B{k). where k =  p /ft, are given as follows.

<A(r)> =  - - 1—t I f j k ,  r . / ) / l ( r )d k d r  =  £  /;, f  A(r) |^ ,( r .O f  dr (15)
(277)' J Y  J

<B (k))=  — ?—  /7 w(k ,r ,0 f l (k )d k d r  =  £ > 1 f  B(k) |4>,(k,/)|2 dk (16)
(277-) J : J

If the classical observable C(k,  r) is a function of both momentum and position, the defini
tion of a corresponding Hermitian operator C is not unique. In this case, the Weyl quanti
zation can be applied. Thereby, the function C  is expressed through its Fourier transform c.

C(k, r) =  [ c(a, b) e,(k *+r b| da db (17)

The operator C is defined by the following rule of correspondence.

C =  I  c (a ,b )e /,i- +H,)dadb (18)

Tlhen, the expectation value of C is given by the phase-space integral.

T r(C p) -  j  C(k, r ) /w(k, r, /)d k  dr (19)

To proceed with (18), one may employ the Baker-Campbell-Hausdorff formula,

- .  |A .B jeA+B= e AeBc —  (20)

which is generally valid when [A, [A, B]] =  [B, [A, BjJ =  0, or in particular when [A, B] is 
a c-number.

2 .2. Marginal Distributions
T h e Wigner function (10) can assume negative values. Only the marginal distributions of 
f  w(k, r, /) an positive semidefinite and have the meaning of probability distributions in real 
sjpace and rmmentum space, respectively.

=  f  A ( k ’ r ’ f ) d k  =  E  A  I ^ , ( r ,  O f  (2 1 )(2?r)3 J

P(k ) = 7 T ~ ^  f /w (k .r , t) dr = 22 pi\&,(k,t)\2 (22)(2tt-)-' J “

Here, <J>,(k. ) denotes the momentum representation of the state vector |^ ) .  The integra
tion in (22) :an easily be carried out after changing variables, using (8).

I  dr j  ds (r +  * , (J '['* (r -  / j  e ,ks

=  [ d r ,  j  dr: ^ , ( r 1. /)MV(rJ, / ) e ' klr‘- r- ) =  (2ir)3|«l>I.(k , /) |: (23)
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The marginal distributions (21) and (22) can also be expressed as the diagonal dements cf 
the density matrix.

— I ./w(k, r, t) dk =  (r|p|r) =  p(r, r) (24)
( 2 7T ) J

7^~T^ I /w(k, r, t) dr =  (k|p|k) =  a{k, k) (25)
(277)' J

Here, |k) denotes the electron momentum eigenstate with eigenvalue ftk and a  he density
matrix in momentum representation. Note that the latter can be used for a dua definition
of the Wigner function [28, 57].

f j k , r , t )  = f a ( k + l- , k -  I ,  A  e,r 1 dl (26)

This definition follows, for example, from (11), when the x\/l are replaced by

= (2 7 7 ) f  <l>,(k\ /)e 'k r dk (27)

Other marginal distributions than the elementary ones, (21) and (22), have to be constructed 
with care. Only Hermitian operators give real marginal distributions. For the current density, 
this operator would be (kp -f pk)/2. Expressing p in terms of the wave functions, we get the 
elementary current definition from wave mechanics.

j (r ) =  ~ - < r | k p  + pk|r>
2/77

= +  <r|'I/,X vK|k|r))
i

= T.  A [ ^ ( r ) V ^ ( r )  -  ^ ( r )V ^ * ( r ) ]  (28)
i

Choosing the momentum representation of p, we get the current density expressed in terms 
of the Wigner function.

j ( r ) =  j  dk, j  dk; ((r |k |k1)(k | |p |k: )(k: |r) +  <r|k,)(k,|p|k2)(k,|k|r))

= dk, [ dk: rr(k ,.k : )(k , + k : )e "k'- ^ lr =  - i -  [ ~ k f j k , r , t ) d k  (29)2m* J (2tt) J m*

Here, the Wigner function has been introduced using (26). The current density is given by 
the first-order moment of the Wigner function, in full analogy with the classical phase space 
definition.

For the definition of the energy density we discuss several options. Starting from the 
trace operation for the statistical average, one would consider the symmetrized operator 
(k2p-b pk2)/2  and derive the marginal distribution.

h~
»..,(r) =  ~ - ( <r|k-p |r) + <r | /3 k > )) 

h~
-  " 4 E / 7;['IV ( l')v :^ i( r ) +  'K (r )v : ''I'7(r)j

1

=  T,Pi\Ei -  l/ (r)]|'l',(r)!2 (30)
i

The last expression in (30) is obtained with the help of the stationary Schrodinger equation. 
Apparently. describes the kinetic energy density, as the potential energy term I '(r ) //(r) is 
subtracted from the total energy term. This energy density can become negative in tunneling
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regions., where for one or more states E, < V (r) holds. In a derivation similar to (29). one 
finds the Wigner representation of

?/i. (r) =  — I  dk, I dk> <r(k,, k.) (kf +  k ; ) e f(k|"k-,)r
4 m ! J  J

=  (2̂ /s?(W;“H A<k-r',)dk i , , )

To ensure positiveness of the energy density, in [58] the Hermitian operator kpk is con
sidered. Its marginal distribution can be shown to be positive semidefinite.

w: ( r) =  r— (r|k/3k|r) =  £  p,-|(r|k|'I'-)|2 (32)
2 / 7 7  2 / 7 ? i

= (33)
2  m

The Wigner representation of u>2 is obtained as

us(r)  =  — f  dk. / dkn o-(k., k^) (k; — k;) eMk| k:) r
4m* J J

/ ^ ( i k | ; + i v- ) /- <k- r ' , ) t ,k <34)

Conditions for obtaining non-negative marginal distributions arc theoretically discussed 
ini [59]. The Weyl correspondence (18) gives the definition of the energy density as the 
seicond-orcer moment of the Wigner function.

=  f  T ~ r l k l:^ ( k - r ' / ) d k  (3 5 >(27t)' J 2m*

I t  can be ;een that (35) is just the arithmetic mean of (31) and (34), w, =  (u>, + w : ) / 2. 
Therefore. (35) represents the marginal distribution of the symmetrized operator (k2p +  
2lkpk +  pk')/4.

All three definitions of the energy density give the same statistical average (e) =  Tr[€(k)p]. 
The differences among the definitions are in the V2 term, which vanishes after the r-integra- 
tiion. However, only the density wl seems to have a clear physical interpretation as the kinetic 
e;ncrgy density.

22.3. The Wigner Equation
I n thiis section, we consider a system consisting of one electron interacting with a potential 
distribution ^ tol(r). This potential is assumed to be a superposition of some potential V{r) 
aind a unibrm electric field: Klot(r) =  h7(r) -  h¥ ■ r, with h¥ = -eE.  Although the existence of 
ai field tern is not physically motivated at this point, it is introduced here to demonstrate its 
treatment in the Wigner function formalism. The potential K(r) comprises the electrostatic 
potential md the band-edge profile of the semiconductor. A uniform effective mass m* 
its assumel. In the usual coordinate representation, the Hamiltonian of the system is then 
giveni by

H = H{) + J/(r) -  ftF ■ r (36)

with
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The electron phonon interaction neglected here will be discussed in detail in Section 3. The 
evolution equation for the Wigner function is found by taking the time derivative of the 
defining Eq. (10) and substituting the Liouville-von Neumann Eq. (7) on the right-hand side.

~ f n ( k, r, /) =  ~  f  (Hti -  Hr,)p (r +  r -  f) e ,k s ds (38)

In the following, the three parts of the Hamiltonian (36) will be separately transformed. 
Unlike in Section 2.2, were calculations where done in momentum representation, we choose 
below the configuration representation to carry out the transformations [33].

The free-electron Hamiltonian is given by H{). To calculate the Wigner transform of H{), 
we have to transform the gradients first. Differentiating the density matrix with respect to 
the new variables r and s

^ • p ( r +  | , r -  =  vrip +  Yr,p. V ,p (r  +  J . r  — ® , , )  =  l v r,p -  j v r_.p (39)

gives the relations

Vr| +  Yr =  Vr, Yr -  Yr =  2YS, Y~ -  V,; =  2Vr Ys (40)

Now the free-electron term transforms to a diffusion term. For the sake of brevity, we write 
pr s — p(r +  s/2, r — s/2, /) in the following.

jkh&tt £v / 'k’ ds (4I)
r / p r.s c -ik-ds (42)

Ak v 
m* 
hk

- ■ V J J k . r . r )  (43)
m

Next, we transform the potential term V(r).

Th /  l V  ( F +  f )  ~ V  ( r _  D  P' " C *"dS /  K , ( k - k \ r ) / w( k ' , r ,O d k '  (44)

This transformation is readily found by replacing pr s on the left-hand side by the inverse 
Fourier transformation (13). The remaining integral over s is denoted by Kvv and referred to 
as the Wigner potential.

*•<«•r) = am  I  ̂  (r + ! ) - * ' ( ' - ! ) ]  • * * *  (45)

Using the simple relation — (F ■ r, — F r: ) =  — F • s, the constant-held term transforms as

^  A - f t F  ■ S)pr Sc~,ksds =  - I f  • Vk/W(k, r, 0  (46)in J a

Collecting the above results gives the Wigner equation for the system Hamiltonian (36).

(  7 " +  ~  • Y +  F • Vk)  /„ (k. r , / )  =  /  Kw(k -  k , r) /;,(k . r . / )d k ’ (47)
\ r U  m  } J

The terms are arranged so to form the classical Liouville operator on the left-hand side. The 
interaction of the electron with the potential distribution V(v) is described by the potential 
operator on the right-hand side. As can be seen, the Wigner function in k and r depends 
in a nonlocal manner on the Wigner function in all other momentum points k' and through 
V\s also on the potential at all other locations r ±  s/2.
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3.. ELECTRO N-PHO NO N INTERACTION
The Wigner equation has frequently been solved using the finite-difference method [16, 
6(.’)], assuming the phenomenological relaxation time approximation for dissipative transport. 
Recently developed Monte Carlo methods allowed phonon scattering to be included scmi- 
cliassically in quantum device simulations [24, 27]. Use of a Boltzmann scattering operator 
acting on the Wigner distribution was originally suggested by Frensley [16]. In this section, 
thie Wigner equation with a Boltzmann scattering operator is rigorously derived, using a 
nuany-phonon single-electron Wigner function formalism as the starting point.

3i.1. The System Hamiltonian
The Hamiltonian (36) is now extended to describe a system consisting of one electron inter-
aicting with a many-phonon system and a given potential distribution.

H = H{] +  V(r) -  F • r  +  Hp + / / cp (48)

TThe additional components of this Hamiltonian are given by [34]

Mp =  £  K  K h  <49)
q

Hep = ih'£.y(<i){bqci*r - b l c - * r) (50)

IHere, H p is the Hamiltonian of the free phonon-system, H cp the electron-phonon interaction 
Hamiltonian, and If  denote the annihilation and creation operators for a phonon with 
imomentum hq and energy h(0 (V and h.7(q )  is the interaction matrix element.

We introduce a set of basis vectors |r, {//}) in the occupation number representation. 
/A set of occupation numbers is defined as {/?} =  /zq(, /?q>, . . .  //q, . . . ,  where //q is the num
ber of phonons with momentum q. The Wigner-Weyl transformation of the density matrix 
/p(r|, {a/}, r2, {a??}) gives the generalized Wigner function / g(k, r, {//}, {m }, /) 128, 33].

/j.(k, r, {«}, {m}, t ) =  I ( r  + {«} p(t) r -  {m})c ,ksds (51)

Note that only the electron coordinates are transformed, such that /  is a Wigner function 
on the electron phase-space, but still is the density matrix for the phonon system.

The evolution of the generalized Wigner function is found by taking the time derivative 
of (51) and using the Liouville-von Neumann equation for the evolution of the density 
matrix.

r - M '  i'W- 0  =  — /  (r +  {«} [ H , p ( 0 ]  r -  ,ksds

To continue, one may express the density matrix in the state vectors of the system.

p(r,. {/;}, r: , {/?;}, t ) =  r,, {«}, t )  V * ( r 2, {/?;}, t)

( 5 :

(53)

The creation and annihilation operators, and the occupation number operator bqbq satisfy 
the following well-known eigenvalue equations.

/>*'!'( r, {n} ,  t) =  . . .  «q + 1, . . .} ,  0

V !' (r - {«}■ l) = / ^ ( r .  { ' V  " C|:. 1. . . . } ,  0

{/;}. /) =  ^ ' ( r .  {/iq| f)

(54)
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With the help of these equations and the representation (53), the transformation of the 
free-phonon Hamiltonian is readily found.

^  / ( r + f  W |[W P. P(0]|r -  {/7i}}e'/k's ds

=  ^ ( e ( M )  ~  r, {>;}, {m},  /)

The energy of the phonon state |{/?}) is denoted by e({/?}).

*({« }) =  (55) 
q

The electron-phonon interaction Hamiltonian is transformed following the same lines [33]. 
Combining the two terms of the Hamiltonian (50) and the two terms of the commutator 
in (52) results in four terms related to the electron-phonon interaction. In the equation for 
the generalized Wigner function shown below, these four terms appear under the sum.

( 7 ; + ■ Vr + r F ■ 0 /,<k- r’\  (H m* a  /

=  f  Kv(k -  k \  r ) / g(k', r. {/;}, {/«}. I) dk' +  -  e ( { m } ) ) / g(k, r. {//}, {m}, t )

+  E :7 («l )e ' ‘' r v//" q  +  1 / K( k  _  r ’ K , ’ " q : ’ +  K • • • }  •
q '

-  e " q rv/ ^ / ^ k  4 r, {n((|, /iq, , . . .  /?„ - 1 . . . .} ,  {»?}, r j

-  e'qV ^ / e( k  +  r, {#»}, {mqi, mM:, . . .  mq -  1 , . . . } ,

e ~ iq r /  m q +  1 / g ^ k  -  r - < " } ’ i ' " q , -  m q : '  ■ ■ ■ n \  +  >> • } ’ ' j  ( 5 6 )

Each term under the sum represents a phonon interaction event that changes only one set 
of phonon variables, increasing or decreasing the occupation number of the singlc-phonon 
state |q) by one and changing the electron momentum by ±q/2.

3.2. A Hierarchy of Transport Equations
The equation for the generalized Wigner function (56) is too complex for the purpose of 
mesoscopic device simulation. Several approximations need to be introduced in order to 
arrive at a more feasible quantum transport equation. In the following, these approximations 
are discussed.

3.2.7. Weak Scattering Limit
The generalized Wigner equation couples one element of the phonon density matrix,
f , (k,  r, {/?}, {/?*}, f ), with four neighboring elements,

/g(k* r < {> V  ........ /7q ±  I . . . .  {/?/}, /) (57)

/g(k, r, {//}, {mq r mq:......mq ±  \ 0 (58)

The equations for the four nearest neighbor elements couple to second nearest neighbors 
of the element {/?}, {m}, and so forth. In the weak scattering limit, all couplings between 
elements of the first and the second off-diagonals are neglected. Only the main diagonal 
terms and the first off-diagonal terms remain, as shown in Fig. 1. Higher order electron- 
phonon interactions are neglected in this way.
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Figure 1. Terms of of the phonon density matrix retained in the weak scattering limit.

3.2.2. The Reduced Wigner Function
TThe reduced Wigner function, / w(k,  r, /), is defined as the trace of the generalized Wigner 
function over all phonon states [28, 61J.

/ w(k,  r, t) = £ / g(k,  r, {/?}, {«}, /) (59)

Further approximations are needed to evaluate this trace and hence to derive a closed equa
tion for the reduced Wigner function [62]. One approximation is to replace any occupation 
mumber n involved in a transition by the equilibrium phonon number, Nq, and to assume 
tthat the phonon system stays in equilibrium during the evolution of the electron state. With 
tthcse assumptions, the trace operation can be performed, and a closed equation set for the 
iredlicecl Wigner function can be obtained. The set consists of an equation for the reduced 
'Wigner function coupled to two auxiliary equations.

T, +  “  ' -  * 0 /w ( k ,  r - t)at  m  )

=  2 Re £ . 7 2(q) c'q 7 , (k  -  5 r , t) -  e-'1"  /; (k  + 5 , r , , )  (60)

In this equation, we denote the Wigner potential operator by 0 W and set the classical force 
to F =  0.

©w[/w](k,  r, l) = I  Kv(k -  k', r) / w(k', r, /) dk' (61)

The auxiliary equations arise from the first off-diagonal terms of the equation for the 
generalized Wigner function. In the following equation, the lower sign gives / ,  and the 
upper f 2:

(  d h
— +  — k i\ f i t /?7* V 2  ‘

=  l.e;,,,r j ^Yq +  ~ t  / w(k, r ,  /) -  ~ ±  ^  f j k ±  q. r, () (62)

Although the equation for the reduced Wigner function is real-valued, the two auxiliary 
equations are complex-valued. Note that / w depends either on some initial momentum k or
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the momentum after a completed electron-phonon interaction, k ± q . On the other hand, / ,  
and f2 depend on intermediate states k ±  q /2 ,  where only half of the phonon momentum 
has been transferred.

3.2.3. Mean Field Approximation
To simplify the equation system, one may assume a mean field over the length scale of an 
electron-phonon interaction. This mean field can be set to the local force field h¥{r) = 
-V K (r ) .  Note that this field is kept constant during an electron-phonon interaction event, 
even though the electron moves on an r-space trajectory. For a uniform electric field, the 
potential operator becomes local, Bw[/w] =  —F • Vk/ W, and the two auxiliary equations (62) 
can explicitly be solved. The solutions / ,  : are expressed as path integrals over the reduced 
Wigner function. In this way, a single equation for the reduced Wigner function is derived 
from (60).

(  h  +  ~n? ' Vr ~~ V "  ( k ’ r ’ ,S> =  i ,  dT f  dk k ’ T) /w(k ' “  F r - R ( k ' k T) ’ 1 ~  T)

-  5 ( k ”, k, t ) / J k -  Fr,  R(k, k', r ) ,  t -  r ) ]  (63)

The scattering kernel is of the form

2V
p -M q )

i'-±
.V(k', k. t ) =  r 7 : (q) £  (ty, +  -  -  l- )  cos jf ~ (e (k_ m  -  e,k fV) +  vho>q) dr' (64)

and the r-space trajectory defined as

0 / 1 1 ' X ft(k +  k') HF ,R(k, k , t ) =  r -------  --------r  +  -— (65)2m* 2m*
To interpret the above equations, we assume some phase space point k. r and some time 

/ to be given. A transition from k to k' as described by (64) starts in the past, at time t — r, 
where the retarded momentum k -  Fr has to be considered [see (63)]. At the beginning 
of the electron-phonon interaction, half of the phonon momentum is transferred, which 
determines the initial momentum k -  F t db q/2  of a phase space trajectory. With k' =  k ±  q, 
the initial momentum becomes

q k +  k'k -  Ft ±  ^ = -------Ft (66)

During the interaction duration r, the particle drifts over a phase space trajectory and arrives 
at r and k ±  q/2 at time t. At this time, the electron-phonon interaction is completed by 
the transfer of another ±q /2 ,  which produces the final momentum k ±  q. Also included 
are virtual phonon emission and absorption processes, where the initial momentum transfer 
± q / 2  at / -  t  is compensated by =Fq/2 at /. This model thus includes effects due to a 
finite collision duration, such as collisional broadening and the intra-collisional field effect. 
A discussion of the integral form of (63) can be found in [63].

3.2.4. Levinson Equation
For a uniform electric field and an initial condition independent of r, (63) simplifies to the 
Levinson equation [43].

(  T  +  F • V. ) f j k .  I) = f  dr ( dk'[S(k. k ’, r )  f j k '  -  F t. I -  r)
V Ot J .'o ••

- 5 (k  . k ,  r ) fVi( k F t , / t ) ]  (67)

.V is given by (64). This equation is equivalent to the Barker-Ferrv equation [64] with an 
infinite electron lifetime. Recently, Monte Carlo methods for the solution of the Levinson 
equation have been developed, which allow the numerical study of collisional broadening, 
retardation effects, and the intracollisional field effect [65, 66].
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3.2.5. Classical Limit
The classica limit of the scattering operator in (63) is obtained by an asymptotic analysis, 
f or this pjrfose. the equation is written in a dimensionless form. The primary scaling factors 
are k {) forth: wave-vector k and /„ for the time t. Additional scaling factors to be introduced 
are .v,, for the scattering rate S. for the energy e. F{) for the force F. /*„ for the real-space 
vector r ,  anu to, for the interaction matrix element .7.

TThe key ksuc is now to choose an appropriate scale k{). Scaling the phonon energy to 
uniity giives Ik2 — m*(D . The kinetic equation is now considered on a timescale that is much 
larger than he timescale of the lattice vibrations. Therefore, one sets /„ =  (ewq)"1, where 
r. 1 denoes a dimensionless parameter. The remaining scaling factors are found as

^  (68)
nr

r„ =  ——  (69)
m

Thie frequeicy scale of the elcctron-phonon interaction can be chosen as to, =  ?(<yth), where 
qlh is the wive number of a thermal electron. The scaled Levinson equation has the same 
forrrra a:s theunscaled equation (67). The scaled scattering rate varies on a time scale of order 
e *. To kce> the time integral of order 0 (1 ), the amplitude of the scattering rate should be
of order e~ as well, which is obtained by setting [67]

l- ■—
1

II —
K)kl)

F» = *o

-  2Voj2' m* n m
(2ttY  y h*cuq

This gaves ; scaled scattering rate of the form

Tlhe cllassicil limit is valid in the regime where the quantity defined by (70) is small, and 
thius, for tinescales t{) =  (£o>(|) 1 much larger than the inverse phonon frequency. The scat
tering opentor in (67) converges for e —> 0 to the Fermi golden rule operator in the weak 
se:nse. Fron the asymptotic analysis also a first-order correction to the Fermi golden rule 
is found \0\. Using parameters for GaAs at room temperature, one computes e = 0.011, 
wlhich suggests that assuming the asymptotic regime is appropriate.

A  heurinc argument for the convergence to the golden rule is as follows. Changing vari
ables in th scattering operator in (67) gives

(?[./„.](k, t) =  j  d r  I  dk'[eS(k, k', k' -  eFr. t  -  s t )

-  sS(k \ k, er) f w( k  — s F t ,  t — e t ) ]

aind
i  -

(e(k) -  e(k') +  v) r  -  eF • (k -  k ' ) y

Expandanj/W and eS into a Taylor scries in s  and keeping only terms of zeroth order leads 
to Che imtqral.

V
-  1 cos

f  c o s [ ( e ( k )  — 6(k  ) -f  v)  r ] d T  =  7r6[e(k)  — e (k ' )  +  v] (72)
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which evaluates to the energy-conserving 5-function of the golden rule. Undoing the scaling 
gives the well-known form of the scattering rate.

5(k  ■k) =  ( 2 ^  £  T M2(q) ( N" +  i ~ ' i ) 4e(k ) ~ e(k) +  vhl0' (7?)

The interaction matrix element is denoted here by M =  h f . Introducing the total scattering 
rate A(k) =  /  S (k \ k)dk', the Boltzmann scattering operator takes on the following form.

Q[/W](k, r, 0  =  / 5 ( k , k ' , r ) / w( k ' , r , 0 d k ' - A ( k , r ) / ( k , r . 0  (74)

Finally, we consider the classical limit of the potential operator. Scaling the r-dependent 
equation (63) gives the scaled form

^ - / ( k .k ’)-sB-I/I(k-r-0 = / ‘ik7ds/(k'r-0 [K(r+f )_ v{r ~ f )
This expression converges for s —> 0 to the classical drift term of the Boltzmann equation.

Hcl[ /] (k ,  r, 0  =  VrK (r) • Vk/ ( k ,  r. /) (75)

3.2.6. Wigner Equation with Boltzmann Scattering Operator
To obtain a model more suitable for device simulation, the nonlocal potential operator is 
maintained, whereas in the scattering operator the classical limit is introduced. The result is a 
Wigner equation with a Boltzmann scattering operator. It is convenient to introduce formally 
a classical force field F (r) in this equation to make the form of the Liouville operator equal 
to that of the Boltzmann equation. This is accomplished by redefining the potential operator.

p- (k- r ) = , 2 ^  / ( K r + § ) - K( , - ! ) + * r ' s) c" " lls (7<”

Substituting 0 W[ / ]  =  ®w[ / ]  -  F • Vk/  into (63) gives the following equation,

(  ̂  ~  • v,. +  F (  r ) ■ V * )  A  =  Q I L } +  ®w l /w  ] ( 7 7 )\  dt m* /

From a formal point of view, the classical force field F can be chosen arbitrarily, as the 
corresponding terms in (77) cancel each other. Typical choices are the mean electric field in 
a device region, the local electric field, or, of course, F =  0. Alternatively, an equation of the 
form (77) can also be obtained by using an approximation. The potential is decomposed as 
V =  Vc] +  V , where Vd is a smooth potential such as the electrostatic potential, that can
be treated in the classical limit (75), and f/qm represents a rapidly varying component that
has to be treated quantum mechanically.

3.3. Integral Form of the Wigner Equation
From the integro-differential form of the Wigner equation, a path-integral formulation can 
be derived. The equation to be transformed reads

( J j j  +  v(k) • Vf +  F(r) ■ )  f u ( k .  r, /)

= f [ S ( k, k') -h t ' x(k -  k , r) 4- ot{k, r) S(k -  k')] / vv(k', r. t) dk'

-  [A(k, r) +  « ( k, r )] f w( k , r, /) (78)

At this point, we introduced a fictious scattering mechanism otS{k -  k'), referred to as self
scattering [68]. Because of the 5-function, this mechanism does not change the state of the
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cle'.ctjrom anc hence docs not affect the solution of the equation. For the sake of brevity, we 
delrine .an inegral kernel I and the symbols fi and U .

/x(k, r) =  A(k, r) H-a(k,  r) (79)

.S(k, k') +  Kw(k -  k ,  r) +  a ( k ,  r)<5(k -  k')
1 (k. k , r ) = ------------------------------ — —  ---------------------------  (80)

M(k • r)

L'(k, r, t) =  j  F(k,  k . r ) /a ( k , ' , r )  f j k ' . r, t) dk'

Thie LLouvile operator in (78) is treated by the method of characteristics. One introduces 
paith variabes K(/)  and R(/) and takes the total time derivative of / w.

d_
J t /;v( K ( o , R ( / ) . o  =  \ j t +

* . < * ( , )  Vk +  f ^ ) . V r )A
dt dt

(82)

Thie right-hind side equals the Liouville operator if the path variables satisfy the following 
equations <f motion.

- K ( / )  = F ( R ( 0 )
dt

R (0  =  v(K (r))

Now we issume some phase-space point k, r and some time / to be given. A phasc-space 
tnajectory vith the initial condition K (/' =  /) =  k and R(/' =  /) =  r is obtained by formal 
integration

K ( 0 = k  +  f  F (R (v ))dv  R(/')  =  r +  f  v(K (v))d (84)

N«ote it h a t r, t are treated as constants in the following derivation, only /' is a variable. 
Initrodlucih, the functions

/w ( 0  =  fw(K (0 *  R(/'),  /'), fJL(t') = /*(K(/')? R (/'))* U(t') = U(K ( / /), R(/'),  /') (85)

alllowsi (78 to be rewritten as an ordinary differential equation of first order.

^ / w ( 0  +  A (0 /w U ') =  Cf( 0 (86)

Ilf mu.ltipli d by an integrating factor exp[J(*j /x(y)dy], the equation takes on a form that can 
bie easily integrated in time.

dt
- exp I £ (y)dy L(t ' )  = exp f  j l(y)d

.'(I ./o U ( t ' ) (87)

The choic of the upper and lower bounds of time integration depends on whether the 
pjrobbem nder consideration is time-dependent or stationary.

Thie orcnary differential equation (87),  which is the result of treating the Liouville opera
tor by tJheriethod of characteristics, has the same structure as the corresponding differential 
ejquattion .ir the Boltzmann equation. Therefore, we can refer to the work on the Boltzmann 
e;quattio-n egarding the details of the time integration of (87) [69, 70].
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3.3.1. The Time-Dependent Equation
The upper bound of the time integration should be /' — t to obtain }\K(t) =  / u(k, r, /), the 
value of the unknown at the given phase space point. At /' =  0, an initial distribution /■(!•, r) 
is assumed to be given. In analogy with the Boltzmann equation [70], the integral forrt of 
the Wigner equation is obtained.

/w(k, r, t) = j f  dt' I  dk' exp | -  fi[K{y), R(y)|dy

X r [K ( /') , k', R (0 ] / t [ k \  R (0 ] / * [k '.  R (r'). t'\ 

exp j -  l '  /x[K(y), R( v)] d)’ |/i(K (0 ), R(0)) .88)+

This equation states that the Wigner function at time t depends on the Wigner functior at 
some previous time t '. Using (88) in an iterative procedure, with each iteration the time vari
able would move to smaller values. Therefore, another equation is desirable that dcscrbes 
the evolution of the system in forward time direction. Such an equation is given by the 
adjoint equation of (88).

g « ( k \  r\  /') =  J'  d r  I  d k g w[K(T) ,  R ( r ) ,  r] e x p j - ^  (u [ K ( y ) ,  R ( y ) ] d y j

X r(k ,  k , r') ju(k', r') + g„(k\ r', /') <S9)

The derivation of the adjoint equation (89) is discussed in detail in [69, 70].

3.3.2. The Stationary Equation
In a stationary system, the potential and all material parameters are independent of tine. 
A phase-space trajectory is invariant under time translations. This property can be corve- 
nicntly used to adjust the time reference of each trajectory [71, 72]. In the stationary ase, 
we assume the phase-space point k, r to be given at /' =  0. So the initial condition for he 
phase-space trajectory is K(0) =  k and R(0) =  r. For the upper bound of time intcgraton 
of (87), we choose now /' =  0 to obtain / w(0) — / w(k, r). The lower time bound has to be 
chosen such that the functions K(/) and R(/) take on values at which the Wigner func
tion is known. In the steady-state, this function is known only at the domain boundary. \n  
appropriate lower time bound is therefore the time when the trajectory enters the simulaton 
domain. This time is denoted by ty} and depends on the point k, r under consideration. '"Tie 
case that the real space trajectory R(r) never intersects the domain boundary can occur for 
a classically bound state. Then the trajectory forms a closed loop and the appropriate chcice 
is =  — oo. Integration of (87) in the time bounds discussed above results in the integral 
form of the stationary Wigner equation (cf. [71]).

/ ( k ,r )  =  / 0(k, r ) + f  d/' f  dk' c x p (- f  /x[K(>), R(v)|dv
( k . r )  •* I Jt ’

X F[K(/'), k', R(r'))/i(k' ,  r ' ) / ’v[k', R(/')] ()())

/i,(k, r) =  / b {K [/;7(k. r) ], R[;(V(k. r)]} exp j — f  A[K(v), R (v )]d v) (M)

Here, /b denotes the boundary distribution. The integral form (90) represents a backward 
equation. The corresponding forward equation is given by the adjoint equation.

&w(k, r) =  g„(k, r) + ^ dt f t/k>w[K (r), R (r)]

x e x p j -  [ fi[K(y)< R (y)|i/y  I F(k'. k. r)/x (k , r) (-)/}(r) ("2)

(M) /; denotes the indicator function of the simulation domain D. The initial cond lions for he 
phase space trajectory are K (/) =  k and R(r) — r.



W igner Funeticn-B ased Dcmcc M odeling 7 4 7

4. T H E  MONTE CARLO METHOD
Monte Carlo s a numerical method that can be applied to solve integral equations. Applying 
this method to the various integral formulations of the Wigner equation gives rise to a variety 
of Monte Carlo algorithms, as discussed in the following.

4.1. The General Scheme
This section ntroduces the general scheme of the Monte Carlo method and outlines its 
application tc the solution of integrals and integral equations. To calculate some unknown 
value rn  by the Monte Carlo method, one has to find a random variable £ whose expectation 
value equals E{£} =  m. The variance of £ is designated a with a  being the standard 
deviation.

Now consider N independent random variables £: , . . wi th distributions identical 
to thatt of Consequently, their expectation values and their variance are equal.

Expectation ’alue and variance of the sum of all these random variables are given by

E{£, + &  +  ••■ +  £ *} =  E {£ ,} +  E {& } +  • ■. +  E { f  v } =  Nm (94) 

Vu-{£, + £ .  +  ■■■ +  f v } =  Var{£,} +  Var{f,} +  • ■ • +  Var{£v } =  N(r  (95)

Using the poperties E{c£} =  cE{£} and Var{c£} =  c2Var{£}, one obtains from (94) 
and (95)

has the sairm expectation value as £ and an N  times reduced variance. A Monte Carlo simu
lation of the inknown m consists of drawing one random number £. Indeed, this is equivalent 
to drawing /  values of the random variable £, and evaluating the sample mean (98).

The Monc Carlo method gives an estimate of both the result and the error. According
to the cenitrJ limit theorem, the sum pjV =  £, -I- £2 + -----h £v ° f  a large number of identical
random viarnbles is approximately normal. For this reason, the following three-sigma rule 
holds only approximately

In this eqjUEion, the expectation value and the variance of pN are given by (94) and (95), 
respectively Dividing the inequality by N and using £ =  ps /N  we arrive at an equivalent 
inequality ad the probability will not change:

E { £ }  =  // !, V a r{£■} =  rr2, / =  1 , 2 , . . . , /V

(96)

(97)

Therefore., tie random variable

(98)

P{ |pv -  Nm  I < .Iv/yVo3 } % 0.997 (99)

( 100)

This forrmul indicates that the sample mean £ will be approximately equal to m. The error 
of this ap>pr-ximation will most probably not exceed the value 3cr/>J~N. This error evidently 
approaches ero as N increases [73].



7 4 8 W igner Function-B ased Device Modeling

4.1.1. Monte Carlo Integration
We apply the Monte Carlo method to the evaluation of an integral.

m =  j 4>(x) dx (101)
Ji i

For this purpose, the integrand has to be decomposed into a product </; =  /;<//, where p 
is a density function, which means that p  is non-negative and satisfies p(x)dx = 1. Inte
gral (101) becomes

m =  p(x)*lt( x )dx  (102)
* a

and denotes the expectation value m = E-^l7} of some random variable 'P =  ip{X). Now the 
general scheme described in the previous section can be applied. First, a sample x , , . . .  , .v/V
is generated from the density p. Then the sample ........ ipN is obtained by evaluating the
function ip: ip, — ip(Xj). The sample mean

1 N
m  ~  i// =  —  E  '/•'/ (H)3)

/ — I

approximates the expectation value. To employ the error estimation (100), the variance of 
M7 can be approximately evaluated by the sample variance

1 n
<r~ -  (J' =  7 7 Z T  -  <A)2 (KW)

/V /=1

Because the factorization of the integrand is not unique, different random variables can be 
introduced depending on the choice of the density /?. All of them have the same expectation 
value but different variance.

4.1.2. Integral Equations
The kinetic equations considered in this work can be formulated as integral equations of the 
form

f { x )  =  f  K ( x . x ' ) f ( x ' ) d x '+ f a(x) (l05)

where the kernel K and the source term f {) are given functions. Equations of this form 
are known as Fredholm integral equations of the second kind. In the particular cases of 
the Boltzmann equation and the Wigner equation, the unknown function /  represents the 
phase-space distribution function. The multidimensional variable x stands for (k, r, /) in the 
transient case and for (k, r) in the steady state.

Substituting (105) recursively into itself gives the Neumann series, which if convergent, is 
a formal solution to the integral equation 174].

/  =  /<"» + /< "  +  /<-> +  . . .  ( 106)

The iteration terms are defined recursively beginning with / (t,,(x) =  f {](x).

f (" '"(x)  = j  K(x, x ' ) f l"\x' )  ci v'. n -- I). 1 ,2 ,. . .  (107)

The series (106) yields the function value in some given point .v. However, in many cases
one is interested in mean values of /  rather than in a point-wise evaluation. Such a mean
value represents a linear functional and can be expressed as an inner product.

( / .  A) [  f ( x ) A ( x ) d x  (108)
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It iis to note that (105) is a backward equation. The corresponding forward equation is given 
by the adjoint equation.

s ( . v ' )  : f  K { \  . x)g(x)  d.v +  K V ) ( 1 0 9 )

whiere the kernel is defined bv K ( x \  x) = K(x,x' ) .  Multiplying (105) by g(x) and (109) by 
f (  x'), and integrating over .v and x \  respectively, results in the equality

( /M )  =  (£ ./ ,)  (HO)

By/ means of (110), one can calculate a statistical mean value not only from / ,  but also from
g, the solution of the adjoint equation. The given function A has to be used as the source 
teirm o*f the adjoint equation. The link with the numerical Monte Carlo method is established 
by evaluating the terms of the Neumann series by Monte Carlo integration, as pointed out 
in the prev ious section.

Note that usage of (110) precludes a point-wise evaluation of the distribution function 
usiing a forward algorithm, because A(x)  =  3 ( a )  cannot be treated by the Monte Carlo 
mietlho«d. The probability for a continuous random variable x’ to assume a given value a* is 
ze>ro». Only the probability of finding x ’ within a small but finite volume around x is non-zero.

4..2.. Particle Models
E;ac(h term of the Neumann series of the adjoint equation describes a sequence of alternating 
frtee flight and scattering events. A transition consisting of a free flight with initial state kj at 
tiime t j and a scattering process to the final state k, at time t{ is described by the following 
expression. For the sake of brevity, the r-dependencc of V and fi is omitted in the following.

P(kf. k,, 0  =  r[k f,K i( /f) ]M[Ki( /1) ]e x p j-

lm ai M onte Carlo simulation, t{, the time of the next scattering event, is generated from an 
exponential distribution, given by the terms \x exp() in (111). Then, a transition from the
trajectory eiid point K ,(/f) to the final state kt is realized using the kernel F. In contrast to
thie classical case, where P would represent a transition probability, such an interpretation 
is not possible in the case of the Wigner equation because P is not positive semidefinite. 
T ’he problem originates from the Wigner potential, which assumes positive and negative 
v;alues. However, because of its antisymmetry with respect to q, the Wigner potential can be 
reformulated in terms of one positive function V’J [27].

!C (q ,r )  =  m a x ( 0 ,  Kvv(q ,r ))  (112)

Kv(Q> r ) =  V* (q, r) — V* ( —q, r) (113)

Then., the kernel V is rewritten as a sum of the following conditional probability distributions.

T(k, k ) =  -  J(k. k') + -  S(k' -  k) +  -  [w(k. k') -  iu*(k. k')] (114)
11 ( I  fJL

S7k' k  ̂ 1/ (k — k')
j ( k , k ' ) =  H t t V ,  w (̂k, k ) =  — --------w*(k, k') =  iy(k7, k) (115)

A(k') y

T h e  normalization factor associated with the Wigner potential is defined as

y (r) =  f  Kv (q  ̂r )dq ( i 16)

I n the following, different variants of generating the final state kt from the kernel F will be 
discussed.

f ' f i ( K i ( 7 ) ) d r J  ( 1 1 1 )
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4.2.1. The Markov Chain Method
In analogy to the simple integral (102), we have now to decompose the kernel P int) a 
transition probability p and the remaining function P/p.  More details on the Markov chain 
method can be found in [75, 76]. With respect to (.111), one could use the absolute value of 
F as a transition probability. Practically, it is more convenient to use the absolute value? of 
the components of T, giving the following transition probability.

p ( k,, k') =  -  s ( kf, k') 4- -  5(kf — k') +  -  w ( kf, k') -f -  k') (17)
v v v v

The normalization factor is v =  A +  a +  2y. In the first method considered here, the free-li'ht
time is generated from the exponential distribution appearing in (111).

PiOu k,) =  M [K ,(r ,)]e x p |-^  m [Ki(t)] dr | (1 8)

For the sake of brevity, the state at the end of the free flight is labeled k =  K j(/r) in he 
following. To generate the final state k,. one of the four terms in (117) is selected with he 
associated probabilities kjv, a/v.  y / i \  and y/v,  respectively. Apparently, these probabiliies 
sum up to one. If classical scattering is selected, k, is generated from If self-scatterin' is 
selected, the state does not change and kf =  k' holds. If the third or fourth term are selected, 
the particle state is changed by scattering from the Wigner potential and k, is selected fnm 
w or w'\ respectively. The particle weight has to be multiplied by the ratio

!  = ±(i + - il_ l (i.9)
p \  A + a

where the minus sign applies if k, has been generated from uf.  For instance, for a quantlm 
mechanical system, where the classical scattering rate A is less than the Wigner scatterng 
rate y, the self-scattering rate a  can be chosen in such a way that A +  a = y. Then, the Mul
tiplier (119) evaluates to ±3. An ensemble of particles would evolve as shown schematially 
in Fig. 2.

In the second method, we again use the transition rate (117), but now the free flight tine 
is generated with rate v rather than with p.  In this case, (111) can be rewritten as

F ( k f , k') u ( k ' )  / .

x v(k') exp j  — I  i;IKj(r)] dr J expj 2 ^  y[R,(r)]dr| (120)

The exponential distribution distribution is used to generate /f and the distribution p to 
generate k,. The remaining terms form the factor bv which the particle weight chanjes

o-
- O - ----------O ---------

1 -9+ 1 +3
o---------- o — Q -

Figure 2. Wiih the Markiw chain method, the number of numerical particles is conserved. The magnitude ol 
the particle weight increases with eaeh event, and the sign of the weight changes randomly according to a gren 
p roba bi 1 it v distribution.
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during one fee flight. Because of ( \ p ) / ( p r )  =  ±1, the multiplier for the /th free flight 
evaluates to

Note that tie absolute values of both multipliers, (119) and (121), are always greater than 
one. W ith ea:h transition of the Markov chain, the particle weight is multiplied by such 
factor. Thereore, the absolute value of the particle weight will inevitably grow with the 
number of traisitions on the trajectory. To solve the problem of growing particle weights, one 
can split partcles. In this way, an increase in particle weight is transformed to an increase 
in particle nunber.

4.2*2. Pair Generation Methods
The basic idei of splitting is refined so to avoid fractional weights. Different interpretations 
of the kernel ire presented that conserve the magnitude of the particle weight. Choosing the 
initial weight to be - h i ,  all generated particles will have weight +1 or -  I. This is achieved 
by imterpretirg the potential operator in (77) as a generation term of positive and negative 
particles*. We consider the kernel (114).

If the Wignei scattering rate y is larger than the classical scattering rate A, the self-scattering 
rate oc has to be chosen large enough to satisfy the inequality y / p  < 1. Typical choices are 
p  = Max(A, '') or p  = A +  y. These expressions also hold for the less interesting case y < A, 
where quantim interference effects are less important than classical scattering effects.

As an the cassical Monte Carlo method, the distribution of the frec-flight duration is given 
by the exponential distribution (118). At the end of a free flight, the complementary prob
abilities /?, =  \ / p  and 1 — ps = a / p  are considered. With probability /?s, classical scattering 
is selected Tie final state is generated from s. The complementary event is self-scattering. 
In addition, vith probability pw = y / p  a pair of particle states is generated from the distri
butions w ani w\  The multiplier of the weight is +1 for a state generated from one of first 
three terns tnd -1  for a state generated from w*. Therefore, the magnitude of the initial 
particle weight is conserved, as shown in Fig. 3.

Method G1: In the following, we discuss the case y > A, where quantum effects are 
dominant. We begin with the smallest possible value for p: p  =  Max(A, y) =  y. Because 
/;w =  y j fp— 1, a particle pair is generated after each free flight as shown in Fig. 4. At the 
same instances, classical or self-scattering events occur. In Fig. 4 and the following figures, 
only trhe tajeetory of a sample particle is shown and not the whole cascade of trajectories 
of the generated particles.

M e th o dG2: Choosing the self-scattering rate to be a  =  y, the kernel can be regrouped as

"(k,-, k ) =  -  s ( k j , k') +  -  <5(k, -  k') +  -  [ w ( kt , k')  -  ^ ( k , ,  k')]  (122)

+ 1 + 1
O

+ 1
+ i + 1

a O

- i

Iw = l Iw = l

Figure 3. Mth ihc pair generation method, the magnitude of the particle weight is conserved, hut one initial 
particLe genrates a cascade of numerical particles. At all times, mass is exactly conserved.
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+ M -  Y +

+

+

0 i/y

Figure 4. Trajectory of a sample particle resulting from method Gl.

With probability ps =  A//x, classical scattering is selected. Otherwise, a self-scattering event 
and a pair generation event occur. In this algorithm, classical scattering and pair generation 
cannot occur at the same time, as shown in Fig. 5. Compared to method G l, the avenge 
free flight time is now reduced, because /x has been increased from y to A +  y.

4.2.3. Single-Particle Generation Methods
The idea of this method is to further reduce the free-flight time. We rewrite the kernel .ts

In this case, the self-scattering rate a has to be chosen large enough to satisfy the inequality 
-7 / /*  < !• Typical choices are /x =  M ax(A,2y) and ft =  A + 2y. As in method G l, c.as- 
sical scattering is selected with probability ps = A//x, whereas the complementary even: is 
self-scattering. In addition, with probability pXK = 2y //x, particle generation is selected If 
selected, with equal probability either the distribution w or w* is chosen to generate he 
final state k,. If  w* has been chosen, the weight is multiplied by —1.

Method G3: Assuming y > A/2 and /x =  2y gives / \  =  1. Therefore, after each tree 
flight, either a positive or negative particle is generated, as depicted in Fig. 6. Al the same 
instances, classical or self-scattering events occur.

Note that in method G3 (/x =  2y), the free-flight time is reduced by a factor of two cc in- 
pared to method G l (fi — y), which means that now the kernel is applied twice as frequently. 
In method G3, single particles are generated at a rate of 2y, whereas in method G l particle 
pairs are generated at half of this rate.

Method G4: In this method, we set a =  2y and obtain /x =  A +  2y. In analogy uith 
method G2, classical scattering and particle generation are now complementary events. 
Figure 7 indicates that these two types of events occur at different times. From all methods 
discussed above, this method uses the shortest free flight time.

From a numerical point of view, method G l and method G2 have the advantage that they 
exactly conserve charge as they generate particles pairwise with opposite sign. Method 33  
and method G4 generate only one particle each time. Because the sign of the weigh: is 
selected randomly, charge is conserved only on average. Simulation experiments, however, 
have show'n that the quality of the pseudo random number generator is good enough to 
generate almost equally many positive and negative particles even during long simulator.

/x /x /x 12.

+ M = A + Y

+
t

\
0

Figure 5. IrajcetorN of a sam ple particle resulting from  m ethod G2.
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M = -7

r .
0 My 2iy

Figure 6.. Trajectory of a sample particle resulting from method G3.

3/y

times, such that the small difference of net generated particles has no visible effect on the 
solution.

4.2.4. Other Methods
In method G1 to method G4, the weight of the generated particles is ±1, because the 
generation rate used equals 2y. If a generation rate larger than 2y or a fixed time-step 
less than l/2 y  were used, the magnitude of the generated weight would be less than one. 
This, approach has been followed in [24], where the resulting fractional weights are termed 
affinities. On the other hand, a generation rate less than 2y would result in an under- 
sampling of the physical process. Then, the magnitude of the generated weights would be 
generally greater than one.

4.3- The  Negative Sign Problem
In the following, we analyze the growth rates of particle weights and particle numbers associ
ated w/itlh the different Monte Carlo algorithms. In the first Markov chain method discussed 
in Section 4.2.1, the weight increases at each scattering event by the multiplier (119). The 
growth rate of the weight can be estimated for the case of constant coefficients y and /x. 
Because free-flight times are generated with rate fi, the mean free-flight time will be l//x . 
During ;a given time interval /, on-average n — / i t  scattering events will occur. The total 
weight is tien estimated asymptotically for t l//z.

W(t)\ = + 2y
M

2 yt
— exp(2yt) (125)

This expression shows that the growth rate is determined by the Wigner scattering rate y 
independently of the classical and the self-scattering rates.

W ith the second Markov chain method, one readily obtains that the total weight after n 
free flight1 grows as a function of the path integral over y[R (r)].

1 ^ ( 0 1  =  h  K l  =  exp {2 f  y (R (T ))d r
,-=o I Jn

( 126)

In this eqaaiion, the m, are given by (121). This result generalizes (125) for a position 
depended y.  The growth rate 2y is equal to the L { norm of the Wigner potential.

0 1 'y 2/y 3/y

Figure  7. Trajectory of a sam ple particle  resulting from  m ethod  G4.
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In the pair generation methods, the potential operator

(" U /J (M  =  /  I/ + (q)[./w( k - q ) - / w(k +  q)]dq (127)

has been interpreted as a generation term. It describes the creation of two new states, k -  q 
and k +  q. The generation rate is equal to y. When generating the second state, the sign 
of the statistical weight is changed. It should be noted that the Wigner equation strictly 
conserves mass, as can be seen by taking the zero-order moment of (77).

^  + d iv j  =  0 (128)
dt

Looking at the number of particles regardless of their statistical weights, that is, counting 
each particle as positive, would correspond to using the following potential operator.

K l L r n  = J Kv+(q)[/w(k -  q) +  / w(k +  q)] dq (129)

Using (129), a continuity equation for numerical particles is obtained.

+  div J* =  2y(r )n* (130)

Assuming a constant y, the generation rate in this equation will give rise to an exponential 
increase in the number of numerical particles N \

N*(t) =  /V*(0)exp(2yO (131)

This discussion shows that the appearance of an exponential growth rate is independent 
of the details of the particular Monte Carlo algorithm, and must be considered to be a 
fundamental consequence of the non-positive kernel.

4.4. Particle Annihilation
The discussed particle models are instable, because either the particle weight or the par
ticle number grows exponentially in time. Using the Markov chain method, it has been 
demonstrated that tunneling can be treated numerically by means of a particle model [25]. 
However, because of the exponentially increasing particle weight at the very short timescale 
(2 y )~ \ application of this algorithm turned out to be restricted to single-barrier tunneling 
and small barrier heights only. This method can be useful for devices where quantum effects 
are weak, and the potential operator is a small correction to the otherwise classical transport 
equation.

A stable Monte Carlo algorithm can be obtained by combining one of the particle gen
eration methods with a method to control the particle number. One can assume that two 
particles of opposite weight and a sufficiently small distance in phase space annihilate each 
other. The reason is that the motions of both particles are governed by the same equa
tion. Therefore, when they come close to each other at some time instant, the two particles 
have approximately the same initial condition and thus a common probabilistic future. In an 
ensemble Monte Carlo method, a particle removal step should be performed at given time 
steps. During the time step, the ensemble is allowed to grow to a certain limit, then particles 
are removed and the initial size of the ensemble is restored. In this work, the problem has 
been solved for the stationary transport problem. In the algorithm, the trajectory of only 
one sample particle is followed, whereas other numerical particles are temporarily stored on 
a phase space grid. Due to the opposite sign, particle weights annihilate to a large extent 
in the cells of the urid. The total residual weight in each cell has to be minimized, as it 
represents a measure for the numerical error of the method [32].
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5. SIMULATION RESULTS
Vir tu alily allpublished results of Wigner function-based device modeling focus on resonant 
tunmelimg d;>des [77. 78). In this section, three different devices are discussed. Their param
eter values ire collected in Table 1, where RTDl [3b] and RTD2 [24] are devices from 
literature, l ie  semiclassical scattering model includes polar optical, acoustic deformation 
potcential, aid ionized-impurity scattering. Parameter values for GaAs have been assumed.

5.11. Comparison with Other Numerical Methods
R T D l has ben used as a benchmark device to compare different numerical approaches to 
quiantum transport. In this device, the potential is assumed to vary linearly only in the double- 
bairrier regim and to be constant in the two contact regions. Results of the Monte Carlo 
me;thiod outined in this work have been compared to nonequilibrium Green’s function-based 
res;ults [?9].The latter have been obtained by N E M O -ID , a one-dimensional nanoelectronic 
modeling tol [80]. N E M O -ID  has served as a quantitatively predictive design and analysis 
tool for resmant tunneling diodes [81-83].

1RTD1 shiws a rather large coherent off-resonant valley current. Therefore, phonon scat
tering has <nly little effect on the current-voltage characteristics of this device. Both simu
lators predrt only a slight increase in valley current due to inelastic scattering (Fig. 8). The 
ressonamce voltages predicted by the two solvers agree very well.

A compaison between finite-difference results and Monte Carlo results is shown in Fig. 9. 
Am iimpoTtait parameter is the cutoff length Lc used in the numerical Wigner transformation. 
As;suim.ing (nly one spatial coordinate, Lc is introduced as follows.

K ( k x,x) =
lirih

1 A-/2
Trih Ji\

V 2jhL[v{x+'l) ik,  s ds

sin(kx s) ds

(132)

(133)

Thie cutoff ength has to be selected carefully when solving the Wigner equation numerically. 
Thie compirison of current-voltage characteristics shown in Fig. 9 demonstrates that only 
a suifficienty large value for Lc gives a realistic result. A too small value results in an 
ov'erestimaion of the valley current.

5..2. The Effect of Scattering
Ini R TD 2, ne potential changes linearly in a region of 40 nm length, starting 10 nm before 
thie ennitte barrier and extending 19 nm after the collector barrier, as shown in Fig. 10. 
Tlhe Wignc potential is discretized using Nk = 640 equidistant kx points and Aa =  0.5 nm 
sp>acin.g in .-direction. Assuming a cutoff length of L c =  80 nm, one would require at least 
N\  =  Lc/tx ~  160. This minium value is often used in finite-difference simulations for the 
W igner equation, but in the Monte Carlo simulation we use the considerably larger value 
st;ated akxre in order to get a better resolution of the energy domain. The annihilation mesh 
is three-dinensional. In ^-direction, the grid covers the region where the Wigner potential is 
nonzero. Iecause of the cylindrical symmetry of the Wigner function, only two momentum 
coordinate have to be considered. The mesh extends to an energy of 6 eV in both axial and 
radial fc-diection.

Table 1. Parameter values of the simulated resonant tunneling diodes.8

Device
name

Barrier
height
(eV)

Barrier
width
(nm)

Well
width
(nm)

Device
length
(nm)

Contact
doping
(cm"3)

RTDl 0.27 2.<S3 (5</„) 4.52 (Ha,) 100.6 (l78</„) X
 

c- J

RTD2 0.3 3.0 5.0 200.0 10,h
RTD3 0.47 3.0 4.0 270.0 10ls

I hc lattice constant of GaAs is t/(1 — 0.5(0 nm.
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voltage (V)

Figure 8. Current-voltage characteristics of RTD1 at 300 K obtained from Wigner Monte Carlo and NF.MO-ID. 
Transport is coherent (coh.) or dissipative (scatt.).

The Wigner generation rate (127) is of the order l()L\s"1 for RTD2 (Fig. 11). The rela
tion of this rate to the typically much smaller semiclassical scattering rate is a quantitative 
measure of the fact that quantum interference effects are dominant. The zero-field contact 
regions have been chosen sufficiently large, such that the Wigner potential drops to zero 
within these regions.

Figure 12 shows the electron concentration in RTD2 at voltages below the resonance 
voltage. Classical behavior is observed before and after the double barrier, whereas in the

voltage (V \

Figure 9. I*fleet of the cutoff length on the eurreni-voUage characteristics in Wigner simulations. The firite- 
difference (FD) result is taken from [3hj.
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distance (nm)

Kigiure 10. Conduction hand edge of RTD2 for different voltages. A linear voltage drop is assumed.

qiuanitum well the behavior of the solution is nonciassical. In front of the barrier an accumu
lation! layer forms, with its maximum concentration increasing with the band bending. In the 
quiarutum well, the concentration increases as the resonance is approached. After the barrier 
a depletion layer forms, which grows with applied voltage. In this region, the concentration 
at 0.15 V varies exponentially in response to the linear potential (see Fig. 10), which is again 
a classical property.

For voltages above the resonance voltage, the concentration in the well drops, whereas 
thie depletion layer continues to grow (Fig. 13). The mean kinetic energy of the electrons is 
depicted in Fig. 14. The energy density has been calculated from the second-order moment 
of the Wigner function (35) and divided by the electron density to get the mean energy per 
electron. In the zero-field regions, an energy close to the equilibrium energy is obtained, 
whiich demonstrates that the energy conservation property of the Wigner potential operator 
is also satisfied by the numerical Monte Carlo procedure. One has to keep in mind that 
th»e Wigner potential can produce a rather large momentum transfer. For the chosen value

distance (nm)

Fiigure 11. Pair generation rate y (.v ) in R T D 2  caused hy the W igner potential for two different voltages.
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dislance (nm)

Figure 12. Hlcctron concentration in RTD2 for voltages less than the resonance voltage.

for Aa , the related energy transfer can reach values as large as 5 cV, which shows that a 
large degree of cancellation occurs in the estimator for the mean energy. Electrons injected 
from the second barrier into the collector space charge region show initially a high kinetic 
energy.

Phonon scattering strongly affects the current-voltage characteristic of RTD2 (Fig. 15). As 
compared to the coherent case, phonon scattering leads to an increase in the valley current 
and a resonance voltage shift. The large difference in the valley current can be explained 
by the electron concentration in off-resonance condition (Fig. 16). With phonon scattering 
included, a significantly higher concentration forms in the emitter notch, and injection in 
the double barrier is increased. This indicates that a quasi bound state forms in the emitter 
notch. The population of this state increases when scattering is switched on. On the other 
hand, in resonance condition where the applied voltage is lower, such a bound state does not 
form and very similar electron concentrations are observed for the coherent and noncoherent 
case (Fig. 17).

60 70 rn  00 100 MO 120 130 140
distance (nm)

Figure 13. Electron concentration in RTD 2 for volumes ureaier than the resonance voltage.
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distance (nm)

Fig»ur»e 14. Mean kinetic energy in RTD2 for two different voltages.

5.3. Inclusion of Extended Contact Regions
As; discussed in Section 3.2.5, the Wigner equation simplifies to the Boltzmann equation 
whien the potential variation is sufficiently smooth. The proposed quantum Monte Carlo 
method turns into the semiclassical Monte Carlo method for vanishing Wigner potential. 
Therefore, one can simulate a quantum region embedded in an extended classical region 
wiith the interface between the regions correctly treated in an implicit way. By means of the 
Wigner generation rate y , the simulation domain can be decomposed into quantum regions 
( y  >  0) and classical regions (y — 0). In Fig. 18, these regions within RTD2 are marked. 
Thic electron concentration and the mean energy are smooth in the extended contact regions 
amd not affected by the strong onset of the Wigner generation rate, as shown in Fig. 11.

In. the simulation of RTD3, the Wigner potential FJ(Aa,.v) is discretized using Nk = 
12*00 equidistant k v points and A.v =  0.5 nm spacing in the x-direction. A cutoff length of

voltage (V)

Fiigure 15. Influence o f phonon scattering on the current-voltage characteristics of the RTD 2.
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distance (nm)

Figure 16. Electron concentration in RTD2 in off-resonancc condition.

distance (nm)

Figure 17. Electron concentration in RTD2 in resonance condition.

distance (nm)

Figure 18. Electron concentration and mean electron energy in R T D 2  at 7 -- 300 K  and 0.1 V applied \nltaie.

en
erg

y 
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distance (nm)

Figiure 19. Electron concentration profiles in RTD3.

Lc =  60 nm is assumed. The annihilation mesh consists of 480 points in the longitudinal 
ancd 120 points in the perpendicular momentum direction, and the real space coordinate is 
dis-icretizcd using Ax =  0.5 nm. The electrostatic potential has been computed using the self- 
eomsistenn Schrodinger-Poisson solver NANO TC AD-1D [84]. Figure 19 shows the electron 
comcentration profile in the device. At the resonance voltage of 1.2 V, the concentration in 
the quantum well is considerably higher than in the off-resonance condition at 1.6 V. The 
coincentration in the depletion region left of the barrier depends on the injected current and 
is ’thus correlated with the concentration in the well.

6. CONCLUSION
Tine examples presented in Section 5 demonstrate that a numerical solver for the Wigner 
eqiuation can provide quantitatively correct results. One requirement is that the cutoff length 
is chosen sufficiently large. The completeness relation of the discrete Fourier transform 
relflecting Heisenberg’s uncertainty principle, Ak x — 7r /L c, shows that a small Lc will result 
in a coarse grid in momentum space, and resonance peaks in the transmission coefficient 
miight not be resolved properly. In the past, the Wigner equation has been solved most 
frequently by finite-difference methods. Due to the nonlocality of the potential operator, 
alll points in momentum space are coupled, resulting in a very poor sparsity pattern of the 
miatrix. Therefore, increasing the number of grid points in A'-space, related to the cutoff 
ieingth by Nk = L J Aa\ is limited by prohibitive memory and computation time requirements. 
Tlnis might be one reason why quantitatively correct solutions were difficult to obtain in 
thte past. We believe that the frequently reported accuracy problems with finite-difference 
Wigner function-based device simulations result from a too coarse &-space discretization. 
A;s this problem occurs already for one-dimensional geometries, higher dimensional simula
tions using the finite-difference method are probably out of reach. It is interesting to note 
thiat Frensley, who pioneered the finite-difference method for the Wigner equation [16], 
laiter abandoned this method and developed the quantum-transmitting boundary method to 
describe coherent transport in open systems [85].

The Monte Carlo method allows the number of A-points to be increased. In this work, the 
Wigner potential has been discretized using Nk of the order 10\ However, high-performance 
re*sonant tunneling diodes with very high peak-to-valley current ratio pose still a problem 
fo r the Monte Carlo method. In such a device, the density can vary over several orders of 
miagnitude. which often cannot be resolved by the Monte Carlo method. This problem is also 
w'ell-known from the classical Monte Carlo method. As a solution, one could apply statistical 
einhancement techniques in such cases. At present, an equidistant A:-grid is used for the 
diiscretization of the Wigner potential. Because the transmission coefficient of double-barrier 
structures may show very narrow resonance peaks, using an equidistant A:-grid may not be 
the optimal choice. However, because of the discrete Fourier transform of the potential
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involved in the computation of the Wigner potential, the use of a nonequidistant A:-gid 
appears to be problematic.

In a Wigner function-based simulation of one-dimensional heterostructures, fundamentd 
simulation parameters such as the cutoff length are closely linked to physical device parame
ters such as the spacing from the contacts. This property stems from the choice of plane-wae 
basis sets in a quantum mechanical regime of broken translational symmetry. Although ana
lytically appealing, this basis set can cause numerical difficulties. Other approaches such s 
the nonequilibrium Green’s function formalism may have the advantage that other basis ses 
can be used more straightforwardly.

These considerations indicate that from a numerical point of view, the Wigner functim 
formalism might not be the optimal choice for resonant tunneling simulation. Howeve, 
because the formalism describes quantum effects and scattering effects with equal accurac, 
it appears well suited especially when a quasi-ballistic transport condition without energe- 
ically sharp resonances is present. One strength of the Wigner function approach is tie 
treatment of contact regions. Nonequilibrium transport can be simulated in the whole devie 
formed by a central quantum region embedded in extended classical regions. The presented 
Wigner Monte Carlo method can bridge the gap between classical device simulation aid 
pure quantum ballistic simulations.

Development of Monte Carlo methods for the solution of the Wigner equation is stil 
in the beginning. Research efforts are needed especially with respect to the negative sijn 
problem. The particle generation-annihilation algorithm developed by the authors is just on  
solution to that problem. Improved variants of this algorithm or even new solution strategics 
are yet to be devised. Extension of the Monte Carlo methods to higher dimensional devie 
geometries is straightforward.
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1. INTRODUCTION
Design of computer devices is experiencing a transition between microelectronics, which s 
reaching its physical limits at the submicron scale, and the upcoming era of nanotechnolog'. 
This is because at the nanoscale level, comparably with atomic wave length, microscale phy;- 
ical processes do not work and, therefore, give place to quantum effects. This, eventual! 
yields to a global modeling of computing processes by appropriate physical (quantum) phe
nomena in the foreseeable future.

So far, technology offers electronic devices which exhibit local quantum effects, that s 
nanoscalc components. For example, devices such as resonant-tunneling diodes jl] and 
single-electron devices [2] have been known for a while. However, our understanding (f 
information flow and of the computer as a “processor-memory-Datapath-Input/Outpuf sys
tem remains a traditional one, and it is global logic designs that are a networked system cf 
devices with local quantum effects. Since today’s quantum devices are weak and sensitive, 
they are not suited to conventional logic gate architectures, which require robust devices.

This survey explains connections between contemporary approaches to computer hardware 
design based on traditional Boolean algebra and the new requirements posed by nanc- 
technology. It abstracts from the traditional gate-level or programmable logic implemer- 
tation of switching functions, and characterizes the structural requirements of existing anJ 
predictable nanoscale devices.

The key features of the proposed view of logic design of nanodevices are the following:
1. A central role is reserved for topological models (embedding in hypercubes, assembling 

topology).
2. The technique of advanced logic design is deployed and flavored with elements of mas

sively parallel, distributed and tolerant computing, taking into account new possibilities 
of processing in spatial dimensions.

This approach to the logic design of nanodeviccs is introduced through:
1. Spatial data structures and the corresponding topological models that satisfy the criteria 

of massive parallel processing, homogeneity, and fault tolerance: parallel arrays, cellular 
arrays and neural-like networks.

2. Fault tolerance computing in spatial structures.
3. Methods for analysis of data structures and topologies in nanodimensions.
4. Information theoretical measures in spatial structures.
The rest of the sections are organized as follows. Section 2 overviews the directions anJ 

methodology of logic design in nanodimensions. Section 3 covers data struct ares for logic
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des;ign empnaMzing on three-dimensional (3D) topological structures. Section 4 presents 
the* technique )f a multilevel circuit design based on hypercube structures. Section 5 intro
duces the technique of analysis in spatial dimensions based on the concept of change. It 
shows that logc difference is a useful mode! in some cases for understanding the relations 
bettw<een different data structures and representations of switching functions. Section 6 con
siders the technique of information-theoretical measures in spatial structures. The reason 
thait the Shanron theory of information should be one of the most important measurement 
characteristics in nanospace is that it reflects the physical nature and restrictions that nanos- 
truict ures on a molecular level pose to information carriers. Section 7 discusses the problem 
of computation using nonreliable elements which nanoscale devices are, due to quantum 
ph»emomena ard other features of ultrasmall structures.

2. LOGIC DESIGN IN NANODIMENSIONS
Thiis section a ms at a global perspective on how contemporary logic design techniques can 
be incorporated into nanosystem design. This can be accomplished by taking advantage of 
thie interdisciplinary approach that involves:

1. Approprate spatial topologies.
2. Information or entropy measures.
3. A  districted parallel processing paradigm.
4. Fault-tokrant computing.

2.1. Selected Methods of Advanced Logic Design
Traditional lojic design models and techniques may not satisfy the requirements and prop
erties of nancscale computing devices:

1. While raditional, gate-level, randomly networked circuits are made up of 
AND/CR/NOT or other gates, working on the principle of voltage state logic, the 
nanocircjits are supposed to be locally connected arrays of elements (e.g., molecular 
ones [3-8]). This means that corresponding data structures such as directed acyclic 
graphs (f the net lists or symbolic structures may not work for the purposes of opti- 
mizatioi and manipulation of logic functions implemented on nanodevices.

2. While iiformation flow in today’s semiconductor devices is associated with surges of 
electron., and voltage state logic can still be acceptable in some types of nanodevices, 
in nanotevices this is likely to be associated with states, count of electrons, and so on 
[9 -H ].

3. Because the size of the ultrasmall devices is compared to wave length, the nature of 
the signds and processes is supposed to be stochastic. These devices are very sensi
tive to nany physical factors (thermal fluctuation, wave coherence, random tunneling, 
etc. [9])Thus, the need for fault-tolerance computation increases as device to device 
fluctuatons become larger at the furthest limits of integration. While fault-tolerance is 
achievei in today's microelectronics by duplication of blocks at the block level, this it is 
not an acceptable practice for silicon devices on the transistor level. Becausc of power 
dissipatan and clocking and area constraints, it is likely to be achieved in nanostruc
tures though introducing redundant hardware [12, 13].

The  fundamentals of switching theory, or Boolean algebra, cannot be changed while tech- 
niology and een carriers of logic data are being changed. However, an appropriate choice of 
dlata structur is the way to adjust implementation of the logic function to the existing tcch- 
niology. Thai is why this survey will give particular attention to the data structures suitable 
ftor logic dat processing in nanodimensions.

Two distint approaches to logic design in nanodimensions can be observed so far:

1. Using tie advanced logic design techniques and methods from other disciplines, in 
particuar, fault-tolerant computing.

2. Develonnent of a new theory and technique for logic design in spatial dimensions.
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The first direction adapts architectural approach such as, in particular, array-based logic 
[14], parallel and distributed architectures, methods from fault-tolerant computing and adap
tive structures such as neural networks.

The second direction can be justified, in particular, by nanotechnologies that implement 
devices on the reversibility principle. It is rather relevant to design of adiabatic circuits, 
which is not associated only with nanotechnology. An example is Q3M (quantum 3D mesh) 
model of a parallel quantum computer in which each cell has a finite number of quantum 
bits (qubits) and interacts with neighbors, exchanging particles by means of Hamiltonian 
derivable from Schrodinger equation [15].

2.2. Spatial Nanostructures
Three-dimensional design has been explored at the macrolevel for a long time, for exam
ple, for design of distributed systems [16], and “connection machines'’ [17]. It was inspired 
by nature; for example, the brain, with its “distributed computing and memory/’ was the 
prototype in the case of the “connection machine.'’ The 3D computing architecture concept 
has been employed by the creators of the supercomputers Cray T3D, NEC's Ncube, and 
cosmic cube [18]. The components of these supercomputers, as systems, are designed based 
on classical paradigms of 2D architecture that becomes 3D because of the 3D topology 
(of interconnects), or 3D data structures and corresponding algorithms, or 3D communica
tion flow.

The topology of today’s silicon-integrated circuits at a system level varies: one-dimensional 
( ID )  arrays (e.g.. pipelines, linear systolic processors [19]), 2D arrays (e.g., matrix processors, 
systolic arrays [19]), and 3D arrays (e.g., of hypercube architecture [16]).

At the physical level, very large scale integration circuits, for instance, are 3D devices 
because they have a layered structure (i.e., interconnection between layers while each layer 
has a 2D layout). On the way to the top of VLSI hierarchy (the most complex VLSI systems),
[20] linear and 2D arrays eventually evolved to multi-unit architectures such as 3D arrays
[21]. Their properties can be summarized as follows:

1. As stated in the theory of parallel and distributed computing, processing units are 
packed together and communicate best only with their nearest neighbors.

2. In the optimal organization, each processing unit will have a diameter comparable to 
the maximum distance a signal can travel within the time required for some reasonable 
minimal amount of processing of a signal, for example to determine how it should be 
routed or whether it should be processed further.

3. 3D architectures need to contain a fair number of cells before the advantages of the 
multi-cell organization become significant compared with competing topologies.

In current multiprocessor designs, 3D structures are not favored, since they suffer from 
gate and wire delay. Internally to each processing unit, 2D architecture is preferable, since at 
that smaller scale, communication times will be short compared with the cost of computation.

Nanostructures are associated with a molecular/atomic physical platform [3, 5]. This 
has a truly 3D structure instead of the 3D layout of silicon integrated circuits composed 
of 2D layers with interconnections forming the third dimension. At the nanoscale level, 
the advantages of the 3D architecture will begin to become apparent for the following 
reasons:

1. The distance light can travel in 1 ns in a vacuum is only around 30 cm and two times 
less in a solid (for example. 1 ns is the cycle of a computer with clock speed of 1 GHz), 
which means that components of such a computer must be packed in a single chip of 
several centimeter size; thus, a reasonable number of 3D array elements of nanometer 
size must be integrated on a single tiny chip [22-24].

2. They are desirable for their ideal nature for large scale computing.
3. There are many 3D algorithms and designs for existing microscale components that are 

arranged in 3D space, which computer designers already have experience with [25. 26].
4. There are limits to information density as well that imply a direct limit on the size of. 

in particular, a one-cycle-latency random access memory [22].
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Tlnus. the speed of light limit (that is information transfer speed limit) and information 
density pose the following implications for computer architecture:

• Traditional architecture will he highly inefficient because most of the processor and 
memory will not be accessed at any given time due to the size limit,

• Interconnection topology must be scalable, most of the existing multiprocessor topolo
gies (hypercubes, binary trees) do not scale, since communication times start to domi
nate as the machine sizes are scaled up.

The solutions to that are

1. Use of a parallel, multiprocessing architecture, where each processor is associated with 
some local memory, in contrast to the traditional von Neumann architecture.

2. The number of processing nodes reachable in n hops from any node cannot grow 
faster than order ny and still embed the network in 3D space with a constant time per 
hop [27].

This leads us to the conclusion that there is only one class of network topologies that is 
asymptotically optimal as the machine size is scaled up: namely, a 3D structure, where each 
processing element is connected to a constant number of physical neighbors [28]. in fact 
the processing elements of this 3D mesh can simulate both the processors and wires of the 
alternative architecture, such as, in particular, randomly connected network of logic gates. 
The processing elements must be spread through the structure at a constant density.

Therefore, as processor speeds increase, the speed-of-light limit will cause communication 
distances to shrink, and the idea of mesh-connected processing elements and memory is, 
perlhaps, the most reasonable and feasible solution.

2.2.1. Data Structures and Circuit Topology
Dat;a structure plays a crucial role in logic design of nanoICs. We adopt certain methods of 
advanced logic design including techniques for representation and manipulation of different 
data structures (algebraic, matrix, decision trees, etc. [29-31 J. These methods are selected 
basied on the following criteria:

1. Graph-based models suitable for embedding and manipulation.
2. Technique for massive parallel computing.
3. Testability and observability.
4. Fault tolerance and reliable computing.
There are a number of particular characteristics of representing logic functions in 

nanospace:
1. The logic functions have to be represented by a spatial data structure in which infor

mation about the function satisfies the requirements of the implementation technology.
2. An information flow has to comply with the implementation topology.
3. This data structure and information flow must be effectively embedded into the 3D 

topological structure.
Therefore, designing architectures for computing logic functions supposes a resolution to 

the problem of finding the appropriate data structure and topology while taking into account 
computational and implementation aspects.

In this survey, we focus on hypercube topologies as the most suitable data structures for 
representation of a logic function, for the following reasons:

1. They are 3D, and thus meet the requirements of distributed spatial topology.
2. They correspond to functional (Shannon expansion) and dataflow organization (infor

mation relation of variables and function values) requirements, since data structures 
such as decision trees can be embedded into.

3. They meet the requirement of certain nanotechnologies with local quantum effects 
[32-34] and charge-state logic [10].

In Fig. 1 two hypercubes are represented: the left is referred to as a classical hypercube, 
the right is referred to as a hypercube-like topology called . \-hypercube. Both hypercubes 
represent the same switching function f  =  .v,.v2 v .v,_v2 v .v,a\,v3 but in different ways.
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Figure 1 .  Representation of a switching function /' =  v , . v :  v  a , . v :  v  .v , . v : .v ., by the classical hypercube (a) .mil 
. \ -hypercube (b) in 3D and 4D (c, d).

2.2.2. Assembling
The assembly philosophy of nanodevice design in spatial dimensions differs significantly from 
the usual ideas of building complex computer systems:

Assembly means the construction of more complex systems from the components p ovided. 
in particular, with features identical to the components which began the proce* s.

Self-assembly is the process of construction of a unity from components acting under 
forces/motives internal or local to the components themselves, and arising through their 
interaction with the environment. Self-assembling structures create their own represen
tations of the information they receive. A self-assembling system is able to process ruisy, 
distorted, incomplete or imprecise data.

Self-organizing. The organism, for example, is a self-organizing system. In the organism, 
self-organizing is implemented through the local physical and chemical interactions of 
the individual elements themselves.

Adaptive self-assembling is the ability of a structure to learn how to perform assem
bling (appropriate architecture) aiming to solve certain tasks by being presented w.th 
examples.

2.2.3. Computer-Aided Design of Nanodevices
The goal of CAD of switching circuits is to automatically transform a description of circuits 
in the algorithmic or behavioral domains to one in the physical domain (i.e., down t( a 
layout mask for chip production). In today's electronics this process is divided into

System level (major blocks of information processing)
Behavioral level (information flows)
Logic level (the behavior of the circuit is described by switching functions)
Layout level (mapping of logic network to physical layout topology).

Today, design tends to one-pass synthesis from behavioral description down to lavo.it. 
and the most popular data structure tor switching functions is the decision diagram. A 
CAD system also implements verification (i.e., verifying if the circuits), as a results of tie 
complex design process, are logically equivalent to the initial description in the form of lode
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e q u a t i o n s ,  n e tw o r k s  Usually, forma) verification  te c h n iq u e s  d ea l  with va riou s  data  structures  

and d e s c r ip t io n s .
It i s  e x p e c t e d  tha in n an o te ch n o lo g y ,  b eh aviora l,  logic, an d  so m e tim e s ,  layout levels  o f  

desiigm w il l  b e  even u ally  m erged [ 3 5 1. T h e  e ff ic ien cy  o f  the design  a lg orith m s ap p lied  in 

thes;e le v e ls  d e p e n d s ia rg e ly  on the c h o se n  data  s tructure. A n  eff ic ien t rep rese n tat io n  o f  logic  

f u n c t i o n s  is o f  fundamental im p orta n ce  for C A D  o f  e le c tro n ics  an d  n an o d ev ices .  For e x a m 
ple, in  d e e p - s u b m ic o n  techn ology, w hich  p r e c e d e s  n a n o te c h n o lo g y ,  s o m e  levels o f  design  

are m e r g e d ,  a n d  d eis ion  d iagram s are the in tegrated  data  s tructure  in this unified design  

p r o c e s s ,  c a l le d  one-iass synthesis [36].
I n  t h e  d e s ig n  o f  ia node vices, which are o f  3 D  nature,  e a ch  o f  the facets  o f  C A D  sho uld  

e m p l o y  s p atia l  top oogica l  structures. T h u s ,  these  C A D  too ls  m ust d o  m an ip u la tion , tran s

f o r m a t i o n ,  m e a su re n e n ts  in spatial d im en sio n s  and design o f  to p o lo g ica l  structures. T h e  

c o r r e s p o n d i n g  C A C a l g o r i t h m s  must satisfy a n u m b e r  o f  req u irem e n ts:  scalability  (i.e.,  a lg o 

r i t h m s  fo r  constructor, and  m an ipulation  o f  n an o scale  to p o lo g ie s  must be scalable  fo r  the 

size o f  the c ircu it  th;t can be processed ),  suitability  fo r  n a n o te c h n o lo g y  (i.e., im p le m e n ta tio n  

at a  m i n i m a l  cost);  anJ paralle lism  and  r ec u rren cv  o f  ca lcu la t io n s  b e c au se  n an o stru ctu re s  
are  d is tr ib u te d  architectures.

2.3>. Distributed and Parallel Processing Paradigm
Maissiive a n d  parallel com putation  o f  logic fu n ctio n s  can  be a cc o m p lish e d  in n a n o d im e n -  

s ionall  s tr u c tu re s  v iaw crd-leve l  rep rese n ta tion  and  a lso  th rou g h  b o r r o w in g  so m e  a p p r o a c h e s  

d e v e l o p e d  in th e  th*,ory o f  parallel  c o m p u t in g  on the " m a c r o s c a le .”

I t  s h o u ld  b e  note< tfat  parallel  and d istributed  c o m p u ta t io n  on arrays (on the m a c r o le v e l)  

has. b e e n  w e ll-s tu d e d  fo r  exa m p le,  systolic  arrays o f  cells  [19] and p r o g ra m m a b le - lo g ic  

d e v i c e s  ( P L D ,  F P C A  . M o st  o f  them  are 2 D , h o w e v er ,  3 D  o n e s  have b een  p r o p o se d  as 

the m o s t  cuttin g-ecge  m o d els ,  for  instance, h y p e rc u b e -co n fig u re d  n etw o rk s  o f  co m p u te rs ,  

a n d  Ihypercube supercomputers. T h re e -d im e n s io n a l  a rch ite c tu re s  h ave  b e e n  used at the 

m a c n o le v e l ,  th e  levd cf  c o m p u t e r  system s an d  n etw orks,  for  a lo n g  tim e, esp ecia lly  in the 

a r e a  o f  n e t w o r k  co n rru n icat io n  (c o m m u n ica tio n  h y p e rcu b e s)  [37, 38], and paral le l  and d is

t r ib u t e d  a lg o r i th m s  im plem ented in su p e rc o m p u te r s  [25, 26].

H y p e r c u b e - l i k e  top dog ies  inherit high paralle lism  o f  c o m p u t in g  d u e  to  their

1. R e g u la r  afld lo n o g e n e o u s  structures.
-  L o c a l  eonnectvit/.

3 .  A b i l i t y  to  a sse n tle  and extend  the structure.

T h e  h y p e r c u b e s  dep cted  in Fig. 1 are  c a l le d  3 D  h yp e rcu be s .  T h e y  can  carry  lim ited in fo r

m a t i o n  b e c a u s e  t h e n i m b e r  o f  n odes and  links is lim ited. T h e  u n iq u e  p ro p erty  o f  h y p e rc u b e s  

is ithie p o ss ib il it ies  lor extension. T h is  extension  is exp ressed  by n otation  o f  d im en sio n  (i.e.,  

by th?e 3 D  n a tu r e  o i the physical w orld ,  we design  m a n y-d im e n sio n a l  h yp e rcu b e s) .  F o r  e x a m 

p le ,  trhe fo u r -d im e r s im a l  ( 4 D )  classical h y p e rc u b e  is d e s ig n e d  by m ultiple  c o p ie s  o f  the 3 D  

h y p e r c u b e  illustrated n Fig. 1(c). H y p e rc u b e - l ik e  to p o lo g y  inherits this p ro p erty  from  the 

h y p e  rcu b e:  th e  4 D  jV-iypercubc is d e s ig n e d  by c o n n e c t io n s  o f  root n o d e s  (F ig . 1 [d]).

O n  this  basis, as<enbly o f  c o m p le x  m u ltid im en sio n a l structures  can be a cco m p lish e d .  T h e  

natuiral p a ra l le l is m  ol the V-hypercube can  be in c rea sed  by the a p p r o p r ia te  d a ta  s tructure  

o f  lo g ic  fu n ct io n s ,  s o c a l lc d  w ord -le vel  r e p rese n ta t io n .  In this case  ea ch  n o d e  o f  the .A - 

h yp e  r c u b e  co m p u tes  i set o f  logic fun ctions. H e n ce ,  the h y p e rc u b e  to p o lo g y  is very  flexible 

in th.is e x te n s io n .

T h e  t e r m  cellular a ray refers  to n e tw o rk s  c o m p o s e d  o f  s o m e  regu lar  in te rco n n ec tio n  o f  

l o g i c  cells .  T h e s e  arrars m a y be  e ith er  ID , 2 D ,  or  th e o retica l ly  o f  any h igh er  d im en sio n  than 

tw o .  P ra ct ica l  c o n s d e a t i o n s  usually con stra in  th e m  to I D  and 2 D  cases. C e l lu la r  a u to m a ta  

a r e  ;a r e a s o n a b le  n o ie l  fo r  the study o f  se lf-a ssem b lin g  and s e l f-r e p r o d u c in g  p h e n o m e n a  

[39]. F u r t h e r  deployment o f  this c o n c e p t  led to  c e llu lar  neural n etw o rk s  w hich  can b e  possibly  

i m p l e m e n t e d  on  nanceleetronic basis [40].

Sy/stolie a rray  is an>ther n am e for p a ra l le l-p ip e l in ed  c o m p u t in g  structures  [19]. In these  

s t r u c tu r e s ,  d ata  inpu a n d  ou tp u t  a re  o r g a n ize d  in a s eq u en tia l  o r  partially  paralle l  way.
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and p ro ce ss in g  is a c c o m p lish e d  by p a ra l le l  c o m p u t in g  o n  th e  a rray  o f  the unified p ro c ess in g  

e lem en ts.  T h e  to p o lo g y  is usually  l in e a r  (e .g ..  fo r  m a tr ix -v e cto r  m u lt ip l icat io n )  o r  2 D  ( fo r  

m atrix-m atrix  m ultip licatio n).  L o c a l i ty  o f  d a ta  in p ut/output and  p ip e l in in g  c o m p u t in g  m a ke s  

this o r g a n iza t io n  o f  d a ta  p r o c e ss in g  a ttra c t iv e  to  im p le m e n ta t io n  on  n an o a rray s  [41].

2.3.1. Relevance to the Hierarchical FPGA
A  co n v e n tio n a l  F P G A  consists o f  an  array  o f  lo g ic  b lo c k s  that  can  be c o n n e c te d  by routing  
blocks. L o g ic  b lo ck s  are g r o u p e d  into c lu sters  w h ic h  a re  r ecu rs iv e ly  g r o u p e d  to g eth er .  W ith  

so m e  sim plification, the F P G A  can  b e  r e p r e s e n te d  b y  th e  m u lt iro o te d  A-ary d ec is io n  tree, 

w hile  the routing , o r  switch b lo ck s  co n s is t  o f  w ire  s e g m e n ts  a n d  sw itches  w h ich  c an  b e  c o n f ig 

ured to  c o n n e c t  w ire  seg m e n ts  and logic  b lo c k s  into a n e tw o r k .  A r ra v -b a s e d  p r o g r a m m a b le  

logic for  im p le m e n ta t io n  o f  sw itch in g  fu n ct io n s  can  b e  sca le d  to  n an o e le c tro n ic s  (see , fo r  
e x a m p le  [14]).

E x a m p l e  1. H iera rch ica l, o r  b in a ry -tr e e lik e  F P G A  is  b a s e d  o n  s in g le -in p u t tw o -o u tp u t  
sw itch es . A  2 x 2  c lu s te r  o f  lo g ic  b lo c k s  c a n  b e  c o n n e c te d  u sin g  sw itc h e s , a n d  f o u r  c o p ie s  o f  
th e  c lu s te r  a re  o rg a n ize d  in to  a  “m a c r o ” c lu ster. T h e s tru c tu re  o f  th is  F P G A  is rep re se n te d  b y  a  
b in ary  d e c is io n  tree  o f  d e p th  4 in  w h ich  th e  r o o t a n d  le ve ls  c o r r e sp o n d  to  sw itc h in g  b lo c k s  a n d  
th e  16 te r m in a l n o d e s  c o rre sp o n d  to  lo g ic  b lo c k s  (F ig. 2, w h ere  ■ d e n o te s  a  log ic  b lo c k  a n d  o 
d e n o te s  a  sw itch  b lo c k ) .  T h is tree is  e m b e d d e d  in  a  h y p e rc u b e - lik e  s tru c tu re  o f  tw o  d im e n s io n s .

H ie rarch ica l  F P G A  is based on  a c lu s te r  o f  lo g ic  b lo c k s  c o n n e c te d  by  sin gle-inp ut four- 

ou tp u t  switch b lo ck s  [20]. P ossib le  c o n f ig u r a t io n s  can  b e  d e s c r ib e d  by a c o m p le t e  b inary  

tree or  a m u lt ir o o le d  A-ary tree. T h is  tree  can  b e  e m b e d d e d  into  the h y p e rc u b e - lik e  s tru c

tures [31].

E x a m p l e  2. In Fig. 2 tw o  to p o lo g ie s  o f  F P G A  a re  i l lu s tra te d  w h ere  f o u r  c o p ie s  o f  th e  c lu s te r  
are  o rg a n ized  in to  a  “m a c r o  c lu ster"  o f  d if fe re n t co n fig u ra tio n s . T h e f ir s t to p o lo g y  (F ig. 2 a )  
is  d e sc r ib e d  b y  a  c o m p le te  binaryJ tree . T h e s p a t ia l  s tru c tu re  in c lu d e s  tw o  3 D  h yp ercu b es . T he  
s e c o n d  to p o lo g y ’ (F ig. 2 b )  is  d e s c r ib e d  b y  a  c o m p le te  q u a te r n a ry  tree  a n d  a ls o  a  h y p e rc u b e - lik e  
stru c tu re  in th ree  d im e n s io n s .

2.4. Fault-Tolerant Computing
T radition al log ic  circuits  are  v e ry  sen sitiv e  to fa i lu re :  if  e v e n  a single g a te  o r  single  w ire  

m alfu n ction s ,  then the c o m p u t a t io n  m a y  b e  c o m p le t e ly  w ro n g .  I f  o n e  is w o r r ie d  a b o u t  the 

physical possibility  o f  such fa ilures,  th e n  it is d e s ir a b le  to  d es ig n  circuits  that are  m o re  

resilient (i.e.,  design  re liab le  c ircu its  f r o m  u n re lia b le  e le m e n t s  [42, 43]).

Figure 2. Topological representations o f  hierarchical F P G A s by 2 D  structure, tree, and hypercube-like structure 
(exam ples 1 and 2).
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A n y  c o m p u t e r  with n an o scale  c o m p o n e n t s  will c o n ta in  a significant n u m b e r  o f  defects ,  

as welil as m assive n u m bers  o f  w ire s  an d  sw itch es  for  c o m m u n ic a t io n  purposes. It th e re fo re  

m a k e s  sense to co n s id e r  arch itectu ra l  issues an d  d e fe c t  to le r a n c e  ear ly  in the d e v e lo p m e n t  
o f  a  n e w  p a r a d ig m  [12, 44).

A n  in corre ct  result is d efin ed  as a fault. In the p r e s e n c e  o f  faults,  a fault-to leran t system 

r e c o n f ig u re s  i tse lf  to e xc lu de  the fa u lty  e le m e n t s  f r o m  the system . A  system so r ec o n fig u re d  

m a y  o>r m ay not ch an g e  its to p o lo g y .  Ideally, a fa u lt - to le r a n t  system  retains the sam e to p o lo g y  
a f te r  fau lts  arise.

T w o  main aspects  are  critical in the d es ig n  o f  n a n o d e v ic e s :

T h e  high d e fe c t ra tes  at n an o sc ale ;  this m e a n s  that d e fe c ts  o f  fab r ica t io n  cau se  the distortion  

o f  logic  correctn ess.

T h e  s to c h a s tic  n a tu re  o f  c o m p u tin g  in n a n o d e v ic e s  (e le c tro n s ,  m o lec u les);  this m e a n s  that 

th e  c a lc u la te d  sw itching fu n ctio n  is va l id  w ith  s o m e  p rob ab ili ty .

T h i s  p r o b le m  is ta ck led  fro m  tw o d irect io ns:

T h e  f ir s t d irec tio n :  to c o m p e n s a te  the te c h n o lo g ic a l  d e fe c ts ,  re d u n d a n c y ,  through ad ditio n a l 

h a r d w a r e  reso u rces  o r  re s o u r c e s  at t im e o f  c o m p u t in g ,  is in tro d u c ed )

T h e  s e c o n d  d irec tio n :  the d e s ig n e d  a rc h ite c tu r e  m ust b e  fa u lt- to leran t.

T h e  first d irect ion, in additio n  to d o u b le  o r  tr iple h a rd w a re ,  m ay  also ta k e  a d v a n ta g e  o f  

a d d it io n a l ,  o r  repetit ive  c o m p u tat io n s .  T h e  la t ter  is re le v a n t  to  s to ch a stic  c o m p u t in g  [45, 46]. 

T h e  m e t h o d s  o f  s to chastic  c o m p u t in g  p r o v id e  a n o t h e r  a p p r o a c h  to  o v e r c o m in g  the p ro b le m  

o f  design  o f  reliable  c o m p u t e r s  fro m  u n re l ia b le  e le m e n t s ,  w h ic h  n a n o d e v ic e s  arc. F o r  e x a m 

ple , a signal is r ep rese n te d  by the p ro b a b il i ty  that  a log ic  level  is 1 o r  0 at a c lo ck  pulse. In 

this w a y,  r a n d o m  noise is b e in g  d e l ib e r a te ly  in tro d u c e d  into  the data. A  q uan tity  is r e p r e 
se n te d  by a c lo c k e d  s e q u e n c e  o f  log ic  levels  g e n e r a t e d  by a  r a n d o m  process.  O p e r a t io n s  are 

p e r fo r m e d  via  the c o m p le t e ly  ra n d o m  data.
T h e  s e c o n d  direct ion, fa u lt - to le ran t  c o m p u t in g  a rc h ite c tu re ,  is d es ig n e d  in o r d e r  to d e te c t  

an d  c o rr e c t  errors. I f  certain  n a n o d e v ic e s  o r  p a rts  o f  th e  n e tw o r k  are  destro yed , it will 

c o n t in u e  to  function  prop erly .  T h e  input, in tern a l  and  o u t p u t  d a ta  can b e  noisy [47, 48], 

d istorte d  o r  in co m p le te ,  and  a ls o  the p h ysica l  d e g r a d a t io n  o f  th e  system  itself. W h e n  d a m a g e  
b e c o m e s  extensive ,  it must on ly  a f fe c t  the s y s te m ’s p e r fo r m a n c e ,  as o p p o s e d  to  a c o m p le t e  

fa ilure .  S e lf-as se m b lin g  n a n o syste m s m ust b e  c a p a b le  o f  this type  o f  fault to le ra n c e  b e c au se  

they sto re  in fo rm atio n  in a d istr ibu ted  ( r e d u n d a n t )  m a n n e r ,  in c o n tra st  to traditional sto rage  
o f  data  in a  specific  m e m o ry  lo ca t io n  in w h ic h  d a ta  can  b e  lost in case  o f  the h a rd w a re  fault. 

A n  e x a m p le  o f  rccon ftgu ra ble  a rc h ite c tu re  is a m a ssive ly  p a r a l le l  c o m p u t e r  “ T e r a m a c ,” built 

at  H e w le tt-P a c k a r d  L a b o r a to r ie s  [44].

2.5. Information-Theoretical Measures
In the p r e v io u s  section, w e  a lr e a d y  c o n s id e r e d  the b en e f it  o f  3 D  p a ck in g  instead o f  2 D  lay

out b e c a u s e  th ree -d im en sio n al  stru ctu re s  are  the o n ly  w a y  to  re d u c e  p ro p ag a t io n  d e la ys  (as 

in fo rm a tio n  p r o p a g at io n  s p e e d  is l im ited  to  the s p e e d  o f  l ight).  T h e r e  are o th e r  f u n d a m e n 

tally im p o rta n t  characterist ics  o f  the c o m p u t a t io n s  in n a n o d im e n s io n s  [49]:

1. T h e  d en sity  o f  in fo rm a tio n  to b e  p a c k e d  into a c u b e ,  o r  sp ace.

2. T h e  b an d w id th  o f  in fo rm a tio n  that can  b e  tr a n s fe rr e d  w ith in  the system  p e r  unit space.

3. T h e  n u m b e r  o f  bit o p e r a t io n s  p e r  s e c o n d  in the system .

T h e s e  ch ara cte r is t ics  are lim ited  by ph ysica l  co n s tan ts  such  as sp e e d  o f  light (a lread y  
discussed in the sectio ns a b o v e )  and  B o l t z m a n n ’s co n s ta n t  a n d  can  b e  e v a lu a te d  in term s o f  

physical e n tr o p y  and in fo rm ation .

G e n e r a l ly ,  the a m o u n t  o f  in fo rm a tio n  in a system  is the lo g ar ith m  o f  the n u m b e r  o f  this 

system 's d istin guished  states. In a b in a ry  sy s te m , the in fo r m a tio n  is m ea su red  in bits, and 

the d en sity  is the n u m b e r  o f  bits p e r  v o lu m e .

E x a m p l h  3. A n  e m p ir ic a lly  e s t im a te d  in fo r m a tio n  d e n s ity  in  a  c u b ic  a n g s tro m , A  (1 A  =  

10“ 1 m; 1 A '  is rou gh ly  a h y d r o g e n -a to m -s iz e d  v o lu m e )  f o r  m a t te r  a t  n o r m a l p re ssu re  a n d  
tem p era tu re  is a b o u t  1 b it  [49].
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In form atio n  d en sity  is d e p e n d e n t  on  the m a te r ia l ’s a to m ic  size, pressu re  and te m p era tu re .

E x a m p l e  4. C o p p e r  is c a p a b le  o f  th e  s to ra g e  o f  6  h its /a to m , a n d  0.5 b ! A  ' c// ro o m  te m p e r 
a tu re ; r/n'v n u m b e r  in crea ses  to  1.5 /7/ A 3 a t its  b o ilin g  te m p e ra tu re  (1365  K )  [49 ]. T h is a ffec ts  
p h y s ic a l s ize  a n d , th u s , //?? p ro p a g a tio n  d e la y  a c ro s s  m e m o r ie s  a n d  p ro c e s so r s .

T h e  limit o f  sca l in g  o f  o p e r a t in g  fr e q u e n c ie s  is re levan t to the m a xim u m  level o f  c o m 

pu tat io n a l  te m p e r a tu re s ,  which is h igh er  than th e rm a l  te m p e r a tu re ,  a n d  is the total  e n erg y  
p e r  bit o f  in fo rm a tio n ,  that is, o v e r a l l  physical c lo ck  sp e e d .  F o r  e x a m p le ,  a t  room  t e m p e r a 

ture (300 K ),  the th e rm a l  e n e r g ie s  o f  individual d e g re e s  o f  f r e e d o m  are o n ly  a b o u t  26 m eV. 

which co rr e s p o n d s  to a m axim u m  fr e q u e n c y  o f  12.5 T H z ,  a cc o r d in g  to  th e  M a r g o lu s -L e v it in  

th e o re m  [23]. N o te  that i f  a m o le c u la r  e n e r g y  b arr ie r  w h ich  is o f  o r d e r  1 eV , c o rr e s p o n d in g  

to a c o m p u t a t io n a l  te m p e r a tu re  o f  11,600 K, can b e  a ch ie v e d ,  then a f r e q u e n c y  o f  a b o u t  
500 T H z  m ight b e  r e a c h e d  [50].

In a b in ary  system , physical,  or  th e rm o d y n a m ic ,  e n tr o p y  b e c o m e s  S h a n n o n  e n tr o p y  [51].

In term s o f  log ic  d es ig n  o f  n a n o d e v ic e s ,  w h e r e  sym b o lic  and g r a p h -b a s e d  m o d e ls  o f  c a l 

cu lation  are  e m p lo y e d ,  S h a n n o n  in fo rm a tio n  th e o ry  is usefu l  b eca u se

1. Signal s tream s, or  in fo rm a tio n ,  tran sferred  within the system at log ic  level can  be m e a 

sured  in term s o f  in fo rm a tio n ,  o r  entropy.

2. In the c o h e r e n c e  o f  in fo rm a tio n  m e a su r e s  at a physical level ( t h e r m o d y n a m ic ) ,  S h a n 

non th e o ry  can  b e  useful in ev a lu a t io n  o f  the ch aracte ris t ics  o f  n an o d e v ic e s ,  su ch  as the 

density  o f  in fo rm a tio n  to be p a c k e d  into a 3 D  n a n o sp a c e ,  the n u m b e r  o f  bit o p e r a t io n s  
p e r  secon d .

3. P rocess in g  o f  in fo rm a tio n  by n an o d e v ic e s  is d e sc r ib e d  by p ro b a b i l is t ic  and statistical 

m eth od s. T h is  is w h e r e  the in fo rm a tio n  th e o ret ic  a p p r o a c h  is u n ited  w ith  fau lt-to leran t 
logic  design.

4. T h e  in fo rm a tio n -th e o r e t ic a l  m e th o d s  have b e e n  r e a so n a b le  heu ristic  a p p r o a c h  to m in i
m ization  o f  d ec is ion  d iag ram s. T h is  is e sp e c ia l ly  im p o rta n t  for  te ch n o lo g y - in d e p e n d e n t  

and so m e  te c h n o lo g y -d e p e n d e n t  design  w h e re  in fo rm a tio n  flows, s p e c if ie d  by decis ion  
d iag ra m s e m b e d d e d  into 3 D  sp ace,  are a d e q u a te  to physical in fo rm a t io n  flow, sp ecified  
by 3 D  to p o lo g ies .

3. DATA STRUCTURES FOR LOGIC DESIGN
R e g a rd le ss  o f  the c h o ic e  o f  te c h n o lo g y ,  unless c o m p u t in g  p rincip les  are  rad ic a l ly  d ifferen t  

(such as in the c a se  o f  reversib le  c o m p u t in g  [11 ]) ,  the s e le c te d  m e th o d s  o f  c lassica l  logic  
design, with certain  revision, o f f e r  a p p r o p r ia te  fo rm s  o f  d a ta  r e p r e s e n ta t io n  and  m e th o d s  
o f  data m a n ip u la t io n ,  w hich c o m p ly  with the p articu la r  p r o p e r t ie s  o f  3 D  im p lem e n ta tio n .  

Se le c te d  m e th o d s  o f  log ic  d es ig n  include:

1. A lg e b r a ic - ,  matrix- an d  h y p e rc u b e -b a s e d  m e th o d s  o f  c o m p u t in g  a s w itc h in g  fun ction.

2. D e c is io n  trees and d ec is io n  d iag ra m  design, as a basis for  3 D  e m b e d d in g  te c h 
n iq u e s  [31].

3. E v en t-d riv en  analysis o f  d y n a m ic  c h a n g e s  in logic  [52], w hich is re le v a n t  to  testability  
and fau lt-to leran t  c o m p u t in g .

D a ta  structure is the term  used to  defin e  an abstract d a ta  type. D a ta  s tr u c tu r e  for  a sw itching 

fun ction  m ust sh o w  the d c p e n d a n c e  o f  the fun ctio n  on its variables. In o t h e r  w o rd s ,  it is a 

m a th em a tica l  m o d e l  o f  a sw itch in g fun ction. D a ta  s tru ctu re s  for  sw itching {functions a rc  the 

follow ing:

1. A lg e b r a ic  (su m -o f-p ro d u cts ,  R e e d -M u lle r ,  a rith m etic ,  and  w ord-level  expressions).

2. T a b u la r  r e p rese n ta tio n ,  o r  b in ary  arrays, such as truth tables, o r  look-u  p tables ( L U T s ) .

3. G r a p h - b a s e d  re p r e s e n ta t io n ,  in c lu d in g  cu b e ,  f lo w g ra p h ,  decis ion  tree, d e c is io n  d iagram , 

and sw itch in g  gate - le ve l  d esc r ip tio n .

T h e  gate- level  d escr ip tion  is a c lassica l  g ra p h -b a se d  r ep rese n ta t io n  o f  a s w itch in g  fun ctio n  as 

a ran dom  n etw o rk  o f  in te r co n n e c te d  gate s  c a l le d  a circuit.  A  c o l le ct io n  o f  'wires that always 

carry the s a m e  e lectr ica l  signal is c a l le d  a sw itching net. T h e  ta bu la tio n  o f  gate  inp uts  and 

ou tp u ts  an d  the nets to  w hich  th ey  are  c o n n e c te d  is c a l le d  the netlist. T h e  fan-in o f  a gate
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is its  n u m b e r  o f  imuts. T h e  Ian-out o f  a ga te  is ih e  n u m b e r  o f  inputs to w hich  the gate 's  

o utp.ut is c o n n e c te l.
T h e  fu n c t io n a l  lescriptions o f  m ulti-input m u lti-ou tp u t sw itch in g  fun ctions, e m p lo y e d  

in t e n s iv e ly  in tod a  's logic design, are decision  trees  and d iag ram s. F u n d a m en ta ls  o f  d e c i 

sion  d ia g ra m  technique can be fo u n d  in [5 3-57].  U se fu l  deta ils  are  c o n s id e re d  in [58-60]. 
In [6 1] ,  a  l in e a r  decision d iag ram s are d e v e lo p e d .  In [32-34], d ec is io n  d iag ra m s w e r e  used 

in si n g le -e le c tr o n  circuit design.

3.1. Decision Tee
A  d e c is io n  tr e e  is i ro o te d  acyclic  graph in w hich  e v e iy  ve rtex  b u t th e  root has an in d e g ree  
o f  1 .  T h e  d e c is io n  tree is c h a ra cte r ize d  by

1. T h e  s i z e ,  the lu m b e r  o f  vertices.

2. T h e  d e p th , th: n u m b e r  o f  levels;

3. T h e  w id th , tfc m axim um  n u m b e r  o f  v e rt ices  for  a level.
4. T h e  a re a , deph  x  w id th .

E x a m p l e  5. h  Fig. 3, the c o m p le te  tern a ry  ( p  =  3)  3 -leve l (n  =  3 )  tree  is g iv e n . T he ro o t  
c o r r e s p o n d s  to  th e  eve  I (d e p th )  0. Its th ree  ch ild ren  a re  a s s o c ia te d  w ith  le ve l 1 ( 3 1 =  3 ) .  L e v e l  
2 in c lu d e s  3 2 =  9 to d es . F inally, th ere  a re  33 =  27 te r m in a l n o d es .

3.2.. Binary Decision Diagrams
A  d e c is io n  tr e e  cm be red u ce d  to  a d ec is ion  d iagram . T h is  is p o ssib le  by ap p ly in g  certain  

r e d u c t io n  ru les ,  f c  instance, if th e  decision  tree  co n tain s  any v e rte x  v  w h o s e  su ccessors  lead 
to  t h e  s a m e  n o d e  and  if  it con ta in s  any distinct v e rt ic es  v  and v' such that the su b grap h s  

rootled in v  a n d  i  are isom orph ic .  A  b in ary  decis ion  d iag ram  ( B D D )  is a d ire cted  acyclic  
g r a p h  that represents a switching function  /  in the fo l lo w in g  way:

1- It h a s  exact lyon e root and internal vertices, o r  nodes,  are  lab e led  by a B o o le a n  var iab le  
x t a n d  h a v e  txactly tw o  o u t g o in g  ed g es ,  a 0-edge and  1-edge.

2.. It h a s  tw o  le v e s ,  o r  term inal nodes, lab e le d  by 0 and 1, w hich  are  the fu n ctio n  value.

3 .  E a c h  assignnent to the input var iab les  x i d e fin es  a un iq u ely  d e te r m in e d  path  from  the 
r o o t  o f  th e  g a p h  to  o n e  o f  th e  term in al n o d es  w hich is the fu n ctio n  va lu e  for  this input 
ass ign m en t.

A n  o r d e r e d  B D 3  ( O B D D )  is a  ro o te d  d ire cted  acyclic  graph  that rep rese n ts  a  sw itching 
fu n c t io n .  A  l in e ar/ar iab lc  o r d e r  is p la ce d  on  the input variables. T h e  v a r ia b le s ’ o c c u rr e n c e s  
o n  ea c h  p a th  o f  his d iag ra m  h a ve  to be consisten t with this ord er .  A n  O B D D  is called  

r e d u c e d  if  it d o e s io t  con ta in  any vertex  v  such that the ()-edge and  1-edge  o f  v  lead to the 

s a m e  n o d e ,  a n d  i d o e s  not con tain  any distinct ve rt ices  v  and v  such that the su b grap h s  

r o o t e d  in v  an d  w a re  isom orph ic .
A  d e c is io n  d iag am  is ch a ra cte r ize d ,  sim ilarly  to  a decis ion  tree, by the size, d ep th , width, 

a r e a ,  a n d  th e  efficency o f  reduction. Size o f  decis ion  d iag ram  stron gly  d e p e n d s  on variab le  

o r d e r  [62, 63].

E x a m p l e  6 . igure  4  illu s tra tes  th e  red u c tio n  o f  a  d e c is io n  tree  to  an  O B D D  o f  th e  
s w itc h in g  fu n c t io n  f  =  x {x 2 v  x y

S iz e = 1 5  

W idth=8  

D ep th = 3  

ln d egree= 1  

O u td e g r e e = 2  

A rea = 8  x  3 = 2 4  

Term inal n o d e s = 8  

Interm ediai n o d e s= 7

Figure 3. The compile binary tree (example 5).
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./ =  V|-V2 v  .v.

(a)

Figure 4. T he com p lete  (a) and rcduccd (h) decision  tree for the sw itching function /  =  x^.w v  .v,; the shared  
R O B D D  for the sw itching function /', =  x ]x 2 v  v ,. f 2 =  x { v  x : v  .v3 (c) (exam ples 6 and 7).

A  m u lti-ou tp u t sw itching fun ction  is r e p r e s e n te d  by a m u lt iro o ted  decision  d iag ra m , w h ich  

is ca l le d  a sh a re d  d ec is ion  diagram .

E x a m p l e  7. A two-output switching function  / ,  =  X\X2 v  a*,, and f 2 =  .v, v  x-> v  a*3 is 
represented b y  a shared O B D D  given in Figure 4 ( f ) .

In a m u lt ip le x e r  tree  (n etw o rk ),  ea c h  in tern a l  tree n o d e  is rep rese n te d  as a 2-to - l  m u lt i

p le x e r  c o n tro l le d  by the n o d e  variab le  and e a c h  te rm in a l  n o d e  is im p le m e n te d  as a c o n s ta n t  
log ica l  va lu e  (w ired  at 0 o r  w ired  at 1); the in t e r c o n n e c t io n  sc h em e is that o f  the d e c is io n  

tree  (d iag ram ). T h e  e v a lu a tio n  o f  a fu n ctio n  then  p r o c e e d s  from  the te rm in a l  n o d e s  (th e  
c o n s tan t  v a lu es)  to  th e  ro o t  m ultip lexer,  the fu n ctio n  variab les,  used as c o n tro l  va r ia b le s ,  

se le ct  a u n iq u e  path  from  the root to o n e  te rm in a l  n o d e ,  and  the va lu e  assign ed  to  that 

te rm in a l  n o d e  p r o p a g a te s  a lo n g  the path to  the o u t p u t  o f  the root m ultip lexer.
In [31], decis ion  trees  and d iag ram s for  r e p r e s e n ta t io n  o f  sw itching fu n ctio n s  are r e la t e d  to  

the spatial s tructures, re f lec t in g  the re q u ir e m e n t  o f  d istr ib u te d  th re e -d im e n sio n a l  to p o lo g ie s  

a ss u m e d  in n a n o d im en sio n s.

It sh o u ld  be n o ted  that g e n e ra l iza t io n  o f  s w itc h in g  a lg e b ra ,  m u ltip le-v a lu ed  logic  that  is 

a th eoretica l  f r a m e w o r k  for  design o f  m u lt iv a lu e d  log ic  circuits, w h ich  are c o n s id e r e d  as 

a reso lu tio n  to  in fo rm a tio n  density  p r o b le m  (as m u lt iv a lu e d  signal po ssess  larger  in f o r m a 

tion  cap acity) .  T h e  c o r r e s p o n d in g  data  stru ctu re s  fo r  m ulti-va lu ed  fu n ctio n s  r e p re se n ta t io n ,  

in c lu d in g  d ec is io n  d iag ra m s and  e m b e d d in g s  in h y p e r c u b e ,  are c o n s id e re d  in [31, 52].

3.3. Other Spatial Structures
S p a tia l  s tructures  have  b een  used in d istr ib u te d  a n d  paral le l  n etw ork  design  at the m a c r o 

le v e l  fo r  a lo n g  tim e. H o w e v e r ,  m ost o f  the k n o w n  to p o lo g ie s  fo r  m assive p a ra l le l  c o m p u t in g  

h a ve  not b e e n  c o n s id e re d  re leva n t to spatial log ic  design.

3.3.1. Requirement for Representation in Spatial Dimensions
T h e  fo l lo w in g  ch aracte ris t ics  are  critical to a spatia l c o m p u t in g  n etw o rk  to p o lo g y:

1. G o o d  e m b e d d in g  capabilit ies .

2. M in im al d e g re e .

3. A b i l ity  to  exte n d  the size o f  s tru ctu re  w ith  m in im al c h a n g e s  to the ex istin g  

con fig u ration .

4. A b i l ity  to in crease  reliability  and  fault  to le r a n c e  w ith  m inim al c h a n g e s  to the ex istin g  

con fig u ra tion .

5. F lexibility  o f  design  m ethods.

6. F lexibility  o f  te ch n o lo g y .

O n  the basis o f  this criteria , a n u m b e r  o f  t o p o lo g ie s  can  be c o n s id e r e d  re levan t to  the 
p r o b le m s  o f  spatial log ic  design, for  ex a m p le ,  h y p e rc u b e  to p o lo g y  [64], c u b e -c o n n e c t e d  cyc les  

k n o w n  as C C C - t o p o l o g y  [65], and pyram id  to p o lo g y  [25].

J'= .v,.v:  V  .V ,
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E x a m p l e  8 . Examples o f  cr ite r ia  f o r  c h o o s in g  a  topology'.

1- I f  th e  d is ta n t  (d ia m e te r )  is s m a l l . th en  c o m p u tin g  e le m e n ts  a re  like ly  to  a b le  to  c o m m u 
n ic a te  m o r e  a ic k ly .

2. It is  d e s ira b le 'h a t a ll p a ir s  o f  c o m p u tin g  e le m e n ts  c o m m u n ic a te  w ith  e q u a l ea se  o r  a t lea s t 
th a t  tr a ff ic  p c te r n s  betw een  a l l  c o m p u tin g  e le m e n ts  b e  re a s o n a b ly  b a la n c e d .

3. I f  th e  n e tw o n  can  b e  e ffic ien tly  e m b e d d e d  in to  2D  o r  3 D  s p a c e  su ch  th a t a ll  th e  w ires a re  
r e la t iv e ly  s h o t , then in fo rm a tio n  can  p r o p a g a te  q u ic k ly  b e tw e e n  c o m p u tin g  e le m e n ts .

4. I f  th e r e  m a n )  p o ss ib le  p a th s  b e tw e e n  ea ch  p a ir  o f  c o m p u tin g  e le m e n ts , a p a r tia lly  d e fe c tiv e  
n e tw o r k  m a y  o n tin u e  to  fu n c tio n .

T h e  s i n g u la r  bnary //-hvpercube is a sp ec ia l  c ase  o f  the fam ily  o f  k - ary /7-hypercubes, 
w h ic h  a r e  h y p e rc io e s  with n  d im e n s io n s  and k  n o d e s  in e a c h  d im en sio n .  T h e  total n u m b e r  

o f  n o d e s  in  s u c h  ; h yp e rcu be  is N  =  k" .

3.3.2. The CCC-Hypercube
F i g u r e  5 ( b )  is ere  ted from  a h y p e r c u b e  by r e p la c in g  e a ch  n o d e  with a  cycle  o f  .s nodes.  It 

h e n c e  in c r e a s e s  t b  total n u m b e r  o f  n o d e s  fr o m  2" to  s  • 2" an d  p re se rv e s  all fe a tu r e s  o f  the 

h y p e r c u b e  [65]. T ie  C C C - h y p e r c u b e  is c lo se ly  r e le v a n t  to  the b utterf ly  n etw ork . It sho uld  

b e  n o t e d  th a t  “ buterfly" f lo w g rap h s  a re  the n a tu re  o f  m ost tr an sfo rm s  o f  sw itching fun ctio n s 

in m a t r ix  f o r m  [5 ] .

3.3.3. PyramiaTopology
F i g u r e  5 ( c )  is  s u i tb le  fo r  m any c o m p u t a t io n s  b a se d  on the p rin c ip le  o f  h ierarchica l  co n tro l ,  

f o r  e x a m p le ,  o f  m nbinary decis ion  tr e e s  a n d  d e c is io n  d iag ra m s. A n  arbitrarily  large pyram id  

can  b e  e m b e d d e d i n t o  the h y p e rc u b e  with a m in im a l  load  fa cto r ,  and  it is f lexible for e x te n 

s io n .  P y r a m i d  t o p l o g y  is re levan t a ls o  to  fr a c ta l-b a se d  c o m p u t a t io n ,  w hich is e f fe ct iv e  fo r  

s y m m e t r ic  fu n ctic is  and is used in d igita l  s ignal  p ro cess in g ,  im a g e  p rocessin g, and pattern  
r e c o g n i t i o n  [25].

3.3.4. Hypercibe Topology
F ig u r e  5 ( a )  has  r c e iv e d  c o n s id e ra b le  a t te n t io n  in classica l  log ic  design  d u e  m ainly  to its 

a b i l i ty  t o  in t e r p rc  logic  fo r m u la s  a n d  log ic  c o m p u t a t io n  (sm all d iam e te r ,  regularity , high 

c o n n e c t iv i t y ,  symmetry) |64|. H y p e rc u b e -b a s e d  stru ctu re s  are at the forefron t o f  m assive 
p a r a l le l  c o m p u t a io n  b eca u se  o f  the u n iq u e  c h ara cte r is t ics  o f  h y p e rc u b e s  (fault  to le ra n ce ,  

a b il i ty  t o  e f f ic ie n ty  p erm it  the e m b e d d in g  o f  v a r io u s  to p o lo g ie s ,  such as lattices and  trees)  

[3 7 .  38].

A  h y p e r c u b e  > an extensio n  o f  a  g ra p h .  T h e  d im e n sio n s  are  sp ec if ied  by the set 

{0, 1 , . .  . ,  n  — l } . A n  //-dimensional b in ary  h y p e r c u b e  is a n e tw o r k  with M =  2" n o d e s  and 

d i a m e t e r  n .  T h e r  are  d  x 2 l1 1 e d g e s  in a  h y p e r c u b e  o f  d  d im en sion s.  H y p e rc u b e  Q n can 

b e  d e f in e d  recu rs/e ly  as the g rap h  p ro d u ct .

3.3.5. Gray Cede
G r a y  c o d e  is usee for  e n c o d in g  the in d e xe s  o f  the n o d e s  in grap h s. T h e r e  are  several  reason s 

to  e n c o d e  th e  imexes. T h e  m ost im p o r ta n t  o f  th e m  is to  sim plify  analysis,  synthesis  and  

e m b e d d i n g  o f  t o p lo g ic a l  s tructures. G r a y  c o d e  is r e fe rre d  to as  u n ite-d istan ce  c o d e s  [66].

Figure 5. Spatial conguralions: hypercube (a), OCC-hypcreube (b), and pyramid (c).
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L e t  b n. . . b ]b [] he  a b in ary  r e p re s e n ta t io n  o f  an  in t e g e r  p o s it iv e  n u m b e r  B  and  g n. . . g ]g l) be its 

G r a y  c o d e .  F igu re  6 i l lustrates th e  a b o v e  t r a n s fo r m a t io n  fo r  n  =  3.

E x a m p le  9. B in a ry  to  G ra y  a n d  G ra y  to  b in a ry  tr a n s fo r m a tio n  is i Ilustra le d  b y  Fig. 6 fo r  
n  =  3.

In the h y p e rcu b e ,  tw o n o d e s  are  c o n n e c t e d  by  a  l ink (e d g e )  if  their  H a m m in g  distance is 

e q u a l  to  1, that is, i f  they have  lab e ls  that d if fe r  by  e x a ct ly  o n e  bit. T h e  n u m b e r  o f  bits by 

w h ich  labels  g, a n d  g j  d i f fe r  is d e n o t e d  by  l i ( g h gj ) ;  this is the H a m m in g  d istan ce, or  sum , 

b e tw e e n  the n o d es .  T h e  H a m m in g  sum  is d e f in e d  as  the b itw ise  o p e r atio n  (&/_, . . . t fo )  © 

( £ , ' / - 1 ■ ■ • £o) =  ( S V i  © &/_■)> ■ ■ •. (g i  © g [ ). (g„  © g,',h  w h e r e  © is an exclusive o r  o p e ra tio n .
T h e  h y p e rc u b e s  c an  b e  flexibly e x te n d e d  to  an y  size ,  o r  n u m b e r  o f  d im en sion s,  that c o r 

r esp o n d s  to the n u m b e r  o f  va r iab les  n  o f  a sw itch in g  fu n ctio n . T h is  is a cc o m p lis h e d  th rou g h  
assem blin g.

3.3.6. A ssem b lin g
A s s e m b lin g  is th e  b asic  to p o lo g ic a l  o p e r a t io n  that  w e  ap p ly  to  the synthesis o f  h y p e rc u b e  

a n d  h y p e rc u b e - lik e  d a ta  structure .  A s s e m b lin g  is the first p h ase  o f  the d e v e lo p m e n t  o f  s e l f 

assem b lin g , that is, the p r o c e ss  o f  c o n s tru c t io n  o f  a  unity fr o m  c o m p o n e n ts  a ct in g  un der  

fo r c e s  internal o r  local to  the c o m p o n e n t s  th e m se lv e s .

T h e  a ssem b ly  p r o c e d u r e  is a p p lie d  o n c e  the fo l lo w in g  d a ta  is specified:

1. T h e  structural  to p o lo g ic a l  c o m p o n e n ts .

2. F o rm al in terp re ta t io n  o f  the stru ctu ra l  to p o lo g ic a l  c o m p o n e n t s  in term s o f  the p rob lem .

3. T h e  rules o f  assem bly.

T h e  a ssem b lin g  is a k e y  p h ilo s o p h y  o f  b u ild in g  c o m p le x  system s. For e x a m p le ,  a ssem b lin g  
a circuit a f te r  con fig u ra tio n .

3.4. Embedding of a Guest Graph into a Host Graph
A n  e m b e d d in g ,  (<£, cv), o f  a g r a p h  G  into a g ra p h  H  is a o n e - to -o n e  m a p p in g  ip: V ( G )  —*- 

V ( H ) ,  a lo n g  with a m a p p in g  a  that  m a p s  an e d g e  ( u , t;) e  E ( G )  to a path b e tw e e n  <p(u)  
and if>(v) in H  [?]. T h e  e m b e d d in g  o f  a g u est  g r a p h  G  into  a host graph H  is a o n e - to -o n e  

m a p p in g  o f  th e  v e rt ic e s  in G  to  th e  v e rt ic e s  in H . A n  e m b e d d in g  is c h a r a c te r iz e d  by a set

B inary G ray B inarv G ray
code code code code

S u p p o se  tha t H ~ . b xb{) is
(KM) 000 000 000 g iven , th en  the correspond ing

001 001 001 001
b inary  G ray  code 

rep resen ta tio n  -  bt ®  bl t ,.
010 011 01 1 010 G i\ en  G ray  code G = ,t>„. • ..if ,.1
01 1 010 010 01 I the co rrespond ing  binarv

100 1 10 1 10 100
rep resen ta tion  is derived by

101 1 1 1 1 1 1 101

110 101 101 1 10 n i
111 !00 100 111 h, = *„® .if, © . i*„ ,= @

/=<)

Gray code

82 Si

© t t

K h K
Binary number

i s  0 : i>,t = b„ -±> I>1

i = | : = h i ® />,

; = 2 : cn = />.& ()

Gras code

Si Si

b-i 6()

Binary number

i -  2 : h: = «,©()
/ = i ■ I). =. i>, CB b .

= V, -t- 
/ bit = <?;■ b

-  s’(i $ V, ^

(a) (b)

Figure 6. Flowgraph and formal equation tor binary to Gray code (a) and inverse irunsforinaliunN (h) (example SM
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o f  param ieters:

1. I h e  e x p a n s io n  is the ratio \V  ( H  ) \ / \ V  ( G ) \ .
2. T h e  d ila tio n  cost  o f  an e m b e d d in g  o f  G  into H  is the m a xim u m  d istan ce  in H  b etw e en  

any tw o n e ig h b o r in g  ve rt ices  in G .
3. T h e  co n g e s tio n  o f  the e m b e d d in g  is the m a x im u m  o f  the c o n g e st io n s  (paralle l  e d g es)  

o f  aill e d g e s  o f  H .

E xamipi  .e  10. D eta ils  o f  e m b e d d in g  g ra p h  G  in to  a  h o s t g ra p h  H  are  g iven  in Fig. 1.

3.5. Hy'percubes in Logic Design
H y p e r c u b e s  a re  used  in classical lo g ic  d es ig n  to  in terp re t  log ic  fo rm u la s  and m a n ip u lation  

o f  th e m . A  h y p e rc u b e  used to  r e p re se n t  a sw itch in g  fu n ctio n  is ca l led  a s in gular  h yp e rcu b e  

[64]. In the s in gu lar  h yp e rcu b e , ea ch  n o d e  is lab e le d  by a p ro d u c t  o f  the c an o n ic a l  S O P  

o f  a s w itc h in g  fun ction. T h e  to p o lo g y  a n d  the lab e ls  o f  the n e ig h b o r in g  n o d es  are  sp ec if ied  

th r o u g h  the assem b ly  rules.
A s s e m b l i n g  a s in gu lar  h y p e rc u b e  o f  sw itch in g  fu n ctio n s  is a cc o m p lish e d  by

1. G e n e r a t i n g  the p ro d u c ts  as e n u m e r a t e d  p o in ts  ( n o d e s )  in the plane.
2. E n c o d i n g  the n o d e s  by G r a y  co d e .

3. G e n e r a t i n g  links using H a m m in g  d istance.

4. A s s e m b l i n g  the n o d e s  and links.

5. J o in in g  a  to p o lo g y  o f  a h y p e rc u b e  in n  d im en sio n s .

L e t  ,\y b e  a literal o f  a B o o le a n  v a r ia b le  x J such  that x []  — x h and  x ‘ =  Xj, and x \ ' x ‘2: . . .  x 1," 
is a p r o d u c t  o f  literals. T o p o lo g ic a lly ,  it is a set o f  p o in ts  on the p lan e e n u m e r a t e d  by / =
0, 1 , . . .  , n . T o  m a p  this set into the h y p e rc u b e ,  the n u m b e r s  m ust be e n c o d e d  by G r a y  c o d e  

and  r e p r e s e n t e d  by the c o r r e s p o n d in g  g r a p h s  b ase d  on  H a m m in g  distance. T h e  e x a m p le  

b e lo w  d e m o n s t r a t e s  the assem b ly  p r o c e d u r e .

E x a m p l e  11. F igure 8 ( a )  d e m o n s tr a te s  th e  a s s e m b ly  o f  h yp ercu b es .

T h e  O -d im ensio n a l h y p e rc u b e  (// =  0) re p r e s e n ts  co n stan t  0 o r  1. T h e  I D  h yp e rcu b e  

in c lu d es  the line s e g m e n t  c o n n e c t in g  v e rt ic e s  0 a n d  1, an d  this s e g m e n t  is called  the face  and 
d e n o t e d  by x. A  2 D  h yp e rcu b e  has fo u r  face s ,  Ox, lx ,  x(), and  x l .  T h e  total 2 D  h yp e rc u b e  
can  b e  d e n o t e d  by xx.

E x a m p l e  12. S ix  fa c e s  o f  th e  h y p e rc u b e , xxO, x x l ,  Oxx, lxx,  x l x ,  a n d  x()x (F ig. 9) represen t 
1 - te rm  p r o d u c ts  f o r  a  sw itch in g  fu n c tio n  o f  th ree  va r ia b le s .

R in g s ,  m esh e s ,  pyram ids,  s h u ff le -e x c h a n g e  n e tw o rk s ,  and c o m p le t e  b inary  trees  can 

b e  e m b e d d e d  into h yp ercu bes .  T h e  la t ter  is o f  p a r t icu la r  interest for logic design  in 

n a n o d im e n s io n s .

3.6. A-Hypercube Definition
In this  s e c t io n  the extensio n  o f  the trad itio n a l h y p e r c u b e  is c o n s id e re d .  T h is  ex ten sio n , 

in tr o d u c e d  in [31], is c a l le d  the V -h yp ercub e.
T h e  k e y  to  the exte n sio n  o f  a  h y p e rc u b e  to  an ^ -d im e n sio n a l  . V -h yp erc u be  is e m b e d d in g  

a  c o m p le t e  b in a ry  tree o f  an /7-variable s w itc h in g  fu n ctio n  into a h yp ercu be .

The vertex mapping:

/ The edge to path mapping: 
(1.2) ->  I, 2: (2,4) 2.4:
(3,4) —» 3. 4; (1.3) -> 1,3:

2 3 4

Expansion = 2 
Dilation = I 

Congestion = I

Graph G Graph H

Figure 7. Embedding graph G  into a host graph / /  (example 10).
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ID : P roduci . 2 po in ts  i/» =  I )

2D : P roduci .vj1 \ J? . 4 p o in ts  (// = 2 1 

3D : P roduci a '/  .v^a'*'. 8 po in ts  (/? =  3)

4D : P roduct a ',1 A'i'Al’Aj4, Ift points U  =  4) 

5D : P roduci a , ' x f  a '? x f  X ? . 32 poin ts (/» = 5)

Figure 8. A ssem bling ;i hypercube for representation  o f  product term s (exam ple 11).

3.6.1. Embedding a Binary Decision Tree into an \ -Hypercube
A  b in ary  d ec is ion  tree e m b e d d e d  into an \ - H y p e r c u b e  is a c c o m p lis h e d  as fo llow s  (F ig .  I0):

1. T h e  n o d e s  o f  the n -d im e n sio n a l  s in gular  h y p e rc u b e  are r e p la ce d  with the 2" term inal 

n o d e s  o f  the d ec is io n  tree.

2. Intermediate n o d e s  are  e m b e d d e d  into the e d g e s  and  fa ce s  o f  a s in gular  h yp ercu be .

3. T h e  ro o t  n o d e  is e m b e d d e d  into the c e n te r  o f  the s ingular  h y p e rc u b e .

4. T h e  e d g e s  o f  the b in ary  d ec is ion  tree c o rre s p o n d  to the e d g e s  o f  the n ew  \ -h yp ercu b e .

F o r  ex a m p le ,  the term in al n o d e  o f  the c o m p le t e  b inary  d ec is io n  tree with q  levels  can  be 

e m b e d d e d  into a  h y p c rc u b e  w ith  2 q ve rt ices  and q  x  2 q 1 ed g es.  T h is  is b e c au se  the c o m p le t e  

b in a ry  d ec is ion  tree with q  levels  has 2 q leaves. T h is  is exactly  the n u m b e r  o f  n o d e s  in the 

h y p e rc u b e  s tructure, w h e r e  e a c h  n o d e  is c o n n e c te d  to  q  — 1 n e ig h b o rs  and assigned the c/-bit 

b in a ry  c o d e  that satisfies th e  H a m m in g  e n c o d in g  rule and, thus, has  q  x  2f l  edges.

T h e  n u m b e r  o f  v e rt ic es  o f  th e  b in ary  tree e m b e d d e d  into the m id d le  o f  ea c h  e d g e  o f  the 

V -h yp ercub e is e q u a l  to 2 q \  w h e r e a s  the possible  n u m b e r  o f  such e m b e d d in g s  (th e  n u m b e r  

o f  all w ires)  is q  x  2 q T h e  n u m b e r  o f  inner n o d e s  o f  the b in a ry  tree  e m b e d d e d  into the 

m id d le  o f  e a c h  e d g e  o f  the , V -h yp ercu b e  is e q u a l  to  2 q~2 w hile  th e  p o ssib le  n u m b e r  o f  such 

e m b e d d in g s  (th e  n u m b e r  o f  all e d g e s)  is q  x 2 1' 2.
T h e  total n u m b e r  o f  n o d e s  a n d  the total n u m b e r  o f  e d g e s  (c o n n e c t io n s )  b e tw e e n  n o d es  

in the //-dimensional . V -h y p e r c u b e  is sp ecified  as b e lo w

n n
N d =  £ 2 "  and N t. =  £ 2 / -  2"~‘C /

i= 0 /=()

T h e  total  n u m b e r  o f  in tern al n o d es  is e q u a l  to the n u m b e r  o f  all n o d e s  excep t  leave s  in the 

c o m p le t e  b in ary  d ec is ion  tree  that rep rese n ts  a sw itch in g fu n ctio n  o f  n v a riab les ,  and  the 

total  n u m b e r  o f  e d g e s  is e q u a l  to th e  n u m b e r  o f  e d g e s  in the c o m p le t e  b inary  d ec is io n  tree.

Face 

1

A aO : V ̂  (.V j.V 2 V  A ',A s V  A-1 AS V  A j A ^ )

X X  1 : A*3{ -V1-V2 v  V|Ai V A |.?2 V A',A'-> ) 

r e  (H a  : A|(.y>.y\ v  a -.a ; v  v ->x ̂ v  a >a • )

X I AA: v  X-K'i  v  A j.V’, V  VjA X !

a Oa"  A j (.V j.V ;  v  ,V|A 'i V  .V}.Y< V  A j .Vj )

A 'l.v : -v: ( .v , .v ,  v  A,A-> v  A |A \  V A j A 3 )

xxO /  xOx

F ig u re d . Faces o f  the hypcrcube interpretation in the sum -of-producls o f  a sw itching function o f three variable'' 
(exam ple 12).
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Figuire 10. C orresp on d en ce o f  lhe attributes o f  a binary tree and an . \-hyp ercu be .

E x a m p l e  13. G iv e n  a  sw itch in g  fu n c tio n  o f  o n e  v a r ia b le , f  =  x , th e  co rre sp o n d in g  b in a ry  
d e c is io n  tree  h a s  q  — 1 le ve l (F ig. 1 1 ) .  T h e fu n c tio n  is  e q u a l to  1 w h ile  x  =  0 a n d  e q u a l to  0 

whiHe x  — 1. T h ese  va lu es  assign  tw o  lea ve s  o f  th e  b in a ry  d e c is io n  d ia g ra m . T h e h yp ercu b e  o f  
th e  f u n c t io n  is a  tw o -n o d e  g ra p h , a n d  th e  co rre sp o n d in g  V -h y p e rc u b e  h a s  a  ro o t a n d  tw o  lea ve s . 
G iv e n  q  =  2. th e  fo u r  lea ve s  o f  th e  c o m p le te  b in a ry  d e c is io n  tree  o f  th e  tw o -v a r ia b le  fu n c tio n  
I =  x ]x ,  ca n  b e  e m b e d d e d  in to  a  \ -h yp ercu b e  w ith  th e  r o o t , tw o  in te rm e d ia te  n o d e s  a n d  fo u r  
lea  v e s . T h e  co rre sp o n d in g  s in g u la r  h yp ercu b e  co n s is ts  o f  f o u r  n o d e s .

T h e  e m b e d d in g  is as fo llow s (Fig. 11 [b]):

1 .  E m b e d  fo u r  lea ve s  o f  Ihe b inary  tree into a fo u r -n o d e  s in g u lar  h ypereube;  the c o d e s  00, 

U'l, 10, 11 o f  n o d e s  are  assign ed  in o rd e r  the H a m m in g  d istan ce  b e tw e e n  the n e ig h b o r  

n o d e s  is e q u a l  to  on e.

2 .  E m b e d  2 in n er  n o d e s  o f  the b inary  tree into e d g e s  c o n n e c t in g  the existing n o d e s  o f  the 

s in g u la r  h y p e rc u b e ;  n o te  that  tw o  o f  the e d g e - e m b e d d e d  n o d e s  must be c o n s id e re d  at 
a  t im e; the first h y p e rc u b e  in Fig. 1 1(c) c o rr e s p o n d s  to the o r d e r  x 2, .v,, and the se co n d  

o n e  d esc r ib es  the o r d e r  .v,, x 2; the axes are  assoc iated  with the polar ity  o f  var iab les  
((co m p lem e n te d , u n c o m p le m e n te d )  and explain  the m e a n in g  o f  the b old  edges.

3 .  E m b e d  the r o o t  o f  the tree  into the c e n te r  o f  the fa ce t  o f  the h y p e rc u b e  and c o n n e c t  

iit to  the e d g e - e m b e d d e d  nodes.

E x  a m p l e  14. G iv e n  a  c o m p le te  b in ary  d e c is io n  tree  o f  a  s w itc h in g  fu n c tio n  o f  th ree  v a r i
a b le s , q  =  3, th e  e igh t lea  f  n o d e s  o f  th e  tree  a re  e m b e d d e d  in to  th e  3 D  s in g u la r  h yp ercu b e , w h ich  
is tr a n s fo r m e d  to  a  3 D  \ -h yp ercu b e  (Fig.  12).

A d d i t i o n a l  e m b e d d e d  n o d es  an d  links a ssign m en ts  c o rr e s p o n d  to e m b e d d in g  d ec is ion  trees  

in a  h y p e r c u b e  a n d  thus, c o n v e r t  a h y p e rcu b e  fro m  th e  passive re p re se n ta tio n  o f  a fu n ctio n  

to  a  c o n n e c t io n - b a s e d  structure (i.e., a s tructure in w h ich  c a lcu la t io n s  can  b e  a cc o m p lish e d ) .  

In o t h e r  w o rd s,  in fo rm a tio n  con n ectiv ity  is in tro d u ce d  into the h yp e rcu b e .

B e c a u s e  the in te r m e d ia te  n o d es  o f  the d ec is ion  tree p e r fo r m  S h a n n o n  exp an sion, th ey  
a re  a s s o c ia t e d  with d em u ltip lexo rs .  T erm in al  n o d e s  carry  in fo rm a tio n  ab o u t  the results  o f

(b) (c)

Figure* 11. Embedding a binary decision tree into a 2-D \-hvpercube (example 13).
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c o m p u t in g .  T h e  n o d e s  ( th e ir  fu n ctio n s  and  c o o r d in a te s) ,  an d  e d g e s  not only  carry  in f o r m a 

tion  a b o u t  the fu n ctio n  im p le m e n te d  by the . \ -h y p e rcu b e  but a l lo w  to d o  all the m a n ip u la 

tions and  ca lcu la t io n  the d e c is io n  tree  allows.

3.6.2. Degree of Freedom and Rotation
E a c h  in te rm e d ia te  n o d e  in the \ -h yp erc u be  is a sso c iated  w ith  a so -ca lled  d e g re e  o f  f r e e d o m . 
T h is  d e g re e  o f  f r e e d o m  can  b e  used fo r  variab le  o r d e r  m a n ip u la t io n ,  as the o r d e r  o f  va r iab les  

is a p a r a m e t e r  to adjust in d ec is io n  trees  and d iagram s.

T h e  term  “ d e g re e  o f  f r e e d o m "  is assoc iated  with the o r d e r  o f  v a r iab le s  in d e c o m p o s it io n ,  

an d  h en ce ,  to  the o r d e r  o f  v a r ia b le s  in decis ion  trees  and  d iag ra m s.  T h e  polarity  o f  v a r ia b le s  

in flu e n ces  the a b o v e  c h a ra cte r is t ic s  too.

O n ly  in te rm e d ia te  a n d  ro o t  n o d e s  in an .A -h yp erc u b e  can  be  c h a ra c te r iz e d  by  a d e g r e e  o f  

f r e e d o m . A n  in te rm e d ia te  n o d e  in the I D  I -h y p e rcu b e  has tw o  d e g r e e s  o f  f r e e d o m .  T h e  

2 D  \ -h y p e rcu b e  is a s s e m b le d  from  tw o I D  V-h yp ercub es,  an d  in c lu d es  three  in te r m e d ia te  

n od es .  T h e  \ -h y p e r c u b e  in 2 -D  has 2 x  2 x  2 =  8 d e g r e e s  o f  fre e d o m . T h e r e  are  fo u r  

d ec is ion  trees  with d i f fe r e n t  o r d e r s  o f  variables.

E x a m p le  15. C o n s id e r  a n  ./V -h yp ercu b e  in  3D. T his J Y -h y p e rc u b e  is  a s s e m b le d  o f  tw o  tw o -  
d im e n s io n a l  ./V -h yp ercu b es  a n d  in c lu d e s  seven  in te rm e d ia te  n o d e s  a n d  h a s  8 x 8 x 2 =  128 

d eg rees o f  f r e e d o m . T he d eg ree  o f  f r e e d o m  o f  an  in te rm e d ia te  n o d e  a t i-th  d im e n s io n , i —
2. 3 , . . . ,  n , is  e q u a l to  D P] =  2" ' +  1. In  g e n e ra l, th e  d eg ree  o f  f r e e d o m  o f  th e  n -d im e n s io n a l  
\ -h yp ercu b e  is  d e f in e d  a s  ]T, O F, — £ , ( 2 " " '  -j- 1).

3.7. v-Hypercube Design for n > 3 Dimensions
T o  design  a 4 D  A - h y p e r c u b e ,  tw o .V -h yp ercu b es  m ust be jo in e d  by  links. T h e  n u m b e r  o f  

bits  in the c o o r d in a te  d e sc r ip tio n  o f  both  V -h yp ercu b es  m ust b e  in creased  by o n e  bit.

E x a m p l e  16. F igure  13 s h o w s  th e  p o s s ib il it ie s  f o r  a s s e m b lin g  a  g iven  ./V-h yp ercu b e  t o  4F> 
A -h yp ercu b e , 4D  to  5D, e tc . T h is  c o n n e c tio n  p ro p er ty  fo l lo w s  f r o m  th e  p ro p e r tie s  o f  in te r m e d ia te  

n o d e s .

Figure 13. Connections between . \ -hypercubes in /^-dimensional space (example 16).
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Figuire 14. . \ -hypercuhe design by em b ed din g  a com p lete  binary tree in the . \'-hypercube (exam ple 17).

S u m m a r iz in g  the a b o v e  ch ara cteris t ics ,  the \ -h y p e rcu b e  can  b e  sp ecified  as an u n d irec ted  

hyp-ercubc w ith  the fo l lo w in g  p rop erties :

1 .  \r-hypercubc corresponds to an /7-level 2#l-leaves com plete binary tree.
2.. ik =  2" te rm in a l  n o d e s  la b e l le d  fr o m  0 to 2" — 1 so  that th e re  is an e d g e  b e tw e e n  any 

ttwo v e rt ic e s  if  and on ly  i f  the b in ary  re p re se n ta t io n s  o f  their  labels  d if fe r  by o n e  and 

o n ly  o n e  bit.
3 .  E a c h  e d g e  is assign ed  w ith  an in te rm e d iate  n o d e  w hich  co rr e sp o n d s  to b in ary  r e p r e 

s e n ta t io n  o f  both  e d g e - e n d in g  c o n sta n t  n o d es  w ith  the d o  not c are  va lu e  fo r  the on ly  

d i f fe r e n t  bit.

4 .  T h e r e  is an e d g e  b e tw e e n  tw o in te r m e d iate  n o d e s  if  a n d  only  if the b inary  r e p r e s e n ta 
tions o f  the ir  lab els  d iffer  by o n e  and on ly  o n e  bit.

E x a m p l e  17. Figure 14 illustrates the 3 D  . V-hypercuhe assembling (assembling step by step 
from  (a) to (cl).

4. OTHER SPATIAL MODELS
A  m u lt i- in p u t  m u lt i-o u tp u t  s w itc h in g  fun ctio n  can  b e  re p re se n te d  by

1 .  A  g a te - le v e l  m o d e l ,  or  n e tw o r k  o f  gates, d esc r ib ed  by a d irect acyclic  graph  ( D A G ) .

2. A  fu n ctio n a l  level m o d e l ,  that is a tw o-level  su m -o f-p ro d u c ts  exp ression , decis ion  tree 
or  d ec is io n  d iag ram .

A  m u lt i lev e l  c ircu it  is d efin ed  as a D A G  w hich  d escr ib es  in te r co n n e ctio n s  o f  s in gle-ou tp u t 

c o m b in a t io n a l  logic  g a te s  u n d e r  th e  assu m p tio n  that the in terco n n ec tio n  prov ide s  a un id i
r e c t io n a l  (n o  fe e d b a c k )  f low o f  s ignals  fro m  prim ary  inputs to p rim ary  outputs. M u lt i le v e l  

n e t w o r k  im p le m e n ta t io n s  can b e  restr icted  to  a gate  type ( N A N D ,  N O R )  with a fixed fan-in.

4.1. DAG-Based Representation of Switching Circuits
T h e  w e l l-k n o w n  te c h n iq u e s  that are  used  in to d a y ’s m ulti leve l  c ircu it  design  utilize D A G  c o n 
s tru c tio n  a n d  o p tim iza tio n  [29]. In design  at the physical level, B o o le a n  m a p p in g  is required , 

w h ic h  m e a n s  co v e r in g  o f  the D A G  by D A G s  o f  e le m e n ta r y  g a te s  from  the library o f  gates. 

A  D A G  is the w a y  c o n t e m p o r a r y  m ulti leve l  circuits  are r e p r e se n te d  and  it is a gate - le ve l  

m o d e l  that  is c o m p a tib le  with a l ibrary  o f  traditio n al gates.

4.2. Hybrid Representation of Switching Circuits
D e c is io n  d ia g ra m s c o rr e s p o n d  to m u lt ip lex e r  ( M U X ) - b a s e d  im p le m e n ta t io n  that is not 

w id e ly  used  in to d a y 's  logic  d esig n . T h e  situation  is quite  o p p o s ite  in the design  o f  new
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dcvices:  the a p p r o p r ia te  lo g ic  fo r  n an o w ire  w r a p -g a tc  s in g le -e le c tro n  d e v ic e s  is b ase d  on 

M U X - g a t e  o r  T -g a te  im p le m e n ta t io n  [33, 34). T h is  te c h n iq u e  su ffe rs  from  e x p o n e n tia l  c o m 

plexity, w h ic h  is r e d u ce d  by tran sfo rm in g  d ec is io n  trees  to  d e c is io n  d iag ram s. In n a n o 

d im en sions,  h o w e v e r ,  th e  r e g u la r i ty  o f  the tree  s tru ctu re s  m a y  h o ld  m o re  b en efits  than the 

co m p a c tn e s s  o f  d ec is ion  d ia g ra m s.

A  c erta in  t r a d e -o f f  is to  c o m b in e  A -h y p e r c u b e  w ith  D A G .  T h is  can  b e  a cc o m p lish e d  by 

e m b e d d in g  a  D A G  in to  a  h y p e rc u b e ,  o r  a s s e m b lin g  prim itive  . V -h yp e rcu b e s  into a D A G  

to p o lo g y,  that is, a ra n d o m  n e tw o r k  o f  log ic  ga tes.  T h is  w o u ld  r e q u ire  re p r e se n ta t io n  o f  ea ch  

e le m e n ta r y  gate  by an . V -h yp e r c u b e  [31].

4.3. Library of -Hypercubes
In this sectio n , the fo c u s  is g e n e ra t io n  o f  e le m e n t a r y  A - h y p e r c u b e s ,  an d  ev a lu a t io n  o f  e le 

m en tary  A -h y p e rc u b e  structures.  W e in tro d u ce  the l ibrary o f  .A - h y p e r c u b e s  that im p lem e n t 

e le m e n ta r y  sw itch in g  and  m u lt iv a lu e d  fu n ctio n s.  T h is  r e p r e se n ta t io n  is b ase d  on the two- 

level fo r m  o f  a sw itc h in g  fu n c t io n  o f  a g a te ,  c o r r e s p o n d in g  to  a  tw o -lev e l  tree, an d  c h a r a c 

terization , analysis, and stu d y  o f  r e c o m b in at io n  (w h ile  the o r d e r  o f  v a r ia b le s  is c h a n g e d ) .

4.3.1. Structure of the Library
In B o o le a n  m ap p in g, a  l ibrary  is u n d e rsto o d  as a set o f  logical e le m e n ts .  D e s ig n  o f  a logic  

n etw o rk  o v e r  a g iven  l ibrary  o f  ga te s  is a c c o m p lis h e d  by c o v e r in g  a D A G  by DACJs of 

e le m e n tar y  ga te s  fro m  the l ibrary o f  gates. T h e  l ibrary  co n ta in s  the set o f  lo g ic  g a te s  that are 

availab le  in the desired  d esig n  style. E a c h  e le m e n t  is c h a r a c te r iz e d  by its fu n ctio n , inputs, 

o utputs,  a n d  s o m e  p a r a m e t e r s  su ch  as a re a ,  d e lay ,  a n d  ca p ac ity  load .

4.3.2. Metrics of jY -Hypercube
A  prim itive  .A '-hypercube is a o n e -d im e n s io n a l  A - h y p e r c u b e  o f  (F ig .  15). T h is  is a  unit to 
be a sse m b le d  into .A -h y p e r c u b e  m o d e ls  o f  ga te s .  T h e  sim plest  to p o lo g ic a l  ch aracte r is t ics  o f  

the A  -h y p e r c u b e  ga te  include:

1. N u m b e r  o f  te rm in a l  n od es .  T h e  n u m b e r  o f  te rm in a l  n o d e s  for  an /i-input log ic  ga te  is 

2" ( fo r  e x a m p le ,  th e  n u m b e r  o f  term in al n o d e s  is e q u a l  to  fo u r  and e ig h t  fo r  the two- 

input a n d  th ree -in p u t  lo g ic  gates,  resp e ct ive ly) .  T h e  n u m b e r  o f  act iv e  te rm in a l  n odes 

is eq u a l  to  the n u m b e r  o f  l ’s in the truth  ta b le  o f  the im p le m e n t e d  sw itch in g  function, 

w h ich  is the cu rren t  state  o f  the V -h yp e r cu b e  stru ctu re .  T h e  act ive  te rm in a l  n o d e s  are 

used to e v a lu a te  p o w e r  dissipation  c h aracte r is t ics .

2. N u m b e r  o f  in t e r m e d ia te  n o d es .  T h e  in t e r m e d ia te  n o d e s  c o rr e s p o n d  to  the n u m b e r  o f  

n o d e s  in the levels  o f  the decis ion  tree  o f  the sw itch in g  fu n ct io n ,  e x c e p t  fo r  term inal 

n od es .  F o r  instan ce, the n u m b e r  o f  in t e r m e d ia te  n o d e s  is e q u a l  to  2 p lu s  o n e  ro o t  node 

fo r  a tw o -in p u t  ga te s ,  and 6 plus o n e  ro o t  n o d e  fo r  a th r e e - in p u t  g a te .  T h is  num ber 

c an  b e  u se d  fo r  e v a lu a t io n  o f  circuit co m p le x ity .

3. C o n n e c t iv ity  is the n u m b e r  o f  links b e tw e e n  ro ot,  te rm in a l  a n d  in te r m e d ia te  n od es .  This  

ch aracte r is t ic  d e sc r ib e s  the c o m p le x ity  in the n u m b e r  o f  links. G iv e n  the c o o r d in a te s

• A primitive N-hypercube is a one-dimensional 
N -hxpcn ube (a root node and two 

terminal nodes).

• The primitive ;\'-hypercuhe corresponds
t<> the decision tree o f  a .single variable (node I.

• The primitive is a unit metric unit in the 
N -hypen uhe structure.

Figure 15. The primitive one-dimensional ' -hypercube anti ihe corresponding node of a decision tree.
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o f  a link, it is possible  to  m ea su re  the s izes o f  l inks an d  c o m p a r e  them . B ase d  on the 

n o ta tio n  o f  c on n ectiv ity ,  the to p o lo g ica l  d istr ib u tio n s  o f  links are ca lcu late d , as are the 

d is ta n ce s  from  an arb itrary  point to a set o f  p o in ts  in space.

4. D ia m e t e r  is the m a xim u m  n u m b e r  o f  links b e tw e e n  any two n o d e s  in the . \ -h yp ercu be . 

It is the g lo ba l ch ara cte ris t ic  o f  a c ircuit  in sp ace.

5. D im e n s io n .  T h e  d im en sion  can  b e  c a lc u la te d  g iven  the n u m b e r  o f  levels  o f  the e m b e d 

d e d  d ec is ion  tree, that is the n u m b e r  o f  v a r ia b le s  in the c o rr e sp o n d in g  function.

I n  T a b le  1, the to p o lo g ica l  ch a ra cte r is t ic s  o f  the .V -h yp e rcu b e  m o d el  o f  two- and  three- 

in p u t  \ -h y p c rc u b e  g a te s  are given.

4.3.3. Manipulation of \ -Hypercube
T w o  a ttr ibu tes  o f  a \ -h y p e r c u b e  c a n  be c h a n g e d  by recon fig u ra tion :  polarity  o f  var iab les  

a n d  th e  o r d e r  o f  v a r iab le s  in a  d e c is io n  tree a n d  d e c is io n  d iag ram . T h e  reco n fig u ra tio n  o f  

the .A -h y p e rc u b e  is d e f in e d  as rotation .

A m y  s ta n d a rd  g a te  o f  the co n v e n t io n a l  c o m b in a t io n a l  lo g ic  (i.e., an /z-input A N D ,  O R ,  

N O  R , N A N D ,  N O T ,  and  E X O R  g a te ) ,  can  b e  r e p r e s e n te d  by the .V -h yp ercu b e  m o d e l  in 
tw o  steps:

1 .  A  d e c is io n  tree  o f  the g a te  is d er ived .

2.. T h e  tree  is e m b e d d e d  in an V -h y p e r c u b e  o f  //-dimensions.

A n  , V -h yp ercu b e  o f  a tw o-in put g a te  in c lu d es  the ro o t  n o d e ,  tw o in te rm e d iate  n odes, fo u r  

t e r m in a l  n o d es ,  an d  the e d g e s  (c o n n e c tio n s) .

E x a m p l e  18 . F igure  16  il lu s tra tes  d e s ig n in g  a n  A r-h yp ercu b e  m o d e l  fo r  th e  tw o -in p u t  
N A N D  g a te . G iv e n  th e  tw o - in p u t N A N D  fu n c tio n  f  =  x {x 2 ( a) ,  th e  S h a n n o n  d e c is io n  tree  is 
d e r iv e d  (b) .  N e x t , th is  tree  is e m b e d d e d  in  a n  . V -h y p e rc u b e  (c ) .  T he n u m b e r  o f  a c tiv e  te r m in a l  
n o d e s  in  th is  2 D  A -h yp ercu b e  is  3, a n d  th e  to ta l  n u m b e r  o f  te rm in a l n o d e s  is  4, w h ile  th e  
n u m b e r  o f  in te r m d ia te  n o d e s  is  3, th e  c o n n e c tiv ity  is  6 a n d  th e  d ia m e te r  is  4.

T h e  V -h yp ercu b e in 2 D ,  3 D ,  4 D ,  a n d  5 D  is d e n o t e d  by a c u b e  with two, th ree ,  four, and 

five inputs, re sp e ct iv e ly  (Fig. 17).

4.4L Hybrid Design Paradigm: Embedding a DAG in A-Hypercube
A n  arb itrary  sw itch in g  fun ctio n  can  b e  r e p r e s e n te d  by  an V -h yp ercu b e d e r iv e d  from  the 
d e c is io n  tree o f  a fu n ctio n . H o w e v e r ,  fo r  a trad itio n a l a p p r o a c h  b ased  on c o v e r in g  the D A G  

o f  a  circuit b y  the library o f  gates, netlist m ust b e  a ls o  c o n s id e re d .  In term s o f  im p lem e n ta tio n  

on  n a n o d e v ic e s  (n a n o w ire  n etw o rk s) ,  the p r o b le m  o f  in te rco n n ectio n s  arises.

W e  focus o n  tw o a p p r o a c h e s  fo r  der iv in g  3 D  d a ta  s tructures  for  sw itching functions: a 

lo g ic  n e tw o rk  (d ire ct  a cyclic  g r a p h )  p r e s e n te d ,  i.e., n etl ist  is t re a te d  as a  tree; a n d  e m b e d d in g  

the tree  in an  . V -h yp ercub e.

D e r iv in g  a  3 D  s tru ctu re  given a c ircuit  netlist  is im p le m e n te d  in two steps:

11. T h e  c ircu it  netlist is r e p r e s e n te d  by  a D A G  a n d  lev elized  to obta in  an in c o m p le te  

decis ion  tree.

2 . T h e  tree is e m b e d d e d  in an . V -h y p e rcu b e .

Table 1. M etrics o f  2-in put and 3 -in put V-hypercube gates.

M etrics 2 -input 3-input

N um ber o f  term inal n od es 4 8
N um ber o f  in term ediate nod es 3 7

plus the root node  
Total num ber o f  nod es 7 15
Connectivity 6 14
D im ension i 3
D iam eter 4 6
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(a) (b) (c)

F igure 16. Fragm ent o f  a library o f . Y -hypereube gates: a tw o-input N A N D  gate (a), its d ecis io n  tree (b), and the 
corresponding V-hvpercube (c) (exam ple 18).

T h u s ,  th e re  a re  tw o  levels  o f  em b ed d in g :

1. E m b e d d in g  d ec is io n  trees  in e le m e n t a r y  V -h yp e r cu b e s  o f  gates.

2. E m b e d d in g  a tree, i.e., D A G ,  in a “ m a c r o ”  Y -h yp erc u b e .

T h e  te ch n iq u e  o f  tran sfo rm atio n  o f  c ircuit  m o d e ls  in spatia l d im en sio n s  is b ased  on a lg e 

b ra ic  s im plif icatio n s o f  sw itching fu n ctio n s,  to p o lo g ic a l  s im plifications, and lo g ic -to p o lo g ic a l  

tran sfo rm atio n s .

A lg e b r a ic  s im plif icatio n s can m o d ify  the to p o lo g y ,  and to p o lo g ic a l  s im plif icatio n s can 

c h a n g e  the sw itch in g  fu n ctio n  d e sc r ib e d  by this to p o lo g y .  T h e r e f o r e ,  a lg e b ra ic  and  to p o lo g i

cal tr a n sfo r m a t io n s  m ust be c arefu lly  c o m b in e d .  In this sectio n , the ru les  fo r  m a n ip u la t io n  o f  

an . V -h yp crcu b e  are in trod u ced . T h e s e  ru les  a llo w  re d u ct io n  o f  d im en sio n s  a n d  sim plify  c ir

cuit re p re se n ta tio n  in spatial d im en sion s,  and  are  a lso  usefu l  in verificat ion  o f  ./V'-hypercubes.

D im e n s io n  red u c tio n .  I f  the input i  o f  an  .A -h y p e r c u b e  to  im p le m e n t  an /z-input O R  

fu n ctio n  is e q u a l  to  0, red u ce  this in p ut a n d  r e p la c e  this h y p e rc u b e  with the (// -  

l ) -d im e n s io n a l  .A'-hypercube. B y  a n a lo g y ,  th e  d im e n s io n s  o f  the ./V-hypercube are 

d e c r e a s e d  by 1 fo r  an /i-input A N D  fu n ctio n  if  th e  input is eq ual to  1.

A -h yp ercu b e  d e le tin g . If  the input o f  an .A '-h y p e r  c u b e  im p le m e n tin g  an A N D  fun ctio n  

is e q u a l  to  0, r ep la ce  the h y p e rc u b e  w ith  th e  co n sta n t  0. By a n a lo g y ,  re p la ce  an O R  

.A -h y p e rcu b e  with con stan t 1, if  o n e  o f  the o u tp u ts  is e q u a l  to  1.

j \r-h yp ercu b e  m erging. T w o  A N D  ( O R )  .V -h y p e r c u b e s  o f  d im e n sio n s  i and j  c o r r e s p o n d 

ingly c o n n e c te d  in a  series can  b e  m e r g e d  into o n e  A N D  ( O R )  .V -h yp e r cu b e  o f  i -f j  
d im en sion s.

D ele tin g  o f  d u p lic a te d  N -h yp ercu b es. If  th e re  are  tw o  . A—h y p e rc u b e s  w h o s e  inputs and  o u t

puts are the sam e, re m o v e  o n e  and c r e a te  a fan -ou t.

/  =  / ( . Y j. .Y: . A’ ; }  

lb)

j  ~ /  <-V|. V>. Y-.. v4 ) 

(C>

Figure 17. Denotation ot a multidimensional \'-hypercube: (:t) 2D, (h) 3D. and (c) 5D.
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R e d u c tio n  o f  r e d u n d a n t c o n n e c tio n s .  C o n s id e r  the m a n ip u la t io n  o f  tw o V-h yp ercubes c o n 

n e c te d  in a series. A  an d  B, with respect  to  the input .v :

/  =  (xj.x2.x} ) Arv4A-5 =  ( x 2x y) x rx4x 5

Hypercube .1 Hvpercuhc .1

I Ivpercuhc B Hypercuhc B

It fo llow s from  the a b o v e  that the input x f can  be d e le t e d  fro m  V-h yp ercub e A .

O n  the basis  o f  p r o p e r t ie s  o f  s w itc h in g  fu n ctio n s,  the r e m a in in g  rules fo r  s im plification  and 

m a n ip u la t io n  o f  V -h yp ercu b e  to p o lo g y  s tru ctu re s  can  be d er ived .

E x a m p l e  19. In  F ig. 18 (a ) ,  th e  in itia l c ir c u it is  c a s c a d e d  in to  tw o  su b c irc u its  w ith  o u tp u ts  
/, a n d  f ?. B eca u se  o f  th e  g a te s  c a n  b e  c o n s id e re d  a s  n o d e s , th e  su b c irc u its  a re  e q u iv a le n t to  th e  
tw o  lo g ic  n e tw o rk s . T he e m b e d d in g  o f  th e se  n e tw o rk s  resu lts  in  tw o  in c o m p le te  f  -h yp ercu b es  
o v e r  th e  lib rary o f  3 D  g a te s  {F ig. 1 8 [ b ] ) .

H e n c e ,  instead o f  r e p r e s e n ta t io n  o f  this c ircuit  by  a c o m p le t e  decis ion  tree, that is, a tree 

w ith  2 () term inal n o d es ,  6 levels , 62 in te r m e d ia te  n o d e s  a n d  a root, o r  by 6 -d im en sion al 

.A -h y p e r c u b e ,  the c ircu it  is d e s c r ib e d  by tw o  log ic  n e tw o rk s  w ith  the fo l lo w in g  characteristics:

1 - T h e  first n e tw o r k  in c lu d es  five te rm in a l  n o d e s  and  fo u r  in te r m e d ia te  nodes.

2 .  T h e  s ec o n d  n e tw o r k  in c lu d e s  fo u r  te rm in a l  n o d e s  a n d  th r e e  in term e d ia te  n o d e s

th a t  c o rr e sp o n d  to  tw o in c o m p le te  3 D  V-h yp ercub es.

Initial two-output circuit

The first cascade

The second cascade

(a)

The second cascade

(b)

The first cascade

F igure 18. Cascading o f  a circuit (a ) to represent the outputs / ,  and f 2 bv incom plete .-V-hypercubes 
(b) (exam ple 19).
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In this sectio n , the results  o f  n u m e ric a l  ev a lu a t io n  o f  V -h y p e r c u b e s '  co m b in a t io n a l  circuits  

fr o m  the 1 S C A S 8 5  sta n d a r d  d a ta b a s e  are  g iven. In e x p e r im e n ts ,  c ircu its  with fro m  six ga te s  

to  m o r e  than 3500 w e r e  used.

4.5.1. Experiment on Evaluating the \ -hypercube
In this e x p e r im e n t ,  p a r a m e t e r s  o f  the . \ -h y p e rc u b e  d e r iv e d  by th e  decision  d iag ram s w e r e  

e v a lu a te d .  W e  used  the p a r a m e t e r s  a c q u ire d  fro m  th e  s h a re d  r e d u c e d  o r d e r e d  b in ary  d e c i 

sion d iag ra m s ( B D D s )  built fr o m  the c ircu it  netlist.

T h e  results  o f  e v a lu a tio n  a re  s u m m a riz e d  in T a b le  2 in w hich  " C ir c u i t ”  is the b e n c h m a rk  

type, “ I/O ” is the n u m b e r  o f  inp uts  an d  o u tp u ts ,  “ # G ”  is the n u m b e r  o f  g a te s  in the c ircuit,  

“ # D i i r T  is the m a xim u m  n u m b e r  o f  d im e n sio n s  (w hich  is the n u m b e r s  o f  va riab les  and 

can  b e  less fo r  e a c h  s e p a r a te  fu n ctio n  re p r e s e n te d  by a B D D ) ;  next d istr ibution  o f  the 

d im e n sio n s  in 3 D  that is the size  o f  the solid  in “ X , ” “ Y , ”  a n d  4iZ ” c o o r d in a te s  is g iven , a n d  

th e  “ N o d e s ” in c lu d es  the n u m b e r  o f  all in t e r m e d ia te  n o d e s  plus active term in al n o d e s  in 

th e  sh a re d  B D D  r e p re se n t in g  the m u lt i-o u tp u t  fu n ctio n s;  this n u m b e r  is to o  large fo r  so m e  

circuits  a n d  is not sh o w n  in th e  table .
N o te  that the n u m b e r  o f  a c t iv e  te rm in a l  n o d e s  is u p p e r b o u n d c d  by 2" fo r  an //-variable 

fu n ctio n .

4.5.2. Experiment on Evaluating the Hybrid Approach
In this ex p e r im e n t ,  the hybrid  . V -h yp e r cu b e  b ase d  a p p r o a c h  w as  e v a lu a te d  fo r  a se le cte d  

o u tp u t  in ea ch  test circuit.  E a c h  g a te  in the n e tw o r k  w a s  r e p la ce d  by an V -h yp ercube m o d el.  

A n  . V -h y p e r c u b e  o f  ea ch  o u t p u t  has b e e n  d e r iv e d  fro m  the tree  o b ta in e d  fo r  ea ch  o u t p u t  

by  scan n in g  fro m  o u tp u t  to  inputs, and  next, by lc v c liza t io n .

T h e  results  o f  ev a lu a t io n  a r e  s u m m a r iz e d  in T a b le  3, w h e r e  “ C ir c u i ts ” is the b e n c h m a r k  

type, “ # 0 ” is the s e le c te d  o u t p u t  n u m b e r  (out o f  all the o u tp u ts) ,  an d  “ # G ” is th e  n u m b e r  

o f  ga te s  in the su b n e tw o r k  im p le m e n t in g  the s e le c te d  o u tp u t .  W e  have se le cte d  the o u tp u t  

w h o s e  im p le m e n ta t io n  in volves  the m a x im u m  n u m b e r  o f  g a te s ,  a n d  co n s id e re d  the s u b n e t
w o r k  that involves  the inputs a n d  g a te s  to  im p le m e n t  this fu n ctio n .  T h e  next th ree  c o lu m n s  

in c lu d e  d istribution  o f  the d im e n s io n s  in “ X . "  WY , ” an d  “ Z ” co o r d in a te s .  N o t e  that the total 

n u m b e r  o f  d im e n sio n s  is e q u a l  to  th e  m a xim a l  n u m b e r  o f  level  in the s e le c te d  s u b n e tw o r k .  

T h e  last tw o  c o lu m n s  c o n ta in  the total  n u m b e r  o f  te rm in a l  n o d e s  “ # T ” (w h ich  is the total 
n u m b e r  o f  te rm in a l  n o d es  o f  the 2- an d  3 D  . V -h y p e r c u b c s  o f  the g ate s) ,  and the total n u m b e r  

o f  in te rm e d ia te  n o d e s  “ # N ” in th e  . V -h yp ercu b e.

It fo l lo w s  fro m  the e v a lu a t io n  that

1. T h e  hybrid a p p r o a c h  d o e s  not su ffe r  fro m  e x p o n e n t ia l  c o m p le x ity  o f  the n u m b e r  o f  

te rm in a l  n o d es ,  a n d  d e m o n s tr a t e s  less v a lu e s  o f  th e  te rm in a l  n o d e s  than is re le v a n t  to 

the n u m b e r  o f  g a te s  in th e  b e n c h m a r k  circuit,

2. T h e  sp ace  sizes X, Y, and Z  are  h igh er  than in the c a se  o f  sh are d  B D D  m o d e ls  

(T a b le  2).

4.5. Numerical Evaluation of 3D Structures

Table 2. Fragment o f  an experim ent on  evaluation  o f . V-hypereuhe param eters derived  from a decision  diagram .

Circuit I/O # G # D im X Y z N od e

27-channel interrupt controller 36 7 160 36 s s 11 12 1460
32-bit SF.C circuit 41/32 202 41 14 14 13 45922
8-hit A LU (->()• 26 383 60 20 20 20 1(11076
32-bit SEC circuit 41/32 546 41 14 14 13 45922
16-bit SEC/DEC  circuit VV25 1 1 j | j | 42427
12-bit A L U  and controller 233 M 40 11 93 233 7<S 78 77 —
8-bit A L U 50'22 166M 50 17 17 16 422803
c>-bit ALL) 178/123 2307 !7S 60 59 59 —
16 x 16 m ultiplier 32/32 2416 32 i 1 11 10 —
32-hit a d d e i. c ijmparaIor 207 108 3512 207 69 69 69 —
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Circuit # ( ) # ( / X Y Z # r # N o d e

27-channel interrupt controller 5 126 66 64 66 2022 1896
32-bit SI£C circuit 1 102 28 24 20 468 366
8-bit A I.U 24 130 70 72 70 612 482
32-bit SE C  circuit 1 322 58 52 54 1346 1024
lb-b it S B C 'D E C  circuit 25 522 100 104 92 2526 2004
12-bit A L L  and controller 139 828 82 80 78 3594 2766
8-bit A I.U 21 1458 132 132 140 9462 8004
9-bit A l .U 122 937 138 132 126 3750 2813
1 6 x 1 6  m ultiplier 32 2327 248 248 244 9246 6916
32-bit ad de r/co m p a r a to r 107 474 114 112 106 1916 1442

5. NOTATION OF CHANGE IN COMPUTATIONAL  
NANOSTRUCTURES

5.1. Change at the Physical and Logical Level
C h a n g e  is the fu n d a m e n ta l  c o n c e p t  o f  syste m  at any level  o f  o b s e r v a t io n  and description :

1. C h a n g e  at the ph ysica l  level r e p r e se n ts  the b e h a v io r  o f  n a n o s tr u c tu re  in tim e. T h e  unit 

o f  c h a n g e  is d e r iv e d  fr o m  th e  ph ysica l  n a tu r e  o f  a n a n o s tru c tu re  (m o le c u la r  activity, 

a to m  d yn am ics,  etc.).

2. C h a n g e  at the log ica l  level re p r e se n ts  th e  b e h a v io r  o f  th e  n an o stru ctu re  d u rin g  c o m 

p utatio n. A  unit o f  lo g ica l  c h a n g e  is d e r iv e d  fro m  a c o m p u t a t io n a l  m o d e l  (e le m e n tar y  

lo g ic  o p e ra t io n s ,  d a ta  s tr u ctu re  r e p re s e n ta t io n  an d  m a n ip u la t io n ,  etc.).

Physical c h a n g e  is m o d e le d  by logical ch a n g e .
E le m e n t a r y  transition  in ph ysica l  s ignal resu lts  in lo g ica l  c h a n g e s  from  0 to  1 o r  vice 

versa. I f  physical c h a n g e  in a n a n o s tru c tu re  can  b e  u n iq u e ly  tra n sfe r re d  to  logical c h a n g e ,  a 

set o f  logical c h a n g e s  can  d e s c r ib e  the d e te rm in is t ic  c o m p u t a t io n a l  m ach in e. U n fo rtu n a te ly ,  

in to d a y ’s n an o stru c tu re s  these  tran sition s are  not u n iq u e ,  that  is, physical c h a n g e  can  be 

tran sferred  into logical c h a n g e  w ith  a  p r o b ab il i ty  p

(P hysica l  c h a n g e )  —> ( p ( L o g ic a l  c h a n g e ) )

T h is  physical n atu re  o f  n a n o s tr u c tu re s  results  in v a r io u s  n o n -d e te r m in is t ic  p a rad ig m s o f  

c o m p u ta t io n ,  in particu lar,  s to ch a stic  c o m p u t in g .  T h e r m o d y n a m i c  in fo rm a tio n  c o rr e sp o n d s  
to  a physical unit o f  c h a n g e ,  a n d  S h a n n o n  in fo rm a tio n  is r a th e r  a sso c iated  with logical 

chan ge:

1. (U n it  o f  physical c h a n g e )  => ( U n it  o f  t h e rm o d y n a m ic  in fo rm a tio n )

2. (U n it  o f  logical c h a n g e )  => (U n it  o f  S h a n n o n  in fo r m a tio n )

T o  a c c o m m o d a t e  these  d e p e n d e n c ie s ,  the d esig n  o f  n a n o s tr u c tu r e s  m ust co m p rise

1. M e a s u re m e n t  o f  lo g ica l  c h a n g e  in c o m p u t a t io n a l  n a n o stru c tu re .

2. F o rm al descr ip tio n  o f  lo g ica l  ch a n g e .

3. D a ta  s tructure  r e p r e s e n ta t io n  in te rm s  o f  log ica l  c h a n g e .

M e a s u r e s  on n a n o str u c tu re s  that use the c o n c e p t  o f  c h a n g e  p r o v id e  too ls  fo r  their  analysis 
at the fo l lo w in g  levels:

T o p o lo g y  o f  c o m p u t a t io n a l  n a n o s tr u c tu re )  <=> (G r a p h ic a l  d a ta  s tru ctu re  o f  c o m p u t a t io n ) ,

i.e., fro m  a given  2 D  o r  3 D  to p o lo g y  o f  n a n o s tr u c tu re  ( m e s h e s ,  h y p e rcu b e -lik e ,  p y r a m id 

like, etc.),  gra p h ica l  d a ta  s tru c tu re  for  c o m p u t in g  c a n  be  d e r iv e d  (decis ion  trees  and 

d iag ram s, B o o le a n  n e tw o r k s)  u sin g  logical m e a s u r e s  b a s e d  o n  the c o n c e p t  o f  c h an g e .

L o g ic a l  m e a su r e s  in c o m p u t a t io n a l  n a n o s tr u c tu re )  ( D a t a  structure  re p re se n ta tio n ) ,  

that is, fro m  logical m e a s u r e s  u sin g  the c o n c e p t  o f  c h a n g e ,  v a r io u s  d ata  r ep rese n ta t io n s  

fo r  c o m p u t in g  can b e  d e r iv e d  (s u m -o f-p r o d u c ts ,  R e e d - M u l le r ,  Taylor-like  exp an sions,  

w o rd -le v e l  d escr ip tion s,  h y p e rc u b e s ,  a n d  2 D  a n d  3 D  d e c is io n  d iagram s).
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(P rob a bilist ic  c h a n g e )  <̂ > (S to ch a stic  c o m p u t in g )  sta te s  that physical c h a n g e  in n an o stru c 
ture c o r r e s p o n d s  to logical c h a n g e  with s o m e  p ro b a b il i ty  and any d er ived  d a ta  structure 

from  pro b ab il is t ic  c h a n g e s  will be o f  a s to ch a st ic  n ature.

(M a n y -v a lu e d  c h a n g e )  <£> (M a n y -v a lu e d  c o m p u t a t io n a l  n an o stru ctu re s)  states  that p h ys

ical c h a n g e s  in so m e  n a n o te c h n o lo g ie s  can  be  d e s c r ib e d  at a logical level o v e r  a  finite 

set o f  va lu es ,  for  e x a m p le ,  0, 1, and 2 fo r  te rn a ry  logic, o r  0, 2 , . . . ,  7  fo r  octal logic. 

T h e  c o m p u ta t io n  ad dresses  m u lt iva lu ed  lo g ic  syste m s [52].

In this sectio n , w e  giv e  the fo r m a l  defin ition  o f  c h a n g e ,  an d  in tro d u c e  a te c h n iq u e  o f  d e t e c 

tion o f  c h a n g e  using va r io u s  d a ta  structures.

5.2. Detection of Change
5.2.1. Detection of a Change in a Binary System
A  signal in a b in a ry  system  is re p r e s e n te d  by tw o lo g ica l  levels, 0 and 1. L e t  us fo r m u la te  the 

task as d e te ct io n  o f  the c h a n g e  in this signal. T h e  s im p lest  so lution  is to d e p lo y  an E X O R  
o p e r a t io n ,  m o d u lo  2 sum o f  the signal s,_, b e fo r e  an “ e v e n t ” and the signal v, a fter  the 

“ e v e n t ” (e.g., a faulty  signal); that is, ® Sj.

E x a m p l e  20. F or th e  s ig n a l d e p ic te d  in  Fig. 19, f o u r  p o s s ib le  c o m b in a tio n s  o f  th e  lo g ica l 
v a lu es  o r  s ig n a ls  0 a n d  1 a re  a n a ly ze d .

If not c h a n g e  itse lf  but d ire ct io n  o f  c h a n g e  is the m atter ,  th e n  tw o logical v a lu e s  0 and 1 can 

c h a r a c te r iz e  th e  b e h a v io r  o f  the log ic  signal s t e  {(), 1} in te rm s o f  c h a n g e ,  w h e r e  0 m ean s  

a n y  c h a n g e  o f  a signal, and 1 indicates  that o n e  o f  tw o  possib le  ch a n g e s  has o c c u rr e d  0 -»  1 
o r  1 0.

5.2.2. Detection of Change in a Switching Function
L e t  the i th input o f  a sw itch in g  fu n ctio n  have  b e e n  c h a n g e d  from  the va lu e  x ( to the o p p o s ite  

v a lu e ,  X j. T h is  c au se s  the c ircuit  o u t p u t  to  b e  c h a n g e d  fr o m  the initial va lu e .  N o t e  that v a lu es  
f ( X j )  and f ( X j )  are not n ecessarily  d ifferen t.  T h e  s im plest  w ay  to  r e c o g n iz e  w h e th e r  o r  not 

th ey  a re  d i f fe r e n t  is to  try to  find a d i f fe r e n c e  b e tw e e n  f ( x t ) and / ( * , ) .

5.2.3. Model of Single Change: Boolean Difference
A k e r s  in tro d u ce d  the c o n c e p t  o f  B o o le a n  d if fe r e n c e  [67]. F u n d a m e n ta ls  o f  B o o le a n  d i f fe r 

en tia l  c a lc u lu s  are  d e v e lo p e d  in [68, 69]. In [70], B o o le a n  d if fe r e n ce s  are use d  to find tests 

fo r  sw itching circuits. T h e o r e t ic a l  an d  ap p lied  asp e cts  h a v e  b een  studied  in [52].
T h e  B o o le a n  d i f fe r e n c e  o f  a sw itch in g  fu n ctio n  /  o f  n  v a r iab les  with resp e ct  to  a variab le  

Xj is d efin ed  by the e q u a t io n

r\ f
—  =  f ( x ] x n) © f ( x ] , . . . , . . . , X n )  (1 )
d *i  '---------- 7— ---------------- — ---------------------------

Initial function Function  with com plem ented

It fo l lo w s fr o m  the defin ition  o f  B o o le a n  d if fe r e n ce  that

~  =  f i x  1..........0 ........... x n) ® f { x ] . I ------- , x „ )
< > X , ------------------------------------------------------------------------------------

v, is rep laced  with 0 .v, is rep laced  w ith I

=  / , = „ © / , = ,  <2 )

No Ih'tJrtuH''. U &  0  — 0

No d w n g c  Detcciiiw: 1 0  1 = 0

Change 0  I D ela tion'. 0 S ' ! = i

Change 1 —> 0  Di'ta'timv. ! 8  0 =  i 
Change Change ~
0 1 t - )  0

Logic levels
No change No change

*" . • M"" v*

Figure 1̂ . The change of a binary signal and its detection (example 20).
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T h e r e f o r e ,  the sim plest  (but o p t im a l)  a lg orith m  to c a lc u la te  the B o o le a n  d i f fe r e n ce  o f  a 
sw itc h in g  fun ctio n  with resp e ct  to  a v a r ia b le  .v, includes tw o  steps:

1. R e p la c e  x , in the sw itch in g fu n ctio n  with 0 to get  a c o fa c to r  f\. =n; similarly, r e p la ce m e n t
o f  a • with 1 y ie ld s  f x =J.

2. F in d  the m o d u lo  2 sum  o f  the tw o  cofa cto rs .

E x a m p l e  21. T here a re  f o u r  c o m b in a tio n s  o f  p o s s ib le  c h a n g es  o f  th e  o u tp u t fu n c tio n  f  =  
.y, v  x : w ith  re sp ec t to  in p u t x { (.v2). T h e B o o lea n  d iffe ren ces  o f  a  sw itc h in g  fu n c tio n  f  w ith
re sp e c t to  a*, a n d  x 2 a re  c a lc u la te d  b y  E q . (2 )  in Fig. 20.

T h e  B o o le a n  d if fe r e n c e  (E q .  [1]) po ssesses  the fo l lo w in g  pro p ert ies :

1. T he B o o le a n  d i f fe r e n c e  is a sw itch in g  fun ction  c a lc u la te d  by the E xclusive O R  o p e r 

a t io n  o f  the p r im a ry  fu n ctio n  and th e  fu n ctio n  d e r iv e d  by  c o m p le m e n t in g  var iab le  a ,; 

o th e rw ise ,  it can  a lso  b e  c a lc u la te d  as E X O R  o f  c o fa c to rs  / v =n and  /  ,.

2. T h e  B o o le a n  d i f fe r e n c e  is a sw itch in g  fu n ctio n  o f  n -  1 va r ia b les  jc,, x 2, . . . ,  x i_ ] , 

Af+I, . . . ,  x n\ that is, it d o e s  not d e p e n d  on va r iab le  a*,.

3. T h e  va lu e  o f  the B o o le a n  d i f fe r e n ce  reflects  the fact o f  local c h a n g e  o f  the sw itching 

fu n ctio n  /  with resp e ct  to c h a n g in g  the i th var iab le  a,: the B o o le a n  d i f fe r e n c e  is equal 

to  0 w h e n  su ch  c h a n g e  o ccu rs ,  and  it is e q u a l  to 1 o th erw ise .

T h e  B o o le a n  d i f fe r e n c e  (E q .  [1])  has a n u m b e r  o f  l im itations, in particular: it c a n n o t  r e c 

o g n iz e  th e  d ire ct io n  o f  c h a n g e  an d  c a n n o t  r e c o g n iz e  the c h a n g e  in a fu n ctio n  w hile  c h a n g in g  

a  g r o u p  o f  variab les.  T h is  is the reaso n  fo r  e x te n d in g  the class o f  d ifferen tia l  o p erato rs .

5.2.4. Model for Simultaneous Change
C o n s id e r  the m o d e l  o f  c h a n g e  with resp ect  to  s im u lta n e o u sly  c h a n g e d  va lu es  o f  input signals. 

T h is  m o d e l  is c a l le d  B o o le a n  d if fe r e n c e  with resp ect  to  v e c t o r  o f  variab les.  F o r  a  sw itching 

fu n ctio n  /  B o o le a n  d if fe r e n c e  o f  n  va r ia b les  w ith  resp e ct  to  the v e c t o r  o f  k
v a r ia b le s  A*f|, . . . ,  x i k in € { 1 ,  . . . ,  //}, is d efin ed  as fo l lo w s

Initial function

<V t t : ---------- — ----------- : ----------- —
j * ./ (•* i ’ • • • '  > • • • '  -'/( .........  ̂n)

' ' ( • v  V,..............V,t )

® / ( a - | ,  .......... , x . ..............\-„) (3)

Function while .\f| ,.v(

Boolean difference with respect to .V|

r)/’ f)(.V|V.V2)
dV| rlv |

=  (.V| V  ,V2 ) ©  (-V| v  ,v2 )

= (0 v  ,V2) © ( 1 V .Vi) = .f2

Boolean difference with respect to x-

d f  0 ( . v j v . v 2 )

dv2 d.x->

-  (,V| v  ,v2 ) ©  (.Vj v  .v2 )

=  ( V| V  ( ))  ©  (,V| V  I ) =  ,V|

Figure 20. Computing Boolean differences for a two-inpul OR gate (example 21).
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G iv e n  k =  2, it fo l lo w s  from  Eq. (3) that

(9 ( .V „  A', )
/ ( * i .............-V .................x „ ) ® f \ x , ,  x h x . .............. v„) (4)

E x a m p l e  22. Calculate the Boolean difference o f  the switching function f  =  x tx2 Wl^1 
respect to a vector o f  variables using Eq. (4):

d f
=  / ( * , ,  a s ,  -v3) ©  f  ( * , a s a : 3 =  ( x xx 2 v x 3) © (a -, a s  v  x3)

(9 (a*, , a s )

=  A', AS ©  X3 ©  A',ASA'3 0  X]X2 ©  A'3 0  A',ASA'3 =  (A ,AS ©  A, A , ) ^

— *1 *2 *3  V  A', A2.V3

5.2.5. Model of Multiple Change: k-Ordered Boolean Differences
M u lt ip le ,  o r  ^ -o rd e re d ,  B o o le a n  d i f fe r e n ce  is d e f in e d  as

dkf
i t , ,  I  At,. I  O x . )  }dxhdxh . . . d x ik d

hither way

It fo l lo w s  fr o m  E q .  (5) that

1. H ig h -o r d e r  d i f fe r e n c e s  can  be  o b ta in e d  fr o m  s in g le -o rd e r  d if feren ce s .

2. T h e  o r d e r  o f  ca lc u lat io n  o f  the B o o le a n  d i f fe r e n c e s  d o e s  not in flu e n ce  the result.

L e t  k =  2, then the s e c o n d - o rd e r  B o o le a n  d i f fe r e n c e  with resp ect  to  v a r ia b le s  x,  and x} 
will be

* f  > i * \  (6)
dx jdXj dx i \  d x j )  Ox j V dx

hit her wav

5.2.6. Relationship of a Boolean Differences
T h e r e  is a re lat io n sh ip  b e tw e e n  the s e c o n d  o r d e r  B o o le a n  d i f fe r e n c e  (E q .  [6]) and B o o le a n  

d if fe r e n c e  with resp e ct  to a v e c t o r  o f  tw o v a r ia b le s  (E q .  [4]):

df df ^ df ^ d2f
d(xh xj )  c)Xj dxj dXfdXj

d2f  af df df_ -  J7.  — J 0  t_ 0  J
dXfdXj dXj dxj d ( x ^ x })

T h is  r e la t io n sh ip  fo r  tw o  va r ia b les  can  be  g e n e r a l iz e d  fo r  k <  n  v ar iab les ,  that is, b e tw e e n  
m u ltip le  o r  k- o r d e r e d  B o o le a n  d if fe r e n c e  (E q .  [5]) and  B o o le a n  d i f fe r e n c e  with resp e ct  to  

v e c t o r  o f  k v a r iab les  (E q .  [3]).

E x a m p l e  23. Calculation o f the two-ordered Boolean difference o f  the switching function  
f  — x ,as  v  a‘3 with respect to variables Ah as and the vector o f  variables (a \ as), is shown in 
Figure 21. To calculate Boolean difference d f  / d ( x ], as), Eq. (7) was used.

5.2.7. Symmetric Properties of Boolean Difference
By in sp ection  o f  Eq. (!  ), o n e  ean o b se r v e  the sy m m e tr y  in the co m p u tatio n :

d f\, --0 _  d f  , _ | 
dx, fix,

T h e  signal g r a p h  o f  the co m p u ta t io n  has a sy m m e tr ica l  s tru ctu re  w ell-kn o w n  as " b u t ie r l iy ' ’ 

(in signal p ro cess in g).  T h e  g rap h  input is th e  truth v e c t o r  F  o f  the given  sw itch in g  fun ctio n  

f \  and the result is the truth v e c t o r  o f  the B o o le a n  d i f fe r e n ce .
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Change

Change
a/

o(X2, *3)

Change
a/

a(jT|,x2)

Change
<___  a/

a(x,,.t3)

Change
w

act2, x3)

r)(X|, AS) 
vr/7/i respect u> vector o f

variables ( a , .  a s  )

0A| chs f l \ |d \s

=  (A" -)A‘;  ©  A | A ; ©  A }

= (A| ©  AS) AS,

= A i ASA i V A1A1A1

Figure 21. Interpretation o f  a B oolean  d ifference with respect to a vector o f  variables by . \ -hypercube (exam ple 23).

5.3. Computing of Change
In this se c t io n ,  the te c h n iq u e  for  c o m p u t a t io n  o f  B o o le a n  d i f fe r e n c e s  u s in g  a d ec is ion  tree 

a n d  an . V"-hypercube is in tro d u ced .  T h e r e  a re  tw o  a p p ro a c h es:

T h e  f ir s t  a p p ro a c h  is b ase d  on  in terp re ta t io n  o f  the decis ion  tree and ,/V-hypercube w h o se  

n o d e s  im p le m e n t  S h a n n o n  exp an sio n . T h is  a ttractive  te ch n iq u e  a llo w s  us to  get  v a l 

ues  o f  B o o le a n  d if fe r e n c e s  w ith o u t  extra  m a n ip u la t io n  o f  the d a ta  structure  (tree  or  

h y p e rcu b e );
T h e s e c o n d  a p p ro a c h  is o r ie n te d  to the D a v io  tree and a c o r r e s p o n d in g  . V-h yp ercub c 

structure .

B o th  a p p r o a c h e s  in c lu d e tw o phases: c o m p u t in g  o f  B o o le a n  d if fe r e n c e s  an d  analysis  o f  

b e h a v io r  o f  th e  sw itc h in g  fu n ctio n  in te rm s o f  c h a n g e .

5.4. Boolean Difference and V-Hypercube
T h e  p ro b le m  o f  c o m p u t a t io n  o f  a decis ion  tree o r  V -h y p e rc u b e  is fo r m u la te d  as the analysis  

o f  the b e h a v io r  o f  d a ta  s tru ctu re  in te rm s o f  c h a n g e .  T h e  e x a m p le  b e lo w  in tro d u ces  this 

te ch n iq u e .

E x a m p l e  24. T he  . V -h yp ercu b e  in  Fig. 2 2  rep re sen ts  th e  sw itc h in g  fu n c tio n  x ,as v  To 
a n a ly z e  th e  b e h a v io r  o f  th is  fu n c tio n , le t u s  d e te c t  th e  ch a n g es  a s  fo l lo w s .

Boolean difference 

dv i

(a)

B<)( >lea 11 differe/u e

M
chs

(b)

Boolean difference

j v
d v ,

Figure 22. Interpretation o f  B oolean  d ifferen ces by l -hypercube: B oolean  d ifference with respect to .v, (a), as (b). 
and as (e )  (exam ple 24).



1. B o o lea n  d iffe ren ce  w ith  resp ec t to  va r ia b le  a ,  is  c [ f / i i \’ | =  \'2X y  T he log ic  eq u a tio n  A: A;1 =  l
y ie ld s  th e  so lu tio n  x 2 v3 =  10. This sp e c if ie s  th e  c o n d it io n s  f o r  d e te c tin g  th e  ch a n g es a t  a ,:

w h en  a v y 3 =  10, a  ch a n g e  a t x ] c a u se  a  ch a n g e  a t  f .  T h is ca n  b e  seen  on  th e  d ec is io n  
tree  a n d  o n  th e  V-h yp ercu b e  (Fig. 2 2 [a ]) .

2. B o o lea n  d iffe ren ce  w ith  re sp ec t to  va r ia b le  x 2 is  d f  / d x } =  a ,  a v  T h e lo g ic  eq u a tio n  A:-v3 =  

l sp e c if ie s  th e  c o n d itio n  o f  o b se rv a tio n  a s  a  ch a n g e  a t f  w h ile  ch a n g in g  a,: a W ;  =  10 

(F ig. 2 2 [b ]) .

3. B o o le a n  d iffe ren ce  w ith  re sp ec t to  va r ia b le  a 3 is d f / d a*, =  x {x 2. T he lo g ic  e q u a tio n  av v2 = l
d e te r m in e s  th e  c o n d itio n :  A| a 2a  ̂ =  {00, 0 1 .  10} (F ig. 2 2 [ c ] ).

It w as  sh o w n  in [31] that the D a v io  d ec is io n  tree  can  b e  e m b e d d e d  in V-h yp ercub e w hich 

im p le m e n ts  positive  D a v io  exp an sion  in the nodes.

T o  c o m p u t e  B o o le a n  d if feren ce s ,  let us rew rite  po sit ive  D a v io  exp an sio n  in the fo r m

./ =  /  L,=o ® Xj ( f  |V(=n 0  ./ I v, = I)

=  © -v(.

I .cl i branch
Right branch

It fo llow s fr o m  this fo rm  that

1. B r a n c h e s  o f  the D a v io  decis ion  tree carry  in fo rm a tio n  a b o u t  B o o le a n  d if feren ce s .

2. T e rm in a l  n o d es  are  the va lu es  o f  B o o le a n  d if fe r e n c e s  fo r  c o r r e s p o n d in g  va riab le  

assign m en ts.
3. C o m p u t in g  o f  R e e d - M u l le r  co eff ic ien ts  can  b e  im p le m e n te d  on  the D a v io  d ec is io n  tree 

as a d a ta  structure.
4. R e p r e s e n ta t io n  o f  a sw itching fu n ctio n  in te rm s  o f  c h a n g e  is a u n iq u e  rep rese n ta tio n ;  

it m e a n s  that the c o rr e s p o n d in g  d ec is io n  d ia g ra m  is can on ica l.

5. T h e  v a lu e s  o f  te rm in a l  n o d e s  c o r r e s p o n d  to  c o e ff ic ie n ts  o f  log ic  T a y lo r  exp an sio n .

T h e  D a v io  tree can  b e  e m b e d d e d  into an ./V-hypercube, a n d  the p rev iou sly  m e n tio n e d  
p r o p e r t ie s  a r e  valid  fo r  that d a ta  structure as w ell.  In a d ditio n , the A -h y p e rc u b e  e n a b le s  

c o m p u t in g  o f  the R e e d - M u l le r  co eff ic ien ts/B o o lea n  d if fe r e n ce s ,  a ssu m in g  that the p ro cess in g  
is o r g a n iz e d  using p ara l le l-p ip e l in ed ,  or  systolic, p rocessin g.

E x a m p l e  25. F igure  23 sh o w s  a  D a v io  d e c is io n  tree  a n d  c o rre sp o n d in g  . V-h yp ercu b e  f o r  
a n  a rb itra ry  sw itc h in g  fu n c tio n  o f  tw o  a n d  th ree  v a r ia b le s .

E x a m p l e  26. L e t f  =  a , v  a v  T h e v a lu e s  o f  B o o le a n  d iffe ren ces  g iv e n  a ss ig n m e n ts  
x xx 2 =  { 0 0 ,0 1 ,  10, 1 1 }  are:  / (0 0 )  =  0, d f ( Q l ) / d x { =  x 2 =  1. 'd f ( \ 0 ) / d x 2 =  a , =  1, a n d  
d2f (  1 \ ) / d x xd x 2 =  1. T h ey c o rre sp o n d  to  th e  te r m in a l n o d e s  o f  th e  D a v io  tree a n d  .A -h yp ercu b e  
(F ig. 24).
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Figure 23. C om puting B oolean  d ifferences hy D avio decision  tree and \ -hypercube for a sw itching function ot 
three variables (exam ple 25).
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d.Xi dxix2

r)/( 10)

0L
Avi

/(()())

})-f( 11)

a/(0D
dx.

Figure 24. C om puting B oo lean  d ifferen ces o f  the sw itching function  /  =  .v, v  x : (exam ple 26).

O n e  can  c o n c lu d e  fro m  e x a m p le  26 that d a ta  s tru c tu re  in the fo rm  o f  a D a v io  d e c i

s ion  tree  carrie s  in fo rm a tio n  a b o u t  R e e d - M u l le r  r e p r e s e n ta t io n  o f  sw itching fu n ctio n s  and 

r e p re se n ta t io n  o f  sw itch in g  fu n ctio n s  in term s o f  c h a n g e .  T h e  e d g e s  and v a lu e s  in te r m i

nal n o d e s  o f  a D a v io  d ec is io n  tr e e  and ./V-hypercube c a rry  in fo rm a tio n  a b o u t  the b e h a v 

ior o f  a sw itching fu n ctio n . M a n ip u la t io n  o f  a d e c is io n  tree can  b e  in terp re ted  in term s 

o f  ch a n g e :  r e d u ct io n  o f  the d ec is io n  tree to a  d e c is io n  d ia g ra m  leads to m in im iza tio n  o f  

R e e d - M u l le r  e x p re s s io n  a n d  can  b e  used as a b e h a v io r a l  m o d e l  o f  this fu n ctio n  in te rm s o f  
ch an g e .

6. FAULT-TOLERANT COMPUTATION
In the d ete rm in is t ic  m o d e ls  o f  g a te s  and circuits  that w e r e  c o n s id e re d  in p r e v io u s  ch ap ters,  

the b as ic  s ta te m e n ts  are

1. T h e  input a n d  o u tp u t  signals  are  d ete rm in ist ic .

2. T h e  im p le m e n te d  logic  fu n ctio n  is p e r fo r m e d  c o rre c t ly .

In nan ocircu its , d e fe c ts  and fau lts  arise from  instability  a n d  n o ise-p ro n en ess  on  n a n o m e te r  

scales. T h e  n a tu r e  o f  n oise  s ignals  in n an o c ircu its  v a r ie s  fr o m  th e rm al  f lu ctu ation  to w ave  

in terface .  H e n c e ,  d if fe re n t  m o d e ls  are  n e e d e d  fo r  in v est ig atio n  o f  the e f fe c ts  o f  n oise ,  and 

d e v e lo p m e n t  o f  m e t h o d s  for  p ro te ct io n .  F o r  e x a m p le ,  a m o d e l  can be d e v e lo p e d  b ase d  on 

the assu m p tio n  that d es ired  signals  in circuits  a re  v e ry  noisy. In this m o d e l,  the signals  are 

m o d e le d  by the a v e r a g e  o f  s to ch a stic  p u lses  g e n e r a t e d  by sp ec ia l  devices.

T h is  c an  b e  a c h ie v e d  in n a n o te c h n o lo g y  usin g p ro b ab i l is t ic  m o d els .

T h e r e  are v a r io u s  a p p r o a c h e s  to the d e v e lo p m e n t  o f  p ro b ab il is t ic  m o d e ls ,  in particular:

1. S to c h a s tic  m o d e ls  for  n o is e -m a k in g  s ignals , in p a r t icu la r ,  M a r k o v  ch a in  m o d e ls  and 

sto chastic  p u lse  s trea m  m o d e ls  [45, 48, 7 1 ,  72].

2. N e u ra l n e tw o rk s  that use re s o u r c e s  fo r  o p t im iz a t io n ,  an d  fe e d fo r w a r d  n e tw o r k s  fo r  c o m 

puting logic  fu n ctio n s  o v e r  th resh old  e le m e n t s  [73].

3. C o m p u ta tio n a l te c h n iq u e s  th a t a re  in sp ire d  b y  b io lo g y . S o m e  c o m m o n  e x a m p le s  o f  logic  

fun ction  c a lc u la t io n  b a se d  on  b io lo g ica l ly  in sp ire d  te c h n iq u e s  include e v o lu t io n a r y  a lg o 

rithms [7 4 -7 7 ] ,  fu zzy  log ic  [78], and  artific ial  im m u n e  system s ( im m u n o lo g ic a l  c o m 

p utatio n )  [79]. T h e  sim ilarity  b e tw e e n  all k n o w n  a p p lic a t io n s  o f  a lg o r ith m s b ase d  on 

b io log ica l  p a r ad ig m s is that they util ize  th e  p a tt e r n -m a t c h in g  and  le a rn in g  m e ch a n ism s 

o f  the im m u n e  system  to p e r fo r m  d e s ir e d  system  fu n ctio n s.  B io lo g ic a l  im m u n e  system  

m o d els  are  p a r a l le l  and  distr ibuted  s tru ctu re s  that  can  be  v ie w e d  as a m u lt iag e n t  system  

(sep a rate  fu n ctio n s  are  c a r r ie d  o u t  by in d iv id u a l  a gen ts) .  T h e  im m u n e  system  m o d el  

is a m o d e l  o f  a d a p tiv e  p ro c e sse s  at the lo ca l  level,  resu ltin g  in useful b e h a v io r  at the 

g lo b a l  level.
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B e lo w , so m e  o f  s tate-o f-th e-art  m o d els  b a s e d  on  the assu m p tio n  o f  ra n d o m  fa cto rs  arc 
listed:

1. M o d e ls  f o r  fa u l ts  d e te c tio n  in w ires. For e x a m p le ,  stuck-at-0 or  stuck-at-1  is a fault type 

that c a u se s  a  w ire  to b e  stuck  at z e r o  o r  o n e  re sp e ct iv e ly  [70].
2. S to c h a s tic  (p rob ab ilis t ic)  m o d els  o f  b e h a v io r  o f  g a te s  and c ircuits  [71, 72]. In these 

m o d els ,  to  e s t im ate  signal probabilities, o n e  has to  c a lc u la te  the sw itch in g  activity  oi 

th e  internal n o d e s  o f  the circuit,
3. E rro r  co rrec tio n  c o d e s  c o rre c t  erro rs  in o r d e r  to  e n su r e  d a ta  fidelity. T h e  ran d o m  error 

co rr e c t io n  c o d e s  re fers  to its ability  to  c o r r e c t  ra n d o m  bit errors w ith in  a c o d e  w o rd  [66].

4. M o d e l o f  sw itc h in g  a c tiv ity ; or  transition  den sity  m o d e l  is b ased  on  the c o n c e p t  o f  ch an ge 

[80]. T h e  m o d e l  is rep rese n te d  in term s o f  B o o le a n  d ifferen ce s .

6.1. Von Neumann’s Model of Reliable Computation 
with Unreliable Components

T h e  study  o f  re liab le  c o m p u ta t io n  by u n re l ia b le  d e v ic e s  o r ig in ate s  w ith  von  N e u m a n n  
[43, 81]. H e  d e v e lo p e d  the m u ltip lexin g te ch n iq u e  k n o w n  as von N e u m a n n 's  m o d e l  o f  c o m 

p utin g . In this m o d e l ,  ea ch  w ire  in a circuit is re p la c e d  by a b u n d le  o f  w ires  on w hich  a 

m a jo rity  v o te  is c o n d u c te d  to establish  its va lu e .  T h e  c lassic  von N e u m a n n ’s m o d e l  is the 
fo c u s  o f  m an y  recen t invest igations [44, 82], In this m o d e l,  it is a ssu m ed  that N A N D  is an 

u n re l ia b le  ga te ,  the fo l lo w in g  te ch n iq u e  is im p le m e n te d :

1. R e p la c e  e a c h  input o f  the N A N D  gate  as w ell  as its o u tp u t  by a b u n d le  o f  N  lines,

2. D u p l ic a te  the N A N D  N  times.
3. P erfo rm  a ran d o m  p e rm u tatio n  o f  the input signals: ea ch  signal fro m  th e  first input 

b u n d le  is r a n d o m ly  p aired  with a signal fro m  the s e c o n d  input b un dle  to  fo r m  the input 

p a ir  o f  o n e  o f  the d u p lica te d  N A N D s .

T h e  key  to  this a p p r o a c h  is m o d ify in g  the N A N D  g a te  (an  arb itrary  n etw o rk ,  in g e n e r a l)  by 

rep la c in g  ea c h  in te rco n n e c t  with a paralle l  b u n d le  o f  in te rco n n e c ts  and  a stra teg y  o f  ran d om  
in te r co n n e c t io n s  that p re v e n ts  the p ro p a g a t io n  o f  errors. In o th e r  w o rd s,  p a ra lle l iz a tio n  by 

b u n d le s  an d  r a n d o m  in te rco n n e ctio n s  can b e  v ie w e d  as a m e t h o d  fo r  in c rea s in g  th e  reliability  

o f  the N A N D  e le m e n t .

6.2. Probabilistic Behavior of Nanodevices
In the pro b ab il is t ic  m o d e ls ,  it is assu m ed  that

1. T h e  input a n d  o u tp u t  signals are p e r fo r m e d  within so m e  p ro b ab il i ty  b e c a u s e  o f  noisy 

signals.
2. T h e  im p le m e n te d  log ic  fun ctio n  is p e r fo r m e d  w ith in  s o m e  p ro b a b il i ty  b e c a u s e  o f  the 

n atu re  o f  n an o d ev ices .

N o ise  in d igital c ircuits  is defin ed  as any d ev iat io n  o f  a signal fro m  its s tab le  v a lu e  and 

can  stem  fr o m  s o u rc e s  as v a r ie d  as physical an d  c h e m ic a l  p ro ce sse s  in dev ice s ,  m e a s u r e m e n t  

lim itat ions,  and  sto ch astic  s im ulat ion  p ro ce d u re s .  N o is e  can  a f fe c t  tim ing, c a u s in g  a d e la y  in 
fa ilu re ,  increase p o w e r  c o n s u m p tio n ,  and c au se  fu n ctio n  fa i lu re  b e c a u s e  o f  signal d ev iatio n . 

It is im p o rta n t  to  u n d e rsta n d  and predict the e f fe c ts  o f  n oise. A s  n oise  c an  h a ve  a variety  

o f  sources;  d i f fe r e n t  n oise  m o d els  that are e f fe c t iv e  in d if fe re n t  s ituation s are d e s ira b le ,  in 
particu lar,

1. M u tu a l  in d u cta n c e  noise: w hen  signal sw itching c a u se s  transient cu rre n t  to f lo w  through 

the lo o p  fo r m e d  by the signal w ire  and cu rren t  return  path, a c h a n g in g  m a g n e t ic  field 

is c i e a t e d  a n d  m u tu a l  in d u ctan ce  noise occurs.

2. T h e r m a l  noise: e lec tr ica l  p o w e r  d istribution  and signal transm ission  th r o u g h  in te r c o n 

n ectio n s  are  a lw ays a c c o m p a n ie d  by th e rm al  noise  d u e  to s e lf-h e a tin g  c a u s e d  by  the 

c u rre n t  flow. T h e r m a l  n oise  affects  b oth  in terco n n ect  design  and reliability.

It is r e a so n a b le  to d istin guish  the e f fe cts  o f  noise in tran sm ission  an d  s to ra g e  o f  in fo r m a 

tion and p r o c e ss in g  o f  in fo rm a tion . F igu re  25 illustrates th e  ran d o m  fa cto rs  that  influence 
th e  p e r fo r m a n c e  o f  a n an o d ev ice .
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Figure 25. R andom  factors that influence the perform ance o f  a nanodevice.

D e te r m in is t ic  m o d e ls  o p e r a te  w ith  n o ise - fre e  signals, g a te s ,  n etw orks,  and  fa u lt- free  h y p e r
c u b e  stru ctu res.

P ro b a bil is t ic  m o d e ls  assum e that input signals are  a p p l ie d  to ga te s  w ith  so m e  level o f  p r o b 

ability  a n d  c o r r e c t  o u tp u t  signals  are  c a lc u la te d  with s o m e  level o f  prob ab ility .  W h e n  noise 

is a l lo w e d ,  th e  sw itch in g  fu n ctio n  is r e p la c e d  with a r a n d o m  fu n ctio n  a n d  the co n fig u ratio n  

is a set o f  r a n d o m  variables.

It is e ss e n tia l  that input a n d  o u tp u t  signals  o f  n a n o g a te s  a re  d e sc r ib e d  by additive  or  

m u lt ip l ica t iv e  exp ression  o f  b o th  noise  and the d esired  s ignal.  O f t e n  the desired  signal is very  

noisy. T h is  m e a n s  that a special te c h n iq u e  m ust be utilized  to  extract  the desired  signal fro m  

the n o isy  signal.  T h e s e  m e th o d s  are  w ell  kn o w n  and  w id e ly  used  in c o m m u n ic a t io n  [47, 48]. 

H o w e v e r ,  th e se  a re  costly  m e th o d s ,  and the ir  tech n ica l  im p le m e n ta t io n  is c o m p lic ate d .  It 

is ra th e r  im p ractica l  to  apply  th e se  m e t h o d s  in n a n o c irc u it  design, a n d  o th e r  m o d e ls  are 

n e e d e d  to so lv e  the p r o b le m  o f  fau lt  to le ra n t  c o m p u ta t io n  in n an ocircuits ,  even  at the level 

o f  a sin gle  n a n o g a te .

6.2.1. Neural Networks
N e u r a l  N e tw o r k  can  b e  d efin ed  as a c o m p u t a t io n a l  p a r a d ig m  a lte rn a tiv e  to  the co n v e n t io n a l  

vo n  N e u m a n n  m o d e l.  T h e  c o m p u ta t io n a l  p o ten tia l  a n d  limits o f  co n v e n tio n a l  c o m p u t in g  

m o d els  are  w e l l  u n d e rsto o d  in te rm s  o f  c lassical m o d e ls  such as the T u r in g  m a ch in e . M a n y  

im p o rta n t  results  have  b e e n  a c h ie v e d  in invest igation  o f  the c o m p u ta t io n a l  p o w e r  o f  n e u 

ral n e tw o r k s  by c o m p a riso n  with c o n v e n t io n a l  c o m p u ta t io n a l  too ls  such  as finite a u to m a ta ,  

T u r in g  m a ch in es ,  and  log ic  circuits. E x a m p le s  o f  d e p lo y m e n t  o f  this a p p r o a c h  to w a rd  nano- 

e le c tr o n ic  c irc u its  are ce llu la r  n eu ra l  n e tw o r k s  [40] and  n e u ro m o r p h ic  n e tw o rk s  [83].

6.2.2. Threshold Networks
L o g ie  c ircu it  design  b ase d  on th resh old  g a te s  can be c o n s id e re d  as an a ltern a tive  to  tra

dition al lo g ic  g a te  d esig n  p r o c e d u r e .  T h e  im p le m e n ta t io n  o f  a  m assive ly  in te r co n n e cte d  

n e tw o r k  o f  th re sh o ld  ga te s  is p o ss ib le  [73J. It w a s  sh o w n , that m u lt ip le-a d d it io n ,  m u lt ip l ic a

tion, division, a n d  sortin g  can b e  im p le m e n te d  by p o ly n o m ia l-s iz e  th resh o ld  c ircuits  o f  small 

dep th . Form ally ,  a th resh old  g a te  is d e sc r ib e d  by a th re sh o ld  d ec is ion  ( l in early  se p a ra b le )  

fu n ctio n . T h is  pr in c ip le  is a g e n e ra l  o n e  in and  o f  itself, so  s im p le  lo g ic  ga tes,  such  as A N D  

and O R  ga te s ,  a re  m e r e ly  sp ecia l  cases  o f  the th resh o ld  g a te .  A n  e x a m p le  o f  im p le m e n ta 

tion o f  th resh o ld  log ic  circuit usin g n a n o e le c tr o n ic s  is a d d e rs  b ase d  on  reso n an t  tu n n e lin g  
d ev ice s  [84].

6.2.3. Stochastic Feedforward Neural Networks
A n  e x a m p le  o f  these  is a s to chastic  fe e d fo r w a r d  n eu ra l  n e tw o r k  built on  noisy sp ik in g n e u 

rons, w h ich  h a v e  b e e n  d e v e lo p e d  to  m o d e l  b io lo g ic a l  n e u ro n s  [85]. T h e  im p o rta n t  p r o p e r t ie s  

o t th e se  n e tw o rk s  are as follow s:

l- A n  a rb itrary  sw itching fun ctio n  can  b e  im p le m e n te d  by a suffic ien t large n e tw o rk  o f  

n oisy  sp ik in g  n e u ro n s  with an a rb itra r ily  high p ro b ab il i ty  o f  c o rrec tn ess .

2. A n  a rb itrary  d ete rm in ist ic  finite a u to m a tio n  can  b e  s im u lated  by  a n e tw o r k  o f  noisy 

sp ik in g  n eu ro n s  with an arb itrar ily  h igh pro b ab il i ty  o f  c orrectn ess .
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T h e  basic  te rm in o lo g y  o f  fau lt - to leran t  c o m p u t in g  includes:

R o b u s tn e s s  to  errors  is the ability  o f  a c o m p u t e r  system  to o p e r a te  c o rr e c t ly  in the presence 

o f  errors.

F ault to le ra n c e  is the ability  o f  a c o m p u te r  system  to r e c o v e r  fr o m  transient erro rs  during 

c o m p u tin g .

D e fe c t to le ra n c e  is the ability  o f  a c o m p u t e r  system  to o p e r a te  co rr e c t ly  in the p r e s e n c e  of 

p e r m a n e n t  h a rd w a re  erro rs  that e m e rg e d  in the m a n u fa ctu r in g  process.

6.3.1. Techniques
Fau lt-to leran t te ch n iq u e s  are basically  built on tw o a p p ro a c h es :

1. R e d u n d a n c y  ( R - fo ld  m o d u la r  and re c o n fig u ra tio n )  a ch ie v e s  to le ra n c e  to  faults b> 

e m p lo y in g  R  co p ie s  o f  a unit [82, 86].
2. S to c h a st ic  c o m p u t in g  a c h ie v e s  to le ra n ce  to fau lts  by e m p lo y in g  statistical m o d els  in 

w h ich  d ete rm in ist ic  log ic  signals  are rep la ce d  b y  r a n d o m  v a r ia b le s  [71 ,  72, 87].

E x a m p l e  27. L e t B o o le a n  va ria b les  .v, a n d  x 2 c o r r e sp o n d  to  s to c h a s tic  p u ls e  s ig n a ls  w ith  
a vera g es E ( .v ,)  a n d  E ( x 2). S u p p o se  th ese  p u lse  s tr e a m s  a re  in d e p e n d e n t. It is  p o s s ib le  to  f in d  
lo g ic  o p e ra tio n s  th a t c o rre sp o n d  to  th e  su m  E ( x  j )  -I- E ( x 2) a n d  p r o d u c t E ( x { ) x  E ( x 2) o f  th ese  
averages .

S o  far, the first, arch itectu ra l,  ap p ro a c h  has b een  m ain ly  in vest ig ated  in resea rch  on  the 

design  o f  fa u lt - to leran t  n a n o d e v ic e s  [12, 13, 44, 88]. A  fe w  a tte m p ts  have  b een  m a d e  in the 

seco n d  d ire ct io n , s to ch a stic  c o m p u t in g  on n an o circu its  [31, 89].

6.3.2. Hierarchical Levels
H ie ra rc h ica l  levels  o f  fau lt -to leran t  c o m p u t in g  consist  o f

1. T h e  b asic  prim itives o f  a system . In the s im p lest  case ,  the prim itives  are  s im ilar  to  a 

l ibrary o f  cells  in co n v e n t io n a l  design. H o w e v e r ,  the c o m p le x ity  o f  p r im itives  d e p e n d s  

o n  the te ch n o lo g y .

2. A  finite set o f  pr im itives  m a k e s  up m acro p r im it ive s ,  w h ich  are  the sm allest  p r o c e s 
sors p o ssib le  within  the a sso c ia ted  m em o ry .  T h is  is s im ilar  to the m ic r o p ro c e s s o r  in 

c o n v e n t io n a l  systems.

3. A  finite set o f  m a cr o p r im itiv e s  m a ke s  up a system  sim ilar  to  the o r g a n iz a t io n  o f  m u lt i

p ro c e s s o r  systems.

4. T h e  system  m a k e s  u p  a d istr ibuted  set o f  systems. T h is  is the highest level o f  o r g a n i z a 

tion o f  c o n v e n t io n a l  c o m p u t e r  systems.

E x a m p l e  28. A  4D  h y p e rc u b e  can  b e  reco g n ized  a s  a  d is tr ib u te d  ( tw o  c o n n e c te d  3 D  hyper- 
c u b e s )  a n d  m u ltip ro c e s s o r  sy s te m  (ea ch  n o d e  c o rre sp o n d s  to  p r o c e s s o r ) .

N o ise  is b ut o n e  a sp e ct  o f  the e f fe c t  o f  erro rs  on  the p ractica l  im p le m e n ta t io n  o f  c o m 

p uting circuits  and  systems. P e rm a n e n t  d e fe cts  a f fe c t in g  c o m p u t in g  re s o u r c e s  d u r in g  the 

m a n u fa c tu re  o f  th e  system  and  within  their  su b se q u e n t  l i fetim e a re  an e n g in e e r in g  p ro b lem . 

R e c o n f ig u r a b ie  and  se lf-re p a ir in g  arch itectu res  are  used  to solve  this p ro b le m .

In particu la r,  e rro r-a d ap tiv e  a rch itectu ra l  a p p r o a c h e s  such  as. r e c o n fig u ra b ie  a rc h itec tu res ,  

and n eu ra l- l ik e  n etw ork  with train in g can be e m p lo y e d .

T h e  next level o f  this h iera rch y  is the level o f  se lf-rep lic a ted ,  se lf-rep a irin g , and s e l f 

a ssem b lin g  system s. A t  this level,  a system , for e x a m p le ,  can  rep licate  itself, g iv in g  rise to  a 

p o p u la t io n  o f  identical systems.

From  the a b o v e  fo l lo w  d if fe re n t  fau lt-to leran t c o m p u t in g  m odels:

1. P ro b a b ilis tic  fa u lt- to le r a n t c o m p u tin g  m o d e ls  o f  n a n o g a te s  w hich  relv on  the o b se rv a tio n  

o f  the m ec h a n ism  o f  n an o d e v ic e s ,  based on the pro b ab il is t ic  b e h a v io r  o f  n an o stru ctu re s  

(e lec tro n s ,  m o le c u le s )  [3 J.

6.3. Fault-Tolerant Computing
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2. P ro b a b ilis tic  b e h a v io r  o f  c ir c u its  a n d  sys tem s . A t  these levels the p ro bab ility  o f  g e t t in g  

ta iled  c o m p o n e n t s  b e c o m e s  higher. T h is  a p p r o a c h  is b ase d  on  the idea  o f  in co rp o ra tin g  

into  the c ircu it  and  system  a “ gu ard"  against fa ilures [12, 44, 88).

E x a m p l e  29. In th e  p re s e n c e  o f  fa u l ts ,  a fa u lt- to le ra n t c ircu it o r  sy s tem  recon figu res i ts e lf  
to  e x c lu d e  th e  fault}' e le m e n ts . N o rm a lly , it is ex p ec ted  f o r  a  c ircu it a n d  s y s te m , u p o n  reco n fig u 
r a t io n , to  e n c o m p a s s  a ll  th e  h e a lth y  e le m e n ts  w h en ever  p o s s ib le . A  sy s tem  s o  reco n fig u red  m a y  
o r  m a y  n o t ch a n g e  its  to p o lo g y . Id e a lly , a fa u lt- to le r a n t design  re ta in s  th e  s a m e  sy s tem  to p o lo g y  
a fte r  Jau Its a rise .

A n  e x a m p le  o f  an a d a p t iv e ly  c o n f ig u re d  architecture ,  c a lled  n e u r o m o r p h ic  n etw o rk s  with 

s in g le -e le c tr o n  la tch in g  sw itch es  as n a n o sc a le  synapses  [83]. T h e  n e tw o rk  r e q u ire  train ing to 

b e  u sefu l  fo r  so lv in g  p r o b le m s  o f  pattern  recogn ition  and signal processin g.

A n o t h e r  a p p r o a c h ,  a fo r m a l  prob ab ilist ic  f r a m e w o rk  fo r  a rec o n fig u ra b le  a rch itectu re  

w ith o u t  train in g is b ase d  on  M a r k o v  r a n d o m  field [89]. In this m o d e l  (not g r o u n d e d  in ph ys

ical d e v ic e  s tru ctu re  as yet) ,  a  lo g ic  c ircu it  is m a p p e d  into a M a r k o v  r a n d o m  field that is 

a g r a p h  in d ic at in g  the n e ig h b o r h o o d  re lat io n s  o f  the circuit nodes.  T h is  graph  is used in 

p ro b a b il i ty  m a xim iza tio n  p ro cess ,  a im e d  at c h ara cte r iza t io n  o f  circuit  co n fig u ra tio n s  fo r  the 

best th e rm a l  noise  reliab ility  (e x p re s se d  in term s o f  logic  signal errors).

6.4. Stochastic Models of Switching Gates
In this sect io n , m o d e ls  b a se d  on  re l iab le  ga te s  with s to chastic  in p ut s trea m s are  co n s id e re d  

[31, 45 ,  46]. F ig u r e  26 i l lustrates this m o d e l .  I f  the input s to ch astic  s trea m s are in d e p e n d e n t  

( te ch n ica l ly  this m e a n s  that in d e p e n d e n t  g e n e ra to rs  o f  ran d om  p u lses  a re  used  with so m e  
a d ditio n a l too ls  fo r  d e c o r r e la t io n  o f  signals) with E ( x ,) and E ( x 2),  the o u tp u t  is d escr ib ed  

by th e  e q u a t io n  E ( f )  =  E ( x ]) x  E ( x 2).  T h e n  fo llow s the tra n sfo rm a tio n  o f  the v a lu e s  to  the 
ran ge [0, ]].

E x a m p l e  30. G iv e n  th e  d e te r m in is t ic  s ig n a l x  e  {(), 1}, g en era te  th is  s ig n a l w ith  p r o b a 
b ility  p { x ) .  T he s im p le s t  m o d e l  is  p ( x )  — x  ■ r  w h ere  r  € {0, 1} is  a  r a n d o m  va r ia b le  w ith  
p r o b a b ili ty  p ( r ) .

E x a m p l e  31. Im p le m e n ta t io n  o f  th e  m o d e l  f o r  g en era tin g  a  s ig n a l w ith  a  g iven  p ro b a b ili ty  
is sh o w n  in Fig. 27 (sy n c h ro n iza tio n  is n o t  sh o w n ) . T his illu s tra tes  th e  p o s s ib il i ty  o f  g en era tin g  a 
s ig n a l w ith  a  g iven  p r o b a b i li ty . F or ex a m p le , i f  p ( r )  — 1, th e  o u tp u t is  a  s ig n a l x  w ith  p ro b a b ili ty  
p ( x )  =  1. O n  th e  b a s is  o f  th is  m o d e l  it is  p o s s ib le  to  s tu d y  th e  s im p le s t fe a tu re s  o f  p r o b a b ilis tic  
c o m p u ta tio n .

6.4.1. The Model of a Gate for Input Random Pulse Streams
L e t  us a n a lyze  th e  o u tp u t  o f  a  g a te  that  im p lem e n ts  an e le m e n ta r y  sw itching fu n ctio n  for  

input in d e p e n d e n t  r a n d o m  p u lse  s tr e a m s as Os and Is. A  b inary  s to ch ast ic  pulse  stream  

is d e f in e d  as a se q u e n c e  o f  b in a ry  digits, o r  bits. T h e  in fo rm a tio n  in a pulse  stream  is 

c o n ta in e d  in the p r im ary  statistics o f  th e  bit stream , or  the pro b ab il i ty  o f  any given  bit in 

the s trea m  b e in g  a log ic  I. H e n c e ,  the o u tp u t  o f  a gate  will g e n e ra l ly  b e  in the fo r m  o f  a 

n o n stat io n a ry  B e rn o u l l i  se q u e n c e .  S u ch  a s e q u e n c e  can  be c o n s id e r e d  in pro b ab il is t ic  term s 

as a d e te rm in is t ic  signal w ith  s u p e r im p o s e d  noise. S u p p o se  that  statistical ch aracte r is t ics  o f  

these s trea m s are  k n o w n  (i.e., c an  be m e a s u r e d ) .  In o th e r  w o rd s ,  th e se  s tr e a m s carry  a signal 

by statistical ch a ra cte r is t ics  (a single e v e n t  carrie s  very  little in fo rm a tio n ,  it is not e n o u g h  
fo r  d ec is io n  m a kin g).

Pulse stream E(x{)

II I II
Pulse stream

Hie averages o f  the stochastic pulse 
stream o f  input and output signals are 
£ (.v ,). £(.v: ) and E{f )  = £ U ‘j ) x  E[.\2).

Pulse stream E(x2)

Figure 2(». Stochastic pulse model of computing.
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Signal

0 0 0Qm EL —
Random pulse stream

Deterministic si final .v is transmitted to 
output with probability p{r\.

Figure 27. M odel for generating the signal binary x  with probability p(r).

T h e  sto ch astic  p u lse  stream  m o d el  states that

1. Input s ign als  a re  m o d e le d  by s to ch a st ic  p ulse  s tr e a m s with k n o w n  characteristics.

2. T h e  o u tp u t  signals  are c a lc u la te d  as an a v e r a g e  o f  statistical characteristics.

T h e  g e n e r a te d  p ro b ab ility  o f  a s e q u e n c e  o f  logic  levels  c o rr e sp o n d s  to the relat ive  f r e 

q u e n c y  o f  1 lo g ic  levels  in a sufficiently  lo n g  s e q u e n c e .  A  p r o b a b il i ty  can n o t b e  m e a su r e d  

exa ct ly  b ut o n ly  est im a te d  as the relative  f r e q u e n c y  o f  I logic  level in a suffic iently  lo n g  
sa m p le .

T h e  sto ch a stic  c o m p u t e r  in tro d u c e s  its ow n  erro rs  in the fo rm  o f  ran d om  variance*. If w e  

o b s e rv e  a s e q u e n c e  o f  N  lo g ic  levels  and k  o f  them  are  1, then  the est im a te d  g e n e ra t in g  

p r o b a b il i ty  is p  =  k / N . T h e  s a m p lin g  d istribution  o f  the va lu e  o f  k  is b in om ia l,  and  h e n c e  

the sta n da rd  d e v ia t io n  o f  the est im ate d  p ro b ab il i ty  /) from  the true p ro b ab il i ty  p  is <r(p) =  
[ p {  1 -  p ) / N } ]/2.

H e n c e  the a c c u r a c y  in est im atio n  o f  a g e n e r a te d  p ro b ab il i ty  in creases  as the sq u are  root 

o f  the len gth  o f  th e  se q u e n c e  ex a m in e d ,  that  is, the sq u a r e  root o f  the len gth , o r  tim e, o f  

c o m p u ta t io n .
T h e r e  a re  sev era l  fe a tu r e s  that d istinguish  classica l  c o m p u ta t io n  an d  sto ch astic  

c o m p u ta t io n :

1. A  signal is r e p r e s e n te d  by the p rob ab ility  that a log ic  level b e  1 o r  0 at a c lo ck  pulse.

2. R a n d o m  n oise  is b e in g  d e l ib e ra te ly  in tro d u c e d  into the data; usually, noise distribution  
is n orm a l.

3. A  q u an tity  is re p r e se n te d  by a c lo ck e d  s e q u e n c e  o f  logic  levels  g e n e r a te d  by a ran d o m  

process:  the successive  levels are  statistically  in d e p e n d e n t ,  and the p ro b ability  o f  the 

log ic  level  b e in g  O N  is a  m ea su re  o f  that quan tity .

4. A r i th m e t ic  o p e r a t io n s  are  p e r fo r m e d  via the c o m p le t e ly  ra n d o m  data, and the p r o b a 
bility that  a lo g ic  level will be O N  o r  O F F  is d e te r m in e d .  Its a ctual  va lu e  is a c h a n c e  

e v e n t  w h ic h  c a n n o t  be  p red ic ted ,  and  rep e t i t io n  o f  a c o m p u ta t io n  w ill  g iv e  rise to  a 

d i f fe re n t  s e q u e n c e  o f  lo g ic  levels.

In a c o n v e n t io n a l  co m p u te r ,  logic  levels re p re se n t  d a ta  c h a n g e  d c te rm in is t ic a l ly  fr o m  v a lu e  

to  v a lu e  as th e  c o m p u t a t io n  p ro cee d s .  I f  the c o m p u t a t io n  is re p e a te d ,  th e  s a m e  s e q u e n c e  
o f  logic  lev e ls  will o c cu r.  N o t e  that unlike b in a iy  radix ar ith m e tic ,  s to ch astic  a r ith m e tic  is 

ro b u st  in the p r e s e n c e  o f  noise/single bit fault, an d  a c c u r a c y  m ay b e  c o n tro l le d  usin g the 
d im en sio n  o f  tim e.

I f  the input distribution  is u n co n stra in ed ,  B e r n o u l l i  s e q u e n c e s  can be used  for fo rm a l  

m o d elin g .  T h is  m e a n s  that

1. T h e  p ro b a b il i ty  o f  a given  bit b e in g  a 1 is in d e p e n d e n t  o f  the va lu es  o f  a n y  p r e v io u s  bits.

2. E le m e n t s '  p ro c e ss in g  fu n ctio n s  are e v a lu a te d  on ly  with resp e ct  to their  o u t p u ts ’ primary' 

statistics. T h e  o u tp u ts  are  not, in g e n e ra l ,  B e r n o u l l i  se q u e n c e s .

3. In th e  case  o f  p r o ce ss in g  e le m e n ts  with m u lt ip le  inputs, the inputs are  u n c o r r e la te d  

with e a c h  oth er .

E x a m p l e  32. Iti T abic  4 p r o b a b ilis tic  p a r a m e te r s  o f  e le m e n ta ry  sw itc h in g  fu n c t io n s  f o r  
s to c h a s tic  c o m p u tin g  a rc  g iven , w h ere  a u to c o r re la tio n  fu n c tio n  is  d e f in e d  a s  K ,  ( t ) =  £ ’[( /  ( 0  ~  

£ ( / ) ) ( / ( '  -  r )  -  £ ( / ) ) ] .

It fo l lo w s from  T a b le  4 that, fo r  e x a m p le ,  for  s to ch a stic  c o m p u t in g  o f  a N O T  fu n ctio n , 

w e  a ssu m e that input signal .v is a s to ch astic  p u lse  s tream  c h a r a c te r iz e d  by the pro b ab il i ty
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I £ ( .v , ) / : (a * , )  4- Aw', ,, .v, and ,v> are dependent

£ ( . v , )/•. ( a: ) otherwise

I E  (.Vi) +  E(.x-) -  £ (  x . ) F { \ )  -  A , .v, and .v, are dependenti _

£ ( .y , ) -f E (.v: ) — L ( x | ) £  {x: ) otherwise

! 1 -  £ ( a y ) £ ( a .  ) -  K x ,, x,  and x, are dependent

I -  £  ( a , )  E  ( . \ \ ) ot he rwise

! l -  £ ( . v , ) -  £ ( a \ )  +  £ ( a , ) £ ( a , )  +  K.  .v, and a\ are  d ep e n d e n t
’ -

I -  £ ( . y , ) -  £  (.v: ) -I- £  ( a-i ) £  ( a : ) otherwise

( £ ( A i ) +  £ ( a 0  -  2 £ ( a , ) £ ( . y0  -  2 K ,  a , and a , are dependent  
E X O R  £ ( / )  =  ' 1 -

| £ ( a ,)  +  £ ( a\ )  -  2 £ ( a , ) £ ( a : ) otherwise
p ( x )  and  the a u to c o r re la t io n  fu n ctio n  K A( r x ).  T h e  m ea n  o f  the o u tp u t  signal is £ ( / )  =  

p ( f ) ,  and h e n c e  p ( x )  — 1 — p ( x )  — 1 -  E ( x ) .  B y  a n a lo gy , if  the input pulse s trea m s are 

in d e p e n d e n t

A N D  g a te  /  =  x {x 2 is m o d e le d  by E ( f )  =  p xp 2 

O R  g a te  f  =  x { v  x 2 is m o d e le d  by £ ( / )  =  /;,  +  p 2 — P \ P 2

N O R  gate  /  =  x x v ^ r : is m o d e le d  by £ ( / )  =  1 -  /?, -  p 2 +  /;,/>>

E X O R  g a te  f  =  Jtj 0  x 2 is m o d e le d  by £ ( / )  =  /?| +  /?2 — 2 p \ P z

N O T - E X O R  g a te  /  =  x x © x 2is m o d e le d  by £ ( / )  =  1 -  -  /;2 -j- 2/?,/;2

w h ere  =  £ ( * , )  and  p 2 =  E ( x 2).

E x a m p l e  33. L e t th e  in p u ts  o f  O R  g a te  x ] e  {0,1} a n d  x 2 e  {0,1} b e  m u tu a lly
in d e p e n d e n t w ith  p ro b a b ili tie s  p ,  =  p ( x {) a n d  p 2 =  p ( x 2) co rre sp o n d in g ly  (F ig. 28). T he
o u tp u t p ro b a b ility ’ c a n  b e  e v a lu a te d  a s  th e  p r o b a b i li ty  o f  a t  lea s t o n e  e v e n t x { a n d  x 2, 
th a t is ,

p  =  1 -  (1 -  p , ) ( j  -  p 2) =  P)  +  p 2 -  p ] p 2.

S u p p o s in g  p x — 0.8, p 2 =  0.9, co rrec t o u tp u t is  p r o d u c e d  w ith  a  p ro b a b ili ty  o f  p  =  0.8 +  0.9 —

0.8 ■ 0.9 =  0.98. I f  p { =  p 2 =  1, th e  in p u ts  b e c o m e  d e te r m in is t ic  a n d  f  — .Vj +  x 2 — x xx 2j th a t  
^  /  =  v | v  x 2.

N o te  that in the a b o v e  e x a m p le ,  in g e n e ra l ,  the m e a n  £ ( / )  an d  va r ia n ce  D ( y )  o f  the o u tp u t  
v are  e q u a l  to

£ ( / )  =  P\  +P2 ~ P\P2 = P 
D ( f )  =  p - ( l - p )

S toch a stic  c o m p u t in g  can  b e  in terp re ted  by  d e c is io n  trees  and  . V -h yp ercu b e s .
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F au lt-to leran t p r o p e r t ie s  o f  a h y p e rcu b e - lik e  s tru ctu re s  are  w ell  s tu d ie d  and used in c o m 
p u tin g  systems. H e r e ,  w e  briefly  rev ie w  the basic  p r in c ip les  o f  fa u lt - to le r an t  c o m p u t in g  via 

h y p e rc u b e - lik e  s tru ctu res .
B e lo w , the b as ic  defin it io n s  o f  fault to le ra n c e  c o m p u t in g  in h y p e rc u b e  a n d  h ypercube-like  

s tru c tu re s  are given :

1. A  h y p e rc u b e  c o m p u t in g  structure is c a l le d  a fau lty  h y p e r c u b e  i f  it c o n ta in s  a n y  iault\ 

n o d e  ( c o m p u t in g  d e v ic e )  o r  c o m m u n ic a t io n  link. F o r  h y p e rc u b e - lik e  structures  o f  large 

d im en sion s ,  the n u m b e r  o f  p ro c ess in g  e le m e n t s  is ve ry  large  an d  h e n c e  the probability  
o f  o c c u rr e n c e  o f  faults  increases.

2. A  n e tw o rk  is ro b u st  if  its p e r fo rm a n c e  d o e s  not d e c r e a s e  significan tly  w h e n  its to p o lo g )  
ch an ge s .

3. S in ce  e f f ic ien t  c o o p e r a t io n  b etw e en  n o n fa u lty  c o m p u t in g  d e v ice s  is desirab le ,  o n e  m e a 

sure fo r  ro b u s tn e ss  is the n etw o rk  c o n n ectiv ity ,  w h ich  is d efin ed  as the n u m b e r  o f  node 

o r  link fa i lu res  that can  b e  a llo w e d  w ith o u t  d isru p tin g  the system .
4. F au lt m o d e ls  o f  a h y p e rc u b e  c o m p u t in g  system  a re  d e f in e d  fr o m  su b cu b e  and  node 

reliability.

5. M u ltip le  fa u l t  m o d e ls  o f  a h y p e rcu b e  c o m p u t in g  system  are  c a lc u la te d  b ased  on the 

pro b ab il i ty  that m a n y  faults in the n o d e  o r  s u b c u b e  exist.
6. T h e  reliability' o f  a h y p e rc u b e -b a se d  c o m p u t in g  system  is d e f in e d  as the p ro bab ility  that 

the system  has su rvived  the interval [0, t]  g iven  that it w a s  o p e r a t io n a l  at tim e t =  0, 
w h ere  / is the tim e. U sually ,  reliability  is used  in m o d e ls  o f  c o m p u t in g  system s in w hich 

rep a ir  c a n n o t  ta k e  place .
7. T h e  te r m in a l re lia b ility  o f  a c o m p u t e r  system  is d e f in e d  as the reliability  o f  c o m p u te r  

d e v ice s  in n o d e s  o f  a h y p e rc u b e  c o m p u t e r  system . T e rm in a l  reliability  can  be also 
d efin ed  as ta sk -b a se d  reliability, w h ich  is the p ro b a b il i ty  that s o m e  m inim al set o l 

c o n n e c te d  n o d e s  are  ava ila b le  in the h y p e r c u b e  structure .
8. T h e  fa u lt- to le r a n c e  c o m p u tin g  o f  a h y p e rc u b e -b a s e d  c o m p u t in g  system  is p r o v id e d  by 

re c o n fig u ra t io n  a n d  a p p licat io n  o f  e r ro r  c o r r e c t in g  c o d es .

F a u lt-to leran ce  te c h n iq u e  fo r  h y p e rcu b e  and  h y p e rc u b e - l ik e  stru c tu re s  is b ase d  on  the 

p rin c ip le  o f  R e c o n f ig u r a t io n  an d  E rro r  co rrect in g .
T h e s e  te c h n iq u e s  a re  well  studied  and  w id e ly  u se d  in h y p e rc u b e - l ik e  system  design 

[37, 38].

E x a m p l e  34. C o n s id e r  th e  m o d e l  o f  n a n o d e v ic e  b a s e d  on  tra n sm itt in g  a binary- s ig n a l 
th rou gh  a  c h a n n e l . S u p p o s e  th a t th e  p ro b a b ili ty  th a t th e  re c e iv e r  w ill g e t o n e  (z e ro )  w h en  ze ro  
(o n e )  is  se n t is  0 <  p  <  1/2. I f  th is  c h a n n e l is  u s e d  o n ly  o n c e , th e  p ro b a b ility ' o f  a  co rrec t tra n s i
tio n  is  1 — p .  To im p r o v e  th e  reliability' o f  tr a n sm is s io n , th e  s e n d e r  tr a n sm its  th e  s e q u e n c e  o f  c ith er  
th ree  ze ro s  o r  th ree  o n e s . T h en , th e  p robab ility ' o f  a  co rrec t tra n sm iss io n  is  1 — (/; '  +  3 p 2 ( I — /?))• 

F or e x a m p le , 1 — ( p } -f- 3 / r ( l  — p ) )  =  0.896 fo r  p  =  0.2 c o m p a r e d  w ith  1 -  p  =  0.8.

S e v e ra l  a lg o r i th m s h a v e  b e e n  d e v e lo p e d  fo r  r e c o n f ig u r in g  a h y p e rc u b e  with faults. T h e s e  
a lg o r ith m s aim to a c h ie v e  d if fe re n t  ch ara cte ris t ics  a f te r  rec o n fig u ra tio n ,  in particu la r,  a c c e p t 

a b le  p e r fo r m a n c e  a n d  con n ectiv ity .  T h e  crucial  idea  is to  iden tify  m a x im u m  s u b cu b e s  in a 

fau lty  h yp e rcu b e ,  r e ta in in g  as m an y h ealthy  n o d e s  as  p o ss ib le  to  k e e p  p e r fo r m a n c e  d e g r a 

d a tio n  to  a m in im u m .
T h e r e  are  se v e r a l  a ssu m p tio n s  and a d d it io n a l  d a ta  that m ust b e  kn o w n  to ap p ly  the 

a b o v e  c h aracterist ics:  in pa rticu la r,  the reliability  fu n ctio n  o f  n o d e  c o m p u t in g  d e v ic e s  (u s u 

ally  a ssu m e d  to b e  h o m o g e n e o u s ) ,  and the ch a r a c te r is t ic  o f  statistical d e p e n d e n c e  o f  fa ilures 

o f  c o m p u t in g  d e v ic e s  in n o d e s  (usually  a ssu m e d  to b e  in d e p e n d e n t) .
T h e  h v p e r c u b e -l ik e  n e tw o r k  has been  p r o v e d  to  b e  very  robust and to d iv ide it into  tw o 

c o m p o n e n ts  r eq u ires  at least n  faults.
In the p ro b ab il i ty  fa u lt  m o d e l ,  the reliability  o f  e a c h  n o d e  at tim e t is a ran d o m  v ar iab le .  

T h e  p ro b ability  th a t  a h y p e rc u b e - lik e  n etw o rk  is o p e r a t io n a l  is r e p r e s e n te d  by the r e l iab il
ity o f  the c o m p u t in g  d e v ic e s  in the h v p e rc u b e -l ik e  n e tw o r k .  T h e  re liability  o f  c o m p u t in g  

h y p e rc u b e - lik e  s tr u c tu re  can  be fo r m u la te d  as the union o f  pro b ab il is t ic  e v e n ts  that all the 

p o ss ib le  h y p e rc u b e s  o f  lo w e r  d im en sion s  are  o p e r a t io n a l .

6.5. Fault-Tolerant Hypercube-Like Computing Structures
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7. INFORMATION THEORETICAL MEASURES  
FOR COMPUTATIONAL NANOSTRUCTURES

In fo rm a t io n  th e o r y  has b e e n  m e n tio n e d  in the ‘in t r o d u c t i o n "  as a w a y  to c h a r a cte r iz e  and 

e v a lu a t e  the p a r a m e t e r s  o f  a n an o syste m , such  as in fo rm atio n  tran sfe r  p e r  unit sp ace,  and 

the n u m b e r  o f  o p e r a t io n s  p e r  seco n d .

E n tr o p y  is in te r p re te d  as the a m o u n t  o f  d is o r d e r  in the system . In d e e d ,  in th e r m o d y n a m 

ics. e n tr o p y  is d e f in e d  as the t h e r m o d y n a m ic  pro b ab il i ty  o f  the in tern al p art ic les  o f  a system 

w h ile  h old in g  the exte rn al  p r o p e r t ie s  con stan t.  A  h u n d red  years later, in 1948, Sh a n n o n  

s u g g e s te d  a m e a s u r e  to  rep rese n t  the in fo rm a tio n  by a n um erica l  v a lu e ,  n o w a d a y s  kn o w n  as 

S h a n n o n  e n tro p y  [51] w ith  resp e ct  to  this tr an sfo rm atio n .  S ince  then, the te rm  ‘‘ u n ce rta in ty"  
is in te r e h a n g ab le  with the te rm  “ e n tr o p y .”  T h e  S h a n n o n  in fo rm atio n  th e o r y  has  b een  d e v e l 

o p e d  f o r  m a n y  a p p lic a t io n s  in c ircuit  design. T h e  hit strings o f  in fo rm a tio n  are  u n d e rsto o d  

as m e ss a g e s  to be c o m m u n ic a te d  fro m  a m e s s e n g e r  to  a receiver.

7.1. Overview
Physicists  have e m p h a s iz e d  th e r m o d y n a m ic s  en tro p y . T h e  re la t io n sh ip  o f  th e se  d ifferen t  

m e a s u r e s  has b e e n  c o n s id e r e d  in m a n y  p a p e rs ,  fo r  instance, in [90]. In a b in ary  system , 

ph ysica l  e n tr o p y  b e c o m e s  S h a n n o n  en trop y.

I n fo rm a tio n  th e o r e tica l  m e a s u re s  in S h a n n o n  n otation  have b een  used  in [9 1-9 3 ]  in d e c i

sion  trees, a n d  in d ia g ra m  design. E n tr o p y -b a s e d  strateg ies  for  m in im iza tio n  o f  logic  fu n c 

tions have b e e n  s tu d ie d  in [75, 94]. T h e s e  results  are  re lated  to the e a r l ie r  w o r k  [95-99] on 

c o n v e r s io n  o f  d e c is io n  ta b le s  (truth ta b le s  o f  log ic  fu n ctio n s)  into d e c is io n  trees.

E xist in g  te c h n iq u e s  fo r  p o w e r  e st im atio n  al ga te  and  circuit levels  rely on p r o b ab il is 

tic in fo rm a tio n  o f  th e  input s trea m . T h e  a v e r a g e  sw itching activity  p e r  n o d e  (g a te )  is the 

m ain  p a r a m e t e r  that n e e d s  to b e  c o rr e c t ly  d e te rm in e d .  T h e s e  and  r e la te d  p r o b le m s  are  the 

lo c u s  o f  m any re se a rch e rs .  F o r  e x a m p le ,  in [100, 101], it is d e m o n s tr a t e d  that the a v e ra g e  

sw itc h in g  activ ity  in a c ircu it  can b e  c a lc u la te d  using e i th e r  e n tr o p y  o r  in fo rm a tio n  e n e r g y  

av e ra g e s .

M ost o f  the a lg o r i th m s fo r  m in im iza tio n  o f  state assign m en ts  in finite state  m ach in es  
ta rg e t  red u ce d  a v e r a g e  sw itc h in g  p e r  tran sition , that is, av e ra g e  H a m m in g  d is ta n ce  b e tw e e n

s ta tes  1102].
There have  a lr e a d y  b e e n  s o m e  a p p r o a c h e s  to  e v o lu tio n ar y  c ircuit  d es ig n  [76]. T h e  main 

idea is that an e v o lu t io n a r y  s tra teg y  w o u ld  in e vita b ly  e x p lo re  a m uch r ich e r  set o f  possibilities 

in the design sp a ce  than are  w ith in  the s c o p e  o f  traditional m eth o d s .  In [74, 75, 77, 94] an 

e v o lu t io n a r y  s tra teg y  an d  in fo rm a tio n  th e o r e t ic a l  m e a su r e s  w e r e  u se d  in c ircu it  design.

A  d e e p  and c o m p r e h e n s iv e  analysis  o f  c o m p u t in g  syste m s’ in fo rm a tio n  e n g in e  has b een  

d o n e  in [103]. T h e  r e la t io n sh ip  b e tw e e n  fu n ctio n  co m p le x ity  and  e n tr o p y  is c o n je c tu r e d  
in [104].

I his section  fo c u s e s  on  in fo rm a tio n  m e a s u r e s  in n an osystem s. A p p ly in g  the n ota tion  to a 

ph ysica l  system  (h a r d w a r e ) ,  in fo rm a tio n ,  in a c erta in  sen se ,  is a m e a s u r a b le  q uan tity ,  w hich  is 

in d e p e n d e n t  o f  the ph ysica l  m ed iu m  by w hich  it is c o n v e y e d .  T h e  m ost a p p r o p r ia te  m e a su r e  

o f  in fo rm atio n  is m a th e m a tic a l ly  s im ilar  to  the m e a su r e  o f  en tropy, but th e re  is g o o d  reason  

tor  reversing the sign and  s ta tin g  that in fo rm a tio n  is the n eg a tiv e  o f  e n t r o p y  in n ature  as well 

as in m a th e m a tic a l  fo r m u la t io n .  T h e  te c h n iq u e  o f  in fo rm a tio n  th e o r y  is a p p l ie d  to  p ro b le m s  

o f  the extractio n  o f  in fo rm a tio n  fro m  system s c o n ta in in g  an e le m e n t  o f  ran d o m n e ss .

7.2. Information Theoretical Measures on Data Structures
T h e  m ea su res  can  b e  m a d e  on  d i f fe r e n t  d a ta  s tructures  that carry  in fo rm a tio n  a b o u t  a 

log ic  function: fo rm a l  r e p re se n ta t io n  (su m -o f-p ro d u c ts ,  R e e d - M u l le r ,  a r i th m e tic ,  and w ord -  

level form s),  lo g ic  n e tw o r k ,  f lo w g ra p h s ,  an d  d ec is io n  trees  and  d ia g ra m s,  in c lu d in g  spatial 

represe n tat io n s .  I n fo r m a t io n - th e o r y  m e a s u r e s  are  sensitive  to d a ta  s tru ctu re .

In this sectio n , w e fo cu s  on  the e n tr o p y  o f  spatia l m e a s u r e m e n t  in \ -h y p e r c u b e  sp ace.  T h e  

in fo rm a tio n  c o n te n t  o f  a sw itc h in g  fu n ctio n  is an inh erent a ttr ibu te  o f  a fu n ctio n  and  is te c h 

n o lo g y  in d e p en d en t.  In fo r m a t io n  c o n t e n t  d e f in e s  the c o m p le x ity  o f  fu n c t io n  im p le m e n ta t io n
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a n d  can  b e  used  to e st im a te  a lo w e r  b o u n d  on s o m e  physical ( to p o lo g ica l)  p a ra m eters  with 
resp ect  to  v a r io u s  im p le m e n ta tio n s .  T h e r e fo r e ,  it ref lects  the fu n d a m e n ta l  ch ara cte ris t ic  o f  

fu n ctio n  b e h a v io r .  E n tr o p y  o f  spatial m e a s u r e m e n t  in . \ -h y p e rc u b e  sp ace  can b e  v iew ed  as 

a c o n tr ib u t io n  to in fo rm a tio n  co n ten t,  o v e r  all n o d e s  o f  the e m b e d d e d  decision  diagram .

T h e  a b o v e  is th e  basis fo r  a p p r o a c h e s  to e st im atin g  the c o m p le x ity  involved  w h e n  data are 

tran sm itte d  f r o m  variou s  p o in ts  in a circuit. T h e  e s t im a te d  a ttr ib u tes  here  are in fo rm a tion  
f low, in fo rm a tio n  a m o u n t ,  and  e n tr o p y  m e a su r e s  on the h yp e rc u b e .  Finally, w e  describe 

o th e r  in fo rm a tio n -th e o re t ic a l  defin it ions and o u t lin e  the ir  ap p licat io n  to  the p ro b lem  o f  

synthesis  o f  3 D  structures.

7.3. Measures in Logic Design
T h e  m o st  b a s ic  in fo rm a tio n -th e o r e t ic a l  m ea su re  is en tro p y . M a n y  usefu l  a d d it io n a l  c h a r a c 

teristics are  d e r iv e d  fro m  th e  en tro p y , n am ely, the co n d it io n a l  en tro p y ,  m utual info rm ation , 

jo in t  in fo rm a tio n ,  and  re lat iv e  in fo rm a tio n .  F igu re  29 illustrates the basic  p r incip les  o f  input 

a n d  o u tp u t  in fo rm a tio n  m e a s u r e s  in a logic c ircu it,  w h e r e  the sh are d  a rro w s m ea n  that the 

v a lu e  o f  X j ( f )  carrie s  the in fo rm a tio n ;  the sh a re d  a rro w  t h e re fo r e  indicates  the direct io n  

o f  the in fo rm a tio n  stream . O b v io u s ly ,  w e  can c o m p a r e  the results o f  the input and ou tp u t  

m e a su r e s  a n d  c a lc u la te  the loss o f  in fo rm ation .

7.4. Information-Theoretical Standpoint
A  c o m p u t in g  system  can be  seen  as a p ro c ess  o f  c o m m u n ic a t io n  b e tw e e n  c o m p u t e r  c o m p o 

nents. T h e  classica l  c o n c e p t  o f  in fo rm a tio n  a d v o c a t e d  by S h a n n o n  is insufficient to  c ap tu re  
a n u m b e r  o f  fe a tu re s  o f  the design  and  p ro cess in g  o f  a c o m p u t in g  system . T h e  in fo rm a tio n -  

th e o r e tica l  s ta n d p o in t  on  c o m p u t in g  is b ased on  the fo l lo w in g  notations:

1. S o u rc e  o f  in fo rm a tio n ,  a s to ch astic  p rocess  w h e r e  an ev en t  o cc u rs  at tim e point i with 
p ro b a b il i ty  p r  In o th e r  w o rd s ,  the so u r c e  o f  in fo rm a tio n  is d e f in e d  in te rm s  o f  the 
p ro b a b il i ty  distribution  fo r  signals from  this so u rc e .  O f t e n  the p ro b le m  is f o r m u l a t e d  in 

te rm s  o f  se n d e r  and re c e iv e r  o f  in fo rm a tio n  and  used by a n a lo g y  with c o m m u n i c a t i o n  

p r o b le m s  [90, 97, 101].

2. In fo rm a tio n  en g in e , the m a c h in e  that d ea ls  with in fo rm a tio n  [103].
3. Q u a n tity  o f  in fo r m a tio n , a va lu e  o f  a  fu n ctio n  that o c cu rs  w ith  the pro b ab il i ty  p  carries  

a q u an tity  o f  in fo rm a tio n  e q u a l  to ( -  lo g 2 p )  [104, 105].
4. E n tr o p y , / / ( / ) ,  the m e a s u r e  o f  the in fo rm a tio n  c o n te n t  o f  X .  T h e  g r e a te r  the u n ce r 

tainty in the so u r c e  o u tp u t ,  the h igh er is its in fo rm a tio n  c o n te n t.  A  so u r c e  with z e r o  
u n ce rta in ty  w o u ld  h a v e  z e r o  in fo rm a tio n  c o n t e n t  and, th e re fo re ,  its e n tr o p y  w o u ld  be 

l ikew ise  e q u a l  to  z e r o  [51].

Information carried 
by the variable X{i /(*/) 

Entropy o f the 
variable H(Xj)

Variable a •

In p u t

Loss o f

Information carried 
by the function / ,  /  ( / )  

Entropy o f the
j information \ function f  / / ( / )

_ .r  1

I O f .  I f

r  unction j 
..... /

C IR C U IT ■

O u tp u t

Joint entropy H ( f  x{)

Mutual information KfiXi)

Relative information I ( f \x t\  I{x{\f )  

Conditional entropy H( f\x;), H(Xj\f)

F igure 29. Inform ation  m easures at the input and output o f  a logic circuit, and  com puting input'output relationships 
o f  in form ation .
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1 he in fo rm a tio n  and en tro p y , in the ir  turn, can  be ca lcu la te d  with r e sp e ct  to the given  
sources;

In fo rm a tio n  c a r r ie d  by the va lu e  o f  a va r ia b le  o r  function.

C o n d it io n a l e n tro p y  o f  fu n ctio n  /  va lu es  g iven  fun ctio n  g .
R e la t iv e  in fo rm a tio n  o f  the v a lu e  o f  a fu n ctio n  given the v a lu e  o f  a variable.

M u tu a l in fo rm a tio n  b e tw e e n  the var iab le  and  fun ction,

J o in t e n tro p y  o v e r  a d istribution  o f  jo in t ly  sp ec if ie d  fu n ctio n s  /  and g .

7.4.1. Quantity of Information
L e t  us a ssu m e that all c o m b in a t io n s  o f  v a lu e s  o f  variab les  o c c u r  with e q u a l  p robab ility .  A  

v a lu e  o f  a log ic  fu n ctio n  that o c cu rs  with the p ro bab ility  p  carr ie s  a q u an tity  o f  in fo rm a tio n  
e q u a l  to

(Q u a n t i t y  o f  in fo rm a tio n )  =  — lo g 2 p  bit

w h e r e  p  is the p ro b ab il i ty  o f  that v a lu e  o ccurin g.

r h e  in fo rm a tio n  carrie d  by the va lu e  o f  a  o f  x , is eq ual to

I ( x , ) \ Xl=a =  -  lo g ,  P  bit

w h e r e  p  is the q u o t ie n t  b e tw e e n  the n u m b e r  o f  tuples w h o s e  /th c o m p o n e n ts  eq u a l  a  and 

the total n u m b e r  o f  tuples. S im ilarly , the in fo rm a tio n  carried  by a va lu e  b  o f  /  is

/ ( / ) i/=/, =  -  log2 q  bit

w h e r e  q  is the q u o t ie n t  b e tw e e n  the n u m b e r  o f  tup les  in the d o m a in  o f  f  and the n u m b e r  

o f  tuples for  w hich  /  tak es  the va lu e  b.

E x a m p l e  35. T h e in fo rm a tio n  ca rr ied  b y  th e  va lu es  o f  va r ia b le  x t a n d  fu n c tio n  f  f o r  a  
sw itc h in g  fu n c tio n  g iven  b y  a  tru th  ta b le  is  c a lc u la te d  in  F igure  30.

7.4.2. Conditional Entropy and Relative Information
C o n d it io n a l  e n tro p y  is a m e a s u r e  o f  a ra n d o m  va r iab le  /  g iv en  a ran d o m  variab le  x .  T o  

c o m p u t e  the co n d it io n a l  e n tro p y ,  the co n d it io n a l  p ro b ability  o f  /  must be c a lc u la te d .  T h e

Probabilities o f the values o f variable .v,: 

p(Xj =  0) = 3/5. p(x ,=  I ) = 2/5 

he information carried by the variable x , : 

f  /(.v,)lv = 0 = —log2 3/5 = 0.737 bit 

[  / (-v, )|x j =  -  log2 2/5 =  \ 32?. bit 

Probabilities o f the values o f function f:  

, , ( 7 = 0 )  =  4 /5 , p (f=  I ) = 1/5 

while
p (f=  ()), , =n= 3/5 p (f=  0)jA _ j = I/5 

p tf=  l >| v< = 0 = 0  PU'=  ̂ )|a,= I = 1/5 

Information carried by the function f:  

f  Hf*\r= d=  logi 4/5 = 0.322 bit 

1  A f ) |/ = i =  *og2 1 ^  =  2 .322 bit

Input Output
xi f

0 0

1 0

0

i

0

1i

0

1

0

Figure 30, The information carried by values of variable ,v, and switching function / (example 35).



806 Logic Design of Nanodeviccs

co n d it io n a l  p ro b a b i l i ty  o f  va lu e  b  o f  lo g ic  fu n ctio n  /’, g iven  input va lu e  a  o f  v, is

P\.f~h

P i f  =  ^l-V; =  Cl) =

P  |.V, —U

Sim ilarly, the c o n d it io n a l  p ro b a b il i ty  o f  v a lu e  a  o f  x h  g iven  va lu e  b  o f  the fun ction  ./« is

P if= b

p ( Xi =  a \ f  =  b )  =
/?i/ =/>

C o n d it io n a l  e n tr o p y  H ( f \ g )  o f  fu n ctio n  /  v a lu e s  g iv en  logic  fun ctio n  £ is

H ( f \ g )  =  H ( f , g ) - H ( g )  ( 8 )

In c ircuit  analysis  an d  d ec is ion  tree d esig n , the so -c a lle d  ch ain  rule is useful (F ig . 31):

« ( / . ........../ „ i ^  =  E t f ( . / ; i / , ........... (9 )
/= i

T h e  re lat ive  in fo rm a tio n  o f  the va lu e  b  o f  a logic  fun ctio n  /  given  the va lu e  cij ot the 

input v a r ia b le  x { is

/ ( /  =  6 1a*, =  a)  =  -  lo g ,  p ( f  =  6|a', =  </)

T h e  re lat ive  in fo rm a tio n  o f  the v a lu e  a, o f  the input va r iab le  .v, given the v a lu e  b  o i  the 

log ic  fu n ctio n  /  is

/ (.v, =  a | /  =  b )  =  -  lo g ,  /; (a*, =  a \ f  =  b )

O n c e  the p ro b a b i l i ty  is e q u a l  to  0, w e s u p p o s e  that the relat ive  in fo rm a tio n  is eq u a l  to  0.

E x a m p l e  36. F igure  32 il lu s tra te s  th e  c a lc u la tio n  o f  th e  c o n d it io n a l a n d  re la tiv e  in fo rm a 
tio n  g iven  th e  tru th  ta b le  o f  a  s w itc h in g  fu n c t io n .

7.4.3. Entropy of a Variable and a Function
L e t  th e  in p ut v a r ia b le  x , be  the o u t c o m e  o f  a  p ro b ab il is t ic  e x p e r im e n t  an d  the ra n d o m  logic  

fun ction  /  r e p re se n t  th e  o u tp u t  o f  so m e  ste p  o f  c o m p u ta t io n .  E a c h  e x p e r im e n ta l  o u tco m e  

results in d i f fe r e n t  co n d it io n a l  p ro b ab il i ty  d istr ib u tio n s  on  the ra n d o m  / .  S h a n n o n ’s en tropy  

o f  the v a r iab le  x t is d e f in e d  as

m- !

H  U  ) =  E  P\x.=«, l o S :  ( ] ( ) )
/=(l

w h e r e  rn is the n u m b e r  o f  d istin ct v a lu e s  a ssu m e d  by x r  S h a n n o n 's  e n tr o p y  o f  the logic  

fu n ctio n  /  is

H U )  =  v  p  <■ -. log  2 p i f=h o n
A: — 0

w h e r e  n is the n u m b e r  o f  d istinct v a lu e s  a ssu m e d  by / .
T h is  d efin it ion  o f  the m e a su r e  o f  in fo rm a tio n  im plies  that the g r e a te r  the u n ce rta in ty  in

th e  so u r ce  o u tp u t ,  th e  sm a lle r  is its in fo rm a tio n  co n ten t.  In a sim ilar  fashion , a s o u r c e  with

The conditional entropy Hi f \ i i )  is mm-negative. The value is zero i f  and <>nt\ 
i f  a function i> \nch th a t /  — ui s?> exists with a probability ofOne.
AJilitix itv of entropy or the chain rule for entropies defined as

Hi f.i>) = Hi f )  + Hit>\f)

Figure 31. The additivity o f entropy.
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n\i--D= 3/5 !>,-->>= 1/5/>( / = , = I)P\}= i = 1/5 
I'. — ’) I v = i I v = " K='

Then
pi  / =  ()|.v, =  0 ) =  p \ l = [): p \ x={) =  3/5 : 3 / 5 =  1

K = o
/ )(/ = 0 | .Y ,-=  1) =  p\ ( - o : P\ x =  i =  1/5 : 2/5 =  1/2 

\\ = i
p ( f =  I |-Y, = 0> = />(/ = I ' P\.\i = 0 = 0

|.v = 0
/ , ( / =  l|.V|. =  l )  =  /V =  = 1 =  1/5:  2 / 5 =  1/2

l-V, = I

Conditional entropy H (./ |.Y/):

/ /(  / 1,Yf-) = - / > ( / =  0|.Y, = 0 ) log /> ( /=  0|.V, = 0)

Conditional probabilities:

Input Output - p i f = V \ x j =  1) lo g p i f -  0 |a ; = 1)

xi f -  P i f =  1 l-v, = 0) log p ( f =  1 |.Y, = 0)

0 0 - / ? ( / =  1 \Xj = 1 ) log P ( / =  1 |.Y( = 1 )
1 0 = -1  log 1 - 1 /2  log 1/2 -  0  log -  1/2 log
0

I

0

1 Relative information l i f = b\x, = a):

0 0 /( /  = 0|.vf = 0) = — lo g , 1 = 0

/ ( /= 0 |.Y , =  l )  =  - l o g ,  1 /2 =  1

/ ( / =  l|.Y/ = 0 )  = 0  

/ ( / =  l|.Y# = l)  = - l o g : 1 /2 =  I

F igure 32. C om puting cond itional entropy and relative in form ation  (exam p le  36).

z e r o  unc erta inty  w o u ld  h a ve  z e r o  in fo rm a tio n  c o n te n t  and, th e r e fo r e ,  its e n tr o p y  w o u ld  be 
l ikewise e q u a l  to zero.

E x a m  pi .Li 37. F igure  33 illu s tra tes  th e  c a lc u la tio n  o f  e n tr o p y  f o r  th e  va r ia b le  a n d  fu n c tio n .  
T he en tro p y  o f  the v a r ia b le  x , a n d  sw itch in g  fu n c t io n  f  a re  0.971 b its  a n d  0.722 b its .

T h e r e fo r e ,

1. For a n y  v ar iab le  x , it h o ld s  that 0 <  H ( a , )  <  1; sim ilarly, fo r  any fu n ctio n  / ,  0 < 

H(x,)<}.

H(f)

Shannon‘s entropy

HiXj) = -3 /5  • lo g , 3/5 -  2/5 • lo g , 2/5 
= 0 :9 7 1 hit ~

//(./') = - 4 /5  • lo g , 4 /5  -  4 /5  • lo g , 4/5  
= 0:722 bit '

Input Output

xi f

0 0

1 0

0

1
i I

0

1
n

The mutual information 

-l 5

/(./■'■) = X  X  f\i =/>.* % =/’.
k =  1 I -  I \x  =  u  | v =  a

= 0 .6  • 0 .322 -  0 .2  • 0 .678  +  0  + 0.2 • 1.322  

=  0.322  hit

Figure 33. Shannon's entropy and mutual information (examples 37 and 38).
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2. T h e  e n tr o p y  o f  a n y  var iab le  in a c o m p le t e ly  sp ec if ied  fu n ctio n  is 1.
3. T h e  e n tro p y  o f  a  c o n s ta n t  is 0.

7.4.4. Mutual Information
M u t u a l  in fo rm a tio n  is use d  to  m e a su r e  the d e p e n d e n c e  o f  the fun ctio n  /  on  the v a lu e s  of 

th e  var iab le  x i and v ice  versa, that is, how  statically  d ist in gu ish ab le  d istr ibutio n s o f  f  a n d  .v,

are . I f  the d istr ibutio n s a re  d ifferen t,  then the a m o u n t  o f  in fo rm a tio n  f  carr ie s  a b o u t  x { is

large. I f  /  is in d e p e n d e n t  o f  x h then /  c arries  z e r o  in fo rm a tio n  a b o u t  x r  F ig u re  34 illustrates 

the m utual in fo rm a tio n  b etw e en  two var iab les  /  and g .
T h e  m u tu a l in fo rm a tio n  b e tw e e n  the v a lu e  b  o f  the fu n ctio n  and th e  v a lu e  a  o f  the input 

v a r iab le  x,  is:

/ ( / ;  x , )  =  I ( / ;  A ', ) j /=/, -  / ( /  =  b \ X j  =  a )

P\f=h

=  -  lo g ,  p u =h +  lo g ,
‘  '  P'.x,—a

By an a lo g y ,  the m utual in fo rm ation  b e tw e e n  the input v a r ia b le  ,v, and the fu n ctio n  / is

/(/; xi) = E E P\r=h x xi)\f~hk
k I 1*1="/ I

P\f=l\

= E E P\ f =h  x lo8:k I I xi=‘’i P\*,=“i
U se fu l  re lat ionship s  arc

=  H ( g ) - H ( g \ f )

=  H ( f )  +  H ( g ) - H ( f , g ) - ,

i=[
w h e r e  /(# ;  f \ z )  is th e  c o n d it io n a l  m utual in fo rm a tio n  b e tw e e n  g  an d  /  g iv en  z. If g  and 
/  a re  in d e p e n d e n t ,  th e n  l { g \  f )  >  0. T h e  m u tu a l  in fo rm a tio n  is a m e a s u r e  o f  the c o r r e 

lation b e tw e e n  g  and / .  F o r  exam p le ,  if g  and /  are  e q u a l  with high prob ab il i ty ,  then 

f { g :  f )  is large .  I f  /,  and f 2 carry  in fo rm a tio n  a b o u t  g  a n d  are  in d e p e n d e n t  g iv en  g  then 

/ ( z ( / , , / 2); g )  <  / ( / , ;  g )  -f  / ( / 2; g )  for  any sw itch in g  fu n ctio n  z.

E x a m p l e  38. F igure  34 illu s tra tes  th e  c a lc u la tio n  o f  th e  m u tu a l in fo r m a tio n . T h e va ria b le  
Xj carr ies  0.322 b its  o f  in fo rm a tio n  a b o u t th e  sw itc h in g  fu n c tio n  / .

V
The mutual information is defined as the differenee between the entro} ^m d  

the conditional entropy Y \

= H ( f ) - H ( f \ g )  SL

= Hi f  ) + H( %) -  Hi f.yX
%

i.e., fhe difference o f  the u w e r fairfy o f  f u n d  the remcini’ig uncertainty o f f  
after knowing g. This quantity is the information o f f  obtained by knowing g.
The mutual information is a degree o f  the dependency between fu n d  g and 

always takes positive values.
The additivity fo r  mutual information o f  three random variables:

/( f:g.  z) ~ l i f : . e)  + / ( f : z \ g)

Figure 34. The mutual information.
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7.4.5. Joint Entropy
L et  the distribution  o f  jo intly  sp ec if ied  fu n ctio n s  f  and g 's  va lu es  be kn o w n . T h e n ,  the jo int  

e n tr o p y  H ( f \ g )  g iv en  this d istribution  is d e f in e d  as follows:

in — \ m- 1

H ( f \  f i )  =  E  P ■/■=« • l«g P \ f = a  • ( • - )
/)=() \K=h

w h e r e  p lf=(l d e n o te s  the p ro b ab il i ty  that f  ta k e s  v a lu e  a  and g  takes  v a lu e  /?, s im u ltan eou sly .
Iy=/i

7.5. Information Measures of Elementary Switching Functions
T h e r e  are  two a p p r o a c h e s  to  in fo rm a tio n  m e a s u r e s  o f  e le m e n ta r y  fu n c t io n s  o f  tw o  variables:

1. The va lu es  o f  inp ut v a r ia b les  are  c o n s id e re d  as r an d o m  p a ttern s;  fo r  a tw o-input e l e 

m e n ta ry  fu n c t io n  th e r e  are  fo u r  ra n d o m  p a ttern s X\ X2 e  {00.01, 10, 11} .

2. T h e  va lu es  o f  inp ut v a r iab les  a re  c o n s id e re d  as n o n c o r re la te d  r an d o m  signals; for  a 

tw o-in put e le m e n t a r y  fu n ctio n ,  th e re  are  r an d o m  signals x { e  {0, 1} and x 2 e  {0, 1}.

7.5.1. Information Measures Based on Pattern
C o n s id e r  a tw o-in p u t A N D  fu n ctio n  w ith  fo u r  ra n d o m  c o m b in at io n s  o f  input signals: 00 with 

p ro b a b il i ty  01 with p ro b ab il i ty  p {)h 10 w ith  pro b ab il i ty  p U), and II with p rob ab ility  p u
(F ig .  35|a]).

U s in g  S h a n n o n 's  f o r m u la  (E q .  [10]), w e  can  ca lcu la te  the e n tr o p y  o f  the input signals, 
d e n o te d  by as fo l lo w s

tfin =  -  Pm x lo8: Pm ~ Pm x log: Pm
-  p  1„  X  Iog2 p H) -  p y X  lo g 2 p n b it/p a tte rn

M a x im u m  e n tr o p y  o f  the input s ignals  can  b e  ca lc u la te d  by inserting into the a b o v e  e q u a 

tion p i := 0.25, / =  0, 1, 2, 3 (Fig. 36).

T h e  output o f  the A N D  fu n ctio n  is eq u a l  to  0 with p rob ab ility  0.25, an d  eq u a l  to  1 with

p rob ab ility  0.75. T h e  e n tr o p y  o f  the o u tp u t  signal, //out, is c a lc u la te d  by E q .  ( 1 1 )

//out — - 0 . 2 5  x  log-,0.25 -  0.75  x  lo g ,  0.75 =  0.81 b it/ p a tte rn

T h e  e x a m p le  b e lo w  d e m o n s tr a t e s  a te ch n iq u e  o f  c o m p u t in g  in fo rm a tio n  m e a s u r e s  with 

w hich  input s ignals  are  n ot co rre la te d .

7.5.2. Information Measures Based on Noncorrelated Signals
L e t  th e  input signal b e  e q u a l  to  I w ith  pro b ab il i ty  p , a n d  0 with p ro b a b il i ty  1 — p  (F ig, 35[bj) .  

T h e  e n tr o p y  o f  th e  input signals  is

H w =  - ( 1  -  p ) 2 x  lo g : ( l  -  p ) 2 -  2 (1  -  p )  x  lo g 2( l  -  p ) p  -  p 2 x  lo g ,  p 2 

=  - 2 ( 1  -  /;) x  Iog2( l  -  p )  -  2 p  x  lo g 2 p b i t

l - p  p  l  - p  p

(a) (b)

Figure 35. Measuremcni of probabilities: random patterns (a) and noncorrelated signals (b).
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Mclliod I :

The entropy o f  the input pattern (probability p, = 0.25)

Hj„ = - 4  x 0.25 x log: 0.25 = 2 bit /pattern 

Entropy o f  the output signal 

H t[il = -0 .2 5  x log : 0 .25 -  0.75 x log-, 0.75 = 0 .8 1 bit/pattern 

Loss o f  information 

= H„ia -  //,,, = 2.0 -0.X  1 = I . I <Sl) bit

M ethod  2:

The entropy o f  the input signal (probability p  = 0.707)

Hin -  - 2 ( ! - /> )  x  log ,( 1-/)) -  2p  x log*/*

= -2 (  1 -0 .7 0 7 ) x lo g t(1 -0 .7 0 7 )  -  2 x 0 .707 x lo g ,0.707 

= 1.745 bit

Pattern  I 0  0 0 Output entropy

Pattern 3

Pattern 2 0

0 0

0 Hitlll = -0 .7 0 7 2 x log-,0 .7 0 7 '

- (  1 -0 .7 0 7 )- x logi( I - 0 .7 0 7 )~ -  0.S04 bit

Pattern 4

= H,wi -  H,
7 4 5 -0 .X 0 4  = 0 .9 4 1 bit

F ig u re  36. Inform ation m easures o f  A N D  functions o f  two variables.

T h e  o u tp u t  o f  the A N D  fu n ctio n  is e q u a l  to 1 with p rob ab ility  / r ,  and e q u a l  to 0 with 

p ro b ab il i ty  1 — / r .  H e n c e ,  the e n tr o p y  o f  the o u t p u t  signal is

T h e  m a xim u m  v a lu e  o f  the o u tp u t  e n tr o p y  is e q u a l  to 1, w h en  p  =  0.707. H e n c e ,  the 
input e n tr o p y  o f  th e  A N D  fu n ctio n  is 0.745 bit (F ig .  36). W e o b s e r v e  that in the ca se  ot 

n o n c o r r e la te d  signals , in fo rm a tio n  losses  are  less.

7.6. Measures in Decision Trees
In this sectio n , w e  a d d ress  the d esign  o f  d e c is io n  trees  with n o d e s  o f  th ree  types: S h a n 

n on  (5 ) ,  p o sit ive  D a v io  ( j )D ), a n d  n e g a tiv e  D a v io  ( n D )  b ase d  on the in fo rm a tio n  th e oretica l  

a p p r o a c h .  A n  a p p r o a c h  re v o lv e s  a ro u n d  c h o o s in g  the “ b e st"  var iab le  and the “ b e s t"  e x p a n 

sion type with re sp e ct  to  this v a r ia b le  for a n y  n od e o f  the decis ion  tree  in te rm s  o f  in fo r 

m atio n  m e a su re s .  T h is  m e a n s  that in any ste p  o f  the d ec is io n  m a k in g  strategy, w e  h ave  an 

o p p o r tu n ity  to  c h o o s e  b o th  th e  v a r ia b le  and th e  type o f  exp an sion  b a se d  on  the cr iterion  o f  

m in im u m  e n tro p y .  T h e  e n tr o p y -b a s e d  o p t im iz a t io n  stra teg y  can be d e sc r ib e d  as the g e n e r 

a t in g  o f  th e  o p t im a l  p ath s  in a  d ec is io n  tree ,  with resp e ct  to  the m in im u m  e n tr o p y  criterion  

[96-98, 106].

C a lc u la t io n  o f  e n tr o p y  an d  in fo rm a tio n  o n  dec is io n  trees  is best k n o w n  as th e  induction  

o f  decis ion  trees  ( I D 3 )  a lg o r i th m  fo r  o p tim izatio n .

E x a m p l e  39. F igure  37  i l lu s tra te s  th e  c a lc u la tio n  o f  e n tro p y  on  a  d e c is io n  tr e e .

In the p r o c e s s  o f  d ec is io n  tree  d esig n  two in fo rm a tio n  m e a su re s  are  used:

T h e  initial state  o f  this p ro c e ss  is c h a r a c te r iz e d  bv the m axim u m  va lu e  for the con d itio n a l  

entropy:

H im -  - p 2 x  lo g ,  / r  -  ( I -  p ) 1 x  lo g 2( 1 -  p ) 2 bit

(C o n d it io n a l  e n tr o p y )  =  H ( f  |Trce) 

(M u t u a l  in fo rm a tio n )  =  / ( / ;  T r e e )

H  ( / ( T r e e )  =  / / ( / )
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^wmmsgst

F igure 37. M easure o f  entropy on  a decision  tree (exam ple 39).

N o d e s  are recursively  a t ta c h e d  to  the dec is io n  tree  by  u sin g  th e  to p -d o w n  strategy. In this 

strategy, the e n tr o p y  H ( f  |Tree) o f  the fu n ctio n  is re d u c e d ,  a n d  the in fo rm atio n  / ( / ;  T r e e )  

increases, b e ca u se  the v a r iab les  co n v e y  the in fo rm a tio n  a b o u t  th e  function. E a c h  in te r m e d i

ate state can b e d e sc r ib e d  in te rm s o f  e n tr o p y  by  the e q u a t io n

/ ( / ;  T r e e )  =  / / ( / )  -  H ( f  |Tree) (1 3 )

W e  m axim ize  th e  in fo rm a tio n  / ( / ; T r e e )  that c o r r e s p o n d s  to  th e  m in im iza tion  o f  e n tr o p y  

/ / ( / ( T r e e ) ,  in e a c h  s te p  o f  dec is io n  tree design. T h e  final state  o f  the dec is io n  tree is c h a r 

a cte r ize d  by H ( f  |Trec) =  0 and / ( / ; T r e e )  =  / / ( / ) ,  that  is. T r e e  rep rese n ts  the sw itching 
function  /'.

T h e  decision  tree d esign  p ro c e ss  is a recursive  d e c o m p o s i t io n  o f  a sw itching fu n ctio n . A  

step  o f  this recursive d e c o m p o s it io n  c o r r e s p o n d s  to th e  e x p a n s io n  o f  sw itching fu n ctio n  / 

with respect to  the v a r iab le  x.  A s s u m e  that the v a r ia b le  x  in /  c o n v e y s  in fo rm a tion  that is, 

in s o m e sense, the rate o f  in flu e n ce  o f  the input v a r ia b le  o n  the o u tp u t  va lu e  fo r  / .

7.6.1. Information Notation ofS,  pD, and nD Expansion
T h e  d esig n ed  d ec is ion  tree b ase d  on the S  e x p a n s io n  is m a p p e d  into a su m -o f-p r o d u cts  

exp ression  as follow s: a le a f  with the logic  v a lu e  0 is m a p p e d  into /  =  0, and with the 

logic  va lu e  I into /  =  1; a n o n term in a l  n o d e  is m a p p e d  into  / — x  ■ f x=.{) v  x  ■ ,/jv_|. T h e  

in fo rm a tio n  m e a su re  o f  S  exp an s io n  for  a sw itch in g  fu n c t io n  /  w ith  respect  to  the v ar iab le  

x  is rep rese n te d  by  the e q u a tio n

H s ( f \ x )  =  P'A-[) • H ( f x=l)) +  p lx=l • H ( f lx=l ) (14 )

T h e  in fo rm atio n  m e a s u r e  o f  S  e x p a n s io n  is e q u a l  to the c o n d it io n a l  e n tr o p y  H ( f \ x )  
(Fig. 38):

H s ( f \ x )  =  H ( f \ x )  ( 1 5 )

T h e  in fo rm atio n  m e a s u r e  o f  p D  exp an sio n  o f  a sw itc h in g  fu n ctio n  /  with respect to the 

v a riab le  x  is re p re se n te d  by

/ / " " ( / '  V) =  /), „ • / / ( / ' ,  „ )  +  p u=i ■ / / ( / ,  „ © (1ft)

T h e  in fo rm ation  m e a s u r e  o f  the n D  e x p an s io n  o f  a sw itch in g  fun ction  /  with resp e ct  to 

the va riab le  v is

H nU( f \ x )  -  p  V=1 • H ( f lx=]) +  /;,v=u • H ( f lx={) @ / , =I) ( 17 )
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H \ f  |.v) Shannon expansion f =  x  - / i A_(,© .\  f ] x = \ 
Information-theoretical notation

//s(/l v) = /)|1=0H(/|v=(|) + /)|v=|«(yj1=l)

Left leaf Kirill leaf

Positive Davio expansion f  = f  \ v=() © x ■ { / |  v=() ©  / ^ .  
Information-theoretical notation 

« ' ’" < /!  V I  = / ) | [  =  | ) / / ( / | 1= | ) ) + / ) | v = | H ( . / j r  =  0 ©  / | v = !

Left leaf Right leaf

Negative Davio expansion f  — f | v=(t© .v • ( / | l=()©  / | v=|) 
Information-theoretical notation

H"f>I/|.v) = /J|v = iA/(/|v = |) + />|A=„W(./jv = ()© /|v=1)

t.efi leaf Right leaf

Figure 38. Shannon and Davio expansions and their information measures for a switching function.

7.6.2. Optimization of Variable Ordering in a Decision Tree
T h e  e n tr o p y -b a se d  o p t im iz a t io n  o f  d ec is io n  tree  design  can be d e s c r ib e d  as the op tim al 
(with resp e ct  to  the in fo rm a tio n  c r ite r io n )  n o d e  se le ct io n  process.  A  path in th e  decis ion  

tree starts f r o m  a n o d e  a n d  finishes in a te rm in a l  n o d e.  E a c h  path c o rr e s p o n d s  to  a term  in 

the final exp ress io n  fo r  / .

E x a m p l l  40 . D esig n  o f  th e  S h a n n o n  tree  b a s e d  o n  a  s iu n -o fp r o d u c ts  expression  g iven  th e  
h id d e n  w e ig h te d  b it  fu n c t io n . T h e  S h a n n o n  tree  is  sh o w n  in Fig. 39.

7.7. Information Measures in the A-Hypercube
It has b een  sh o w n  that in fo rm a tio n - th e o r e t ic a l  m e a s u r e s  fo r  logic  n etw o rk s  can  be  ev a lu a te d  
by decis ion  trees. In this sectio n  w e focu s  o n  the deta ils  o f  in fo rm a tio n  m e a su r e s  in - V- 

h y p e rc u b e  b a se d  on  in fo rm a tio n  m e a s u r e s  in dec is io n  trees.

A  useful p r o p e r ty  o f  an ./V-hypercube is that c o m p a r e d  with dec is io n  trees  and d iagram s 

is that it is p o ss ib le  to  o b ta in  in fo rm a tio n  m e a s u r e  w ith o u t  re c a lc u la t io n  a f te r  c h a n g in g  the 

o r d e r  o f  var iab les .  T h e  e x a m p le  b e lo w  il lustrates  this p rop erty.

E x a m p l e  41. F igure  40  illu s tra te s  th e  c a lc u la tio n  o f  e n tro p y  o n  an  .’V -h ypercu be . S ta r tin g  
w ith  th e  r o o t , w h ere  e n tro p y  is  m a x im a l, w e a p p ro a c h  v a r ia b le s  in  se q u e n c e . A p p r o a c h in g  x } 
revea ls  in fo rm a tio n  a b o u t th is  v a r ia b le . A p p ro a c h in g  te r m in a l n o d e s  m e a n s  th a t th e  en tro p y  
b e c o m e s  0.

Entropy o f  the function

H( f )  = - 1/2 • log 1/2 -  1/2 • log 1/2 

=  I hit/pattern

Conditional entropy with respect to the variable .\ j

H ( / 1x , > = -  3/S • log3/8 -  1/8 ■ log 1/8

-  1/8 • log 1/8 -  3/8 • log3/8 

= 0.81 hit /pattern

Snm-of-proditcts expression 

f  -  X \  ■ A  • V  • . V i

Figure 39. Shannon decision tree design (example 40).
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H ( f  1^=0,*2=0)

=0) #(/!*,=!)

Figure 40. Measure of entropy on an -hypercube (example 41).

H e r e  w e s u p p o s e  th a t  input p a tte rn s  a re  g e n e r a te d  with e q u a l  probabilit ies . A n  a lt e r n a 

tive a p p r o a c h  is b a se d  on  the c a lcu la t io n  o f  inp ut and o u tp u t  e n tr o p y  a ssu m in g  that input 

p a ttern s  are  g e n e r a t e d  w ith  d if feren t  pro b ab il i t ies .

8. CONCLUSIONS
W e  w itn ess  a “ tra n s it io n ' ’ from  s ta te -o f-th e-a rt  d es ig n  m e t h o d s  in tw o -d im en sio n al  sp ace 

to th r e e -d im e n s io n a l  sp a c e  o f  p a ra l le l  and d is tr ib u te d  u ltrasm all  d ev ice s ,  o r  n a n o d ev ic es .  

S ev era l  physical co n s tra in ts  o f  n a n o te c h n o lo g ie s  c o n s id e re d  in the in trod u ction  m o tiv a te  the 

study  o f  3 D  s tru ctu re s  an d  a lg o r ith m s fo r  B o o le a n  fu n ctio n  m a n ip u la t io n  and calcu latio n . 

T h e  d a ta  s tr u c tu re  used  to r ep rese n t  a sw itch in g  fu n ctio n  is an im p o rta n t  fa cto r  in m a p p in g  

the fu n ctio n a l  d e s c r ip t io n  at physical s tru ctu re  to p o lo g y .  T h is  is b e c a u s e  at a n a n o sc a le  the 

traditional s te p s  o f  lo g ic  design  m a y  b e m e r g e d  to w a rd  exp lic it  m a p p in g  o f  the d a ta  structure  

and a lg o r ith m s to  ea ch  fo rm  o f  d ata  structure,  c o r r e s p o n d in g  to a certa in  level o f  abstract ion, 

and useful at ce r ta in  p h a s e s  o f  log ic  design.

T e c h n o lo g ic a l  restr ict io n s  im ply  that n a n o e le m e n ts  c o m p u t e  e le m e n ta r y  logic  fu n ctio n s 
with som e prob ab il i ty .  T h is  fact a d d r e ss e se s  the p r o b le m  o f  the reliability  o f  c o m p u t in g  

using n o n r e liab le  e le m e n ts .  T h e r e  are  m a n y  m e t h o d s  in s ta te -o f- th e -a rt  o f  log ic  d es ig n  that 

deal  with c o m p u t a t io n  w ith  u n re l ia b le  e le m e n t s  an d  noisy  signals, in particu lar, m eth o d s  

based  on: p r o b ab il is t ic  d escrip tion  o f  signals , s to c h a st ic  pulse  s tr e a m  o rg a n iza tio n ,  fuzzy 

logic, p r o b a b il is t ic  logic, re s id u e  n u m b e r  system , p a r a d ig m s  in sp ired  by  b io lo gica l  system s, 

s to ch a siic  log ic  n eu ra l  n etw o rk s ,  V on  N e u m a n n  m u lt ip lex in g , R -fold m o d u la r ,  and error- 
co rrec t in g  c o d es .

S e v e ra l  p a r t icu la r  resu lts  o f  th e  s tudy on  lo g ic  d es ig n  in n a n o d im e n s io n s  can  be s u m m a 
rized  as follow s:

1. G r a p h - b a s e d  d a ta  s tru ctu re s  are  the “ b r id g e ” b e tw e e n  lo g ic  d esign  and the 3 D  to p o lo g y  

o f  n an o m a te r ia ls .  A m o n g  th em , h y p e rc u b e  t o p o lo g y  is a useful  m od el o f  c o m p u t in g  

in spatial d im en sio n s .  T h is  to p o lo g y  can  b e  u se d  at all levels  o f  abstract ion  fr o m  the 

g ate  level  (n o d e s  im p le m e n t  the s im plest  lo g ic  fu n ctio n s)  to  the m a cro lev e l  (n o d e s  

im p le m e n t  c o m p le x  dev ice s) .

2. T r e e l ik e  a n d  h y p e rc u b e - l ik e  to p o lo g y  is c o m m o n  in p a r a l le l  an d  d istr ibuted  a rc h ite c 

tures; this fa c t  re f le c ts  that the pr in c ip le  o f  an o p t im a l  c o m p u t in g  sc h e m e  is b eing 

p rese rv ed  w h ile  sca l in g  it d ow n  to a m o le c u la r / a to m ic  structure .

3. F au lt-to leran ce  c o m p u t in g  is the cen tra l  p r o b le m  o f  n an o sy ste m  design  b e c a u s e  o f  the 

pro b ab il is t ic  n atu re  o f  n an od ev ices .

4. In 3 D  stru ctu re s  o n  th e  m o le c u la r/a to m ic  level,  in fo r m a t io n  carr ie rs  b e c o m e  c o m p a t 

ible with p artia lly  d istr ib u te d  sources/receivers/transm itters ,  a n d  so m ea su res  that are 

in h ere n t  to  the n a tu r e  o f  in fo rm a tio n  p r o c e s s in g  on a n a n o s c a le  level are  req u ired .
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5. T h e  in fo rm a tio n  c o n te n t  o f  a log ic  fu n ctio n  is a natural attr ibute  o f  the function a n d  it 

is te ch n o lo g y - in d e p e n d e n t .  T h e  in fo rm a tio n  c o n t e n t  defin es  the co m p le x ity  o f  fu n ctio n  

im p le m e n ta t io n ,  and th u s can  b e  used  to e s t im ate  a lo w e r  b o u n d  o n  som e physical 

( to p o lo g ic a l)  p a r a m e te r s  w ith  resp e ct  to  v a r io u s  im p le m e n ta tio n s .  T h u s ,  it ca p tu res  the 

fu n d a m e n ta l  ch aracte r is t ic  o f  log ic  fu n ctio n  b eh a vio r .  E n tro p y,  as spatia l m e a s u r e m e n t  

in V -h yp ercu be sp ace,  can  b e  v ie w e d  as a c o n tr ib u tio n  to  the in fo rm a tio n  c on ten t,  

w ith  resp e ct  to all n o d e s  o f  the e m b e d d e d  d ec is io n  d iag ra m . B a s e d  on  th e  in fo rm atio n -  

th e o r e t ic  a p p ro a c h ,  an a rb itra ry  d ec is io n  tree  o r  d ec is io n  d ia g ra m  can  b e  d esig n ed. In 

ea ch  ste p  o f  the d e c is io n -m a k in g  p ro c ess ,  th e  v a r ia b le  and type o f  exp an sio n  is ch o s e n  

b ase d  on the in fo rm a tio n  est im atio n s.
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1. INTRODUCTION
N a n o e le c t r o m e c h a n ic a l  system s ( N E M S )  are  m a d e  o f  e le c tro m e c h a n ic a l  d ev ices  that have 

critical d im e n sio n s  fro m  h u n d re d s  to a fe w  n an o m e te rs .  B y  e x p lo rin g  n an o sca le  e f fe cts ,  

N E M S  present in terest in g  an d  u n iq u e  ch ara cte r is t ics ,  w h ich  d ev ia te  g re a tly  from  th e ir  p r e 

d e c e s s o r  m ic r o e le c t r o m e c h a n ic a l  system s ( M E M S ) .  F o r  instance, N E M S - b a s e d  d e v ice s  can 

have  fu n d a m e n ta l  f r e q u e n c ie s  in m icr o w a v e  r an g e  ( M O O  G H z )  [ l] ;  m ech an ica l  q uality  fa c 

tors in the tens o f  th o u san d s,  m e a n in g  lo w -e n e rg y  d issipation; active  mass in the fe m t o g r a m  

range; fo rce  sensitivity  at the a t to n e w to n  level; m a ss  sensitivity  up to  a tto g ra m  [2] a n d  sub- 

a tto g ram  [3] levels; h e a t  c ap a c it ie s  far  b e lo w  a “ y o c t o c a lo r ie ” [4]; p o w e r  co n s u m p tio n  in 

the o r d e r  o f  10 a tto w a tts  [5]; e x tr e m e  high in tegra tion  level, a p p r o a c h in g  1012 e le m e n t s  per  

s q u are  c e n t im e te r  [1]. A i l  th e se  d istin gu ish ed  p r o p e r t ie s  o f  N E M S  d ev ice s  p ave  the w ay  

to a p plicat io n s such as fo r ce  sensors, c h e m ic a l  sen sors,  b io lo gica l  sensors, and ultrahigh- 

f req u e n cy  reson ators .
T h e  interestin g  p r o p e r t ie s  o f  the N E M S  d e v ice s  typica lly  arise from  the b e h a v io r  o f  the 

active parts, w hich , in m ost cases,  are  in the fo r m s o f  can ti lev ers  o r  d o u b ly  c la m p e d  b e a m s 

with d im en sio n s  at n a n o m e te r  scale. T h e  m ater ia ls  f o r  those active  c o m p o n e n ts  include
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Figure 1. SE M  Im age o f  an undercut Si beam , with length o f  7.7  /Am, width o f  0.33 f im and height o f  0.8 fJ.m. 
R eprinted with perm ission  from  [6 |, A. N. C leland and M. L. R oukcs, AppL Phys. Lett, ft1), 2653 (19% ). ©  19% . 
A m erican  Institute o f  Physics.

silicon and silicon  carb id e ,  c a r b o n  n a n o tu b es ,  and go ld  and p latinum , to  n a m e  a few . S ilicon  

is the basic  m a te r ia l  fo r  in tegrated  c ircuit  ( I C )  te c h n o lo g y  d urin g the past  fe w  d e c a d e s ,  

and M E M S ,  a n d  is w id e ly  used to  build  N E M S .  F ig u re  1 is a scan n in g  e le c tr o n  m icr o sco p y  

( S E M )  im a g e  o f  a d o u b le -c la m p e d  r e s o n a t o r  fa b r ica te d  fr o m  a bulk, s ingle-crystal silicon 

sub strate  [6]. H o w e v e r ,  u ltrasm all s i l ico n -b ase d  N E M S  fail to  a ch ie v e  d es ired  h igh-quality  

fa cto rs  b e c a u s e  o f  the d o m in a n c e  o f  su r fa c e  e ffe cts ,  such as surface  o x id at io n  a n d  r e c o n 

struction, and th e rm o e la st ic  d am p ing. L im ita t io n s  in stren gth  and flexibility a lso c o m p r o m is e  

the p e r fo r m a n c e  o f  s i l ico n -b ased  N E M S  a ctu ato rs.  In stead, ca rb o n  n a n o tu b e s  ( C N T s )  can  

well  r e p rese n t  the ideas  o f  N E M S ,  given  their n early  o n e -d im e n sio n a l  stru ctu res  w ith  high- 

asp e ct  ratio, p e r fe c t  te rm in a te d  surfaces ,  and e x ce l le n t  e lectr ica l  and m e ch a n ica l  pro p ert ies .  

B e c a u s e  o f  significan t a d v a n c e s  in g row th , m a n ip u la t io n ,  and k n o w le d g e  o f  e lec tr ica l  and 

m e c h a n ica l  p r o p e r t ie s ,  ca rb o n  n a n o tu b e s  h a ve  b e c o m e  the m ost pro m isin g  b u ild in g  b lo cks 

fo r  the next g e n e r a t io n  o f  N E M S .  S ev era l  c a r b o n  n a n o tu b e - b a s e d  fu n ctio n a l N E M S  d ev ices  
have  b e e n  r e p o r t e d  so far  [1, 7—12]. S im ila r  to  c a rb o n  n an otu b es ,  n an o w ire s  ( N W s )  are 

a n o th e r  type  o f  o n e -d im e n s io n a l  novel n an o str u c tu re  fo r  b u ild in g  N E M S  b e c a u se  o f  their 

size and c o n t r o l la b le  e lectr ica l  p rop erties .

T h is  c h a p te r  p r o v id e s  a c o m p r e h e n s iv e  rev ie w  o f  N E M S  d ev ice s  to d a te  and su m m a rize s  

th e  m o d e l in g  c u rr e n t ly  b e in g  p u rsu e d  to  gain  insight into  their  p e r fo r m a n c e .  T h is  c h a p te r  is 

o r g a n iz e d  as fo llow s:  in the first part, w e  re v ie w  the ca rb o n  n a n o tu b e s  a n d  c a r b o n  n a n o t u b e -  

b a se d  N E M S .  W e a lso  discuss n a n o w ire -b a se d  N E M S .  In the se c o n d  part,  w e  p re se n t  the 

m o d e l in g  o f  N E M S ,  in c luding m u ltisca le  m o d e l in g  an d  c o n t in u u m  m o d elin g .

2. NANOELECTROMECHANICAL SYSTEMS
2.1. Carbon Nanotubes
C a r b o n  n a n o tu b e s  exist as a m a c r o m o le c u le  o f  carb o n ,  a n a lo g o u s  to  a sh e et  o f  g ra p h ite  

r o l le d  into a c ylin der.  T h e y  w e r e  d isc o v e re d  b y  S u m io  Iijima in 19 9 1 a n d  are  a subset ot the 

fa m ily  o f  fu l le r e n e  stru ctu res  [13]. T h e  p ro p e r t ie s  o f  the n a n o tu b e s  d e p e n d  on  the a tom ic  

a r r a n g e m e n t  ( h o w  s h e e ts  o f  g ra p h ite  are  ro lle d  to  fo r m  a c ylin der) ,  their d ia m e te r ,  an d  their 

length. T h e y  are  light, stiff, f lexible , th e rm a lly  stable , and c h e m ica l ly  inert. T h e y  have  the 

ability  to  b e  e i th e r  m eta l l ic  o r  s e m ic o n d u ct in g  d e p e n d in g  on  the " tw is t” o f  the tube, which 

is c a l le d  "c h ira l i t y "  or  “ helicity."  N a n o tu h e s  m a y  exist as e ith e r  s in gle-w a lle d  or  m u lt iw alled  

structures. M u lt iw a l le d  ca rb o n  n a n o tu b e s  ( M W N T s )  (Fig. 2 (B ))  are s im ply  c o m p o s e d  o f  

m u ltip le  c o n c e n tr ic  s in gle-w alled  carb o n  n a n o tu b e s  ( S W N T s )  (F ig, 2 ( A ) )  [14 ]. T h e  sp acin g 

b e tw e e n  the n e ig h b o r in g  gra p h ite  layers in M W N T s  is — 0.34 nm. T h e s e  layers interact with 

e a c h  o th e r  via  van  d e r  W aais forces.

T h e  m e t h o d s  to  syn th esize  ca rb o n  n a n o tu b e s  in c lude e lectr ic  a re -d isch arg e  [15, 1 6 j, laser 

a bla tion  [17], a n d  cata ly t ic  c h e m ica l  v a p o r  d e p o s it io n  ( C 'V D )  m e th o d s  [18]. D u rin g  sy n th e

sis. n a n o tu b e s  are  usually  m ixed  with residues,  in cluding va r io u s  types o f  c a r b o n  particles.
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F igure 2. H igh-rcsolution  transm ission electron  m icroscopy im age o f  typical single-w alled  carbon nanotubes  
(SW N T ) (A ) and m ulti-w alled  carbon nanotubes (M W N T ) (B ). R eprinted with perm ission  from [14], P. Ajayan. 
Client. Rev. 99, 1787 (1999). ©  1999, A m erican C hem ical Society.

F o r  m ost a p p lic at io n s  and tests, a purification  p ro c e ss  is req u ired . In o n e  o f  the m ost c o m 

m o n  a p p r o a c h e s ,  n a n o tu b e s  are  u ltrasonically  d isp e rse d  in a liquid (e.g., i so p ro p a n o l)  and 

the su sp en sion  is c e n tr i fu g e d  to  r e m o v e  large  particles . O t h e r  m e th o d s ,  in cluding d ie lec-  

tr o p h o rc t ic  sep a ra tio n ,  a re  b e in g  d e v e lo p e d  to  p r o v id e  im p ro ve d  yield.

T h e  m e ch a n ica l  a n d  e lec tr ica l  p r o p e r t ie s  o f  ca r b o n  n a n o tu b e s  h a v e  b e e n  u n de r  intensive 

stu d y  d u rin g  the past d e c a d e .  Q ia n  et al. [19] c o n tr ib u te d  a c o m p r e h e n s iv e  review  article , 

“ M e c h a n ic s  o f  C a r b o n  N a n o t u b c ,”  from  the p e rsp e c t iv e  o f  b o th  ex p e r im e n ta t io n  and m o d 

eling. T h e  e le c tr o n ics  o f  c a r b o n  n a n o tu b e s  is ex te n siv e ly  r e v ie w e d  by M c E u e n  et  al. [20]. 

B esid es ,  th e  study o f  the c o u p le d  e le c tr o m e c h a n ic a l  pro p ert ies ,  w h ic h  are  essential to  N E M S ,  

is rap id ly  progressing . S o m e  in terestin g  results h ave  b e e n  r e p o rte d  reg a r d in g  the fa c t  that 

the e lectr ica l  p r o p e r t ie s  o f  c arb o n  n a n o tu b e s  are  sensitive to the s tru ctu re  var iat io n  an d  can 

b e c h an g e d  d ra m a tica l ly  b e c a u se  o f  the c h a n g e  o f  the a to m ic  b o n d s  in d u ced  by m e ch a n ic a l  

d efo rm a tio n s .  It is k n o w n  that c a r b o n  n a n o tu b e s  c an  e v e n  c h a n g e  fro m  m etal l ic  to  s e m ic o n 

d u ctin g  w h en  su b je c te d  to  m e c h a n ic a l  d e fo rm a t io n  [21—23].

2.2. Fabrication Methods
T h e  fabrication  p r o c e sse s  o f  N E M S  d ev ice s  c a n  b e  c a te g o r iz e d  a c c o r d in g  to  tw o a p p ro a c h e s .  

T o p -d o w n  a p p ro a c h e s ,  that e v o lv e d  fro m  m a n u fa c tu r in g  o f  M E M S  structures,  use su b m icro n  

l i th o g rap h ic  te ch n iq u e s ,  such as e le c tr o n -b e a m  l ith o g ra p h y , to  fa b r ic a te  structures  fro m  bulk  

m a teria ls ,  e ith er  thin film s o r  b u lk  sub strates. B o tto m -u p  a p p r o a c h e s  fab r ica te  the n a n o sc a le  
d e v ice s  by seq u en tia lly  a ssem b lin g  o f  a to m s a n d  m o le c u le s  as b u ild in g  b locks. T o p -d o w n  

fab rica tion  is size l im ited  by  facts  such as the reso lu tio n  o f  the e le c tro n -b e a m  lith og rap h y, 

etch in g -in d u ced  r o u g h n ess ,  a n d  synthesis  con stra in ts  in ep itax ia lly  g ro w n  substrates.  S ig 
n ificant interest has  b e e n  sh o w n  in the in tegra tion  o f  n a n o sca le  m ater ia ls  such as c arb o n  

n a n o tu b e s  an d  n an o w ire s ,  fa b r ica te d  by b o t to m -u p  a p p ro a c h e s ,  to  build  n a n o d ev ices .  M o st  

o f  the n an o d e v ic e s  r e p o rte d  so fa r  in the l i teratu re  a re  o b ta in e d  by “ h y b r id ” a p p r o a c h e s ,  that 

is, c o m b in at io n  o f  b o tto m -u p  (se l f  assem bly) an d  to p -d o w n  ( l i th o g ra p h ic)  a p p r o a c h e s  [24].

O n e  o f  the k e y  a n d  m o st  ch a l le n g in g  issues o f  b u ild in g  c a r b o n  n a n o t u b e - b a s e d  or  

n an o w ire -ba sed  N E M S  is the p o s it io n in g  o f  n a n o tu b e s  o r  n a n o w ire s  at the d esired  lo ca t io n s  
with high a cc u ra cy  and high th ro u g h p u t.  R e p o r t e d  m e th o d s  o f  m a n ip u la t io n  an d  po sit io n in g  

o f  n an o tu b es  are  b rief ly  s u m m a riz e d  in the fo l lo w in g  section.

2.2.1. Random Dispersion Followed by E-Beam Lithography
A f t e r  purification, a  sm all a liq u o t  o f  a n a n o tu b e  susp en sion  is d e p o s ite d  o n to  a substrate. 

T h e  result is n a n o tu b e s  r a n d o m ly  d isp ersed  on  the substrate. N a n o tu b e s  on  the sub strate  

are  im a g e d  inside a sca n n in g  e le c tro n  m icr o s c o p e  ( S E M )  and th e n  this im ag e  is d igit ized  

a n d  im ported  to  a m a sk -d ra w in g  softw are,  w h e r e  th e  m ask fo r  the su b se q u e n t  e lec tro n -  

b eam  lith og ra p h y  is d e s ig n e d .  In the m a sk  layout,  p a d s  a re  d e s ig n e d  to  s u p e r im p o s e  o v e r  

the ca rb o n  n an o tu b es .  W et  e tch in g  is e m p lo y e d  to r e m o v e  the m ateria l  u n d e r  the ca rb o n  

n a n o tu b e s  to form  fr e e s ta n d in g  n a n o tu b e  structures. T h is  p ro c e ss  re q u ir e s  an a lig n m e n t 

cap ability  in the l i th o g ra p h ic  s tep with an a c c u r a c y  o f  0.1 /xm o r  b ette r.  T h is  m e t h o d  w as 

firstly em p lo y e d  to m a k e  n a n o tu b e  structures  fo r  m e c h a n ica l  testin g  [25, 26]. T h e  r e p o rte d  

N E M S  d ev ices  b a se d  on  this m e th o d  in c lude n a n o t u b e - b a s e d  r o ta t io n a l  a ctu ato rs  [9] and 

n an ow ire-ba sed  r e so n a to rs  [24].
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2.2.2. Nanomanipulation
M a n ip u la t io n  o f  individual c a r b o n  n a n o tu b e s  using p ie zo -d r iv e n  m a n ip u la to rs  inside e lectron  

m ic r o s c o p e  c h a m b e r s  is o n e  o f  th e  m ost c o m m o n ly  used  m e th o d s  to  b u ild  N E M S  18 J and 

stru ctu re s  fo r  m e c h a n ic a l  te s t in g  [27—32]. In g e n e ra l ,  the m a n ip u la t io n  a n d  po sit io n in g  o f  

n a n o tu b e s  is a c c o m p lis h e d  in th e  fo l lo w in g  m a n n er:  ( 1 )  a s o u rce  o f  n a n o tu b e s  is po sit io n ed  

c lo se  to  the m a n ip u la to r  inside the m icr o sc o p e ;  (2) the m a n ip u la to r  p r o b e  is m o v e d  c lo se  to  

the n a n o tu b e s  u n d e r  visual su rve il la n c e  o f  the m ic ro s c o p e  m o n ito r  until a p r o tr u d in g  nan o- |

tu b e  is a t tr a c te d  to  the m a n ip u la to r  d u e  to  e i th e r  van  d e r  W aals  fo r ce s  o r  e le c tro sta t ic  forces;

(3) the fr e e  e n d  o f  the a t tra c te d  n a n o tu b e  is b‘sp o t w e ld e d "  by  the e le c tr o n -b e a m -in d u c e d  

d e p o s it io n  ( E B I D )  o f  h y d ro c a r b o n  [8, 31]  or  m etals ,  l ike p latinum  [32] f ro m  a d e q u a te  p r e 
c u rs o r  gases.

F ig u re  3 s h o w s  a th r e e -d im e n sio n a l  n a n o m a n ip u la to r  ( K lo c k e  N a n o t e c h n ik  C o . )  having 
the c a p a b i l i ty  o f  m o v in g  in X ,  Y ,  and Z  d ire ct io n s  with n a n o m e te r  d is p la c e m e n t  resolution.

T h e  m a n ip u la t io n  pro cess  o f  an individual c arb o n  n a n o tu b e  is il lustrated  in Fig. 4 ( A ) - 4 ( C ) .

2.2.3. External Field Alignment
D C / A C  e le c tr ic  f ie lds have  b e e n  successfu lly  used in the m a n ip u la t io n  o f  n a n o w ire s  [33], 

n a n o tu b e s  [34, 35], and b io p a rt ic le s  [36-39]. M ic r o fa b r ic a te d  e le c tr o d e s  a re  typically  used 

to  c r e a te  an e le c tr ic  field in the g a p  b e tw e e n  th em . A  d ro p le t  co n ta in in g  c a r b o n  n a n o tu b e s  

in s u s p e n s io n  is d isp e n se d  into  the g a p  with a m icr o p ip e tte .  T h e  a p p l ie d  e le c tr ic  f ield aligns 

the n a n o tu b e s ,  d u e  to the d ie le c tr o p h o r e t ic  e f fe c t ,  w h ich  results in th e  b r id g in g  o f  the e le c 
tr o d e s  b y  a  s in gle  n a n o tu b e .  T h e  v o ltag e  d r o p  that arises w h en  the circuit  is c lo s e d  ( D C  

c o m p o n e n t )  e n s u r e s  the m a n ip u la t io n  o f  o n ly  o n e  n an o tu b e .  B esid es ,  A C  d ie le c t r o p h o r e 
sis has b e e n  e m p lo y e d  to  su cce ssfu l ly  se p a r a te  m e ta l l ic  from  s e m ic o n d u c t in g  s in gle-w a lled  

c a r b o n  n a n o t u b e s  in su sp en sio n  [40]. N E M S  d e v ice s  fa b r ica te d  u sin g  this m e t h o d  include 

n a n o t u b e - b a s e d  n a n o re la y s  [41].
H u a n g  et  al. [42] d e m o n s tr a t e d  a n o t h e r  m e t h o d  fo r  a lig n in g  n an ow ire s .  A  la m in a r  flow  w a s 

e m p lo y e d  to  a c h ie v e  p r e fe re n t ia l  o r ie n ta t io n  o f  n a n o w ire s  on  c h e m ic a l ly  p a tt e r n e d  surfaces.
T h is  m e t h o d  w a s  su ccessfu lly  use d  in the a lig n m e n t o f  silicon n an ow ire s .  M a g n e t ic  fields 

have  a ls o  b e e n  use d  to a lig n  c a r b o n  n a n o tu b e s  [43].

2.2.4. Direct Growth
In ste ad  o f  m a n ip u la t in g  a n d  a lig n in g  c a r b o n  n a n o tu b e s  a fte r  the ir  m a n u fa ctu rin g ,  

r e s e a r c h e r s  h a v e  a lso  e x a m in e d  m e t h o d s  fo r  c o n t r o l le d  d ire ct  grow th . H u a n g  et al. [44] used 

the m ic r o c o n ta c t  pr intin g te c h n iq u e  to d irect ly  g ro w  a lig n e d  n a n o tu b e s  vert ica lly .  D ai  et  al.

Figure 3. Klocke Nanotechnik nanomanipulator possessing nanometer resolution in the y. and / axes.
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(A )  (B) (C)

Figure 4. SI-M  im ages o f  the m anipulation  o f  carbon n an otu b es using the th ree-d im en sion al K locke N an otcch n ik  
nanom anipulator. (A ) M anipulator probe is approaching a protruding nanotube. T he sam p le  is dried n an olub e  
so lu tion  o n  top o f  a T E M  cop p er grid. (B ) M anipulator probe m akes contact w ith the free end  o f  the nanotube  
and th e  nanotube is w eld ed  to  the probe by E B ID  o f  platinum . (C ) A  single nan otu b e m ounted  to the m anipulator  
probe.

[45-48] r e p o rte d  sev era l  p a tt e r n e d  g ro w th  a p p r o a c h e s  d e v e lo p e d  in his g r o u p .  T h e  id ea  is 

to  p a tte rn  the catalyst  in an a rr a y e d  fashion  a n d  c o n t r o l  th e  g r o w th  o f  c a r b o n  n a n o tu b e s  

f ro m  sp ecific  catalytic  sites. T h e  a u th o rs  su c ce ssfu l ly  c a r r ie d  o u t  p a t t e r n e d  g r o w th  o f  both  

M W N T s  and S W N T s  a n d  e x p lo ite d  m e th o d s  in c lu d in g  se lf-a sse m b ly  an d  e x te rn a l  e le c tr ic-  

ficld  con tro l.  F ig u re  5 sho w s a S E M  im a g e  o f  su s p e n d e d  s in g le-w a lle d  n a n o tu b e s  g ro w n  

by e le c tr ic- f ie ld -d ire cte d  C V D  m e t h o d  [47]. T h e  ca rb o n  n a n o t u b e - b a s e d  tu n a b le  osc i l la to rs ,  

r e p o r te d  in R ef. [12], w e r e  fa b r ic a te d  using this m e th o d .

2.2.5. Self-Assembly
S e lf-a s se m b ly  is a  m e t h o d  o f  c o n s tru c t in g  n a n o s tr u c tu r e s  by  fo r m in g  s ta b le  b o n d s  b e t w e e n  
th e  o r g a n ic  o r  n o n o rg a n ic  m o le c u le s  and su b strates.  R e c e n t ly ,  R a o  et al. [49] r e p o r te d  an 

a p p r o a c h  in large -sca le  a sse m b ly  o f  c a rb o n  n a n o tu b e s  w ith  high th ro u g h p u t .  D i p  Pen N a n o 
l ith o g ra p h y  ( D P N ) ,  a te c h n iq u e  in v en ted  by M ir k in ’s g r o u p  [50], w a s  e m p lo y e d  to  fu n ctio n -  

a lize  the specific  su r fa ce  reg io n s  e ith e r  w ith  p o la r  c h e m ic a l  g r o u p s  such as a m in o  ( — N H : / 

- N H T )  o r  carb o xy l  ( — C O O F I /  — C O O  ), o r  w ith  n o n p o la r  g r o u p s  such as m eth yl  ( — C H  ,). 

W h e n  the su b strate  w ith  fu n c t io n a l iz e d  su r fa c e s  w a s  in t r o d u c e d  into a liquid  s u s p e n s io n  o f  
ca r b o n  n a n o tu b e s ,  the n a n o tu b e s  w e r e  a ttra c te d  to w a r d  the p o la r  r e g io n s  a n d  se l f -a s s e m b le d

F ig u r e s . E lectric-fie ld-d irected  freestanding sin gle-w alled  nan otu b es. R eprinted  w ith  perm ission  from  [47]. 
Y. Zhang et a I., Appi. Phys. Lett. 79. 3155 (2001). €> 2001, A m erican  Institute o f  Physics.



822 Nanoelcclromechanical Systems and Modeling

to fo r m  p r e d e s ig n e d  structures, u su a lly  w ithin  10 s, with a yield  h igh er  than  90('/c. T h e  

r e p o rte d  m e t h o d  is sca la ble  to  large  arrays  o f  n a n o tu b e  d ev ice s  by using h ig h -th ro u g h p u t 

p a tte rn in g  m e t h o d s  such as p h o to l i th o g ra p h y ,  s tam p in g, o r  m assively  p ara lle l  D P N .

2.3. Inducing and Detecting Motion
F or n an o stru c tu re s ,  both  in d u c in g  and d e te c t in g  m o tio n  are ch allen g in g .  S o m e  o f  the 

m e th o d s  r o u t in e ly  used  in M E M S  fa ce  ch a l le n g e s  w h e n  the size shrinks f r o m  m icro sca le  

to  n an o sca le .  F o r  ex a m p le ,  op tica l  m e th o d s ,  such as s im p le -b e a m  d e f le c t io n  sc h em e s o r  

m o re  s o p h is t ica te d  op tica l  an d  f ib er-o ptical  in te r fe ro m e tr y — b o th  c o m m o n ly  used  in sca n 

ning p r o b e  m icr o s c o p y  to d ete ct  the d ef lec t io n  o f  the c an ti lev ers— g e n e ra l ly  fall b eyo n d  the 

d iffraction  limit, w h ic h  m e a n s  these m e th o d s  c a n n o t  b e  ap p lied  to  o b jects  w ith  cross-section  

m uch sm a lle r  than  the w a v e le n g th  o f  light [51].

2.3.1. Inducing Motion
Sim ilar  to M E M S ,  e le c tro sta t ic  a ctu a tio n  o f  n a n o str u c tu re s  by  an ap p lied  e le c tr ica l  field is 

c o m m o n ly  used  fo r  the a ctu atio n  o f  N E M S  (e.g., n a n o tw e e z e rs  [7, 8]). T h e  L o r e n z  fo rce  

has b e e n  used to  m o v e  small c o n d u c t in g  b e a m s  [6, 24, 52], with a lte r n a tin g  cu rren ts  passing 

through th e m  in a stron g  tran sverse  m a g n e t ic  field. T h e  in d u ced  e le c tr o m o t iv e  fo rce ,  or  

vo ltag e ,  can  b e  d e te c t e d  as a m e a su r e  o f  the m o tio n .  T h is  m e th o d  requ ires  a fu lly  co n d u c t in g  

path a n d  w o r k s  w ell  with a b e a m  c la m p e d  at b o th  e n d s  [53]. O t h e r  a c tu a t io n  m e th o d s  

include p ie z o e le c tr ic  a ctuatio n, th e rm a l  a ctu a tio n  using b ilayers  o f  m a te r ia ls  w ith  d ifferen t 

therm al e x p a n s io n ,  therm al in-plane a c tu atio n  d u e  to  a specia lly  d es ig n e d  to p o g r a p h y  [54], 

and sc an n in g  tu n n e lin g  m icro sc o p e  ( S T M )  [55].

2.3.2. Detecting Motion
T h e  m o st  s tr a ig h tfo rw a rd  m e th o d  is by  d ire ct  o b se r v a t io n  o f  the m otio n  u n d e r  e le c tro n  

m icr o sco p e s  [7, 8, 56, 57]. T h is  v isu alizat io n  m e th o d ,  typically  with re so lu tio n  in the n a n o 

m e te r  scale , p r o je c ts  the m otio n  in the d ire ct io n  to b e p e rp e n d ic u la r  to  the e le c tr o n  b eam . 

L im ita t io n s  in d e p th  o f  focu s  r eq u ires  that the n an o -o b je c t  m otio n  be pr im arily  in a plane, 
w h ich  n o r m a l ly  is coaxia l  with the e le c tro n  b ea m . E le c tro n  tu n n e lin g  is a  very  sensitive 

m e th o d  that c a n  d e te c t  s u b n a n o m e te r  m o tio n  by the e x p o n e n tia l  d e p e n d e n c e  o f  the e le c tro n  

tu n n e lin g  cu rren t  o n  the se p a ra tio n  b e tw e e n  tu n n e lin g  e lec tro d es .  T h e r e f o r e ,  this te ch n iqu e  

is w id ely  use d  in N E M S  m otio n  d e te c t io n  [5, 12]. M a g n e t o m o t iv e  d e te c t io n  is a  m e th o d  

b ased  on the p r e s e n c e  o f  an e le c tro sta t ic  f ield, e i th e r  u n ifo rm  or  spatially  in h o m o g e n e o u s ,  

th ro u g h  w h ic h  a c o n d u c to r  is m o v e d .  T h e  t im e -v a ry in g  flux g e n e ra te s  an in d u c e d  e le c t r o m o 

tive fo r c e  in th e  lo o p ,  w h ich  is p r o p o rt io n a l  to  the m o tio n  [24, 52, 58-60], T h e  d isp la ce m e n t 
d ete ct io n  sensitiv ity  o f  this te c h n iq u e  is less than  1 A [61]. It is k n ow n  that c a r b o n  n an o tu b es  

can act  as transistors;  as such they can  be u s e d  to sen se  th e ir  o w n  m o tio n  [12, 62]. C a p a c 

itance sen sors  h a ve  b e e n  w id e ly  used  in M E M S .  T h e y  can  also b e  used  in N E M S  m otion  

sensing w ith  a reso lu tion  o f  a few  n a n o m e te r s  [54], an d  the reso lu tion  can  b e po ten tia lly  

in creased  to  A n g s t r o m  range p r o v id e d  that th e  c a p a c ita n c e  m e a s u r e m e n t  c an  b e im p rove d  

by o n e  o r d e r  o f  m a gn itu d e.

2.4. Functional Nanoelectromechanical Systems Devices
In this sectio n , w e  review  the ca rb o n  n a n o tu b e -  o r  n a n o w ire -b a sc d  N E M S  d e v ic e s  rep o rte d  

in the l i teratu re  w ith  a sp ecia l  e m p h a s is  on fa b rica tion  m e th o d s ,  w o rk in g  p r in c ip les ,  and 

applications.

2.4.1. Carbon Nanotube-Based Nanoelectromechanical Systems Devices
2.4.1.1. N o n v o l a t i l e  R a n d o m  A c c e s s  M e m o r y  A  c a r b o n  n a n o t u b e - b a s e d  n o n v o lat i le  

ran d om  a cc ess  m e m o r y  ( N R A M )  r e p o rte d  by  R u e c k e s  et al. [I] is il lustrated  in Fig. 6 ( A ) .  

T h e  d ev ice  is a su s p e n d e d  S W N T  cro s sb a r  a rray  fo r  b o th  I/O and sw itchable ,  b is tab le  device  

e le m e n ts  with w e ll-d e f in e d  O F F  a n d  O N  states. T h is  c ro s sb a r  consists  o f  a set o f  parallel  

S W N T s  or  n a n o w ir e s  ( lo w er)  on a su b strate  c o m p o s e d  o f  a c o n d u c t in g  layer  (e.g., highly
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F igure 6. Schem atics o f  freestanding nanotube d evice architecture with m ultiplex addressing (A ). T hree- 
dim ensional view o f  a susp en d ed  crossbar array show ing lour jun ction s with tw o e lem en ts in the O N  (con tact) state  
and two e lem en ts in the O F F  (sep arated ) state. (B ) Top view  o f  an /? x  m  d evice array. R eprinted with perm ission  
Irom 11 j, T. R ueckes et al.. Science 289, l)4 (2000). €> 2000, A m erican  A ssocia tion  for the A dvancem ent o f  S cience.

d o p e d  silicon [dark  gray])  that te rm in a te s  in a thin d ie le c tr ic  laye r  (e.g.,  S i O : [light gray])  and 

a set o f  p e rp e n d ic u la r  S W N T s  (u p p e r )  that are  s u s p e n d e d  on  a p e r io d ic  array  o f  in o rg an ic  or  

o r g a n ic  supports. E ach  n a n o tu b e  is c o n ta c te d  by  a m e ta l  e le c tr o d e .  E a c h  cross-poin t in this 

structure  c o rr e sp o n d s  to  a d ev ice  e le m e n t  w ith  a S W N T  su s p e n d e d  a b o v e  a p e rp e n d ic u la r  

n a n o sca le  wire. Q u a l ita t iv e ly ,  b istability  can  be e n v is io n e d  as arising from  the in terplay  o f  
the clastic  e n e r g y  and the van  d e r  W aals  e n e r g y  w h e n  th e  u p p e r  n a n o tu b e  is fr e e s ta n d in g  

o r  the su sp en d e d  S W N T  is d e f le c te d  an d  in c o n t a c t  w ith  the lo w e r  n a n o tu b e .  B e c a u s e  the 

n an o tu b e  junction  res is tan ce  d e p e n d s  e x p o n e n tia l ly  o n  th e  sep a ra t io n  gap, the se p a ra te d  

u p p er-to - lo w er  n a n o tu b e  ju n c t io n  resistance will be  o r d e r s  o f  m a g n itu d e  h ig h e r  than that o f  

the co n tact  junction. T h e r e f o r e ,  two states— O F F  and O N — a re  well defined. F o r  a d ev ice  

e le m e n t ,  these tw o  states can  b e  read easily  by m e a s u r in g  the resistance o f  the ju n c t io n  

and, m o re o v e r ,  can  b e  sw itc h ed  b e tw e e n  O F F  an d  O N  sta te s  by a p p ly in g  v o lta g e  pu lse s  to 

n an o tu b es  at c o r r e s p o n d in g  e le c tr o d e s  to  p r o d u c e  a t tr a c t iv e  o r  repulsive  e le c tro sta t ic  forces.  

A key aspect  o f  this d e v ic e  is that the sep a ra t io n  b e t w e e n  to p  and b o tto m  c o n d u c to r s  m ust 

in the o r d e r  o f  10 nm. In such c ase ,  the van d e r  W a a ls  e n e r g y  o v e r c o m e s  the e lastic  e n e r g y  

w h en  the junction  is a c tu a te d  ( O N  state) an d  re m a in s  on  this state  ev en  if  the e lec tr ica l  field 

is turned  o f f  (n o n v o lat i le  fe a tu re ) .

T h e  c o n cep t  o f  the b itab le  d ev ice  w as d e m o n s tr a t e d  by c u rre n t-v o lta g e  ( I - V )  b e h a v io r s  

o f  su sp en de d , c ro s se d  n a n o tu b e  d ev ice s  m a d e  fro m  S W N T  rop e s  (~ 5()  nm in d ia m e te r ) ,  

with ju n c tio n  g a p  *— 150 nm  by m ec h a n ica l  m a n ip u la t io n  u n d e r  an o p tica l  m icr o s c o p e .  T h e  

resistances  o f  the O F F  state  o f  the d e v ice s  w e r e  fo u n d  con s is ten tly  10-fold  large r  than  the 
O N  state.

In the in tegrated  system , e lectr ica l  c o n ta c ts  are m a d e  o n ly  at o n e  en d  o f  e a c h  o f  the 

lo w er  and u p p er  sets o f  n a n o sc a le  w ires  in the c ro s s b a r  array , and thus, m a n y  d e v ic e  e l e 

m ents can b e a d d re ss e d  from  a lim ited n u m b e r  o f  c o n t a c t s  (see  Fig. 6 (B )) .  T h is  a p p r o a c h  

suggests  a highly in tegrated , fast, and m a c r o s c o p ic a l ly  a d d re ss a b le  N R A M  s tru c tu re  that 

co u ld  o v e r co m e  the fu n d a m e n ta l  l im itat ions o f  s e m ic o n d u c t o r  r an d o m  access  m e m o r y  in
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size, sp eed ,  an d  cost.  In teg ration  levels  as high as 1 x  1()12 e le m e n ts  p e r  sq u are  c e n t im e 

ter and sw itc h in g  t im e d o w n  to ^ 5  ps (2 0 0 -G H z  o p e r a t io n  fr e q u e n cy )  using 5-nm device  

e le m e n ts  and 5-nm  s u p p o r ts  are e n v is io n e d  w h ile  m a in ta in in g  the addressability  o f  many 
devices  th r o u g h  the lon g  (~ 10 -/xm ) S W N T  w ires.  H o w e v e r ,  such small d im en sions,  in p a r

ticular, the ju n c t io n  g a p  size, im p o se  s ignif ican t c h a l le n g e s  in the n an o fa b r ica t io n  o f  parallel  

d ev ice  arrays.

2 .4 .1 .2 .  N a n o t w e e z e r s  T h e r e  a re  tw o  typ e s  o f  c a rb o n  n a n o t u b e - b a s e d  n an o tw ee zers  

r e p o rte d  by  K im  a n d  L ie b e r  in 1999 [7] an d  A k i t a  e t  al. in 2 0 0 1 [8], respectively .  B o th  n a n o 

tw e e ze rs  e m p lo y  M W N T s  as tw e e z e r s ’ a rm s  that are  a c tu a te d  by e le c tro sta t ic  forces. T h e  

a p plicat io n s o f  th e se  n a n o tw e e z e r s  in c lude the m a n ip u la t io n  o f  n an o stru ctu re s  and tw o-tip  

S T M  o r  a to m ic  fo r ce  m icr o s c o p e  ( A F M )  p r o b e s  [7].

T h e  fa b r ica t io n  p r o c e ss  o f  the c a r b o n  n a n o t u b e - b a s e d  n a n o tw e e z e r s  rep o rte d  by K im  

and L ie b e r  [7] is il lustrated  in Fig. 7 ( A ) .  F re e s ta n d in g  e lectr ica l ly  in d e p e n d e n t  e le c tr o d e s  

w e r e  d e p o s i te d  o n to  ta p e re d  glass m ic r o p ip e t te s  w ith  e n d  d ia m e te r s  o f  100 nm (Fig. 7(B )) .  

M W N T  or  S W N T  b u n d les  with d ia m e te r s  2 0 -5 0  nm w e r e  a t ta c h e d  to the tw o go ld  e le c 

trodes, u n de r  the d irect  v ie w  o f  an op tica l  m ic r o s c o p e  o p e r a te d  in dark-fie ld  m o d e ,  using an 

adh esive  [63, 64]. A  S E M  im ag e  o f  fa b r ic a te d  n a n o tu b e  tw e e z e rs  is show n  in Fig. 7 (C ) .

T h e  e le c tr o m e c h a n ic a l  resp o n se  o f  n a n o tu b e  n a n o tw e e z e r s  w as in vest ig ated  by ap ply ing 

bias v o lta g e s  to  th e  e le c tr o d e s  w h ile  s im u lta n e o u s ly  im a g in g  the n a n o tu b e  d isp la ce m en ts  

u n d e r  an o p tica l  m ic r o s c o p e  in d ark-fie ld  m o d e .  A s  th e  b ias v o ltag e  in creased  from  0 to 8.3 V  

(see  Fig. 8), th e  f ree  e n d s  o f  the t w e e z e r s ’ a rm s b en t  c lo s e r  to e a c h  o th e r  fro m  their  relaxed 

position  (at 0 V ).  T h e  tw e e ze r s '  a rm s  re lax ed  to the or ig in al  position  w h en  the ap p lied  

v o ltag e  w a s  r e m o v e d ,  and this p ro c e ss  c o u ld  be re p e a te d  m o r e  than 10 tim es, p ro d u c in g  the 

sa m e  d is p la c e m e n t  e a c h  t im e within the o p tica l  m ic ro sc o p e  r eso lu tio n  limit. T h e s e  results 

d e m o n str a te d  that the m e c h a n ic a l  r e sp o n se  w a s  e lastic  an d  thus that n e ith e r  the n an o tu b es  

n or the n a n o tu b e - e le c tr o d e  ju n c t io n s  d e fo r m  inelastically. A t  8.3 V, the d is ta n ce  b e tw e e n  the 

tw e e ze r s '  e n d s  d e c r e a s e d  by a b o u t  5 0 %  o f  th e  initial va lu e ,  a n d  as the v o lt a g e  was increased  

fu rth er  to  8.5 V, the t w e e z e r s ’ a rm s s u d d e n ly  c lo se d  (Fig. 8 (E )) .

T h e  n a n o tu b e  n a n o tw e e z e r s  h a v e  b e e n  d e m o n s tr a t e d  successfu lly  to  m a n ip u la te  n a n o 

structures, such as f lu o resc en tly  la b e le d  p o ly s tyr e n e  sp h e r e s  and /3-SiC n a n o c lu s te r  (see 

Fig. 9) a n d  G a A s  n a n o w ire s  [7|.

deposit independent 
metal eleeir<xie>
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Figure 7. O verview  o f  the fabrication process o f  carbon nanotube nanotw eezers. (A ) Schem atic  illustrating the 
deposition  o l two ind ep en dent m etal e lectro d es and the subsequent attachm ent o f  carbon nanotubes to these  
electrod es. ( B) SEM  im age o f  she end o f a tapered  g lass structure after the two d ep osition  steps. Scale bar. i f i m. 
The h ighcr-rcsolution  inset show s clearly that the e lectro d es are separated . Scale bar. 200 nm. (C ) SEM  im age ot 
nanotw eezers after m ounting two M W N T  bundles on each  e lectrod e. Scale bar. 2 f.im. R eprinted with perm ission  
from [7]. P. Kim and M. L ieber. Scirncc I2h. 214S f  I W .  A m erican A ssociation  for the A dvancem ent
o f  Science.
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Figure 8. Dark-H eld-optical m icrographs o f  electrom echan ical resp onse o f  the nan otu h e nanotw eezers with respect 
to d ifferent applied  voltages. T he scale bar is I fim . R eprinted with perm ission  from  |7 | .  P. Kim and C. M. Lieher. 
Science 126. 2 \ 48 (1999). €> 1999. A m erican  A ssociation  for the A dvan cem en t o f  S cience.

T h e  c a r b o n  n a n o t u b e - b a s e d  n a n o tw e e z e r s ,  r e p o r te d  by A k i t a  e t  al. [8], a rc  sh o w n  in 
Fig. 10. C o m m e r c ia l ly  a v a i la b le  Si A F M  c a n t i le v e rs  w e r e  e m p lo y e d  as the d ev ice  body. 

A  Ti/Pt film w a s  c o a te d  on  th e  tip  o f  the c a n t i le v e r  a n d  c o n n e c t e d  to  th ree  A l  in terco n n ects  

that w e r e  p a t t e r n e d  on  the ca n t i le v e r  by a c o n v e n t io n a l  l i th o g ra p h ic  te ch n iq u e  as sh o w n  in 

Fig. 1 0 (A ) .  T h e  Ti/Pt film w a s  se p a ra te d  into tw o  by f o c u s e d  ion b e a m  etchin g. T h e s e  tw o 

parts  w e r e  in d e p e n d e n t ly  c o n n e c te d  to  A l  in te r co n n e c ts  as sh o w n  in Fig. 10(B). D C  v o lta g e  

w as a p p l ie d  b e tw e e n  the se p a ra te d  Ti/Pt tips, th r o u g h  the A l  in tercon n ects ,  to o p e r a t e  the 

tw e e z e r s  a f te r  a t ta ch in g  tw o arm s o f  n a n o tu b e s  on  them .

T h e  a t ta c h m e n t  o f  the n a n o tu b e s  w as c a rr ie d  o u t  in a sp ec ia l ly  d es ig n e d  fie ld-em ission- 

type S E M  w ith  th ree  in d e p e n d e n t  m o v a b le  stages.  T h e  Si c a n t i le v e r  and the n a n o tu b e  c a r 

tridge w e r e  m o u n te d  o n  tw o  d if feren t  stages. A  third stage ,  w h e r e  a tungsten  n e e d le  w a s 

installed, w a s  use d  for  the line a d ju stm e n t o f  the p o s it io n  o f  the n an o tu b es  a fter  b eing 

m o u n te d  to  the Si tip. W h e n  the m e t a l-c o a t e d  Si tip  w as m a n ip u la te d  to b e in co n tact  
with a  targ et  n a n o tu b e ,  an a m o r p h o u s  c a r b o n  film w a s  d e p o s ite d  o n  this con tact  po rt io n  by 

the e le c tr o n -b e a m  d issoc iat ion  o f  c o n ta m in a n ts ,  m a in ly  h y d ro ca rb o n s ,  in the S E M  c h am b e r .  

T h e  target n a n o tu b e  w a s  finally  p ulled  a w ay  fro m  the c a rtr id g e .  A n o t h e r  n an o tu b e  w a s  also 

a tta ch e d  in the sa m e  m a n n er .  T h e  position  o f  the tw o  n a n o tu b e  a rm s  w as ad ju sted  to be 

paralle l  by  using the s ta g e  w ith  th e  tu n gsten  n e e d le  a n d  fixed by d e p o s it io n  o f  the c arb o n  

films at th e  base  o f  the arm s. T h e  n a n o tu b e  a r m s  w e r e  a lso  c o a t e d  w ith  an ultrathin ca rb o n  
film (a fe w  to sev era l  n a n o m e te r s )  to a c h ie v e  in su la tion  fro m  the o u ts ide .  T h is  film c o a t in g  

p rev en ts  large  c u rr e n t  f lo w s  w h e n  the tw o  n a n o tu b e  a r m s  c lo se  o r  p ick  up a c o n d u c t iv e  p a r 

ticle. F ig u re  1 1 ( a )  sh o w s  a S E M  im a g e  o f  a typical p a ir  o f  n a n o tu b e  n a n o tw e e z e r s  p r e p a r e d  

this way. T w o  a rm s o f  the n a n o tu b e s  w e r e  fixed at th e  m ost a p p r o p r ia te  posit ion  on the Si 

tips. T h e ir  length w as 2.5 f i m, a n d  the se p a ra t io n  b e tw e e n  th e ir  tips w a s  780 nm.

*  i i

j j j j
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Figure 9. D ark-liek l-optieal m icrographs show ing the sequentia l p rocess o f  nan otw eezer  m anipulation o f  poly
styrene nanoclusters con ta in in g  fluorescent dye m o lecu les. R eprinted  with perm ission  from [7]. P. Kim and C. M. 
Lieher. Science \2(i. 2148 (1999). <_ 1999. A m erican A sso c ia tio n  for the A dvancem ent o f  Science.
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Figure 10. SEM  im ages o f  a Si cantilever as a base for nanotuhe nanotw eezers. (a ) A  Ti/Pt film was coated  on  
the tip and co n n ected  to  three A1 lines patterned  on  the cantilever, (h) T he Ti/Pt film w as separated into two 
by a focused  ion beam , and these two w ere con n ected  to  the on e and two A1 lines, respectively. R eprinted with 
perm ission  from  [8], S. A kita et al., Appl. Phys. Leu. 79. 1691 (2001). ©  2001, A m erican Institute o f  Physics.

1
j

T h e  o p e r a t io n  o f  the n an o tu b e  n a n o tw e e z e r s  w a s e x a m in e d  by in s itu  S E M .  V ar io u s  v o lt

ages  w e r e  a p p l ie d  b e t w e e n  the tw o  a rm s to  g e t  th e m  to c lo se  b e c a u se  o f  the e lec tro stat ic  

attraction  fo r cc .  F ig u r e s  l l ( b ) - l l ( d )  sh o w  th e  m o tio n  o f  the n a n o tu b e  a rm s as a fun ctio n  o f  

the a p p lie d  v o lt a g e  V . It is c lear ly  see n  that th e  arm s b en t a n d  the se p a ra t io n  b e tw e e n  the 

tips d e c r e a s e d  with in crea sin g  a p p lied  v o ltag e .  T h e  se p a ra tio n  b e c a m e  500 nm at V  — 4 V  

and z e r o  at V  > 4.5 V. It is n oted  that the m o tio n  in Figs. 1 1 (a )— 1 1 (d )  c o u ld  b e  r e p e ate d  
m any tim es w ith o u t  any p e rm a n e n t  d e fo r m a t io n ,  sh o w in g  that c a r b o n  n a n o tu b e s  a re  ideal 

m a teria ls  fo r  b u i ld in g  N E M S .

2 .4 .1 .3 .  R o t a t i o n a l  M o t o r s  A  c a r b o n  n a n o t u b e - b a s e d  ro ta tion al m oto r,  re p o r te d  by 

F e n n im o r e  e t  al. in 2003 [9], is c o n c e p tu a l ly  il lustrated  in Fig. 12(a). T h e  ro ta t io n al  e le m e n t  
( R ) ,  a solid  r e c ta n g u la r  m eta l  p la te  serv in g  as a rotor ,  is a tta ch e d  tran sv ersely  to a  su sp en d e d  

s u p p ort  shaft.  T h e  s u p p o r t  shaft e n d s  a re  e m b e d d e d  in e lec tr ica l ly  c o n d u c t in g  a n c h o r s  ( A l ,

A 2 )  that rest o n  th e  o x id iz e d  su rface  o f  a  s i licon  chip. T h e  ro to r  p la te  a ssem b ly  is s u rro u n d e d

Figure I t .  SE M  im ages o f  the m otion o f  nan olub e arm s in a pair o f n a n o tw ee/crs as a function o f  the applied  
voltage. R eprinted  with perm ission  from [N|. S. A kiia et al ..Appl. /7/vs. Let!. 79. 1691 (2001). r 2001. A m erican  
Institute o f  Phvsics.
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F igure 12. Integrated synthetic nanoelectrom echanical system s (N E M S ) actuator, (a) C onceptual draw ing o f  
n anoactuator, (b) S E M  im age o f  nanoactuator just prior to  H F  etch ing. Scale bar, 300 nm. R eprinted with perm is
sion  from  [9 |. A . M . F ennim ore et al.. Nature 424, 408 (2003). ©  2003. N ature Publishing G roup.

by th r e e  fixed sta to r  e le c tro d e s :  tw o  “ in -p la n e ” stators  ( S I ,  S2) are h orizon ta lly  o p p o s e d  

a n d  rest on  th e  silicon o x id e  su rface ,  and the third  “ g a t e ”  stator  (S3) is b u ried  b e n e a t h  the 

s u r fa c e .  F o u r  in d e p e n d e n t  ( D C  and/or a p p r o p r ia te ly  p h a se d  A C )  v o lta g e  signals, o n e  to  the 

r o to r  p la te  an d  th ree  to  the stators, are  a p p l ie d  to  c o n tro l  th e  position, sp eed ,  and d ire ct io n  

o f  ro ta t io n  o f  th e  ro to r  p late. T h e  k ey  c o m p o n e n t  in the a ssem b ly  is a M W N T ,  w h ich  serves  

s im u lta n e o u s ly  as the ro to r  p la te  su p p o rt  sh a ft  a n d  the e lectr ica l  fe e d -th ro u g h  to  the rotor  

p la te ;  m o st  im p o rta n t ly ,  it is a lso the s o u rce  o f  ro ta t io n al  fr e e d o m .
T h e  n a n o a c tu a to r  w as c o n s tru c te d  using l i th o g ra p h ic  m eth od s. M W N T s  in susp en sion  

w e r e  d e p o s ite d  o n  a d o p e d  silicon substrate  c o v e r e d  w ith  1 /zm o f  S i O : . T h e  n a n o tu b e s  
w e r e  lo c a te d  u sin g  an A F M  o r  a S E M .  T h e  r e m a in in g  a c t u a to r  c o m p o n e n ts  (in-p lan e rotor  

p la te ,  in -p lan e  stators, an chors,  and e lec tr ica l  lead s)  w e r e  then p a tte rn e d  using e lec tro n -  

b e a m  lith o g ra p h y .  A n  H F  (h y d ro  f luoric  a cid )  e tch  w a s  use d  to r e m o v e  rou gh ly  500 nm  o f  

th e  S i 0 2 su r fac e  to  p r o v id e  c le a r a n c e  fo r  the ro to r  plate. T h e  co n d u c t in g  Si sub strate  here 

se r v e s  as the g a te  stator. F ig u re  12(b) sho w s an a c tu a to r  dev ice  p r io r  to etchin g. Typical  

ro to r  plate  d im e n sio n s  w e r e  2 50-50 0 nm on  a side.

T h e  p e r fo r m a n c e  o f  the n a n o a ctu a to r  w a s  e x a m in e d  in  s itu  inside the S E M  c h am b e r .  
V is ib le  ro ta t io n  c o u ld  b e  o b ta in e d  by a p p ly in g  D C  v o lta g e s  up to  50 V  b e tw e e n  the rotor  

p la te  and the g a te  stator. W h e n  the a p p lie d  v o lta g e  w a s  re m o v e d ,  the rotor  p la te  w o u ld  

rap id ly  return  to  its o r ig in al  h o rizon ta l  po sit ion . T o  exp lo it  the intrinsic lo w -fr ic t io n -be ar in g  

b e h a v io r  a f fo r d e d  by the p e r fe c t ly  n ested  shells o f  M W N T s ,  the M W N T  s u p p o rt in g  sh a ft  was 
m o d if ie d  in  s itu  by successive  a p p lic at io n  o f  ve ry  large s ta to r  vo ltag es.  T h e  process  resu lted  

in fa t ig u e  and e v e n tu a lly  sh e a r  fa i lu re  o f  the o u t e r  n a n o tu b e  shells. In the “ f r e e ” s tate , the 

ro to r  p late  w a s  still h e ld  in p o sit ion  axially  by th e  intact n a n o tu b e  c o re  shells but c o u ld  be 
a z im u th a lly  p o s it io n e d ,  u sin g an a p p ro p ria te  c o m b in a t io n  o f  stator  signals, to any arb itrary  

a n g le  b e tw e e n  0° and 360°. F igu re  13 sh o w s a ser ies  o f  still S E M  im ages,  r e c o rd e d  fr o m  an 

a c tu a te d  d ev ice  in the free  s tate , b e in g  “ w a lk e d 1' th r o u g h  o n e  c o m p le t e  ro to r  p late  revo lu t io n  

u sin g quasi-static  D C  s ta to r  vo ltag es .  T h e  s ta to r  v o lt a g e s  w e r e  a d justed  seq u en tia lly  to  a ttract 

the ro to r  p late  e d g e  to  successive  stators. B y  re v e rs in g  the s ta to r  v o lta g e  s e q u e n c e ,  the 

r o to r  p la te  rota t io n  c o u ld  be reversed  in an e q u a lly  co n tro l le d  fashion. Finite fr e q u e n c y  

o p e ra t io n  o f  the a c tu a to r  w a s  a lso  p e r fo r m e d  using a var iety  o f  suitably  p h ase d  A C  and 

D C  v o lta g e  s ignals  to  the th ree  stators and r o to r  p late. T h e  ro to r  plate was successfu lly  

Hipped b e tw e e n  the e x tre m e  h o rizon ta l  (90° and 270°) positions. T h e  ex p e rim e n ts  s h o w  that 

the M W N T  c le a r ly  serve s  as a re l iab le ,  p r e s u m a b ly  w e a r- fr e e ,  N E M S  e le m e n t  p ro v id in g  

rotation al fr e e d o m . N o  a p p a r e n t  w e a r  o r  d e g r a d a t io n  in p e r fo r m a n c e  w a s  o b s e r v e d  a fter  

m a n y  th o u san d s  o f  cyc le s  o f  rotations.

T h e  po ten tia l  a p p lic a t io n s  o f  the M W N T - b a s e d  a c tu a to rs  in c lude ultra-h igh-density  o p tica l  
s w e e p in g  and sw itch in g  e lem e n ts ,  p a d d le s  fo r  in d u c in g  and/or d e te ct in g  fluid m o tio n  in 

m icroflu id ics  system s, g a te d  catalysts  in w et  ch em istry  reactio n s,  b io m e c h a n ica l  e le m e n t s  in 

b io lo g ic a l  system s, o r  g e n e ra l  (po ten tia lly  c h e m ic a l ly  fu n c t io n a l iz e d )  sen sor  e lem e n ts .

2 .4 .1 .4 .  N a n o r e l a y s  C a r b o n  n a n o t u b e - b a s e d  n a n o re la y s  w e r e  first r e p o rte d  by K in a r e t  

et  al. in 2003 [10] and later  ex p e r im e n ta l ly  d e m o n s tr a t e d  by L e e  ct al. in 2004 [41]. T h e  

n an o re la y  is a th r e e -te r m in a l  dev ice  in c lu d in g  a c o n d u c t in g  c arb o n  n an o tu b e  p la c e d  on  a
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Figure 13. Series o f  SEM  im ages show ing ih e  actuator ro lor plate at d ifferent angular d isp lacem ents. The schem atic  
diagram s located  b en eath  each  SEM  im age illustrate a cross-sectional view  o f  the position o f  the nanotube/rotor- 
platc assem bly. S ca le  bar. 300 nm. Reprinted with perm ission  from  [9 |, A . M. Fennim ore et al.. Nature 424. 408  
(2003). ©  2003, N ature Publishing Group.

te rrace  in a s i l ico n  su b strate  and c o n n e c te d  to  a f ixed -sou rce  e le c tr o d e  (S ) ,  as show n  in 

Fig. 14 (A ) .  A  g a te  e le c tr o d e  ( G )  is p o s it io n e d  u n d e rn e a th  the n an o tu b e  so  that a ch ar g e  

can  b e  in d u c e d  in the n a n o tu b e  by a p p ly in g  a g a te  vo ltag e .  T h e  resulting  c a p a c i ta n c e  fo rce  q  
b etw e en  the n a n o tu b e  an d  the ga te  b e n d s  the tu b e  an d  brings the tube e n d  into  c o n ta ct  with 

a drain e le c tr o d e  ( D )  o n  the lo w e r  te rrac e ,  th e re b y  c lo s in g  an e le c tr ic  c ircuit.  T h e o r e t ic a l  
m o d e l in g  o f  th e  d e v ic e  sho w s that th e re  is a  s h a rp  transition  fr o m  a n o n c o n d u c t in g  ( O F F )  

to a c o n d u c t in g  ( O N )  state  w h en  the g a te  v o lt a g e  is va r ied  at a  fixed s o u r c e -d ra in  vo ltag e .  

T h e  sh a rp  sw itch in g  c u rv e  a llow s fo r  a m p lif ica t io n  o f  w e a k  signals  s u p e r im p o s e d  on  the g a te  

v o lta g e  [10].

O n e  fa b r ic a te d  n a n o re la y  device  is sh o w n  in Fig. 14(B). A  m u ltiw alled  n a n o tu b e  w;as p o s i
t ion ed  on  to p  o f  the so u r c e ,  g a te ,  and drain  e le c tr o d e s  with P M M A  ( p o ly m e th y l-m c th a cr y la te )  

as sacrificial lay e r  u sin g A C - e le c t r o p h o r e s is  te ch n iq u e s  [34]. T h e n ,  a top  e le c t r o d c  w a s  p la ced  
o v e r  the n a n o tu b e  at the so u rce  to  e n su r e  g o o d  con tact.  T h e  un de rly in g  P M M A  layer was 

then ca r e fu l ly  r e m o v e d  to  p r o d u c e  a n a n o tu b e  su s p e n d e d  o v e r  the g a te  and drain  e lec tro d es .  

T h e  se p a ra t io n  b e tw e e n  g a te  and drain  w a s  a p p r o x im a te ly  250 nm, and th e  s o u r c e  drain  

distance  w a s  1.5 /xm.

T h e  e le c tr o m e c h a n ic a l  p r o p ert ies  o f  n a n o tu b e  re lays  w e r e  in v est ig a ted  by  m e a s u r in g  the 

c u rr cn t-g a te  v o lt a g e  ( I - V sg) characterist ics ,  w h ile  ap p ly in g  a so u rc e-d ra in  v o lt a g e  o f  0.5 V. 

F igu re  15 sh o w s  the I - V su ch ara cte ris t ics  o f  o n e  o f  the n a n o tu b e  relays w ith  an  initial height

Figure !4. Schem atic  d iagram s o f  a (  N T nanorelay d c \ic e  (A ). R eprinted with perm ission from  |1 0 |.  .!. kinaret 
et al.. A ppi P/iy.s. Left. <S2. I2N7 (2002). < 2002. A m erican  Institute o f  Physics. SE M  im age o f  a fabricated nanorelay 
device (B ) R eprinted w ith  perm ission from 141 j. S. I.ec et al.. \a iio  Leu. 4. 2027 (2004). < 2004. A m erican  
C hem ical Socieiv.
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Figure 15. I -V ss, characteristics o f  a nanotube relay initially su sp en d ed  approxim ately (SO nm above the gate and 
drain electrod es. R eprinted with perm ission  from [41], S. L ee  e l al.. Nano Lett. 4, 2027 (2004). €> 2004, A m erican  
C hem ical Society.

d if fe r e n ce  b e tw e e n  the n a n o tu b e  and drain  e le c tr o d e  o f  a p p r o x im a te ly  80 nm. T h e  drain  c u r 

rent started  to  in crea se  n o n lin e ar ly  w h e n  th e  g a te  v o lt a g e  r e a c h e d  3 V  (at this g a te  v o lta g e ,  

the c u rren t is on  the o r d e r  o f  10 n A ) .  T h e  n o n lin e ar  cu rr e n t  in crease  w a s a s ig n a tu re  o f  e le c 

tron tun n e lin g  as  the d ista n c e  b e tw e e n  the n a n o tu b e  an d  the drain  e le c tr o d e  w as d e c re as e d .  

B e y o n d  V su =  20 V, th e re  w as a c h a n g e  in the rate  o f  c u rren t increase.  W ith  the c u rren t  

in crea se  rate b e c o m in g  m o re  linear, s tr o n g  f lu c tu a t io n s  c o u ld  b e  d ete cted .  T h e  d e f le c t io n  o f  

th e  n a n o tu b e  w a s  fo u n d  to  be  reversib le .  T h e  c u rr e n t  d e c r e a s e d  with the red u ction  o f  gate  

v o lta g e ,  sh o w in g  s o m e  hysteresis, until it r e a ch e d  z e r o  fo r  a g a te  v o ltag e  b e lo w  3 V. T h e  

cu rren t  m e a su re d  d u r in g  the in crea sin g  V sg part o f  th e  se c o n d  scan c losely  fo l lo w e d  that o f  

th e  first scan, esp ec ia l ly  in the regio n  b e lo w  V se =  12 V.

T h e  d yn am ics  o f  n a n o re la y s  w a s  recen t ly  in v est ig a ted  by Jon sson  et al. [65]. T h e  results 

sh o w  that the intrinsic m e c h a n ic a l  f r e q u e n c ie s  o f  n a n o re la y s  a re  in the g ig ah e rtz  reg im e , 

a n d  the reso n an c e  fr e q u e n c y  can  be tu n ed  by the b ia se d  vo ltag e .

T h e  po ten tia l  a p p lica t io n s  o f  n an o re lay s  in c lude m e m o r y  e lem e n ts ,  pulse  g e n e ra to r s ,  s ig

nal am plifiers , an d  lo g ic  devices.

2 .4 .1 .5 .  F e e d b a c k - C o n t r o l l e d  N a n o c a n t i l e v e r s  A  fe e d b a c k -c o n tro l le d  c a r b o n  nano- 

t u b e - b a s e d  N E M S  d e v ice s  r e p o rte d  by  K e  a n d  E s p in o s a  2004 [ l l ] ,  sch em a tica l ly  sh o w n  in 

Fig. lf>, is m a d e  o f  a m u lt iw a lled  c a rb o n  n a n o tu b e  p la c e d  as a c a n ti le v e r  o v e r  a m icr o fa b r i

ca te d  step. A  b o tto m  e le c tr o d e ,  a resistor, and a p o w e r  su p p ly  a re  parts  o f  the d ev ice  circuit.

Figure 16. Schem atic o f nanotuhe-based  device with tunneling contacts. R eprinted with perm ission  from  111|. C .-H. 
Ke and H. D. E spinosa. Appl. Phys. Lett. 85. 681 (2004). €"■ 2004. A m erican  Institute o f  Physics.
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W h e n  the a p p l ie d  v o lt a g e  U  < V,,, (pull-in  v o lta g e ) ,  the e le c tro sta t ic  fo rce  is b a la n ced  by the 

elastic  fo r ce  fro m  the d e f le c t io n  o f  the n a n o tu b e  c an ti lev er .  T h e  n a n o tu b e  c an ti le v e r  rem ain s 

in the “ u p p e r ”  eq u il ib r iu m  position. W h e n  the a p p l ie d  v o lta g e  e x c e e d s  a pull-in  vo ltage,  the 

e lec tro stat ic  fo r c e  b e c o m e s  larger  than the e la s t ic  fo rce  an d  the n a n o tu b e  a cc e le r a te s  tow ard 

the b o tto m  e le c tr o d e .  W h e n  the tip o f  the n a n o tu b e  is v e ry  c lo se  to  the e le c tr o d e  (i.e., g a p  

A % 0.7 nm ) a s  sh o w n  in Fig. 16, a su b stan tia l  tu n n e lin g  cu rren t  passes b e tw e e n  the tip o f  

the n a n o tu b e  an d  the b o tto m  e le c tro d e .  B e c a u s e  o f  the ex iste n ce  o f  the resistor  R  in the c ir

cuit,  the v o lt a g e  a p p lie d  to the n a n o tu b e  d ro p s, w e a k e n in g  the e lec tr ic  field. B e c a u s e  o f  the 

kinetic  e n e rg y  o f  the n an o tu b e ,  it c o n t in u e s  to  d ef lec t  d o w n w a rd ,  and the tu n n e lin g  current 

increases, w e a k e n in g  the e lectr ic  field further. In this c ase ,  the e lastic  fo r ce  is larger  than 

the e le c tr o sta t ic  fo r ce ,  and the n a n o tu b e  d e c e le r a te s  a n d  e v e n tu a lly  c h a n g e s  the d irect io n  

o f  m otio n . T h is  d e c r e a s e s  the tu n n e lin g  c u rr e n t  and the e lectr ica l  field r ec o v e rs .  If  th ere  is 

d a m p in g  in th e  system , the kinetic  e n e r g y  o f  the n a n o tu b e  is d issipated  an d  the n an o tu b e  

stays at the po sit ion  w h e r e  the e le c tr o sta t ic  fo r ce  is e q u a l  to  the e lastic  force ,  and a stable  

tu n n elin g  cu rr e n t  is e sta b lish ed  in the d evice .  T h is  is th e  “ lo w e r ” eq u il ib r iu m  p o s it io n  for  the 

n a n o tu b e  can ti lev er.  A t  this point, if  the a p p l ie d  v o ltag e  U  d e cre as e s ,  the ca n t i le v e r  starts 

retracting. W h e n  U  d e c r e a s e s  to a certain  v a lu e ,  ca l led  p u ll-ou t v o lta g e  V PO, th e  can ti lev er  

is re le a se d  fr o m  its lo w e r  equ il ib r iu m  po sit io n  and retu rn s  b a c k  to its u p p e r  eq uilib r iu m  

p osition. A t  th e  sa m e  tim e, the c u rr e n t  in the d ev ice  d im in ish es  substantia lly. B asically , the 

pull-in and p ull-out p r o c e sse s  fo l lo w  a hyste ret ic  lo o p  fo r  the a p p lie d  v o lta g e  an d  the curren t 

in the d ev ice .  T h e  u p p e r  and lo w er  e q u i l ib r iu m  po sition s c o r r e s p o n d  to O N  and O F F  states 

o f  a switch, resp e ct ive ly .  A ls o  the e x iste n ce  o f  the tu n n e lin g  c u rren t and fe e d b a c k  resistor  

m a ke  the “ lo w e r "  eq u il ib r iu m  states v e ry  rob u st,  w h ich  is key  to  so m e  a p p lic a t io n s  o f  in ter

est. T h e  r e p re s e n ta t iv e  ch aracte r is t ic  cu rve  o f  the d e v ice  is sh o w n  in Fig. 17: (a )  sh o w s the 

relation  b e tw e e n  the g a p  A and th e  a p p l ie d  v o lt a g e  U ; (b) sh o w s the re lat io n  b e tw e e n  the 

c u rren t / in th e  c ircuit  and the a p p lied  v o lt a g e  U.

T h e  c u rren t  ju m p  b e h a v io r  at th e  pull-in has b e e n  o b s e rv e d  fo r  a n a n o tu b e  c an ti lev er  

fr e e s ta n d in g  a b o v e  an e le c tr o d e  a c tu a te d  by e le c tr o sta t ic  fo rce s  [32], as sh o w n  in Fig. 18, 

and the I - V  b e h a v io r  a fte r  the pull-in has b e e n  d e m o n s tr a t e d  b a se d  on  the g o o d  a g r e e m e n t  

b e tw e e n  e x p e r im e n ta l  m e a su r e m e n ts  and th e o r e t ic a l  p red ic t io n .  T h e  p a r a m e te r s  used in the 

th e o retica l  p r e d ic t io n  includes the len gth  o f  the n a n o tu b e  L  =  3.8 /xm; the d ia m e te r  o f  

the n a n o tu b e  R cxt =  20 nm; and the initial g a p  b e tw e e n  the n a n o tu b e  ca n t i le v e r  and the 

e le c tr o d e  H  — 200 nm, R  — 0.98 G i l ,  a n d  c o n ta c t  resistance R {) =  50 i i  [11] .

T h e  p o te n t ia l  a p p lic a t io n s  o f  the d e v ice  in c lu d e  u ltraso n ic  w a v e  d e te c t io n  fo r  m o n ito r in g  

the health  o f  m a te r ia ls  and structures, g a p  sen sin g, N E M S  sw itches, m e m o r y  e le m e n ts ,  and 

logic  devices.

(a)

100 * -
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Figure 17. R epresentative characteristic ol' pull-in and pull-out p rocesses for the feedback-controlled  
device, (a) R elationship  b etw een  the gap A and the app lied  voltage U . (b ) R elationship  betw een  m e curie  
the circuit and the applied  voltage L . R ep iim ed  with perm ission  from  [ l l | .  C .-H . Kc and It. IX H spinosa  
!9hy\. Lea. 85. his) (2004). K 2004. A m erican Institute o f  Physics.
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Figure 18. C om parison b etw een  theoretical prediction and I -V  m easurem ent o f  an electrostatically  actuated  free
standing nanotube cantilever with an e lectron ic circuit incorporating a resistor.

In c o m p a ris o n  to  n an o re lay s  [10, 41], the d e v ic e  re p o rte d  in Ref. [11]  is a tw o -term in al  

d ev ice ,  p ro v id in g  m o r e  flexibility in term s o f  d e v ic e  re a liza t io n  and c o n tro l  than the n a n o 

relay. In c o m p a r is o n  to  the N R A M  d e s c r ib e d  in R e f .  [1], the fe e d b a c k -c o n t r o l le d  device  

e m p lo y s  an e le c tr ica l  c ircuit  in c o r p o ra te d  with a resisto r  to  adjust the e le c tr o sta t ic  field to 

a c h ie v e  the s e c o n d  stab le  eq u il ib r iu m  position . T h is  fe a tu r e  re d u ce s  th e  constra ints  in f a b 

rica tin g  d e v ice s  with n a n o m e te r  g a p  c o n tro l  b e tw e e n  the fr e e s ta n d in g  C N T s  o r  N W s  and 

the sub strate,  p r o v id in g  m o r e  reliability  a n d  to le r a n c e  to  variability  in fa b r ica t io n  p a r a m 

eters . H o w e v e r ,  the d ra w b a c k  o f  the d e v ic e  in m e m o r y  a p p lica t io n s  is that the m e m o r y  

b e c o m e s  vo la tile .  T h e  w o r k in g  princip le  a n d  th e  p o ten tia l  a p p lic a t io n s  fo r  these tw o d ev ice s  

are  s o m e w h a t  c o m p le m e n ta r y .

2 .4 .1 .6 .  T u n a b le  O s c i l l a t o r s  T h e  fa b r ic a t io n  and testing  o f  a tu n a b le  ca rb o n  n a n o tu b e  

o sc i l la to r  w a s r e p o rte d  by S a z o n o v a  et al. [12]. It consists  o f  a d o u b ly  c la m p e d  n an o tu b e ,  as 

show n  in Fig. 19. T h e y  d e m o n s tr a te d  that th e  r e s o n a n c e  fr e q u e n c y  o f  the o sc il la to rs  can  be 

w id e ly  tun ed  a n d  that th e  d e v ice s  can  be  u se d  to  tran sd u c e  very  sm all forces.

G a te

Figure 19. SEM  im age o f  a susp en d ed  d evice (to p ) and a schem atic  o f  d evice geom etry (b ottom ). Scale bar. 30(1 nm. 
The sides o f  the trench, typically J.2—1.5 fxni w ide and 500 nm d eep , are marked with d ashed  lines. A suspended  
nanotube can be seen  bridging the trench. R eprinted with perm ission  from  [12), V. S azonova et al.. Nature 431. 2K4 
(2004). O  2004. N ature Publishing G roup.
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S ingle- o r  fe w -w a l le d  n a n o tu b e s  with d ia m e te r s  in the ran ge  o f  1 - 4  nm , g ro w n  by C V D  

w ere  s u s p e n d e d  o v er  a tren ch (typically  1 .2 -1 .5  \x in w id e ,  500 nm d e e p )  b e tw e e n  two m etal  

(A u /C r)  e le c tro d e s .  A  sm all section o f  the tu b e  res id ed  on the o x id e  on  b o th  sides o f  the 

trench; the a d h e s io n  o f  the n a n o tu b e  to  the o x id e  p r o v id e d  c la m p in g  at the e n d  points. 

T h e  n a n o tu b e  m o tio n  w a s  induced  and d e te c t e d  using th e  e lec tro stat ic  in teraction  with the 

ga te  e le c tr o d e  u n d e rn e a th  the tube. In this d e v ic e ,  th e  g a te  v o ltag e  has b oth  a static ( D C )  

c o m p o n e n t  an d  a small t im e-varyin g ( A C )  c o m p o n e n t .  T h e  D C  v o lta g e  at the g a te  p r o d u c e s  

a  static fo r c e  o n  the n a n o tu b e  that can be used  to  co n tro l  its tension. T h e  A C  v o lta g e  

p r o d u c e s  a p e r io d ic  e le c tr ic  force ,  w h ich  sets  the n a n o tu b e  into m o tio n . A s  the driv ing 

fre q u e n c y  a p p r o a c h e s  th e  reso n an ce  fr e q u e n c y  o f  th e  tube, the d isp la ce m en t b e c o m e s  large.

T h e  tran sisto r  p r o p e r t ie s  o f  s e m ico n d u ct in g  [66] and sm a ll-b an d g a p  se m ic o n d u c t in g  [67, 

68] ca r b o n  n a n o tu b e s  w e r e  e m p lo y e d  to d e te c t  the v ib ra tion a l m o tio n . F igu re  20(a) sho w s 

the m e a s u r e d  cu rren t through the n a n o tu b e  as a fu n ctio n  o f  d riv in g  fr e q u e n c y  at ro o m  

te m p e r a tu re .  A  distinctive fea tu re  in the cu rre n t  on  to p  o f  a slowly c h a n g in g  b a c k g r o u n d  

can  b e seen. T h is  fe a tu r e  is d u e  to  the r e so n a n t  m o tio n  o f  the n an o tu b e ,  w hich  m o d u la te s  

the ca p a c ita n c e ,  w hile  the b a c k g r o u n d  is due to  the m o d u la t in g  g a te  vo ltag e .

T h e  D C  v o lt a g e  on the ga te  can be used to  tun e the tension  in the n a n o tu b e  and th e r e 

fo re  the osc i l la t io n  frequ e n c y .  F igure  20(b) a n d  20(c) sh o w  the m e a su r e d  resp o n se  as a 

fu n ctio n  o f  th e  driv ing fr e q u e n c y  and the static  g a te  v o ltag e .  T h e  reso n an t f r e q u e n c y  shifts 

upw ard  as the m a g n itu d e  o f  the D C  g a te  v o lt a g e  is in creased . S e v e ra l  distinct re so n a n ce s  are  

o b serve d ,  c o r r e s p o n d in g  to d ifferen t v ibration al m o d e s  o f  the n an o tu b e .  F igu re  20(d) sho w s 

the th e o re tica l  p red ic t io n s  fo r  the d e p e n d e n c e  o f  the v ibra tion  fr e q u e n c y  o n  g a te  v o lta g e  

fo r  a  re p r e s e n ta t iv e  d e v ice .  T h e  p red iction s  a re  b ase d  on  finite e le m e n t  analysis,  with the 

n a n o tu b e  m o d e le d  as a  lo n g  b e a m  su sp e n d e d  o v e r  a tren ch. W ith  the in crea se  o f  the g a p  

v o lta g e ,  the d e f le c t io n  o f  the n an o tu b e  b e c o m e s  large r  an d  the s tretch in g  d o m in a te s  the 

bending. T h e r e f o r e ,  the stiffness o f  the n a n o tu b e  b e a m  in crea ses  and so d o e s  the r e so n a n c e  

frequ e n cy .  T h e  th e o retic a l  p red iction s  (Fig. 20 (d))  sh o w  g o o d  q u alita tive  a g r e e m e n t  with 

e x p e r im e n ts  (F ig .  20(b) and 20(c)). T h e  d ev ice  s h o w e d  a h ig h -fo rce  sensitivity  (b e lo w  5 a N ) ,  
w h ich  m a d e  it a  sm a ll- fo rce  transducer.

Figure 20. M easurem ents o f  resonant response, (a ) D etected  current as a function o f  driving frequency, (b ) - (c )  
D etected  current as a function o f  gate voltage V„ and frequency for d ev ices I and 2. (d ) T h eoretica l pred ictions  
for the d ep en d en ce o f  vibration frequency on gate voltage for a representative device. R eprinted with perm ission  
from i 12], V. Sazonova et a!.. Nature 431. 2<S4 (2004). £) 2004. N ature Publishing Group.
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2 .4 .2 . N an o w ire -B ased  N an o e lec tro m ech an ica l System s D evices
Nanowires, like carbon nanotubes, are high-aspect-ratio, one-dimensional nanostructures.
I he materials of nanowires include silicon [52, 69-72], gold [73, 74], silver [75-77], platinum 
[24], germanium [71, 78-81], zinc oxide [82, 83], and so on. Besides their size, the advantages 
offered by nanowires when employed in NEMS are their electronic properties, which can 
be controlled in a predictable manner during synthesis. This has not been achieved yet 
for carbon nanotubes. In contrast to carbon nanotubes, nanowires do not exhibit the same 
degree of flexibility, which may be a factor concerning device fabrication and reliability. In 
the following section, two nanowire-based NEMS device are briefly reviewed.

2.4.2.1. Resonators Figure 21 shows a suspended platinum nanowire resonator (a), 
reported by Husain et al. 2003 [24], and the circuit used for magnetomotive drive and detec
tion of its motion (b).

Synthetized platinum nanowires were deposited on a Si substrate capped by a 300-nrn- 
thick layer of thermally grown silicon dioxide and prepatterned with Au alignment marks. 
The location of the deposited wires was mapped, by means of optical microscopy, using their 
strong light-scattering properties [76, 84]. Metallic leads (5 nm Cr, 50 nm Au) to individual 
wires were subsequently patterned by electron-beam lithography, evaporation, and lift-off. 
Finally, the SiO: was removed by wet etching (HF) to form suspended nanowire structures. 
The suspended Pt nanowire shown in Fig. 21 has a diameter of 43 nm and a length of 
1.3 fxm. A magnetomotive detection scheme (see Fig. 21, right), in which an AC current 
drives a beam in a transverse magnetic field, was used to drive and read out the resonators. 
Figure 22 shows the measured motion-induced impedance of the nanowire device, |Z,„(/)|, 
versus frequency. The measured quality factor Q was approximately 8500 and decreased 
slightly with the increase in magnetic field. It was noted that the characteristic curve shown 
in Fig. 22 corresponds to a linear response of the beam. Badzey et al. [52] reported a doubly 
clamped nanomechanical Si beam working in the nonlinear response region. The nonlinear 
response of the beam displays notable hysteresis and bistability in the amplitude-frequency 
space when the frequency sweeps upward and downward. This particular behavior shows 
that the device can be used as mechanical memory elements.
2A.2.2. Nanoelectromechanical Programmable Ready-Only Memory A nanowire- 
based nanoelectromechanical programmable read-only memory (NEMPROM), reported by 
Ziegler et al. 2004 [80], is shown in Fig. 23(a). The germanium nanowire was synthesized 
directly onto a macroscopic gold wire (diameter =  0.25 mm). The combination of transmission 
electron microscope (TEM) and STM was used to control and visualize the nanowire under 
investigation. Figure 23(b)-23(g) illustrates how the device can work as NEMPROM. In equi
librium, the attractive van der Waals (vdW) force and electrostatic interactions between the 
nanowire and the gold electrode are countered by the elastic force from the deflection of the 
nanowire. Figure 23(b) shows the position of the nanowire with relative low applied voltage. 
With the increase in voltage, the nanowire moves closer to the electrode (Fig. 23(c)). When 
the applied voltage exceeds a certain value, a jump-to-contact happens, i.e., the nanowire 
makes physical contact with the electrode (Fig. 23(d)). The nanowire remains in contact with 
the electrode even when the electrostatic field is removed because the vdW force is larger 
than the elastic force (Fig. 23(e)). This is the ON state of the NEMPROM. The NEMPROM

(a) (b)

Figure 21. (a) SEM image of the suspended nanowire device, 1.3 f im  long and 43 nm in diameter, (b) M easurement 
circuit used for magnetomotive drive and detection. Reprinted with permission from [24], A. Husain et a!., Appl, 
Phys. Lcii. 83, 1240 (2003). £' 2003. American Institute of Physics.
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Frequency (MH/l

Figure 22. M easured mechanical impedance of a Pi nanowire device as a function of* frequency, at a series ol 
magnetic fields from I to X T. The left inset shows the characteristic B : dependence typical of magnetomotive 
detection. The right inset shows the quality factor Q  as a function of magnetic field. Reprinted with permission 
from 124], A. Husain et a I., A pp l. Phys. Lett. S3, 1240 (2003). €) 2003. American Institute of Physics.

device can be switched OFF by mechanical motion or by heating the device above the stabil
ity limit to overcome the vdW attractive forces. Figure 23(f) and 23(g) show the separation 
of the nanowire and the electrode after imposing a slight mechanical motion, resulting in 
a jump-off-contact event. This is the OFF state of NEMPROM. The working principle of 
NEMPROM is similar to that of NRAM [ 1 ] since both of them employ van der Waals energy 
to achieve the bistability behavior, although the usage of germanium may provide better 
control of size and electrical behaviors of the device than that of carbon nanotube.

2.5. Future Challenges
NEMS offer unprecedented and intriguing properties in the Helds of sensing and elec
tronic computing. Although significant advancement has been achieved, there are many chal
lenges that will need to be overcome before NEMS can replace and revolutionize current

Figure 23. (a) TEM image of n Ge nanowire device. (h )-(d) TEM sequence showing the juinp-to-coniact ui a Ge 
nanowire as the voliage is increased, (e) TEM image demonstrating the stability of device after removal ol the 
electrostatic potential. (f) and (g) TEM sequence demonstrating the reselling behavior of the device. Reprinted with 
permission from |S0(. K. J. Ziegler et aL.-l/v>/. Phys. Lett. K4. 4074 (2004). 2004. American Institute of Physics.
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technologies. Among the issues that need further research and development are

1. Extremely high integration level: For applications such as RAM and data storage, the den
sity of the active components is definitely a key parameter. Direct growth and directed 
self-assembly are the two most promising methods to make NEMS devices with levels 
of integration orders of magnitudes higher than that of current microelectronics.
A process for nanofabrication of the NEMS device developed by Ke and Espinosa fl 1], 
based on the directed self-assembly, is schematically shown in Fig 24.

a. A l-junvthick Si3N4 dielectric film is deposited on a Si wafer by low pressure 
chemical vapor deposition (LPCVD). Then, a 50-nm-thick gold film (with 5 nm 
Cr film as adhesion layer) is deposited by e-beam evaporation and patterned by 
lithography to form the bottom electrodes. A 1-^u.m-thick SiO: layer is deposited 
by PECVD (plasma enhanced chemical vapor deposition).

b. The fountain-pen nanolithography technique [85] is then employed to function
al ize specific areas, with widths down to 40 nm, either with polar chemical groups 
(such as the amino groups (—NH:/ —NHt) of cysteamine) or carboxyl (-COOH/ 
-CO O  ) or with nonpolar groups (such as methyl (—CH3) from molecules like
1-octadecanethiol, ODT).

c. The substrate is dipped into a solution containing prefunctionalized (with polar 
chemical groups) CNTs or NWs to adhere and self-assembly to the functionalized 
sites.

d. The chip is patterned with e-beam lithography and e-beam evaporation of 100 nm 
gold film (lift-off, with 5 nm Cr film as adhesion layer) to form the top electrodes.

e. Removal of the SiO: layer using wet etching (HF) to free one end of the CNT 
cantilever completes the process.

The final product, a two-dimensional array of NEMS devices, with multiplexing capa
bilities is schematically shown in Fig. 25. The top and bottom electrodes are intercon
nected to the pads, correspondingly. By applying voltage between the corresponding 
pads, the individual NEMS devices can be independently actuated.

2. /letter understanding the quality factor: One of the keys to realize the potential appli
cations of NEMS is to achieve ultra-high-quality factors. However, it has been con
sistently observed that the quality factor of resonators decreases significantly with size 
scaling [5]. Defects in the bulk materials and interfaces, fabrication-induced surface 
damages, adsorbates on the surface, and thcrmoelastic damping are a few commonly 
listed factors that can dampen the motion of resonators. Unfortunately, the dominant 
energy dissipation mechanism in nanoscale mechanical resonators is still unclear.

3. Reproducible and routine nanomanufacturing: Fabrication reproducibility is key in 
applications such as mass sensors. Because the NEMS can respond to mass at the 
level of single atom or molecules, it places an extremely stringent requirement on the 
cleanness and precision of nanofabrication techniques. Likewise, devices that rely on

Figure 24. Schematic of the fabrication steps involving nano fountain probe (NFP) funetionalization.
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Top electrode Carbon nanotube Bottom electrode

Figure 25. Schematics of two-dimensional array of the NEM S device with multiplexing.

van der Waals energy require dimensional control (e.g., gap dimension) in the order of 
a few nanometers.

4. Quantum limit for mechanical devices: The ultimate limit for NEMS is its operation at, 
or even beyond, the quantum limit [5]. In the quantum regime the individual mechan
ical quanta are of the same order of magnitude, or greater than the thermal energy. 
Quantum theory should be used to understand and optimize force and displacement 
measurements. Recently, position resolution with a factor of 4.3 above the quantum 
limit has been achieved for a single-electron transistor with high-quality factor at mil- 
likelvin temperature [86]. The pursuit of NEMS devices operating at the quantum limit 
will potentially open new fields in science at the molecular level.

3. MODELING OF NANOELECTROMECHANICAL  
SYSTEMS DEVICES

The design of NEMS depends on a thorough understanding of the mechanics of the devices 
themselves and the interactions between the devices and the external forces/fields. With the 
critical dimension shrinking from micron to nanometer scale, new physics emerges so that the 
theory typically applied to MEMS does not immediately translated to NEMS. For example, 
van der Waals forces from atomic interactions play an important role in NEMS, while they 
can be generally neglected in MEMS. The behavior of materials at nanometer scale begins 
to be atomistic rather than continuous, giving rise to anomalous and often nonlinear effects, 
for example,

• The roles of surfaces and defects become more dominant.
• The devices become more compliant than continuum models predict.
• Molecular interactions and quantum effects become key issues to the point that thermal 

fluctuation could make a major difference in the operation of NEMS.
For instance, the nanoresonators reported by the research groups of Roukes and Craighead 
are operated in the gigahertz range and usually have sizes within 200 x  20 x  10 nm' [87].
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Devices of this size and smaller are so minuscule that material defects and surface effects 
have a large impact on their performance.

In principle, atomic-scale simulations should well predict the behavior of NEMS devices. 
However, atomic simulations of the entire NEMS involve prohibitively expensive computa
tional resources or exceed the current computational power. Alternatively, multiscale mod
eling. which simulates the key region of a device with an atomistic model and other regions 
with a continuum model, can well serve the purpose under the circumstance of limited com
putational resources. Besides, it has been demonstrated that the behavior of some nanostruc
tures, like carbon nanotubes, can be approximated by continuum mechanics models, based 
on the same potentials governing molecular dynamics (MD) simulation [88], if the surface 
nonideality of the nanostructures is neglected. Thus, continuum mechanics models are still 
adequate to the design of NEMS, in particular, in the initial stages.

3.1. Multiscale Modeling
Multistage modeling can be pursued sequentially or concurrently. In the sequential method, 
information from each model at a given scale is passed to the next modeling level. In this 
fashion, “informed” or physically motivated models are developed at larger scales. In con
current multiscale modeling, the system is split into primarily two domains: the atomistic 
domain and the continuum domain. In the atomistic domain, MD and quantum mechanics 
(QM) are typically employed, while in the continuum domain, the finite element method is 
often used. MD deals with the interaction of many thousands of atoms or more according 
to an interaction law. The “constitutive" behavior of each atom is governed by QM. QM 
involves the electronic structure, which in turn determines the interatomic force law—the 
“constitutive” behavior of each atom. However, in practice, the interatomic force laws have 
been determined empirically based on both QM and experiments. To model the response 
of NEMS devices, MD and continuum mechanics are generally adequate; hence, here we 
restrict our discussion to the basic ideas behind these two models. In some cases, QM mod
eling is required so the reader should consult the information on QM.

As an example of sequential multiscale modeling, we discuss how the mechanical proper
ties of bulk tantalum were calculated using a multiscale modeling strategy. Moriarty et al. 
[89] started with fundamental atomic properties and used rigorous quantum-mechanical 
principles calculations to develop accurate interatomic force laws that were then applied 
to atomistic simulations involving many thousands of atoms. From these simulations, they 
derived the properties of individual dislocations in a perfect crystal and then, with a new 
microscale simulation technique, namely, dislocation dynamics, examined the behavior of 
large collections of interacting dislocations at the microscale in a grain-sized crystal. They 
modeled the grain interactions in detail with finite-element simulation, and from those sim
ulations, they finally constructed appropriate models of properties such as yield strength 
in a macroscopic volume of tantalum. At each length scale, the models were experimen
tally tested and validated with available data. The concept of information passing between 
models, from quantum modeling to atomic to continuum scale, is quite general and can be 
applied in a variety of problems including NEMS.

3.1.1 . Im p lem en ta tio n  o f C o n cu rren t M u ltisca le  M odeling
MD computes the classical trajectories of atoms by integrating Newton’s law, F =  ma, for 
the system. In the MD domain, the interaction force follows an empirical potential. Consider 
a set of nsf molecules with the initial coordinates X h I — 1 to nM. Let the displacements 
be denoted by dt(t). The potential energy is then given by WVf(d). For a given potential 
function WX!(cl), an equilibrium state is given by

dWM(d) = 0 (1)

From the continuum viewpoint, the governing equations arise from conservation of mass, 
momentum and energy. Using a so-called total Lagrangian description [90], the linear 
momentum equations are

dP;:
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where p() is the initial density, P is the nominal stress tensor, b is the body force per unit 
mass, it the displacement, and the superposed dots denote material time derivatives.

There are two approaches to building a multiscale model: domain decomposition with 
overlapping domains, often referred to as the "handshake" model [87], and the edge-to-edge 
decomposition method [91].

The main features of the overlapping domain decomposition include: (a) A Lagrange 
multiplier method and an augmented Lagrange method to impose consider the constraints 
on the motion; (b) The Lagrange multiplier field in the overlapping domain vanishes at the 
edges of the continuum domain so that the interaction forces between the continuum and 
molecular mechanics model are smooth if an atom exits the overlapping domain.

In edge-to-edge decomposition coupling method, there are three types of particles. Besides 
the nodes of the continuum domain and the atoms of the molecular domain, virtual atoms 
are defined to model the bond angle-bending for bonds between the continuum and the 
molecular domains. The virtual atoms are connected with the molecular domain by virtual 
bonds. An example showing the domains in difference of all these methods, when applied 
to the modeling of a graphite sheet, is shown in Fig. 26.

3.1.2. Exam ples o f Concurrent M ultiscale Modeling
Because of the computational power and efficiency, multiscale modeling has been used 
widely in the modeling and simulation of nanostructures and NEMS. Here three examples 
are highlighted: carbon nanotube fracture [91], carbon nanotube-based switch performance 
[88], and nanogears kinematics [87].

In the model developed by Belytschko et al [91] for studying carbon nanotubes fracture, 
two shells of a nanotube interacting by van der Waals forces were considered. The molecular 
model was used only in a small subdomain surrounding a defect, while the finite element 
model was employed outside of the molecular model (Fig. 27). A modified Morse poten
tial was used. The load was only applied to the outside shell. For the entire domain to be 
modeled by molecular mechanics, 46,200 atoms were required, which is very expensive com
putationally. The numerical results were compared with reported experimental values for 
the failure stress. The model with a certain number of defects agreed much better with the 
experimental measurements than did a perfect nanotube model.

As aforementioned, carbon nanotube-based electrostatic switches have the potential to 
operate in the gigahertz range and achieve much higher integration levels than currently 
possible. As such, modeling attempts to gain insight into the performance of the device pur
sued. Aluru's group developed various numerical models, including continuum models, and 
continuum/MD coupled models to analyze device behavior [92], This work shows that con
tinuum modeling, considering nonlinear beam theory, is in good agreement with molecular

(c> edge-to-edge coupling. Reprinted with permission from [vM|. T. Belytschko et a!.. Int. ./. M t ilt is c n ic  C om p. Ln\ir.

I. I 1 5  ( 2 0 0 3 ) .  ©  2 0 0 3 .  Be Lie I! House. Inc.
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Figure 27. Carbon nanotube model for fracture study by overlapping coupling method. Reprinted with permission 
from [9 l|, T. Belytschko et al.. Int. J. M ultiscale C om p . E ng1: 1, 115 (2003). © 2003, Begell House, Inc.

mechanics modeling. MD simulation showed that, with an increase of the gap between the 
nanotube and the ground, the nanotube locally buckles as it approaches the ground. The 
local buckling phenomenon was not captured by the continuum beam theory employed in 
the analysis. Hence a combined continuum/MD technique was used to overcome this limita
tion. Figure 2cS compares the deformed shapes obtained from the combined continuum/MD 
model and the fully molecular mechanics model. The buckling that occurred at the two 
ends of the nanotube was captured by the MD subdomain. In the center of the nanotube, 
the nonlinear beam theory was able to predict well and greatly reduced the computational 
cost. The combined continuum/MD approach and the fully MD approach provided good 
agreement in terms of the static pull-in voltage.

i

-3 -

_4 LJ_________ I_________ I_________ I__________I_________ I_________ I_________ I__________I_________ I_________ LJ
- 1 0  - 8  - 6  - 4  - 2  0  2  4  6  8  1 0

Length (nm)

Length (nm)

Figure 28. Deformation plot of a fixed-fixed carbon nanotube-based switch. The top figure is the result from full 
molecular dynamics (M D) simulation and the lower is the multiscale result in which the central region is modeled 
bv one-dimensional nonlinear beam theory. Reprinted with permission from [92|. M. Desquenes et al.. /  Eng. Mater, 
lech. 126. 230 (2004). €) 2004. American Society of Mechanical Engineers.
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Microgears have been one of the most successful MEMS devices so far. Such devices are 
presently made at the 100 /tun scale and rotate at speeds of 150,000 rpm. Next generation of 
devices (nanogears), based on nanofabrication, are expected to be below the 1 fim level. The 
effects of wear, lubrication, and friction are expected to have significant consequences on the 
performance of the nanogears, where areas of contact are an important part of the systems. 
However, the process of nanogear teeth grinding against each other cannot be simulated 
accurately with FE because of the bond breaking and formation at the point of contact can 
only be treated empirically in FE. Alternatively, multiscale modeling provides a good tool to 
predict the mechanics-related issues for these devices. Figure 29 shows the multiscale decom
position for the modeling of nanogears. An inner region, including the shaft, is discretized 
by finite elements. The handshaking between the FE and MD region is accomplished by a 
self-consistent overlap region. In regions at the gear-gear contact point in the nonlubricated 
case, a tightbinding (TB) description is used as part of a QM simulation [87].

3.2. Continuum Mechanics Modeling
Many NEMS devices can be modeled either as biased cantilever beams or fixed-fixed beams 
freestanding over a ground substrate, as shown in Fig. 30. The beams can be carbon nano
tubes, nanowires, or small nanofabricated parts. The electromechanical characterization of 
NEMS involves the calculation of the elastic energy (Echls), from the deformation of active 
components, the electrostatic energy (£clcc), and van der Waals energy (EuJW) from atomic 
interactions. In the following section, we summarize the continuum theory for each of these

Figure 29. Illustration of dynamic simulation zone and domain decomposition for coupling of length scales: from 
continuum (FE) to atomistic (M D) to electronic structure (TB). Reprinted with permission from (87], R. Fi. Rudd 
and J. Q. Broughton, R. E. Rudd and J. Q. B r o u g h t o n . M odel. Sunni. M icrosys. I. 29 (! WJ). £) IW ). Applied 
Computational Research Society.
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Figure 30. Schcmatic of NF.MS devices. (A) Cantilever beam configuration. (B) Doubly clamped beam configura
tion. Reprinted with permission from [103], C.-H. Ke and H. D. Espinosa,./. A ppi. M cch. 72. 721 (2005). <0 2005, 
American Society of Mechanical Engineers.

energy domains and the governing equations of equilibrium for both small deformation and 
finite deformation. We follow the work reported in Refs. [32, 88, 92, 103, 104, 106].

3.2.1. C ontinuum  Theory
3.2.1.1. Van der Waals Interactions The van der Waals (vdW) energy originates from 
the interaction between atoms. The Lennard-Jones potential is a suitable model to describe 
van der Waals interaction [93]. In the Lennard-Jones potential, there are two terms: one is 
repulsive and the other is attractive. The Lennard-Jones potential between two atoms i and 
j  is given by

tu  = TiT TtTrhI )  IJ

where /*,■■ is the distance between atoms / and j and Q  and C l2 are attractive and repul-
o ,

sive constants, respectively. For the carbon-carbon interaction, C(1 =  15.2 eVA° and Cl2 = 
24.1 keVA12 and the equilibrium spacing /*n =  3.414 A [94], From Eq. (3), we can see that 
the repulsive components of the potential decay extremely fast and play an important role 
only when the distance is close to or smaller than r(). The total van der Waals energy can 
be computed by a pair-wise summation over all the atoms. The computational cost (number 
of operations) is proportional to the square of the number n of atoms in the system. For a 
NEMS device with millions of atoms, this technique is prohibitively expensive. Instead, a con
tinuum model was established to compute the van der Waals energy by the double-volume 
integral of the Lennard-Jones potential [95], that is.

v̂ilW — f  I  n \n i (  .->^12-------- "7-------  — - \ d v \ d v s (4)
JvxJv, v  (h.* ':) ' (* V ^ ) /

where, vx and v2 represent the two domains of integration, and and n, are the densities 
of atoms for the domains vx and v2, respectively. The distance between any point on v] and 
v2 is r(vx, v2)-

Let us consider SWNT freestanding above a ground plane consisting of layers of graphite
sheets, with interlayer distance d = 3.35 A, as illustrated in Fig. 31(A). The energy per unit
length of the nanotube is given by

v̂dW _  ̂ 2 n V-'' I (  12_________________________ \  ^
U ~ ~ 7T(T ^ J. A  10[(/i- T)d + 7^+ R  + Rsinti]111 _ 4[(>7- l )d+ ~rimi +R +RsinOV J

(5)where L is the length of the nanotube, R is the radius of the nanotube, rjnU is the distance 
between the bottom of the nanotube and the top graphene sheet, N is the number of 
graphene sheets and <x =  38 m rr: is the graphene surface density. When rinit is much larger 
than the equilibrium spacing r„, the repulsive component can be ignored and Eq. (5) can be 
simplified [88] as

Evuw : 1r)lV ^ +' . (R+  r)[3R- + 2(r + R)-]
- -  = c - " ' r R  T. - ^ u T T ry- -  R ' - F  <61
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Figure 31. Van der Waals integration of a SWNT (A) and MWNT (B) over a graphite ground plane. Reprinted 
with permission from [88], M. Desquenes et al.. N ano iech n o logv 13, 120 (2002). £> 2002. Institute of Physics.

The accuracy of Eq. (6) in approximating the continuum van der Waals energy of a SWNT 
placed over a graphite plane is verified hy the comparison with the direct pair-wise summa
tion of the Lennard-Jones potential given by Eq. (3) for a (16,0) tube, which is shown in 
Fig. 32 [88].

For a MWNT, as illustrated in Fig. 31(B), the energy per unit length can be obtained bv 
summing up the interaction between all separate shells and layers:

E vdVV ^  l;V C . i r ' T T  R ( l t  +  r ) [ M t '  +  2 ( r  f  R ) 2}

K— l\...| I “-/inn
2 [ ( r  +  R ) 2 - R 2  |7/2 (7)

where /?inl and Rcxl are the inner and outer radii of the nanotube, respectively. 
The van der Waals force per unit length can be obtained as

*/uiw —
‘‘M

dr (« )

Ciap l n m )

Figure 32. Comparison of the continuum van dcr Waals (vdW) energy given hy Eq. (ft) with the discrete pair-wise 
summation given by Eq. (3). Reprinted with permission from |SSj. M. Desquenes et ;ii., .X nnoicc/inc th^y  13, 120 
(2002). CO 2002. Institute of Physics.
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Thus, inserting Eq. (7) into Eq. (8) and taking the derivative with respect to /\ one 
obtains [88]

^  1A   C > :?T - R j r ( r  +  2/?)(S/-4 +  32 r ' R  +  1 2 r  R1 +  HOrfV +  35/J4)
'Atfw = L  L -------------------------------- ----------------- 7̂ ---------------------------- <l)>

«=«,„, .. 2[2r'(r -- 2R)'  ]

3.2.1.2. Electrostatic Force When a biased conductive nanotube is placed above a con
ductive substrate, there are induced electrostatic charges both on the tube and on the 
substrate. The electrostatic force acting on the tube can be calculated using a capacitance 
model [96].

Let us look at the electrostatic force for a conductive nanotube with finite length and 
round cross section above an infinite ground plane. Although nanotubes have hollow struc
tures, carbon nanotubes with capped ends are more electrochemically stable than those with 
open ends [97]. Thus, nanotubes with finite length, as well as nanowires, can be geometri
cally approximated by conductive nanocylinders. For small-scale nanocylinders, the density 
of states on the surface is finite. The screening length, the distance that the "surface charge’' 
actually penetrates into the cylinder interior, is found to be a nanometer-scale quantity 
[98]. For nanocylinders with transverse dimension (i.e., diameter approaching the screen
ing length), such as SWNT, the finite size and density of states (quantum effects) have to 
be considered thoroughly when calculating the surface/volume charge distribution [99, 100]. 
For nanocylinders with transverse dimension much larger than the screening length, such 
as MWNT or nanowires with large outer diameter (e.g., 20 nm), this quantum effect can 
be considered negligible. Thus, the charge distribution can be approximated by the charge 
distribution on a metallic, perfectly conductive cylinder with the same geometry to which 
classical electrostatic analysis can be applied.

For infinitely long metallic cylinders, the capacitance per unit length [96] is given by

c *'(r) =  , m L m  (l())a cosh ( l +  ^ )

where r is the distance between the lower fiber of the nanocylinder and the substrate, R is 
the radius of the nanocylinder, and e is the permittivity of the medium. For vacuum, e{) = 
8.854 x !() 12 C 2N  !m  2. Equation (10) can be applied for infinitely long MWNTs with large 
diameters (R = Rcxl).

For the charge distribution on infinite long SWNT, Bulashevich and Rotkin [ 100], proposed 
a quantum correction, rendering the capacitance per unit length as

where C() =  e2vm, and vM is the constant density of the states near the electroneutral level 
measured from the Fermi level.

For nanocylinders with finite length, there are two types of boundary surfaces—the cylin
drical side surface and the planar end surface. Essentially classical distribution of charge 
density with a significant charge concentration at the cylinder end has been observed [99. 
101, 102]. Here we discuss a model to calculate the electrostatic charge distribution on metal
lic cylindrical cantilevers based on a boundary element method (BEM), considering both 
the concentrated charge at the free end and the finite rotation due to the deflection of the 
cantilever [103].

Figure 33 shows the charge distribution along the length L of a freestanding nanotube, 
subjected to a bias voltage of 1 V. The contour plot shows the charge density (side view), 
while the curve shows the charge per unit length along the nanotube. The calculation was 
performed using the CFD-ACE-h software (a commercial code from CFD Research Corpo
ration based on finite and BEMs). There is significant charge concentration on the free ends 
and uniform charge distribution in the central of the cantilever, which is found to follow 
Eq. (10). The charge distribution along a deflected cantilever nanotube is shown in Fig. 34.
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Figure 33. Charge distribution for a biased nanotube. The device param eters are R^xl =  9 nm. H  =  100 nm, and 
L  == I f im . Reprinted with permission from 1104]. C.-H. Ke et al.,./. Appi. M e  ch. 72. 721 (2005). © 2005. American 
Society of Mechanical Engineers.

The parameters are RC]il = 20 nm, H = 500 nm, L = 3 ^m, and the gap between the free 
end and the substrate r(L) — 236 nm. From Fig. 34, it is seen that, besides the concentrated 
charge on the free end, the clamped end imposes a significant effect to the charge distribu
tion in the region close to it [98]. However, this effect can be considered negligible because 
its contribution to the deflection of the nanotube is quite limited. The charge distribution 
in regions other than the two ends closely follows Eq. (10). A formula for the charge distri
bution, including end charge effects and the deflection of the cantilever, is derived from a 
parametric analysis [103], as follows:

C(r(x)) = CAr(x))H+i).H5\(H + R)-R]l»8(x -  ,vlip) } -  C,,(r(jr)){ 1 + / .}  (12)

where the first term in the bracket accounts for the uniform charge along the side surface 
of the tube and the second term, accounts for the concentrated charge at the end of 
the tube (for doubly clamped tube, f. ~  0). H is the distance between the cantilever and 
the substrate when the cantilever is in horizontal position, R is the radius of the tube (for 
MWNT R — Rcxl), x = xlip =  I. for small deflection (when considering the finite kinematics,
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Figure 34. (Top) Two-dimensional side view of the charge distribution in a deflected nanolube cantilever. (Bottom) 
Charge distribution per unit length along a deflected nanotube cantilever. The solid line is plotted from Eq. (10): 
the dotted line is the simulation result performed with (T D -A C E -r. Reprinted with permission from [103], C.-H. 
Ke and H. D. Espinosa. J. A p p i  M cclt. 72. 721 (2005). O  2005. American Society of Mechanical Engineers.



N an o c lcc tro m ech an ica l Systems and M o d e lin g 845

i.e., large displacement, v =  .v,ip ^  L ), 8(x) is the Dirac function, and r(x) — H — w(x). with 
w being the tube deflection.

Thus, the electrostatic force per unit length of the nanotube is given by differentiation of 
the energy [104], as follows:

^ ‘ 1 + 1 = "  + /; ’ l ' 3)

where V is the bias voltage.
3.2.1.3. Elasticity Continuum-beam theory has been widely used to model the mechanics 
of nanotubes [25, 32, 88, 92, 104-106]. The applicability and accuracy of the continuum 
theory have been evaluated by comparison with MD simulations [88]. Figure 35 shows the 
comparison of the deflection of a 20-nm-long, doubly clamped DWNT with a diameter of 
l.96 nm, calculated by MD simulation and by the beam equation, respectively. The solid 
black curve—the deflection predicated by the beam equation—follows closely the shape 
predicted by MD calculations.

Because nanotubes have high flexibility with strain at tensile failure of the order of 30% 
[107], nonlinear effects such as finite kinematics, accounting for large displacement need to 
be considered in the modeling. This is particularly important for doubly clamped nanotube 
beams because the stretching from the finite kinematics stiffens the beam, resulting in a 
significant increase of the pull-in voltage, a key parameter in NEMS devices.
3.2.1.4. Governing Equations The electromechanical characteristic of nanotube can
tilevers or doubly clamped nanotube beams can be determined by coupling the van der 
Waals, electrostatic, and elastic forces. The governing equation under the small deformation 
assumption (considering only bending) [88] is given by

dAr
EI = <7dec +  ch  tiw (14)

where r is the gap between the nanotube and the ground plane, a* is the position along the 
tube, E is the Young’s modulus (for carbon nanotube E = 1 — 1.2 TPa), I is the moment of 
inertia (for nanotubes, / =  ^ (RAxl -  Rcx, and Rinl are the outer and inner radii of the
nanotubes, respectively), and </dcc and </vdw are given by Eqs. (13) and (9), respectively.

For cantilevers exhibiting large displacements, as shown in Fig. 36, the curvature of the 
deflection should be considered and the governing equation [104] changes into

d2
E I~rdx

< r \(hr
____ (I.X~____

\ ( i + © y  /
— (tfvdW  +  <7elcc)

clr_
V ‘ 1 \d x

For doubly clamped structures exhibiting finite kinematics, as shown in Fig. 37, stretching 
becomes significant as a consequence of the ropelike behavior of a doubly clamped nanotube. 
The corresponding governing equation [92, 104, 106] is expressed as

r, . dAw EA Cl ( d w \  d2w 

where the term 4^ ( j f ) 2dx is the tension along the axis of the tube due to stretching.

Figure 35. Comparison between MD and beam theory of the deflection of a 20-nm-long fixed-fixed DWNT (diam
eter 1.96 nm). The solid black curve is the deflection predicated by beam theory. Reprinted with permission from 

M. Desquenes et al.. N anotechno logy  13, 120 (2002). © 2002, Institute of Physics.
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Figure 36. Schematic o f finite kinematics configuration of a cantilever nanotube device subjected to electrostatic 
and van der Waals forces. Reprinted with permission from [104], C.-H. Ke et al., J. A pp l. M ech. 72, 726 (2005). 
© 2005, American Society of Mechanical Engineers.

The aforementioned governing equations can be numerically solved by either direct inte
gration or finite difference method. The effect of various factors, such as concentrated 
charge, finite kinematics, and stretching, on the prediction of pull-in voltages of devices can 
then be identified.

In the following, the effects of concentrated charge and finite kinematics on the prediction 
of the pull-in voltage for a cantilevered nanotube with /?cxt =  10 nm, Rml — 0, E =  1 TPa, 
H = 100 nm, L = 500 nm are considered [104]. The displacement of the tip as a function 
of the applied voltage is shown in Fig. 38. As expected, the role of the finite kinematics 
becomes negligible. The pull-in voltages, corresponding to the vertical lines, differ by less 
than 1%. Both numerical solutions reported in Fig. 38 consider the charge concentration 
at the tip of the cantilevered nanotube. Figure 39 shows the error in the pull-in voltage in 
case the charge concentration is ignored. It is inferred that the error from neglecting charge 
concentration can be appreciable.

The effect of finite kinematics and stretching on the prediction of pull-in voltage for a 
doubly clamped nanotube is examined by investigating a device with the following charac
teristics Rexl = 10 nm, /?im = 0, E =  1 TPa, H — 100 nm, L =  3000 nm [104]. The central 
deflection of the nanotube as a function of the applied voltage is shown in Fig. 40 for both 
with and without stretching. The two vertical lines correspond to reaching unstable behavior 
(i.e., pull-in voltages). The role of tension stiffening due to the ropelike behavior is quite 
pronounced in this case.
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Figure 37. Schematic of finite kinematics configuration of a doubly clamped nanotube device subjected to elec
trostatic and van der Waals forces. Reprinted with permission from 111)4]. C .-ll. Ke el al.. J. A pp l. M uch. 72. 726 
(2005). C1 2005. American Society of Mechanical Engineers.
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V (voll)

Figure 38. The effect of finite kinematics on the characteristic of the cantilever nanotube based device (tip dis
placement vs. voltage). The solid lines illustrate the result accounting for finite kinematics, while the dashed line 
shows the result when finite kinematics is neglected. Both analyses account for charge concentration at the end 
of the cantilever nanotube. Reprinted with permission from [104], C.-H. Ke et al., J. A pp l. M a l i .  72, 726 (2005). 
© 2005, American Society of Mechanical Engineers.

3.2.2. Analytical Solutions
In this section, we discuss the analytical solutions of the electromechanical characteristic of 
the NEMS devices consisting of both cantilever and double-clamped nanotubes. In particu
lar, the pull-in voltage calculations based on the energy method are reported [32, 106].

For nanotube cantilevers (singly clamped), the deflection of the cantilever nanotube can 
be approximated by the following quadratic function [32]:

i u ( s ) m ^ c  (17)

V (volt)

Figure 39. The effect of charge concentration on the characteristic of the cantilever nanotube based device (tip 
displacement vs. voltage). The solid line illustrates the deflection curve accounting for charge concentration. The 
dashed line shows the deflection curve in the absence of charge concentration. Both curves are based on the small 
deflection model. Reprinted with permission from [104], C.-H. Ke et al., 7. A pp l. M cch. 72. 726 (2005). © 2005, 
American Society of Mechanical Engineers.
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Figure 40. Electromechanical characteristic (central displacement-voltage curve) for doubly clamped nanotube 
device. The dashed line is for small deformation model (pure bending), and the solid line is for finite kinematics 
model (bending plus stretching). Reprinted with permission from [106], N. Pugno et al., ./. Appl. M vch. 72, 445 
(2005). ©  2005, American Society of Mechanical Engineers.

where L is the length of the nanotube, c is a constant that represents the displacement of
the end of the cantilever, and x is the coordinate along the nanotube.

The total energy of the system £ lola, is expressed as

E t M J c )  =  £ d a h ( c #)  4 -  Edec(c) + ZTvtlw(c) (18)

where the elastic energy Ed.is(o), the electrostatic energy £ejec(t'), and van der Waals energy
EvdW(c) can obtained by integration as

* .

E , , f L ( I E l4ix  v m ( r ( w ( x ) ) )
dc.vjwfe) ~  --------------d x  (19b)ax

The equilibrium condition is reached when the total energy reaches a minimum value, that is,

dc =  0

Similarly, the instability of the devices (i.e., pull-in) happens when the second-order deriva
tive of total energy equals zero, namely.

= o (20b)
dc~

The van der Waais interaction plays an important role only for a small gap between the 
nanotubes and substrate (i.e., a few nanometers). Thus it can be neglected in the analysis of 
NEMS with large gaps. We consider Evdw % 0 in this analysis.

By assuming that the nanotube’s (external) radius /?, x! is much smaller than the distance r 
between nanotube and ground plane (i.e., Rcxl/r <$c 1), the pull-in voltage [32], considering 
the nonlinear finite kinematics and the concentrated charges at the free end. is given bv

, I \ + K f N H , ( 2H \ I El
n ^  v s \/ TT k  r  V - 11 ( ~r ~  )  y p”  (“  ‘ a ]

k [ - , kx .s >'/ s L
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where subscripts S refer to singly clamped boundary conditions for cantilevers, superscript 
Fk refers to finite kinematics, and TIP refers to the charge concentration.

For doubly clamped nanotubes, the deflection w(.x) is assumed such that it satisfies the 
boundary conditions w(x = 0. L) — w'(x = 0, L) — 0 [106], namely.

w(z) -  16 z M i H z (22)

where w(x =  L/2) =  c is here an unknown constant that represents the displacement of the 
central point. The pull-in voltage [106] can be expressed as

► W  ^  ( 2 3 . )

/ ">24 ( Cn )/ 5 ttS’ (<:>,) {H + R j {1,b)

,r = -  = .V(c) = £
A  4 V ; ^ t E (23c)

Subscripts D refer to double clamped boundary conditions, c?l is the central deflection of 
the nanotube at the pull-in, and the {a^} in Eq. (23) are known constants [106].

The accuracy of the analytical solutions is verified by the comparison with both numeri
cal integration of the governing equations [104, 106] and experimental measurements (see 
Section 3.2.3) [32]. The comparison between pull-in voltages evaluated numerically and the
oretically for doubly (D) and singly (5) clamped nanotube devices is listed in Table 1 [104]. 
Columns 6 and 7 in Table 1 compare analytical and numerical pull-in voltage predictions 
under the assumption of small deformations. Columns 8 and 9 in Table 1 compare analytical 
and numerical pull-in voltage predictions under the assumption of finite kinematics. The 
agreement is good (with a maximum discrepancy of 5%).

3.2.3 . Comparison Between Analytical Predictions and Experim ents
In this section, a comparison between analytical predictions and experimental delta, for both 
small deformation and finite kinematics regimes, is presented.

3.2.3.1. Small Deformation Regime The nanotweezers experimental data reported by 
Akita et al. 2001 [8], plotted in Fig. 41, is used to assess the model accuracy under small 
deformation. In this case, the nanotweezers arc equivalent to a nanotube cantilever with 
length of 2.5 jxxn freestanding above an electrode with a gap of 390 nm. Symmetry is

Table I. C omparison between pull-in volt;iiges evaluated numerically (num.) and theoretically (theo.) for doubly
U>) and singly (.V) cl ampcd nano tube dev ices, respectively; ,<■- =  1 TPa. R,u, — 0. For can tilew:r nanotube device.
I he symbol (\v) denot* that the effect ol eharge concentration has been included.

K  -  ^ V,., [V| V,, [V] V,, [V] V,., |V |
Case BC H  (nm) L  (nm) (nm) (iheo. linear) (num. linear) (theo. nonlinear) (num. nonlinear)

1 D 100 4000 10 3.20 3.18 9.06 9.54
i D 100 3000 10 5.69 5.66 16.14 16.95
3 I ) 100 2000 10 12.SI 12.73 36.31 38.14
4 D 150 3000 10 9.45 9.43 38.93 40.92
5 I) 200 3000 10 13.53 13.52 73.50 77.09
6 I) 100 3000 20 19.21 18.74 31.57 32.16
7 I) 100 3000 30 38.57 37.72 51.96 50.63
s S 100 500 10 27.28 (w) 27.05 (w) 27.52 (w) 27.41 (w)

s 100 500 10 27.28 (w) 27.05 (w) 30.S7 3 1.66

Re primed with perm.ission from [104|. C.-l i. Ke ei ;ti.../. -1 />/>/. Mech. 72. -145 (2005) . «"'■ 2005. American SiK'iely Meehanieal
l;nuineeis.
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Voltage (volt)

Figure 41. Comparison between experimental data and theoretical prediction in the small deformation regime. 
Reprinted with permission from [32], C.-H. Ke et al., J. M ech. Phys. S o lid s  53, 1314 (2005). © 2005, Elsevier. Ltd.

exploited. In the same figure, a comparison between the analytically predicted nanotube 
cantilever deflection and the experimentally measured data are shown [32]. The analytical 
model includes the van der Waals force and charge concentration at the free end of the 
nanotube cantilever. Model parameters include Young’s modulus, E = 1 TPa, external radius 
R = Rcxi = 5.8 nm, and Rinx = 0. The pull-in voltage from the analytical model is 2.34 V, 
while the experimentally measured pull-in voltage was 2.33 V. It is clear that the analytical 
prediction and experimental data for the deflection of the nanotube cantilever, as a function 
of applied voltage, are in very good agreement.
3.2,3.2. Finite Kinematics Regime Experimental data corresponding to the deflection 
of carbon nanotube cantilevers in the finite kinematics regime were recently obtained by in 
situ SEM measurements [32].

The configuration of the in situ measurement is shown in Fig. 42. The electrode was made 
of silicon wafer coated with 50 nm Au film by e-beam evaporation. This Si chip was attached

Figure 42. Schematic of the experimental configuration employed in the electrostatic actuation of MW'NTs. 
Reprinted with permission from 132]. C.-H. Ke et al.../. M ech. Phys. So lids  53. 13)4 (2005). 2005. Elsevier* Ltd.
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U = 30 volt 

5 {Jin

U = 46 volt

Figure 43. Scanning electron microscopy (SEM) images of the deformed carbon nanotube at various bias voltages. 
Reprinted with permission from [32], C.-H. Ke el al., J. M ech . Phys. So lid s  53, 1314 (2005). <0 2005, Elsevier, Ltd.

onto the side of a Teflon block and mounted to the SEM sample holder at an angle of 93° 
with respect to the holder plane. The nanotube cantilever fabricated by the method shown 
in Fig. 4 was placed horizontally and parallel to the electrode surface as schematically shown 
in Fig. 42. The distance between the top surface and the electron-beam gun was 5 mm, while 
the distance between the nanotube and the electron-beam gun was measured to be 6.8 mm. 
By focusing on the electrode surface and adjusting the working distance to be 6.8 mm, a 
feature on the electrode, which was on the same horizontal plane with the nanotube, was 
located. Such a feature is schematically marked as a line in Fig. 42. The horizontal distance 
between the nanotube and the line was controlled by the nanomanipulator and set to 3 /xm. 
In the circuit, a resistor R(} =  1.7 Mil was employed to limit the current. Because the ratio 
between the length of the nanotube and the gap between the nanotube and electrode is 2.3, 
the deflection of the nanotube can be considered to be in the finite kinematics regime.

Figure 43(A)-43(E) shows the SEM images of the deflection of the carbon nanotube as it 
is subject to increasing applied voltages. The feature on the electrode, which is in the same

3.5

I

0.5 

0
0 10 20 30 40 50

Voltage i volt)

Figure 44. Comparison between experimental data and theoretical prediction in the finite kinematics regime. 
Reprinted with permission from [32]. C.-H. Ke et al., 7. M ech. Phys. So lids 53. 1314 (2005). €) 2005, Elsevier. Ltd.
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horizontal plane containing the cantilcvercd nanotubc, is schematically marked as a solid 
black line in Fig. 43(A)-43(E). These images dearly reveal changes in nanotubc deflection 
and local curvature as a function of applied voltage. A very noticeable effect, although 
difficult to quantify accurately, is the change in local curvature. The pull-in voltage, VP1, was 
measured to be 48 V. Through digital image processing, the tip deflection as a function of 
voltage was measured.

The experimentally measured nanotube cantilever deflections, in the finite kinematics 
regime, are plotted in Fig. 44 [32]. The figure also shows a comparison between analyti
cal prediction and experimental data. The analytical model includes finite kinematics, the 
van der Waals force, and charge concentration at the free end of the nanotube cantilever. 
For these predictions, the following parameters were employed: length of the nanotube, 
L =  6.8 fim: initial gap between nanotube and electrode, H =  3 /xm; R = Rcsl =  23.5 nm; 
Rml =  0, E = 1 TPa. The pull-in voltage given by the analytical analysis is 47.8 V, while the 
pull-in voltage experimentally measured was 48 V.
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Angle-resolved eiectron-energy-loss 

spectroscopy (AR-EELS), 651 
Angular momentum quantum numbers, 561, 

590
Anharmonic interaction potential, 610 
Anharmonicity error, 167 
Anisotropic elastic continuum, 68 
Annealing operation method, 289 

minimum energy state, 290 
steps, 289 

Annihilation operators, 721, 739 
Antisymmctrization operator, 569 
Arbitrary energy wells, 493 

eigenvalues of, 493 
Armchair tubes, 216 

smoothening effect, 216 
ARPACK library, 556 
ARPACK package, 560 
Arrhenius expression, 178 
Arrhenius-style plot. 166 
Associative processing or associative memory. 

295
architecture of, 296 

AsV diffusion, 196
by ring mechanism, 196 

Atomic basis states, 23 
Atomic basis vectors, 14 
Atomic Bloch states, 23 
Atomic bonding environment, 656 
Atomic force microscopy (AFM), 219 

measurements, 65 
Atomic hopping, 151
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Atomic level interaction mechanisms, 197 
Atomic-like orbitals, 17 
Atomic potentials

Fourier coefficients, 14 
Atomic sphere approximation (ASA), 377, 402 
Atomic wave functions 

orthogonality, 19 
Atomistic calculation. 193 
Atomistic hopping mechanisms, 149 
Atomistic modeling, 157, 197 
Atomistic process simulation, 157 
Atomistic simulations, 175 
Auger capture coefficients, 612 
Auger recombination, 611 
Auger relaxation, 612 
Au(001) host system, 399 

geometrical setup, 399 
Au point contact, 403 

conductances, 405 
Fe and Co impurities, 406 
impurity positions, 404 
Pd impurity in, 405 
spin and orbital moments of, 404 

Autocorrelation function, 801 
Auto covariance function, 65 
Average energy of electrons, 90 
Average potential energies, 60

B
Baker-Campbell-Hausdorff formula, 735 
Ballistic quantum wires, 688 
Ballistic systems 

transport in, 689 
Ballistic transport effects, 78 
Band diagram

showing conductance band, valence band, 
and quasi-Fermi level, 59 

Band energy diagram, 525 
Band-gap energy, 648 

single-particle, 667 
Band-gap materials, 48 
Band index, 364 
Band structure, 114 

many-valley, 69
of interface between /i-AlGaAs and intrinsic 

GaAs, 59 
Band theory, 451
Band-to-band impact ionization, 56 
Band-to-band transitions, 10 

vale nee-to-conduction. 41 
Bare confinement potential. 709 
Bi>re polarizability function, 75 
Barker-Ferry equation, 742 
Basic circuits, 241 

principles for, 241 
BDD logic circuits, 256 

4-bit BDD adder, 259 
logic operation of, 257 
operation of. 263

unit element for single-electron, 256 
Bent graphite sheet, 838 
Bent nanotubes, 217 

characteristics of, 218 
1,4-Benzene-dithiolate (BDT), 457 
Benzene rings, 220 
Bernoulli sequences, 800 
Bessel functions, 378, 505, 550, 714 

modified, 66, 550 
Bethe ansatz, 421
Bethe-Salpeter equation, 657, 659, 663 

approach, 662 
methods, 659 

Bethe-Salpeter formalism, 661 
Biased nanotube, 844

charge distribution for, 844 
Biased node, 327 
Bias potential, 165 

simple, 166 
Bi-CGSTAB method, 83 
Biconjugate gradient (Bi-CG) iterative method,

82
Binary decision diagram (BDD), 253, 775, 781 

digital functions by, 253 
examples, 261
with single-electron devices, 255 

Binary decision tree, 780 
attributes, 781 
complete, 781 

Binary gate voltage, 261 
Binary reaction schemes, 145 
Bipolar junction transistors (BJTs), 49 
Bipolaron, 453 
2-Bit adder, 263

logic operation of, 263 
shared BDD circuit, 264

4-Bit adder. 271 
Bit-comparators (BCs), 296 

principle, 303, 304 
simulation results, 300

4-Bit ripple carry adder, 275 
Bloch electrons, 49 
Bloch equations, 97, 614, 617 
Bloch functions, 9, 12, 15, 18, 19. 21, 68 

periodic, 47 
Bloch oscillations, 49 
Bloch states 

atomic, 23 
of solids, 67 

Bloch sums, 19 
B3LYP

functional. 660 
method, 660 

Body centered cubic (BCC) lattice, 15, 380 
Bogoliubov transformation, 433 
Bohm potential, 95 
Bohr radius, 710 
Boltzmann constant, 69, 77 
Boltzmann distribution, 73, 159 
Boltzmann equation, 64. 365. 744-746. 748, 759 
Boltzmann formalism, 365
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Boltzmann-machine neural networks, 275 
designing, 280 

Boltzmann machines. 275 
concept of, 276 
operation. 276 
outline of, 275 

Boltzmann scattering operator, 739, 744 
Boltzmann’s constant, 146, 241, 773 
Boltzmann's N-particie distribution, 732 
Boltzmann transport equation (BTE), 9, 50, 55, 

76, 77, 83, 90. 120 
direct solution, 50 

Boltzmann-Vlasov equation. 732 
Boolean algebra, 766 
Boolean difference. 790-794 

computing, 795 
k-ordered, 792 
symmetric properties of, 792 

Boolean variable, 779, 798 
Boost energy, 166 
Boost factor, 165
Born approximation, 71, 72, 97, 122 
Born-Oppcnheimer approximation, 159, 441 
Boron clustering 

in silicon, 186 
Boron clusters, 188 

substitutional, 184 
Boron deactivation 

in silicon, 184 
Boron diffusion

boron concentration contours for, 195 
in silicon, 182, 192 
interstitial-assisted, 192 
stress-dependent, 194 
stress-dependent diffusion coefficient for,

192
Boron-interstitial clusters (BICs), 184-185, 187, 

189
Boron-self-interstitial pair, 192 
Bose-Einstein statistics, 68, 505 
Bose statistics, 433 
Boson operators, 434 
Boson representation, 434 
Bottom up technology, 2 
Bound and quasi-bound states, 491 
Boundary element method (BEM), 843 
Break-junction experiments, 401 
Brillouin zone, 10, 29, 32, 57, 380 

of phonon branch, 67 
Brillouin zone center, 645 

two-dimensional, 645 
Brownian motion orbit, 158 
Buckminstcrfullerene, 451 
Buffer layer, 28
Bulk inversion asymmetry (BIA), 12, 30 
Bulk resistivities, 391 
Bulk systems, 392 

convergence study in, 392 
Buried oxide (BOX) layer, 101

c
Cadmium sulfide nanoribbons. 458 
Calculated particle current, 93 
Canted dihydride

atomic structure of, 651 
Cantilever beam configuration, 841 
Cantilever nanotube device, 846-847 
Capacitance matrix, 725 
Capacitive couplings, 725 
Capture and emission probabilities, 504 
Capture energy barrier, 162 
Carbon-carbon interaction, 841 
Carbon nanotube oscillator 

tunable, 831 
Carbon nanotubes (CNTs), 5. 460, 818-819 

based nanoelectromechanical systems 
devices, 822 

based nonvolatile random access memory 
(NRAM), 822 

based switch, 839 
deformed, 851 
fixed-fixed, 839 
freestanding, 831 
manipulation of, 821 
mechanics of, 819 
model, 839
molecular electronic devices, 144 
nanorelay device, 828 
nanotweezers, 824 
semiconductor characteristics, 463 

Carbothermal methods, 458 
Carrier-carrier effect, 55 
Carrier-carrier interactions, 53, 55, 56, 616, 618 
Carrier-carrier scattering, 55, 56 

impact ionization, 56 
Carrier concentration, 140 
Carrier dynamics, 49 

inter- and intralevel, 628 
Carrier-phonon interaction, 610, 616, 618, 626 
Carricr-phonon relaxation processes, 609 
Carrier relaxation dynamics, 609 
Cartesian coordinates, 79 

directions, 80 
CCC-hypercube, 777 
CD complexes, 219 
CdSe quantum dot, 672 
Cell-periodic function, 9 
Cellular nonlinear networks (CNN), 2 
Central shutter barrier (CSB), 534 
Ceperley’s paramctrization, 710 
Chain rule, 806 
Chang’s model, 503 
p-Channel Si M OSFET 

output characteristics, 37 
Channel tunneling, 512 

barrier height on. 514 
carrier mass in, 515 
dielectric permittivity on, 516 
dielectric thickness on, 514
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lattice temperature on. 516 
polysilicon gate doping on. 513 
substrate doping on, 514 

Charge and current correlation functions, 432 
Charge carrier mobilities, 155 
Charge configurations, 727 
Charge density. 64
Charge density distributions, 556, 578 
Charge density motif, 656 
Charged lock loop, 357 
Charge patching method (CPM), 656-657 
Charge state, 348 
Charge transport process, 454 
Charge-trapping centers, 64 
Chebychev moments 

two-dimensional, 670 
Chebychev polynomials, 671 
Chemical potential, 567-568. 573, 583 
Chiropticene molecules, 459 

properties, 459 
Chiropticene switch, 459 

molecule, 459 
COS algorithm, 82 
Circuit configuration, 297 
Clebsch-Gordan coefficients, 378, 591 
Cloud-in-cell (CIC) scheme. 85, 86 
C'luster-nucleation, 460 
Clusters of spherical shape, 392 

number of sites (N), 392 
CMOS (Complementary

Metal-Oxide-Semiconduetor) technology, 4, 
240

CMOS-like SET 
circuit design, 248 
logic, 248 
logic circuits, 248 

CMOS-like SET-NAND gate, 251 
operation diagram of, 253 

CMOS-like XOR gate, 249 
Coarsest grid, 82 
Coefficient matrix, 702
Coherent potential approximation (CPA), 382, 

383
Coherent scattering path operator, 384 
Collision broadening, 54 
Co lor ability problem, 285 
Common H artrce Hamiltonian (CHH), 709 
Commutators, 428 
Compact modeling, 338 

comparison, 349 
validity of, 516 

Compact SET modeling, 340 
differences. 340 

Compact trap-assisted tunneling models, 504 
Compact tunneling models, 497 
Complementary' metal-oxide-semieonductor 

(CMOS) devices. 321, 511 
Complemcntarv-MOSFETs (CMOSFETs). 320 
Complementary self-biasing scheme, 356 
Complete basis set (CBS) methods, 438 
Complete binary tree, 776

Complete neglect of differential overlap 
(CNDO). 440 

Complex admittance, 370 
Complimentary metal oxide semiconductor 

(CMOS) 
devices, 141 
structures, 155. 161 

Computational nanoelectronics, 6-9 
Co m p u t a ti on al n a n ostru c t ures

change at the physical and logical level, 789 
computing of change, 793 
detection of change in binary system, 790 
detection of change in switching function.

790
information theoretical measures for, 803 
model for simultaneous change. 791 
model of multiple change, 792 
model of single change, 790 
notation of change in, 789-795 

Computer-aided design (CAD). 770 
algorithms, 771 
system. 770 
tools, 771 

Computing conditional entropy, 807 
Computing input/output, 804 
Computing subroutine, 349 
Concurrent multiscalc modeling, 837 

examples, 838 
implementation of, 837 

Conditional entropy, 805-806 
Conditional probability, 805-806 
Conditional probability distributions. 806 
Conductance coefficients, 367 
Conductance quantum, 368 
Conducting polymers, 225 

electronic properties, 225 
Conduction band edge, 25, 91, 757 
Conduction-band edge shifts, 670 
Conduction-band minimum (CBM), 638, 652, 

654, 657, 659, 668-669, 673, 675, 678-679 
Conduction-band state, 661 
Conductive polymers, 450 

applications of, 456 
conductivity, 457 
electroactivity, 457 
illustration of energy levels, 454 
mechanisms, 453 
relative conductivity of, 452 
stability and processing attributes of, 456 

Configuration, 383 
Configuration interaction (Cl) 

calculations, 583-587 
expansion. 581 
formal ism. 588 
Hamiltonian. 661
method, 573, 576, 580-582, 587-589, 661, 722 

Configuration interaction approach
orthonormal spin-adapted basis. 589-592 
spin-adapted. 588-601 
spin adapted basis, 590
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Configuration space integrals. 159 
Confinement potential 547. 551-552, 554. 556. 

574. 042, 044. 706. 70S 
harmonic, 574 

Conjugated polymers. 455 
methods. 455 

Conjugate gradient (CG) algorithm. 82 
Conjugate gradient methods. 055 

with preconditioning, 82 
Conjugate gradient squared (CGS) method. 82 
Connection machines, 70S 
Conservation laws, 432 
Constant energy surfaces 

in Si. 43
Constant interaction model, 507-568 
Constant-potential transfer-matrix method. 489 
Contact block reduction (CBR) method. 125, 

126
Contact configurations, 144 
Contact regions, 84 
Continuity equations, 147-148 
Continuum 

approach, 156 
approximation, 145 
mechanics modeling, 840-851 
theory, 841 

Continuum modeling, 181. 187 
reaetion-diffusion type, 181 

Contour integrations, 373 
Contracted Gaussian-type functions (CTGF), 

442
Conventional circuits, 322 
Conventional circuit simulator, 323 

hasic assumptions, 324 
basic equations, 323 

Conventional EEPROM  dcvices, 530 
Convergence rate, 554 
Coordinate transformation technique, 64 
Corner-cutting problem, 171 
Corrected Coulomb approach. 88 
Corrected Coulomb force, 88

versus distance between two electrons. 89 
Cotunneling, 245, 328, 331 

effect. 291
example of cotunneling process, 246 
phenomenon, 293 
probability, 728 
process, 728 

Coulomb
acceleration. 140 
blockade, 5 
centers, 63, 64 
energy, 39, 150, 548 
force, 88 
hole. 38 
interaction. 72 
island, 341 
operator, 443 
potential, 74. 75 
repulsion, 38 
scattering, 63

screening. 60S 
staircase. 331 

Coulomb blockade. 241. 636, 641 
effects. 724-725 
phenomena, 241. 721 
regions. 347 
theory, 725 

Coulombic 
attraction. 149 
long-range force, 88 
potential, 546. 578 

Coulomb interaction. 55. 56, 64, 71, 548, 562. 
567, 574, 600. 647, 659, 661. 664-665, 709 
inelastic, 611 
screened, 57, 663 
strength, 575 

Coulomb repulsion, 574 
effect. 241 
in nanodots. 303 
interelectron. 574 

Coulomb scattering processes 
elastic, 612 

Counter-propagating light fields. 607 
Courant stability condition, 80 
CPU time gap, 157 
Cray 1 supercomputer, 444 
Creation volume, 193 

tensors, 193 
Crested barriers, 536

device structure and operating principle of, 
537

CRT (cathode ray tube), 438 
CucPtl-c bulk, 393 
CuPl bulk systems, 391 

geometrical setup, 391 
Curl equations, 79 
Current conservation, 426 
Current-current correlation function, 371 
Current jump behavior, 830 
Current stream lines

in //-channel ultrasmall MOSFET, 91 
Current-voltage characteristics, 121 
Cutoff radius, 87, 88 

short-range force, 88 
Cutting-edge models, 771 
Cyclic cvclodextrin (CD), 219 

shape. 219
schematic diagram, 219 

Cyclodextrin molecular nanotubes, 220 
configuration of polymers, 220 

Cyclotron frequency, 549

D
Damping rate, 610, 613 
Dangling bonds, 64 
Data structures, 774-783 
Davio

decision tree, 794 
expansion. 794
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negative, 910 
positive, 810 

dc conductance, 423 
DC model, 346 
DC regime, 338 
Deal-Grove model, 145 
de Broglie wavelength, 547 

of electrons, 36 
Debye-Huekel 

screening wavevector, 73 
Debye length, 85 
Debye limit, 40 
Decision tree, 775 

design, 806, 810 
variable ordering in, 812 

Deep source/drain profiles, 140 
Defect-defect binding energies, 180 
Deformation potential 

constant, 68, 69 
for longitudinal modes, 68 
intravalley, 68 
scattering, 67 

Deformation regime, 849-850 
Degeneracy 

factors, 71, 104 
spin, 61 
valley, 61 

Density-functional, 748 
calculations, 580 
formalism, 580 

Density functional theory (DFT), 10, 213, 445, 
580
calculation, 127, 172 
code, 185 
methods, 438 
time-dependent, 658-659 

Density matrix, 118, 120, 121, 734, 736, 739 
Density of states (DOS), 35, 61, 224, 671 

energy-independent, 61 
for channel, 37 
for quasi-ID  system, 62 
for quasi-2D system, 61 
number of states, 62 
total, 62 

Density operator, 733-734 
Department of Defense (DOD), 438 
Departm ent of Energy (DOE), 438 
Dephasing rate, 608 
Dephasing stage, 164-165 
Depletion charge, 63 
Depletion-layer capacitance, 45 
Depolarization shift, 41 
Detecting motion, 822 
Deterministic models, 797 
Deviatoric stress, 156 
Devices 

3D domain, 9 
MOSFET. 3. 4 
quantum interference, 5 
silicon. 8 

Device simulation sequence

schematic description, 7 
Device structure

schematic description, 105 
Device transfer characteristic, 100 
DG device structure, 103 
Diagonal matrix elements, 30 
Diagrammatic representation 

of intervalley transitions, 70 
Diamond lattice, 19 
Diatomic carbon clusters 

substitutional, 184 
Dielectric constant, 670 

average, 63
between two materials, 63 
wave vector-dependent relative, 73 

Dielectric function, 669-670 
inverse, 661 

Dielectric insulator, 241 
Dielectric materials, 526

band gap energy and conduction band offset, 
526

conduction and valence band edges of, 527 
Dielectric matrix, 662 
Diffusion coefficient, 78, 150 

prefaclor, 177 
stress-dependent, 192 

Diffusion constants, 151, 176-177, 196 
macroscopic, 151 

Diffusion current, 146 
Diffusion equation. 611, 153, 155 

nonlinear, 148 
Diffusion mechanism, 151, 166 

interstitial-assisted, 171 
Diffusion model, 193 
Diffusion quantum Monte Carlo (DM C) 

methods, 665-666 
band structure, 667 

Diffusion-reaction 
approach, 149 
equations, 145, 161 
schemes, 145, 149, 156 

Diffusion tensor, 153 
Diffusion term, 147 
Diffusivity prefactor, 162, 193 
Digital data processing, 295 
Digital equipment corporation (DEC), 445 
Digital functions, 256
2-Dimensional electron gas (2DEG), 704,

722
Dimer energy, 174 
Dimer method, 168, 172 
Dipole matrix elements. 607. 628 
Dip pen nanolithography (DPN), 821 
Dirac delta function, 159. 332, 563-564 
Dirac function. 845 
Dirac matrices, 371. 386 
Direct acyclic graph (DAG). 783

based representation of switching circuits.
783

Direct matrix method, 554
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Dircct tunneling, 500 
correction for. 500 

Dirichlel boundary conditions, 690, 710-711, 
718

Dirichlel condition. 714-715 
Discrete Fourier transform (D PI'), 565-566, 

576-577
calculations, 173. 176 
scheme, 566 

Discrete impurity effects, 5 
Discrete points, 15 
Discretization coefficient matrix, 7J7 
Discretization mesh, 711 

nonuniform, 711 
uniform, 711 

Discretization scheme, 718 
Discretization space, 715 
Discretization step, 716 
Disordered systems, 386 

nonlocal conductivity, 386 
Dispersion relations, 49 
Dissociation energy, 151 
Dissociative mechanism, 145 
Distant hand interaction 

Hamiltonian, 26 
Distant bands 

coupling with, 25 
Distributed processing paradigm, 771 
Distribution functions, 84 

for electrons and holes, 53 
Divergence theorem, 705 
Domain decomposition, 840 
Dopant concentration, 142 
Dopant-defcct clusters, 156 
Dopant distributions, 119 
Dopants, 3, 4
Doped nanotube junctions, 216 

characteristics of, 217 
negative differential resistance, 216 

Doping, 3
concentration, 41 
of polysilicon gates, 45, 46 

Doping of polymer, 225 
//-type doping, 225 
p-type doping, 225 

1-D dot-array structure, 307 
Dot carriers, 616 
Dot-to-dot distance, 617 
Dot-to-dot fluctuation. 623 
Dot-to-dot interactions, 629 
Dot-to-medium interactions, 629 
Doubly clamped beam configuration, 841 
Doubly clamped nanotube device, 845-848 
Down-scaling existing devices, 320 
3D problems, 81 

large-scale, 8i 
Drag calculation, 170 
Drag method, 169-170 
Drain current, 347 
Drain current-gate voltage, 336 
Drain electrodes, 828-829

Drain-induced barrier lowering (DIBL). 36 
Drawing stability diagrams, 249 
Dresselhaus parameter, 12 
Dresselhaus spin splitting, 11-12 
Dresselhaus splitting, 30 
Drift-diffusion (DD), 7, 80, 90 

devicc simulations, 90 
equations, 7 
formalism, 90 
model, 7, 8, 50, 76, 78 

Drift velocity, 51, 53 
steady state, 58 

Driving frequency, 832 
Drude weight, 434 
Dual graph, 286, 287 
Dummy tunnel junctions, 263 
Dynamic carrier capture, 619 
Dynamic exclusive-NOR gate, 302 
Dynamic intradot scattering, 613 
Dynamic simulation zone, 840 
Dynamic winner-take-all operation. 302 
Dyson’s equation, 122, 123, 125, 126, 381, 417, 

663, 690-694

E
E-bcam lithography, 819 
Edge-to-edge coupling, 838 
Edge-to-edge decomposition coupling method, 

838
Effective core potential (ECP), 463 
Effective dielectric screening, 661 
Effective interaction, 75 
Effective mass (EMA), 646 

and k.p methods, 643 
approximation, 47, 94, 547. 667 
in-plane, 43, 44 
perpendicular, 43 
smallest, 85 
theory, 667 

Effective mass Schrodinger equation, 47 
in state-of-the art devices, 36 
modification for heterostructures, 47 

Effective mass tensor, 22 
Effective oxide thickness (EOT), 523 
Effective potential 

approach, 95. 96 
energy, 37, 45, 73 
scheme, 96 
thermodynamic, 96 

Effective quantum potential, 96, 98 
Effective solid permeability tensor, 193 
Eigen energies 

second-order, 22 
single-particle, 670 

Eigenfunctions, 9, 18, 21, 44. 589 
elementary spin, 589-591 
linear combination of. 589 
N -electron. 722
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simultaneous, 592 
single electron, 589 
single-electron energy. 594 
transverse, 695, 697, 703 

Eigen state equation, 663 
single-particle, 670 

Eigenstates, 22, 26. 110 
Eigenvalue equation, 739 

generalized matrix, 559 
Eigenvalue problem, 716 

jV-dimensional matrix, 559 
Eigenvalues, 9, 13, 18, 21, 22, 23, 26, 59, 60 

equation, 32, 116 
first-order, 25 
of 3D carriers, 35 
problem, 15, 32, 35 

Eigenvectors, 15, 59 
orthonormal basis. 21 

Eight-band model
inclusion of S1A effects, 32 

Eisenstat’s trick, 83 
EISPACK package, 711 
Elastic collision processes, 611 
Elastic co-tunneling, 332 
Elastic energy. 840, 848 
Elasticity, 845
Electrically erasable programmable read-only 

memory (EEPROM ), 470 
static SILC in, 531 
transient SILC in, 531 

Electric transport, 385
practical green’s function formulation, 385 

Electroluminescence (EL), 640 
efficiency, 640 

Electromagnetic device simulation, 91 
Electromagnetic solvers, 78 
Electron-beam-induced deposition (EBID), 820 
Electron-bulk phonon scattering rate

for electrons in lowest unprimed subband, 72 
Electron density distribution, 73, 574 

of seven-electron quantum dot, 574 
of six-electron quantum dot, 574 

Electron density interacting, 119 
Electron distribution, 100 
Electron-electron (c—e) interactions, 86, 87, 

703, 708, 732 
scattering rates, 87 
short-range, 89, 90 

Electron-clectron potential, 574 
Electron energy distribution (EED), 476 
Electron-hole 

excitation, 728 
interaction, 643, 664-665 
interaction kernal, 663 
pair. 640 

Electronic charge density, 446 
Electronic Hamiltonian, 441 
Electronic quantum limit. 66 
Electronic-strueture calculation, 181 
EI e e t r o n i c t r; i n s i t i < > n s 

different types, 66

Electron-impuritv ( e - i )  interactions, 86, 87 
Brooks-Herring approach, 89 
scattering rates, 87 
short-range, 89, 90 

Electron-ion interactions, 66, 67 
short-range, 89 

Electron localization, 99 
Electron momentum eigenstate, 736 
Electron-phonon interaction, 66, 67, 739-746 
Electron position eigenstates, 734 
Electron propagation, 697 
Electron transition probability, 315 
Electron tunneling, 270, 822 
Electro-optic sampling

illustration of experimental configuration,
92

Electrostatic attraction force, 826 
Electrostatic energy, 288, 341. 840, 848 
Electrostatic force, 843 
Electrostatic interaction, 724 

energy, 643 
Electrostatic potential, 38, 411, 744, 834 

effective, 72 
Elementary switching functions 

stochastic computing. 801 
Eliashberg theory, 422 
Embedded decision diagram, 804 
Embedding equation, 382 
Embedding technique, 381 
Emcraldine base EB, 225 
Emeraldine salt ES, 225 

molecular orbitals of, 225 
EM LAB, 79
Empirical interaction potential, 161 
Empirical methods, 439 
Empirical pseudopotential, 651 
Empirical pseudopotential method (EPM ), 10. 

12, 16, 57, 645, 648, 650. 676 
approach, 673 
atomic potentials, 649 
description, 14 
eigenstates, 652 
for hexagonal GaN. 17 
Hamiltonian, 649, 652 
implementation for Si and Gc, 15 
information measures of, 809 
method, 670 
potential, 651
quantum confinement. 671 
Schrodingcr's equation, 648 

Enamel molecular wire, 218 
basic concepts, 218 
electronic properties. 221 
transport properties. 223 

Energy barrier. 488 
constant and linear potential segments. 4S8 

Energy functional. 39 
Energy profile. 178 
Energy relaxation rates. 77 
Energy-topology, 285
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Ensemble Monte Carlo simulation. 52. 53 
results. 89 
time step, 53 

Epitaxial growth. 64 
EPM hand struct lire 

of germanium. 17 
of silicon, 17 

Equal-time correlation function. 415 
Equations of motion. 124 
Equilibrium phonon number. 741 
Equipartition approximation. 69 
Equivalent valleys, 43 
Esaki diodes, 216 
Euler condition, 39 
Euler equation. 39 
Euler gamma function, 562 
EVB (electrons from the valence hand), 470 
Excessive diffusion shifts. 182 
Exchange-correlation 

chemical potential, 40 
contribution, 40 
effects, 41 
energy, 39, 40, 578 
functional, 578 
potential, 39. 40, 41, 445 

Exchangc-correlation corrections, 40-42, 71 
inclusion of, 38 

Exchange hole, 38 
Exchange splitting, 674. 676 
Excitatory PSP (EPSP). 311 
Excitonic hand gap. 669, 675 
Excilon-like shifts, 42 
Excilon screening, 672 
Exeiton wave function, 663 
Exclusive-NOR (XNOR), 296 
Exclusive-OR (XOR) logic gate, 248 
EXOR gate, 801 
Expansion coefficients, 14, 26 
Exponential correlation, 65 
Exponential distribution, 750 
External field alignment. 820

F
Fabrication technology, 310 
Fabry-Perot modes, 622 
Face-centered cubic (FCC). 15 
FI adenosine triphosphate synthase 

(Fl-ATPase). 449 
Fan-out buffer. 274
Fast fo.irier transformation (FFT), 655 

algorithms, 96 
Fault nodels, 802 
Fault-t )lerance technique, 802 
Fault-tilerant computing. 772, 795-802 

architecture, 773 
hienrchical levels, 798 
techniques. 798 

Fault-t ilerant design, 799

Fa u 11 -1 ol c ran l hype rcu he -like com pu t ing 
structures, 802 

l'cc(OOl) substrate, 390 
perspective view of, 400 
shapes of a cluster, 390 

Feedback resistor. 830 
Fermi-Dirac

distribution, 74, 113, 215, 474 
distribution function. 73, 109. 720 
functions. 108, 109, 373 
integrals, 44 
statistics, 45, 46, 474 

Fermi energy, 29. 61, 105, 123 
Fermi function, 728 
Fermi golden rule, 743 
Fermi level, 843
Fermi-level dependent probability, 151 
Fermi-level pinning, 707-708, 719. 722 
Fermi-liquid behavior, 421 

at low bias voltages, 421 
Fermi-liquid theory. 410 
Fermi’s golden rule, 54. 62, 121 
Fermi’s rule, 54, 57 
Fermi system, 732 
Fermi velocity. 107 
Fermi wave vector, 107, 703 
Ferry’s effective potential, 102 
Feynman-diagrammatic approach, 413, 429 
Fick's first law. 146 
Fick’s second law, 146 
Fictitious scattering mechanism. 52 
Field effect transistors (FETs), 49, 243 

circuits, 354 
Field equations, 78 
Final state after scattering, 52 
Find forces on the charge. 86 
Finite clusters, 388 

residual resistivity, 395 
Finite-diffcrencc equation, 552 
Finite difference method, 739

5-point (FD5), 565 
7-point (FD7). 565 

Finite-differcnce shooting method, 551, 553 
Finite difference time domain method 

(FDTD), 78-81, 91-93 
Finitc-element peeling stress, 194 
Finite elements methods (FEM). 91 
Finite kinematics configuration, 846 
Finite kinematics regime, 850 
First-order 

interaction, 71 
perturbation theory, 331 
Taylor series. 499 

First-principles simulations, 212 
principle. 212 

Float-zone processed crystals, 176 
FLOOPS, 148 
Flux quantum, 702 
Fock-Darwin states, 550. 568 
Fock matrix. 443 
Fock operator. 443
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Folded spectrum method (FSM), 649 
Force field, 439 
Formation of ID channel 

by split gate, 60 
Forward reaction constants, 151 
Fourier and cyclic reduction method, 563 
Fourier components, 82, 153-154 

high-frequency, 82 
Fourier integral, 566 
Fourier series, 14
Fourier transformations, 563-565, 649, 734 

discrete, 564
numerical differentiation using, 565 

Fourier transforms, 15, 67, 72, 73, 122, 647, 
650, 704, 732, 734-735 
3D, 13
displacement property, 14 
inverse, 566 
of pseudopotential, 16 

Fowler-Nordheim formula, 497 
Fowlcr-Nordhcim-induced oscillations, 485 
Fowler-Nordheim regime, 506 

approximate shape of, 506 
Fowler-Nordheim (F-N) tunneling, 245, 470, 

484
schematic of, 498 

FPGA, 771-772 
hinarv-t reel ike, 772 
conventional, 772 
hierarchical, 772 

Frank-Turnbull reaction, 145-146 
Fredholm integral equations, 748 
Free-carrier electron densities, 49 
Free carriers, 53 
Free charge density, 79 
Free electron mass, 49 
Free flight, 52, 54 

algorithm, 54 
generation, 51 
times, 50, 84, 752 

Free particle motion, 50 
Free-space green's functions, 378 
Frenkel-Poole-like conduction, 529 
Frequency-dependent conductivity tensor, 372 
Frequency-dependent effect, 55 
Friedel sum rule, 425 
Frozen-surface hypothesis, 707 
Full adder, 275

circuit configuration, 275 
simulated output waveforms, 275 

Full adder and a 4-bit adder. 269 
majority gates and inverters, 269 

Full-adder circuit, 253 
timing diagram of, 254 

Full-analytical modeling, 347 
Full-hand particle-based simulation, 57 
Full width half-maximum (FW HM ), 494 
Functional equation, 557

G
GaAs/AIGaAs quantum well structure 

modulation doped, 29 
GaAs/AIGaAs structures, 28 
GaAs/AIGaAs system, 48 
GaAs buffer layer, 28 
GaAs nanowires, 824 
Galerkin equations, 194 
GaN hand structure

calculated from via EPM, 18 
Gate capacitance. 242 
Gate circuit, 269 

configuration, 272 
majority function. 269 

Gate device, 273
simulated majority-logic operation. 273 

Gate electrode, 546 
Gate lengths. 3 
Gate-source capacitance, 339 
Gate voltage, 567
Gating with a three-phase clock, 274 
Gaunt coefficients, 379 
Gaussian correlation. 65 
Gaussian distribution, 503 
Gauss' integration theorem, 371 
Gauss’s theorem, 706-707 
Ge nanowire device, 834 
General conductivity, 107 
Generalized gradient approximation (GGA), 

182, 185, 188, 580, 660 
Generalized moments method (GMM), 649, 

670
formalism, 671 
method, 671 

Generalized Penn’s model (GPM), 670, 672 
Generic confinement potential, 698 
Generic DG SOI device output characteristics, 

103
salient features, 104 

Generic three-terminal device 
conceptual representation. 6 

Geometry optimizations, 217 
Giant magnetoresistance (GMR), 364 
Gibbs distribution, 720 
Gibbs free energy. 150 
Global modeling, 78 
D-Glucopyranose, 219 

chemical form, 219 
Gold contacts, 400 

numerical tests for. 400 
with an Impurity. 403 

Gradient-corrected exchange. 660 
G radient operator, 153, 548 
Gram-Schmidt orthonoimalization procedure, 

590
Grand canonical ensemble average, 159 
Graphene surface density. 841 
Graphite ground plane. 842 
Grassmann number, 420
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Gray code, 777-779
G reen 's function Monte Carlo method, 579 
G reen 's functions, 97, 1 12, 1 \V. 121-126. 377. 

688-696, 704. 731 
advanced, 122 
approaches, 8, 732 
many-body, 732 
matrices, 125, 126, 381 
nonequilibrium. 124. 755 
nonequilibrium G reen's function (NEGF), 

103
one-dimensional, 691 
properties, 418 
recursive, 121 
single-particle, 662-663 
two-particle, 662-663 
unperturbed, 691 
zerobias voltage, 418 

G reen's theorem, 704 
Greenwood equation, 376 
Grid cell size, 80 
Guest graph, 778-779 
Gundlach formula, 482 
Gundlach method, 485 
Gunn effect, 69 
GW approach, 127 
GW approximation, 662 
GW -Beth e-Sal peter equation, 663-666, 

668-669 
method, 668 

GW equation, 663 
GW procedure, 663

H
Hamiltonian, 11, 12, 18, 19, 21, 23, 24, 26, 28, 

30, 34, 47, 48, 64, 66, 74, 97, 110, 111, 113, 
115, 123, 424, 548, 556, 691, 701, 721, 723, 
737, 739
Boson representation, 434 
carrier-phonon, 609 
eigenfunctions of, 590 
eight band, 24
electron-phonon interaction, 739-740
for electron motion, 67
for electron-phonon interaction, 67
free-electron, 64, 738
free-phonon, 740
HH-LH,  28
interaction, 595
k.p, 644
longitudinal, 702 
Luttinger-Kohn, 27 
many-body, 56, 666 
matrix, 114 
matrix elements, 19 
N-electron, 722 
/V-electron system, 446 
occupation numbers, 721 
of distant band interaction, 26

of free phonon-systcm, 739 
operator. 12, 48 
pseudo-wave function, 13 
single-band effective mass, 644 
single-electron, 548, 568, 590 
single-particle, 643 
system, 739 
transverse, 702 
two-electron, 548 
two-particle, 647 

Hamiltonian elements 
in special cases, 596-598 
simplifying, 594-598 

Hamiltonian matrix, 580-581, 592, 661 
columns. 648 
elements. 581 
infinite-dimensional, 722 

Hamming distance, 310, 779, 803 
time dependence of voltage, 310 

Hamming encoding rule, 780 
Hand-waving definition, 146 
Hard-wall structure, 696 
Harmonic approximation, 160 
Harmonic transition state theory (hTST), 160, 

162, 168, 177 
Harmonic Vineyard method, 193 
Harmonic well param eter, 601 
Harrison’s rule, 648, 673 
Hartree

approximation, 38, 42, 73, 76, 87, 122 
calculation, 71, 571 
contribution, 59 
method, 569, 571, 579 
potential, 96, 98 

Hartree Coulomb interaction, 671 
Hartree equation, 568 

single-electron, 568 
Hartree-Fock 

approach, 572
calculations, 441, 572, 574, 583-585, 587 
equations, 569-570 
exchange. 660 
exchange energy, 660 
formalism, 574 
ground state energies, 572 
method, 10, 438, 568-569, 572-573, 576, 580, 

587, 660 
self-consistent calculations, 571 
self-energy terms, 125 
theory, 38, 235, 580 
variational energy, 442 

Hartree potential energy, 59 
H artree term, 37, 38, 421 
H eat flux vector, 77 
Heisenberg operators, 371, 432 
Henkelman dimer method, 172 
Henkelman’s and Jonsson’s method, 168 
Hermitian, 592-593. 723 

conjugates, 30 
form, 47
operator, 370, 735-737
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Hessen berg matrix, 497 
Hessian matrix, 165 

full, 172 
Heterostructure devices, 28 
Hexagon nano process, 266 
HH-band. 25 
HH-LH  dispersion, 27 
H igher-order tunneling, 245 
Highest occupied molecular orbit (HOM O),

463, 678-679 
High-resolution transmission electron 

microscopy (HRTEM ), 65 
of interface between Si and SiO: , 65 

High-speed workstations. 444 
High transconductance, 449 
Hohenberg-Kohn-Sham (HKS) equation, 40 
Hohenberg-Kohn theorems, 577 
Hole density 

of states, 36 
Hooke's equation. 439 
Hooke’s law. 439 
Hopficld networks, 291 

configuration, 291 
Hop mechanism, 163 
Hopping rates, 152 
Host graph, 778-779 
Hot-carrier tunneling, 519 
Hot-electron transport. 69 
H uang-Rhys factor, 504 
Hubbard chain, 422 

application, 428 
schematic picture, 428 

Hubbard formalism, 721 
HVB (holes from the valence band), 470 
Hybrid approach

experiment on evaluating, 788-789 
Hybrid design paradigm, 785

embedding a DAG in /V-hypercube.
785-786 

Hydrodynamic model, 50 
Hydrogen-passivated cluster, 674 
Hydrostatic pressure dependence, 193 
Hydroxypropylene, 227 
Hypercube, 769

computing structure, 802 
logic design, 779 
topology, 777 

Hypercube-configured networks. 771 
Hypercube-like data structure, 778 
Hypercube-like topologies, 771 
Hypergeometric function. 550. 562 
Hysteretie loop, 830 
Hysteretic sawtooth function. 272

IBM 360 console, 440
printer, and tape drives, 440 

Ideal bias potential. 165

Identity matrix, 596, 728 
Identity perm utation, 595 
Tel mini's model. 503 
Image force correction, 48.1 
Impact ionization, 56, 57 

rate, 57 
Impurity matrices, 384 
Incomplete factorization schemes 

2D problems, 81 
Incomplete lower-upper (ILU) decomposition 

method. 81. 82 
Index dynamics, 631 
Inducing motion, 822 
Inelastic co-tunneling process, 332 
Information density, 774 
Inform ation density pose, 769 
Information measures, 809

based on noncorrelated signals, 809 
in decision trees, 810 
in N -hypercube, 812 

Information notation, 811 
Information processing, 246 

methods, 246 
I n fo r m at ion-t h eore t ical 

measures, 773 
standpoint, 804 

Information transfer speed limit, 769 
Infrared absorption measurements, 42 
Inhibitory PSP (IPSP). 311 
Inhomogeneity effects, 3 
Injection/detection mechanisms, 29 
Input random pulse streams, 799 
Integral-differential kinetic equation, 50 
Integrated circuits (ICs), 448 
Integrating factor, 745 
Interaction integrals 

two-particie, 560 
Interaction matrix element. 744 
Interaction potentials, 181 
Interband coupling, 22 
Intercarrier interactions, 55 
Interconnection lines, 254 

using OCA, 254 
Interdot scattering dynamics, 620 
Interface inversion asymmetry (IIA), 12 
International technology roadmap for 

semiconductors (ITRS), 141 
requirements, 143 

Interstitial clusters, 163
accelerated dynamics simulations of, 200 
emission energies of, 163 
growth, 200 
interm ediate, 203 

Interstitial impurity atoms, i4S 
Interstitial jump rates, 162 
Interstitial migration energy, 162 
Interstitial-supersaturated silicon, 202 
Interstitial trapping. 203-204 
Intervalley scattering, 66 
Imra-collisional field effect. 742 
Intradot carrier dynamics, 625
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Intradot relaxation. 608-609 
Intraregion hopping matrix elements, 41 I 
Intrasubhand and intersubhand transitions, 63 
Intravalley acoustic-phonon scattering. 66 
Intravalley optical-phonon scattering, 66 
Intrinsic point defects, 146 
Inverse dielectric function, 56 
Inversion charge contribution, 60 
Inversion charge density, 45 
Inversion layer capacitance. 45 

double-slope behavior. 45 
variation with inversion charge density. 45 

Ion-implanted silicon
extended defect formation in, 197 
void formation in, 198 

Iron tetraphenylporphvrine (FeTPP), 229 
Irreversible single-electron box, 272 
Island-biased capacitances. 327 
Island node 1, 272 
Isosurfaces

of lowest lying IlH. LI  I , and SO  subbands.
36

Isotropic elastic continuum. 67 
Iterative companion model, 345 

j
Jahn-Teller distorted vacancy, 155 
Jahn-Tcller distortion, 152, 154, 191 

vacancy, 192 
J-J correlation, 434 
Joint density of slate (JDOS), 671 
Joint entropy, 809 
Jum p distance. 177 
Jum p frequency, 177

K
KAM islands, 1 1 I 
Kane approach, 31 
Kane basis, 30, 3.3 
Kane matrix 

eight-band, 32 
Kane’s model, 23, 25 
Kane’s theory. 22, 23 
Keldysh contour, 412 

time evolution, 413 
Keldysh formula, 57 
Kick-out mechanism, 182 
Kick-out reaction, 145-146 
Kinetic energy density, 78, 736 
Kinetic Monte Carlo (KMC), 160-161, 197-198 

ab initio determ ination, 179 
algorithm, 168 
method, 161-162. 168 
program, 175
simulation, 160-161, 163, 180. 200-201 
simulator, 162-163

without lattice approximation. 168 
without predefined event table, 167 

Kinetic M onte Carloiab initio determ ination. 
179

K irchhoffs current law (KCL) equation, 323 
KKR (Korringa-Kohn-Rostokcr) equation, 380 

unperturbed and perturbed systems, 382 
KKR method, 380 

for layered systems, 380 
Klocke Nanotcchnik nanomanipulator, 820 

three-dimensional, 821 
Kohn-Sham-Dirac equation, 377 
Kohn-Sham cigen energies, 657, 664-665 
Kohn-Sham equation, 364, 383, 577-579 

local potential, 660 
self-consistent single-electron, 577 
time dependent, 658 

Kohn-Sham-Hamilton operator, 364 
Kohn-Sham theory. 710 
Kohn-Sham wave functions, 663 
Kondo impurities, 406 
Kondo systems. 410 
Kondo temperature, 421 
Korringa-Kohn-Rostoker type, 364 
k p general description, 20 
k • p method, 20. 29 

band structure, 34 
eight-band, 33 

k • p model, 32, 644-645 
eight-band, 644 

k p solver
general characteristics, 29 

k • p theory, 21, 22 
eight-band, 24 
for bulk materials, 21 

k p to quasi-2D electron and hole systems 
applications, 28 

k p wave function 
eight-band, 644 

Kronecker delta, 595, 696, 698, 703 
Krylov approximation, 727 
Krylov subspace techniques, 727 
Kubo formalism, 368 
Kubo formula, 370

for independent particles, 371 
Kubo-Greenwood equation, .364 
Kubo-Greenwood formula, 376 
Kubo-Luttinger formula, 376 
Kurtosis relaxation time, 476 
K-vector, 34, 35

L
Lagrange multiplier field, 838 
Lagrange multipliers, 39, 570 
Lagrangian description, 837 
Laguerre functions, 550 

generalized, 550 
Laguerre polynomials, 550 
Lanczos method, 712. 727
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Lanczos-type algorithms, 82 
Landau bands, 551 
Landauer approach, 213 
Landauer-Biittiker approach, 367 
Landauer formalism, 367 
Landauer formula, 107, 108, 113 
Landauer formulation, 143 
Landauer-type expression, 422 
Lande g factor, 548 
Langevin noise, 608, 614 
Langmuir-Blodgett (LB) films, 448 
Langmuir-Blodgett trough, 456 
LA phonons, 68 
Laplace equation, 704 
Laplace transform, 373 
Laplacian 

appearing, 81
in polar coordinates, 712, 717 
operator, 555, 565 

Large cluster limit, 387, 389 
Large-scale integrated circuits (LSIs), 359 
Lattice approximation, 167 
Lattice migration rate, 180 
Lattice periodic function, 21 
Layer-diagonal conductivity, 387 
Layered systems, 380 
LDA calculations, 665 

self-consistent bulk, 653 
Leapfrog scheme, 87
Lee-Y ang-Parr correlation functional, 660 
Lehmann representation, 422 
Lennard-Jones potential, 841 

double-volume integral of, 841 
pair-wise summation of, 842 

Levinson equation, 742 
scaled, 743 

Lexicographic order, 712 
Lift-off process, 266 
Light-emitting diodes (LEDs), 448, 451 
Light-hole bands, 25, 36 
Light-m atter interaction, 624 
Lindhard dielectric function, 71, 73-75 
Linear combination of atomic orbital (LCAO), 

656
Linearized dispersion, 430 
Linear momentum equations, 837 
Linear-potential transfer-matrix method, 489 
Linear region threshold voltage shift, 46, 47 

between QM and SC predictions versus A;
47

between QM and SC predictions versus N n.
46

Linear response and Green function. 368 
Linear response theory, 368, 388, 658 
Linear voltage drop, 757 
Liouville equation, 74, 110 

classical, 97 
quantum, 97 
semiclassicai, 97 

Liouville operator, 738, 744-745

Liouviile-von Neumann equation, 734,
738-739

Local density approximation (LDA), 39, 40, 
106, 127, 181, 185. 445, 579, 649, 658, 
679-680, 709, 720 
band-gap error. 651, 667 
calculation, 651. 655, 657, 678 
charge density, 657 
clustering energies. 189 
exchange-correlation function. 656 
exchange-correlation potential, 662 
formalism. 659
Kohn-Sham eigen energy, 665 
Kohn-Sham wavefunctions. 663 
local pseudopotential. 650 
method, 655-656, 667 
potential, 651, 657 
pseudopotential, 650. 656 
quantum confinement energy. 657 
self-consistent, 65 5-656 
time-dependent (TDLDA). 657-660.

663-664 
wavefunction. 652 

Local density of states (LDOS), 404, 651 
at site I, 404 

Local spin density approximation (LSDA) 
exchange, 660 

Logic circuits, 252
based on the shared BDD, 260 
QCA-based, 252 

Logic design
data structures for, 774-783 
in nanodimensions. 767-774 
measures in, 804 

Longitudinal acoustical (LA) phonons, 609 
Longitudinal eigenvalues, 703 
Longitudinal optical (LO) phonons, 609 

energy, 627-629 
Longitudinal wave vector, 696 
Long-wavelength evolution, 153 
Long-wavelength excitations. 372 
Look-up-tables (LUTs), 774 
Lorentz force, 78, 92 

equation, 78 
Lorentzian distribution, 495 
Lorentzian line shape, 610 
Los Alamos National Laboratory Double Zeta 

(LANL2DZ). 463 
Lowdin orbitals. 18 
Lowdin perturbation theory, 30 
Lowest unoccupied molecular orbit (L bM O ), 

222. 463, 678-679 
Low-field electron mobility. 89 
Low pressure chemical vapor deposition 

(LPCVD). 835 
LSI systems, 246 
LU algorithm. 497 
Luminescence photon energy 

function of, 673 
Luttinger-Kohn Hamiltonian. 27 
Luttingcr liquid formulation. 68<J



M
M acro cluster, 772 
Macromodel. 327, 339

param eters at various temperatures,
327

Macroscopic diffusion constants 
from atomic hopping, 151 

Made lung constant, 181 
Madelung-corrected Coulomb energy, 181 
Magic numbers. 568 
Magnetic length, 702 
Magnetic vector potential, 548 
Magnetoconductance

of antidot embedded in quantum waveguide, 
124

Magnetomotive detection, 834 
Magnetomotive drive, 833 
Main field propagation, 614 
Majority gate, 269 

circuit, 271 
device, 272
with a single-electron box, 270 
with a Tucker’s inverter, 269 

Majority logic, 266 
operation, 273 
sketch of, 266 
unit function of, 267 

Malfunctioning transistors, 158 
M anhattan distance, 310 
Many-body 

effects, 38 
system, 10, 38 
theory, 38 

Marginal distributions, 735-736 
non-negative, 737 

Markov approximation, 609 
Markov chain method, 750, 753-754 
Markov chain Monte Carlo method, 733 
Markov process, 327, 727 
Master equation method. 328, 331 

comparison, 334 
Matrix eigenvalue, 589, 594 
Matrix elements, 66-70 

electron-phonon, 68
for acoustic and nonpolar-optical phonon 

scattering, 67 
optical, 69 
screened, 75 
zero-order, 70 

Matrix equation, 22 
M atsubara frequency, 423 
Matsubara-poles, 374 
Max-Cut problem, 281 
Maxwell-Bloch equations, 606, 620 

time-dependent effective, 620 
Maxwell-Boltzmann distribution, 474 
Maxwell-Boltzmann statistics, 45, 46 
Maxwellian distribution, 470 

function, 77

Index

Maxwell’s equations, 78-81, 84, 92 
in SI units. 79
quasi-static solutions. SI, 613 

Maxwell's wave equation (MWEs), 606 
Mean Held approximation, 73, 742 
Mean field theory, 383 
Mean free path vector, 366 
Mesh

chaining, 87
charge assignment to, 86 
compute forces on, 86 
force. 88-90 
lines. 85 
potentials, 88 
size, 85
versus distance between two electrons, 89 

Mesoscopic systems, 457 
Mesotetraphenyl porphyrins (MTPP), 230 
Metal 5,15-di-(4-thiophenyl)-porphyrin 

(MDTP), 228
relative energy (eV) of. 230 
structure of, 228 

Metal-oxide-semiconductor (MOS) capacitors, 
470, 479

Metal oxide semiconductor field effect 
transistor (MOSFET), 49, 89, 94, 137-140, 
157-158, 320, 356 
device, 139
fifty-nanometer, 198-199 
nanoscale devices, 189 
silicon-based, 137
simulated atomistic configurations of, 199 
structures, 139, 190, 193-194, 197 

Metal semiconductor field effect transistor 
(MESFET), 84 
3D structure, 84
example of particle distribution, 84 

Methylene bridges, 462 
Metropolis Monte Carlo scheme, 666 
Microcanonical probability, 383 
Microelectromechanical systems (MEMS), 817, 

836
devices, 840 

Microscale process simulation, 145 
Microscopic scattering probability, 365 
Migration barrier, 178 

free-vacancy, 180 
Migration energy. 188 
M INDO (modified intermediate neglect of 

differential overlap) methods, 440 
MINILASE, 91
Minimum-energy barrier diffusion path, 182
Minimum-energy configuration, 184
Minimum energy path (M EP), 169, 187
MNDO theory, 440
Mobile electrons, 547
Mobile extrinsic complexes, 148
Mobility factor, 153
Mode-following methods, 172
Model biological neurons, 797
Model comparison, 509

869
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Model potentials, 13 
Mode-matching, 608 
Modes, contacts, and constraints 

on solutions, 109 
Modified embedded atom method (MEAM), 

202
Modulation doping, 28 
Molecular beam epitaxy (MBE), 28, 64 

growth, 33 
Molecular dynamics (MD) 

basin-constrained, 166-167 
calculations, 845 
domain, 837 
methods, 158 
potential, 203
simulation, 144, 165, 837. 839, 845 
subdomain, 839 
time step, 165 
t raj ec t o ry, 164-165 

Molecular electronics, 143, 447 
applications, 213 

Molecular enamel wire concept, 219 
Molecular mechanics, 439, 838 
Molecular orbital energy (M OE). 463 

diagrams, 221 
Molecular orbital theory, 441 
Molecular switches, 458 
Molecular wires, 456 
Momentum relaxation time, 104 
Momentum-transfer cutoff, 431 
Monte Carlo

algorithm, 54-57, 725, 733, 747, 753-754 
approach, 725 
calculation, 76, 725 
integration, 748-749 
models, 157 
procedure, 726 
simulation, 185, 747, 749, 755 
technique, 666, 725 
Wigner, 756 

M onte Carlo and Master equation, 335 
method combined with, 335 

M onte Carlo method, 322, 328, 666, 724-725, 
727, 733, 739, 747-754, 759 
disadvantage, 335 
flow chart, 322 
general schcme, 747-749 
integral equations, 748 

Monte Carlo modeling
of electron-phonon interaction. 733 

Monte- Ca r 1 o-m o 1 ec u I a r dy n a m i cs approach. 
87

Monte Carlo simulation. 5, 54, 56 
comparison of full-band, 58 
ensemble, 52, 53, 57 
full-band, 57 

Monte Carlo simulator. 303 
SIMON. 347 
single-electron, 316 

Monte Carlo technique, 50. 51 
M oore's law, 459

Morse potential, 838 
MOS capacitors, 44, 45, 58, 59

metal//;-substratc and «+-poly//;-substrate, 
46

schematics of band bending, 43 
M OSFET devices, 3, 4, 7, 55, 101, 102, 106 

output characteristics. 101 
MOSFETs (MOS field-effect transistors), 470 
MOS gate voltage, 316 

time dependence, 316 
MOS inversion layer, 491

free, bound, and quasi-bound states, 491 
MOS structures, 58 
MOS system, 64 
MOS transistors, 511

hot-carrier tunneling in, 519 
tunneling in, 511 
tunneling paths in. 512 

M ott-Hubbard gap, 429 
Muffin-tin, 377 

radius, 377 
M ultibarrier tunneling devices, 534 
Multibit adders, 274 
Multicarrier effects, 55 
Multielectron quantum dots

computational schemes for. 566-588 
Multigrid methods, 82 
Multi-input SET logic gates, 352 

schematics of, 352 
M ultinanodot floating-gate MOS device, 312 

for spiking neurons, 312 
simulation results, 316 

Multinanodot floating-gate MOSFET circuit, 
311

Multinanodot WC circuit and structure, 306 
circuit and structure, 306 
detection process, 307 
simulation results, 307 
using thermal-noise assisted tunneling, 306 

Multi particle effects, 55 
M ultiphonon processes, 504 
Multiphonon relaxation, 610 
Multiple-atom concerted diffusion mechanisms. 

164
Multiple fault models, 802 
Multiple interacting quantum dots 

simulation of, 72!
Multiple-scattering contributions, 63 
Multiple tunnel junctions, 328 
Multireference second-order perturbation 

theory (MR-MP2), 661 
Multiscale modeling, 837-840 
Multislate approximation. 348 
Multi valley model, 49
Multi-walled carbon nanolubes (MWNT), 819. 

824, 827. 843-844 
based actuators, 827 
electrostatic actuation of. 850 
van der VVaals integration of. 842 

Mutual inductance noise, 796
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Mutual information. 807-808 
conditional, 808

N
Na doped PT fragment. 226 

contour of the HOMO. 227 
LUMO +  2 of. 227 
optimized geometries of. 226 
structural analysis, 227 

NAND
element. 796 
gate, 796 
logic gates. 251 

Nanocantilever dcvice 
fe edback-con t ro 11 ed. 830 

Nanocantilevers
fee dback-co n tro 11 e d. 829 

Nanocontacts
schematic view, 399 
set-up, 403 

Nanodevice design, 770 
assembling, 770 
computer-aided design, 770 
performance of, 797 
probabilistic behavior of. 796 

Nanodimensional devices, 438
1-D Nanodot array, 314 

schematics of the total energy profile, 314 
Nanodot arrays, 245

injection of a single electron, 245 
Nanoelectromcchanical programmable 

read-only memory (NEM PROM ), 833 
nanowire based, 833-834 

Nanoelectromcchanical systems (NL:MS), 
817-851
actuation of, 822 
actuators, 818, 827
based devices, 817-820, 835, 837. 845 
carbon nanotubes, 818-819 
fabrication methods, 819-822 
functional, 822-534 
future challenges, 834 
inducing and detecting motion, 822 
magnetomotive detection. 822 
motion detection. 822 
nanowire-based, 818-819. 822 

Nanoelectromcchanical systems (NEMS) 
devices, 840-841, 847 
behavior of, 837 
carbon nanotube based. 829 
continuum mechanics modeling. 840-851 
modeling of. 836-851 
multiscale modeling, 837-840 
n a n o w i r e - b a sc d, 833-834 
with multiplexing, 836 

Nanoelectronic devices. 6 
Nanoelectronics, 2 

computational. 6 
Nanoelectronics modeling (NEMO). 8

Nano fountain probe (NFP) functionalization.
835

Nanogates
probabilistic fault-tolerant computing models 

of, 798
Nanolithographic techniques. 214 
N a n o m a n i p u I a t i o n. 8 20 
Nanomanipulator

Kloeke Nanotechnik, 820 
three-dimensional, 820 

Nanom eter scale, 2 
Nanometer-scale systems, 213 
Nanomolecular circuits, 461

computational design and analysis, 461 
Nanorelays. 827-828 
Nanoscale computing devices, 766 
Nanoscale device modeling, 687-728 

techniques. 688-703 
Nanoscale process simulation, 145 
Nanostructures, 310, 363 

electric properties of, 364 
residual resistivity, 387 
synapses, 315 

Nanotechnology, 2, 461 
recent articles, 461 

N a n ot u be - b a s e d d e v i ce
with tunneling contacts, 829 

Nanotube cantilever, 830, 844 
deflected. 844
electrostatically actuated freestanding, 831 

Nanotube device 
architecture, 823 

Nanotube junction, 216 
resistance, 823 

Nanotube nanotweezers, 824, 826 
dark - tie I d-opt ica I micrographs of, 825 
electromechanical response of, 825 

Nanotube relays, 828-829 
Nanotube/rotorplate assembly. 828 
Nanotubes

e I ect r i c - fi e 1 d -d i rect ed freest a n d i n g 
single-walled, 821 

Nanotweezers. 824
carbon nanotube based, 824-825 
manipulation, 825 

N a now ire device 
suspended, 833 

Nanowires (NWs), 818, 831 
semiconductor, 5 

Nearest-element-center (NEC) scheme, 86 
Nearest grid point (NGP) scheme, 80, 85 
Nearest-neighbor hopping energy, 113 
N e a rest - ne ighbor i n t e rac t ion s

between tight-binding s- and /^-orbitals, 20 
Near-field electric field, 93 
Negative differential resistance (NDR), 216 
Negatively charged interstitial impurities. 146 
Negative sign problem, 733, 753 
Neglect of diatomic differential orbital overlap 

(NDDO), 440 
NEM PROM , 854
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Network circuit, 281
problem solving operation, 281 

Neumann-Boolean computing, 246, 284 
Neumann boundary conditions, 126, 707, 71 1, 

715, 717 
Neumann functions, 378 
Neumann series, 748-749 
Neural networks, 797 

models, 311 
Neuron circuit, 315 
Neuron device, 277

with a single-electron circuit, 277 
Neurons, 276 
Newtonian kinematics, 56 
Newton-Raphson convergence, 324 
NGP/CIC schemes, 86 
N -hypercube, 801, 812 

attributes of, 781
binary decision tree into. 780-782 
Boolean difference by, 793 
definition, 779 
degree of freedom, 782 
design, 782 
duplicated, 786 
entropy on, 813 
experiment on evaluating, 788 
information measures in, 812 
in //-dimensional space, 782 
library of, 784 
manipulation of. 785 
metrics of, 784 
multidimensional, 786-787 
one-dimensional, 784 
space, 803-804 

A;-hypercube design. 782-783 
N -hypercube gates

2-input, 785
3-input, 785 
library of, 786

Nitrogen diffusion mechanism 
in silicon, 176 

NMOS devices, 190, 483 
/?MOS structure, 480 

band diagram, 480 
Node device, 256 
Node number, 553 
Nominal stress tensor, 838 
Non-Arrhenius behavior, 152 
Noncorrelated signals, 809 
Nonequilibrium G reen’s function (NEGF), 213, 

413
approach, 143 
formalism. 490 

Nonequilibrium steady states, 4 L j 
statistical weight for, 41 I 

Nonequilibrium surface G reen's function 
matching (NSGFM ), 214 
function of, 276 
image force in, 483 
schematic presentation of, 215 
three parts, 3) 1

Non-Hermilian Hamiltonian. 496 
eigenvalues, 496 

Non-Hermitian repulsion potential. 13 
Noni n tcract ing cI ectrons

nonequilibrium current for, 415 
Nonlinear effects, 53 
Nonlocal conductivity. 385. 390. 399 
Non-Maxwcllian distributions, 475 
Non-Maxwellian models, 470 
Nonparabolic band model. 49 
Nonpolar optical interaction, 69 
Nonpolar optical phonon scattering, 69 
Non-positive kernel. 754 
Nonvolatile memory (NVM) devices, 470, 530, 

533, 536
tunneling in, 530 

Nonvolatile memory (NVM) node. 350, 354 
Nonvolatile random access memory (NRAM), 

822-823, 831. 834 
structure, 823 

NOR gate. 801
Normalization coefficient, 702 
Normalization factor. 750 
Normalized wave functions, 41 
NOT-EXOR gate, 801 
Noteworthy features. 100 
NP-completc problems, 286 
NP-hard problems, 285 
Nudgcd-elastic band (NEB) 

ab-initio calculation, 180 
calculation, 172 
climbing-image, 176 
constant, 175
method, 171-172, 175-176. 182 

N u m e rica I d i ffe re n t i at i on
using Fourier transformations, 565 

Numerical recipes, 563 
Numerov-Cooley matching method, 552-555 
Nusair local correlation functional, 660 
Nyquist critical frequency, 566

o
Oceupation-number Hamiltonian, 721 
Occupation number operator. 739 
Occupation numbers. 739 
Occupation probability, 336, 727 
Off-current density, 536 
Off-diagonal 

elements, 76 
terms, 30 

Ohmic contacts. S3 
Ohm's law, 388 
On-current density, 536 
One-electron-like problem. 14 
One electron operator, 443 
One-to-one mapping. 778 
O n-off conductance. 266 
On-site charging energy. 721
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Open quantum systems, 110, 111
separating the device from its environment. 

110

Optical absorption spectrum, 670 
Optical hand gap, 642, 667 
Optical field contributions, 608 
Optical field dynamics, 613 

coii nterpropagation, 613 
diffraction, 613 

Optically excited quantum-dot media 
influence of coupling strength, 628 
influence of excitation strength, 626 
influence of quantum -dot size and growth, 

628
luminescence of, 625-626 

Optical phonons, 610 
Optical transition lifetime, 673 
Optimal minimum energy path, 172 
Optimization algorithm, 171 
Optimum conduction, 144 
Orbital energy, 443
O rdered binary decision diagrams (OBDD),

775
O rder U2 terms, 429
Ordinary differential equations (ODEs), 157 
O R gate, 801
Original Fowler-Nordhcim formula, 499 
Orthodox theory, 331, 724 
Orthogonalization coefficients, 12 
Orthogonalized plane wave (OPW ), 10, 12 
Oscillation frequency, 832 
Out-of-equilibrium anderson model, 416 
Overlap matrix, 443 
Overlapping coupling method, 838-839 
Oxygen precipitate nucleation, 176 
Own N-laycred integrated molecular orbital 

and molecular mechanics (ONIOM ) method, 
220

p
Pade approximant, 727 
PADOX process, 357 
Pair generation 

methods, 751 
rate, 757 

Pairwise permutation, 581, 583 
Parabolic band approximation, 49, 57 
Parabolic band structure, 477 
Parabolic confinement, 62 
Parabolic confinement potential 

analytic solutions for, 549 
Parabolic potential 

two-dimensional, 568 
Parallel-pipelined computing structures, 771 
Parallel processing paradigm, 771 
Parallel replica 

dynamics, 164 
method, 201

Partial differential equations (PDEs), 157.
187-188 

Particle annihilation. 754 
Particle-based device simulations, 83 
Particle-based picture, 51 
Particle creation operator, 662 
Particle-mesh (PM) coupling, 83, 85 
Particle-mesh (PM) force calculation, 87 
Particle models. 749 
Particle motion 

dynamics, 51 
Particle-particle (PP) pair force summation,

87
Particlc-particle-particle-mesh (P3M ) 

algorithms, 87 
Passivation effect, 677 
Pass-transistor circuit, 263 
Path-integral formulation, 744 
Pauli blocking, 608 
Pauli matrix, 433
Pauli’s exclusion principle, 38, 53, 55, 567, 569, 

578, 600 
Pauli spin tensor, 11 
PC revolution, 446 
Peak-to-valley ratio, 121 
Peierl’s phase, 123
Perfectly matched layer (PML) method, 81 
Periodic potential, 9, 20 
Permeability constant, 196 
Permeability factor, 154, 156, 197 
Permeability tensor, 156, 191-192, 196 
Permittivity, 548
Permutation operator, 569-570, 585, 589-590, 

595
singular, 570 

Perturbation expansion, 412, 420 
Perturbation theory, 22, 23, 54, 155 
PESCAN, 655 
Phase factor, 570, 581 
Phase-space distribution function, 748 
Phase-space formulation, 732 

quantum-mechanical, 732 
Phase-space integral, 735 
Phase space point, 742, 745 
Phase-space quantization, 732 
Phase space trajectory, 742, 745 
Phenomenological parameters, 8 
Phillips-Kleinman cancellation theorem, 13,

14 
Phonon

absorption, 68 
emission, 68 
/ - phonon, 70, 71 
g-phonon, 70, 71 
occupation number, 68 
scattering, 36 

Phonon annihilation operators, 67 
Phonon-assisted enhancement, 674 
Phonon-assisted transitions, 673 
/-P honon  couple, 71 
g -Phonon couple, 70
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Phonon coupling, 672 
Phonon density matrix. 740-741 
Phonon emission, 504 
Phonon energy, 610 
Phonon scattering, 759 
Photoluminescence (PL), 460, 636 

decay time, 675 
energy, 669, 676-677 
from porous Si, 639 
intensity, 638 
lifetime, 674 
line shape, 640 
phonon, 638 
quantum efficiency, 638 

Photoluminescence (PL) decay time 
temperature dependence of, 675 

Photoluminescence lifetime, 672 
Photovoltaic materials, 234

based on organic molecule—Fullerene 
mixture, 234 

Phthalocyanine, 234 
chemical structure of, 234 

Phthalocyanine supramolecular complex, 235 
Pieccwise-constant potential, 487 
Pieccwise-linear potential, 488 
Piezo voltage, 402
Planar localized-electron device memory 

(PLEDM), 534 
Planck's constant, 240, 690 
Planewave reciprocal lattice vector, 648 
Plasma enhanced chemical vapor deposition 

(PECVD). 835 
Plasma frequency, 85 
Plasmons, 75 
Plasmon shift, 41 
PLEDM device, 535 
PLED transistor (PLEDTR), 534 
p -n -p  transistor, 462

molecular AND circuit, 463 
Pochhammer symbol, 562 
Point-dcfcct-impurity pairs, 148 
Pointer states, 111, 112 
Poisson distribution, 161 
Poisson- Fou tier 

approach, 563-564 
method, 565 
technique, 565 

Poisson’s equation, 37, 38, 72, 74, 78, 81-83, 86, 
109, 114, 117, 561, 563-564, 57L 574-575, 
707-709, 719. 724 
ID. 37, 38, 44, 59 
solver, 88 

Poisson solver, 120 
Polar coordinates, 561 
Polaron, 453 
Pole energy, 662 
Polyaniline (PANT), 220

PAN 1-cross-linking a-CDs. 222 
polymer, 462
structural analysis of. 220, 221 

Polygate capacitance, 45

Polymethyl-methacrylate (PMMA), 828 
Poly-silicon gates, 44, 46, 477 
Polystyrene nanoclusters

nanotweezer manipulation of, 825 
Polystyrene spheres, 824 
Polythiophene (PT), 213 
Poole-Frenkel tunneling formula, 504 
Porphyrin chains, 232

conjugated porphyrin fragment, 233 
four porphyrin monomers, 233 
molecular orbitals, 233 
nonconjugated porphyrin fragment, 233 
structures, 232 

Porphyrin molecule, 227 
electronic and transport properties, 228 

Porphyrin wires, 231
electronic properties, 231 

Positively charged particles, 49 
Positively charged self-interstitials, 146 
Postsilicon technology, 212 
Potential confining, 721 
Potential distribution, 737, 739 
Potential drop, 218 
Potential energy, 442 

minimum, 168
nuclear-nuclear repulsion term, 442 
operator, 555 
profile, 41 
surface, 172 

Potential fluctuations force, 91 
Potential operator, 742, 744, 754 
Potential profile

electron density, 127 
double-gate MOSFET, 127 

Power law form, 57 
Power spectrum, 65 
Preconditioning matrix, 82

for symmetrically scaled matrix, 83 
Predefined event table, 167 
Pre-exponential factor, 166 
Probabilistic fault-tolerant computing models, 

798
Probabilistic models, 797 
Probability current. 700 
Probability density, 51, 732 

function, 725 
Probability distribution, 165-166, 666. 726, 735, 

750
function. 50, 164 

Probability function. 726 
Problem solving

simulating circuit operation of, 288 
Processing units (PUs). 244 
Processor accumulates time, 165 
P roee sso r-memo ry- Da t a pat h -1 n p u i/() u t p u t 

system, 766 
Process simulation theory

from micro to nanoelectronic devices.
145-175

Programmable-logic devices (PLD). 771
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Programmable SET logic. 350 
example of. 351 
principle. 350 

Propagating modes. 69S 
Propagation 

constant, 614 
delay, 774 

Propagator kernel. 119, 120 
PR O PH ET 148 
Pseudodirect transition. 672 
Pseudopotential 

form factors, 16 
Fourier transform. 16 
method, 12, 16 
term. 15

Pseudorandom number generator, 51 
Pseudo-wave function, 15 
PT fragments, 223

quinoidlike structure of, 226 
schematic MO diagrams, 223 

Pt nanowire device
measured mechanical impedance of, 834 

Pull-down circuit, 252 
Pull-in voltage, 830, 849 
Pull-up circuit, 252

identical SET transistors, 252 
Pulse-density modulation (PDM), 311 
Pulse propagation

in quantum dot optical amplifiers, 632 
in quantum well optical amplifiers, 632 
inter- and intralevel carrier dynamics during, 

628
Pulse-rate coding models, 311 
Pulse-width modulation (PWM) signals, 310 
Pump-blocking effect, 60S 
Punch-thro ugh e fleet, 86 
Pyramid topology. 111

Q
OCA inverter, 255
OCA majority logic gate, 255
QD luminescence

on coupling strength. 627 
on excitation level, 626 
on transition energies, 627 

QM effects, 47 
Quadratic function, 847 
Quantization direction, 63 
Quantization effects, 99 
Quantization-induced phenomena, 28 
Quantizer, 357 
Quantum  approaches, 105 
Quantum capacitance, 106 
Quantum cellular automaton (QCA). 689 

cell, 721 
Quantum computing, 240 
Quantum  confinement, 643, 671, 719 

effects, 49, 636, 644 
Hamiltonian, 643

Quantum corrections
to semiclassical approaches. ^3 

Quantum-dot cellular automaton (QCA). 244 
quant um-dot arrays. 254 

Quantum dot circuits, 244
Coulomb repulsion effect in, 244 

Quantum-dot ensemble, 617-618, 623 
influence of disorder, 617 
spatially inhomogeneous, 617 

Quantum-dot lasers (QDL), 606, 614-615. 622 
beam quality of, 620 
carricr-earrier scattering processes. 611 
carrier density dynamics of. 618 
carricr-phonon scattering processes, 611 
coupled spatiotemporal light field. 614-623 
dynamic fom en ta tion  of, 620 
emission spectrum of. 623 
ensemble of, 607 
idealized, 615
idealized active layer of, 607 
InGaAs, 618
inter-/intralevel carrier dynamics in,

614-623 
inverted, 624 
model geometry, 607 
optically injected, 625 
spatiotemporal dynamics of, 605-632 
stimulated emission in, 617 
structure, 615, 626 
with Gaussian fluctuations, 620 

Quantum-dot Maxwell-Bloch equations 
(QDMBEs), 606, 614, 628 

Quantum-dot media 
optically excited, 622 

Quantum dots (QD), 245, 546, 606, 629, 636, 
672, 709
analytical techniques, 549-566 
anisotropic parabolic, 572 
annular ring, 560 
atomic-like structure of, 546 
Bloch equations, 619, 625, 630 
calculations, 565, 720 
carrier dynamics, 607 
carriers, 611
charge density of, 588, 600-601 
density of. 618
double barrier heterostructure, 547 
double coupled, 574 
electron, 611
electronic structure of, 545-602 
elliptic, 557 
energy levels, 623 
ensemble, 629 
islands, 611
laser amplifier, 625, 632
laser waveguide, 629
lowest energy states of, 571-572
luminescence, 626
Maxwell-Bloch approach. 623
medium, 629
model electron motion in, 547
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multielectron, 566-588 
multiple interacting, 721 
TV-electron, 567, 588 
numerical techniques, 549-566 
optical amplifiers, 623, 632-633 
parabolic, 584-586 
scattering processes, 611 
schematic representation of, 547 
seven-electron, 575 
shell structure of, 546 
silicon, 635-681 
simulation of, 708 
single-electron, 549 
six-electron, 574 
spatial localization of, 613 
square, 559 
symmetric, 599 
three electron, 601 
triangular, 558 
two-electron, 575, 600, 602 
with six electrons, 587 

Quantum-dot semiconductor Bloch equations 
(QDSBEs), 606-607 

Quantum dot shapes 
prototype, 646 

Quantum dot simulation, 708 
Quantum dot surface, 655 
Quantum dot surface atomic configuration, 651 
Quantum dot systems, 580, 587, 626, 661 

simplified Hamiltonian for, 548 
theoretical model, 547-549 
two-dimensional mobile electrons, 547 

Quantum-dot waveguide
pulse propagation in, 623-633 

Quantum effect devices, 4 
Quantum effects

in conventional nanoscale MOSFET, 99 
Quantum-hydrodynamic (Q H D ) equations, 94 
Quantum hydrodynamic model, 104 
Quantum interference device, 5 
Quantum interference effects, 109 
Quantum limit, 836

for mechanical devices, 836 
Quantum Liouville equation, 97 
Quantum Maxwell-Bloch equations, 614 
Quantum-mechanical effects, 4 
Quantum mechanical expectation values, 735 
Quantum mechanical quasidistribution, 732 
Quantum mechanical system, 750 
Quantum mechanical theory, 240 

principles, 240 
Quantum-mechanical tunneling, 469 
Quantum mechanics (QM ), 291. 837 
Quantum Monte Carlo (QM C), 665. 679 

approach, 665 
1 inear-sealing, 666 
method, 657  ̂ 665, 668, 678 

Quantum numbers, 61 
collective, 569 
spin, 61 
valley, 61

Quantum point contact (QPC). 29, 58, 94 
structure. 29 

Quantum resistance, 240 
Quantum transmitting boundary method 

(QTBM), 489 
Quantum transport, 410 

Keldysh formalism for. 410 
problems, 126 

Quantum turing machine, 291 
Quantum waveguides, 110 
Quantum well, 607 

asymmetrical, 34 
emission spectrum, 623 
optical amplifiers, 632-633 
structure, 31, 622 

Quantum wires, 113 
realistic simulation, 703-708 

Quasi-analytical modeling, 336. 348 
flow chart, 336 

Quasi-bound states (QBS), 491 
lifetime, 494 
wave function, 496 

Quasi-classical formula, 496 
Quasi-empirical equation. 349 
Quasiharmonic approximation, 177 
Quasi-hexagonal site, 192 
Quasi-one-dimensional (Q1D), 213 
Quasi-particle eigen energies, 663 
Quasi-two-dimensional (Q2D) system, 4

R
Radial equation, 551 

discretized, 552 
one-dimensional, 551 

Radial wavefunction, 555 
convergence of, 553 

Radiative recombination rate, 673 
Radiative recombination time, 674 
Radio-frequency SET (RF-SET), 360 
Rama Krishna and Friesner (RKF) 

method, 646
valence-state energies, 646 

Raman spectroscopy, 452 
Random-access memory (RAM) devices, 530 
Random angles, 52
Random background charge issue, 245 
Random dispersion, 819 
Random flight times, 51, 52 
Random function, 65 
Random local potential term, 64 
Random number, 51, 52, 55 

generator, 726 
Random-phase approximation (RPA), 71, 670 

dielectric function, 75 
Random thermal motion, 77 
Rare event problem, 158 
Rashba coefficient, 12, 33 
Ra-shba effect, 33 
Rashba spin splitting. 11-12
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Rate coding models. 312 
Rate-coding-type integrators. 312 
Rate equation, 154 
Rayleigh-Ritz method, 39 
Rayleigh-Rtz variational method. 556 
Rayleigh-Ritz variation principle, 580 
Reactance, 379 
Reaction capture radii, 179 
Reaction coordinate, 169 
Rcaction-diffusion scheme, 149 
Reaction rate constants, 149 
Real dopant distribution, 142 
Real-space operator, 74 
Real-space structure constants, 380 
Reciprocal lattice. 15 

vectors, 15, 17, 67, 71 
Recursion algorithm, 114 
Recursive Green's function, 121 

technique, 690 
Recursive scattering matrix techniques, 688, 

696
Reed-Muller coefficients, 794-795 
Reflection coefficient resonances, 495 
Reflection coefficients, 702 
Reflection matrix, 696 
Reiman sum, 560. 564 

direct, 565
four-dimensional, 564 
t wo-d i me n si o n a 1, 563 

Relative dielectric function, 73 
Relaxation rates, 611 
Reliable computation, 796 
Ren's derivation, 645 
Repulsive potential, 568 
Residual resistivity, 387 
Resistivity tensor. 391 
Resonant response, 832 
Resonant tunneling diode (RTD), 110, 732 
Resonators, 833 
Response time. 624
Restricted Hartree-Fock (RH F) calculations, 

574-575
Resulting diffusion equation, 153 
Ring-mechanism, 191, 195 
Ring-twist distortions, 221 
RISC (reduced instruction set computer). 

438
Ritz matrix, 558, 560 
Ritz matrix equation, 559 
Ritz procedure, 712 
Roothan-Hall secular equation, 440 
Rotational motors, 826-827 

carbon nanotube based, 826 
Roughness correlation function, 65 
Roughness parameters, 65 
RTD1, 755-756 
RTD2, 755-756 

conduction band edge of, 757 
current-voltage characteristic of, 758-759 
electron concentration in, 758, 760 
in resonance condition, 760

mean kinetic energy in. 759-760 
pair generation rate y(.v) in, 757 

RTD3 "
electron concentration profiles in, 761 
simulation of, 759

s
SAC! approach, 598, 601 
Saddle point cell, 177 
Saddle point configurations, 191 

diffusion, 182 
Saddle point energy, 152-156, 165-166, 169, 

171, 180 
Saddle point regions, 160 
Saddle point volume. 156 

isotropic, 156 
tensor, 156 

Sample network, 282 
energy diagram, 283 
energy function and local minima, 282 
problem-solving operation of, 282 
state transition in, 283, 284 

Scanning tunneling microscopy (STM), 219 
Scattering

acoustic mode, 68 
between subbands, 70 
Coulomb, 63
deformation potential, 67 
interface-trap, 64 
intervalley, 66
intravalley acoustic-phonon, 66 
intravalley optical phonon, 66 
kernel, 742
matrix iteration, 114, 117 
mechanisms, 54, 62, 64, 65 
mechanisms in a typical semiconductor, 54 
nonpolar optical phonon, 69 
operator, 743 
path operators, 377, 379 
phonon, 66, 69 
potential, 54, 66 
processes, 50, 53 
solutions, 379 
surface-roughness, 64 
theory, 367 

Scattering-in term, 365 
Scattering matrix, 697-700 

unitarity, 700 
Scattering-out term, 365 
Scattering rate calculation

for low-dimensional systems, 62 
Scattering rates, 35, 36, 51, 52, 54, 55, 58, 64, 

66, 69
calculation for low-dimensional systems, 71 
electron-bulk-phonon, 71 
isotropic energy dependent, 71 
zero-order intervalley, 69 

Schmidt trigger, 250
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Schottky gate, 265 
SCHRED, 36, 40 

description of. 37
sample simulation results obtained with. 45 
simulation, 47 

Schrodinger equation, 21, 95, 113-1 15, 441, 
547, 666, 695-696, 701-702, 706, 710, 
713-714, 717, 719 
I D, 44
discretized, 712
1D one-electron effective-mass, 37 
effective mass, 47 
Hamiltonian in, 557 
in polar coordinates, 712-719 
multielectron, 566, 568 
one-dimensional. 554 
particle's, 642 
single-electron, 549, 565 
stationary. 736 
time-dependent, 36, 647 
time-independent, 548 
two-dimensional, 551 
Usuki solution, 112 

Schrodinger operator, 412 
Schrodinger picture, 733 
Schrodinger-Poisson problem, 688 

1D, 44, 94-96 
2D, 94

Schrodinger-Poisson solver, 507 
Schrodinger wave equation (SWE), 10, 14, 15 

one-dimensional, 20 
Schur vectors, 556 
Screened interaction 

dynamically, 662 
Screened KKR method (SKKR), 380 
Screened matrix elements, 75, 76 
Screening effects. 72, 669 
Screening functions 

averaged, 672 
Second-order perturbation theory, 22 
SE-FET hybrid pump, 359 
SE-FET hybrid ULSI architecture, 358 

schematic diagram, 358 
Selection rules, 723
Self-assembled monomolecular layers, 448 
Self-consistent field (SCF) methods, 440 
Self-consistent potential profile

for quantum wire trigate transistor. 118 
Self-consistent potentials, 671 
Self-consistent Schrodinger-Poisson solver 

(SCHRED), 58 
Self-consistent solution, 719 
Self-scattering mechanism, 52 
Self-scattering method. 52 
Self-scattering rate, 751 
Self-scattering rejection technique, 55 
Semiclassical device simulation, 83 
S e m i c 1 ass i c a 1 t r a n s po r t 

modeling, 49
for low-dimensional systems. 58 

Semiconductor device sealing

issues in, 3 
Semiconductor-insulator interface, 59 
Semiconductor process technology, 265 
Semiconductors 

direct-gap, 10
electronic bandstructure, 9, 10 
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Short-range-order effects, 383 
Si cantilever, 826 
[3-SiC nanocluster, 824 
SimH„ clusters

optical absorption spectrum, 665 
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Simple single-electron XNOR gate, 301 
Simulated resonant tunneling diodes, 755 
Simulation codes 

ALAM ODE, 148 
FLOORS, 148 
PROPHET, 148 
TAURUS-PM El, 148 

Simulation methods. 360 
Simulation results, 755-761

comparison with other numerical methods, 
755

effect of scattering. 755-756 
inclusion of extended contact regions, 

759-761 
Single-barrier tunneling, 754 
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